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Abstract

Background: Clinical trials are increasingly focused on pre-manifest and early
Alzheimer’s disease (AD). Accurately predicting those who transit from normal to MCI
or from MCl to dementia/AD (true positives) versus non-progressors (false positives) is
challenging. Biomarker positivity and comorbidity information are often not sufficient
to identify those who are destined to have symptom progressions. Accurate identifica-
tion of progressors is important to avoid un-necessary treatment as well as to improve
trial efficiency.

Method: Using only clinical variables and big data analytics, we aimed to predict those
who convert from normal to MCl and from MCl to AD, estimating probabilities of these
conversions with a small set of selected clinical variables. This work updates our previ-
ous work using National Alzheimer’s Coordinating Center (NACC) Uniform Data Set
Version 2. () We also generated a user-friendly conversion probability calculator to
estimate individual subject conversion. We used data from the NACC Uniform Data
Set Version 3 and machine learning feature selection methods to identify clinical vari-
ables that predicted MCI and dementia conversion. We built a pipeline with machine
learning techniques to test model performance.

Result: Using NACC data (frozen 3/2020), 577 subjects were used to predict con-
versions from normal to MCI within 4 years, and 538 and 882 subjects were used
to predict conversion from MCI to AD within 2 years and 3 years, respectively. An
exploratory analysis was also conducted for amnestic MCI (aMCI) conversion. For
each prediction model, we selected 20 clinical variables optimizing predictions using
Receiver Operating Characteristics Area-under-Curve (AUC). Our model achieved
82.1% prediction accuracy, 75.9% specificity, 85.1% sensitivity, and 80.5% AUC for MCl
to AD conversion within 3 years. Similar results were obtained for normal to MClI con-
version. The variables which ranked highest in predicting transitions include clinician’s
judgement of subject’s meaningful cognitive impairment (conversion to MCI) and CDR

community affairs item (conversion to AD in 3 years).

Alzheimer’s Dement. 2022;18(Suppl. 7):e065231.

https://doi.org/10.1002/alz.065231

wileyonlinelibrary.com/journal/alz © 2022 the Alzheimer’s Association. 1of2


mailto:dodgeh@ohsu.edu
https://wileyonlinelibrary.com/journal/alz
https://doi.org/10.1002/alz.065231

20f2 Alzheimer’s C‘J’ DGIHCHtiQQ” CLINICAL MANIFESTATIONS

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

Conclusion: Although NACC UDS is extensive, our algorithm is based on a large sample
size of potential trial participants who visited or are referred to Alzheimer’s Disease
Centers. The probability calculator can be used to effectively pre-screen and enrich

trial participants.

Figures

Fig. 1. Prediction model performance evaluation scheme.
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Identifying an optimal threshold of probabities which reaches high accuracy
of identifying true deciiners (i.e., over 95% of subjects selected using the
threshold are destinedto transition in cognitive states).

Figure 2. AUC by number of selected features.
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