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Abstract  

Objectives: Accurate segmentation of the lung nodule in CT images is a critical component of a 

computer-assisted lung cancer detection/diagnosis system. However, lung nodule segmentation is a 

challenging task due to the heterogeneity of nodules. This study is to develop a hybrid deep learning 

(H-DL) model for the segmentation of lung nodules with a wide variety of sizes, shapes, margins, and 

opacities. 

Materials and methods:  A data set collected from LIDC-IDRI containing 847 cases with lung 

nodules manually annotated by at least two radiologists with nodule diameter greater than 

7 mm and less than 45 mm was randomly split into 683 training/validation and 164 

independent test cases. The 50% consensus consolidation of radiologists' annotation was 

used as the reference standard for each nodule. We designed a new H-DL model combining 

two deep convolutional neural networks (DCNN) with different structures as the encoders 

to increase the learning capabilities for segmentation of complex lung nodules. Leveraging 

the basic symmetric U-shape architecture of a U-Net, we redesigned two new U-shape deep 

learning (U-DL) models that were expanded to 6 levels of convolutional layers. One U-DL 

model used a shallow DCNN structure containing 16 convolutional layers adapted from the 

VGG-19 as the encoder and the other used a deep DCNN structure containing 200 layers 

adapted from DenseNet-201 as the encoder, while the same decoder with only one 

convolutional layer at each level was used in both U-DL models, and we referred to them as 

the Shallow and Deep U-DL model, respectively. Finally, an ensemble layer was used to 

combine the two U-DL models into the H-DL model. We compared the effectiveness of the 

H-DL, the Shallow U-DL and the Deep U-DL models by deploying them separately to the test 
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set. The accuracy of volume segmentation for each nodule was evaluated by the 3D DICE 

coefficient and Jaccard index (JI) relative to the reference standard. For comparison, we 

calculated the median and minimum of the 3D DICE and JI over the individual radiologists 

who segmented each nodule, referred to as M-DICE, min-DICE, M-JI, and min-JI, 

respectively. 

 

Results: For the 164 test cases with 327 nodules, our H-DL model achieved an average 3D DICE 

coefficient of 0.750±0.135 and the average JI of 0.617±0.159. The radiologists' average M-DICE was 

0.778±0.102 and the average M-JI was 0.651±0.127, both were significantly higher than those 

achieved by the H-DL model (P < 0.05). The radiologists' average min-DICE (0.685±0.139) and the 

average min-JI (0.537±0.153) were significantly lower than those achieved by the H-DL model 

(P<0.05).  The results indicated the H-DL model approached the average performance of radiologists 

and was superior to the radiologist whose manual segmentation had the min-DICE and min-JI. 

Moreover, the average DICE and average JI achieved by the H-DL model were significantly higher 

than those by the individual Shallow U-DL model (DICE of 0.745 ± 0.139, JI of 0.611 ± 0.161) (P < 

0.05) or the individual Deep U-DL model alone (DICE of 0.739±0.145, JI of 0.604±0.163) (P < 0.05). 

 

Conclusion: Our newly developed H-DL model outperformed the individual shallow or deep U-DL 

models. The hybrid deep learning method combining multi-level features learned by both the 

shallow and deep DCNNs could achieve segmentation accuracy comparable to radiologists' 

segmentation for nodules with wide ranges of image characteristics. 

 



 

 

 

 

This article is protected by copyright. All rights reserved. 

 

Keywords: Computer-aided diagnosis, lung nodule, Deep learning, nodule segmentation 

 

INTRODUCTION  

Lung cancer is one of the most common cancers and the leading cause of cancer-related 

death in men and women in the United States. According to the American Cancer Society, 

about 13% of all new cancers are lung cancers, with about 235,760 new cases (119,100 in 

men and 116,660 in women) and about 131,880 deaths from lung cancer (69,410 in men 

and 62,470 in women) in 2021.1 The overall prognosis of lung cancer is poor, with the 5-year 

survival rate of only 21%.  

 

Computed tomography (CT) has become a preferred method for detecting and diagnosing 

lung cancer. Accurate segmentation of the lung nodule in CT images not only provides an 

objective measurement of nodule size for clinical surveillance of nodule growth2 but also 

constitutes a critical component for the development of a computer-assisted lung cancer 

detection/diagnosis system.  

 

Despite the development of computerized methods over the years, lung nodule 

segmentation remains a difficult task because of the wide range of heterogeneity in lung 

nodule characteristics such as shape, size, and attenuation. The complexity of lung 

parenchyma surrounding the nodules further poses a challenge in developing robust 
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segmentation models3. As the examples shown in Fig.1, it is challenging to segment the 

nodules with heterogeneous intensity distribution characterized by a wide range of varied x-

ray attenuation distributed within the nodules containing solid, sub-solid, non-solid ground 

glass opacity (GGO) or mixed components, the nodules with “irregular shapes” categorized 

as irregular or spiculated margins, and the juxtapleural or juxtavascular nodules attached to 

the chest wall, pleural surface or pulmonary vessels. 

Conventional methods for automated lung nodule segmentation in CT images4,5 commonly 

consist of two steps: the detection of nodule locations and then the segmentation of the 

detected nodules from the surrounding lung parenchyma6. The features characterizing 

nodule intensity, textures, and morphologies are usually extracted to differentiate nodules 

from other lung structures during nodule detection. Then these features are used to 

segment the nodules by various methods such as intensity-based methods with 

morphological operations7,8, region growing methods9,  optimization methods with level 

set10, graph cut11, or reinforcement-learning techniques12. In an early study13, we used 3D 

active contours guided by gradient and curvature energies for segmentation and extracted 

morphological and texture features to classify malignant and benign lung nodules.  In our 

recent study14, we developed a 3D adaptive multi-component EM analysis (3D-AMEA) 

method to segment the nodule volume including the solid and non-solid GGO components 

and the surrounding lung parenchyma region. Radiomic features were then extracted to 

characterize the CT attenuation distribution patterns of the nodule components. Our results 

demonstrated the feasibility of classifying pathologic invasive nodules, pre-invasive nodules, 

or benign nodules using the proposed method. Although a wide variety of methods have 
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been developed, the accuracy and robustness of the segmentation have yet to be further 

improved, especially for nodules with irregular shapes and heterogeneous intensity 

distribution within the nodules (e.g., partially solid and non-solid GGO nodules)8. 

 

Supervised deep learning methods are emerging technologies increasingly used in medical 

image analysis, shifting from the classical methods trained with handcrafted features to the 

training of deep learning models in which the features are learned automatically without 

manual extraction and selection. Deep convolutional neural network (DCNN) based deep 

learning methods have been used for learning discriminative features from the training data 

in various machine learning applications from image analysis to natural language processing. 

The DCNN models, such as VGG15,16, DenseNet17, Fast-CNN18, and some much deeper CNNs 

have been successfully employed for a wide variety of tasks. The Mask R-CNN19 represents 

one of the state-of-the-art DCNNs that use a Region Proposal Network (RPN) followed by a 

Region-based CNN and a semantic segmentation model to simultaneously perform the tasks 

of detection and segmentation. Different network structures have been developed 

specifically for the many types of lesions or organs to be segmented in various medical 

imaging modalities. The U-Net20 model supplements the deeply supervised encoder sub-

network by a decoder sub-network through simple skip connections that allow the network 

to propagate context information to higher resolution layers. The iW-Net21 was composed 

of two U-Nets; the first performed automatic segmentation, while the second U-Net 

allowed user correction by marking 2 points along the nodule boundary to refine the 

segmentation result of the first U-Net. The PN-SAMP22 first segmented a nodule using U-Net 

https://www.sciencedirect.com/topics/engineering/natural-language-processing
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and then used the feature maps from the encoder and the segmentation output from the 

decoder as inputs to a CNN to predict the malignancy of the nodule. However, these 

previous methods relied on user interaction to refine the segmentation such as iW-Net or 

were trained for specific types of nodules such as PN-SAMP.  Continued effort is needed to 

develop new architectures to take advantage of the DCNN-based approach for the 

segmentation of heterogeneous lung nodule volumes. 

 

The key feature of the current U-Net architecture and its variants for image segmentation is 

the use of two DCNN networks with a similar structure as the encoder and decoder for pixel-

wise image segmentation. However, there are still many significant challenges in advancing 

U-Net segmentation approaches, including improving the learning capability of the encoder 

to discover enough useful hidden image patterns with large variations23,24 so as to 

characterize the differences between lung cancer and lung parenchyma, and the better 

understanding of the intricate relationships between a large number of interdependent 

variables25, especially for segmentation of complex objects in medical images, such as the 

highly heterogeneous lung nodules. Increasing the depth of a DCNN to generate deeper and 

diverse representations enables the network to progressively explore different levels of 

features with different sizes of the receptive field as it sequentially goes through each layer 

is a popular method in the previous years. However, an excessively deep network can result 

in saturation and cause degradation of performance17, and a relatively small training set 

such as our lung cancer dataset is more prone to such risks. 
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Another approach to increasing the learning ability of a DCNN network is to combine 

multiple convolutional sequences that may better characterize complex image patterns. The 

convolutional sequences have different structures, depths, and receptive fields that may 

allow them to independently capture different features and focus on different kinds and 

levels of patterns. When these convolutional sequences were hybridized together, they can 

learn more complex patterns or capture a larger combination of patterns. 

 

Following the second approach, in this study, we designed a new hybrid deep learning (H-

DL) model for the segmentation of lung nodules of a wide range of heterogeneous 

characteristics. Compared with the conventional U-Net related methods, our H-DL model 

was an ensemble of two U-shaped architectures (U-DL), one had a shallow DCNN as encoder 

and the other had a deep DCNN as encoder with a different network structure, to increase 

the learning capability so that different levels of features can be explored to characterize 

the highly heterogeneous lung nodules in CT images. Moreover, unlike the simple long skip 

connections utilized in the conventional U-Net, we adapted a series of nested and dense 

skip structures25 to provide alternative pathways to connect the encoder and the decoder in 

each U-DL network. These skip structures further alleviate the vanishing gradient problem 

that saturates gradient backpropagation in deeper networks. After a large number of 

patterns were captured independently by these two networks, an ensemble layer was used 

to hybridize the two different U-DL networks to the H-DL model to get the larger 

combinations of patterns. To increase the efficiency of our H-DL model, we used an 

asymmetric encoder and decoder path structure in which the same decoder with only one 
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convolutional layer at each level was used for both the shallow and deep U-DL models. The 

simplified decoder could not only reduce computational and memory costs but also provide 

flexibility to further expand the H-DL model by adding more DCNNs with different structures 

as encoders if needed. 

 

To evaluate the effectiveness of our H-DL model in segmenting heterogeneous lung nodules, 

we deployed the H-DL and the individual U-DL models separately to an independent test set 

with a wide range of characteristics manifested in CT images and demonstrated the 

increased learning capability resulting from the ensemble of two different feature extraction 

(encoding) networks. We also compared with other methods reported in the literature for 

lung nodule segmentation. To evaluate the generalizability and robustness of our H-DL 

model, we deployed our H-DL model with the trained weights frozen to the test set of an 

offline challenge, the Sub-Challenge B (Nodule Segmentation) of the LNDb challenge26, and 

demonstrated that our H-DL model can be directly deployed to an “external” data set and 

achieve high accuracies in lung nodule segmentation.  

 

This paper is organized as follows. Section 2 introduces our H-DL model and the dataset 

used. Section 3 presents the results of our method. Section 4 provides the discussion and 

Section 5 concludes the paper.
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Materials and methods 

Dataset  

From 1,010 patient cases publicly available through the Lung Image Database Consortium 

image collection (LIDC-IDRI) with manually annotated lung nodules27, a data set of 847 cases 5 

containing the lung nodules marked by at least two radiologists with nodule diameter 

greater than or equal to 7 mm and less than 45 mm were selected in our study. The CT 

images were acquired with different CT scanners manufactured by GE, Philips, Siemens, and 

Toshiba. The tube current ranged from 40 to 627 mA (mean: 221.1 mA), the tube peak 

potential energies ranged from 120 kV to 140 kV, the slice thickness ranged from 0.6 mm to 10 

5.0 mm with reconstruction interval from 0.45 mm to 5.0 mm, and the pixel size in the axial 

plane varied from 0.46 mm to 0.98 mm. We used 683 cases with 2,558 nodules for training 

and validation and the remaining 164 cases with 327 nodules for independent testing. 

 

In the LIDC dataset, the lung nodules were marked and manually segmented by at least two 15 

radiologists. The LIDC radiologists also subjectively assessed the nodule characteristics by 

descriptors and providing ratings on a scale from 1 to 5 for each marked nodule including 

subtlety, spiculated margin, solid opacity, lobulated shape, and the likelihood of malignancy 

(e.g., nodule subtlety, 1 = extremely subtle, 5 = obvious). The typically used 50% consensus 

consolidation27 of radiologists' annotations for each nodule was calculated by the LIDC 20 
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suggested python package "pylidc" and used as the reference standard for training and 

testing. That is, a voxel was labeled as within the nodule when at least 50% of radiologists' 

segmentation included that voxel. Fig. 2 shows examples of radiologists' variabilities in 

manual outlining of nodules of various sizes, shapes, and locations. The dashed contours 

with different colors (left) are the outlines by four different radiologists, and the red contour 25 

enclosed nodule (right) is the 50% consensus consolidation of radiologists' annotations for 

that nodule.  

 

In general, lung nodules with smooth shapes and obvious margins resulted in more similar 

outlines by the radiologists as the boundaries were clearly recognizable. In contrast, lung 30 

nodules with irregular shapes and fuzzy margins caused higher variabilities because their 

boundaries were difficult to be clearly identified.

 

U-Net based deep learning (U-DL) model for Lung nodule segmentation 

The U-Net neural network architecture20 was initially developed for biomedical image 35 

segmentation and has been widely used in medical image analysis. Despite the outstanding 

overall performance, some studies suggested that the conventional U-Net architecture still 

has room for improvement due to its simple series of convolutional layers28,29 , plain 

probable sematic gap25,29, and relatively shallow network structures30. Based on these 

previous observations we made the following targeted innovation. Leveraging the basic U-40 

shaped architecture of the encoder and decoder paths in a conventional U-Net, we 

redesigned the DCNN architectures of the encoder and decoder in two separate U-shape 
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networks and combined them to a hybrid deep learning (H-DL) model to improve the 

learning capabilities for segmentation of complex lung nodules that have large variations in 

the structural and attenuation characteristics. Each of the U-DL networks consisted of a 45 

contracting (encoder) and an expanding (decoder) path (Fig. 3a,b). Compare with the 

original U-Net that contained five levels of the same number of 9 convolutional layers, we 

expanded each of the U-DL networks to six levels in both paths. In one U-DL network, we 

used a relatively shallow DCNN structure containing 16 convolutional layers adapted from 

VGG-19 (the 3 fully connected layers in VGG-19 was not used).  In the other U-DL network, 50 

we used a deep DCNN structure containing 200 layers adapted from DenseNet-201 (196 

convolutional layers and 4 transitional layers in 5 dense blocks, while dropping the one fully 

connected layer in DenseNet-201). We referred to our two U-shaped DCNN backbone 

networks as Shallow U-DL (Fig. 3a) and Deep U-DL (Fig. 3b) model, respectively.  

 55 

We also redesigned the decoder in the expanding path of the conventional U-Net. In our U-

DL models, the expanding path consisted of only one convolutional layer at each level that 

was much fewer than those in the contracting path and was not symmetric to the 

contracting path. The simplified decoder can not only reduce computational and memory 

costs but also provide flexibility that allows further expanding the H-DL model by adding 60 

more DCNNs as encoders. Both the encoding and decoding paths used 3 x 3 padded 

convolution followed by a rectified linear unit (ReLU). A 2 x 2 max pooling operation with 

stride two was used for feature map downsampling in the contracting path. We 

experimentally chose the transpose convolution (inverse convolution) operations for the 
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upsampling operation in the expanding path by comparing it to the interpolation (nearest 65 

neighbor or bilinear).  

 

In a conventional U-Net model, the supervised encoder and decoder sub-networks were 

connected through simple long skip connections, allowing the network to propagate 

contextual information to higher resolution layers. As we utilized deeper encoder network 70 

structures in our U-DL models, to further alleviate the vanishing gradient problem that 

saturates gradient backpropagation in deeper networks, we modified our U-DL models by 

adding a series of nested and dense skip structures to provide alternative pathways to 

connect the encoder and the decoder, as shown in Fig. 3. This skipping scheme was derived 

and modified from the U-Net++25, a U-Net variant, that has the advantage of reducing the 75 

semantic gap between the feature maps of the encoder and the decoder. 

 

In our hybrid model, the two U-DL models were separately trained with the training set and 

then the probabilities predicted by the two U-DL models were combined into the H-DL 

model through an ensemble layer to maximize the probabilities of the pixels belonging to a 80 

nodule as shown in Fig. 4. The ensemble layer concatenated the vectors output from the 

two U-DL models, followed by a 3 x 3 convolutional layer with the sigmoid activation 

function and output the multi-component vectors to a likelihood map indicating pixelwise 

the chance that a pixel being inside the lung nodule. A threshold of 0.5 likelihood value was 
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determined during the training process to segment the likelihood map to a binary image 85 

that labeled the interior and exterior regions of the nodule.

Data preparation 

The Hounsfield Unit (HU) is commonly used in CT scans that measure the radiodensity to 

characterize the tissue property. As the 12- or 16-bit CT data read directly from the LIDC 

DICOM file is not the HU value, we first converted the data read from the DICOM file to the 

HU values by multiplying the pixel values with the rescaling slope and adding the intercept 

which is stored in the metadata of the DICOM header. The CT scans were originally acquired 

with a slice interval ranging from 0.45 mm to 5.0 mm and a pixel size in the axial plane 

varying from 0.46 mm to 0.98 mm. We resampled all CT scans to isotropic volumes with a 

voxel size of 0.5 mm x 0.5 mm x 0.5 mm using the 3D spline interpolation method. For each 

reference standard nodule marked by radiologists, a volume of interest (VOI) of 64 x 64 x 64 

pixels in size centered at the center of the nodule was cropped. For each VOI, the voxel 

values were scaled as follow: 

𝑓′(𝑥, 𝑦, 𝑧) =
𝑓(𝑥, 𝑦, 𝑧) − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
#(1.)  

where 𝑓(𝑥, 𝑦, 𝑧) was the voxel value at (𝑥, 𝑦, 𝑧) Min and Max were the minimum and 

maximum voxel values within the VOI, respectively. 
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Training of H-DL models 

Our H-DL models were trained with the set of 683 LIDC cases containing 2,558 nodules 

marked by at least two radiologists. This data set was separated randomly by case with a 

ratio of 9:1 as the training set and the validation set during the training process. For each 64 

x 64 x 64-pixel VOI, three 64 x 64-pixel 2D patches in the axial plane, with the central patch 

centered at the nodule center, were sampled with a 1.5 mm interval and treated as three 

different training samples. With an image patch as input, the H-DL model output the 

likelihood map, which indicates pixels the chance that a pixel being inside the nodule, in the 

same size as the input image patch (64 x 64 pixels). 

 

Our H-DL model was trained with a mini-batch training for stochastic optimization and the 

Adam optimizer31. The DICE coefficient (DSC) combined with the binary cross-entropy was 

used as the loss function during training. A mini-batch size of 64 randomly divided from the 

training set was used in each training epoch. A normal distribution with a mean of 0 and a 

standard deviation of 0.02 was used to initialize the networks' weights. The learning rate 

was initially set to 0.001 as a compromised balance of slow progress (with lower learning 

rate) and undesirable divergences (with a larger learning rate) in the loss function and 

decreased by ten times when the loss did not continuously decrease on the validation set 

after ten consecutive epochs. The early stop strategy was used when the loss on the 

validation set did not decrease over 30 consecutive epochs.  
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Performance evaluation  

The performances of our trained models in lung nodule segmentation were evaluated by 

comparing the segmentation results to the reference standard, defined as the 50% 

consensus consolidation of radiologists' annotations. Different from using only three image 

patches sampled from each VOI to train the models, the trained model was deployed to the 

entire 64 x 64 x 64 VOI slice by slice.  For performance evaluation, the 3D Dice similarity 

coefficient (DICE) and Jaccard index (JI) applied to the 64 slices in each VOI were calculated 

as quantitative performance measures: 

𝐷𝐼𝐶𝐸 =
2(𝑂𝑏𝑗 ∩ 𝑅𝑒𝑓)

𝑂𝑏𝑗 + 𝑅𝑒𝑓
#(2.)  

𝐽𝐼 =
𝑂𝑏𝑗 ∩ 𝑅𝑒𝑓

𝑂𝑏𝑗 ∪ 𝑅𝑒𝑓
#(3)  

where Obj was the segmented volume, Ref was the reference standard.  

For comparison, we also calculated the 3D DICE coefficient and JI for each LIDC radiologist 

relative to the reference standard. Since the nodules were segmented by a different number 

of radiologists (N >= 2) in the LIDC data set, we calculated the median (M) and minimum 

(min) of the 3D DICE and JI over all radiologists who segmented a given nodule, referred to 

as M-DICE, min-DICE, M-JI, and min-JI, respectively. The averages of the above quantitative 

measures over the entire test set of nodules were compared with the average 3D DICE 

coefficient and JI of the two U-DL models and the combined H-DL model. The two-tailed 

paired t-test was used to compare the differences between our models and the radiologists' 

manual segmentations. 
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 RESULTS 

LIDC independent test set  

Table 1 summarizes the results of our H-DL model, Shallow U-DL and Deep U-DL models, and 

radiologists' performance. Fig. 5 shows the box and whisker plots of the distributions of the 3D DICE 

coefficients for the nodule segmentation. 

 

For 164 test cases with 327 nodules, our H-DL model achieved an average 3D DICE coefficient of 

0.750±0.135 and an average JI of 0.617±0.159. The radiologists' average M-DICE was 0.778±0.102 

and the average M-JI was 0.651±0.127; both were significantly higher than those achieved by the H-

DL model (P < 0.05). On the other hand, both the average min-DICE (0.685±0.139) and the average 

min-JI (0.537±0.153) were significantly lower than the corresponding average DICE and average JI 

achieved by the H-DL model. The results indicated that the automated segmentation by the H-DL 

model approached the average performance of radiologists and was superior to the radiologist 

whose manual segmentation had the minimum DICE and JI among the radiologists in the group 

outlining the same nodule. Note that, as the task of nodule marking was randomly assigned to 

different radiologists for each nodule in the LIDC study, the minimum DICE and JI could come from 

any radiologists. 

 

To assess the effectiveness of combining the Shallow U-DL and Deep U-DL models into the H-DL 

model, we deployed the separately trained Shallow U-DL and Deep U-DL models to the test set. The 

Shallow U-DL model achieved an average DICE of 0.745±0.139 and an average JI of 0.611±0.161. The 

corresponding average DICE and average JI achieved by the Deep U-DL model were 0.739±0.145 and 

0.604±0.163, respectively. The average DICE and average JI achieved by our H-DL model were 
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significantly higher than those of the Deep U-DL and Shallow U-DL model (P < 0.05). Fig. 6 shows 

examples of nodules segmented by the shallow U-DL, the deep U-DL, and the final H-DL, in 

comparison to the radiologists’ segmentation. 

 

For the nodules with different radiologic characterizations assessed by LIDC radiologists, we used the 

median of radiologists' ratings as the final rating for each nodule and then separated the nodules 

into two groups using the median of the nodules' final ratings for each descriptor. Table I shows the 

analysis for the two groups of each descriptor. For example, a nodule with diameters < 10.02 mm 

was considered as a small nodule, the malignancy rating ≥ 3.0 and the margin ≥ 4.25 indicated the 

nodules had a higher likelihood of malignancy and sharp margins, respectively. For the nodules with 

diameters ≥ 10.02 mm or nodule subtlety rating ≥ 4.25, the average DICE coefficients achieved by 

the H-DL model were 0.782±0.128 and 0.798±0.113, respectively, compared to the radiologists' 

average M-DICE of 0.790±0.105 and 0.785±0.116. Their differences did not achieve statistical 

significance (P > 0.05), indicating the segmentation accuracies achieved by H-DL were comparable to 

those of radiologists for relatively large and obvious nodules.  For the nodules with other radiologic 

characterizations described by LIDC, the H-DL model achieved an average DICE coefficient of 

0.774±0.126, 0.776±0.120, 0.767±0.125, and 0.776±0.125 for nodules with sharp margins (≥ 4.25), 

lobulated (≥ 1.75), spiculated (≥ 1.50), and solid (≥ 5.00) nodules, respectively, which were 

comparable (P > 0.05) to radiologists' average M-DICE of 0.795±0.094, 0.775±0.113, 0.774±0.112, 

and 0.794±0.099, respectively. For malignant (≥ 3.00) nodules, the H-DL model achieved an average 

DICE coefficient of 0.783±0.123 compared to the average M-DICE of 0.785±0.105 achieved by 
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radiologists (P > 0.05). Similar results of the JI metrics were achieved by the H-DL model. The details 

of the comparisons were shown in Table 1. 

 

To evaluate the robustness of the H-DL model against the variability of centering the VOI at the 

nodule, we also deployed our H-DL model to the VOI obtained by shifting the LIDC-defined nodule 

center with a random distance (up to 1/3 of the longest diameter of a nodule and at the same time 

keeping the nodule within the VOI) in the horizontal or vertical direction for each test nodule. This 

simulates the situation that the nodule candidate is detected automatically in a computer-aided 

diagnosis pipeline, where the centroid of the detected object may not be well-centered because the 

object boundary is unknown before segmentation but the centroid is still located within the object 

region. The results showed that the average 3D DICE coefficient of 0.741 ± 0.142 using our H-DL 

achieved at the shifted-VOI was not significantly different (p-value > 0.05 by paired t-test) from that 

of the VOIs centered at the LIDC-defined nodule centers.  

 

We also compared the segmentation results of our H-DL model with four nodule segmentation 

methods reported in the literature, which were also tested by LIDC cases. Table 2 shows that our H-

DL achieved higher DICE coefficients and JI (if reported in their studies).    

 

 

LNDb: Grand Challenge on automatic lung cancer patient management 

We deployed our H-DL model that has been trained with the LIDC dataset directly without retraining 

to the test set of LNDb Sub-Challenge B for lung nodule segmentation with CT images 26. The test set 

of LNDb-challenge-B contained 58 CT scans. LNDb provided challenge participants the VOI findings 
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from an automated lung nodule detection method, in which each CT scan contained 50 VOIs of 

nodule candidates, resulting a total of 2900 VOIs. Among those 50 VOIs for each CT, only one or two 

were the true positive of nodule, others were false positives from the automated nodule detection, 

and LNDb only evaluated the segmentation performance for those true positive nodules which were 

manually outlined by LNDb but unknown to the challenge participants. During the LNDb-challenge-B, 

the participates trained their lung nodule segmentation methods with an LNDb training set that 

contained only the true nodules with manual outlines, then applied to the test set containing 2900 

VOIs of true or false positives and submitted the segmentation results at the LNDb website for 

evaluation. Although the submission for the challenge ranking was closed, the submission still 

remains open for those who want to benchmark algorithms. Without re-training with the LNDb-

provided training set, we directly deployed our H-DL model to the LNDb test set and submitted the 

segmentation results to the LNDb for evaluation. The LNDb evaluation results showed that our H-DL 

model achieved a Hausdorff distance (HD) of 3.05 mm and a JI of 0.468. Comparing with the 

participants in the leaderboard listed at the LNDb website, our H-DL model would be ranked at the 

5th place in the total ranking leaderboard, while the teams of 1st-place achieved a HD of 2.028 mm 

and a JI of 0.522, and the original 5th-place achieved a HD of 4.406 mm and a JI of 0.403. 

 

 

Discussion 

In CT screening of lung cancer, the measurement of nodule size, especially the volume of a nodule, is 

a vital tool that can help differentiate malignant nodules from benign nodules by the nodule growth 

rate.  The growth rate is estimated by monitoring the change in nodule volume in serial CT scans, 

such as between the baseline screening CT and the follow-up scans. CT volumetry also plays an 

important role in lung cancer treatment by providing size change information to assess treatment 
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response. Manual segmentation of lung nodules is a time-consuming and tedious task, and 

substantial inter-radiologist variability exists as evident in the LIDC study33. Automatic lung nodule 

segmentation can provide this valuable information without radiologists' effort or requiring only 

minimal effort in identifying the nodule of interest. Once developed and validated, computerized 

measurement can be more consistent and reproducible in segmenting the nodule boundaries and 

thus quantifying the volume changes without inter- and intra-radiologist variabilities. Automated 

nodule segmentation is also a fundamental step in computer-aided diagnosis that can assist 

radiologists in classifying lung nodules as malignant or benign by extracting radiomic features.   

 

In the past decades, a large number of studies have investigated diverse methods, and most of the 

methods used a single model to segment lung nodules. Those developed models cannot properly 

represent decision bounds of a broad spectrum of nodules with high heterogeneity. In this study, we 

developed a hybrid model that combined two lung nodule segmentation models with different 

neural network architectures and demonstrated that combining multiple models may have the 

potential to better adapt to the heterogeneous data distribution in the lung nodule segmentation 

task.  Although it has been shown that a feedforward neural network using only one single hidden 

layer that contains enough neurons can approximate any model34, it is difficult to determine the 

number of nodes needed. As the number of neurons used in a multi-layer network could be quite 

large, a deeper neural network with multiple layers could be more efficient and flexible to 

accomplish the tasks35. With an increased number of network layers, expression and abstraction 

learning abilities will be increased in the network36-38. However, in practice, the deepness of 

architecture has a significant drawback because excessive depth may degrade the accuracy36,39. In 

general, each layer will produce a lossy-compression-like effect after passing through the 

convolution kernel. The deeper neural network with multiple levels of convolutions may inevitably 
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extract features of excessive abstraction and is more difficult to train than a shallow neural network. 

In this study, we balanced a deep network with a shallow network and leveraged state-of-the-art 

network structures such as VGG and DenseNet to increase the learning capabilities of our H-DL 

model and exploit different levels of image features from CT images (Figure 4). In figure 7, we 

showed some examples to demonstrate that a deep or shallow network works better or worse than 

each other for different kinds of nodules. In summary, a shallow encoding path will focus on more 

high-level features and our result demonstrated that it had better segmentation for nodules of large 

sizes with smooth or sharp margins. On the contrary, a deep encoding path will focus more on detail 

information and our result demonstrated that it had better segmentation result for small, no-solid 

nodules with poorly defined margin. 

 

Our results showed that, although the segmentation results are different between Shallow U-DL and 

Deep U-DL when trained with the same training set, the segmentation accuracies achieved by the 

combined H-DL model were superior to either one alone for most nodules (Table 1). It indicated that 

the different network structures of the two U-DL models can extract features at different levels of 

abstraction and provide complementary information in the hybrid model.  

 

In the LIDC data set, the ratings provided by radiologists for the descriptors of the different nodule 

characteristics as well as their manual outlines of nodule boundaries exhibited large variabilities. 

Table 3 shows the root-mean-square deviations (RMSD) of the ratings for individual nodules 

provided by radiologists, averaged over all nodules, for each of the descriptors. To evaluate the 

performance of our H-DL model and the separate Shallow U-DL and Deep U-DL, we separated the 

nodules into two groups by using the radiologists' ratings for each descriptor, as described in the 
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Results section.  Although the segmentation accuracies achieved by our H-DL model and those by 

the radiologists showed a similar trend for most of the descriptors in each group (Table 1), there are 

exceptions. For example, both the H-DL model and the radiologists achieved higher segmentation 

accuracies for the nodules with sharp margins (≥4.25) than nodules with fuzzy margins. On the other 

hand, radiologists had lower accuracy in segmenting the spiculated nodules (spiculated ≥1.5) 

compared with non-spiculated nodules (M-DICE of 0.774 vs. 0.783), whereas the H-DL model 

achieved a better segmentation result for spiculated nodules than for non-spiculated nodules (DICE 

of 0.767 vs. 0.724).  Similarly, radiologists achieved a lower accuracy in segmenting lobulated 

nodules (lobulated ≥1.75) than less lobulated nodules (M-DICE of 0.775 vs 0.782), whereas the H-DL 

model had much better performance with lobulated nodules than less lobulated nodules (DICE of 

0.776 vs. 0.724).  One reason could be the difficulty in visually judging the nodule boundaries in the 

presence of subtle spiculations and lobulations, and another reason could be that it was too time-

consuming for radiologists to consistently trace the spiculations or lobulations.   Because the degree 

of spiculation or lobulation of the nodule boundary is strongly correlated with the probability of 

malignancy, an automated segmentation tool that can segment the boundary of these nodules 

accurately, reproducibly, and efficiently will be helpful in the assessment of screen-detection lung 

nodules. 

 

We have conducted a preliminary exploration of methods to hybridize the two U-DL networks.  We 

compared our current method of using a trained ensemble convolutional layer to a simple voting 

method using a pre-defined voting threshold. We observed differences in the segmentation 

performance measures for the nodule subgroups of different characteristics; however, the latter 

method achieved an average 3D DICE coefficient of 0.749±0.141 and an average JI of 0.617±0.162, 
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which were similar to the former method.  This indicated that the ensemble layer might have 

learned a similar strategy as voting but using more adaptive weighting for different nodule 

characteristics.  Although the results were similar on average, a potential advantage is that the 

ensemble layer method may be more robust as it achieved smaller variances.  Further studies are 

needed to evaluate different fusion methods. 

 

To evaluate the performance of our H-DL model with the LNDb-challenge-B test set, we directly 

deployed our H-DL model to the LNDb test set that had several major differences with LIDC dataset, 

including, 1). Our LIDC training set only included nodules with size >= 7mm, the LNDb included many 

small nodules down to 3 mm. 2) The annotations of LNDb nodules were relatively rough and lacked 

details of the nodule boundary compared with LIDC annotation, especially for the irregular-shaped 

or spiculated nodules (Figure 8), 3) LNDb cropped the VOI to a size of 80 x 80 x 80 pixels with the 

image resolution normalized to 0.6375mm x 0.6375mm x 0.6375mm, that was different from our 

VOI of 64 x 64 x 64 pixels with resolution of 0.5 mm x 0.5 mm x 0.5 mm. Since we did not retrain the 

network and kept the input dimension as before, we automatically cut the VOI symmetrically from 

80 x 80 x 80 to 64 x 64 x 64 and then padded zeros to the segmentation results’ peripheral to 

recover 80 x 80 x 80 VOI.  

 

Despite the differences, we were still able to achieve competitive performance without retraining 

with the LNDb training dataset, demonstrating the generalizability and robustness of our H-DL model 

in lung nodule segmentation. Among the LNDb-Challenge-B leaderboard, most participants used 3D 

U-Net structure40-42 which may have inherent advantages for volume segmentation of nodules in 3D 

CT images. However, the 3D U-Net usually requires more training time and more GPU/CPU 
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memories, and the achieved accuracies by those 3D networks were widely ranked across the 

leaderboard, indicating that the 3D network architectures may not be the major reason to achieve 

better results. Additionally, as the LNDb allowed the participants to submit their results multiple 

times, the higher ranked models also used some pre- or post-processing methods to improve the 

test performance, such as the methods of attention mechanism CBAM and switchable normalization 

for fine tuning of the loss functions and hyper-parameters based on the feedbacks of submitted test 

results43, or using self-supervised learning method44 combined with their own dataset with LNDb 

training set to train the model. Among the participated methods, a DL model44 used the similar 

training method as ours: trained a model with the LIDC dataset and then deployed to the LNDb test 

set. This model employed a conventional 3-D U-net structure and achieved a HD of 9.12 mm and JI 

of 0.22, which were significantly lower than those achieved by our H-DL model.  

 

There are several limitations in this study. In our H-DL method, the two U-DL base models shared a 

similar U-shape structure that could limit the networks to explore more diverse features to better 

characterize lung nodules. We will study other state-of-the-art networks with different architectures 

such as Mask R-CNN19 or YOLO45 that can be adapted to our U-DL models to further improve the 

hybrid model for lung nodule segmentation. Another limitation is that we have not extensively 

optimized the fusion method and explored methods such as attention structures to hybridize the 

outputs from the U-DL models.  These limitations will be addressed in future studies. 
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Conclusion 

In this study, we developed a new hybrid deep learning (H-DL) method for volume segmentation of 

lung nodules with large variations in size, shape, margin, and opacity in CT scans.  The H-DL model 

combined two asymmetric U-shaped network architectures, one with a 16-layer shallow DCNN and 

the other with a 200-layer deep DCNN as encoders for feature extraction. The results demonstrated 

that our H-DL model outperformed the individual shallow or deep U-DL models. The hybrid deep 

learning method combining multi-level features learned by both the shallow and deep DCNNs could 

achieve high segmentation accuracy comparable to radiologists' segmentation for nodules with wide 

ranges of image characteristics. 
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Table 1. Test results achieved by H-DL model, Shallow U-DL and Deep U-DL alone, and the performance of 

LIDC radiologists' manual segmentations relative to the reference standard. The P-values of the differences 

between H-DL and others were calculated by paired t-test. The P-value < 0.05 indicated that the difference 

was statistically significant. M-DICE and M-JI are the averages of the median, and m-DICE and m-JI are the 

averages of the minimum DICE and JI by radiologists, respectively. 

  H-DL Radiologist Shallow U-DL Deep U-DL 

Categories DICE JI M-DICE min-

DICE 

M-JI min-JI DICE JI DICE JI 

All nodules  N = 327 0.750 ± 

0.135 

0.617 ± 

0.159 

0.778 ± 

0.102 

0.685 ± 

0.139 

0.651 ± 

0.127 

0.537 ± 

0.153 

0.745 ± 

0.139 

0.611 ± 

0.161 

0.739 ± 

0.145 

0.604 ± 

0.163 

 P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

Diameter 

(mm) 

  

≥ 10.00 (N = 

208) 

0.782 ± 

0.128 

0.658 ± 

0.152 

0.790 ± 

0.105 

0.704 ± 

0.135 

0.667 ± 

0.128 

0.559 ± 

0.150 

0.777 ± 

0.129 

0.652 ± 

0.154 

0.766 ± 

0.150 

0.640 ± 

0.166 

P-value   0.423 < 0.05 0.434 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 10.00 (N = 

119) 

0.695 ± 

0.131 

0.547 ± 

0.145 

0.758 ± 

0.093 

0.652 ± 

0.139 

0.623 ± 

0.121 

0.499 ± 

0.153 

0.688 ± 

0.137 

0.540 ± 

0.149 

0.691 ± 

0.125 

0.541 ± 

0.137 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.651 0.498 

Subtlety 

  

≥ 4.25 (N = 

163) 

0.798 ± 

0.113 

0.677 ± 

0.140 

0.785 ± 

0.116 

0.701 ± 

0.148 

0.662 ± 

0.139 

0.558 ± 

0.163 

0.796 ± 

0.111 

0.674 ± 

0.138 

0.785 ± 

0.125 

0.662 ± 

0.149 

P-value   0.210 < 0.05 0.222 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 
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< 4.25 (N = 164) 0.702 ± 

0.139 

0.557 ± 

0.154 

0.771 ± 

0.086 

0.670 ± 

0.128 

0.640 ± 

0.112 

0.517 ± 

0.140 

0.694 ± 

0.145 

0.549 ± 

0.159 

0.693 ± 

0.150 

0.548 ± 

0.157 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.197 0.173 

Malignancy 

  

  

  

≥ 3.00 (N = 203) 0.783 ± 

0.123 

0.658 ± 

0.149 

0.785 ± 

0.105 

0.700 ± 

0.134 

0.660 ± 

0.127 

0.553 ± 

0.147 

0.778 ± 

0.124 

0.652 ± 

0.148 

0.773 ± 

0.135 

0.647 ± 

0.155 

P-value   0.842 < 0.05 0.855 < 0.05 < 0.05 < 0.05 0.078 0.058 

< 3.00 (N = 124) 0.697 ± 

0.139 

0.551 ± 

0.157 

0.767 ± 

0.095 

0.661 ± 

0.145 

0.636 ± 

0.126 

0.511 ± 

0.160 

0.690 ± 

0.145 

0.544 ± 

0.16 

0.683 ± 

0.145 

0.535 ± 

0.152 

P-value   < 0.05 0.056 < 0.05 0.051 < 0.05 < 0.05 0.100 < 0.05 

Margin 

  

  

  

≥ 4.25 (N =175) 0.774 ± 

0.126 

0.647 ± 

0.154 

0.795 ± 

0.094 

0.710 ± 

0.137 

0.672 ± 

0.123 

0.567 ± 

0.155 

0.767 ± 

0.135 

0.640 ± 

0.160 

0.756 ± 

0.149 

0.627 ± 

0.166 

P-value   0.070 < 0.05 0.091 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 4.25 (N =152) 0.723 ± 

0.140 

0.582 ± 

0.157 

0.759 ± 

0.107 

0.657 ± 

0.136 

0.627 ± 

0.128 

0.503 ± 

0.144 

0.719 ± 

0.140 

0.578 ± 

0.156 

0.720 ± 

0.139 

0.579 ± 

0.156 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.667 0.584 

Lobulated ≥ 1.75 (N=165) 0.776 ± 

0.120 

0.648 ± 

0.147 

0.775 ± 

0.113 

0.682 ± 

0.151 

0.648 ± 

0.136 

0.536 ± 

0.162 

0.771 ± 

0.121 

0.642 ± 

0.148 

0.767 ± 

0.131 

0.638 ± 

0.154 

  

  

  

P-value   0.958 < 0.05 0.978 < 0.05 < 0.05 < 0.05 0.136 0.097 

< 1.75 (N=162) 0.724 ± 

0.145 

0.586 ± 

0.164 

0.782 ± 

0.089 

0.689 ± 

0.126 

0.655 ± 

0.117 

0.539 ± 

0.144 

0.718 ± 

0.151 

0.579 ± 

0.168 

0.710 ± 

0.154 

0.570 ± 

0.166 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.058 < 0.05 

Spiculated 

  

  

  

≥ 1.50 (N = 173) 0.767 ± 

0.125 

0.638 ± 

0.150 

0.774 ± 

0.112 

0.680± 

0.142 

0.648 ± 

0.134 

0.532 ± 

0.153 

0.764 ± 

0.125 

0.633 ± 

0.149 

0.755 ± 

0.145 

0.624 ± 

0.162 

P-value   0.515 < 0.05 0.443 < 0.05 0.767 0.739 0.250 0.309 

< 1.50 (N = 154) 0.731 ± 

0.143 

0.596 ± 

0.164 

0.783 ± 

0.089 

0.691 ± 

0.136 

0.655 ± 

0.119 

0.543 ± 

0.154 

0.723 ± 

0.151 

0.586 ± 

0.17 

0.721 ± 

0.145 

0.582 ± 

0.162 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 0.587 0.608 0.494 0.431 

Solid 

  

  

  

≥ 5.00 (N = 167) 0.776 ± 

0.125 

0.649 ± 

0.151 

0.794 ± 

0.099 

0.709 ± 

0.135 

0.672 ± 

0.126 

0.564 ± 

0.154 

0.771 ± 

0.131 

0.644 ± 

0.156 

0.759 ± 

0.150 

0.631 ± 

0.166 

P-value   0.092 < 0.05 0.084 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 5.00 (N = 160) 0.723 ± 

0.141 

0.584 ± 

0.160 

0.762 ± 

0.103 

0.661 ± 

0.139 

0.629 ± 

0.125 

0.509 ± 

0.147 

0.717 ± 

0.142 

0.577 ± 

0.160 

0.718 ± 

0.138 

0.577 ± 

0.156 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 0.630 0.457 0.685 0.447 

Sphericity 

 

≥ 4.00 (N = 179) 0.760 ± 

0.139 

0.632 ± 

0.162 

0.796 ± 

0.085 

0.706 ± 

0.129 

0.673 ± 

0.112 

0.561 ± 

0.148 

0.756 ± 

0.144 

0.626 ± 

0.166 

0.754 ± 

0.143 

0.623 ± 

0.163 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.212 0.129 
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< 4.00 (N = 148) 0.737 ± 

0.129 

0.600± 

0.153 

0.757 ± 

0.116 

0.660 ± 

0.146 

0.624 ± 

0.139 

0.509 ± 

0.155 

0.732 ± 

0.131 

0.593 ± 

0.154 

0.721 ± 

0.147 

0.582 ± 

0.162 

P-value   0.144 < 0.05 0.058  < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

 

 

 

 

 

Table 2. The performance comparisons of our H-DL model with other deep learning methods in 

the segmentation of lung nodules. 

 Dataset used VOI size DICE JI 

H-DL model LIDC-IDRI 64 x 64 x 64 0.750±0.135 0.617±0.159 

3D U-Net32 LIDC-IDRI 64 x 64 x 64 0.720±0.049 0.380±0.080 

iW-Net21 LIDC-IDRI 64 x 64 x 64 - 0.550±0.140 

PN-SAMP22 LIDC-IDRI 64 x 64 x 64 0.741±0.357 - 

Table 3. The root-mean-square deviation (RMSD) of the descriptors of nodule characteristics was 

provided by different radiologists in the test set. The ratings of the descriptors were given on a 5-

point scale except for the diameter. 

 Diameter 

(mm) 
Subtlety Malignancy Margin Lobulated Spiculated Solid Sphericity 

RMSD 1.725 0.659 0.787 0.706 0.79 0.709 0.51 0.691 



33 

 

 

This article is protected by copyright. All rights reserved. 

 

 

 

 

 

 

 

 



34 

 

 

This article is protected by copyright. All rights reserved. 

 

 

 

 

 

 

 



35 

 

 

This article is protected by copyright. All rights reserved. 

 

 

 

 

 

 



36 

 

 

This article is protected by copyright. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

Table 1. Test results achieved by H-DL model, Shallow U-DL and Deep U-DL alone, and the performance of 

LIDC radiologists' manual segmentations relative to the reference standard. The P-values of the differences 

between H-DL and others were calculated by paired t-test. The P-value < 0.05 indicated that the difference 
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was statistically significant. M-DICE and M-JI are the averages of the median, and m-DICE and m-JI are the 

averages of the minimum DICE and JI by radiologists, respectively. 

  H-DL Radiologist Shallow U-DL Deep U-DL 

Categories DICE JI M-DICE min-

DICE 

M-JI min-JI DICE JI DICE JI 

All nodules  N = 327 0.750 ± 

0.135 

0.617 ± 

0.159 

0.778 ± 

0.102 

0.685 ± 

0.139 

0.651 ± 

0.127 

0.537 ± 

0.153 

0.745 ± 

0.139 

0.611 ± 

0.161 

0.739 ± 

0.145 

0.604 ± 

0.163 

 P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

Diameter 

(mm) 

  

≥ 10.00 (N = 

208) 

0.782 ± 

0.128 

0.658 ± 

0.152 

0.790 ± 

0.105 

0.704 ± 

0.135 

0.667 ± 

0.128 

0.559 ± 

0.150 

0.777 ± 

0.129 

0.652 ± 

0.154 

0.766 ± 

0.150 

0.640 ± 

0.166 

P-value   0.423 < 0.05 0.434 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 10.00 (N = 

119) 

0.695 ± 

0.131 

0.547 ± 

0.145 

0.758 ± 

0.093 

0.652 ± 

0.139 

0.623 ± 

0.121 

0.499 ± 

0.153 

0.688 ± 

0.137 

0.540 ± 

0.149 

0.691 ± 

0.125 

0.541 ± 

0.137 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.651 0.498 

Subtlety 

  

  

  

≥ 4.25 (N = 

163) 

0.798 ± 

0.113 

0.677 ± 

0.140 

0.785 ± 

0.116 

0.701 ± 

0.148 

0.662 ± 

0.139 

0.558 ± 

0.163 

0.796 ± 

0.111 

0.674 ± 

0.138 

0.785 ± 

0.125 

0.662 ± 

0.149 

P-value   0.210 < 0.05 0.222 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 4.25 (N = 164) 0.702 ± 

0.139 

0.557 ± 

0.154 

0.771 ± 

0.086 

0.670 ± 

0.128 

0.640 ± 

0.112 

0.517 ± 

0.140 

0.694 ± 

0.145 

0.549 ± 

0.159 

0.693 ± 

0.150 

0.548 ± 

0.157 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.197 0.173 

Malignancy 

  

  

  

≥ 3.00 (N = 203) 0.783 ± 

0.123 

0.658 ± 

0.149 

0.785 ± 

0.105 

0.700 ± 

0.134 

0.660 ± 

0.127 

0.553 ± 

0.147 

0.778 ± 

0.124 

0.652 ± 

0.148 

0.773 ± 

0.135 

0.647 ± 

0.155 

P-value   0.842 < 0.05 0.855 < 0.05 < 0.05 < 0.05 0.078 0.058 

< 3.00 (N = 124) 0.697 ± 

0.139 

0.551 ± 

0.157 

0.767 ± 

0.095 

0.661 ± 

0.145 

0.636 ± 

0.126 

0.511 ± 

0.160 

0.690 ± 

0.145 

0.544 ± 

0.16 

0.683 ± 

0.145 

0.535 ± 

0.152 

P-value   < 0.05 0.056 < 0.05 0.051 < 0.05 < 0.05 0.100 < 0.05 

Margin 

  

  

  

≥ 4.25 (N =175) 0.774 ± 

0.126 

0.647 ± 

0.154 

0.795 ± 

0.094 

0.710 ± 

0.137 

0.672 ± 

0.123 

0.567 ± 

0.155 

0.767 ± 

0.135 

0.640 ± 

0.160 

0.756 ± 

0.149 

0.627 ± 

0.166 

P-value   0.070 < 0.05 0.091 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 4.25 (N =152) 0.723 ± 

0.140 

0.582 ± 

0.157 

0.759 ± 

0.107 

0.657 ± 

0.136 

0.627 ± 

0.128 

0.503 ± 

0.144 

0.719 ± 

0.140 

0.578 ± 

0.156 

0.720 ± 

0.139 

0.579 ± 

0.156 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.667 0.584 

Lobulated ≥ 1.75 (N=165) 0.776 ± 

0.120 

0.648 ± 

0.147 

0.775 ± 

0.113 

0.682 ± 

0.151 

0.648 ± 

0.136 

0.536 ± 

0.162 

0.771 ± 

0.121 

0.642 ± 

0.148 

0.767 ± 

0.131 

0.638 ± 

0.154 

  P-value   0.958 < 0.05 0.978 < 0.05 < 0.05 < 0.05 0.136 0.097 
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< 1.75 (N=162) 0.724 ± 

0.145 

0.586 ± 

0.164 

0.782 ± 

0.089 

0.689 ± 

0.126 

0.655 ± 

0.117 

0.539 ± 

0.144 

0.718 ± 

0.151 

0.579 ± 

0.168 

0.710 ± 

0.154 

0.570 ± 

0.166 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.058 < 0.05 

Spiculated 

  

  

  

≥ 1.50 (N = 173) 0.767 ± 

0.125 

0.638 ± 

0.150 

0.774 ± 

0.112 

0.680± 

0.142 

0.648 ± 

0.134 

0.532 ± 

0.153 

0.764 ± 

0.125 

0.633 ± 

0.149 

0.755 ± 

0.145 

0.624 ± 

0.162 

P-value   0.515 < 0.05 0.443 < 0.05 0.767 0.739 0.250 0.309 

< 1.50 (N = 154) 0.731 ± 

0.143 

0.596 ± 

0.164 

0.783 ± 

0.089 

0.691 ± 

0.136 

0.655 ± 

0.119 

0.543 ± 

0.154 

0.723 ± 

0.151 

0.586 ± 

0.17 

0.721 ± 

0.145 

0.582 ± 

0.162 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 0.587 0.608 0.494 0.431 

Solid 

  

  

  

≥ 5.00 (N = 167) 0.776 ± 

0.125 

0.649 ± 

0.151 

0.794 ± 

0.099 

0.709 ± 

0.135 

0.672 ± 

0.126 

0.564 ± 

0.154 

0.771 ± 

0.131 

0.644 ± 

0.156 

0.759 ± 

0.150 

0.631 ± 

0.166 

P-value   0.092 < 0.05 0.084 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 5.00 (N = 160) 0.723 ± 

0.141 

0.584 ± 

0.160 

0.762 ± 

0.103 

0.661 ± 

0.139 

0.629 ± 

0.125 

0.509 ± 

0.147 

0.717 ± 

0.142 

0.577 ± 

0.160 

0.718 ± 

0.138 

0.577 ± 

0.156 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 0.630 0.457 0.685 0.447 

Sphericity 

 

≥ 4.00 (N = 179) 0.760 ± 

0.139 

0.632 ± 

0.162 

0.796 ± 

0.085 

0.706 ± 

0.129 

0.673 ± 

0.112 

0.561 ± 

0.148 

0.756 ± 

0.144 

0.626 ± 

0.166 

0.754 ± 

0.143 

0.623 ± 

0.163 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.212 0.129 

< 4.00 (N = 148) 0.737 ± 

0.129 

0.600± 

0.153 

0.757 ± 

0.116 

0.660 ± 

0.146 

0.624 ± 

0.139 

0.509 ± 

0.155 

0.732 ± 

0.131 

0.593 ± 

0.154 

0.721 ± 

0.147 

0.582 ± 

0.162 

P-value   0.144 < 0.05 0.058  < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

 

 

 

 

Table 2. The performance comparisons of our H-DL model with other deep learning methods in 

the segmentation of lung nodules. 

 Dataset used VOI size DICE JI 

H-DL model LIDC-IDRI 64 x 64 x 64 0.750±0.135 0.617±0.159 

3D U-Net32 LIDC-IDRI 64 x 64 x 64 0.720±0.049 0.380±0.080 

iW-Net21 LIDC-IDRI 64 x 64 x 64 - 0.550±0.140 

PN-SAMP22 LIDC-IDRI 64 x 64 x 64 0.741±0.357 - 
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Table 1. Test results achieved by H-DL model, Shallow U-DL and Deep U-DL alone, and the performance of 

LIDC radiologists' manual segmentations relative to the reference standard. The P-values of the differences 

between H-DL and others were calculated by paired t-test. The P-value < 0.05 indicated that the difference 

was statistically significant. M-DICE and M-JI are the averages of the median, and m-DICE and m-JI are the 

averages of the minimum DICE and JI by radiologists, respectively. 

  H-DL Radiologist Shallow U-DL Deep U-DL 

Categories DICE JI M-DICE min-

DICE 

M-JI min-JI DICE JI DICE JI 

All nodules  N = 327 0.750 ± 

0.135 

0.617 ± 

0.159 

0.778 ± 

0.102 

0.685 ± 

0.139 

0.651 ± 

0.127 

0.537 ± 

0.153 

0.745 ± 

0.139 

0.611 ± 

0.161 

0.739 ± 

0.145 

0.604 ± 

0.163 

 P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

Diameter 

(mm) 

  

≥ 10.00 (N = 

208) 

0.782 ± 

0.128 

0.658 ± 

0.152 

0.790 ± 

0.105 

0.704 ± 

0.135 

0.667 ± 

0.128 

0.559 ± 

0.150 

0.777 ± 

0.129 

0.652 ± 

0.154 

0.766 ± 

0.150 

0.640 ± 

0.166 

P-value   0.423 < 0.05 0.434 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 10.00 (N = 

119) 

0.695 ± 

0.131 

0.547 ± 

0.145 

0.758 ± 

0.093 

0.652 ± 

0.139 

0.623 ± 

0.121 

0.499 ± 

0.153 

0.688 ± 

0.137 

0.540 ± 

0.149 

0.691 ± 

0.125 

0.541 ± 

0.137 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.651 0.498 

Subtlety 

  

  

  

≥ 4.25 (N = 

163) 

0.798 ± 

0.113 

0.677 ± 

0.140 

0.785 ± 

0.116 

0.701 ± 

0.148 

0.662 ± 

0.139 

0.558 ± 

0.163 

0.796 ± 

0.111 

0.674 ± 

0.138 

0.785 ± 

0.125 

0.662 ± 

0.149 

P-value   0.210 < 0.05 0.222 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 4.25 (N = 164) 0.702 ± 

0.139 

0.557 ± 

0.154 

0.771 ± 

0.086 

0.670 ± 

0.128 

0.640 ± 

0.112 

0.517 ± 

0.140 

0.694 ± 

0.145 

0.549 ± 

0.159 

0.693 ± 

0.150 

0.548 ± 

0.157 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.197 0.173 

Malignancy 

  

≥ 3.00 (N = 203) 0.783 ± 

0.123 

0.658 ± 

0.149 

0.785 ± 

0.105 

0.700 ± 

0.134 

0.660 ± 

0.127 

0.553 ± 

0.147 

0.778 ± 

0.124 

0.652 ± 

0.148 

0.773 ± 

0.135 

0.647 ± 

0.155 

P-value   0.842 < 0.05 0.855 < 0.05 < 0.05 < 0.05 0.078 0.058 

Table 3. The root-mean-square deviation (RMSD) of the descriptors of nodule characteristics was 

provided by different radiologists in the test set. The ratings of the descriptors were given on a 5-

point scale except for the diameter. 

 Diameter 

(mm) 
Subtlety Malignancy Margin Lobulated Spiculated Solid Sphericity 

RMSD 1.725 0.659 0.787 0.706 0.79 0.709 0.51 0.691 
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< 3.00 (N = 124) 0.697 ± 

0.139 

0.551 ± 

0.157 

0.767 ± 

0.095 

0.661 ± 

0.145 

0.636 ± 

0.126 

0.511 ± 

0.160 

0.690 ± 

0.145 

0.544 ± 

0.16 

0.683 ± 

0.145 

0.535 ± 

0.152 

P-value   < 0.05 0.056 < 0.05 0.051 < 0.05 < 0.05 0.100 < 0.05 

Margin 

  

  

  

≥ 4.25 (N =175) 0.774 ± 

0.126 

0.647 ± 

0.154 

0.795 ± 

0.094 

0.710 ± 

0.137 

0.672 ± 

0.123 

0.567 ± 

0.155 

0.767 ± 

0.135 

0.640 ± 

0.160 

0.756 ± 

0.149 

0.627 ± 

0.166 

P-value   0.070 < 0.05 0.091 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 4.25 (N =152) 0.723 ± 

0.140 

0.582 ± 

0.157 

0.759 ± 

0.107 

0.657 ± 

0.136 

0.627 ± 

0.128 

0.503 ± 

0.144 

0.719 ± 

0.140 

0.578 ± 

0.156 

0.720 ± 

0.139 

0.579 ± 

0.156 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.667 0.584 

Lobulated ≥ 1.75 (N=165) 0.776 ± 

0.120 

0.648 ± 

0.147 

0.775 ± 

0.113 

0.682 ± 

0.151 

0.648 ± 

0.136 

0.536 ± 

0.162 

0.771 ± 

0.121 

0.642 ± 

0.148 

0.767 ± 

0.131 

0.638 ± 

0.154 

  

  

  

P-value   0.958 < 0.05 0.978 < 0.05 < 0.05 < 0.05 0.136 0.097 

< 1.75 (N=162) 0.724 ± 

0.145 

0.586 ± 

0.164 

0.782 ± 

0.089 

0.689 ± 

0.126 

0.655 ± 

0.117 

0.539 ± 

0.144 

0.718 ± 

0.151 

0.579 ± 

0.168 

0.710 ± 

0.154 

0.570 ± 

0.166 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.058 < 0.05 

Spiculated 

  

  

  

≥ 1.50 (N = 173) 0.767 ± 

0.125 

0.638 ± 

0.150 

0.774 ± 

0.112 

0.680± 

0.142 

0.648 ± 

0.134 

0.532 ± 

0.153 

0.764 ± 

0.125 

0.633 ± 

0.149 

0.755 ± 

0.145 

0.624 ± 

0.162 

P-value   0.515 < 0.05 0.443 < 0.05 0.767 0.739 0.250 0.309 

< 1.50 (N = 154) 0.731 ± 

0.143 

0.596 ± 

0.164 

0.783 ± 

0.089 

0.691 ± 

0.136 

0.655 ± 

0.119 

0.543 ± 

0.154 

0.723 ± 

0.151 

0.586 ± 

0.17 

0.721 ± 

0.145 

0.582 ± 

0.162 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 0.587 0.608 0.494 0.431 

Solid 

  

  

  

≥ 5.00 (N = 167) 0.776 ± 

0.125 

0.649 ± 

0.151 

0.794 ± 

0.099 

0.709 ± 

0.135 

0.672 ± 

0.126 

0.564 ± 

0.154 

0.771 ± 

0.131 

0.644 ± 

0.156 

0.759 ± 

0.150 

0.631 ± 

0.166 

P-value   0.092 < 0.05 0.084 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

< 5.00 (N = 160) 0.723 ± 

0.141 

0.584 ± 

0.160 

0.762 ± 

0.103 

0.661 ± 

0.139 

0.629 ± 

0.125 

0.509 ± 

0.147 

0.717 ± 

0.142 

0.577 ± 

0.160 

0.718 ± 

0.138 

0.577 ± 

0.156 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 0.630 0.457 0.685 0.447 

Sphericity 

 

≥ 4.00 (N = 179) 0.760 ± 

0.139 

0.632 ± 

0.162 

0.796 ± 

0.085 

0.706 ± 

0.129 

0.673 ± 

0.112 

0.561 ± 

0.148 

0.756 ± 

0.144 

0.626 ± 

0.166 

0.754 ± 

0.143 

0.623 ± 

0.163 

P-value   < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.212 0.129 

< 4.00 (N = 148) 0.737 ± 

0.129 

0.600± 

0.153 

0.757 ± 

0.116 

0.660 ± 

0.146 

0.624 ± 

0.139 

0.509 ± 

0.155 

0.732 ± 

0.131 

0.593 ± 

0.154 

0.721 ± 

0.147 

0.582 ± 

0.162 

P-value   0.144 < 0.05 0.058  < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 
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Table 2. The performance comparisons of our H-DL model with other deep learning methods in 

the segmentation of lung nodules. 

 Dataset used VOI size DICE JI 

H-DL model LIDC-IDRI 64 x 64 x 64 0.750±0.135 0.617±0.159 

3D U-Net32 LIDC-IDRI 64 x 64 x 64 0.720±0.049 0.380±0.080 

iW-Net21 LIDC-IDRI 64 x 64 x 64 - 0.550±0.140 

PN-SAMP22 LIDC-IDRI 64 x 64 x 64 0.741±0.357 - 

Table 3. The root-mean-square deviation (RMSD) of the descriptors of nodule characteristics was 

provided by different radiologists in the test set. The ratings of the descriptors were given on a 5-

point scale except for the diameter. 

 Diameter 

(mm) 
Subtlety Malignancy Margin Lobulated Spiculated Solid Sphericity 

RMSD 1.725 0.659 0.787 0.706 0.79 0.709 0.51 0.691 


