MOLECULAR ECOLOGY

1	
2	Supplemental Information for:
3	
4 5	Late Pleistocene landscape changes and habitat specialization as promoters of population genomic divergence in Amazonian floodplain birds
6	
7 8	Leilton Willians Luna ^{1,2,*} , Luciano Nicolas Naka ³ , Gregory Thom ⁴ , Laura Lacey Knowles ⁵ , André Oliveira Sawakuchi ⁶ , Alexandre Aleixo ^{2, 7, 8} and Camila Cherem Ribas ⁹
9	
10 11	¹ Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA
12 13	² Department of Zoology, Universidade Federal do Pará / Emílio Goeldi Museum, Belém, PA, Brazil
14 15	³ Laboratory of Avian Ecology and Evolution, Department of Zoology, Universidade Federal do Pernambuco, Recife, PE, Brazil
16	⁴ Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
17 18	⁵ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
19	⁶ Instituto de Geociências, Universidade de São Paulo, São Paulo, SP, Brazil
20	⁷ Instituto Tecnológico Vale, Belém, PA, Brazil
21	⁸ Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
22	⁹ Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
23	*Corresponding author: leiltonwluna@gmail.com
24	

Table of Content

Table S1. List of Samples	Page 3
Table S2. Estimation of demographic parameter values.	Page 8
Table S3. Summary statistics of UCE's loci and SNP matrixes.	Page 9
Table S4. Results of the shared divergence test.	Page 9
Figure S1. Results of PCA and phylogenetic analysis including non-Amazonian	Page 10
populations.	_
Figure S2. Cross-validation results of the <i>construct</i> analysis.	Page 13
Figure S3. Cluster contributions for all populational layers (K= 1 to 6).	Page 15
Figure S4. Fit of the simulated summary statistics of each demographic model to the	Page 16
empirical data.	
Figure S5. Confusion matrix classification between simulated and observed data.	Page 18
Figure S6. Pearson correlation between simulated and pseudo-observed data.	Page 19
Figure S7. Prior and posterior distribution probabilities of the number of divergence	Page 20
events between pairs of populations.	
Figure S8. Approximate posterior densities of divergence times for each pair of	Page 21
populations.	

27 Table S1. List of samples used in the study for each species with the respective sample ID, institution, location, sub-basin / river

section, geographic reference from longitude and latitude (in decimal degrees). Institutions: Academy of Natural Science of Drexel

29 University (ANSP), Instituto Nacional de Pesquisas da Amazônia (INPA), Louisiana Museum of Natural Science (LSUM),

30 Universidade Federal de Pernambuco (UFPE), Museu Paraense Emílio Goledi (MPEG), and Coleções de Aves Hertiano Zenaide,

31 Universidade Federal da Paraíba (CAHZ).

Taxon	Sample ID	Institution	Locality	Sub-basin / river section	Lat/Long
Stigmatura napensis napensis	17725	ANSP	Napo, ca. 10 river km below junction of Rio Lagarto & Rio Aguarico	Napo	-1.0333, -77.8500
Stigmatura napensis napensis	19369	ANSP	Napo, Rio Napo; island at mouth of Rio Aguarico	Napo	-1.0333, -77.8500
Stigmatura napensis napensis	3638	LSU	Peru: Loreto, S bank of Isla de Iquitos	Upper Solimões	-3.8756, -73.2197
Stigmatura napensis napensis	3639	LSU	Peru: Loreto, S bank of Isla de Iquitos	Upper Solimões	-3.8756, -73.2197
Stigmatura napensis napensis	43079	LSU	River island in Rio Maranon at mouth of Rio Morona, Loreto Department, Peru	Maranon	-4.7497, -77.1300
Stigmatura napensis napensis	7240	LSU	Isla Pasto, Rio Amazonas opposite Aysana, ca 80 km BE Iquitos; NA; Loreto; Peru	Upper Solimões	-3.4730, -72.6760
Stigmatura napensis napensis	89188	LSU	Isla Setical, 13.9 km NW Atalaya; Atalaya; Ucayali; PERU	Ucayali	-10.6419, -73.8408
Stigmatura napensis napensis	89217	LSU	Isla Setical, 13.9 km NW Atalaya; Atalaya; Ucayali; PERU	Ucayali	-10.6419, -73.8408
Stigmatura napensis napensis	89218	LSU	Isla Setical, 13.9 km NW Atalaya; Atalaya; Ucayali; PERU	Ucayali	-10.6419, -73.8408
Stigmatura napensis napensis	A027	INPA	Rio Somlimões, margem direita, ca 12 km NW Jutaí	Lower Solimões	-2.6806, -66.8611
Stigmatura napensis napensis	A028	INPA	Rio Somlimões, margem direita, ca 12 km NW Jutaí	Lower Solimões	-2.6806, -66.8611
Stigmatura napensis napensis	A1033	INPA	Rio Branco, Ilha do Marari	Branco	1.4993, -61.2527

Stigmatura napensis napensis	A14198	INPA	Margem esquerda do baixo Rio Branco, ca 320 km S Caracaraí	Branco	-1.0047, -61.8812
Stigmatura napensis napensis	A15092	INPA	Resex Tapajós-Arapiuns; margem esquerda do Rio Tapajós; ca 33 km N Aveiro; "Comunidade Cametá"	Tapajós	-3.3000, -55.2833
Stigmatura napensis napensis	A15126	INPA	Resex Tapajós-Arapiuns; margem esquerda do Rio Tapajós; ca 33 km N Aveiro; "Comunidade Cametá"	Tapajós	-3.3167, -55.3333
Stigmatura napensis napensis	A15923	INPA	Baixo Rio Branco, ca 225 km S Caracaraí	Branco	-0.0496, -61.8074
Stigmatura napensis napensis	A15960	INPA	Rio Amazonas; ca 70 m W Itacoatiara; ilha em frente "Novo Remanso"	Lower Solimões	-3.2400, -59.0603
Stigmatura napensis napensis	A2166	INPA	Caracaraí; Vista Alegre; Ilha do Pascoal; Rio Branco; ca 26 Km W da base do Parque Nacional do Viruá	Branco	1.4673, -61.2536
Stigmatura napensis napensis	A23482	INPA	RDS Mamirauá ca. 40km NNW Tefé, Paraná da Vila Alencar	Lower Solimões	-3.0961, -64.7570
Stigmatura napensis napensis	A23483	INPA	RDS Mamirauá ca. 40km NNW Tefé, Paraná da Vila Alencar	Lower Solimões	-3.0961, -64.7570
Stigmatura napensis napensis	A23703	INPA	Rio Solmões, ca 15 Km W Codajás, Ilha Grande, Canal do Juanico	Lower Solimões	-3.8133, -62.1964
Stigmatura napensis napensis	A23711	INPA	Rio Solmões, ca 15 Km W Codajás, Ilha Grande, Canal do Juanico	Lower Solimões	-3.8133, -62.1964
Stigmatura napensis napensis	A23892	INPA	Rio Solimões, Ilha Nova de Santana, cerca de 30 km SW Manacapurú	Lower Solimões	-3.5421, -60.8040
Stigmatura napensis napensis	A23895	INPA	Rio Solimões, Ilha Nova de Santana, cerca de 30 km SW Manacapurú	Lower Solimões	-3.542160.8040
Stigmatura napensis napensis	A8280	INPA	Ilha no Rio Branco; ca 30 km S Caracaraí	Branco	1.5261, -61.2467
Stigmatura napensis napensis	A8330	INPA	Ilha fluvial no Rio Branco; ca 150 km S de Caracaraí	Branco	0.5075, -61.6647
Stigmatura napensis napensis	A8385	INPA	Ilha no Rio Branco; ca 315 km S Caracaraí	Branco	-1.0244, -61.8756
Stigmatura napensis napensis	T16303	MPEG	Borba, Auarazinho, margem leste Rio Madeira	Madeira	-4.3825, -59.7517

Stigmatura napensis napensis	T16335	MPEG	Borba, Puruzinho, Ilha	Madeira	-4.1283, -59.3653
Stigmatura napensis bahiae	T21579	MPEG	São Raimundo Nonato, PN Serra da Capivara, Projeto Fontenele	Caatinga Biome	-8.8531, -42.6333
Stigmatura napensis bahiae	T25197	MPEG	São Raimundo Nonato, PN Serra da Capivara, Comunidade Onça	Caatinga Biome	-8.8531, -42.6333
Mazaria propinqua	43070	LSU	Peru: Loreto, River Island in Rio Maranon at mouth of Rio Morona	Maranon	-4.7497, -77.0633
Mazaria propinqua	43083	LSU	Peru: Loreto, River Island in Rio Maranon at mouth of Rio Morona	Maranon	-4.7497, -77.0633
Mazaria propinqua	7289	LSU	Isla Pasto, Rio Amazonas opposite Aysana, ca 80 km BE Iquitos; NA; Loreto; Peru	Upper Solimões	-3.4730, -72.6760
Mazaria propinqua	7331	LSU	AMAZONAS I. PASTO 80KM NE IQUIT. 80M; NA; Loreto; Peru	Upper Solimões	-3.5167, -72.5167
Mazaria propinqua	79791	LSU	river island at confluence of Rios Beni & Madre de Dios; Vaca Diez; Beni; Bolivia	Madre de Dios	-10.9919, -66.0831
Mazaria propinqua	79801	LSU	San Lorenzo de Pampa; Vaca Diez; Beni; Bolivia	Madre de Dios	-11.1819, -65.7628
Mazaria propinqua	89182	LSU	Isla Setical, 13.9 km NW Atalaya; Atalaya; Ucayali; PERU	Ucayali	-10.6419, -73.8408
Mazaria propinqua	89264	LSU	Isla del Gallo, 7.2 km NW Atalaya; Atalaya; Ucayali; PERU	Ucayali	-10.6750, -73.7969
Mazaria propinqua	A1025	INPA	Ilha do Marari, Rio Branco	Branco	1.5483, -61.2553
Mazaria propinqua	A18287	INPA	Margem esquerda do Rio Japurá, ca 50 km SE Vila Bittencourt; "Comunidade Taboca"	Japurá	-1.7167, -69.1167
Mazaria propinqua	A2158	INPA	Caracaraí; Vista Alegre; Trilha Aliança; margem esquerda do Rio Branco; ca 30 Km da base do Parque Nacional do Viruá	Branco	1.5576, -61.2489
Mazaria propinqua	A23479	INPA	RDS Mamirauá ca. 40km NNW Tefé, Paraná da Vila Alencar	Lower Solimões	-3.0961, -64.7570
Mazaria propinqua	A23707	INPA	Rio Solmões, ca 15 Km W Codajás, Ilha Grande, Canal do Juanico	Lower Solimões	-3.8132, -62.1962
Mazaria propinqua	A23708	INPA	Rio Solmões, ca 15 Km W Codajás, Ilha Grande, Canal do Juanico	Lower Solimões	-3.8132, -62.1962

Mazaria propinqua	A23872	INPA	Rio Solimões, Ilha Nova de Santana, cerca de 30 km SW Manacapurú	Lower Solimões	-3.5421, -60.8040
Mazaria propinqua	A23886	INPA	Rio Solimões, Ilha Nova de Santana, cerca de 30 km SW Manacapurú	Lower Solimões	-3.5421, -60.8040
Mazaria propinqua	A8309	INPA	Ilha fluvial no Rio Branco; ca 80 km de Caracaraí	Branco	1.1665, -61.3341
Mazaria propinqua	A8345	INPA	Ilha no Rio Branco; ca 180 km S Caracaraí	Branco	0.2664, -61.7653
Mazaria propinqua	T1027	UFPE	RR: ilha no Rio Branco; ca. 40 km S Caracaraí	Branco	1.4820, -61.253
Mazaria propinqua	T760	UFPE	RR: ilha no Rio Branco, ~100 km ao N da confluência com o Rio Negro	Branco	-0.6155, -61.8132
Mazaria propinqua	T763	UFPE	RR: ilha no Rio Branco, ~100 km ao N da confluência com o Rio Negro	Branco	-0.6155, -61.8132
Mazaria propinqua	T765	UFPE	RR: ilha no Rio Branco, ~100 km ao N da confluência com o Rio Negro	Branco	-0.6138, -61.8122
Mazaria propinqua	T767	UFPE	RR: ilha no Rio Branco; ca. 40 km S Caracaraí	Branco	1.4820, -61.253
Conirostrum bicolor minus	A1043	INPA	Rio Branco. ilhas na boca do Rio Anauá	Branco	0.9847, -61.3413
Conirostrum bicolor minus	A1341	INPA	Rio Japurá; Ilha do Cururu; ca. 75km NNW Tefé	Japurá	-2.8760, -64.9193
Conirostrum bicolor minus	A18065	INPA	Ilha no Rio Japurá; ca 68 km SE Vila Bittencourt; "Ilha da Ponta Nova"	Japurá	-1.7925, -68.8189
Conirostrum bicolor minus	A2156	INPA	Caracaraí; Vista Alegre; Trilha Aliança; margem esquerda do Rio Branco; ca 30 Km da base do Parque Nacional do Viruá	Branco	1.7207, -61.1675
Conirostrum bicolor minus	A23424	INPA	RDS Mamirauá ca. 40km NNW Tefé próximo a comunidade da Boca do Mamirauá	Solimões	-3.1249, -64.7756
Conirostrum bicolor minus	A23757	INPA	Rio Solmões. ca 15 Km W Codajás. Ilha Grande. Canal do Juanico	Solimões	-3.8134, -62.1964
Conirostrum bicolor minus	A23876	INPA	Rio Solimões. Ilha Nova de Santana. cerca de 30 km SW Manacapurú	Solimões	-3.3830, -60.7258
Conirostrum bicolor minus	A23989	INPA	PA: margem direita R. Amazonas. ca. 22 km NW Santarém; Igarapé do Arapixuna	Amazonas	-2.2197, -54.7548
Conirostrum bicolor minus	A8273	INPA	Ilha Ajarani no Rio Branco; ca 30 km S Caracaraí	Branco	1.5497, -61.2500

Conirostrum bicolor minus	A8279	INPA	Ilha no Rio Branco; ca 30 km S Caracaraí	Branco	1.6773, -61.2001
Conirostrum bicolor minus	B7282	LSU	Isla Pasto. Rio Amazonas opposite Aysana. ca 80 km BE Iquitos. Loreto Department. Peru	Solimões	-3.4580, -72.6750
Conirostrum bicolor minus	T1161	UFPE	RR: Ilha no Rio Branco; ca. 35 km S Caracaraí	Branco	1.4313, -61.2791
Conirostrum bicolor minus	T25522	MPEG	Amazonas: St antonio do Içá. ilha porto América	Amazonas	-3.1086, -67.9645
Conirostrum bicolor minus	T25524	MPEG	Amazonas: St antonio do Içá. ilha porto América	Amazonas	-3.1086, -67.9645
Conirostrum bicolor minus	T611	UFPE	RR: ilha no Rio Branco. ca 120 km S Caracaraí	Branco	0.7671, -61.4816
Conirostrum bicolor bicolor	KU5690	UFPE	Guiana	-	8.3799, -59.3069
Conirostrum bicolor bicolor	MAM11	CAHZ	Brazil: PB; Barra de Mamanguape	-	-6.7839, -34.9205
Conirostrum bicolor bicolor	MAM16	CAHZ	Brazil: PB; Barra de Mamanguape	-	-6.7839, -34.9205
Conirostrum bicolor bicolor	T1737	MPEG	Brazil: PI; Barra Grande, Cajueiro da Praia	-	-2.9112, -44.4190

Table S2. Mean values and 95% confidence interval of the parameters current effective population size (Ne), migration rate per

34 generation (m), and mean and standard deviation (sd) of mutation rate (μ) of UCEs and exons, estimated for the population pairs of the

Rio Branco (Bran) and Amazon River and its tributaries (Amaz) from the best demographic model (Model 3) simulated in

36 PipeMaster.

Stigmatura n. napensis									
Ne_Amaz Ne_Bran m_AmazBran m_Bran[]Amaz mean µ rate sd µ rate									
Min.:	58033	24642	0.1432	0.2693	4.62E-11	4.77E-10			
Weighted 2.5 % Perc.:	119001	76046	0.3658	0.4192	2.01E-10	1.48E-10			
Weighted Median:	123795	156053	1.3957	1.6970	3.66E-10	4.87E-10			
Weighted Mean:	178549	185935	1.3331	1.7438	4.06E-10	4.97E-10			
Weighted Mode:	133408	57220	1.8118	2.1494	9.01E-11	1.50E-10			
Weighted 97.5 % Perc.:	375883	417053	2.0539	2.2929	9.70E-10	1.22E-09			
Max.:	570914	587497	2.1546	2.3686	1.24E-09	1.65E-09			
		Λ	Iazaria propínqua						
	Ne_Amaz	Ne_Bran	m_Amaz[Bran	m_BranDAmaz	mean µ rate	sd µ rate			
Min.:	5749	35	0.1799	0.1381	7.93E-11	9.99E-11			
Weighted 2.5 % Perc.:	114665	96068	0.4225	0.3786	1.31E-11	2.32E-10			
Weighted Median:	350501	325197	1.2998	1.3159	5.51E-10	5.75E-10			
Weighted Mean:	351148	321194	1.2554	1.2344	5.23E-10	5.90E-10			
Weighted Mode:	377162	152481	1.6450	1.6836	7.76E-10	3.76E-10			
Weighted 97.5 % Perc.:	587873	573691	1.9107	1.9050	9.73E-10	1.00E-09			
Max.:	646403	702218	1.9779	2.0233	1.08E-09	1.26E-09			
		Са	onirostrum b. minus						
	Ne_Amaz	Ne_Bran	m_Amaz[Bran	m_Bran ^[] Amaz	mean µ rate	sd µ rate			
Min.:	27294	4925	0.0904	0.0321	1.01E-10	4.24E-11			
Weighted 2.5 % Perc.:	88821	48995	0.1833	0.2156	3.65E-11	1.17E-10			
Weighted Median:	246484	150346	1.0692	1.3782	5.44E-10	6.26E-10			
Weighted Mean:	256059	157594	1.0622	1.2721	5.06E-10	6.04E-10			
Weighted Mode:	223047	119812	1.4805	1.7094	6.91E-10	7.42E-10			
Weighted 97.5 % Perc.:	465550	342841	1.8544	1.8397	9.28E-10	9.78E-10			
Max.:	515138	470830	1.9527	1.8808	9.80E-10	1.08E-09			

Taxa	UCE Loci*	Total SNPs	Average read depth	1 SNP/UCE
Stigmatura napensis	2,082	8,257	22.6	1,322
Mazaria propinqua	1,983	6,732	22.8	1,384
Conirostrum bicolor	1,761	6,679	21.3	1,071

Table S3. Summary statistics of UCE's loci and SNP matrixes for the three studied species

1,942

39 *80% of loci completeness

Mean values

40

41 **Table S4.** Results of the shared divergence test were analyzed in *ecoevolity*, with the number of divergence events estimated, posterior

6,889

22.2

1,402

42 probability and cumulative posterior probability of each simulated event, and calculation of the prior probability and Bayes' factor.

Number of events	Posterior probability	Cumulative post. probability	Prior probability	Bayes factor
3	< 0.01	1	0.2575	< 0.0291
2	< 0.99	1	0.5138	> 93.6779
1	< 0.01	1	0.2286	< 0.0340

- **Figure S1.** Evolutionary relationships among populations within Amazonian floodplains and
- 47 non-Amazon populations/subspecies (except *Mazaria propinqua*) represented in principal
- 48 component analyses and maximum likelihood phylogenetic trees for (a) *Stigmatura napensis*, (b)
- *Mazaria propinqua*, and (c) *Conirostrum bicolor*.

(a) Lesser Wagtail-tyrant Stigmatura napensis

(b) White-bellied Spinetail Mazaria propinqua

Figure S2. Cross-validation results comparing spatial (blue) and non-spatial (red) models for one to six layers for each species tested in the conStruct analysis.

(c) Bicolored Conebill *Conirostrum bicolor*

(a) Lesser Wagtail-tyrant Stigmatura napensis

(c) Bicolored Conebill Conirostrum bicolor

(b) White-bellied Spinetail *Mazaria propinqua* Non-spatial model

Figure S3. Cluster contributions for all layers (K= 1 to 6), referring to the spatial model to the

58 (a) Lesser Wagtail-tyrant *Stigmatura napensis napensis* and (b) Bicolored Conebill *Conirostrum*

59 *bicolor minus*, and non-spatial model to the (c) White-bellied Spinetail *Mazaria propinqua*

analyzed in construct. Covariation contributions smaller than 0.02 were considered spurious.

(a) Lesser Wagtail-tyrante *Stigmatura napensis*

(b) White-bellied Spinetail Mazaria propinqua

Figure S4. Analysis of the four principal component axes showing the fit of the simulated

 $\label{eq:summary} {summary statistics of each model (m1 to m4) to the empirical data (dot) for each analyzed}$

63 species.

64 (Figure S4 continue...)

(c) Bicolored Conebill Conirostrum bicolor

(a) Lesser Wagtail-tyrant *Stigmatura napensis*

(b) White-bellied Spinetail Mazaria propinqua

(c) Bicolored Conebill Conirostrum bicolor

66 between simulated and observed data.

Figure S6. Pearson correlation between simulated and pseudo-observed data obtained from 100 cross-validations of the best model

68 (Model 3) for the estimated parameters of the current effective population size of the Rio Branco (Ne0.pop1) and Amazonas River and

69 its tributaries (Ne0.pop2), migration rate (mig1.2_1 and mig1.1_2), mean and standard deviation of mutation rate (mean.rate and

sd.rate, respectively). Parameters with a correlation coefficient > 0.7 were correctly estimated.

72 Figure S7. Prior (light bars) and posterior (dark bars) distribution probabilities of the number of

- divergence events between pairs of populations with concentration parameters of $\alpha = 2$ (sum of
- 74 the divergence events divided by two).

Figure S8. Approximate posterior densities of divergence times for each pair of populations with

concentration parameters of $\alpha = 2$ (sum of the divergence events divided by two).