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Summary

Many real data analyses involve two-sample comparisons in location or in distribu-
tion.Most existingmethods focus on problemswhere observations are independently
and identically distributed in each group. However, in some applications the observed
data are not identically distributed but associated with some unobserved parame-
ters which are identically distributed. To address this challenge, we propose a novel
two-sample testing procedure as a combination of the g-modeling density estimation
introduced by Efron and the two-sample Kolmogorov-Smirnov test. We also propose
efficient bootstrap algorithms to estimate the statistical significance for such tests.We
demonstrate the utility of the proposed approach with two biostatistical applications:
the analysis of surgical nodes data with binomial models and differential expression
analysis of single-cell RNA sequencing (scRNA-seq) data with zero-inflated Poisson
model.
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1 INTRODUCTION

Two-sample comparison occurs frequently in statistical analysis, for example, the testing of the drug effect between the control
and the treatment groups in clinical trials. Relatively simple comparisons are often conducted to detect the difference in loca-
tion between two groups where the parametric two-sample t-test or the non-parametric Wilcoxon rank-sum test is widely used.
Comparing two samples in distribution is more challenging than comparing them in location. For more complicated and noisy
data, the two-sample Kolmogorov-Smirnov (K-S) test is often used to detect the difference between two unknown distributions
by comparing the empirical distributions of two groups of observations.1 All the above tests and most other widely used statis-
tical tests assume that the observations in each group are independently and identically distributed (i.i.d.). Unfortunately, such
assumption may be violated in complex real-world problems and the problem becomes harder when the observations are no
longer identically distributed. For instance, we may have two groups of independent samples where each observation follows
the same type of distribution but with different underlying parameters such as different means. If we assume that these unknown
parameters follow certain distributions, the objective of the two-sample comparison becomes the comparison of the distribution
of the underlying parameters in the two groups. Specifically, consider the situation where there are two groups of observations
X1,… , XNX

and Y1,… , YNY
, where

Xi
ind∼ pi(Xi|Θi), Yk

ind∼ pk(Yk|Λk), i = 1,… , NX , k = 1,… , NY ,

and Θi
ind∼ G, Λk

ind∼ H,
(1)
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whereΘi’s andΛk’s are two groups of unknown quantities drawn from two unknown distributionsG andH , respectively, and pi’s
and pk’s are some known parametric densities (or probability mass functions for discrete data). Our interest is in testing whether
G equalsH . Under this model,Xi’s (and Yk’s) are independently but non-identically distributed, e.g., whenXi is binomial with
parameters ni and Θi, where ni’s are fixed but different quantities for different i’s. In such case, the standard two-sample K-S
test is no longer applicable.
Sincewe only observeXi’s and Yk’s but notΘi’s andΛk’s, we cannot compare the two unknown distributionsG andH directly.

The related one-sample problem, i.e., the problem of estimating G from Xi’s (and similarly to estimate H from Yk’s), a.k.a.
empirical Bayes deconvolution,3 has been well-studied with many methods developed,4–11 but largely they suffer from intensive
computation and slow convergence.12 Recently, a g-modeling approach was proposed by Efron for the efficient estimation of G
(orH) in such case.2
To address the above two-sample comparison problem, we propose a novel two-sample testing procedure combining the g-

modelling method for density estimation and the two-sample Kolmogorov-Smirnov (K-S) test statistic to detect for differences
in distribution between two samples. We also develop efficient bootstrap algorithms to estimate the statistical significance for
such tests. Our approach can be applied on a wide range of data types. We apply our approach on simulated data from a surgical
nodes dataset under two different scenarios. In this application, the numbers of malignant satellite from patients are assumed to
follow binomial distributions. Our test is shown to have high power to detect small difference between the two groups. Moreover,
we also applied our test to the differential expression (DE) analysis on a real scRNA-seq dataset. Different from the original
purpose of using g-modeling to model the test statistics across all the genes to controlling for multiple testing and false discovery
rate,2 here we model the read counts from each gene across all the samples to detect DE genes individually. Comparing with
other existing DE methods, our test can detect more DE genes and has higher accuracy.
The rest of the paper is organized as follows: In Section 2, we introduce the notations and briefly review the g-modelling

method for density estimation. We then introduce our proposed approach for two-sample tests in distribution. Section 3 presents
two applications: the analysis of surgical nodes data with binomial models and DE analysis of scRNA-seq data with zero-inflated
Poisson model. Section 4 concludes the paper with a discussion.

2 METHODS

Since we build our approach for two-sample comparison based on the g-modeling method, we first review it briefly in the section
below.

2.1 One-sample density estimation with g-modeling
Starting with the one-sample density estimation problem based on the observations X1,… , XN , we follow the same setting as
the g-modelling method,2 where the sample space of Θ is discretized as � = (�1,… , �m) for computational convenience. The
g-modelling framework further assumes that Θ follows a semi-parametric exponential family distribution as follows:

Pr(Θ = �j) = gj(�) = exp{QT
j � − �(�)}, j = 1,… , m,

where � is a p-dimensional vector of parameters, Q is a fixed and known m × p matrix taken as the design matrix from
natural spline basis,2 Qj is the j-th row of Q (as a p-dimensional column vector), and the normalization term �(�) is
�(�) = log

∑m
j=1 exp(Q

T
j �). Conditional onΘi, the observedXi follows a known parametric distribution asXi

ind∼ pi(Xi|Θi), for
i = 1,… , N, and we define pij = pi(Xi = xi|Θi = �j). Then the marginal probability of Xi and log-likelihood of the observed
data can be computed as Pr(Xi = xi) = fi(�) =

∑m
j=1 pijgj(�), and li(�) = logfi(�), respectively. Here we assume discreteXi

(or discretizedXi if it was continuous). In order to improve the accuracy for estimation, the log-likelihood is regularized with a
l2 penalty term. Hence, the objective function for maximum likelihood estimation is m(�) = l(�) − s(�), where s(�) = c0‖�‖
with c0 being a tuning parameter which we take as 1. Now � can be estimated by maximizing the above penalized log-likelihood.
We denote the maximum likelihood estimator (MLE) of � as �̂ and obtain the estimated gj(�) by gj(�̂) for j = 1,… , m.
In practice, we find that discretized Θ may introduce numerical problems, especially when we are dealing with scRNA-seq

data where the read counts are sparse and have a large range. For instance, it could happen that pij = 0 for all j = 1,… , m,
which leads infinite log-likelihood. Therefore, we make an adjustment in the calculation of pij to avoid such problem. For each
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xi, we estimate its MLE �̂∗i , and calculate pij for the �j that is the closest to �̂
∗
i as pij = pi(Xi = xi|Θi = �̂∗i ). For all other j, we

still calculate pij as pij = pi(Xi = xi|Θi = �j).

2.2 Two-sample comparison based on g-modeling
Here we propose a two-sample test built on the above one-sample density estimation procedure using g-modelling. With the
notations in (1), assume Θi and Λk have the same discretized sample space � = (�1,… , �m), g(�X) and ℎ(�Y ) are the semi-
parametric distributions for G andH respectively, and have the following form

Pr(Θi = �j) = gj(�X) = exp{QT
j �X − �(�X)}, for j = 1,… , m,

P r(Λk = �j) = ℎj(�Y ) = exp{QT
j �Y − �(�Y )}, for j = 1,… , m,

(2)

whereQ is a fixed and known m× p structure matrix for both g and ℎ, and �X and �Y are parameters that can be estimated with
g-modeling using the data from the two groups, respectively. To test for the difference between the two distributions G and H
against the null hypothesisH0 ∶ G = H , we use the two-sample K-S test statistic which can be calculated as

T = max
j

|Ĝj(�̂X) − Ĥj(�̂Y )|, j = 1,… , m, (3)

where Ĝj and Ĥj are the values of estimated cumulative distribution functions (CDFs) ofG andH evaluated at �j , respectively.
Different from the generalized linear mixed model introduced originally for two-sample comparison when changes in location

between two distributions are of concern,2 our two-sample test can detect changes not only in location but also in distribution.

2.3 Simple bootstrap procedure for p-value estimation
To estimate the statistical significance for the test statistic T defined in (3), we can use a simple parametric bootstrap procedure
to directly simulate the null distribution of T . Under the null hypothesis, G andH are identical. Therefore, we first pool the two
groups together and employ the g-modeling approach to obtain a pooled density estimate ĝ(�̂p). Then, for the b-th bootstrap
iteration, b = 1,… , B, we take the following steps:

1. Sample Θ(b)i , i = 1,… , NX , and Λ
(b)
k , k = 1,… , NY , with respect to ĝ(�̂p).

2. Sample X(b)
i from pi(Xi|Θ

(b)
i ), i = 1,… , NX , and Y

(b)
k from pk(Yk|Λ

(b)
k ), k = 1,… , NY .

3. Estimate Ĝ(b) from X(b)
1 ,… , X(b)

NX
and Ĥ (b) from Y (b)1 ,… , Y (b)NY

using g-modeling.

4. Calculate T (b) = max
j

|Ĝ(b)j − Ĥ (b)
j |, j = 1,… , m.

Finally, we estimate the p-value as p̂ = (
∑B
b=1 1T (b)≥T +1)∕(B+1),where we add one to both the numerator and the denominator

to avoid a p-value of zero.
Since MLE problems need to be solved for each bootstrap iteration, the above simple bootstrap procedure may be compu-

tationally intensive, especially when there are a large number of tests to be performed. For instance, in DE analysis one often
needs to test for thousands of genes. In order to reduce the computational load, we employ an early stopping rule in our experi-
ments.13 Specifically, after the b-th bootstrap iteration, we calculate p̂∗b =

∑b
l=1 1T (l)≥T ∕b. If p̂

∗
b > (a∕b+ c)∕(1 + c) where a and

c are some constants, then we stop the bootstrap procedure and output p̂s = p̂∗b . Otherwise, the bootstrap procedure will continue
until b = B and outputs p̂s = p̂∗B , where p̂

s is the final p-value estimate for our two-sample test. Following recommendation,13
we take c = (1 + �) × p0∕(1 − p0), where p0 is the p-value cutoff, and a and � are parameters of choice. In our application, the
p-value cutoff is chosen as p0 = 0.01, and we set a = 4, � = 0.4. Thus, c = 0.0141.

2.4 Accelerated bootstrap procedure based on asymptotic distribution of the test statistic
From our experiments, we find that the simple bootstrap procedure described in Section 2.3 provides accurate p-value estimates,
but at the price of intensive computation, due to the need to estimate Ĝ(b) and Ĥ (b) using g-modeling in each bootstrap iteration.
In this section, we propose an accelerated bootstrap procedure based on approximating the null distribution of the test statistic
using large sample theory.
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SupposeX and Y are sampled from exponential family distributions such as normal, Poisson or binomial distributions. With
g-modeling, we assume that G andH as semi-parametric exponential distributions as defined in (2). After obtaining the MLE
of � denoted as �̂, we denote the estimated PDF and CDF of Θ as g(�̂) and G(�̂). Since both G(�̂) and g(�̂) are evaluated on
the grid � = (�1,… , �m), w.l.o.g., assuming it is an equally-spaced grid for simplicity, we have G(�̂) = Ag(�̂), where

A =

⎡

⎢

⎢

⎢

⎢

⎣

a 0 … 0
a a … 0
⋮ ⋮ ⋱ ⋮
a a … a

⎤

⎥

⎥

⎥

⎥

⎦

,

where a is the grid size.
The asymptotic distribution of G(�̂) is2:

G(�̂) − G(�0) =̇ N[Bias{G(�0)},Cov{G(�0)}],

where �0 is the true value of � and

Bias{G(�0)} = AD(�0)QBias(�0), Cov{G(�0)} = AD(�0)QCov(�0)QTD(�0)AT ,

where
D(�0) = Diag{g(�0)} − g(�0)g(�0)T , Bias(�0) = −{(�0) + s̈(�0)}−1ṡ(�0),

Cov(�0) = {(�0) + s̈(�0)}−1(�0){(�0) + s̈(�0)}−1,
and

s(�0) = c0||�0||, ṡ(�0) = c0
�0

||�0||
, s̈(�0) = c0

c0
||�0||

(Ip −
�0�T0
||�0||2

).

Here Ip is the p × p identity matrix and Diag{g(�0)} is a diagonal matrix with g(�0) as the diagonal components. (�0) is the
corresponding Fisher information matrix calculated as

(�) = QT [Wi(�)Wi(�)T +Wi(�)g(�)T + g(�)Wi(�)T − Diag{Wi(�)}]Q,

where Wi(�) is an m-vector and its j-th element is defined as wij(�) = gj(�){pij∕fj(�) − 1}, and Diag{Wi(�)} is an m × m
diagonal matrix withWi(�) on the diagonal. In practice, the true value�0 is unknown, so we replace�0 with �̂ in above formulas
to estimate the bias and covariance of G.
Now we move on to consider our two-sample test. As the null hypothesis defined where G =H , the true values �X0 = �Y 0.

Hence, we can pool the two groups X and Y together for estimating the parameter vector similarly as the simple bootstrap
procedure and obtain the estimate �̂p. Then we use �̂p in the calculation of the biases and the covariance matrices. Since the
two groups are independent, the asymptotic null distribution of G(�̂X) −H(�̂Y ) is

G(�̂X) −H(�̂Y ) =̇ N[Bias{G(�̂p)} − Bias{H(�̂p)},Cov{G(�̂p)} + Cov{H(�̂p)}]. (4)

Our two-sample K-S test statistics T defined in (3) is the maximum absolute difference between G(�̂p) andH(�̂p). Although
it is difficult to derive the null distribution of T analytically, we can use parametric bootstrap to simulate its null distribution
based on (4) and then estimate the p-value of the test. By doing so, since we only need to sample from a multivariate normal
distribution and therefore have avoided the estimation of Ĝ(b) and Ĥ (b) using g-modeling in each bootstrap iteration as in the
simple bootstrap procedure, the computational burden is greatly reduced. See Section S1.1 in the supplementary materials for
more details.
The accelerated bootstrap procedure based on the asymptotic null distribution derived in this section is computationally

more efficient than the simple bootstrap procedure described in Section 2.3, as we directly obtain bootstrap samples from the
multivariate normal distribution. However, it only provides an approximated p-value estimate which requires relatively large
sample sizes in both groups for the approximation to be accurate, especially in settings where the convergence of the asymptotic
distribution may be slow.

3 APPLICATIONS
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3.1 Malignant nodes analysis on intestinal surgery
We apply our method on a satellite nodes dataset of intestinal surgery in Gholami and others (2002).14 There are 844 cancer
patients who have removed satellite nodes for later testing. Each patient has a pair of (ni, Xi), i = 1,… , 844, where ni is the
number of removed satellites and Xi is the number of malignant satellites found. Binomial distribution is assumed as Xi ∼
Bin(ni,Θi), where Θi denotes the probability of any one satellite being malignant for the patient i.
To extend the real dataset into a two-group comparison setting, we simulate data based on these 844 pairs in three cases. We

add a binary group indicator C (C = 0 or C = 1) and randomly split data into two groups with equal size. Now we have

Θi|Ci = 0 ∼ G, Θi|Ci = 1 ∼ H.

G is estimated with all pairs with C = 0 andH is estimated with all pairs with C = 1 .
In the first case – null hypothesis, we directly apply g-modeling to estimate G andH , and then perform our two-sample test

with 99 bootstrap iterations. We repeat the random assignment procedure for 1, 000 times and obtain the histogram and Q-Q
plot of empirical p-values (see Figure 1a and Figure 1b). Both the histogram and the Q-Q plot shows a uniform distribution the
p-values which indicated insignificant difference in the distribution of the malignant probability of satellites between the two
randomly assigned groups, which is expected.
In the second case – alternative hypothesis 1, we keep Ĝ as the final estimated density for the group with C = 0, and for the

group with C = 1, we sample Θ̂i from Ĥ and implement the transformation Θ∗i = (1 − w)Θ̂i + wI(Θ̂i > 0) where 0 < w < 1
is a tuning parameter. Θ∗i is more distinct from Θ̂i with larger w. Here Θ∗i is always greater than Θi.
In the third case – alternative hypothesis 2, we also maintain Ĝ as the final estimated density for the group with C = 0, and

for the group with C = 1, we sample Θ̂i from Ĥ and implement the transformation Θ∗i = (1 − w)Θ̂i + w{0.5I(0 < Θ̂i <
1) + I(Θ̂i = 1)} where 0 < w < 1 is a tuning parameter. Θ∗i is more distinct from Θ̂i with larger w. Θ∗i can be different from Θi
in two directions – either larger than or smaller than Θi.
In both alternative hypotheses, X∗

i is generated from Bin(ni,Θ∗i ). Then we obtain the final estimated density for the group
C = 1 from the generated pairs (ni, X∗

i ). Through 99 bootstrap iterations, we compute the empirical p-values. The data generation
procedure is repeated 100 times with the same w, which ranges from 0 to 0.05 for the power plot in the alternative hypothesis
1, while w ∈ (0, 0.1) for the power plot in the alternative hypothesis 2. From Figure 2a and Figure 2b, we can see that the
power increases as w increases in both cases. However, the alternative case 1 has higher power than the alternative case 2 with
the same w. In the alternative case 1, the change can only occur in one direction. However the transformation in the alternative
case 2 involves two directions of change which reduces the final combined transformation. Therefore, with the same w, the
transformation in the alternative case 1 is more dramatic than that in the alternative case 2.

3.2 Differential expression analysis of single-cell RNA-seq data
Another application of our proposed two-sample test is the differential expression (DE) analysis of RNA sequencing (RNA-Seq)
or the more recent single-cell RNA sequencing (scRNA-seq) data. Such data is often sparse, i.e. have lots of zero counts,15–17 and
the gene distribution of scRNA-seq data is complex since there is substantial heterogeneity among different cell samples.18,19
Most importantly, since each measurement (read count for a given gene) from a sample depends on some sample-specific factors
(e.g. library size) of that sample, the measurements across samples are not identically distributed.
Since the true expression level of a gene can vary across samples (e.g., cells in scRNA-seq), we model it as the underlying

unknown parameters of interest (i.e., Θi and Λk) with g-modeling. The observed read counts (i.e., Xi and Yk) are generated
from these underlying parameters via a parametric distribution (e.g., zero-inflated Poisson) with the library size as a known
covariate. Many existing DE methods assume that the gene expression level follows some parametric distribution (e.g., normal
or gamma distributions) and are interested in detecting its locational changes between conditions. Our approach, however, use
the semi-parametric g-modeling framework and can detect distributional changes between conditions.
In the literature, a number of methods have been introduced to detect DE genes from scRNA-seq data. Model-based analysis

of single-cell transcriptomics (MAST) and single-cell differential expression (SCDE) fit two-stage models to handle inflated
zero counts.20,21 Nonparametric methods such as SigEMD, EMDomics and D3E address the multimodality issue in scRNA-seq
data22–24. However, as pointed out by Jaakkola and others (2016) andWang and others(2019),25,26 none of these methods is able
to handle inflated zero counts and multimodality issues simultaneously. We compare our method on a scRNA-seq dataset with
seven other existingmethods designed for differential expression analysis: (i)Model-based analysis of single-cell transcriptomics
(MAST) models scRNA-seq data with a mixture of two components. One component describes the unobserved or dropout
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measurements, and the other component explains the observed gene expression in cells.20 A two-part generalized linear model
is used to fit the data. MAST only considers the differences in location between the two groups. (ii) Single-cell differential
expression (SCDE) is a three-step Bayesian approach, including data filtering, finding an error model and differential expression
test.21 (iii) Single-cell Differential Distributions (scDD) is a mixture modelling method based on a Bayesian framework to detect
genes with expression changes in distributions between conditions.27 MAST, SCDE and scDD are all designed specifically
for scRNA-seq data. Four other methods designed for differential expression analysis in microarray or bulk RNA-seq data are
also included in our comparison. (iv) Differential expression analysis for sequence count data (DESeq) is based on a negative
binomial model with mean and variance linked through local regression.28 (v) Linear models for microarray and RNA-Seq
data (Limma-Voom) fit a gene-wise linear model on the gene expression values and applied modified t-statistical to test for
differential expressed genes.29 (vi) Reproducibility-optimized test statistic (ROTS) uses a modified t-statistic by maximizing
the reproducibility of top-ranked features across group-preserving bootstrap samples.30 (vii) A negative binomial generalized
log-linear model is fitted with likelihood ratio test on read counts by edgeR to detect DE genes.31
Accounting for the excess number of zero counts in scRNA-seq data, we modify our test statisitcs and the associated two

bootstrap procedures. Specifically, given a gene, we assume that the reads count (X) for that gene from each cell follow a Zero-
Inflated Poisson distribution ZIP (�, �) where � is the usual Poisson rate parameter and � is the excessive probability of zero
counts with the following probability mass function

p(X = k|�, �) =

{

� + (1 − �)e�, k = 0,

(1 − �)�
ke�

k!
, k > 0.

(5)

However, the Poisson expression rates and are different for different cells. These Poisson expression rates cannot be observed but
assumed to follow a certain distribution which can be estimated from the reads counts with g-modeling density estimation. We
denote G(�X) andH(�Y ) as the distributions of Poisson expression rates in two groups. We define �X and �Y as the excessive
probability of zeros in two groups. Then, the problem of DE analysis is to detect the difference between G(�X) and H(�Y ) as
well as the difference between �X and �Y . In such case, since �X and �Y also need to be estimated together with �X and �Y ,
we use a modified K-S test statistic defined as

T = max{max
j

|Ĝj(�̂X) − Ĥj(�̂Y )|, |�̂X − �̂Y |}. (6)

Note that here we apply the g-modeling method for a purpose different from that in Efron’s original paper. Instead of treating
the test statistics across all the genes as observations,2 here we model the read counts from a given gene across all the cells as
observations.
For the modified test statistic T defined in (6), a similar simple parametric bootstrap procedure with slight modifications can

be used. We first estimate �̂p together with �̂p by pooling two groups together. Then, in each bootstrap iteration, we simulate
data with the zero-inflated Poisson distribution according to (5) and estimate (Ĝ(b), �̂(b)X ) and (Ĥ

(b), �̂(b)Y ) using MLE from the
simulated data, respectively, and calculate T (b) as T (b) = max(maxj |Ĝ

(b)
j − Ĥ (b)

j |, |�̂(b)X − �̂(b)Y |).
The accelerated bootstrap procedure can also be adjusted accordingly. Specifically, we now have two parts in the modified

test statistics, so we define an augmented vector of parameters as �′ =
(

�
�

)

. Given Θi = �j and �, Xi follows a zero-inflated

Poisson distribution ZIP (�j , �). We can obtain the joint asymptotic distribution of �̂X − �̂Y and G(�̂X) −H(�̂Y ) in a similar
manner as the general case in Section 2.4. Here we also pool the two groups of sample together to estimate the augmented vector

of parameters as �̂′p =
(

�̂p
�̂p

)

for the asymptotic null distribution. Defining two transformation functions C(�̂′) =
[

�̂
G(�̂)

]

and

K(�′) =
[

�
g(�)

]

, we can then obtain the joint asymptotic multivariate normal distribution of �̂X − �̂Y and G(�̂X) −H(�̂Y ) as

[

�̂X − �̂Y
G(�̂X) −H(�̂Y )

]

=̇N[Bias{C(�̂′p)} − Bias{C(�̂′p)},Cov{C(�̂
′
p)} + Cov{C(�̂′p)}],

where
Bias{C(�̂′)} = BBias{K(�̂′)} = BK̇TBias(�̂′),

Cov{C(�̂′)} = BCov{K(�̂′)}BT = BK̇TCov(�̂′)K̇BT ,
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and

K̇ =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0
⋮ ġ
0

⎤

⎥

⎥

⎥

⎥

⎦

, ġ = QTD, B =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0
⋮ A
0

⎤

⎥

⎥

⎥

⎥

⎦

.

Here K̇ is the matrix of the first derivatives of K with respect to �′ when �′ takes the value �̂′p. ġ is the matrix of the first
derivatives of g with respect to � when we use �̂ to approximate �. The bias and covariance of �̂′ can be derived similarly as
in the simple case. See Section S1.2 in the supplementary materials for more details.
To combine the above asymptotic null distribution with bootstrap for p-value estimation, we can generate bootstrap samples

for the difference in � and the difference in cumulative density function jointly from using the above asymptotic multivariate
normal distribution.
In practical settings such as the zero-inflated Poisson case, the data is skewedwith an excess number of zero counts, and outliers

aremore likely to occur.We find that the asymptotic null distribution-based accelerated bootstrap proceduremay fail occasionally
when there are extreme outliers and consequently the estimated covariance matrix becomes singular. We use numerical remedies
to stabilize the covariance matrix (e.g., adding a constant diagonal matrix to it) to handle such issues.

3.2.1 Simulations with the zero-inflated Poisson model
We first evaluate our proposed approach with simulated data from the ZIP model. In particular, we simulate two samples as
follows

Xi ∼ ZIP (dXiΘi, �X), Yk ∼ ZIP (dY kΛk, �Y ), i, k = 1,…N,
dXi

∼ Unif (0.5, 1), dYk ∼ Unif (0.5, 1), �X = �Y = 0.5,
(7)

where dXi
and dYk are known constants modeling the sequencing depths (or library sizes), Θi and Λk are unknown parameters

modeling gene expression levels, and �X and �Y are unknown parameters modeling the excessive probabilities of zeros. Xi’s
and Yk’s are the simulated reads counts for a gene from two groups of cells.
Under the null hypothesis, we simulate both Θi and Λk from chi-square distribution with ten degrees of freedom, that is,

Θi ∼ �210 andΛk ∼ �
2
10.Under the alternative hypothesis, we simulateΘi andΛj from two chi-square distributions with different

degrees of freedom, respectively, Θi ∼ �210 and Λk ∼ �
2
10+Δ, where we vary the effect size Δ from 1 to 5. We use the modified

K-S statistic (6) to capture the difference between the distributions of Θi and Λk as well as the difference between �X and �Y .
We run 1000 simulations and useB = 99 bootstrap samples for each simulation to save computational cost. Figures 3a and 3b

show the histogram and Q-Q plot of the p-values estimated from data simulated under the null hypothesis, which is uniformly
distributed on (0, 1) as expected. Figure 3c shows the estimated distributions of Θ and Λ against the true distribution �210. We
see that there are some small but noticeable biases due to the semi-parametric g-modeling and penalized MLE at the tail and
peak points, which is expected.2 The estimated �X and �Y also seem reasonable as their histograms are centered around the true
value 0.5 as Figures 3d and 3e show.
Figure 4 shows the statistical power of the simple and accelerated bootstrap procedures with varying differences in degrees

of freedom between two chi-square distributions (Δ = 0 simulated under the null hypothesis, and Δ = 1,… , 5 simulated under
the alternative hypothesis), and with varying sample sizes (N = 100, 300, 500, 2000) in each group. We can see that the power
of both bootstrap procedures increases with larger differences between the two distributions. WhenΔ = 0, both procedures have
controlled type-I error rate at the predefined significance level � = 0.05. As Δ increases, the accelerated bootstrap procedure
has substantially lower power than the simple bootstrap procedure when the sample size is 100, but the power is similar for the
two methods when the sample size is 300 or larger.
Additional simulations based on normal, binomial and Poisson distributions are provided in Section S2 in the supplementary

materials. Furthermore, to compare the speed of the two bootstrap approaches, Figure 5 and Table S1 in the supplementary
materials show the computational time of the two bootstrap procedures with varying sample sizes for normal-based model. We
can see that the time increases linearly with sample size for both procedures. However, the accelerated bootstrap procedure is
about 30 to 50 times faster than the simple bootstrap procedure. Hence, the accelerated bootstrap procedure is more suitable
for datasets with more observations (e.g., N > 300 in each group) for being faster and reasonably powerful, while the simple
bootstrap procedure is more suitable for datasets with smaller sample sizes for being more powerful and reasonably fast.
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3.2.2 Real data analysis
We run our proposed two-sample test on a real scRNA-seq dataset on human embryonic cells in early development.32 We
compare 81 cells in embryonic day 3 (E3) to 190 cells embryonic day 4 (E4), similarly as performed in.33 There are dramatic
changes between these two days, so this subset is suitable for running differential expression analysis. We select 2000 genes
with the highest mean read counts across all cell lines and pick the genes with higher standard deviation when there are ties.
We use the total read counts for each cell line as the constants dXi

and dYk adjusted in the zero-inflated Poisson model (7). Due
to the relatively small sample size of this dataset, i.e., less than 200 cells in each group, the accelerated bootstrap procedure
based on asymptotic distributions (noted as ASY) will have lower power in detecting DE genes. Therefore, we focus on the
simple bootstrap procedure with our two-sample test based on the modified K-S statistic (6) (noted as KS) in this experiment.
We also apply MAST, ROTS, DESeq, Limma-Voom, SCDE, scDD and edgeR for comparison, based on the code in25. Since
we test on these 2000 genes simultaneously, we use Benjamini-Hochberg(BH) method to adjust the p-values and control for
multiple testing by calculating the false discovery rate (FDR) for each gene.34 Since most expressed genes have relatively small
FDR, we use 999 bootstrap samples for our test with early stopping rule and consider genes with FDR < 0.01 as differentially
expressed (DE). From Table 1, out test with the simple bootstrap procedure (KS) detect the largest number of DE genes among
the 2000 selected genes across all methods. An example where a DE gene can only detected by our KS method is provided in
Section S3 in the supplementary materials. The average expression of this gene is similar in the two groups but the shape of
gene distribution differs. The Venn diagrams in Figure 6 show that our KS method has significantly overlapping DE genes with
MAST, DESeq, SCDE, scDD and edgeR, while the overlapping DE gene list between our test and Limma-Voom or ROTS is
not significant as both overlapping p-values are greater than 0.05. Limma-Voom and ROTS were not specifically designed for
scRNA-seq data which might the reason for the poor agreement between our method and these two methods. ASY method also
has similar agreement with other existing methods (See Figure S2 in the supplementary materials for details). Moreover, the
two p-value estimation procedures for our test are highly consistently in the detection of DE genes.

3.2.3 Validation with real data-based simulation
Since we do not know the ground truth in the real dataset, to further assess the comparison between our method and the other
methods, we simulate data based on the real dataset. First, we restrict the data to a subset of 100 genes selected with the highest
mean and standard deviation of read counts across all cell lines. Second, based on the results from our KS method, we select
those genes with FDR < 0.01 as true DE genes and the remaining ones as true null genes. For the true null genes, we pool
the two groups together to estimate the distribution of gene expression and the probability of excessive zero counts using g-
modelling. For the true DE genes, we estimate the distribution of the gene expression and the probability of excessive zero
counts separately for the two groups using g-modelling. Third, based on the estimated distributions of gene expression and the
estimated probability of excessive zero counts, we simulate the raw reads counts from our zero-inflated Poisson model. Finally,
we apply our KS method, ASY method and the other methods to our simulated data to identify DE genes. To account for the
randomness of data generation, we repeat the above simulation five times.
With our KS method, 86 DE genes and 14 null genes are detected from the real data, and therefore they are used as true DE

genes and true null genes in our simulations. On average, our KS method detects 84 true DE genes and mis-identifies 3 genes.
However our ASY method shows poorer performance with 70 true DE genes found and mis-identifies 16 genes. However, there
are no null genes mis-identified as DE genes by ASY method. Due to the small sample size of this experiment, the ASY method
is more conservative than the KS method, and therefore the ASY method detected fewer DE genes. Among other methods,
scDD detects 81 true DE genes as the most but mis-identifies 5 genes. Limma-Voom detects 76 DE genes among which 6 are
misidentified. Similarly as Limma-Voom, there is 79 DE genes found by edgeR with 7 of them mis-identified. MAST does not
detect any true null genes as DE genes, but it only detects 70 DE genes. ROTS has the poorest performance with both low power
and high FDR. SCDE has similar performance as DESeq, where their power is similar to MAST but FDR is higher. Table 2
shows the observed FDR and AUC of all the methods in all five simulations, with the average ROC curves shown in Figure 7. We
can see that our KS method, ASY method and MAST have controlled FDRs at level 0.01, while ROTS, DESeq, Limma-Voom,
SCDE, scDD and edgeR have inflated FDRs. In terms of AUC, our KS method and ASY methods rank the top two, followed by
MAST and scDD, and ROTS ranks the last. When ignoring the choice of p-value cutoff, the rankings of the p-values from our
KS and ASY methods were very similar and therefore the AUC of the ASY method is similar with the KS method. Although
scDD has high power in detecting DE genes, its relatively high FDR may compromise its performance of real data application.
Overall, both our KS method and ASY method outperform other methods in this comparison.
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4 DISCUSSION

In many statistical problems, we observe two unknown distributions indirectly and aim to investigate the difference between
them.35 The unknown distribution can be estimated through deconvolution, in accordance with existing methods.12 However,
thesemethods are only designed for one-sample estimation. Thus, we combine the existing g-modellingmethodwith two-sample
K-S test statistic for two-sample density comparison. In terms of p-value estimation, we propose two versions of bootstrap pro-
cedures to cover the wide range of sample sizes and balance the needs for accuracy and speed. For small sample size, the simple
bootstrap procedure has higher power than the accelerated bootstrap procedure for detecting the difference in distributions. For
large sample size, the accelerated bootstrap procedure based on the asymptotic null distribution provides similar statistical power
while being much more computationally efficient than the simple bootstrap procedure.
Our approach can be applied to a wide range of areas, as our approach is capable of handling various types of data including

count or continuous outcomes. In the analysis of surgical nodes data with binomial models, our proposed test has controlled
type I error and sufficient power in several cases of differences in distribution. In terms of scRNA-seq data application, the
existing parametric methods all assumed that the unknown gene distributions follow a particular parametric family, and only
detect changes in one (or a few) parameters (usually just the location parameter) of that family, which is restrictive. On the
contrary, our proposed test assume that the underlying parameters (i.e., true expression levels of a gene in different samples)
follow unknown distributions, and g-modeling allows us to model these unknown distributions and detect changes in distribution
from one condition to the other. Compared with other existing methods for differential expression analysis on scRNA-seq data,
our approach can detect more DE genes and has well-controlled false discovery rate.
There are several directions for potential future research. The current choice of grid for discretizing the sample space of �

is subjective, and data adaptive approaches could be considered to obtain more efficient density estimation. The computation
efficiency might be further improved by the deriving the null distribution the our test statistics directly to avoid the use of any
bootstrap procedure. The accelerated bootstrap procedure might be calibrated to boost its power for data with small sample size.
The two-group comparison can be further extended to multi-group comparison with a k-sample test statistics. The adjustment for
additional covariates could be included in the model to control for confounding effects and to improve the the statistical power.
We can also extend our two-sample test to generalized linear mixed models to account for correlated or clustered observations.
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FIGURE 1 (a) Histogram for estimated p-values from 1000 simulations under the null hypothesis and (b) Q-Q plot for estimated
p-values against U (0, 1).

(a) Alternative case 1 (b) Alternative case 2

FIGURE 2 Power plots for alternative cases (a) 1 and (b) 2. For each line, the power changes with the difference in � varying
from 0.1 to 1. The vertical bar represents the mean ± sd for each power value.

TABLE 1 Number of DE genes found among 2000 selected genes by proposed methods and other methods.

Method KS ASY MAST ROTS DESeq Limma-Voom SCDE scDD edgeR

DE genes 1748 1294 1570 1647 1398 1546 1492 1642 1612
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FIGURE 3 (a) Histogram for estimated p-values from 1000 simulations, (b) Q-Q plot of estimated p-values against U (0, 1), (c)
estimated densities for two simulated samples against the true density �210, and histograms for estimated (d) �X and (e) �Y .
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(a) Simple bootstrap (b) Accelerated bootstrap

FIGURE 4 Power plots of proposed (a) simple and (b) accelerated bootstrap procedures with varying sample sizes. For each
line, the power changes with the difference in degrees of freedom varying from 0 to 5. The vertical bars represent the mean ±
sd for each power value.

FIGURE 5 Log-log plot of Running time (in seconds) for proposed simple and accelerated bootstrap procedures against sample
size in each group under null hypothesis for normal-based model.
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FIGURE 6 Venn diagrams for numbers of DE genes found by proposed method (KS) versus other methods with p-values from
hypergeometric tests.
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TABLE 2 Observed FDRs and AUCs of proposed methods (KS and ASY) and other methods in five simulations.

Simulation 1 2 3 4 5 Mean (SD)

Observed FDR

KS 0.00 0.07 0.00 0.00 0.00 0.01 (0.03)
ASY 0.00 0.00 0.00 0.00 0.00 0.00 (0.00)
MAST 0.00 0.00 0.00 0.00 0.00 0.00 (0.00)
ROTS 0.07 0.00 0.00 0.64 0.79 0.30 (0.38)
DESeq 0.07 0.29 0.36 0.07 0.14 0.19 (0.13)

Limma-Voom 0.29 0.36 0.79 0.36 0.36 0.43 (0.20)
SCDE 0.00 0.36 0.43 0.21 0.07 0.21 (0.18)
scDD 0.29 0.14 0.36 0.14 0.29 0.24 (0.10)
edgeR 0.43 0.57 0.79 0.43 0.50 0.54 (0.15)

AUC

KS 1.00 1.00 1.00 1.00 1.00 1.00 (0.00)
ASY 0.98 1.00 0.98 0.99 0.99 0.99 (0.01)
MAST 0.98 0.97 0.98 0.94 0.94 0.96 (0.02)
ROTS 0.81 0.80 0.71 0.42 0.48 0.64 (0.18)
DESeq 0.84 0.83 0.80 0.86 0.85 0.84 (0.02)

Limma-Voom 0.84 0.81 0.74 0.85 0.82 0.81 (0.04)
SCDE 0.96 0.81 0.77 0.80 0.91 0.85 (0.08)
scDD 0.95 0.99 0.93 0.97 0.95 0.96 (0.02)
edgeR 0.85 0.82 0.76 0.82 0.82 0.81 (0.03)

FIGURE 7Mean ROC curves across five simulations for eight methods.



Jingyi Zhai and Hui Jiang 17

How to cite this article:







P_value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0



Uniform quantiles

S
am

pl
e 

qu
an

til
es

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Simulated ranges n = 1000

Range
99% central range
95% central range
90% central range



0.000

0.005

0.010

0.015

0.00 0.25 0.50 0.75 1.00
θ

g(
θ) Beta(2,2)

Estimated f

Estimated g





C1.png



C1.png



C2.png



C2.png



C3.png



C3.png



C4.png



C4.png



C5.png



C5.png



C6.png



C6.png



C7.png



C7.png



C8.png



C8.png



C9.png



C9.png



C10.png



C10.png



C11.png



C11.png



C12.png



C12.png



C13.png



C13.png



C14.png



C15.png



DIMT1 cdf.png



DIMT1 density estimation.png







Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Two-sample test with g-modeling and its applications

Jingyi Zhai | Hui Jiang

Department of Biostatistics, University of
Michigan, MI, USA

Correspondence
Hui Jiang, Department of Biostatistics,
University of Michigan, 1415 Washington
Heights, Ann Arbor, MI 48109. Email:
jianghui@umich.edu

Summary

Many real data analyses involve two-sample comparisons in location or in distribu-
tion.Most existingmethods focus on problemswhere observations are independently
and identically distributed in each group. However, in some applications the observed
data are not identically distributed but associated with some unobserved parame-
ters which are identically distributed. To address this challenge, we propose a novel
two-sample testing procedure as a combination of the g-modeling density estimation
introduced by Efron and the two-sample Kolmogorov-Smirnov test. We also propose
efficient bootstrap algorithms to estimate the statistical significance for such tests.We
demonstrate the utility of the proposed approach with two biostatistical applications:
the analysis of surgical nodes data with binomial models and differential expression
analysis of single-cell RNA sequencing (scRNA-seq) data with zero-inflated Poisson
model.

KEYWORDS:
Two-sample test, g-modeling; Bootstrap, Differential expression analysis, Single-cell RNA-seq, Zero-
inflated Poisson.

1 INTRODUCTION

Two-sample comparison occurs frequently in statistical analysis, for example, the testing of the drug effect between the control
and the treatment groups in clinical trials. Relatively simple comparisons are often conducted to detect the difference in loca-
tion between two groups where the parametric two-sample t-test or the non-parametric Wilcoxon rank-sum test is widely used.
Comparing two samples in distribution is more challenging than comparing them in location. For more complicated and noisy
data, the two-sample Kolmogorov-Smirnov (K-S) test is often used to detect the difference between two unknown distributions
by comparing the empirical distributions of two groups of observations.1 All the above tests and most other widely used statis-
tical tests assume that the observations in each group are independently and identically distributed (i.i.d.). Unfortunately, such
assumption may be violated in complex real-world problems and the problem becomes harder when the observations are no
longer identically distributed. For instance, we may have two groups of independent samples where each observation follows
the same type of distribution but with different underlying parameters such as different means. If we assume that these unknown
parameters follow certain distributions, the objective of the two-sample comparison becomes the comparison of the distribution
of the underlying parameters in the two groups. Specifically, consider the situation where there are two groups of observations
X1,… , XNX

and Y1,… , YNY
, where

Xi
ind∼ pi(Xi|Θi), Yk

ind∼ pk(Yk|Λk), i = 1,… , NX , k = 1,… , NY ,

and Θi
ind∼ G, Λk

ind∼ H,
(1)
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whereΘi’s andΛk’s are two groups of unknown quantities drawn from two unknown distributionsG andH , respectively, and pi’s
and pk’s are some known parametric densities (or probability mass functions for discrete data). Our interest is in testing whether
G equalsH . Under this model,Xi’s (and Yk’s) are independently but non-identically distributed, e.g., whenXi is binomial with
parameters ni and Θi, where ni’s are fixed but different quantities for different i’s. In such case, the standard two-sample K-S
test is no longer applicable.
Sincewe only observeXi’s and Yk’s but notΘi’s andΛk’s, we cannot compare the two unknown distributionsG andH directly.

The related one-sample problem, i.e., the problem of estimating G from Xi’s (and similarly to estimate H from Yk’s), a.k.a.
empirical Bayes deconvolution,3 has been well-studied with many methods developed,4–11 but largely they suffer from intensive
computation and slow convergence.12 Recently, a g-modeling approach was proposed by Efron for the efficient estimation of G
(orH) in such case.2
To address the above two-sample comparison problem, we propose a novel two-sample testing procedure combining the g-

modelling method for density estimation and the two-sample Kolmogorov-Smirnov (K-S) test statistic to detect for differences
in distribution between two samples. We also develop efficient bootstrap algorithms to estimate the statistical significance for
such tests. Our approach can be applied on a wide range of data types. We apply our approach on simulated data from a surgical
nodes dataset under two different scenarios. In this application, the numbers of malignant satellite from patients are assumed to
follow binomial distributions. Our test is shown to have high power to detect small difference between the two groups. Moreover,
we also applied our test to the differential expression (DE) analysis on a real scRNA-seq dataset. Different from the original
purpose of using g-modeling to model the test statistics across all the genes to controlling for multiple testing and false discovery
rate,2 here we model the read counts from each gene across all the samples to detect DE genes individually. Comparing with
other existing DE methods, our test can detect more DE genes and has higher accuracy.
The rest of the paper is organized as follows: In Section 2, we introduce the notations and briefly review the g-modelling

method for density estimation. We then introduce our proposed approach for two-sample tests in distribution. Section 3 presents
two applications: the analysis of surgical nodes data with binomial models and DE analysis of scRNA-seq data with zero-inflated
Poisson model. Section 4 concludes the paper with a discussion.

2 METHODS

Since we build our approach for two-sample comparison based on the g-modeling method, we first review it briefly in the section
below.

2.1 One-sample density estimation with g-modeling
Starting with the one-sample density estimation problem based on the observations X1,… , XN , we follow the same setting as
the g-modelling method,2 where the sample space of Θ is discretized as � = (�1,… , �m) for computational convenience. The
g-modelling framework further assumes that Θ follows a semi-parametric exponential family distribution as follows:

Pr(Θ = �j) = gj(�) = exp{QT
j � − �(�)}, j = 1,… , m,

where � is a p-dimensional vector of parameters, Q is a fixed and known m × p matrix taken as the design matrix from
natural spline basis,2 Qj is the j-th row of Q (as a p-dimensional column vector), and the normalization term �(�) is
�(�) = log

∑m
j=1 exp(Q

T
j �). Conditional onΘi, the observedXi follows a known parametric distribution asXi

ind∼ pi(Xi|Θi), for
i = 1,… , N, and we define pij = pi(Xi = xi|Θi = �j). Then the marginal probability of Xi and log-likelihood of the observed
data can be computed as Pr(Xi = xi) = fi(�) =

∑m
j=1 pijgj(�), and li(�) = logfi(�), respectively. Here we assume discreteXi

(or discretizedXi if it was continuous). In order to improve the accuracy for estimation, the log-likelihood is regularized with a
l2 penalty term. Hence, the objective function for maximum likelihood estimation is m(�) = l(�) − s(�), where s(�) = c0‖�‖
with c0 being a tuning parameter which we take as 1. Now � can be estimated by maximizing the above penalized log-likelihood.
We denote the maximum likelihood estimator (MLE) of � as �̂ and obtain the estimated gj(�) by gj(�̂) for j = 1,… , m.
In practice, we find that discretized Θ may introduce numerical problems, especially when we are dealing with scRNA-seq

data where the read counts are sparse and have a large range. For instance, it could happen that pij = 0 for all j = 1,… , m,
which leads infinite log-likelihood. Therefore, we make an adjustment in the calculation of pij to avoid such problem. For each



Jingyi Zhai and Hui Jiang 3

xi, we estimate its MLE �̂∗i , and calculate pij for the �j that is the closest to �̂
∗
i as pij = pi(Xi = xi|Θi = �̂∗i ). For all other j, we

still calculate pij as pij = pi(Xi = xi|Θi = �j).

2.2 Two-sample comparison based on g-modeling
Here we propose a two-sample test built on the above one-sample density estimation procedure using g-modelling. With the
notations in (1), assume Θi and Λk have the same discretized sample space � = (�1,… , �m), g(�X) and ℎ(�Y ) are the semi-
parametric distributions for G andH respectively, and have the following form

Pr(Θi = �j) = gj(�X) = exp{QT
j �X − �(�X)}, for j = 1,… , m,

P r(Λk = �j) = ℎj(�Y ) = exp{QT
j �Y − �(�Y )}, for j = 1,… , m,

(2)

whereQ is a fixed and known m× p structure matrix for both g and ℎ, and �X and �Y are parameters that can be estimated with
g-modeling using the data from the two groups, respectively. To test for the difference between the two distributions G and H
against the null hypothesisH0 ∶ G = H , we use the two-sample K-S test statistic which can be calculated as

T = max
j

|Ĝj(�̂X) − Ĥj(�̂Y )|, j = 1,… , m, (3)

where Ĝj and Ĥj are the values of estimated cumulative distribution functions (CDFs) ofG andH evaluated at �j , respectively.
Different from the generalized linear mixed model introduced originally for two-sample comparison when changes in location

between two distributions are of concern,2 our two-sample test can detect changes not only in location but also in distribution.

2.3 Simple bootstrap procedure for p-value estimation
To estimate the statistical significance for the test statistic T defined in (3), we can use a simple parametric bootstrap procedure
to directly simulate the null distribution of T . Under the null hypothesis, G andH are identical. Therefore, we first pool the two
groups together and employ the g-modeling approach to obtain a pooled density estimate ĝ(�̂p). Then, for the b-th bootstrap
iteration, b = 1,… , B, we take the following steps:

1. Sample Θ(b)i , i = 1,… , NX , and Λ
(b)
k , k = 1,… , NY , with respect to ĝ(�̂p).

2. Sample X(b)
i from pi(Xi|Θ

(b)
i ), i = 1,… , NX , and Y

(b)
k from pk(Yk|Λ

(b)
k ), k = 1,… , NY .

3. Estimate Ĝ(b) from X(b)
1 ,… , X(b)

NX
and Ĥ (b) from Y (b)1 ,… , Y (b)NY

using g-modeling.

4. Calculate T (b) = max
j

|Ĝ(b)j − Ĥ (b)
j |, j = 1,… , m.

Finally, we estimate the p-value as p̂ = (
∑B
b=1 1T (b)≥T +1)∕(B+1),where we add one to both the numerator and the denominator

to avoid a p-value of zero.
Since MLE problems need to be solved for each bootstrap iteration, the above simple bootstrap procedure may be compu-

tationally intensive, especially when there are a large number of tests to be performed. For instance, in DE analysis one often
needs to test for thousands of genes. In order to reduce the computational load, we employ an early stopping rule in our experi-
ments.13 Specifically, after the b-th bootstrap iteration, we calculate p̂∗b =

∑b
l=1 1T (l)≥T ∕b. If p̂

∗
b > (a∕b+ c)∕(1 + c) where a and

c are some constants, then we stop the bootstrap procedure and output p̂s = p̂∗b . Otherwise, the bootstrap procedure will continue
until b = B and outputs p̂s = p̂∗B , where p̂

s is the final p-value estimate for our two-sample test. Following recommendation,13
we take c = (1 + �) × p0∕(1 − p0), where p0 is the p-value cutoff, and a and � are parameters of choice. In our application, the
p-value cutoff is chosen as p0 = 0.01, and we set a = 4, � = 0.4. Thus, c = 0.0141.

2.4 Accelerated bootstrap procedure based on asymptotic distribution of the test statistic
From our experiments, we find that the simple bootstrap procedure described in Section 2.3 provides accurate p-value estimates,
but at the price of intensive computation, due to the need to estimate Ĝ(b) and Ĥ (b) using g-modeling in each bootstrap iteration.
In this section, we propose an accelerated bootstrap procedure based on approximating the null distribution of the test statistic
using large sample theory.
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SupposeX and Y are sampled from exponential family distributions such as normal, Poisson or binomial distributions. With
g-modeling, we assume that G andH as semi-parametric exponential distributions as defined in (2). After obtaining the MLE
of � denoted as �̂, we denote the estimated PDF and CDF of Θ as g(�̂) and G(�̂). Since both G(�̂) and g(�̂) are evaluated on
the grid � = (�1,… , �m), w.l.o.g., assuming it is an equally-spaced grid for simplicity, we have G(�̂) = Ag(�̂), where

A =

⎡

⎢

⎢

⎢

⎢

⎣

a 0 … 0
a a … 0
⋮ ⋮ ⋱ ⋮
a a … a

⎤

⎥

⎥

⎥

⎥

⎦

,

where a is the grid size.
The asymptotic distribution of G(�̂) is2:

G(�̂) − G(�0) =̇ N[Bias{G(�0)},Cov{G(�0)}],

where �0 is the true value of � and

Bias{G(�0)} = AD(�0)QBias(�0), Cov{G(�0)} = AD(�0)QCov(�0)QTD(�0)AT ,

where
D(�0) = Diag{g(�0)} − g(�0)g(�0)T , Bias(�0) = −{(�0) + s̈(�0)}−1ṡ(�0),

Cov(�0) = {(�0) + s̈(�0)}−1(�0){(�0) + s̈(�0)}−1,
and

s(�0) = c0||�0||, ṡ(�0) = c0
�0

||�0||
, s̈(�0) = c0

c0
||�0||

(Ip −
�0�T0
||�0||2

).

Here Ip is the p × p identity matrix and Diag{g(�0)} is a diagonal matrix with g(�0) as the diagonal components. (�0) is the
corresponding Fisher information matrix calculated as

(�) = QT [Wi(�)Wi(�)T +Wi(�)g(�)T + g(�)Wi(�)T − Diag{Wi(�)}]Q,

where Wi(�) is an m-vector and its j-th element is defined as wij(�) = gj(�){pij∕fj(�) − 1}, and Diag{Wi(�)} is an m × m
diagonal matrix withWi(�) on the diagonal. In practice, the true value�0 is unknown, so we replace�0 with �̂ in above formulas
to estimate the bias and covariance of G.
Now we move on to consider our two-sample test. As the null hypothesis defined where G =H , the true values �X0 = �Y 0.

Hence, we can pool the two groups X and Y together for estimating the parameter vector similarly as the simple bootstrap
procedure and obtain the estimate �̂p. Then we use �̂p in the calculation of the biases and the covariance matrices. Since the
two groups are independent, the asymptotic null distribution of G(�̂X) −H(�̂Y ) is

G(�̂X) −H(�̂Y ) =̇ N[Bias{G(�̂p)} − Bias{H(�̂p)},Cov{G(�̂p)} + Cov{H(�̂p)}]. (4)

Our two-sample K-S test statistics T defined in (3) is the maximum absolute difference between G(�̂p) andH(�̂p). Although
it is difficult to derive the null distribution of T analytically, we can use parametric bootstrap to simulate its null distribution
based on (4) and then estimate the p-value of the test. By doing so, since we only need to sample from a multivariate normal
distribution and therefore have avoided the estimation of Ĝ(b) and Ĥ (b) using g-modeling in each bootstrap iteration as in the
simple bootstrap procedure, the computational burden is greatly reduced. See Section S1.1 in the supplementary materials for
more details.
The accelerated bootstrap procedure based on the asymptotic null distribution derived in this section is computationally

more efficient than the simple bootstrap procedure described in Section 2.3, as we directly obtain bootstrap samples from the
multivariate normal distribution. However, it only provides an approximated p-value estimate which requires relatively large
sample sizes in both groups for the approximation to be accurate, especially in settings where the convergence of the asymptotic
distribution may be slow.

3 APPLICATIONS
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3.1 Malignant nodes analysis on intestinal surgery
We apply our method on a satellite nodes dataset of intestinal surgery in Gholami and others (2002).14 There are 844 cancer
patients who have removed satellite nodes for later testing. Each patient has a pair of (ni, Xi), i = 1,… , 844, where ni is the
number of removed satellites and Xi is the number of malignant satellites found. Binomial distribution is assumed as Xi ∼
Bin(ni,Θi), where Θi denotes the probability of any one satellite being malignant for the patient i.
To extend the real dataset into a two-group comparison setting, we simulate data based on these 844 pairs in three cases. We

add a binary group indicator C (C = 0 or C = 1) and randomly split data into two groups with equal size. Now we have

Θi|Ci = 0 ∼ G, Θi|Ci = 1 ∼ H.

G is estimated with all pairs with C = 0 andH is estimated with all pairs with C = 1 .
In the first case – null hypothesis, we directly apply g-modeling to estimate G andH , and then perform our two-sample test

with 99 bootstrap iterations. We repeat the random assignment procedure for 1, 000 times and obtain the histogram and Q-Q
plot of empirical p-values (see Figure 1a and Figure 1b). Both the histogram and the Q-Q plot shows a uniform distribution the
p-values which indicated insignificant difference in the distribution of the malignant probability of satellites between the two
randomly assigned groups, which is expected.
In the second case – alternative hypothesis 1, we keep Ĝ as the final estimated density for the group with C = 0, and for the

group with C = 1, we sample Θ̂i from Ĥ and implement the transformation Θ∗i = (1 − w)Θ̂i + wI(Θ̂i > 0) where 0 < w < 1
is a tuning parameter. Θ∗i is more distinct from Θ̂i with larger w. Here Θ∗i is always greater than Θi.
In the third case – alternative hypothesis 2, we also maintain Ĝ as the final estimated density for the group with C = 0, and

for the group with C = 1, we sample Θ̂i from Ĥ and implement the transformation Θ∗i = (1 − w)Θ̂i + w{0.5I(0 < Θ̂i <
1) + I(Θ̂i = 1)} where 0 < w < 1 is a tuning parameter. Θ∗i is more distinct from Θ̂i with larger w. Θ∗i can be different from Θi
in two directions – either larger than or smaller than Θi.
In both alternative hypotheses, X∗

i is generated from Bin(ni,Θ∗i ). Then we obtain the final estimated density for the group
C = 1 from the generated pairs (ni, X∗

i ). Through 99 bootstrap iterations, we compute the empirical p-values. The data generation
procedure is repeated 100 times with the same w, which ranges from 0 to 0.05 for the power plot in the alternative hypothesis
1, while w ∈ (0, 0.1) for the power plot in the alternative hypothesis 2. From Figure 2a and Figure 2b, we can see that the
power increases as w increases in both cases. However, the alternative case 1 has higher power than the alternative case 2 with
the same w. In the alternative case 1, the change can only occur in one direction. However the transformation in the alternative
case 2 involves two directions of change which reduces the final combined transformation. Therefore, with the same w, the
transformation in the alternative case 1 is more dramatic than that in the alternative case 2.

3.2 Differential expression analysis of single-cell RNA-seq data
Another application of our proposed two-sample test is the differential expression (DE) analysis of RNA sequencing (RNA-Seq)
or the more recent single-cell RNA sequencing (scRNA-seq) data. Such data is often sparse, i.e. have lots of zero counts,15–17 and
the gene distribution of scRNA-seq data is complex since there is substantial heterogeneity among different cell samples.18,19
Most importantly, since each measurement (read count for a given gene) from a sample depends on some sample-specific factors
(e.g. library size) of that sample, the measurements across samples are not identically distributed.
Since the true expression level of a gene can vary across samples (e.g., cells in scRNA-seq), we model it as the underlying

unknown parameters of interest (i.e., Θi and Λk) with g-modeling. The observed read counts (i.e., Xi and Yk) are generated
from these underlying parameters via a parametric distribution (e.g., zero-inflated Poisson) with the library size as a known
covariate. Many existing DE methods assume that the gene expression level follows some parametric distribution (e.g., normal
or gamma distributions) and are interested in detecting its locational changes between conditions. Our approach, however, use
the semi-parametric g-modeling framework and can detect distributional changes between conditions.
In the literature, a number of methods have been introduced to detect DE genes from scRNA-seq data. Model-based analysis

of single-cell transcriptomics (MAST) and single-cell differential expression (SCDE) fit two-stage models to handle inflated
zero counts.20,21 Nonparametric methods such as SigEMD, EMDomics and D3E address the multimodality issue in scRNA-seq
data22–24. However, as pointed out by Jaakkola and others (2016) andWang and others(2019),25,26 none of these methods is able
to handle inflated zero counts and multimodality issues simultaneously. We compare our method on a scRNA-seq dataset with
seven other existingmethods designed for differential expression analysis: (i)Model-based analysis of single-cell transcriptomics
(MAST) models scRNA-seq data with a mixture of two components. One component describes the unobserved or dropout
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measurements, and the other component explains the observed gene expression in cells.20 A two-part generalized linear model
is used to fit the data. MAST only considers the differences in location between the two groups. (ii) Single-cell differential
expression (SCDE) is a three-step Bayesian approach, including data filtering, finding an error model and differential expression
test.21 (iii) Single-cell Differential Distributions (scDD) is a mixture modelling method based on a Bayesian framework to detect
genes with expression changes in distributions between conditions.27 MAST, SCDE and scDD are all designed specifically
for scRNA-seq data. Four other methods designed for differential expression analysis in microarray or bulk RNA-seq data are
also included in our comparison. (iv) Differential expression analysis for sequence count data (DESeq) is based on a negative
binomial model with mean and variance linked through local regression.28 (v) Linear models for microarray and RNA-Seq
data (Limma-Voom) fit a gene-wise linear model on the gene expression values and applied modified t-statistical to test for
differential expressed genes.29 (vi) Reproducibility-optimized test statistic (ROTS) uses a modified t-statistic by maximizing
the reproducibility of top-ranked features across group-preserving bootstrap samples.30 (vii) A negative binomial generalized
log-linear model is fitted with likelihood ratio test on read counts by edgeR to detect DE genes.31
Accounting for the excess number of zero counts in scRNA-seq data, we modify our test statisitcs and the associated two

bootstrap procedures. Specifically, given a gene, we assume that the reads count (X) for that gene from each cell follow a Zero-
Inflated Poisson distribution ZIP (�, �) where � is the usual Poisson rate parameter and � is the excessive probability of zero
counts with the following probability mass function

p(X = k|�, �) =

{

� + (1 − �)e�, k = 0,

(1 − �)�
ke�

k!
, k > 0.

(5)

However, the Poisson expression rates and are different for different cells. These Poisson expression rates cannot be observed but
assumed to follow a certain distribution which can be estimated from the reads counts with g-modeling density estimation. We
denote G(�X) andH(�Y ) as the distributions of Poisson expression rates in two groups. We define �X and �Y as the excessive
probability of zeros in two groups. Then, the problem of DE analysis is to detect the difference between G(�X) and H(�Y ) as
well as the difference between �X and �Y . In such case, since �X and �Y also need to be estimated together with �X and �Y ,
we use a modified K-S test statistic defined as

T = max{max
j

|Ĝj(�̂X) − Ĥj(�̂Y )|, |�̂X − �̂Y |}. (6)

Note that here we apply the g-modeling method for a purpose different from that in Efron’s original paper. Instead of treating
the test statistics across all the genes as observations,2 here we model the read counts from a given gene across all the cells as
observations.
For the modified test statistic T defined in (6), a similar simple parametric bootstrap procedure with slight modifications can

be used. We first estimate �̂p together with �̂p by pooling two groups together. Then, in each bootstrap iteration, we simulate
data with the zero-inflated Poisson distribution according to (5) and estimate (Ĝ(b), �̂(b)X ) and (Ĥ

(b), �̂(b)Y ) using MLE from the
simulated data, respectively, and calculate T (b) as T (b) = max(maxj |Ĝ

(b)
j − Ĥ (b)

j |, |�̂(b)X − �̂(b)Y |).
The accelerated bootstrap procedure can also be adjusted accordingly. Specifically, we now have two parts in the modified

test statistics, so we define an augmented vector of parameters as �′ =
(

�
�

)

. Given Θi = �j and �, Xi follows a zero-inflated

Poisson distribution ZIP (�j , �). We can obtain the joint asymptotic distribution of �̂X − �̂Y and G(�̂X) −H(�̂Y ) in a similar
manner as the general case in Section 2.4. Here we also pool the two groups of sample together to estimate the augmented vector

of parameters as �̂′p =
(

�̂p
�̂p

)

for the asymptotic null distribution. Defining two transformation functions C(�̂′) =
[

�̂
G(�̂)

]

and

K(�′) =
[

�
g(�)

]

, we can then obtain the joint asymptotic multivariate normal distribution of �̂X − �̂Y and G(�̂X) −H(�̂Y ) as

[

�̂X − �̂Y
G(�̂X) −H(�̂Y )

]

=̇N[Bias{C(�̂′p)} − Bias{C(�̂′p)},Cov{C(�̂
′
p)} + Cov{C(�̂′p)}],

where
Bias{C(�̂′)} = BBias{K(�̂′)} = BK̇TBias(�̂′),

Cov{C(�̂′)} = BCov{K(�̂′)}BT = BK̇TCov(�̂′)K̇BT ,
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and

K̇ =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0
⋮ ġ
0

⎤

⎥

⎥

⎥

⎥

⎦

, ġ = QTD, B =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0
⋮ A
0

⎤

⎥

⎥

⎥

⎥

⎦

.

Here K̇ is the matrix of the first derivatives of K with respect to �′ when �′ takes the value �̂′p. ġ is the matrix of the first
derivatives of g with respect to � when we use �̂ to approximate �. The bias and covariance of �̂′ can be derived similarly as
in the simple case. See Section S1.2 in the supplementary materials for more details.
To combine the above asymptotic null distribution with bootstrap for p-value estimation, we can generate bootstrap samples

for the difference in � and the difference in cumulative density function jointly from using the above asymptotic multivariate
normal distribution.
In practical settings such as the zero-inflated Poisson case, the data is skewedwith an excess number of zero counts, and outliers

aremore likely to occur.We find that the asymptotic null distribution-based accelerated bootstrap proceduremay fail occasionally
when there are extreme outliers and consequently the estimated covariance matrix becomes singular. We use numerical remedies
to stabilize the covariance matrix (e.g., adding a constant diagonal matrix to it) to handle such issues.

3.2.1 Simulations with the zero-inflated Poisson model
We first evaluate our proposed approach with simulated data from the ZIP model. In particular, we simulate two samples as
follows

Xi ∼ ZIP (dXiΘi, �X), Yk ∼ ZIP (dY kΛk, �Y ), i, k = 1,…N,
dXi

∼ Unif (0.5, 1), dYk ∼ Unif (0.5, 1), �X = �Y = 0.5,
(7)

where dXi
and dYk are known constants modeling the sequencing depths (or library sizes), Θi and Λk are unknown parameters

modeling gene expression levels, and �X and �Y are unknown parameters modeling the excessive probabilities of zeros. Xi’s
and Yk’s are the simulated reads counts for a gene from two groups of cells.
Under the null hypothesis, we simulate both Θi and Λk from chi-square distribution with ten degrees of freedom, that is,

Θi ∼ �210 andΛk ∼ �
2
10.Under the alternative hypothesis, we simulateΘi andΛj from two chi-square distributions with different

degrees of freedom, respectively, Θi ∼ �210 and Λk ∼ �
2
10+Δ, where we vary the effect size Δ from 1 to 5. We use the modified

K-S statistic (6) to capture the difference between the distributions of Θi and Λk as well as the difference between �X and �Y .
We run 1000 simulations and useB = 99 bootstrap samples for each simulation to save computational cost. Figures 3a and 3b

show the histogram and Q-Q plot of the p-values estimated from data simulated under the null hypothesis, which is uniformly
distributed on (0, 1) as expected. Figure 3c shows the estimated distributions of Θ and Λ against the true distribution �210. We
see that there are some small but noticeable biases due to the semi-parametric g-modeling and penalized MLE at the tail and
peak points, which is expected.2 The estimated �X and �Y also seem reasonable as their histograms are centered around the true
value 0.5 as Figures 3d and 3e show.
Figure 4 shows the statistical power of the simple and accelerated bootstrap procedures with varying differences in degrees

of freedom between two chi-square distributions (Δ = 0 simulated under the null hypothesis, and Δ = 1,… , 5 simulated under
the alternative hypothesis), and with varying sample sizes (N = 100, 300, 500, 2000) in each group. We can see that the power
of both bootstrap procedures increases with larger differences between the two distributions. WhenΔ = 0, both procedures have
controlled type-I error rate at the predefined significance level � = 0.05. As Δ increases, the accelerated bootstrap procedure
has substantially lower power than the simple bootstrap procedure when the sample size is 100, but the power is similar for the
two methods when the sample size is 300 or larger.
Additional simulations based on normal, binomial and Poisson distributions are provided in Section S2 in the supplementary

materials. Furthermore, to compare the speed of the two bootstrap approaches, Figure 5 and Table S1 in the supplementary
materials show the computational time of the two bootstrap procedures with varying sample sizes for normal-based model. We
can see that the time increases linearly with sample size for both procedures. However, the accelerated bootstrap procedure is
about 30 to 50 times faster than the simple bootstrap procedure. Hence, the accelerated bootstrap procedure is more suitable
for datasets with more observations (e.g., N > 300 in each group) for being faster and reasonably powerful, while the simple
bootstrap procedure is more suitable for datasets with smaller sample sizes for being more powerful and reasonably fast.
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3.2.2 Real data analysis
We run our proposed two-sample test on a real scRNA-seq dataset on human embryonic cells in early development.32 We
compare 81 cells in embryonic day 3 (E3) to 190 cells embryonic day 4 (E4), similarly as performed in.33 There are dramatic
changes between these two days, so this subset is suitable for running differential expression analysis. We select 2000 genes
with the highest mean read counts across all cell lines and pick the genes with higher standard deviation when there are ties.
We use the total read counts for each cell line as the constants dXi

and dYk adjusted in the zero-inflated Poisson model (7). Due
to the relatively small sample size of this dataset, i.e., less than 200 cells in each group, the accelerated bootstrap procedure
based on asymptotic distributions (noted as ASY) will have lower power in detecting DE genes. Therefore, we focus on the
simple bootstrap procedure with our two-sample test based on the modified K-S statistic (6) (noted as KS) in this experiment.
We also apply MAST, ROTS, DESeq, Limma-Voom, SCDE, scDD and edgeR for comparison, based on the code in25. Since
we test on these 2000 genes simultaneously, we use Benjamini-Hochberg(BH) method to adjust the p-values and control for
multiple testing by calculating the false discovery rate (FDR) for each gene.34 Since most expressed genes have relatively small
FDR, we use 999 bootstrap samples for our test with early stopping rule and consider genes with FDR < 0.01 as differentially
expressed (DE). From Table 1, out test with the simple bootstrap procedure (KS) detect the largest number of DE genes among
the 2000 selected genes across all methods. An example where a DE gene can only detected by our KS method is provided in
Section S3 in the supplementary materials. The average expression of this gene is similar in the two groups but the shape of
gene distribution differs. The Venn diagrams in Figure 6 show that our KS method has significantly overlapping DE genes with
MAST, DESeq, SCDE, scDD and edgeR, while the overlapping DE gene list between our test and Limma-Voom or ROTS is
not significant as both overlapping p-values are greater than 0.05. Limma-Voom and ROTS were not specifically designed for
scRNA-seq data which might the reason for the poor agreement between our method and these two methods. ASY method also
has similar agreement with other existing methods (See Figure S2 in the supplementary materials for details). Moreover, the
two p-value estimation procedures for our test are highly consistently in the detection of DE genes.

3.2.3 Validation with real data-based simulation
Since we do not know the ground truth in the real dataset, to further assess the comparison between our method and the other
methods, we simulate data based on the real dataset. First, we restrict the data to a subset of 100 genes selected with the highest
mean and standard deviation of read counts across all cell lines. Second, based on the results from our KS method, we select
those genes with FDR < 0.01 as true DE genes and the remaining ones as true null genes. For the true null genes, we pool
the two groups together to estimate the distribution of gene expression and the probability of excessive zero counts using g-
modelling. For the true DE genes, we estimate the distribution of the gene expression and the probability of excessive zero
counts separately for the two groups using g-modelling. Third, based on the estimated distributions of gene expression and the
estimated probability of excessive zero counts, we simulate the raw reads counts from our zero-inflated Poisson model. Finally,
we apply our KS method, ASY method and the other methods to our simulated data to identify DE genes. To account for the
randomness of data generation, we repeat the above simulation five times.
With our KS method, 86 DE genes and 14 null genes are detected from the real data, and therefore they are used as true DE

genes and true null genes in our simulations. On average, our KS method detects 84 true DE genes and mis-identifies 3 genes.
However our ASY method shows poorer performance with 70 true DE genes found and mis-identifies 16 genes. However, there
are no null genes mis-identified as DE genes by ASY method. Due to the small sample size of this experiment, the ASY method
is more conservative than the KS method, and therefore the ASY method detected fewer DE genes. Among other methods,
scDD detects 81 true DE genes as the most but mis-identifies 5 genes. Limma-Voom detects 76 DE genes among which 6 are
misidentified. Similarly as Limma-Voom, there is 79 DE genes found by edgeR with 7 of them mis-identified. MAST does not
detect any true null genes as DE genes, but it only detects 70 DE genes. ROTS has the poorest performance with both low power
and high FDR. SCDE has similar performance as DESeq, where their power is similar to MAST but FDR is higher. Table 2
shows the observed FDR and AUC of all the methods in all five simulations, with the average ROC curves shown in Figure 7. We
can see that our KS method, ASY method and MAST have controlled FDRs at level 0.01, while ROTS, DESeq, Limma-Voom,
SCDE, scDD and edgeR have inflated FDRs. In terms of AUC, our KS method and ASY methods rank the top two, followed by
MAST and scDD, and ROTS ranks the last. When ignoring the choice of p-value cutoff, the rankings of the p-values from our
KS and ASY methods were very similar and therefore the AUC of the ASY method is similar with the KS method. Although
scDD has high power in detecting DE genes, its relatively high FDR may compromise its performance of real data application.
Overall, both our KS method and ASY method outperform other methods in this comparison.
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4 DISCUSSION

In many statistical problems, we observe two unknown distributions indirectly and aim to investigate the difference between
them.35 The unknown distribution can be estimated through deconvolution, in accordance with existing methods.12 However,
thesemethods are only designed for one-sample estimation. Thus, we combine the existing g-modellingmethodwith two-sample
K-S test statistic for two-sample density comparison. In terms of p-value estimation, we propose two versions of bootstrap pro-
cedures to cover the wide range of sample sizes and balance the needs for accuracy and speed. For small sample size, the simple
bootstrap procedure has higher power than the accelerated bootstrap procedure for detecting the difference in distributions. For
large sample size, the accelerated bootstrap procedure based on the asymptotic null distribution provides similar statistical power
while being much more computationally efficient than the simple bootstrap procedure.
Our approach can be applied to a wide range of areas, as our approach is capable of handling various types of data including

count or continuous outcomes. In the analysis of surgical nodes data with binomial models, our proposed test has controlled
type I error and sufficient power in several cases of differences in distribution. In terms of scRNA-seq data application, the
existing parametric methods all assumed that the unknown gene distributions follow a particular parametric family, and only
detect changes in one (or a few) parameters (usually just the location parameter) of that family, which is restrictive. On the
contrary, our proposed test assume that the underlying parameters (i.e., true expression levels of a gene in different samples)
follow unknown distributions, and g-modeling allows us to model these unknown distributions and detect changes in distribution
from one condition to the other. Compared with other existing methods for differential expression analysis on scRNA-seq data,
our approach can detect more DE genes and has well-controlled false discovery rate.
There are several directions for potential future research. The current choice of grid for discretizing the sample space of �

is subjective, and data adaptive approaches could be considered to obtain more efficient density estimation. The computation
efficiency might be further improved by the deriving the null distribution the our test statistics directly to avoid the use of any
bootstrap procedure. The accelerated bootstrap procedure might be calibrated to boost its power for data with small sample size.
The two-group comparison can be further extended to multi-group comparison with a k-sample test statistics. The adjustment for
additional covariates could be included in the model to control for confounding effects and to improve the the statistical power.
We can also extend our two-sample test to generalized linear mixed models to account for correlated or clustered observations.
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FIGURE 1 (a) Histogram for estimated p-values from 1000 simulations under the null hypothesis and (b) Q-Q plot for estimated
p-values against U (0, 1).

(a) Alternative case 1 (b) Alternative case 2

FIGURE 2 Power plots for alternative cases (a) 1 and (b) 2. For each line, the power changes with the difference in � varying
from 0.1 to 1. The vertical bar represents the mean ± sd for each power value.

TABLE 1 Number of DE genes found among 2000 selected genes by proposed methods and other methods.

Method KS ASY MAST ROTS DESeq Limma-Voom SCDE scDD edgeR

DE genes 1748 1294 1570 1647 1398 1546 1492 1642 1612
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FIGURE 3 (a) Histogram for estimated p-values from 1000 simulations, (b) Q-Q plot of estimated p-values against U (0, 1), (c)
estimated densities for two simulated samples against the true density �210, and histograms for estimated (d) �X and (e) �Y .
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(a) Simple bootstrap (b) Accelerated bootstrap

FIGURE 4 Power plots of proposed (a) simple and (b) accelerated bootstrap procedures with varying sample sizes. For each
line, the power changes with the difference in degrees of freedom varying from 0 to 5. The vertical bars represent the mean ±
sd for each power value.

FIGURE 5 Log-log plot of Running time (in seconds) for proposed simple and accelerated bootstrap procedures against sample
size in each group under null hypothesis for normal-based model.
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FIGURE 6 Venn diagrams for numbers of DE genes found by proposed method (KS) versus other methods with p-values from
hypergeometric tests.



16 Jingyi Zhai and Hui Jiang

TABLE 2 Observed FDRs and AUCs of proposed methods (KS and ASY) and other methods in five simulations.

Simulation 1 2 3 4 5 Mean (SD)

Observed FDR

KS 0.00 0.07 0.00 0.00 0.00 0.01 (0.03)
ASY 0.00 0.00 0.00 0.00 0.00 0.00 (0.00)
MAST 0.00 0.00 0.00 0.00 0.00 0.00 (0.00)
ROTS 0.07 0.00 0.00 0.64 0.79 0.30 (0.38)
DESeq 0.07 0.29 0.36 0.07 0.14 0.19 (0.13)

Limma-Voom 0.29 0.36 0.79 0.36 0.36 0.43 (0.20)
SCDE 0.00 0.36 0.43 0.21 0.07 0.21 (0.18)
scDD 0.29 0.14 0.36 0.14 0.29 0.24 (0.10)
edgeR 0.43 0.57 0.79 0.43 0.50 0.54 (0.15)

AUC

KS 1.00 1.00 1.00 1.00 1.00 1.00 (0.00)
ASY 0.98 1.00 0.98 0.99 0.99 0.99 (0.01)
MAST 0.98 0.97 0.98 0.94 0.94 0.96 (0.02)
ROTS 0.81 0.80 0.71 0.42 0.48 0.64 (0.18)
DESeq 0.84 0.83 0.80 0.86 0.85 0.84 (0.02)

Limma-Voom 0.84 0.81 0.74 0.85 0.82 0.81 (0.04)
SCDE 0.96 0.81 0.77 0.80 0.91 0.85 (0.08)
scDD 0.95 0.99 0.93 0.97 0.95 0.96 (0.02)
edgeR 0.85 0.82 0.76 0.82 0.82 0.81 (0.03)

FIGURE 7Mean ROC curves across five simulations for eight methods.
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