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Summary

Rising temperatures are influencing forests on many scales, with potentially strong variation

vertically across forest strata. Using published research and new analyses, we evaluate how

microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping

tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the

highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf),

particularly when transpirational cooling is curtailed by limited stomatal conductance. However,

foliar traits also vary across height or light gradients, partially mitigating and protecting against

the elevation of upper canopy Tleaf. Leaf metabolism generally increases with height across the

vertical gradient, yet differences in thermal sensitivity across thegradient appearmodest. Scaling

from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are

more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly

under climate change. By contrast, understory trees experience fewer extreme high Tleaf’s but

have fewer cooling mechanisms and thus may be strongly impacted by warming under some

conditions, particularly when exposed to a harsher microenvironment through canopy

disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here

into models will be critical to forecasting forest–climate feedback.
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I. Introduction

Global average temperatures have risen 1.2°C since 1900 (Rohde &
Hausfather, 2020) and are expected to reach +1.5°C by 2040
(IPCC, 2021), accompanied by increasing severity and frequency of
heat waves and hotter droughts (Meehl & Tebaldi, 2004;
IPCC, 2021). These changes are affecting tree metabolism and forest
ecosystem function (Breshears et al., 2021; P€ortner et al., 2021) by
altering rates of photosynthesis and respiration (Breshears et al., 2021;
Scafaro et al., 2021), causing foliar damage during heat waves
(Corlett, 2011; O’Sullivan et al., 2017), and reducing growth and
elevatingmortality during drought (McDowell et al., 2020; Breshears
et al., 2021). The resulting feedback to climate and carbon storage,
and changes in albedo and hydrology will in turn impact the future
trajectoryof climate change (Bonan,2016), yet future forest dynamics
remainoneof the largest sources of uncertainty inEarth systemmodel
climate change projections (Friedlingstein et al., 2006; Krause
et al., 2018; Arora et al., 2020).

Future forest dynamics will depend on how climate change
impacts trees of varying height and crown position. Forests are
vertically stratified, and canopies moderate climatic conditions
(Ozanne, 2003; Nakamura et al., 2017), including buffering
understory microclimates from extrememeteorological conditions
(Zellweger et al., 2019). Vertical gradients in biophysical variables
such as temperature, light, wind, humidity, and carbon dioxide
(CO2) concentrations influence leaf temperatures, traits, and
metabolism, with implications for whole-plant performance
(Michaletz et al., 2016; Fauset et al., 2018). Although forest
vertical stratification strongly influences plantmetabolism, demog-
raphy, and ecology, we lack comprehensive understanding of these
gradients (but see Niinemets & Valladares, 2004). Importantly,
this limits our ability to understandhowwarming temperatures will
affect leaf-level metabolism, whole-plant performance, and, in
turn, forest dynamics, biodiversity, energy balance, ecosystem
function, and biosphere–atmosphere interactions.

Here, we review vertical gradients in the biophysical environ-
ment and plant form and function in forests, focusing on five
themes (Fig. 1): the biophysical environment; leaf temperature
(Tleaf); the leaf traits that most strongly influence Tleaf and thermal
tolerance; leaf gas exchange and its thermal sensitivity; and, tree and
ecosystem ecology. We then consider the implications for under-
standing forest responses to global change and how they scale across
space and time.

II. Review of vertical gradients

1. The biophysical environment

The biophysical environment, defined here to include the physical
structure of the vegetation and associated micrometeorological
conditions, varies vertically from the forest floor to the top of the
canopy (Figs 1, 2), with micrometeorological conditions largely
determined by forest structure. In this section, we review the
existing literature and analyze data on vegetation structure and
vertical microclimate profiles from forested sites within the US
National Ecological Observatory Network (NEON; Fig. 2;

Supporting Information S1; Methods S1). Although we focus on
vertical gradients, it is important to note that in heterogeneous
canopies with high gap fractions and large variation in tree height,
or at forest edges, the biophysical environment can be more closely
linked to the distance from the outer edge of vegetation than to
height (Lowman & Rinker, 1995).

Foliage Canopy foliage is the primary physical barrier between the
atmosphere and the forest floor, buffering multiple aspects of the
understory conditions from large fluctuations in conditions
experienced above the canopy. It strongly influences – and is
influenced by – the vertical biophysical gradient. Vertical patterns
in leaf area density (i.e. leaf area per unit volume) differ across
forests (Figs 2a,b, S1). In tropical and temperate forests with dense
broadleaf canopies, leaf area density is generally highest in the
canopy layer (i.e. that formed by the crowns of dominant trees), but
understory leaf area density is often high as well, sometimes causing
undulating patterns with height (Parker et al., 1989; Ashton &
Hall, 1992; Koike & Syahbuddin, 1993; Domingues et al., 2005).
In forests with more open upper canopies, including many
needleleaf forests, leaf area density can be greatest in the lower
canopy or understory (Baldocchi et al., 1997; Law et al., 2001;
Bonan, 2016; Hanberry et al., 2020). Soil moisture conditions,
topography, and gap formations following disturbances all alter
foliage patterns (Stark et al., 2012; de Almeida et al., 2016;
Bonan, 2016; Hanberry et al., 2020). In addition, seasonally dry
and wet conditions, deciduousness, and phenology contribute to
temporally shifting leaf area density patterns (Tang &
Dubayah, 2017; Parker et al., 2019; Smith et al., 2019; Nunes
et al., 2022). In this review, we focus on growing season conditions
unless otherwise noted.

Light The intensity of visible and photosynthetically active
radiation (PAR, 400–700 nm) decreases from the canopy top to
the forest floor, with a profile whose shape is modified by leaf area
density, leaf clumping, canopy height, and vertical structure across
species and forest types (Figs 2d, S1; Koike et al., 2001; B�eland &
Baldocchi, 2021; Bin et al., 2022). Canopy foliage absorbs a large
portion of PAR (400–700 nm) and selectively filters light, thereby
altering the spectrum of PAR received in the lower canopy and
understory layers. The ratio of red (c. 685–690 nm) to far red (c.
730–740 nm) light declines along with total PAR with increasing
depth in the canopy, and understories receive diffuse light enriched
in near-infrared radiation (700–1000 nm; de Castro, 2000;
Poorter et al., 2000). Midcanopies and understories experience a
highly dynamic light environment due to sunflecks, or brief
increases in direct solar radiation, caused by small canopy gaps,
wind-induced canopy movements, or the sun’s passage across a
dynamically structured canopy surface (Way&Pearcy, 2012). This
light gradient is more pronounced in dense canopies, including
broadleaf and mixed forests, than in forests with more open upper
canopies, including many conifer forests (Figs 2d, S1; Chazdon &
Fetcher, 1984; Baldocchi et al., 1997; Bartemucci et al., 2006;
Tymen et al., 2017; Parker et al., 2019). This light gradient drives
variation in leaf temperature (Section II.2), traits (Section II.3), and
photosynthesis (see Section II.4, subsection ‘Photosynthesis’).
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Turbulent transport and wind Vertical transport in forest
canopies is dominated by turbulent transport, making vertical
profiles of wind speed, water vapor, CO2, and temperature more
difficult to predict and to generalize on the basis of theoretical first
principles than radiation profiles. Above the canopy, turbulent
transport typically mimics diffusion – that is, vertical fluxes of heat,
mass, and momentum are proportional to their respective vertical
gradients, and to transfer coefficients (eddy diffusivities; Penman&
Long, 1960) – such that wind speed declines logarithmically with
proximity to the canopy surface (Monteith & Unsworth, 2013).
Interaction with a plant canopy also attenuates wind, causing wind
speed to decline through the canopy, for example, small plant
elements can rapidly dissipate momentum within dense canopies
(Raupach & Shaw, 1982; Baldocchi & Meyers, 1988). Within
canopies, however, transport often fails to mimic diffusion – for
example, transport of momentum (Shaw, 1977) or heat

(Raupach, 1987) may occur in the direction opposite to that
predicted by gradients of wind speed or temperature, respectively –
making vertical wind profiles difficult to generalize from first
principles (Denmead & Bradley, 1987; Meyers & Paw, 1987;
Raupach, 1989; Katul & Albertson, 1999; Harman & Finni-
gan, 2007). Such counter-gradient transport may arise from the
intermittent generation, at the canopy surface, of large wakes or
coherent eddy structures that periodically dip down through the
canopy, gathering packets of warmed, humidified, and CO2-
enriched or depleted air from beneath and within the canopy and
flushing them to the atmosphere above (Finnigan, 1979; Baldocchi
&Meyers, 1991). These ‘sweep-eject’ events can couple understory
conditions more directly to conditions above the canopy than
beneath.

Despite these complexities of within-canopy transport, wind
speeds are generally much higher at the top of the canopy than

Biophysical Leaf traitsLeaf temperature Leaf gas exchange Ecology

Solar radiation
Wind speed

Tair

VPD
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humidity

Tleaf–Tair

Heat dissipation
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Stomatal density
Leaf angle
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Fig. 1 Schematic summarizing typical vertical gradients in (1) biophysical environment, (2) leaf temperature (Tleaf), (3) leaf traits, (4) leaf gas exchange, and (5)
treeandecosystemecologywithin closed-canopy forestsduringdaytimegrowingseasonconditions.Arrows indicatedirectionof increase,withdouble-pointed
arrows indicating that the direction of the trend is uncertain or inconsistent. Patterns tend to be weaker, or sometimes reversed, in more open forests, when
canopy trees are seasonally deciduous, or at nighttime. ET, evapotranspiration; LMA, leaf mass per area; T sensitivity, temperature sensitivity; Tair, air
temperature; Tleaf � Tair, leaf-to-air temperature difference; VPD, vapor pressure deficit. *Isoprene emission has also been observed to peak in midcanopy
(Table 1).
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within or beneath (Jiao-jun et al., 2004; Jucker et al., 2018). This
holds true across the range of forest types (Figs 2e, S1; Barnard &
Bauerle, 2016; Hanberry et al., 2018, 2020; Jucker et al., 2018;
Muller et al., 2021) and savannas (Curtis et al., 2019; Johnston
et al., 2022). As a result, upper canopy leaves have substantially
higher boundary layer conductance (gb) and therefore greater
potential for exchange of both mass and sensible heat exchange
(Sections II.2 and the II.4 subsection ‘Conductance’).

Atmospheric concentrations of CO2 and water vapor Atmo-
spheric CO2 concentrations tend to be higher near the ground at
night, associated with plant and soil respiration, but the elevated
CO2quickly dissipates during the day such thatCO2 concentration
differences are negligible formost of the daywhen photosynthesis is
occurring (Brooks et al., 1997; Yang et al., 1999;Koike et al., 2001).
While understory seedlingsmay benefitmodestly fromhigherCO2

concentrations near the ground during some parts of the day (e.g.

6% of C fixation from recently respired CO2; Brooks et al., 1997),
gradients in CO2 concentrations likely have little effect on energy
balance andmetabolism of trees across the vertical gradient (Brooks
et al., 1997).

Relative humidity (RH) tends to be higher in the understory and
decreases with height, although this trend is absent in open forests
(Figs 2f, S1; Jucker et al., 2018; Bin et al., 2022). Dense-canopy
forests maintain higher daily maximum RH in the understory than
open forests and nearby open areas, an effect that is greater in wetter
conditions, and warmer months (von Arx et al., 2012; Hanberry
et al., 2020). In combinationwith air temperatureTair) andTleaf, RH
determines leaf-to-air vaporpressuredeficit (VPD)– thedriving force
of water loss from leaves – which tends to be greater in the upper
canopy and canopy gaps than in the understory (Niinemets &
Valladares, 2004; Tymen et al., 2017; Fauset et al., 2018). Especially
whencanopyheightand leaf area index (LAI) are large,maximumTair

and VPD are reduced in the understory (Jucker et al., 2018). The
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Fig. 2 Vertical gradients in the biophysical environment for six USA forest sites in the National Ecological Observatory Network (NEON). Height profiles,
normalized relative to the top of the canopy, are shown for: growing season (a) modeled leaf area density, (b) estimated proportion of sun leaves, and (c)
proportion of light incident to the top of the canopy (as fraction relative to top of canopy), and for Julymean� 1 SD for (d)maximumphotosynthetically active
radiation (PAR), (e)maximumwind speed, (f)minimumhumidity (minRH), (g)maximumair temperature (Tair), and (h)maximumbiological temperature (Tbio).
Measurements extend from ground level (normalized height = 0m) to the top of the canopy (horizontal dashed line at normalized height = 1) or above (d–g).
Variables shown in (a–c) are derived from LiDAR, and those shown in (d–h) from micrometeorological tower data. Sites, which represent a variety of forest
structures, includeamixednorthernhardwood forest (HarvardForest,MA;HARV), a subtropical longleafpine savanna (Ordway-SwisherBiological Station,FL;
OSBS), a tropical montane broadleaf evergreen forest (Pu’uMaka’ala Natural Area Reserve, Hawai’i; PUUM), two temperate broadleaf forests (Smithsonian
Conservation Biology Institute, VA, SCBI; Smithsonian Environmental Research Center,MD, SERC), and a coniferous forest (Wind River Experimental Forests,
WA;WREF). Further site information is given in Supporting Information Table S1, and analysis details in Methods S1. Vertical profiles in micrometeorological
variables (d–h) at all forested NEON sites are shown in Fig. S1.
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implication is that upper canopy leaves have higher gb and associated
potential for water and heat loss than understory leaves (Sections II.2
and the II.4 subsection ‘Conductance’).

Air temperature Vertical gradients in air temperature (Tair) vary
widely (Figs 2, S1), depending on factors such as vegetation type,
local topography, vertical air mixing, cloud cover, sensible heat
emissions, and times of day and year (Zellweger et al., 2019; De
Frenne et al., 2021). Commonly, attenuation of radiation and
vertical transport of sensible heat by the canopy buffers the lower
canopy and understory from large diel and seasonal swings in air
temperature (Zellweger et al., 2019;De Frenne et al., 2021;Haesen
et al., 2021). Diel temperature range is typically smaller beneath
dense canopies than above, resulting from lower maximum
daytime Tair and warmer nighttime minimum Tair than beneath
open canopies or in nearby clearings (von Arx et al., 2012;
Zellweger et al., 2019; De Frenne et al., 2021). Notably, buffering
against high maximum daytime Tair becomes weaker and can be
reversed as canopies becomemore open (Fig. S1;Curtis et al., 2019;
Meeussen et al., 2021). Analogous to a ‘canopy greenhouse effect’,
in open forests, below-canopy maximum Tair can be warmer than
canopy Tair, due to turbulent air mixing and interception of
thermal radiative flux from the soil and the canopy by lower canopy
layers (e.g. OSBS, Figs 2g, S1b; Banerjee et al., 2017; Curtis
et al., 2019;Muller et al., 2021). These usually modest gradients in
Tair combine with the above-described gradients in micrometeo-
rological conditions to shape Tleaf patterns within canopies.

2. Leaf temperature

Tleaf is strongly tied to, and usually within a few degrees of, Tair

(Rey-S�anchez et al., 2016; Drake et al., 2020) but can be
substantially warmer or cooler under certain conditions
(Notes S1; Doughty & Goulden, 2008; Vogel, 2009; Rey-
S�anchez et al., 2016). Deviation of Tleaf from Tair is influenced by
other micrometeorological drivers and by leaf traits and stomatal
conductance (gs; Fig. 3; Notes S1), all of which vary across forest
vertical gradients (Fig. 1). High radiation in the upper canopy
implies that upper canopy leaves often have higher Tleaf� Tair and
thus are often warmer than understory leaves (Fig. 3a). However,
higher wind speeds reduce Tleaf � Tair (Fig. 3b; Niinemets &
Valladares, 2004; Bonan, 2016). In addition, adaptive leaf traits
that increase gs and gb, such as small size and high stomatal density
(Notes S1; Sections II.3 and II.4 subsection ‘Conductance’),
mediate the direct effects of solar radiation on upper canopy leaves
and result in higher rates of heat loss (Fig. 3b–e). By contrast, in the
lower canopy, greater RH (reduced VPD) and lower wind speeds
(reduced gb) may limit leaf cooling via latent heat flux, increasing
Tleaf (Tibbitts, 1979; Perez & Feeley, 2018). Leaves in these
normally shaded locations can experience rapid light and temper-
ature surges during sunflecks (> 10°C; Way & Pearcy, 2012).

Elevation of Tleaf above Tair varies with micrometeorological
conditions. During drought (associated with conditions that are
hot and dry, with higher-than-average solar radiation), when gs is
limiting,Tleaf�Tair will tend to be higher in the upper canopy than
in the understory (Fig. 3). This is because sun leaves are exposed to

higher irradiance and VPD and therefore have stronger gs
limitation than shade leaves (Fig. 3e; Leigh et al., 2017; Fauset
et al., 2018). By contrast, under conditions conducive to stomatal
opening, higher wind speeds and gb enable cooling in the upper
canopy, whereas lower wind and gb in the understory limit
evaporative cooling (Fig. 3b,d; Roberts et al., 1990; Martin
et al., 1999; Leigh et al., 2017). Thus, while understory andwithin-
canopy shade leaves can remain cooler under lower radiation, their
environment is less conducive to dissipating excess heat compared
with upper canopy leaves, because wind speeds and hence gb are
generally smaller in the lower canopy (Roberts et al., 1990; Martin
et al., 1999). Limitations in heat dissipation in shade leaves,
together with physiological propensities, may cause above-optimal
Tleaf under slight heat or drought stress or during sunflecks
(Schymanski et al., 2013; Leigh et al., 2017; Song et al., 2020). In
addition to lower wind speeds, higher RH (lower VPD) in the
understory and inner canopy also reduces evaporative cooling
(because evaporation rate generally increases with VPD), thus
increasing Tleaf � Tair (Fig. 3c; Tibbitts, 1979; Dietz et al., 2007;
Perez & Feeley, 2018; Song et al., 2020; Konrad et al., 2021).

Vertical Tleaf gradients also vary with canopy structure (Figs 2h,
S1). Forests with closed canopies and high LAI, including tropical
and temperate broadleaf forests, act as a parasol, absorbing most
incoming radiation and preventing vertical air mixing in the
understory. Therefore, in these forests, leaves in the upper canopy
can experience greater Tleaf � Tair and higher maximum Tleaf than
lower canopy leaves, in some cases exceeding photosynthetic
temperature optima (Topt) because of gs limitation and high
radiation (Doughty & Goulden, 2008; Mau et al., 2018; Carter
et al., 2021; Miller et al., 2021). By contrast, open canopies with
lower LAI allow more vertical air mixing and sunlight into the
understory, which can either neutralize a Tleaf gradient or elevate
Tleaf � Tair at lower heights relative to the upper canopy (Martin
et al., 1999; Zweifel et al., 2002;Muller et al., 2021). The latter can
result from a combination of still air at lower heights, sunflecks or
the ‘canopy greenhouse effect’ (see Section II.1 subsection ‘Air
temperature’), and the tendency for shade leaves to have lower gs
(Section II.3; Schymanski et al., 2013; Hardwick et al., 2015).
Similarly, in very open forests or savannas, trees growing close to the
ground can experience greater heat stress in their lower-than-upper
canopies due to the heat from the soil increasing Tleaf near the
ground (Hadley & Smith, 1987; Curtis et al., 2019; Johnston
et al., 2022). One of the few studies combining drone LiDAR and
thermal data found strong vertical gradients in midday plant
temperature with c. 5°C cooler temperatures lower in the vertical
profile of a dense subalpine stand in the alpine Eastern Swiss Alps
(Webster et al., 2018). However, the opposite trend was observed
for a lone tree surrounded by grass in a California open oak
woodland, with cooler temperatures at the top of the crown,
indicating a strong influence of closed-canopy shading on vertical
temperature gradients (Johnston et al., 2022).

3. Leaf traits

Anatomical, structural, and biochemical leaf traits vary vertically
across forest strata (Table 1; Sack et al., 2006; Niinemets
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et al., 2015a; Chen et al., 2020), shaping vertical profiles of leaf
temperature, gas exchange, and thermal sensitivity (Zwieniecki
et al., 2004; Michaletz et al., 2015, 2016). Vertical variation in leaf
structure and composition has long been recognized, with sun and
shade leaf traits distinguished for over a century (Haberlandt, 1914;
Salisbury, 1928). Early work attributed differences among leaves to
sun vs shade (Wylie, 1951; Vogel, 1968), and this tendency grew
given the parallel differences observed for plants grown in sun vs
shade (Boardman, 1977; Abrams & Kubiske, 1990). More recent
work has extended the focus from light alone to height in the
vertical profile, as the latter shapes differences in leaf structure and
function that can partially mitigate the effects of gravity and
hydraulic pathlength on leaves higher up in the canopy (Koch
et al., 2004;Burgess et al., 2006; Sack et al., 2006). For example, leaf
mass per area (LMA), photosynthetic capacity (Amax per area), and
gs have been observed to increase with height, independently of
light (Cavender-Bares & Bazzaz, 2000; Thomas &Winner, 2002;
Houter & Pons, 2012; Bin et al., 2022). Thus, leaves develop
differently according to the irradiance and hydraulic stress
associated with their canopy location, height, and evaporative
load, with additional potential influences of branch ontogenetic
stage (Sack et al., 2006; Niinemets, 2010; de Casas et al., 2011;

Niinemets et al., 2015b; Keenan & Niinemets, 2016; Chen
et al., 2020; Carter et al., 2021; Bin et al., 2022). Plasticity
throughout the canopy may emerge when development of new
leaves is influenced by information from adjacent mature leaves or
apicalmeristems andmay also acclimate during and after expansion
to the current microclimate (Zwieniecki et al., 2004). Overall, leaf
biochemistry, anatomy, and structure may be optimized to local
conditions (Niinemets, 2007; Lloyd et al., 2010; Hikosaka, 2014;
Kitao et al., 2012; Buckley, 2021). However, we lack a cohesive
framework for integrating the many differences in leaf traits
throughout the canopy. Rather, much of our understanding of trait
coordination is based on the leaf economics spectrum concept
developed across diverse species using sun leaves (Wright
et al., 2004; Keenan & Niinemets, 2016; Chen et al., 2020). As
canopy shade is known to alter these trait relationships (Osnas
et al., 2018), further research is needed to characterize trait
relationships and responses vertically through the full range of
canopy microenvironments.

Across the vertical gradient, traits vary: (1) within individuals,
across height and light gradients (Zwieniecki et al., 2004; Sack
et al., 2006; Bin et al., 2022); (2) across individuals of the same
species, often representing an ontogenetic trajectory from the
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while other parameterswere held constant at the values given in the table of biophysical constants. Dots along each line correspond to the biophysical constant
assigned for the independent variable in the other scenarios, and therefore represent themodeled value for Tleaf� Tair with all parameters set to the biophysical
constants given in the table. Biophysical constants in the table include the following: shortwave radiation (swr), wind speed (ws), relative humidity (RH), leaf
characteristic dimension (lcd), stomatal conductance (gs), and air temperature (Tair).
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understory to the canopy (Niinemets, 2010; Carter et al., 2021);
and, (3) among understory and canopy species (Lloyd et al., 2010).
Most studies characterizing variation in leaf traits or metabolism
examine intraspecific patterns (Categories 1 and 2), which are
therefore the main focus of this review (Table 1). Generally, the
pattern of fundamental trait adaptations to light gradients across
forest species is similar to within-species trends (Thomas &
Winner, 2002; Rozendaal et al., 2006; Cavaleri et al., 2010; Lloyd
et al., 2010; Houter & Pons, 2012; Bin et al., 2022); however,
vertical trends vary across trees (Lloyd et al., 2010), and counter-
gradient variation can exist (Lusk et al., 2008). Many leaf
physiological parameters can be estimated based on foliage height
profiles (Cavaleri et al., 2010; Lloyd et al., 2010).

Leaf anatomy and morphology Sun leaves have anatomical,
morphological, and physiological traits that reduce Tleaf through
higher conductance (gb ormaximal gs) and/or reflectance (Table 1).
Thus, sun leaves are generally smaller and thicker, with higher
LMA, and are more deeply lobed (Fig. 3; Vogel, 1968; Zwieniecki
et al., 2004; Sack et al., 2006; Leigh et al., 2017), but with greater
leaf packing and clumping (which reduces gb). Steeper leaf angles
reduce midday radiation loads and thereby decreasing Tleaf � Tair

(Ball et al., 1988; Niinemets, 1998), while higher trichome density
increases reflectance, also decreasing radiation load. Furthermore,
sun leaves tend to have higher stomatal and vein densities, which
facilitate evaporative cooling by enabling higher gs (see Section II.4
subsection ‘Conductance’; Zwieniecki et al., 2004). Yet, sun leaves
also have adaptations to limit water stress, particularly in drier
climates, including greater cuticle thickness and higher trichome
density (which may reduce or increase gb; Schreuder et al., 2001;
Ichie et al., 2016). By contrast, shade leaves have traits that
maximize light capture (e.g. lower LMA and greater light
absorptance per unit biomass), but larger leaves and lower
transpiration make them more prone to overheating than sun
leaves (de Casas et al., 2011; Schymanski et al., 2013; Leigh
et al., 2017). In open canopies, where light is comparatively
homogeneous, leaf traits may be shaped more by maximum Tair

and VPD stress than by light (Mediavilla et al., 2019).

Leaf optical properties Leaf optical properties are influenced by
anatomical, morphological, and biochemical traits that vary
throughout the canopy (see Section II.3 subsections ‘Leaf anatomy
andmorphology’ and ‘Metabolic capacity and efficiency’). High in
the canopy, high light absorptance can lead to photoinhibition and
would, in part, be mitigated by Tleaf regulation (see Section II.3
subsections ‘Biochemical protection against foliage light and heat
damage’ and ‘Thermal tolerance’; Table 1). For leaves in higher
light environments, light absorptance and thus heat load can be
reduced by leaf surface modifications (e.g. trichomes and cuticle)
that increase reflectance, and heat may be dissipated biochemically
by carotenoids, including xanthophylls (Table 1; Lee et al., 1990;
Knapp & Carter, 1998). Furthermore, sun leaves tend to be
thicker, with more palisade layers, which act as ‘light pipes’ that
channel abundant light into deeper cell layers, enhancing photo-
synthetic capacity (Lee et al., 1990; Poorter et al., 1995). By
contrast, shade leaves have lower LMA and absorb more light per

unit mass investment, as well as denser chloroplast layers and a
greater proportion of spongy mesophyll, more effective for
capturing diffuse light (Table 1; Lee et al., 1990; Poorter
et al., 1995, 2000).

Metabolic capacity and efficiency Most leaf biochemical traits
also vary across light and height gradients (Table 1), both shaping
and resulting from gradients in metabolism (Section II.4). Sun
leaves have higher area-based concentrations of elements such as
nitrogen (Narea) and phosphorus (Parea) that are critical for
respiration (Meir et al., 2001; Weerasinghe et al., 2014) and
photosynthesis (Niinemets & Valladares, 2004; Weerasinghe
et al., 2014; Scartazza et al., 2016). Increases in chlorophyll a/b
ratios with height reflect greater light availability in the upper
canopy, while greater chlorophyll concentrations at lower heights
increase PAR absorptance efficiency of shade leaves (Table 1).
Higher photosynthetic rates (area based) and more frequent
stomatal closure in sun-exposed canopies (Section II.4) reduce
intercellular CO2 concentrations and increase leaf d

13C (Table 1).

Biochemical protection against foliage light and heat dam-
age Biochemical protection against light and heat damage
increases with peak radiation loads and thus tends to be higher in
the upper canopy, which is subject to higher Tleaf and hydraulic
limitations, than in the understory (Table 1). More frequent
stomatal closure in upper canopy leaves (Section II.4) reduces their
capacity to use light energy for photochemistry, thereby requiring a
high capacity to dissipate excess light energy and protect against
photoinhibition (Niinemets, 2007). Accumulation of excess light
energy causes overreduction of the electron transport chain and the
formation of harmful reactive oxygen species (Niyogi, 2000;
Suzuki & Mittler, 2006). A ubiquitous defense is a rapidly
inducible nonphotochemical quenching (NPQ) mechanism that
responds to the increased thylakoid pH gradient caused by excess
light (Niyogi, 2000; Goss & Lepetit, 2015). This form of NPQ
entails interconversion of xanthophyll cycle pigments – violaxan-
thin, antheraxanthin, and zeaxanthin (VAZ) – which regulates the
capacity for de-excitation of chlorophyll through thermal dissipa-
tion instead of photochemistry. Leaves in higher light environ-
ments show a greater capacity for NPQ and higher concentrations
of VAZ as well as other carotenoids (e.g. beta carotene and lutein)
employed as antioxidant defenses (Table 1; Niinemets et al., 1998;
Garc�ıa-Plazaola et al., 2004; Scartazza et al., 2016). By contrast, to
maximize photosynthesis andminimize damage duringTleaf surges
caused by sunflecks (Section II.2), shade-acclimated leaves tend to
induce photochemical processes more quickly (Urban et al., 2007)
and also show a steeper response of NPQ to light than sun-
acclimated upper canopy leaves (Scartazza et al., 2016).

Heat-sensitive, light-dependent (photosynthetically linked)
emissions of volatile organic compounds (VOCs), including
isoprene and monoterpenes, enhance photosynthetic thermal
tolerance by regulating antioxidant defenses and other metabolic
processes (Copolovici et al., 2005; Sharkey et al., 2008; Vickers
et al., 2009; Riedlmeier et al., 2017; Taylor et al., 2019; Monson
et al., 2021). In contrast to VOCs stored in oils that are released
passively by heat and wounding, such as the monoterpenes
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Table 1 Summary of typically observed variation in leaf traits and its thermal sensitivity across the vertical gradient and/or between sun and shade leaves.

Trait Symbol Units Response1 Forest type(s)2 Reference(s)3

Leaf anatomy and morphological traits
Leaf area LA cm2 ↓ H TrB, TeB, BoN 7, 8, 10

↓ L TrB, TeB, BoN 7, 8, 3, 10
Leaf mass per area (or inverse
of specific leaf area)

LMA (or 1/SLA) g cm�2 ↑ H TrB, TeB, TeN, BoN 1, 55, 64, 7, 2, 3, 4, 6
↑ L TrB, TeB, TeN, BoN 1, 7, 2, 3, 5, 6

Leaf thickness lm ↑ H TrB, TeB, TeN 15, 11, 2, 13, 16
↑ L TrB, TeB, TeN 11, 15, 2, 5

Leaf density g cm�3 ↑ H TeB 2
↑ L TrB, TeB 6, 2
� L TeN 5

Pinnate lobation cm2 ↑ H TeB 3
↓ H TeB 8
↑ L TeB 8, 3

Leaf packing n cm�1 stem ↑ L TeN 25, 26
Blade inclination angle (vertical) φB ° ↑ H TrB, TeB 21, 22, 23

↑ L TrB, TeB 21, 24, 23, 22, 48
Trichome density mm�2 ↑ H TrB 17

↑ L TrB, TeB 17, 18, 19, 20
Stomatal density Dstomata mm�2 ↑ H TrB, TeB, TeN 11, 12, 3, 13, 4

↑ L TrB, TeB 12, 11, 3
Total vein density VLA mmmm�2 ↑ H TeB 46

↑ L TeB 46, 47
Minor vein density VLAmin mmmm�2 ↑ H TeB 14

↑ L TeB 14, 47
Upper cuticle thickness CT lm ↑ H TrB, TeN 27, 4

↑ L TrB, TeB 27, 28
Leaf optical properties
PAR absorptance % � ↑ H TrB 42, 45

� ↑ L TrB 42, 45
Absorptance efficiency per unit biomass % g�1 ↓ H TrB 42, 45

↓ L TrB 42, 45
PAR transmittance % ↓ H TrB 42, 45

↓ L TrB 42, 45
Reflectance % � H TrB 42, 45

↑ H BoN 6
� L TrB 42, 45

Traits related to metabolic capacity and efficiency
Nitrogen content N gm�2 ↑ H TrB, TeB, TeN, BoN 55, 64, 7, 29, 30, 32, 31, 9

mg g�1 � ↓ H TrB, TeB, TeN 55, 15, 7, 29, 30, 32, 34
� ↓ L TrB, TeB, TeN 7, 35, 29, 30, 32, 5

Phosphorus content P gm�2 ↑ H TrB, TeB, TeN 55, 15, 36, 1, 37
↑ L TrB, TeB, TeN 15, 5
� L TrB, TeB 1

mg g�1 � ↓ H TrB 55, 15, 35, 1
� L TrB, TeB 15, 35, 1

Chlorophyll content Chl mg cm�2 ↓ H TrB, TeB 40, 41
↓ L TrB, TeB 42, 41

Chlorophyll a/b ratio chla/b mol mol�1 ↑ H TrB, TeB, BoN 42, 30, 6
↑ L TrB, TeB, BoN 42, 30, 39, 22, 6

Carbon isotope ratio d13C & ↑ H TrB, TeB, TeN 55, 64, 7, 43, 31
↑ L TrB, TeB, TeN 7, 29, 31

Intercellular CO2 concentration Ci lmol mol�1 ↓ H TeB, BoN 51, 30, 44
↓ L TeB 30, 44

Biochemical protection against light and heat damage
b-Carotene and lutein lmol m�2 ↑ H TrB, TeB, BoN 30, 42, 6

↑ L TrB, TeB, BoN 30, 38, 6
Xanthophyll cycle pigments VAZ lmol m�2 ↑ H TrB, TeB 38, 30, 22

↑ L TrB, TeB 39, 30
Abundance isoprene emitters % ↑ H (peak in mid-canopy) TrB 49

↑ L TeB 50
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responsible for pine scent, light-dependent emissions are linked to
photosynthetic substrate supply and are dynamically tuned to
environmental and metabolic conditions as a component of
metabolic regulatory processes (Laothawornkitkul et al., 2009;
Riedlmeier et al., 2017; Lantz et al., 2019; Monson et al., 2021).
Due to its much higher emission rate and relative ease of
detectability, isoprene has received far more study in the field,
although both isoprene and monoterpenes are expressed by many
angiosperms and gymnosperms across all biomes (see Taylor
et al., 2021, and references therein).

Fewer than half of tree species express significant light-
dependent isoprene emissions (Kesselmeier & Staudt, 1999;
Taylor et al., 2018), such that vertical variation in emissions is
influenced by bothy vertical variation in species compositions and
by plasticity in emission rate capacities (Taylor et al., 2021).Within
species, isoprene emission tends to increase toward brighter and
hotter microenvironments (Niinemets, 2007), and across land-
scapes, emitting species are more abundant in hotter climates,
exceeding half of trees in warm tropical forests (Taylor et al., 2018).
However, a recent study found a contrasting interspecific vertical
structuring of emission capacities, with more emitting species and
higher species-maximum emission rates in the midcanopy of an
Amazonian forest (Table 1; Taylor et al., 2021). Similarly, within
European beech crowns, monoterpene emissions were highest in

semishaded leaves beneath the canopy surface (Table 1; �Simpraga
et al., 2013). This patternmay indicate the importance of temporal
variability in thermal conditions as distinct from the long-term
average. Temperature-sensitive VOC emissions have been hypoth-
esized to enable real-time acclimation to rapidly changing leaf
thermal environments typical of the midcanopy region (Sec-
tion II.1; Sharkey et al., 2008). Future work to understand how
temporal dynamics of Tleaf vary with height and influence leaf
function will be important for resolving the role of VOCs in forest
thermal sensitivity across the vertical gradient. Given current
understanding, we may hypothesize that light-dependent VOC
emissions are important for midcanopy thermal responses, while
other traits play similar roles in upper canopy leaves.

Thermal tolerance Very high Tleaf (c. 40–60°C) irreversibly
damages photosystem II, leading to leaf necrosis and death
(Baker, 2008; Feeley et al., 2020; Kunert et al., 2022). Upper
thermal thresholds for leaf survival can be imated by assessing the
photosystem II functioning via using chlorophyll fluorescence
techniques (Krause et al., 2010). Thermal tolerance is described in
terms of the Tleaf’s at which photosystem II efficiency starts to
decrease (Tcrit) and is reduced by 50%, T50 (Slot et al., 2021a).
Thermal tolerances vary across species, beingmore closely linked to
leaf traits than phylogeny (Feeley et al., 2020; Slot et al., 2021a),

Table 1 (Continued)

Trait Symbol Units Response1 Forest type(s)2 Reference(s)3

Isoprene emission rate I nmol m�2 s�1 ↑ H (peak in mid-canopy) TrB 49
↑ H TeB 32, 60
↑ L TeB 32, 61, 62

Monoterpene emission rate MT lgm�2 s�1 ↑ H (peak in mid-canopy) TeB 63
Thermal tolerance
Photosynthetic heat tolerance T50 °C ↓ H4 TrS 52

� ↑ L TrB, TeB 53, 54
Critical temperature beyond
which Fv/Fm declines

Tcrit °C � ↑ L TrB, TeB 53

Phenology
Budbreak day of year ↓ H TeB 56
Leaf life span months ↓ H TrB 57

↓ L
Drought deciduous leaf habit % ↑ H TrB 58, 59

Studies listed here were compiled using a systematic review process, as described in Supporting Information Methods S3.
1Responses across height and light gradients are summarized, with up and down arrows indicating significant increasing or decreasing trends, respectively, in
response to height (H) or light (L).� indicates lack of any notable directional variation, and� ↑ or� ↓ indicate nonsignificant ormixed trends (e.g. significant in
some but not all species studied).
2Forest types are codedas follows: TrB, tropical broadleaf; TeB, temperatebroadleaf; TeN, temperateneedleleaf (conifer); BoN,boreal needleleaf (conifer); TrS,
tropical savanna.
31. Mau et al. (2018); 2. Coble & Cavaleri (2014); 3. Sack et al. (2006); 4. Chin & Sillett (2017); 5. Wyka et al. (2012); 6. Atherton et al. (2017); 7. Kenzo
et al. (2015); 8. Kusi &Karsai (2020); 9.Dang et al. (1997); 10.Gebauer et al. (2015); 11.Marenco et al. (2017); 12. Kafuti et al. (2020); 13.VanWittenberghe
et al. (2012); 14. Zhang et al. (2012); 15.Weerasinghe et al. (2014); 16. Oldham et al. (2010); 17. Ichie et al. (2016); 18. Gregoriou et al. (2007); 19. Levizou
et al. (2005); 20. Liakoura et al. (1997); 21. Fauset et al. (2018); 22. Niinemets et al. (1998), 23. Ishida et al. (1999); 24.Millen &Clendon (1979); 25. Smith &
Carter (1988); 26.Hadley&Smith (1987); 28. Baltzer&Thomas (2005); 29.Cobleet al. (2016); 30. Scartazzaet al. (2016); 31.Duursma&Marshall (2006); 32.
Harley et al. (1996); 33. Hern�andez et al. (2020); 34. Turnbull et al. (2003); 35. Chen et al. (2020); 36. van deWeg et al. (2012); 37. Cavaleri et al. (2008); 38.
K€oniger et al. (1995); 39.Matsubara et al. (2009); 40. Harris &Medina (2013); 41. Hansen et al. (2002); 42. Poorter et al. (1995); 43. Coble et al. (2016); 44.
Niinemets et al. (2004); 45. Poorter et al. (2000); 46. Zwieniecki et al. (2004); 47. Sack & Scoffoni (2013); 48. Ball et al. (1988); 49. Taylor et al. (2021); 50.
Niinemets et al. (2010); 51. Brooks et al. (1997); 52. Curtis et al. (2019); 53. Slot et al. (2019); 54. Hamerlynck & Knapp (1996); 55. Lloyd et al. (2010); 56.
Augspurger&Bartlett (2003); 57.Osada et al. (2001); 58.Meakem et al. (2018); 59.Condit et al. (2000); 60.Harley et al. (1997); 61.Niinemets& Sun (2015);
62. Sharkey & Monson (2014); 63. �Simpraga et al. (2013); 64. Domingues et al. (2005).
4Composite climatic stress variable integrating temperature, vapor pressure deficit, and relative humidity is higher in lower canopy.
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and being greater in leaves that experience higher maximum
temperatures (Perez & Feeley, 2020). T50 and Tcrit decrease across
increasing latitudes, and with elevation among tropical forests
(O’Sullivan et al., 2017; Feeley et al., 2020; Slot et al., 2021a).
However, they appear more closely adapted to microclimate than
macroclimate (Feeley et al., 2020; Slot et al., 2021a).

Thermal tolerance is hypothesized to be greatest for the leaves
with the greatest radiation loads and highest temperatures along the
vertical gradient. Indeed, considering sun and shade leaf differences
across the vertical profile of a closed-canopy forest in Panama, T50

was 0.7–1.4°C lower for shade than sun leaves for two of three tree
species (Table 1; Slot et al., 2019). Similarly, within a very open
Acacia papyrocarpa canopy,T50 was highest (albiet by < 1°C) in the
lower, north-facing leaves, which faced the greatest composite
climate stress (lowwind speed, greater radiation andTair, and lower
rates of heat dissipation) (Table 1; Curtis et al., 2019). These
modest differences in T50 coupled with larger differences in Tleaf

across thermal microenvironments imply that more thermally
tolerant sun leaves tend to operate closer to their thermal limits and
could therefore be more vulnerable to heat anomalies (Perez &
Feeley, 2020). However, not enough studies have evaluated
thermal tolerances across vertical gradients to make robust
inferences.

Leaf phenology Leaf phenology influences the vertical structure
of microenvironments, Tleaf, and forest photosynthetic capacity
(Rey-S�anchez et al., 2016). In deciduous forests, the timing and
extent of seasonal leaf gain and loss is structured across the vertical
profile. In temperate climates, seasonal warming occurs earlier in
the sheltered understory, facilitating earlier spring budbreak
compared with the cooler upper canopy (Augspurger &
Bartlett, 2003). Early leaf-out gives saplings and seedlings a
window for high photosynthesis before they are shaded by canopy
leaves – contributing the majority of annual carbon fixation for
some seedlings –before canopy foliage and reduces light availability
(Augspurger & Bartlett, 2003; Lee & Ib�a~nez, 2021). Within
tropical dry-season-deciduous species, the fraction of seasonally
deciduous individuals is greater in larger trees in hotter, brighter
environments, with understory individuals typically remaining
evergreen (Condit et al., 2000). Similarly, fractions of deciduous
species increase with tree size class (Condit et al., 2000; Meakem
et al., 2018). Even in evergreen tropical forests, seasonal variation in
leaf quantities follows distinct vertical patterns throughout the
vertical profile depending on height and light environments (Tang
& Dubayah, 2017; Smith et al., 2019; Nunes et al., 2022). For
instance, in a central Amazonian forest, the upper canopies of both
interior and edge forests shed leaves when maximum daily Tair

exceeded c. 35°C (Nunes et al., 2022). In evergreen forests, leaf
turnover is faster in the upper canopy than in the understory (Osada
et al., 2001), and as a result, upper canopy leaves are, on average,
younger than shade leaves. Leaf age distributions affect forest
photosynthetic capacity (Niinemets, 2016; Wu et al., 2016) and
stress tolerance via age-specific leaf function (Kikuzawa &
Lechowicz, 2006; Zhou et al., 2015; Albert et al., 2018). Leaf
phenology thereby both responds to and influences the vertical
structure of forest microenvironments and function.

4. Leaf gas exchange and its thermal sensitivity

Leaf gas exchange is strongly shaped by environmental drivers,Tleaf,
and traits, all of which vary across vertical forest gradients
(Sections II.1–II.3; Fig. 1). However, as we detail below, few
studies have evaluated how temperature responses of leaf metabolic
rates are shaped by the varying environmental conditions across
vertical forest gradients (Table 2).

Conductance Leaf hydraulic, stomatal, and boundary layer
conductances are all critical for regulating Tleaf via latent heat loss
(Fig. 3). Due to higher wind, lower RH, and smaller leaf sizes in the
upper canopy (Fig. 2; Table 1), gb increases with height (Table 2).
Maximum gs increases with light – typically tracking photosyn-
thetic capacity (Wong et al., 1979) – and is thus higher in the sun-
exposed upper canopy than in subcanopy or understory leaves
(Table 2). However, water supply cannotmeet the demands caused
by the high radiation and gb in sun leaveswith fully open stomata, in
part because of height-related constraints onwater transport (Yoder
et al., 1994; Koch et al., 2004; Sillett et al., 2010) and/or increased
leaf-air VPD caused by leaf warming in sunlit canopy locations
(Buckley et al., 2014). These constraints tend to reduce leaf water
potential, making midday stomatal depression more prevalent in
sun leaves than shade leaves in closed-canopy forests (Table 2),
which drives the lower intracellular CO2 and d

13C (see Section II.3
subsection ‘Metabolic capacity and efficiency’; Table 1). Stomatal
depression reduces transpirational cooling (Fig. 3e), thus ampli-
fying the warming of sun leaves by high radiation (Koch
et al., 1994; Zwieniecki et al., 2004; Kosugi & Matsuo, 2006;
Sanches et al., 2010). The temperature at which gs is greatest,Topt of
gs, did not differ significantly between sun and shade leaves in three
tropical tree species (Slot et al., 2019), but sun leaves in the upper
canopy show a stronger decrease in gs in response to rising Tair

(driven by increased VPD) than lower canopy shade leaves
(Hern�andez et al., 2020; Carter et al., 2021). Available data also
suggest that high Tair can directly drive stomatal opening, if vapor
pressure is experimentally adjusted in tandem with Tair to keep
VPD constant (Fredeen& Sage, 1999;Mott & Peak, 2010; Urban
et al., 2017), although it appears that the negative effect of
temperature on gs, mediated by VPD, generally overrides the
positive effect of temperature per se in nature, causing gs to decline
when the leaf warms.

Photosynthesis Photosynthetic capacity is generally higher in
exposed canopy positions – a fact that is both predicted by
optimization theory (Field, 1983; Hirose & Werger, 1987) and
observed in numerous field studies (Table 2).

Temperature can affect photosynthesis directly, by altering
photosynthetic enzyme activity and the electron transport chain,
and indirectly, by increasing VPD and closing stomata (Lloyd &
Farquhar, 2008). Photosynthesis has a peaked response toTair, with
the optimum commonly corresponding to the prevalent ambient
growing season temperature (Doughty & Goulden, 2008; Slot &
Winter, 2017; Tan et al., 2017). Beyond the optimum, photosyn-
thesis decreases due to stomatal closure (Slot & Winter, 2017;
Grossiord et al., 2020; Smith et al., 2020) and biochemical
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Table 2 Summary of observed variation in leaf gas exchange and its thermal sensitivity across the vertical gradient and/or between sun and shade leaves.

Trait Symbol Units Response1 Forest type(s)2 Reference(s)3

Conductance
Boundary layer conductance gb mmol m�2 s�1 ↑ H TrB 3

mm s�1 ↑ H TeN 12
� L TeN 12

Leaf hydraulic conductance Kleaf m�2 s�1 MPa�1 ↑ L TeB
Cuticle conductance gmin mmol m�2 s�1 ↑ L TrB 38
Max stomatal conductance gs max mol m�2 s�1 ↑ H TrB, TeB, BoN 1, 2, 4

↑ L TrB, TeB, TeN, BoN 8, 9, 10, 7, 4
Stomatal conductance limitation gs mol m�2 s�1 ↑ H TrB, TeN 9, 39, 5, 6, 7

↑ L TrB, TeN 9, 39, 7, 27
Stomatal conductance at optimal temperature gs at Topt mol m�2 s�1 � ↑ H TeB 11

↓ H TrB 39
� ↑ L TrB 8

Photosynthesis
Maximum photosynthetic capacity Amax mol m�2 s�1 ↑ H TrB, TeB, BoN 14, 11, 15, 4

� ↓ H TeB 16
↑ L TrB, TeB, TeN, BoN 14, 17, 18, 19, 10, 4

nmol g�1 s�1 � H TrB 20, 2
� L TrB, TeB, TeN 20, 19

Maximum light-saturated net photosynthesis Asat lmol m�2 s�1 ↑ H TrB, TeB 21, 22
↑ L TrB, TeB 8, 22

Asat at optimum temperature Aopt lmol m�2 s�1 � ↑ H TrB, TeB 13, 11
↑ H TrB 39
↑ L TrB 8, 13

Optimum temperature for photosynthesis Topt °C � H TrB, TeB 23, 11, 13
↓ H TrB 39
� L TrB, TeB 9, 8, 11

Photosynthetic light compensation point LCP lmol m�2 ↑ H TrB, TeB, TeN 24, 16
↑ L TrB, TeB, TeN 8, 17, 16

Maximal carboxylation rate Vcmax lmol m�2 s�1 ↑ H TrB, TeB 2,39, 22, 14
↑ L TrB, TeB, BoN 9, 39, 22, 14, 10

nmol g�1 s�1 � H TrB, TeB 2, 2
� L TrB, TeB 2, 22

nmol CO2 g
�1 s�1 � ↓ L TeB 25

Optimum temperature for Vcmax Vcmax (Topt) lmol m�2 s�1 � ↑ H TeB 11
� L TrB 9

Electron transport rate Jmax lmol m�2 s�1 ↑ H TrB, TeB 2, 39, 36, 22, 14
↑ L TrB, TeB 9, 39, 22, 26, 14

nmol g�1 s�1 � H TrB, TeB 2, 22
� L TrB, TeB 2, 22

nmol e�1 g�1 s�1 � ↓ L TeB 25
Optimal temperature of Jmax ToptETR °C ↓ H TrB 39

Jmax (Topt) lmol m�2 s�1 � L TrB 9
High-temperature CO2 compensation point Tmax °C � H TrB 21

� L TrB 8
Respiration
Respiration rate at 25°C R lmol CO2 m

�2 s�1 ↑ H TrB, TeB, TeN 36, 28, 29, 30
lmol CO2 kg

�1 s�1 � H TrB, TeB, TeN 28, 29
↑ L TrB, TeN 28, 30

Light respiration RL lmol m�2 s�1 ↑ H TrB 21
↑ L TrB 21

Dark respiration Rdark lmol m�2 s�1 ↑ H TrB, TeB, BoN 21, 14, 31, 22, 38
↑ L TrB, TeB, TeN, BoN 21, 14, 22, 17, 10, 35

nmol g�1 s�1 � ↑ H TrB 2, 32
� L TrB 2, 32

Rdark at reference T Rdark at reference T lmol m�2 s�1 ↑ H TrB, TeB, TeN 21, 14, 31, 29
lmol (kg leaf)�1 s�1 ↑ H TrB, TeB, TeN 21, 14, 31, 21
lmol (kg N)�1 s�1 ↑ H TeB, TeN 3, 29
lmol m�2 s�1 ↑ L TrB, TeB 2, 8, 34
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constraints (Sharkey, 2005; V�arhammar et al., 2015; Kumar-
athunge et al., 2019).

We have very little evidence about how the temperature
sensitivity of photosynthesis compares between sun and shade
leaves, and existing studies, which compare sun and shade leaves of
the same trees, reveal no pronounced overall trend with height in
photosynthetic temperature optima (Table 2). Based on consistent
positive relationships between growth temperature and optimum
temperature of photosynthesis (Topt) across sites and seasons (Tan
et al., 2017; Kumarathunge et al., 2019), one might expect sun
leaves to have a stronger temperature dependence and higher Topt

than shade leaves (Campbell & Norman, 1998; Niinemets
et al., 1999; Niinemets & Valladares, 2004). However, such a
trend is not apparent among recent studies, where for three species
in Panama, Topt for sun leaves tended to be moderately, but not
significantly, higher than that of shade leaves (Slot et al., 2019;
Hern�andez et al., 2020). Similarly, Topt of RuBP carboxylation
(Vcmax) and regeneration rates (Jmax) did not differ systematically
between tropical sun and shade leaves (Hern�andez et al., 2020), nor
within-canopies of tropical and temperate trees (Mau et al., 2018;
Miller et al., 2021). By contrast, tropical experimental warming
observations showed that Topt and Topt of Jmax decrease from the
understory to the top of the canopy, potentially linked to greater
thermal sensitivity of gs in upper canopy leaves (Carter et al., 2021).
The observed lack of sun–shade differences in Topt may reflect
acclimation to similar temperatures of peak photosynthesis
(Hern�andez et al., 2020). Sun leaves experience higher tempera-
tures, butmaximum temperatures are associated with conditions of
midday stomatal depression, and acclimation to optimize photo-
synthesis at these temperatures would not be advantageous. Shade
leaves that do not experience midday depression continue to fix
carbon even when afternoon air temperatures peak (Miller
et al., 2021). Evaluating this would require diurnal monitoring of
net photosynthesis across a forest vertical profile. In the meantime,
it remains unresolved whether photosynthesis is more affected by

high temperatures in upper canopy or understory leaves, and how
this might vary across forest types and environmental conditions.

Respiration Similar to photosynthesis, respiration tends to be
higher in upper canopy sun leaves, but its temperature sensitivity
(Q10 or E0) shows no definite trend along the vertical gradient.
Specifically, the temperature sensitivity of respiration can be
constant within vertical profiles and in seedling sun vs shade leaves,
greater in upper canopy leaves, or greater in the lower canopy
(Table 2). This variation may be attributable to forest type, leaf
traits, and age (e.g. greater Q10 in younger leaves; Zhou
et al., 2015), or acclimation to high temperature that decreases
Q10 (Slot &Kitajima, 2015; Carter et al., 2021). Overall, although
the temperature difference between upper and lower canopy
positions is an important driver of respiration, we currently lack
mechanistic understanding of how and why its temperature
sensitivity varies across the forest vertical profile.

5. Tree and ecosystem ecology

Differences across forest vertical gradients in biophysical condi-
tions, plant traits, andmetabolism scale up to affect ecological rates
and their temperature responses at tree and ecosystem levels
(Fig. 1).

Tree metabolism, growth, and survival Tree metabolism and
growth are shaped by crown location in the vertical gradient. Tree
height, crown volume, and foliage biomass all scalewith diameter at
breast height (DBH), which strongly predicts tree transpiration
(Meinzer et al., 2001; Anderson-Teixeira et al., 2015; Kunert
et al., 2017) photosynthesis, and intracanopy trait variation (Bin
et al., 2022). Specifically, increases are linked to greater leaf area and
the increasing probability that the crown is in the canopy (Muller-
Landau et al., 2006), where leaves receive more light and have
higher leaf area-specific photosynthesis (Table 2). Photosynthate

Table 2 (Continued)

Trait Symbol Units Response1 Forest type(s)2 Reference(s)3

Temperature sensitivity of Rdark Q10 °C�1 � H TrB, TeB, TeN 21, 36, 31, 30
°C�1 � ↑ H TeB, TeN 3, 29

� ↓ L TrB, TeB, TeN 21, 31, 30
↑ L TeB 33

Activation energy of Rdark E0 kJ mol�1 K�1 � H TrB, TeB, TeN 21, 34, 29
� L TrB 21, 8

Studies listed here were compiled using a systematic review process, as described in Supporting Information Methods S3.
1Responses across height and light gradients are summarized, with up and down arrows indicating significant increasing or decreasing trends, respectively, in
response to height (H) or light (L).� indicates lack of any notable directional variation, and� ↑ or� ↓ indicate nonsignificant ormixed trends (e.g. significant in
some but not all species studied).
2Forest types are coded as follows: TrB, tropical broadleaf; TeB, temperate broadleaf; TeN, temperate needleleaf (conifer); BoN, boreal needleleaf (conifer).
31. Kafuti et al. (2020); 2. VanWittenberghe et al. (2012); 3. Roberts et al. (1990); 4. Dang et al. (1997); 5. Marenco et al. (2017); 6. Ambrose et al. (2010);
7. Zweifel et al. (2002); 8. Slot et al. (2019); 9. Hern�andez et al. (2020); 10. Urban et al. (2007); 11. Carter &Cavaleri (2018); 12.Martin et al. (1999); 13.Mau
et al. (2018); 14. Kosugi et al. (2012); 15. Niinemets et al. (2015a,b); 16. Bachofen et al. (2020); 17. Hamerlynck & Knapp (1996); 18. Coble et al. (2016);
19.Wyka et al. (2012); 20. Rijkers et al. (2000); 21.Weerasinghe et al. (2014); 22. Scartazza et al. (2016); 23.Miller et al. (2021); 24. Harris &Medina (2013);
25. Legner et al. (2014); 26. Kitao et al. (2012); 27. Fauset et al. (2018); 28. Meir et al. (2001); 29. Turnbull et al. (2003); 30. Araki et al. (2017); 31. Bolstad
et al. (1999); 32. Kenzo et al. (2015); 33. Harley et al. (1996); 34. Xu&Griffin (2006); 35. Atherton et al. (2017); 36. Carter et al. (2021);37. Sack et al. (2003);
38. Slot et al. (2021b);39. Carswell et al. (2000).
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production is allocated among functions including respiration,
aboveground woody growth, foliar turnover, root growth and
allocation to root-associated microorganisms, reproduction,
defense, and storage of nonstructural carbohydrates (NSCs).
Among these, the best-studied process is aboveground woody
growth, which consumes only a modest fraction of total photo-
synthate (c. 1/6 on the ecosystem level; Anderson-Teixeira
et al., 2021), but is critically important to long-term forest
dynamics and carbon cycling because woody tissues have a long
residence time in the ecosystem (Russell et al., 2014). Radial stem
growth may increase or decrease over time as trees grow in DBH
depending on the light environment (Anderson-Teixeira
et al., 2022). In open forests and for open-growth individual trees,
growth rate declines with DBH, whereas growth rate consistently
increases with DBH for trees established in the understory of a
closed-canopy forest (Muller-Landau et al., 2006; Anderson-
Teixeira et al., 2015, 2022). This points to a dominant role of
vertical profiles in the biophysical environment, particularly light,
in shaping tree growth rates within forests.

Vertical gradients also affect the climate sensitivity of metabolism
and growth. Stomatal conductance can be strongly limited by high
VPD even when soil water is plentiful (Corlett, 2011; Novick
et al., 2016; Ruehr et al., 2016). Therefore, periods of high VPD,
whether on timescales of hours, days, or seasons, tend to reduce
transpiration and photosynthesis more in tall trees that occupy
canopypositions in closed-canopy forests (Christoffersen et al., 2016;
Garcia et al., 2021).This is consistentwith observations that both dry
season leaf loss (see Section II.3 subsection ‘Leaf phenology’; Table 1)
and gs limitation (see Section II.4 subsection ‘Conductance’; Table 2)
increasewith height across the vertical profile.More active regulation
of transpiration by tall canopy trees (Mediavilla&Escudero, 2004) –
often combined with greater effective rooting depth – may offset
greater xylem embolism risk (Olson et al., 2018; Chitra-Tarak
et al., 2021; Garcia et al., 2021) and reduce the need to adjust carbon
metabolism traits during drought (Bartholomew et al., 2020). This
reduces carbon isotope discrimination, indicative of greater gs
limitation, with increasing tree height (Table 1; McDowell
et al., 2011).

In turn, the drought sensitivity of woody growth tends to be
greater in upper canopy trees than in smaller trees with less exposed
crowns. Dendrochronologists generally agree that tree ring records
of large, exposed trees are best suited for climate reconstructions
because their annual growth ismost sensitive to interannual climate
variation (Fritts, 1976). However, few studies have directly
examined drought- or temperature sensitivities as a function of
tree size.Most have found greater sensitivity to low precipitation or
seasonally high temperatures among larger, more exposed trees
(Fig. 4; Trouillier et al., 2018; Gillerot et al., 2020; McGregor
et al., 2021; Anderson-Teixeira et al., 2022; Heilman et al., 2022),
corroborating evidence from global forest censuses that drought
reduces growth more in large trees (Bennett et al., 2015). Drought
also causes greater mortality in larger trees (Bennett et al., 2015;
Stovall et al., 2019). Mechanistically, this is likely driven in part by
larger trees having their crowns in microenvironments that are
more challenging during drought (Figs 1–3; Scharnweber
et al., 2019), yet height itself also creates disadvantages (Couvreur

et al., 2018; Olson et al., 2018). Indeed, despite the potential for
shorter trees in open forests to experience greater environmental
stress (Curtis et al., 2019), greater drought sensitivity of larger trees
has been observed in open and closed-canopy forests (Bennett
et al., 2015; Anderson-Teixeira et al., 2022). However, evidence
that short trees in young stands can be more drought-sensitive than
taller trees in mature forests (Irvine et al., 2004; Wang et al., 2022)
reinforces the importance of exposure in shaping drought sensi-
tivity. The relative importance of exposure vs height in shaping
drought sensitivity remains to be disentangled.

Although drought sensitivity clearly increases with crown height
and hence with DBH, it remains unclear how growth sensitivity to
high Tair, independent of drought, varies along the vertical
gradient. High Tair is often associated with high VPD and
atmospheric drought, likely explaining negative growth responses
to Tair – particularly among larger trees – even if soil moisture
remains high (Novick et al., 2016), or when precipitation is
statistically accounted for (Fig. 4; Anderson-Teixeira et al., 2022).
However, under well-watered conditions conducive to high gs, we
do not necessarily expect higher thermal sensitivity of photosyn-
thesis (see Section II.4 subsection ‘Photosynthesis’) or woody
growth in upper canopy trees than their understory counterparts.
Indeed, there are cases where tree ring records show more negative
or less positive Tair-responses of understory trees than canopy
dominants (Rollinson et al., 2020; Anderson-Teixeira et al., 2022).
Additional research is required to understand the mechanisms
underlying these intriguing differences, and to disentangle size-
related tree growth responses to hot-wet vs hot-dry conditions.

Carbon and water flux Canopy trees account for the majority of
forest ecosystemwater andcarbon cycling.While studies partitioning
transpiration across forest vertical gradients are rare, both evapo-
transpiration (ET) and transpiration have been shown to increase
with height in aPicea abies forest inGermany,where theupper half of
the canopy contributed an estimated 80% of daytime ET (Staudt
et al., 2011). Similarly, in a tropical forest in the Brazilian Amazon,
canopy and subcanopy trees jointly contributed c. 93% of ET, or
88% of transpiration (Fig 5a; Kunert et al., 2017), and trees > 33 cm
DBH contributed > 80% of transpiration in a forest in Costa Rica
(Moore et al., 2018). In termsof carbon cycling, it has been estimated
that the canopy strata contribute ≥ 64% of net daytime CO2 uptake
(i.e. gross primary productivity (GPP) – ecosystem respiration,
including from soil; Misson et al., 2007). Large trees also dominate
woody aboveground net primary productivity (ANPPwoody) and
mortality (Mwoody), with trees ≥ 10 cm DBH usually contributing
> 85% of ANPPwoody and Mwoody across 25 globally distributed
forests (Fig. 5b; Piponiot et al., 2022).

It is less clear how thermal sensitivity of water and carbon fluxes
vary across strata, but probable responses can be inferred based on
the patterns andmechanisms reviewed above.We expect that under
conditions of moderate-to-high VPD, transpiration, GPP, and
ANPPwoody should all bemore sensitive to high temperatures in the
upper canopy than in the understory (Grossiord et al., 2020;Nunes
et al., 2022). Because canopy trees dominate these fluxes (Fig. 5),
their responses will strongly influence the whole-ecosystem
response, potentially with modest buffering by the understory.
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Thus, for example, increases in canopy temperature reduce forest
GPP in the tropics (Pau et al., 2018). Yet, evidence also suggests
GPP and ecosystem respiration are less sensitive to heat and
drought stress in older forests than in young forests (Xu
et al., 2020), perhaps in part because of more complex vertical

structuring (Jones et al., 2019; Nunes et al., 2022). A rare example
of a study comparing climate sensitivity of C fluxes across size
classes (Meakem et al., 2018) showed that Mwoody was more
strongly elevated among large than small trees during an El Ni~no
drought in Panama,while the smallest trees hadhigher productivity
during the drought, likely because of increased light in the
understory. It remains far less clear how thermal sensitivity varies
across forest strata under wet conditions, but both physiological
mechanisms (Fig. 3) and some tree ring evidence (Rollinson
et al., 2020;Anderson-Teixeira et al., 2022) raise the possibility that
understory treesmay be at a relative disadvantage under hot, humid
conditions. Further research is required to better understand the
thermal sensitivity of forest ecosystem function across strata.

III. Implications

Having established how physical conditions and biological form
and function vary across vertical gradients (Fig. 1), we now turn to
the implications of these patterns for understanding how forest
ecosystems may be impacted by global change, and our ability to
project this across space and time.

1. Global change responses

The complex interwoven relations between the biophysical envi-
ronment and biological factors – leaf traits, metabolic processes,
and distribution of species across forest strata – are likely to produce
amplifications and feedback loops in a warming world, with
implications for forests on many levels.

Warming As climate change progresses, we anticipate increases in
both mean daytime and in nighttime Tair, as well as increased
maximum temperatures, with extreme increases during heat waves
(IPCC, 2021).To the extent thatwarming is coupledwith drought,
we expect that tall trees with exposed crownswill usually be hardest-
hit, particularly in severe drought, partly because their crowns are
positioned in a more challenging microenvironment (see Sec-
tionII.5 subsection ‘Treemetabolism,growth, andsurvival’;Figs1–
4). By contrast, understory trees will be more sheltered during
droughts and heat waves, and in some settings may benefit from
increased light availability (Bennett et al., 2015;Hogan et al., 2019;
Nunes et al., 2022). It remains unclear how these patterns vary with
the nature of the drought, including the relative contributions to
stress from low soil moisture vs high VPD. While the two are
coupled over longer timescales (Novick et al., 2016; Humphrey
et al., 2021), the latter canbe intense for short periods evenwhen soil
moisture is high (e.g. during a heat wave) and exerts a stronger
influence on ET in many biomes (Novick et al., 2016). Given the
mechanisms reviewed here, we might expect that high VPD in
particular skews the stress more toward the exposed canopy trees.

It remains uncertain how responses to warming will vary across
vertical gradients under mesic conditions. Leaves display substan-
tial plasticity to adapt to warmer temperatures (Cunningham &
Read, 2003;Way, 2019; Slot et al., 2021c) and to recover fromheat
stress (Smith et al., 2020), yet failure to fully acclimate will reduce
carbon sequestration at leaf, tree, and ecosystem levels (Tan
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Fig. 4 Examples of tree ring evidence for greater interannual temperature
sensitivity of annual growth for large than for small trees. Across three sites
and species, trees with large diameter at breast height (DBH) had more
negative growth responses to high maximum temperature (Tmax) or
potential evapotranspiration (PET) than did small trees of the same species.
Independent variables are the most influential temperature-related variable
at the site (Tmax or PET over a seasonal window spanning from the noted
beginning to end month, where ‘c’ and ‘p’ represent months in the current
and previous calendar year, respectively). Colored lines represent responses
of trees at themaximumandminimum tails of the DBH distribution included
in the analysis to the temperature variable in a model including a DBH–
temperature interaction.Othermodel terms are held constant at theirmean.
Transparent ribbons indicate 95% confidence intervals. Redrawn from
Anderson-Teixeira et al. (2022).
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et al., 2017; Huang et al., 2019; Way, 2019; Bennett et al., 2021).
As growing season Tair increasingly equals or exceeds photosyn-
thetic optima (Slot & Winter, 2017; Mau et al., 2018; Huang
et al., 2019; Kumarathunge et al., 2019), exposed crowns are likely
to be most vulnerable. Particularly in midlatitude forests, which
have the narrowest thermal safety margin between historical

maximum temperatures and Tcrit (O’Sullivan et al., 2017), Tleaf of
sun-exposed leaves may approach tolerance thresholds during heat
waves, causing photosynthetic decline or even leaf death
(O’Sullivan et al., 2017; Tiwari et al., 2021; Kunert et al., 2022).
By contrast, understory leaves and trees are unlikely to face the same
absolute extremes of Tleaf, and protection from thermal stress
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Fig. 5 Vertical partitioning of (a) evapotranspiration and (b) carbon fluxes in tropical forests. Panel (a) is fromKunert et al. (2017); (b) presents averages for 14
tropical forests from Piponiot et al. (2022). DBH, diameter at breast height; ANPP, aboveground net primary productivity;Mwoody, woody mortality.
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associated with high direct radiation might allow shaded layers to
photosynthesize longer in the day (He et al., 2018; Miller
et al., 2021). However, with Tair more frequently equaling or
exceeding photosynthetic optima, occasional exposure to sunflecks
coupled with lower capacity to dissipate excess heat may prove
disadvantageous. While it is currently difficult to predict whether
canopy or understory photosynthesis will be more severely affected
by warming (see Section II.4 subsection ‘Photosynthesis’), limited
tree ring evidence indicates that unusually hot growing seasons can
dramatically reduce the growth of understory trees (Rollinson
et al., 2020), and these small trees may be at higher risk of carbon
starvation because they have lower NSC reserves (Niine-
mets, 2010). Thus, despite their buffered microclimate, it is
possible that understory trees could be more adversely impacted by
warming temperatures than their canopy counterparts under some
conditions.

Canopy disturbance Increasing severity and frequency of heat
waves, accompanied with increases in VPD and ET, places canopy
trees at particularly elevated risk of mortality (see Section II.5
subsection ‘Tree metabolism, growth, and survival’), potentially
causing large-scale canopy dieback (Matusick et al., 2013; Teskey
et al., 2015; Breshears et al., 2021). Large trees are also the most
vulnerable to other climate-related disturbances (e.g. wind and
lightning; Gora & Esquivel-Muelbert, 2021) that are expected to
intensify with climate change (IPCC, 2021), and they are also
targeted by selective logging (Miller et al., 2011). Forest fragmen-
tation also kills large trees by making them more vulnerable to
wind, desiccation, and liana infestation (Laurance et al., 2006).
Thus, canopies are becoming increasingly prone to disturbance and
gap formation, which in turn increases radiation and temperatures
within the forest (Jucker et al., 2018; Stark et al., 2020). Such
changes often enhance growth of smaller trees, which benefit from
increased light (Bennett et al., 2015; Hogan et al., 2019; Nunes
et al., 2022), and wetter forests can prove quite resilient to canopy
disturbance (Miller et al., 2011). However, this shift to hotter and
drier microclimates makes some forests more susceptible to further
disturbances, for example, increasing fire risk (Brando et al., 2014;
Arag~ao et al., 2018). Severe degradation can cause dramatic
ecological state changes (e.g. the transition of tropical forests to
more open, savanna-like vegetation) and nonlinear threshold
responses in energy balance and associated microclimates, with
implications for forest–atmosphere interactions (Stark et al., 2020).
Such dynamics are likely to be amplified by warming, such that
climate change is pushing some of the world’s forests into
alternative stable states wherein forest can persist as long as the
canopy remains largely intact but may not recover and persist after
severe canopy disturbance (Flores et al., 2017; Tepley et al., 2017;
Miller et al., 2019; McDowell et al., 2020).

Canopy disturbance poses an increasing threat to the biodiver-
sity of understory species that are otherwise buffered from climatic
extremes (Scheffers et al., 2013; Greiser et al., 2019). Canopy
structure affects understory species composition, which has been
shown to shift under warming and canopy disturbance (Bertrand
et al., 2020; Maes et al., 2020; Majasalmi & Rautiainen, 2020). In
the understory, warming reduces the abundance of less thermally

adapted plant species, causing thermophilization of the plant
community (Duque et al., 2015; Greiser et al., 2019; Zellweger
et al., 2020). If compositional shifts towardmore thermally adapted
species fail to keep pace with warming, the ecosystem-level
resilience to canopy disturbance that is often provided by smaller
trees (Miller et al., 2011) will be destroyed, resulting in breakdown
of canopy structure and the potential state changes described above.

2. Scaling across space and time

As we have reviewed here, vertical profiles in forests strongly shape
forest dynamics and climate change responses. Ultimately, to achieve
the important goal of understanding feedback between the world’s
forests and climate change, these mechanisms must be sufficiently
represented in models and scaled spatially via remote sensing.

Representing vertical gradients in models Dynamic global
vegetation models (DGVMs), which comprise the land surface
models in Earth system models, are used to predict the global
distribution of vegetation types and biosphere–atmosphere feed-
back (Foley et al., 1996; Sitch et al., 2003; Woodward &
Lomas, 2004). Dynamic global vegetation models operate at a
range of scales and vary in complexity, from detailed individual-
basedmodels (i.e. forest gapmodels), which represent vegetation at
the level of individual plants, capturing spatial variability in light
environment and microclimates at high 3D spatial resolution
(Shugart et al., 2018), to big-leaf models that reduce 3D vegetation
structure to single vegetation layer, implicitly capturing vertical
profiles in light, photosynthetic capacity and other features by
assuming those profiles are exponential and thus can be integrated
analytically (Bonan et al., 2003; Krinner et al., 2005). This
simplification is computationally more efficient but does not
always capture observed vertical profiles (Sections II.1–II.4; for
example, vertical shifts in the balance between stomatal conduc-
tance and photosynthetic capacity, see Section II.4 subsections
‘Conductance’ and ‘Photosynthesis’) and cannot capture impor-
tant demographic processes and vertical light competition (Hurtt
et al., 1998; Smith et al., 2001; Krinner et al., 2005). The
computational middle-ground lies in cohort-based models, which
represent vegetation as cohorts of individuals, grouped together
based on properties, including size, age, and functional type (Fisher
et al., 2018).

Owing to differences in the representation of forest vertical
strata, DVGMs vary in their capacity to incorporate vertical
variation in leaf traits and physiological processes. In general,
however, this variation is accounted for via light competition.
Models partition radiation above and within the forest vertical
profile (i.e. direct vs diffuse light) using radiative transfer models or
a system of two coupled ordinary differential equations, referred to
as a two-stream imation (Sellers, 1985; Fisher et al., 2018). Using
the latter method, single canopy layers are divided into sun and
shade fractions (e.g. in theCommunity LandModel), whilemodels
withmultiple vegetative layers can analytically solve the two-stream
imation for each layer. Thus, even in single-layer models, key
physiological parameters such as Vcmax and Jmax vary, decreasing
with increasing cumulative LAI or lower light conditions (Table 2;
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Krinner et al., 2005). Recent years have seen growing efforts to
incorporate vertical variation more directly in models, specifically
involving leaf water potential and light absorption, along with a
increasing interest in confronting models directly with field
measurements (Fisher & Koven, 2020; Maclean & Klinges,
2021). Recent model developments at the cutting edge of
representing vertical variation (Bonan et al., 2018; Chen
et al., 2019; Longo et al., 2019) implement vertical gradients of
irradiance, water content,Tleaf, and humidification of canopy air by
transpiration, modulated by turbulence within the forest and a
roughness layer that extends to roughly twice the canopy height
(Fisher & Koven, 2020).

The findings of this review reinforce the notion that representing
vertical structuring is essential to capturing forest dynamics under

global change. Improved representation of vertical variation in
forest structure and ecosystem function is critical for representing
thermal sensitivity and has repeatedly been identified as important
for reducing uncertainty and accuratly characterizating biologically
mediated feedback (Moorcroft et al., 2001; Banerjee&Linn, 2018;
Bonan et al., 2021).Moreover, given the anticipated importance of
midcanopy and understory trees in ecosystem resilience and given
the increasing mortality of canopy trees, it is essential that models
separately represent these strata. A key question is whether existing
models adequately represent the processes that underpin under-
story and large tree responses to thermal stress. Most models have
been developed to capture dynamics in the upper canopy, given the
disproportionate role of large trees in ecosystem dynamics (Fig. 5).
Less attention has focused on developing and validating understory

(a) Integrating vertically resolved in situ data with
lidar and thermal infrared remote sensing data

(b) Remote sensing data (c) Ecosystem modeling

Sun Tleaf

Shade Tleaf

Closed canopy ecosystem Open canopy ecosystem

CO2 H2O8.5 m

Temperature (°C)

35 40 45 5550

Fig. 6 LiDAR and thermal remote sensing data can be used to measure vertical forest structure and plant thermal signatures at increasingly large scales. (a, b)
Integrating in situ and remote sensing measurements will support our ability to scale understanding of vertical gradients within and across ecosystems. (c) In
turn, these efforts canbeused todirectly informecosystemmodel development andparameterization.Vertically resolved in situdata could includeanyvariable
listed in Tables 1 or 2. Panel (b) shows drone LiDARpoint cloud data coloredwith thermal data froma savannawoodland in KrugerNational Park, SouthAfrica,
illustrating vertical and horizontal variation in vegetation temperature. Image courtesy of the Harvard Animal-Landscape Observatory, Peter B. Boucher and
Andrew B. Davies. Tleaf, leaf temperature.
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tree dynamics and responses to perturbations in models, in large
part to the paucity of observational and experimental studies
needed to resolve key patterns and underlying mechanisms
(Sections II.4, II.5). Pairing of models with observational studies
is key to further improving our mechanistic understanding of
vertical gradients and their implications.

Although an improvement over big-leaf models, DGVMs that
separate the canopy into only two layers (e.g. sunlit and shaded
portions; De Pury & Farquhar, 1997) may not be able to capture
important within-canopy variation in terms of leaf dynamics
(e.g. seasonal shifts in vertical leaf area distributions; Table 1;
Smith et al., 2019) and functions (e.g. thermal responses;
Table 2). Multilayered ecosystem models will likely be necessary
for accurately predicting future forest function (Bonan
et al., 2021). In addition, capturing vertical gradients in ET,
GPP, respiration, and woody growth, and subsequently the net
ecosystem effects, requires improved characterization of the
functional response of leaf-level processes to vertically varying
abiotic conditions, and the role of traits in mediating responses
to thermal sensitivity.

Scaling in situ data with remote sensing Remote sensing data
provide a valuable means to scale between in situ observations and
DGVMs. Specifically, the increasing availability of airborne and
spaceborne LiDAR and thermal remote sensing data offers a
promising opportunity for mapping vertical thermal gradients and
vegetation structure across scales (Fig. 6). Airborne, spaceborne,
and terrestrial laser scanning data yield detailed 3D reconstructions
of whole tree and forest structure. These data can be combinedwith
thermal remote sensing data from the spaceborne ECOSTRESS
sensor (Hulley et al., 2019; Fisher et al., 2020) or drone- and tower-
based infrared cameras.

Detailed structural information fromLiDARdata can be used to
measure tree height, DBH, and crown dimensions (Fisher
et al., 2020), evaluate spatial variation in vertical leaf area density
profiles (Detto et al., 2015), and resolve complex seasonal and
diurnal variation in shortwave radiation forcing in ecosystems
(Musselman et al., 2013). Canopy shading can be better
represented to predict understory temperatures by modeling the
time-varying interaction of the forest canopy with solar radiation,
as has been done in other LiDAR-based analyses (Davis
et al., 2019). Satellite and airborne thermal infrared remote sensing
analyses are now being conducted at regional and continental
scales, although few applications exist at finer scales needed to
understand vertical variation in canopy temperatures (Johnston
et al., 2022). As an example of the type of insight possible with this
approach, Pau et al. (2018) used the data from a tower-based
infrared camera in combination with eddy-covariance data and
found that tropical forest GPP was more strongly associated with
canopy temperature than Tair or VPD. In a savanna system in the
Western USA, Johnston et al. (2022) found lower foliage
temperatures at the tops of tree crowns than in the understory,
which was influenced by very high grass temperatures, consistent
with the principles outlined in Sections II.1 and II.2 (Fig. S1). The
growing availability of such data makes this an opportune time to
link in situ measurements with fine- and landscape-scale

measurements to further explore ecosystem-scale patterns in
vertical temperature gradients seasonally and across biomes.

IV. Conclusions

Across vertical gradients, directional trends in the biophysical
environment and leaf traits are the rule, driving variation in the
physiology and ecology that have these as their underpinnings
(Fig. 1). However, uncertainty remains about how temperature
sensitivity of foliar gas exchange varies across these vertical
gradients. Similarly, much remains unknown about how crown
exposure influences the temperature sensitivity of woody stem
growth. While most available data suggest that large canopy trees
are themost vulnerable to warming when water is limited, far less is
known about the responses of understory trees.

As climate changes, patterns and processes across vertical
gradients will likely shift as well. In the historical climates to which
trees adapted, the canopy was an advantageous place for photo-
synthesis and growth.However, as temperatures increase, it is likely
that exposed canopy positions will become increasingly physiolog-
ically stressful. Ensuant increased mortality of canopy trees will
create ever more gaps, changing understory conditions and
community composition. Ultimately, mid- and understory tree
communities will be critical to the resilience of forest ecosystems
under changing climate, making improved understanding and
model representation of their dynamics essential to understanding
future forest dynamics. Integrating the patterns and mechanisms
reviewed here, along with remote sensing data on forest structure
and thermal environments, into cohort-basedmodels that integrate
with Earth system models will be crucial to understanding and
forecasting forest–climate feedback in the coming decades.
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