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Notes S1: Biophysical drivers of Tleaf 

Fundamentally, 𝑇𝑙𝑒𝑎𝑓 is determined by the energy balance and can be estimated based on 

biophysical principles: 𝑇𝑙𝑒𝑎𝑓 − 𝑇𝑎𝑖𝑟 depends on energy input from net radiation (𝑅𝑛, 

including shortwave and longwave) minus heat lost to the environment (Fig. 3, Campbell & 
Norman, 1998; Muir, 2019). High 𝑅𝑛 loads can elevate 𝑇𝑙𝑒𝑎𝑓 above 𝑇𝑎𝑖𝑟 (Fig. 3a). Sensible 

heat flux between leaf and air is regulated by leaf boundary layer conductance, which is 
greater in smaller leaves (Fig. 3d) and under higher wind speeds (Fig. 3b). Latent heat flux 
(𝜆𝐸) through transpiration cools the leaf, and is determined by stomatal and boundary 
layer conductances (𝑔𝑠 and 𝑔𝑏) and VPD:𝑔𝑏 increases with wind speed, and 𝑔𝑠 generally 
declines as VPD increases due to stomatal closure (Darwin, 1898; Mott & Parkhurst, 1991). 
Therefore, 𝑇𝑙𝑒𝑎𝑓 − 𝑇𝑎𝑖𝑟 decreases in magnitude with wind speed (Fig. 3b, Daudet et al., 

1999), increases with RH (Fig. 3c), increases with leaf size (Fig. 3d), and 𝑇𝑙𝑒𝑎𝑓 decreases 

absolutely with 𝑔𝑠 (Fig. 3e). 

Under hot and dry conditions, leaves face a trade-off between 𝑇𝑙𝑒𝑎𝑓 regulation and water 

conservation (Koch et al., 1994; Fauset et al., 2018). With adequate water, high 𝜆𝐸 can 
dissipate excess heat, particularly for smaller leaves (higher 𝑔𝑏) (Leuzinger & Körner, 
2007; Dong et al., 2017; Leigh et al., 2017; Song et al., 2020; Konrad et al., 2021). However, 
when transpiration exceeds water supply, stomata close to conserve water, increasing 𝑇𝑙𝑒𝑎𝑓 

(Fig. 3e, Fauset et al., 2018). Therefore, at high solar radiation loads, latent cooling can 
maintain 𝑇𝑙𝑒𝑎𝑓 closer to 𝑇𝑎𝑖𝑟 , but if stomatal opening is limited, solar radiation can 

drastically elevate 𝑇𝑙𝑒𝑎𝑓 above 𝑇𝑎𝑖𝑟 , especially for larger leaves (Fauset et al., 2018; Song et 

al., 2020; Konrad et al., 2021). 

Leaves can be substantially warmer or cooler under certain conditions. They can be 
warmer than air in full sunlight, especially under slow wind speeds and low 𝑇𝑎𝑖𝑟 (Doughty 
& Goulden, 2008). Leaves are often cooler than the air on clear nights due to radiative 
coupling with the very cold sky, and under some daytime conditions (cloudy skies, high 
wind speeds, and high 𝑇𝑎𝑖𝑟 , Vogel, 2009; Rey-Sánchez et al., 2016). 

  



Methods S1. Methods for analyzing vertical gradients in the 
biophysical environment 

Study sites 

We analyzed vertical gradients in key biophysical variables from the National Ecological 
Observatory Network’s Airborne Observatory Platform (NEON AOP) and meteorology 
towers at six focal NEON sites (Figs 2, S1, Schimel et al., 2007). The sites are well 
distributed across the United States and represent key forest types and structures (Table 
S1). 

Estimating forest and light environments from lidar 

Data selection 

We downloaded classified lidar point clouds as .laz files from the NEON (National 
Ecological Observatory Network, 2020) data portal. For each site, we analyzed forest 
structure and light environments using lidar data for the 1 x 1 km plot where the 
meteorology tower is located. If a large proportion of the plot containing the tower was 
deforested, we used the closest forested pixel instead. We selected the most recent lidar 
survey available at each site (all conducted in 2019), which most closely temporally-
corresponded to the meteorological time series. All sites were surveyed in growing season 
months (April-July), except for PUUM (January survey), an evergreen site where total leaf 
area seasonality is expected to be low. 

Lidar data processing 

Lidar data were processed according to methods detailed in Stark et al. (2012). Outliers on 
the z plane (height) were removed by applying an interquartile range (IQR) approach. The 
IQR is calculated as the third quartile (Q3) minus the first quartile (Q1); lidar pulse returns 
were restricted to > Q1-(1.5xIQR) and < Q3+(1.5xIQR). Next, pulse return counts were 
quantified, or ‘voxelized’ within all 2 x 2 x 1 m voxels in a plot. 

Digital terrain models (DTMs) were created for each plot using minimum quantile spline 
regression and interpolation (see Shao et al. 2019) and used to normalize the voxelized 
lidar data with respect to the ground height. Leaf area density (LAD, 𝑚2 𝑚−3) was 
estimated by applying the MacArthur-Horn transformation (MacArthur & Horn, 1969) to 
the voxelized pulse returns. We excluded LAD data at the bottom 5 m of the vertical profile, 
due to limited pulse penetration within this region furthest away from the sensor (Stark et 
al., 2012); for calibration purposes, we assumed the bottom 5 m to have a leaf area index 
(LAI) of 0.25 𝑚2𝑚−2 (Shao et al., 2019). 

We scaled LAD values by a factor of 5.5 so that they matched an independent estimate of 
LAI. Specifically, published estimates of LAI at SERC (average of 5.78 𝑚2 𝑚−2) derived from 
litterfall (Parker et al., 2004), which were then in good agreement with our lidar-derived 
estimate (5.75 𝑚2𝑚−2). 

Generating leaf area and light transmission profiles. 



Site-level LAD profiles were calculated as the mean LAD at each height. Mean light 
transmission profiles (proportion of incident light) were estimated by applying a vertical 
light reduction model to LAD estimates (Stark et al., 2012). To estimate the proportion of 
sun leaves along the vertical profile, we isolated voxels in the upper canopy surface layer 
(1-2 m from the local canopy surface, likely contain the majority of sun leaves), calculated 
the mean LAD profile for this surface layer, and divided it by the total mean LAD profile. 

Analyzing biophysical gradients from micrometeorological data 

Micrometeorological data was downloaded for each site from NEON (neonUtilies R 
package) at 30 minute intervals for 2015-2020 (National Ecological Observatory Network 
(NEON), 2022a,b,c,d,e). To focus on the middle of the growing season, the data was 
constrained to be for the month of July each year. Per site, we calculated the mean 
maximum and minimum values of each variable by day and by sensor height. In Figure S1 
we expanded on Figure 2 by including 22 sites representing five forest structure types. 

All data processing, analyses, and graphing were conducted using R (R Core Team, 2021). 

Note on interpreting 𝑇𝑣𝑒𝑔: 

Vegetation temperature (𝑇𝑣𝑒𝑔) is measured using infrared sensors that integrate across 

both leaves and woody vegetation. Leaf and branch temperatures often differ substantially; 
for instance, exposed tropical tree bark can be much warmer than leaves (Pau et al., 2018; 
Still et al., 2021; Johnston et al., 2022). Thus, vegetation temperature (𝑇𝑣𝑒𝑔) does not always 

equal or approximate 𝑇𝑙𝑒𝑎𝑓, particularly in settings where leaf area is low relative to woody 

vegetation (i.e., low-LAI ecosystems and understories). 

  



Methods S2. Methods for leaf energy balance modeling 

Energy balance for a typical overstory sun leaf and understory shade leaf were modeled in 
the R package tealeaves (Muir, 2019), parameterized for Quercus rubra L. leaves at Harvard 
Forest, MA, USA (42.5369, -72.17266). 

Micrometeorological data from the NEON tower at Harvard Forest (Fig. 2, Supporting 
Information Methods S1) was used to parameterize biophysical constants, using the mean 
of maximum PAR, wind speed, and 𝑇𝑎𝑖𝑟 for growing season months at vertical positions 
60m (overstory) and 10m (understory). Leaf size parameters were selected for Quercus 
rubra sun and shade leaf based on personal observations (by Vinod) and verified as 
reasonable by Zwieniecki et al. (2004). 

For the moist scenario, we used mean maximum RH from the NEON tower at Harvard 
Forest. Stomatal conductance measurements were referred from Tleaves typical sun and 
shade measurements (Muir, 2019) and Cavender-Bares & Bazzaz (2000). 

For the drought scenario, we reduced RH to 50% of the mean maximum from the NEON 
tower at Harvard Forest. For drought PAR values, for the overstory we used the maximum 
PAR value observed at 60m height on the NEON tower at Harvard Forest, and for the 
understory we assumed 50% increased PAR relative to the mean daily maximum 
understory value. We reduced stomatal conductance to a minimum value of 0.01 
𝜇𝑚𝑜𝑙/𝑚2/𝑠/𝑃𝑎 for both overstory and understory. 

In each visual, all biophysical variables are constant except for the independent variable 
that represents a minimum - maximum range. 

  



Methods S3. Methods for literature review 

To summarize vertical gradients in leaf traits and gas exchange (Tables 1-2), we searched 
the literature for relevant studies and recorded results from all studies meeting our criteria 
for inclusion. 

The studies included in the review were based on a global geographic scope. Ecosystem 
types included any studies with trees for mostly forests, but savannas were also 
considered. Herbaceous plant studies and seedling studies were excluded. We targeted 
studies examining variation in foliar traits and metabolism across independent variables of 
sun/shade or height (where height is generally also sun/shade). Dependent variables of 
interest included variables known to influence leaf temperature or metabolism: i.e., 
anatomical, biochemical, and structural foliar traits; gas exchange, metabolism, and thermal 
sensitivity variables. 

Databases, search terms, and numbers of studies reviewed 

We searched for relevant studies using Smithsonian online library, Google Scholar and ISI 
Web of Science, with the following key terms, resepecitvely: 

• (leaf traits OR foliar traits) AND (inter-canopy OR intra-canopy OR canopy height) 
AND (e.g. chlorophyll OR e.g. LMA OR stomatal conductance) 

• (leaf temperature and metabolism OR leaf thermal sensitivity OR leaf thermal 
tolerance OR leaf traits OR foliar traits) AND (within-canopy OR intra-canopy OR 
sun shade OR canopy height OR canopy gradient OR canopy profile OR canopy 
position) AND (temperate forests OR boreal forest OR conifer OR savanna OR 
tropical) 

• (leaf* temperature* and metabolism OR leaf thermal* sensitivity OR leaf thermal 
tolerance OR leaf* traits OR foliar* traits) AND (within-canopy OR intra-canopy OR 
sun shade OR canopy* height OR canopy gradient OR canopy profile) AND 
(temperate forests OR boreal forest OR conifer OR savanna OR tropical). 

Through the above process, 202 articles were saved with careful evaluation. To this, 
additional studies were shared by co-authors. 

In total, following careful review, we identified 75 articles as relevant and included their 
results in Tables 1-2. 

  



Table S1. National Ecological Observatory Network (NEON) sites 
included in the analysis of vertical gradients of key biophysical 
characteristics 

site code site name US 
state latitude longitude forest type* 

BART Bartlett Experimental Forest 
Tower NH 44.06389 -71.28737 Eastern Deciduous Forest, 

Boreal ecotone 

BONA Bonanza Creek AK 65.15401 -147.50258 Spruce forest on permafrost 

CLBJ Lyndon B. Johnson National 
Grassland TX 33.40123 -97.57000 

A mosaic of the Cross Timbers 
forest (oak-dominated)  and 
grasslands 

DEJU Delta Junction AK 63.88112 -145.75136 Spruce forest on non-permafrost 
land 

DELA Dead Lake site AL 32.54173 -87.80388 

Mixed closed-canopy deciduous 
hardwood forest including 
cypress, red oak, black gum, 
shagbark hickory, oaks and 
green ash 

GRSM Great Smoky Mountains 
National Park, Twin Creeks TN 35.68896 -83.50195 Hardwood deciduous forest 

dominated by oaks and maples 

GUAN Guanica Forest  PR 17.96955 -66.86870 Subtropical dry seasonal forest, 
dense closed canopy 

HARV Harvard Forest Tower MA 42.53690 -72.17266 Eastern Deciduous forest  

JERC Jones Ecological Research 
Center GA 31.19484 -84.46861 Mixed longleaf pine/hardwood 

forest 

LENO Lenoir Landing  AL 31.85388 -88.16122 Oak-dominant closed-canopy 
hardwood forest 

MLBS Mountain Lake Biological 
Station VA 37.37828 -80.52484 Eastern Deciduous Forest 

dominated by Oak 

ORNL Oak Ridge TN 35.96412 -84.28260 Eastern Uplands Deciduous 
forest 

OSBS Ordway-Swisher Biological 
Station FL 29.68928 -81.99343 Open Longleaf-pine forest  

PUUM Pu‘u Maka‘ala Natural Area 
Reserve HI 19.55309 -155.31731 

Metrosideros polymorpha-
dominated tropical montane 
forest 

SCBI Smithsonian Conservation 
Biology Institute VA 38.89292 -78.13949 Tulip popular and oak dominated 

closed forest 

SERC Smithsonian Environmental 
Research Center MD 38.89013 -76.56001 

Hardwood deciduous forest 
dominant by tulip popular, oak 
and ash 



site code site name US 
state latitude longitude forest type* 

SJER San Joaquin Experimental 
Range CA 37.10878 -119.73228 Oak-dominated woodland 

savanna 

SOAP Soaproot Saddle CA 37.03337 -119.26219 Pine-dominated forest 

STEI Steigerwaldt Land Services  WI 45.50894 -89.58637 Aspen dominated regenerating 
forest 

TALL Talladega National Forest  AL 32.95046 -87.39327 Restored longleaf pine forest 

TEAK Lower Teakettle  CA 37.00583 -119.00602 
Mixed coniferous forest 
dominated by red fir, ponderosa 
and Jeffery pine, white fir, etc. 

TREE Treehaven WI 45.49369 -89.58571 
Restored northern hardwood 
forest dominated by maple, 
hemlock, birch, and aspen 

UKFS The University of Kansas 
Field Station  KS 39.04043 -95.19215 

Mixed hardwood forest 
dominated by oak, hickory, and 
elm 

UNDE 
University of Notre Dame 
Environmental Research 
Center 

MI 46.23391 -89.53725 Northern hardwood forest 
dominated by sugar maple 

WREF Wind River Experimental 
Forest WA 45.80900 -121.98231 

Old-growth forest dominated by 
Douglas-fir, western hemlock, 
and western red cedar  

YELL Yellowstone Northern Range WY 44.95348 -110.53914 Open pine-dominated forest  

*Refers to forest type around the tower on which the vertical profile of 
micrometeorological instruments is mounted, as provided by NEON (Hongyan Luo, 
personal communication; site descriptions on NEON website). 

  

https://www.neonscience.org/field-sites


Figure S1. Vertical gradients in micrometeorological conditions for all 
forested sites in the National Ecological Observatory Network (NEON) 

 

Figure S1. Vertical gradients in micrometeorological conditions for all forested sites in 
the National Ecological Observatory Network (NEON). Sites are grouped into five forest 
types: (sub)tropical and warm temperate broadleaf deciduous forests (A), temperate open 
forests and savannas (B), temperate mesic broadleaf forests (C), temperate conifer forests (D), 
and northern and boreal forests (E). Shown are height profiles in July mean ± 1 standard 
deviation for maximum photosynthetically active radiation (PAR), maximum wind speed, 



minimum humidity, maximum 𝑇𝑎𝑖𝑟 , and maximum biological temperature, 𝑇𝑏𝑖𝑜. Site 
information is given in Supporting Information Table S1, and analysis details in Supporting 
Information Methods S1. 
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