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Abstract

The total free energy of a hydrated biomolecule and its corresponding decomposition

of energy and entropy provides detailed information about regions of thermody-

namic stability or instability. The free energies of four hydrated globular proteins with

different net charges are calculated from a molecular dynamics simulation, with the

energy coming from the system Hamiltonian and entropy using multiscale cell corre-

lation. Water is found to be most stable around anionic residues, intermediate around

cationic and polar residues, and least stable near hydrophobic residues, especially

when more buried, with stability displaying moderate entropy-enthalpy compensa-

tion. Conversely, anionic residues in the proteins are energetically destabilized rela-

tive to singly solvated amino acids, while trends for other residues are less clear-cut.

Almost all residues lose intraresidue entropy when in the protein, enthalpy changes

are negative on average but may be positive or negative, and the resulting overall sta-

bility is moderate for some proteins and negligible for others. The free energy of

water around single amino acids is found to closely match existing hydrophobicity

scales. Regarding the effect of secondary structure, water is slightly more stable

around loops, of intermediate stability around β strands and turns, and least stable

around helices. An interesting asymmetry observed is that cationic residues stabilize

a residue when bonded to its N-terminal side but destabilize it when on the C-

terminal side, with a weaker reversed trend for anionic residues.
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1 | INTRODUCTION

The structure and stability of proteins are controlled not only by their

sequence but also by their solution environment1–6 comprising salts,

solutes, other biomolecules, and numerous water molecules. The

influence is mutual, with the properties of these molecules in turn

affected by the solvated protein. To understand biomolecular stability

and related properties such as folding, binding, and function, it is help-

ful to be able to quantify and characterize stability in terms of all the

constituent molecules of the system, solvent, and solute molecules

alike. Stability of a protein with respect to another reference state can

be measured experimentally in terms of an equilibrium constant, but

this only works if a convenient reference state exists. The absolute

stability of a system has no such requirement, depends directly and

exclusively on the system itself, and is quantified by the free energy,

with lower free energy meaning greater stability. While free energy

cannot be measured experimentally, it can be computed from a

molecular dynamics (MD) simulation, either from the free energy itself

or from energy minus entropy times temperature,7–12 which can be

referred to as energy–entropy (EE) methods. Energy relates to the
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strength of molecular interactions and entropy relates to molecular

flexibility or the probability distribution of configurations.

To calculate total system entropy and energy for biomolecular

systems, all-atom, force-field-based simulations are the most useful

because they extensively sample the ensemble of configurations

over all atoms in the system, unlike coarser-grain methods, which

miss important atomic interactions and degrees of freedom, or

electronic-structure methods, which are much more expensive and

still too slow to achieve sufficient sampling. Theoretical approaches

to calculate free energy are available for the solvent, such as

Poisson–Boltzmann (PB) or Generalized-Born (GB) continuum sol-

vent methods13,14 or the three-dimensional reference interaction

site model, which uses an approximation to the Ornstein–Zernike

equation solved on a 3D grid around the protein.15–17 While these

methods avoid the need for ensemble averages over many solvent

configurations, they do not yield explicit solvent energy and

entropy and nor do they provide the contribution from the protein.

The free-energy method of Meirovitch and coworkers can be

applied to both solvent and protein alike,18–20 but requires a spe-

cific Monte Carlo simulation to grow in the molecules as opposed

to a standard MD simulation.

Regarding EE methods, energy can be calculated in a straightfor-

ward manner from the average system Hamiltonian in a MD simula-

tion. Calculating the entropy is more difficult because it requires

determining the probability distribution of quantum states of the

whole system, and it is a particular challenge for heterogenous sys-

tems comprising both large proteins and large ensembles of small mol-

ecules. Of the methods to calculate the entropy of a protein,21–26 two

of the most popular are the multidimensional harmonic approximation,

namely normal mode analysis (NMA)27–29 based on the curvature at

the energy minimum and quasiharmonic analysis (QHA)30–33 based on

coordinate covariances in MD simulations. Methods using non-

harmonic probability distributions may be more accurate but their cor-

relations are limited to low dimensionality and fail to account for the

quantum nature of high-frequency vibrations in covalently bonded

systems. Individual dihedrals34–36 omit non-negligible correlations,

which can be included either by using distributions along eigenvectors

of dihedral covariance,37–40 mutual information expansions,41,42 and

the minimum spanning tree variant.43,44 However, none of these

protein–entropy methods are applicable to water because they do not

account for translational and rotational entropy which is small for a

protein but the main component for collections of small molecules.

The solvent contribution can be included using hybrid methods such

as molecular mechanics (MM)-PBSA and MM-GBSA13,14 which com-

bine MM energy with either a PB or GB solvent free energy, a nonpo-

lar surface-area term, and either NMA or QHA entropy.

Of the entropy methods that are applicable to water around

proteins,45–53 a widely used method is inhomogeneous solvation the-

ory (IST)45,50,54–61 based on the solute–solvent density distribution, as

well as the closely related PerjMut method.62,63 The two-phase ther-

modynamics method, which is based on the velocity autocorrelation

function, can be used to calculate water entropy in a wide range of

hydration environments.48,49,52,64–71 The effect of protein flexibility

on hydration can be addressed by considering multiple protein confor-

mations52,63,72–75 possibly supported by conformational clustering,76

but this becomes expensive for IST-type calculations.77,78 None of

these hydration methods are viable for proteins because having distri-

butions over such a large number of internal degrees of freedom

would make them prohibitively expensive.

It would be advantageous to have a single, general method that

can account for the free energy of all molecules in hydrated protein

systems from an MD simulation. A recently developed EE method that

is able to do this is EE-MCC. This uses the multiscale cell correlation

(MCC) method to evaluate entropy of all molecules in the system

using data from an equilibrium MD simulation,79–81 together with

energy provided in the usual way from the system Hamiltonian. MCC

arose from a multiscale synthesis of the entropy of single flexible mol-

ecules using covariance matrices to capture correlations within a mol-

ecule82 and the entropy of aqueous solutions using cell theory that

accounts for multimolecular entropy in a mean-field manner.83–86 The

system is represented as a collection of units of atoms at multiple

length scales, with nonbonded units treated in a mean-field fashion

and bonded units as correlated units. The multiscale treatment

enables scalability, fast-convergence and interpretability, which are all

desirable features for large systems. The size of the energy well for

each unit or collection of units are parameterized in the harmonic

approximation from forces, which have been found to have a strongly

Gaussian distribution,80,82,87 and the quantum harmonic oscillator pro-

vides an accurate way to account for entropy in high-frequency

bonded systems. Forces moreover are readily available in a MD simu-

lation and provide an efficient and accurate representation of the

average environment of a unit without having to explicitly refer to

positions of the surrounding atoms. This is in contrast to coordinate-

based methods which have to define coordinates with respect to

external units, which is problematic in continually changing liquid-

phase systems. Entropy is also included for the distribution of differ-

ent energy wells for each unit, relating to conformations, hydrogen-

bond arrangements, and so forth, which are defined using unit con-

tacts. EE-MCC has been used to calculate free energy changes in

chemical reactions,88 octanol–water partition coefficients,89 host–

guest binding,90 and protein–excipient stabilization.81 Here, we use

EE-MCC to provide a detailed analysis of the free energy of proteins

and their first-shell water molecules. We examine protein stability,

water stability, how they compare with hydrophobicity scales, how

they correlate with each other, and whether there is any dependence

on various structural features of the proteins.

2 | METHODS

2.1 | EE-MCC method

The Gibbs free energy G is calculated using the EE-MCC method via

the equation G¼H�TS, where H is enthalpy, S is entropy, and T is

temperature. We explain first the MCC method to calculate entropy

of a protein and of water, followed by the calculation of the enthalpy.
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2.2 | MCC protein entropy

In the MCC method, all coordinates are discretized into one or more

energy wells, leading to separate terms for the entropy over the different

energy wells, termed topographical entropy, and the average entropy

within the energy wells, termed vibrational entropy. Moreover, this dis-

cretization is done for collections of atoms, termed units, at multiple

length scales. For hydrated proteins, the entropy is a sum over the vibra-

tional entropy of units at the polymer (P), monomer (M), and united-atom

(UA) levels, and over the topographical entropy at the UA level of theory

in terms of sets of conformational states in each residue80 and summa-

rized here. Protein entropy is calculated using

Stotalprot ¼ StransvibP þSrovibP þStransvibM þSrovibM þStransvibUA þSrovibUA þStopoUA ð1Þ

where the vibrational entropy relates to the number of states within

each energy well and the topographical entropy to the distribution

over different energy wells. The polymer corresponds to the whole

protein, the monomer to each residue in the protein, and the UA to

each heavy atom and all its bonded hydrogens, such as hydroxyl

groups, methyl groups, carbonyl carbons and oxygens, and water mol-

ecules. The vibrational entropy comprises the translations and rota-

tions of a single or collection of correlated units, labeled as transvib

and rovib, respectively. The vibrational entropy component for each

unit or collection of correlated units is calculated from its vibrational

frequencies using the equation for a quantum harmonic oscillator

Svib ¼ kB
XNvip

i¼1

hvi=kBT

ehvi=kBT �1
� ln 1�e�hvi=kBT

� �� �
ð2Þ

where kB is Boltzmann's constant, h is Planck's constant, T is tempera-

ture, νi are vibrational frequencies, and Nvib is the number of vibra-

tional modes for each level. A level is defined as a set of smaller,

covalently bonded units: for the polymer level N¼1 corresponding to

the single protein in the simulation; at the monomer level N is the

number of residues in the protein; at the UA level N is the number of

UAs in a residue. Vibrational frequencies are calculated for the set of

N units from the eigenvalues (λi) of separate force and torque covari-

ance matrices using

νi ¼ 1
2π

ffiffiffiffiffiffiffiffi
λi
kBT

r
ð3Þ

These covariance matrices are constructed from the net forces

and torques on each unit derived from the atomic forces outputted

from the MD simulation. At each structural level, the matrix elements

⟨FiFj=
ffiffiffiffiffiffiffiffiffiffi
mimj

p
⟩ are mass-weighted forces for translations and inertia-

weighted torques ⟨τiτj=
ffiffiffiffiffi
IiIj

p
⟩ for rotations, which are both rotated into

the appropriate coordinate system, described below. The force covari-

ance matrices at each length scale have 3N eigenvalues, where N is

the number of units. At all but the highest polymer level, the six smal-

lest eigenvalues, which correspond to translation and rotation of the

collection of units, are removed to avoid double counting these same

degrees of freedom of the single unit they comprise at the higher

length scale. For torques, depending on the linearity of each constitu-

ent unit, the number of contributed eigenvalues is 3, 2, and 0 for non-

linear, linear, and point constituents, respectively. Concerning

coordinate systems, for the polymer, the x, y, z axes are taken as the

principal axes with the origin at the center of mass. For residue trans-

lations, the same polymer principal axes are used, and for residue rota-

tions a local frame is used: the origin is the average position of the

three backbone atoms, and the x, y, z directions of the residue-level

principal axes are defined as the N-C vector, the vector orthogonal to

the NCαC plane, and the vector orthogonal to both these vectors,

respectively. The UA translations use the same local residue axes, and

for UA rotation, a more localized frame is used with the origin at the

heavy atom and x, y, z axes defined by the average vector of covalent

bonds to hydrogens and two axes orthogonal to this.80

The last component of protein entropy in Equation (1) is the topo-

graphical entropy at the UA level StopoUA , also called the conformational

entropy. As done earlier,80 for each dihedral angle comprising four

heavy atoms in a residue, the probability distribution is discretized

into conformers. Conformers are assigned for each dihedral angle

according to the nearest peak in the distribution, where the distribu-

tion is constructed with a 30 ∘ bin width, which was found to have

sufficient resolution to resolve different conformers. The entropy is

calculated from the probability pi of each set of conformers over all

dihedrals in the residue using

StopoUA ¼�kB
XNconf

i¼1

pi lnpi ð4Þ

where Nconf is the number of unique sets.

2.3 | Water entropy

The entropy of water molecules is divided into vibrational and topo-

graphical components at just one structural level

StotalW ¼ StransvibW þSrovibW þSorW ð5Þ

The vibrational components, StransvibW and SrovibW , are calculated in

the same way as described earlier for protein vibrational entropy at

the polymer level because they both correspond to the translation

and rotation of a single molecule. The topographical entropy for water

here manifests as orientational entropy, SorW, described next.

SorW accounts for the probability of water molecules accepting and

donating hydrogen bonds (HBs) with neighbors and the directional

bias of these interactions.81 Neighbors are defined based on what sol-

vation shell they are in with respect to the protein surface. A sche-

matic example of neighbor definitions is shown in Supporting

Figure S1. The theory builds on previous work for the orientational

entropy of flexible liquids91 which assumed an isotropic distribution

of orientations and previous work on dilute solutions of hydrated
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ions.85 SorW is calculated as a weighted sum of the logarithm of the

effective number of orientations over all observed coordination

shells c

SorW ¼ kB
X
c

p cð Þ ln Neffπð Þ32p HBavð Þ=σ
h i

ð6Þ

where σ¼2 is the symmetry number of water and Neff is the effective

number of available neighbors that can be hydrogen-bonded to with-

out bias, and p HBavð Þ expresses the probability that neighboring mole-

cules are in the correct orientation for the molecule of interest to

form its HBs. In the homogeneous water case,91 p HBavð Þ¼0:25. More

generally, it is calculated as a weighted average of the probability of

forming HBs to each type of neighbor n

p HBavð Þ¼
P
n
p HBnð ÞNn

Nc
ð7Þ

where Nn is the number of neighbors of type n, Nc is the total number

of neighbors in the coordination shell such that Nc ¼
P

nNn, and

p HBnð Þ is the probability for a water molecule to donate or to accept

from a neighbor of type n, calculated as

p HBnð Þ¼ p Dnð Þ
p Dnð Þþp Anð Þ�

p Anð Þ
p Dnð Þþp Anð Þ ð8Þ

where p Dnð Þ and p Anð Þ are the probabilities of donating to or accept-

ing from a neighbor of type n, respectively. Thus p Dnð Þ¼NDn=
P

nNDn ,

where NDn is the number of donations to neighbor n and similarly

p Anð Þ¼NAn=
P

nNAn . The effective number of neighbors available to

form HBs to in Equation (6) takes into account how often the neigh-

bor is involved in a HB. It is calculated using

Neff ¼
X
n

p HBnð ÞNn

0:25
ð9Þ
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F IGURE 1 (A) Waters in the first coordination shell of lysozyme, colored by their closest residue united atom (continuously shaded from red
to green to blue to represent residue IDs in the protein sequence). (B) Water molecules grouped by (A) the closest residue (dashed purple line) in
its coordination shell (dashed orange circle) and (B) all residues pairs in the coordination shell. United atoms are marked by dashed gray circles.
(C,D) Two orientations of the lysozyme protein (white) and half the water, residue IDs colored as in part (A). Waters nearest to ions are colored
white
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where 0.25 is the ideal number for two HBs with 0.5 probability to

accept and donate. HBs are defined topologically84,85,92 between

a hydrogen and the most favorably interacting acceptor, namely

the acceptor for which qDqA=r
2 is most negative, where qD and qA

are the charges of the donor and acceptor atoms, respectively, and r

is the distance between them.

2.4 | Protein hydration shell

To calculate the free energy of hydrated proteins, we only consider

water molecules in the coordination shell of the protein as depicted

in Figure 1(A). Although longer-range effects may be present, caus-

ing water molecules to be perturbed beyond the protein

surface,68,93,94 they are weak and difficult to account for because

of statistical noise involving a large number of molecules. To ana-

lyze the different types of water molecules, we group them accord-

ing to the nearest non-water UA (Figure 1(B)), whether in the

protein or an ion, and the nearest residue, defined as the residue

that contains the nearest UA. This is similar to the so-called proxim-

ity criterion,95,96 which groups waters based on the distance to

their closest solute atom, as depicted in Figure 1(C,D). As well as

considering a hydration water's closest residue, we also consider its

nearest two residues when a second such residue exist. United-

atoms in a molecule are defined to lie in the coordination shell of

another UA if they are not blocked by a closer UA using the relative

angular distance (RAD) algorithm.

1

r2ij
>

1

r2ik
cosθjik ð10Þ

where rik and rij are distances of particle i from particles k and j,

respectively, θjik is the angle between k and j formed at i. The RAD

method is applied at the UA level, which is defined as a heavy atom

and its bonded hydrogen atoms, and the center point of a UA is at the

heavy atom. We also consider the stability of water according to pro-

tein secondary structure, grouping water molecules according to their

nearest secondary structure elements as defined by STRIDE.97

2.5 | Calculation and partition of the enthalpy

The enthalpy H of the whole system is directly accessible in an equi-

librium MD simulation as the ensemble average of the system Hamil-

tonian as specified by the force field plus a pressure-volume term PV.

The total PV term at ambient pressure is on the order of tens of

kJmol�1 but effectively the same on a per-water or per-residue basis,

on the order of 2 Jmol�1 for water and 10 Jmol�1 for residues, and

so is ignored in this analysis. Consequently, in this work, we use the

terms enthalpy and energy interchangeably. H can be partitioned into

atomic terms Ui which equals the sum of all energy terms in which

that atom participates, be it bonded or nonbonded, divided up equally

between contributing atoms. The enthalpy of any unit j, whether

polymer, monomer, or UA, is calculated as a sum over all constituent

atoms using

Hj ¼
XNj

i

KiþUið Þ ð11Þ

where Ki is the atom's kinetic energy and Nj is the number of atoms in

the unit.

2.6 | Simulation protocol

All systems are generated and minimized with Assisted Model Build-

ing and Energy Refinement (AMBER) 1898 and then subject to MD

simulations in Large-Scale Atomic/Molecular Massive Parallel Simula-

tor (LAMMPS),99 which we make use of because it outputs atom-

specific energies. Simulations are performed of each of the four pro-

teins lysozyme, α-chymotrypsin, α-lactalbumin, and ribonuclease

Sa. The protein structures are taken from the Protein Databank using

the IDs given in Table 1 which also lists the number of residues NR

and UAs NUA in each protein.100

Protonation states of titratable groups in the protein are set

appropriate to a pH of 7 using the PDB2PQR online server,101 with

the only nonstandard protonation of Asp88 in α-lactalbumin. For histi-

dine, the neutral HIE tautomers are used. The resulting net protein

charges Q are listed in Table 1. Each system is constructed in a cubic

box by solvating with water and either sufficient Na+ or Cl� ions using

Packmol to neutralize the system,102 with 20Å of water around each

protein. MD simulations of each of the 20 amino acids in water are

also run to examine their solvation and provide reference data to

compare with residues in the protein. Each simulation contains one

amino acid, which is acetyl-capped at the N-terminus and methyl-

amide-capped at the C-terminus, and 900 water molecules. Each

amino-acid system and box of 900 water molecules are run in tripli-

cate to provide an estimate of the errors involved. Each system is con-

structed in a cubic box by solvating with water out to 10 Å using

Packmol. The four proteins and the single capped amino acids are

modeled using the Amber FF14SB force field,103 TIP3P for water,104

and the Joung and Cheatham TIP3P parameters105 for the Na+ and

Cl� ions. System topology files are generated using AMBER 18 and

then minimized for 5000 steps using steepest descents. The files are

converted into LAMMPS formatted input files using InterMol.106

TABLE 1 PDB ID, net charge, and numbers of residues and united
atoms for the proteins

Protein PDB ID Q NR NUA

Lysozyme 2vb1 þ8 129 1001

α-Chymotrypsin 1yph þ3 241 1751

α-Lactalbumin 1f6r �6 123 993

Ribonuclease Sa 1rgg �7 96 746
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Using LAMMPS, temperature is slowly increased to 298K under con-

stant NVT (number volume temperature) for 0.2 ns followed by num-

ber pressure temperature (NPT) equilibration for 5 ns under NPT

conditions with a 1 fs time step. Production simulations are run for

50 ns under the same NPT conditions and a 2 fs time-step. Tempera-

ture and pressure are controlled using a Nose–Hoover thermostat and

barostat, respectively. Temperature is relaxed every 0.2 ps and pres-

sure is relaxed every 0.5 ps with an isotropic stress tensor across box

dimensions. Nonbonded interactions are cut off at 9 Å, and long-range

interactions beyond this distance are calculated with particle–particle

particle–mesh.107 The SHAKE algorithm is used to constrain all bonds

and angles to hydrogen atoms.108 The pe/atom and ke/atom flags in

LAMMPS are set to output trajectories of potential and kinetic ener-

gies per atom for molecular energy analysis. Force and coordinate tra-

jectories are outputted for the entropy analysis. Trajectories are saved

every 10 ps to give 5000 frames for analysis for each simulation run.

Previous work on proteins has shown that this sampling protocol is

sufficient to obtain converged entropies.80 Output files are read in

using the MDAnalysis python library.109 The energy and entropy of

water and protein energy are analyzed using an in-house python pro-

gram POSEIDON Beta V2.0 available at https://github.com/jkalayan/

PoseidonBeta. Protein entropy is analyzed using earlier software

CodeEntropy80 which is available at https://github.com/arghya90/

CodeEntropy. This requires converting the LAMMPS topology and

trajectory files to PSF and DCD formats using CPPTRAJ.110

2.7 | Analysis of structure–thermodynamics
correlations

To assess the trends in energy and entropy in the protein simulations,

several other quantities are calculated on a per-residue basis:

1. HR: Hydrophobicity of each type of amino acid ranked by the cal-

culated free energy of water molecules around amino-acid side

chains, where HR value increases with hydrophobicity.

2. RMSD: Average root-mean-square deviation of side-chain heavy-

atoms on each residue aligned and compared to the simulation

starting structure using CPPTRAJ.110

3. NWc: Average number of water molecules in the coordination shell

of the closest residue.

4. NRc: Average number of residue UAs in the coordination shell of a

residue.

Correlations between protein structural features and thermody-

namic properties of residues and water molecules are determined

using a covariance matrix with elements

cov X,Yð Þ¼ 1
N

XN

i¼1

Xi�X
� �

Yi�Y
� � ð12Þ

where for each value Xi in feature X containing a total of N values, the

deviation from the mean X is assessed simultaneously with the

deviation from the mean of values in feature Y. Each value is normal-

ized so that the mean is zero and standard deviation σ is one. This

gives matrix elements between 1 (fully correlated covariance) and �1

(fully anticorrelated covariance), where 0 is no correlation in the

covariance of two features.

3 | RESULTS

3.1 | Free energy of water around proteins

The free energy, energy, and entropy per water molecule for water in

the coordination shell of each protein and in bulk are shown in

Table 2, with superscript “vib” encapsulating both “transvib” and

“rovib” in Equation (1).

Per-water errors in enthalpy were calculated from their standard

deviations and found to be in the range 0.01–0.02 kJ mol�1. With errors

in entropy having been found elsewhere to be slightly smaller,88 this

means that the numbers shown are accurate to the precision used. The

total number of water molecules in the protein coordination shell NWcp in

Table 2 is all water molecules that have a residue UA in their coordi-

nation shell. Consistent with what has been seen elsewhere for

hydration,111–113 there is mild EE compensation across all proteins,

the highest entropy and enthalpy being for lysozyme and the lowest

for α-lactalbumin. This trend could be related to the charge of the pro-

teins, given that the entropy and energy per water molecule are lower

near the two negatively charged proteins, α-lactalbumin and ribonu-

clease Sa (net charges in Table 1). Moreover, both these proteins have

overall free energies that are slightly more stable, that is to say, more

negative, because negatively charged residues have fewer but stron-

ger HBs because of the local deficiency of donors. This is consistent

with the preferred solvation of anions over cations in water due to

water's asymmetric structure,85,114–116 making it is easier for a water

molecule to donate to two strong HBs with its well-spaced hydrogens

than it is to accept from two hydrogens via its single oxygen. The

trend in NWc reflects the size of the protein: the larger the protein, the

more first-shell water molecules there are around the protein. Note

that the values of H and S for bulk TIP3P are higher than the experi-

mental values of �34.1 kJmol�1 and 69.9 JKmol�1 as noted

elsewhere,117,118 with the orientational entropy in this work being

even higher and in better agreement with other methods118 compared

to the earlier value using the tetrahedral model.117

TABLE 2 Water entropy components, enthalpy, free energy, and
count in the protein coordination shell

SvibW SorW StotalW HW GW NWcp

(J K�1 mol�1) (kJ mol�1)

Lysozyme 67.2 6.8 74.0 �33:2 �55:3 464

α-Chymotrypsin 67.1 6.5 73.7 �33:3 �55:2 739

α-Lactalbumin 66.9 6.6 73.4 �33:5 �55:4 477

Ribonuclease Sa 67.2 6.4 73.5 �33:4 �55:4 396

Bulk water 68.1 10.7 78.8 �32:3 �55:8 -
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Water molecules around each of the four proteins are further

assessed in Figure 2 based on their closest residue. Again, the EE com-

pensation of water molecules is clearly present. Hypothetical energy

and entropy values required to give the bulk water free energy of

�55:8 kJ mol�1 are shown as a dashed line in Figure 2(A). Molecules

to the left of this line are stabilized and those to the right are destabi-

lized. We first note that there is much more variation in energy than

in entropy. Generally, water around negative residues are more stable

than bulk water, while water molecules around positive and polar resi-

dues are similarly stable or slightly less stable. These kinds of water

molecules show little dependence on the number of water molecules

in their shell, which relates to the degree of burial. Water around non-

polar residues are the most diverse and scattered in entropy and

energy because of the contribution of orientational entropy which

depends in a more multi-body fashion on the anisotropy and size of

the coordination shell, rather than solely on the strength of interac-

tions. Water molecules that have lower NWc are most likely more bur-

ied in the protein. They are typically near hydrophobic residues and

have a higher free energy. The burial effect may be examined in more

detail from the free energy, enthalpy, entropy, and entropy compo-

nents versus the number of surrounding protein UAs NUAc

(Supporting Figure S2). The two main trends are that orientational

entropy decreases strongly with the degree of burial, likely due to

asymmetry and confinement, and that the spreads of the other terms

increase for more buried waters, going from strongly bulk-like to

either higher or lower, again with the majority of waters less stable

than in bulk. The variation in nonpolar water free energy in Figure 2

(A) is different according to the proteins, with ribonuclease Sa having

(A) (B) (C)

F IGURE 2 (A) Energy versus entropy for water around each residue in each protein. Dashed lines correspond to hypothetical values of
enthalpy and entropy that give the free energy of bulk water (�55:8 kJ mol�1) and the black circle is the actual computed bulk-water value.
(B) Water free energy versus number of water molecules closest to a particular protein residue. Negative residues are red, positive residues are
blue, polar residues are purple, and nonpolar residues are green. Terminal residues are represented as open markers. (C) Superimposed protein
structures of 2500 frames from 50ns trajectories shown from the front and back (left and right). Each residue is colored by the free energy of
water molecules closest to that residue relative to bulk water (blue more stable and red less stable)
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less scatter than the other proteins. This appears to correlate with the

size of the protein, which also relates to the number of nonpolar and

buried residues, with α-chymotrypsin having the most and

ribonuclease-Sa the least. The location of each water around the flexi-

ble protein surface (Figure 2(C)) does not display any notable trends,

except that water molecules are seen to have higher free energy in

more buried regions, as noted earlier.

3.2 | Free energy of water contacting two protein
residues

To understand how the free energy of water is affected by being near

multiple residues, plotted in Figure 3(A) is the free energy of water mole-

cules that are in contact with the UAs of two or more residues for the

four proteins. This plot also reveals which residues are close enough to

interact with the same water molecule and whether the amino acids are

adjacent or distant in sequence, the latter being more likely in a binding

site. Equivalent plots in terms of enthalpy and entropy are provided in

Supporting Figure S3. The trends are found to be fairly similar to those

for the nearest single residues. For example, the active site of lysozyme119

(Glu35 and Asp52) is surrounded by more stable water molecules than

bulk, which is partly because of the negatively charged residues. Cation-

binding sites also generally display stabilized water. For α-lactalbumin,

some stabilized water molecules are found in calcium-binding sites, one

site being at residues Asp82, Asp87, and Asp88, and the backbone car-

bonyls of residues Lys79, Asp4, and Asp8, and the other site at Thr38,

Gln39, Asp83, and the backbone carbonyl of Leu81,120 with the water

molecules in the more exposed second binding site being more stabilized.

Some zinc-binding sites are also surrounded by stabilized water molecules

and again generally appear at more solvent-exposed regions. On the

other hand, water molecules in some nonpolar regions are destabilized

and would therefore be easier to displace by nonpolar molecules. The his-

tograms of GW values (Figure 3(B)) are similar for each protein, but

ribonuclease-Sa has a greater number of stabilized waters, consistent

with it having the most negative charge, as noted earlier.

3.3 | Free energy of water according to protein
secondary structure

Table 3 contains the values of TSW, HW, and GW around each type of

secondary structure averaged over all four proteins, together with the

number percentage of residues and water molecules associated with

each type.

It can be seen that GW has a ranking from most to least stable of

bridge, coil < extended, turn < 310 helix, α helix. Most of this trend is

governed by a less negative enthalpy that is slightly offset by a larger

entropy. Evidently, water appears to be less stable around the more

ordered helices and sheets and is more stable around the less ordered

lysozyme (2vb1) α-chymotrypsin (1yph)

α-lactalbumin (1f6r)

Residue ID

R
e
s
id
u
e
ID

ribonuclease Sa (1rgg)

(A) (B)

F IGURE 3 (A) Free energy GW of water in contact with pairs of protein residues colored in red for less stable and blue for more stable than
bulk water. (B) Normalized probability histograms of GW around each protein
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coils and isolated bridges. This is consistent with the finding else-

where using GIST58 whose authors rationalized the effect in terms of

hydrogen-bonding groups in the protein being less favorably placed in

more constrained environments such as helices and strands. It could

also reflect different amino-acid propensities in different types of sec-

ondary structure.

3.4 | Free energy of water around capped amino
acids

It is insightful to examine the free energy, energy, and entropy of

water molecules around single solvated amino acids as a point of

comparison with residues in the protein and to compare with a range

of widely used hydrophobicity scales for amino acids.121–126 These

values are illustrated in Figure 4(A), ordered from most stable to least

stable free energy, together with the water orientational, rovibra-

tional, and transvibrational entropy components. Water molecules

closest to capping groups or ions are not included in the analysis. The

water energy is most stable around the negative amino acids Asp and

Glu due to strong, polar interactions between negatively charged

side-chain oxygens and water-molecule hydrogen atoms. At the same

time, the orientational, rovibrational, and transvibrational entropy

components of water are smaller because of the associated stronger

forces and torques, partly offsetting the more negative energy. Such

EE compensation for water around solutes has been observed in

TABLE 3 Water entropy, enthalpy,
free energy, and residue and water
percentages for protein secondary
structure

Secondary TSW HW GW % Residues % Water

Structure (J K�1mol�1) (kJ mol�1)

Bridge 20.1 �34.0 �54.1 3 3

Coil 20.2 �33.9 �54.1 17 20

Extended 20.3 �33.5 �53.8 19 12

Turn 20.4 �33.4 �53.8 18 17

310 Helix 20.3 �32.9 �53.2 4 4

α Helix 20.4 �32.9 �53.3 18 17
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F IGURE 4 (A) Average free energy GW, enthalpy HW, and entropy SW per water molecule over all water molecules in the first shell of each
capped amino acid, ordered from most stable to least stable free energy, and entropy components of orientational SorW, rotational SrovibW , and
translational StransvibW (bottom left to right). Error bars show the standard deviation for each data point. (B) Structure of each amino acid with
capping groups grayed out, ordered from most to least stable hydration shell. (C) Water molecule free energy ordered from most stable/
hydrophilic (purple) to least stable/hydrophobic (green) around each amino acid side-chain calculated here (first column) versus hydrophobicity

scales from various other works121–126
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previous studies.111–113 These effects are present but not as strong

for water near positively charged Lys and Arg side chains. This trend

of progressively less negative free energy continues as amino acids

become more hydrophobic, driven more by energy, less by vibrational

entropy and with little dependence on orientational entropy. Only for

the most hydrophobic side-chains does orientational entropy

decrease again because of the anisotropic bias of hydrogen donation

toward water molecules and away from the hydrophobic solutes.

Interestingly, orientational entropy around Pro is most heavily

reduced, indicating that water molecules near Pro must have smaller

solvation shells, as shown by a low Neff Equation (9) for water around

Pro in Supporting Table S1.

Figure 4(C) makes clear that water free energies in the hydra-

tion shell of amino acids show similar trends to those of other

hydrophobicity scales, with similar groupings of hydrophobic amino

acids at one end and hydrophilic amino acids at the other. One

notable point of disagreement between scales is the ranking of Pro,

which is most hydrophobic here in agreement with Schauperl's

scale121 whereas most other scales rank it as more hydrophilic. As

noted earlier, this greater hydrophobicity of Pro arises from its low

orientational entropy because water molecules near Pro have fewer

hydrogen-bonded neighbors. Interestingly, Leu is ranked as more

hydrophilic than Ile, Val, and Ala, even though it is larger than Val

and Ala and the same composition as Ile. The dominant contribution

to the difference is the orientational entropy, which is markedly

higher for Leu and comparable to that of the more polar amino

acids, suggesting there are more hydrogen-bond groups near Leu

than for the other three aliphatic amino acids. Also, Met is ranked

more hydrophobic here than in most scales, again because of its

lower orientational entropy and water coordination number. These

effects arising from orientational entropy are subtle and non-

obvious but may be related to the number of hydrocarbon methyl

termini of the branched-chain amino acids which can fit better into

water's structure in a clathrate-like arrangement than bulkier

hydrocarbon chains or sulfur atoms of methionine which are more

disruptive.

3.5 | Protein free energy

A breakdown of the entropy, energy, and free energy for each protein

is presented in Table 4, including the entropy decomposition accord-

ing to polymer, residue and UA specified by Equation (1), with the res-

idue and UA terms divided by NR to give per-residue values.

Similar to before, per-residue errors in enthalpy were calculated

from their standard deviations and found to be in the range 0.01–

0.03 kJ mol�1, again indicating that the numbers given are accurate to

the precision used. Some strikingly large differences are seen for the

different proteins but it should be noted that these values depend on

the amino-acid composition of the protein. Lysozyme has the lowest

free energy per residue and α-chymotrypsin the highest, driven mostly

by energy but also by entropy. Ribonuclease Sa also has a lower

entropy than the other proteins matched by a lower enthalpy. Before

interpreting these values, it should be noted that there is a large range

of free energies of protein residues (265–638 kJ mol�1), as seen by

the entropy and enthalpy of single capped solvated amino acids listed

in Supporting Table S2. It can be seen that these values depend on a

combination of the polarity of the atoms and the size of the amino

acids. Evidently, the different kinds of amino acid in each protein

mean that absolute values are difficult to compare on the same scale,

a problem that does not occur for water molecules earlier, which are

all the same. Therefore, to better understand the components of the

protein free energies, the relative free energy of each protein residue

is analyzed by taking the free energy of the residue and subtracting

off the free energy of the corresponding single solvated capped amino

acid (Supporting Table S2), excluding the contributions from the cap-

ping groups. Terminal residues are not considered in this analysis due

to their different numbers of atoms and charges. This referencing is

not done for entropy at the protein or residue levels because we do

not have reference values for these. Average referenced values ΔSUA,

ΔHUA, and ΔGUA per residue obtained are listed in Table 5 It can be

seen that these referenced values in per-residue form are now much

more consistent across all proteins than the absolute values. More-

over, there is a strong enthalpy–entropy compensation in the stability,

with negative changes in both enthalpy and entropy bringing about a

marginal change in free energy, being stabilizing for lysozyme and

α-chymotrypsin, and neutral for α-lactalbumin and ribonuclease

Sa. The specific referenced values of TΔSR and enthalpy ΔHR of each

residue are illustrated in Figure 5(A). When considering relative values,

the dependence of relative free energy per residue with local environ-

ment is not as clear-cut as it was for water. The entropy of almost all

residues is smaller in proteins than for single capped amino acids, with

TΔSR values being lower in proteins by up to �15 kJmol�1 (Figure 5

(A)). This is expected due to the loss of conformational flexibility

brought about by restrained backbone atoms in the polymer but there

must also be other vibrational contributions. For energy, the stabiliza-

tion is much more variable between residues of the same type, vary-

ing by up to ±60 kJmol�1. Anionic residues tend to be less stable in

TABLE 4 Protein and residue
entropy components, and enthalpy and
free energy per residue for each protein

SvibP SvibR =NR SvibUA=NR StopoUA =NR Stotalprot =NR Htotal
prot =NR Gtotal

prot =NR

Protein (J K�1mol�1) (kJ mol�1)

Lysozyme 91.2 37.9 19.6 3.9 62.1 �71.4 �89.9

α-Chymotrypsin 87.0 40.9 20.0 4.0 65.3 �12.4 �31.9

α-Lactalbumin 86.2 37.7 20.7 5.6 64.7 �35.2 �54.5

Ribonuclease Sa 87.2 32.9 17.7 4.0 55.5 �52.6 �69.2
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proteins, cationic residues are more variable, and, polar and nonpolar

residues more often are stabilized but not always. This trend for nega-

tively charged residues is somewhat opposite to water molecules as

found earlier, which are stabilized near negative residues. When ΔGR

is mapped onto the 3D protein structures in Figure 5(B), there are no

obvious trends, with increases or decreases seemingly randomly

spread over the protein surface.

3.6 | Correlations between free energy of bonded
residues

To understand what might affect residue free energies, the average rela-

tive free energy for each residue type in all four proteins is assessed

based on what residue types are bonded to it on its C- and N-terminal

sides and plotted in Figure 6. Residues that are more stable than their

single solvated amino acid equivalent are shown in blue and less stable

residues are shown in red. Further decomposition of energy and entropy

is shown in Supporting Figure S4. The trends overall are fairly weak.

Most residues are destabilized compared to their single capped refer-

ence states, as noted earlier. As might be expected, cystines are more

stable regardless of what they are bonded to due to covalent disulfide

TABLE 5 Referenced per-residue entropy, enthalpy, and free
energy for each protein

TΔSUA=NR ΔHtotal
prot =NR ΔGtotal

prot =NR

Protein (JK�1 mol�1) (kJmol�1)

Lysozyme �6.4 �8.0 �1.6

α-Chymotrypsin �5.3 �6.5 �1.2

α-Lactalbumin �6.3 �6.3 0.0

Ribonuclease Sa �6.2 �6.1 0.1

more stable ΔTS
R

less stable ΔTS
R

less
stable ΔH

R

more
stable ΔH

R

(A) (B)
more stable ΔTS

RR

less stable ΔTS
R

less
stable ΔH

R

more
stable ΔH

R

(A) (B)

F IGURE 5 (A) Relative entropy TΔSR and energy ΔHR of residues versus that of single solvated capped amino acids. (B) Per-residue change in
free energy ΔGR relative to single solvated capped amino acids mapped onto aligned structures from 2500 simulation frames
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bonds. Pro, on the other hand, is generally stabilized regardless of the

identity of the bonded residues, but if a Pro is on the C-side of a residue,

then it destabilizes that residue. Surprisingly, most residues are stabilized

when a positive residue, Arg or Lys, is on the N-terminal side (n�1) but

destabilized if on the C-terminal side (nþ1Þ. For negatively charged

Asp and Glu, there is a weaker but reverse trend. The reason for this

is not clear but it is likely related to a stabilizing or destabilizing inter-

action between these charged residues and the backbone amide

hydrogen or carbonyl oxygen.

3.7 | Correlations between water and protein free
energy

Having examined the free energies of water and protein separately,

we finally look for correlations between the free energy values of pro-

tein and water. In Figure 7, covariance matrices are presented

between free energy, energy, and entropy components together with

RMSD, HR, NWc, and NRc (defined in Section 2.7) for hydrophobic and

hydrophilic residues separately. As might be expected, residue
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Residue n−1 Residue n+1

F IGURE 6 Average relative free
energy ΔGR per residue n over all four
proteins when bonded to residue n�1 at
the N-terminal side (left) and residue nþ1
at the C-terminal side (right) of residue n.
The number of times a residue pair occurs
scales with the size of the dot

(A) (B)Hydrophilic Residues Hydrophobic Residues

F IGURE 7 Covariance matrices for thermodynamic and structural properties of (A) hydrophilic residues, namely D, E, R, K, S, N, Q, T, and H
and (B) hydrophobic residues, namely G, Y, W, C, L, F, A, V, I, M, and P. Darker shades imply larger correlations
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conformational entropy ΔTStopoR is anticorrelated with the number of

residue–residue contacts NRc, more so for hydrophobic residues,

because of greater restriction when buried. This effect is also evident

in residues with a higher hydrophobic rank HR being more anticorre-

lated with ΔTSvibR because hydrophobic residues are more likely to be

buried and so have a lower vibrational entropy due to greater confine-

ment. To further investigate correlations between protein and water

quantities, Supporting Figure S5 plots each of GW, NWc, NRc, or RMSD

versus ΔGR for the corresponding residue of each protein. No obvious

trends are seen, apart from hydrophobic residues having surrounding

water that is less stable, as has already been noted. Evidently, stability

is likely a multi-body phenomenon that is not easily attributable to the

stability of neighboring groups of atoms.

3.8 | Discussion

Computationally quantifying the thermodynamic properties of pro-

teins in solution is a useful way to understand their behavior in terms

of all their constituent parts. Particularly for large, complex systems, it

is important to both quantify and decompose free energy in order to

go beyond qualitative descriptions such as hydrophobic and hydro-

philic to comprehensively understand what atoms and interactions

contribute to phenomena such as protein folding, allostery, binding, or

catalysis. Having a single consistent framework that addresses all sys-

tem degrees of freedom that is free from parameters and operates at

multiple length scales helps enable a general method for the thermo-

dynamic analysis of such systems. Nevertheless, approximations are

still necessary to make EE-MCC have these properties, such as the

choice of a specific hierarchy of structures, the use of the harmonic

approximation, which correlations within or between molecules to

include, and a number of other issues. The orientational entropy of

each protein is not considered here but could be calculated based on

its size or coordination number as has been done elsewhere.79,88,91,127

This analysis only considers correlations between conformers within

a residue and neglects those between residues, which are expected to

be small, but should be considered in future work. Another omitted

entropy term, the topographical entropy at the residue level, is

assumed to be small for stable, relatively rigid proteins as those stud-

ied here, but would be larger for systems such as unfolded or intrinsi-

cally disordered proteins. The positional entropy arising from mixing

with any counterions is not considered here, although in a first

approximation one could use the ideal entropy of a mixture. The con-

tributions of water molecules beyond the first shell of the protein

have also been ignored because of their near-bulk-like properties and

to reduce statistical noise. Other studies of hydrated proteins suggest

that water contributions to entropy could be included out to 10 Å.68

Examining the free energy of water molecules on a per-residue

basis over an ensemble shows the expected trend for the stability of

water molecules, being greater adjacent to hydrophilic residues than

for hydrophobic residues, as has been reported else-

where.47,52,58,60,63,70,77 Stability is further found to depend on the

degree of burial of the water. Fewer water neighbors of a water

molecule mostly means lower stability because of its diminished abil-

ity to form stabilizing HBs to the surrounding atoms in the more

hydrophobic and asymmetric environment that biases orientations

and lowers orientational entropy. A third factor affecting stability is

having neighboring, negatively charged residues. A larger number of

negative residues have previously been found to be suggestive of

improved protein solubility.128,129 A fourth factor is secondary struc-

ture, with helices and strands being surrounded by less stable water.

Probing water molecules is typically the main way to find destabi-

lized regions on a protein to which other molecules might bind. Pro-

tein free energy on a per-residue basis provides a further contribution

to understand this process. The thermodynamics of proteins are more

difficult to quantify due to their large size, flexible nature, and corre-

lated motions. The multiscale formulation employed here with three

levels of hierarchy, polymer, monomer, and UA length scales, enables

protein and water entropy to be better understood in terms of multi-

ple correlating units. We do not observe any significant correlations

between protein free energy and surrounding water molecules. This

may simply reflect the expectation that the free energy of protein res-

idues is dominated by their surrounding residues, whether bonded or

nonbonded, because of the strong covalent interactions for the

bonded ones and close-packing of the others, whereas the free

energy of water is governed by the atoms that their neighboring resi-

dues present to them. However, using single-amino acid reference

states, we are able to detect intriguing stabilization for lysozyme and

α-chymotrypsin not seen for α-lactalbumin and ribonuclease Sa.

Despite this lack of correlation, we do make some intriguing find-

ings. By assessing each residue based on what is bonded to its N- and

C-terminal sides, greater residue stabilization is found when a cationic

residue is bonded to the N-side, compared to destabilization when

the cationic residue is on the C-side. The opposite trend is observed,

albeit slightly weaker, for anionic residues. These asymmetric distribu-

tions of free energy changes may be due to how charged residues

interact with atoms on the protein backbone. We hypothesize that

cationic residues interact more favorably with the backbone carbonyl

group on the next residue in the sequence. Conversely, anionic resi-

dues interact more favorably with the backbone amide group on the

previous residue in the sequence. These asymmetric side-chain back-

bone interactions may cause a strain in the backbone on the opposite

side of the direction in which the interaction takes place, resulting in

instability. Further analysis of UA interactions between residues may

highlight these side-chain backbone interactions. A similar asymmetric

observation has been shown in other work of QM calculations that

the αC–C0 backbone bond length is reduced when an anionic residue

is in the nþ1 position due to higher electron density, whereas a basic

residue in the same position reduces the bond length.130

3.9 | Conclusion

We present an EE method to calculate the free energy, energy, and

entropy of a hydrated protein from MD simulations and apply it to

individual hydrated amino acids and to four globular proteins, namely
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lysozyme, α-chymotrypsin, α-lactalbumin, and ribonuclease

Sa. Entropy and energy are calculated for sets of atoms over a hierar-

chy of length scales from UAs to residues to whole molecules. The

decomposition of free energy of water molecules based on their

neighboring residues gives detailed information about how protein

interactions influence neighboring water molecules. Free energy

decomposition also allows for the study of the interplay between the

stability of water and their neighboring residues. Strong correlations

were not observed between water and residue stability, although we

did detect stabilization of water next to anionic residues relative to

cationic residues and of water next to loops relative to that near heli-

ces and strands. Another intriguing finding was the discovery of an

asymmetry in the stability of residues depending on whether charged

residues were on their N or C-terminal sides. EE-MCC with its insight-

ful decomposition of free energy over groups of atoms, its hierarchy

of length scales, and its single consistent formulation over all atoms in

the system, should be readily scalable to larger and more flexible sys-

tems, such as protein–ligand complexes, protein assemblies, and

intrinsically disordered proteins, as well as many other kinds of molec-

ular systems.
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