
Securing Connected and Automated Vehicle through Proactive Vulnerability Analysis and
Security Enhancement

by

Shengtuo Hu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Professor Z. Morley Mao, Chair
Assistant Professor Baris Kasikci
Assistant Professor Neda Masoud
Professor Atul Prakash

Shengtuo Hu

shengtuo@umich.edu

ORCID iD: 0000-0003-1687-1081

© Shengtuo Hu 2022

To my family and beloved.

ii

ACKNOWLEDGMENTS

The most unique and rewarding journey in my life is finally ending. I will always miss the past

five years, filled with many beautiful memories. Looking back on the past years, I feel extremely

thankful for all my friends who helped me reach the highs and through the lows. Without their

company, I would not have been able to overcome challenges and finish the Ph.D. journey. To

quote a motto from the magazine Nirvana Weekly in my high school: “Through the darkest dark,

may we see the light.”

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Z. Morley

Mao, who has offered continuous support and guidance at every stage of my Ph.D. study. I feel

truly fortunate to be her student, who learned independent research, critical thinking, and project

management under her supervision. Her expertise in computer science has inspired me to dive

deeper into cybersecurity research. Her insightful comments always keep me thinking about unno-

ticed flaws and directions for improvement in my research. I will never forget her encouragement

to aim high and not easily give up, as persistence will finally pay off.

I would also like to extend my sincere thanks and respect to Prof. Neda Masoud, Prof. Baris

Kasikci, and Prof. Atul Prakash for serving on my committee. Their valuable input is very much

appreciated, which helps me shape my dissertation better.

Besides, I am very grateful to my research collaborators: Prof. Qi Alfred Chen from the Univer-

sity of California, Irvine, Prof. Yiheng Feng from Purdue University, and Dr. André Weimerskirch

from Lear Corporation/University of Michigan Transportation Research Institute. Their construc-

tive feedback contributed immensely to this dissertation, and I really enjoyed working with them.

As well, I want to thank Dr. Yaohui Chen, Dr. Cornelius Aschermann, Hasnain Lakhani, and Dr.

Yuanqi Shen for their kind support during the internship at Meta. They showed their appreciation

iii

for my work during the internship. I learned a great deal from them about engineering skills and

career growth, which will still benefit me in the future. I would also like to acknowledge the

support from the National Science Foundation and Mcity at the University of Michigan.

I would like to give my special thank to Prof. Daniel Xiapu Luo from the Hong Kong Poly-

technic University. His guidance in the early stage of my research path broadened my horizon in

cybersecurity research. His advice on both research and career path will always benefit me.

I would like to express my appreciation to my labmates from the RobustNet Research Group:

Prof. Qi Alfred Chen, Dr. Yihua Guo, Dr. Yunhan Jia, Dr. Yuru Shao, Dr. Shichang Xu, Dr. Ke

Hong, Dr. Yikai Lin, Dr. Xiao Zhu, Yulong Cao, Jiachen Sun, Xumiao Zhang, Won Park, Jiwon

Joung, Can Carlak, Qingzhao Zhang, Shuowei Jin, Ruiyang Zhu, Wenyuan Ma, Minkyoung Cho,

and Xueshen Liu. I feel honored to work with these talented people and wish all of them the best

of luck in their future life. To my friends at Ann Arbor, Dr. Zihao Deng, Wenyi Liu, Dr. Jingcheng

Xiao, Dr. Ruiting Li, Dr. Wenhao Shao, Xinjing Huang, Sicen Du, Guanglong Huang, Hongling

Lu, etc., I am fortune to meet you all. I will always remember the happy moments between us.

Last but not least, I would like to thank my family and my partner. To my grandparents Duanlin

Hu, Aier Wei, Daoyou Song, Peigui Li, my parents Yubin Hu, and Bifang Song, I cannot thank

them enough for their support and sacrifice over the past decades. Words could hardly express

how much my family means to me. They always stand with me, care about me, and love me

unconditionally, no matter what happens. I miss my deceased grandpas, Duanlin Hu and Daoyou

Song, and will miss them forever. I still feel sad for not being able to stay with them in their last

moments. I hope they are resting in peace. To my partner, Muru Zhou, I feel incredibly fortunate

to have met you at the beginning of our Ph.D. journeys. Since then, it has been hard for me to

imagine life without you. Thank you for accepting me, supporting me, and sharing your pain and

joy with me. Your emotional support is essential to me, particularly during the pandemic, which

helped me through the lows. I hope we will still chase our dreams together, and always believe

you will eventually make your art dream come true.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

1 Introduction . 1

1.1 Overview . 4
1.1.1 CV Network . 5
1.1.2 In-Vehicle Network . 5
1.1.3 CAV System . 6
1.1.4 CAV Sensors . 6

1.2 Thesis Organization . 7

2 Background and Related Work . 8

2.1 CV Technology . 8
2.1.1 CV Network Stack . 9
2.1.2 Platoon Management Protocol (PMP) 11

2.2 Security Protocols for In-Vehicle Ethernet . 12
2.2.1 MACsec . 12
2.2.2 IPsec . 13
2.2.3 TLS/DTLS . 13
2.2.4 TESLA . 13

2.3 Trusted Execution Environment . 14
2.4 CAV System . 15
2.5 Related Works . 16

3 Systematic Detection of Design-Level Flaws in CV Communication Protocols 24

3.1 Introduction . 24
3.2 Threat Model . 28

v

3.3 Analysis Methodology . 29
3.3.1 Model Construction . 29
3.3.2 Model Checking . 34
3.3.3 Implementation . 36

3.4 Analysis Results . 36
3.4.1 P2PCD Vulnerabilities . 37
3.4.2 PMP Vulnerabilities . 45

3.5 Evaluation . 48
3.5.1 RQ1: Practicality of Identified Attacks 49
3.5.2 RQ2: Attack Impact . 53
3.5.3 RQ3: Performance of CVANALYZER 56

3.6 Defense Proposals . 56
3.7 Conclusion . 59

4 Practical Broadcast Authentication Approach for the Next-Generation In-Vehicle
Network . 61

4.1 Introduction . 61
4.2 Network Topology . 64

4.2.1 In-vehicle Ethernet Network Architecture 64
4.2.2 Communication Patterns . 64

4.3 Threat Model . 65
4.4 Analysis of Security Protocols . 67

4.4.1 Requirement Items . 67
4.4.2 Comparison of Security Protocols . 70

4.5 Design of GATEKEEPER . 71
4.5.1 High-Level Design . 71
4.5.2 GATEKEEPER Roles . 73
4.5.3 Denial-of-Service Protection . 76
4.5.4 Formal Verification . 79

4.6 Evaluation . 82
4.6.1 Testbed Setup . 82
4.6.2 Prototype of GATEKEEPER . 83
4.6.3 RQ0: Performance Calibration . 84
4.6.4 RQ1: Performance of Security Protocols 86
4.6.5 RQ2: Latency Overhead of GATEKEEPER 87
4.6.6 RQ3: Scalability of GATEKEEPER . 88
4.6.7 RQ4: Performance of Time-lock Puzzle 89

4.7 Discussion . 90
4.8 Conclusion . 92

5 Rigorous Security Enhancement for CAV System against CV Spoofing Attack 97

5.1 Introduction . 97
5.2 Threat Model . 99
5.3 Design of CVSHIELD . 100
5.4 CVSHIELD Static Analysis . 102

vi

5.4.1 Sensor Data Processing Program Characterization 102
5.4.2 Program Dependence Graph . 103
5.4.3 Code Extraction . 105

5.5 Implementation . 109
5.5.1 Sensor Data Reading . 109
5.5.2 Static Analysis for Sensor Data Processing 109

5.6 Evaluation . 109
5.6.1 Testbed Setup . 110
5.6.2 TCB Size . 110
5.6.3 System Performance Measurement . 111

5.7 Discussion . 113
5.8 Conclusion . 114

6 Vulnerability Discovery of CAV System under Physical-World Attacks 115

6.1 Introduction . 115
6.2 Threat Model . 118
6.3 Design and Implementation of CAVFUZZER . 118

6.3.1 High-Level Design . 119
6.3.2 Object-Level Mutation . 120
6.3.3 Objective and Data-Flow Feedback . 121

6.4 Evaluation . 123
6.4.1 CAVFUZZER Efficiency and Effectiveness 124
6.4.2 Case Studies . 125

6.5 Discussion and Future Work . 126
6.6 Conclusion . 128

7 Future Work and Conclusion . 129

7.1 Future Work . 129
7.1.1 Remote Attacks against CAVs . 129
7.1.2 Defense against CAV Threats via Cross-Validating Different CAV Inputs 130
7.1.3 Verification of the Safety-Critical CAV System 130

7.2 Conclusion Remarks . 131

APPENDIX . 132

BIBLIOGRAPHY . 137

vii

LIST OF FIGURES

FIGURE

2.1 OBUs on vehicles read sensor data from GPS and CAN bus, which will be encapsu-
lated in BSMs for transmission. 9

2.2 CV network stack. 10
2.3 ARM Trustzone’s secure monitor is responsible for directing call’s to the secure world

to the corresponding secure services and resuming execution in the normal world once
it has finished. 14

2.4 Overview of the CAV system. 15

3.1 Verify-on-Demand [5, 110]: a connected vehicle will only verify the signatures of
incoming packets, if packets result in a safety threat level above the threshold. 26

3.2 CVANALYZER overview. (Events: (1) incoming/outgoing packets, (2) added/delet-
ed/expired timers) . 30

3.3 A simplified example derived from N4 (N: the total number of events; M: the total
number of timers; TIMEOUT: the maximum value of the timeout). 32

3.4 Four P2PCD attacks can break the whole pipeline of P2PCD learning process to pre-
vent the CV device from learning/storing the unknown certificate. 37

3.5 N1: the attacker can stop V1 from sending learning responses to V2 by sending mul-
tiple malicious learning responses. 38

3.6 N3 can stop V2 from sending learning requests to V1 by sending a malicious learning
request.. N4 can stop V2 from recording unknown certificates by sending one or more
malicious learning requests. 42

3.7 The success rate of N1-4 under packet loss. 43
3.8 Testbed setup for attack validation. 49
3.9 Relative distance between the leading vehicle (V1) and the following vehicle (V2). . . 53
3.10 Speed profiles in A3 (split trigger attack). 55

4.1 Ethernet-based in-vehicle network architecture. 65
4.2 The overview design of GATEKEEPER. 73
4.3 Detailed workflow of GATEKEEPER. 74
4.4 DoS protection workflow of GATEKEEPER . 77
4.5 GATEKEEPER prototype. 84
4.6 Performance of symmetric cipher suites and hash functions on the development board. 85
4.7 Performance of cryptography algorithms in the Docker container. 85
4.8 Latency overhead of GATEKEEPER and TESLA. 88
4.9 Transmission latency of CAN traffic: linear scaling. 89

viii

4.10 Performance of the time-lock puzzle generation and solving. The x-axis is the input
parameter T for puzzle generation. 90

4.11 Latency of Gatekeeper w/ RSA 2048 (baseline is the same as Figure 4.9) 92

5.1 CVSHIELD extends the trust boundary to protect code sections related to sensor data
in green boxes. 101

5.2 The workflow of CVSHIELD static analysis . 102
5.3 Optimization of sensor data reading. (a) does not incorporate TEE, while (b) shows

a trusted API of sensor reading. (c) avoids context switches and eliminates the time
overhead via shared memory. 113

6.1 Overview of CAVFUZZER . 119
6.2 Edge coverage over time while fuzzing an ML-based perception module. 122
6.3 Neuron-coverage-guided fuzzing for 1h. 124
6.4 Loss-guided fuzzing for 1h. 125
6.5 New objects are inserted to the perception results of Baidu Apollo’s perception module.126

A.1 N2: the attacker can stop V2 from sending learning requests to V1 by sending a mali-
cious learning requests. 132

ix

LIST OF TABLES

TABLE

1.1 Overview of techniques used in the dissertation. 4

2.1 Comparison with OPT [107], Passport [133], and LiBrA-CAN [64]. R: the number
of receivers. N: the total number of participants, including both senders and receivers
(i.e., N = R + 1). M: the number of intermediate devices (e.g., routers for OPT and
Passport). G: the group size. 19

2.2 Comparison with existing CAV fuzzing works. 22

3.1 Availability properties used by CVANALYZER . 35
3.2 Quantitative properties used by CVANALYZER to quantify the security consequences

of N1-4 . 35
3.3 Summary of attacks found in the CV protocols. (N: CV network protocol, P2PCD. A:

CV application, PMP) . 36
3.4 Attack assessment results of N1-4. 43
3.5 Vehicle parameters in the rear-end collision scenario. 54
3.6 Runtime statistics of CVANALYZER. 56
3.7 Number of hash values needed for hash values of n-bits to cause a hash collision

probability at p. 57

4.1 Performance requirements of different types of traffic (adapted from [232, 119, 123]). 69
4.2 Comparison of MACsec, IPsec, and TLS. 70
4.3 Handshake and communication performance. 87
4.4 Deployment recommendations under different scenarios (AEAD: Authenticated En-

cryption with Associated Data; AH: Authentication Header; ESP: Encapsulating Se-
curity Payload; MKA: MACsec Key Agreement) . 93

5.1 Breakdown of the source lines of code (SLOC) for different components in the secure
kernel. 111

5.2 Performance of exposed serial device I/O APIs. 112

6.1 The loss values among 5 different images. 123

x

ABSTRACT

The rapidly evolving Connected and Autonomous Vehicle (CAV) technology brings new security

challenges to vehicular systems, because newly introduced communication and system compo-

nents inevitably increase the attack surface of vehicles if being abused, leading to potential safety

hazards on the road. For example, the emerging Connected Vehicle (CV) technology, which en-

ables vehicles to exchange safety and mobility information wirelessly (e.g., location and speed)

with traffic infrastructure and other vehicles, opens a door for spoofing attacks. On the other hand,

the development of Autonomous Vehicle (AV) results in the increasing data transfer needs of var-

ious sensors (e.g., cameras, LiDAR), which stimulates the adoption of Automotive Ethernet, the

next-generation in-vehicle network. However, no common standard has been established for the

security protocol of the in-vehicle Ethernet network. Therefore, it is highly desirable to systemati-

cally understand vulnerabilities in the current CAV systems and the corresponding security/safety

consequences to proactively uncover and address these flaws before large-scale deployment.

To achieve this goal, in this dissertation, we demonstrate that rigorous techniques, such as

formal methods, program analysis, and the trusted execution environment (TEE), can be used for

proactive vulnerability discovery and security enhancement in the safety-critical CAV system. At

the design level, we leverage formal methods to uncover design flaws and ensure the security

guarantee of the proposed defense. To study the emerging CV network interface, we propose a

model-checking-based approach, CVANALYZER, that harnesses the attack discovery capability of

the general model checker and the quantitative threat assessment of the probabilistic model checker

to automate the analysis. For in-vehicle Ethernet security, we present GATEKEEPER, a gateway-

based source authentication protocol. Except for the source authentication property, we then verify

that GATEKEEPER can defend against the spoofing attack and alleviate the impact of the DoS

xi

attack. At the implementation level, we employ both static and dynamic program analysis. To

defend against the spoofing attack, we build a TEE-based defense system, CVSHIELD, to protect

the integrity of the sensor data reading and processing pipeline. To uncover semantic vulnerabilities

in the CAV system, we prototype CAVFUZZER that incorporates a novel object-level mutator and

utilizes the data-flow feedback to guide the fuzzing process.

xii

CHAPTER 1

Introduction

Due to the complexity and safety-critical nature, the rapidly evolving Connected and Autonomous

Vehicle (CAV) technology brings new security challenges to vehicular systems. The CAV sys-

tem introduces new modules, like the Connected Vehicle (CV) communication technology, var-

ious perception sensors, and the Automotive Ethernet. The CV communication module enables

vehicles to wirelessly exchange safety and mobility information in real time with traffic infras-

tructure and other vehicles. Besides, powerful camera and LiDAR (Light Detection and Ranging)

sensors are essential for the CAV system to percept the surrounding environment (e.g., obsta-

cles). Furthermore, to support the transmission of high-bandwidth sensor data, Automotive Eth-

ernet [124, 100, 85, 89] is considered the next-generation in-vehicle network, because of its high

bandwidth, high throughput, and low cost characteristics.

However, the newly introduced modules inevitably increase the attack surface of vehicles,

which can be exploited to cause safety hazards on the road. For the CV communication module,

Chen et al. [37] have shown that the attacker can cause severe congestion or increased safety risks

by compromising vehicles and broadcasting falsified sensor data. Also, Hu et al. [77] demonstrate

that CV communication can be blocked, which eliminates the benefits of CV communication and

can further result in traffic accidents. Besides, for the perception sensors, researchers have already

demonstrated that the perception sensors are vulnerable to various attacks, such as the LiDAR

spoofing attack [33], physical-world camera attacks [30, 80], 3D object attacks [32]. Lastly, for

the Automotive Ethernet, we observe that source authentication and DoS prevention are two miss-

1

ing but essential security properties. Except for the malicious intents, the attacker may also want

to benefit herself from the attack for personal gains. For example, the attacker can launch attacks to

stop the surrounding vehicles so that the attacker can drive across the intersection quickly. More-

over, ransomware malware can affect the CAV system as well. The attacker can exploit known

vulnerabilities to lock down the CAV system to request a ransom.

The objective of my dissertation is to systematically understand flaws in the current CAV sys-

tem, and the corresponding security/safety consequences so that these flaws can be proactively

discovered and addressed before large-scale deployment, which is challenging in multiple dimen-

sions:

• Compound CAV system. The CAV system is a compound system that consists of multiple

modules, including perception, localization, control, planning, prediction, and CV commu-

nication. Such a compound system naturally introduces a large attack surface. Most impor-

tantly, the system complexity raises the bar of the security analysis. For instance, analyzing

the CV network protocol can incur the state explosion problem. Besides, machine learning

(ML) models are commonly used in the CAV system, while the conventional approach can-

not be directly applied to ML-related modules. For example, the code coverage is ineffective

while fuzzing ML-related modules.

• Cyber-physical nature. Due to the cyber-physical nature of the CAV system, physical

constraints should be included in the vulnerability discovery, especially for the attacks from

the perception sensor module. Without considering the surrounding environment and the

physical constraints, it is unlikely to trigger potential vulnerabilities in the physical world.

For example, while fuzzing the CAV system, mutating the sensor inputs can result in program

crashes [230], but not all of them can be reproduced in the physical world, such as byte-level

corruption of the sensor data. Moreover, because of the exploitability, we can also ensure

that identified vulnerabilities have high risks so that developers can prioritize mitigating

identified vulnerabilities. Notably, it is non-trivial to incorporate the physical constraints

during the analysis of the CAV system. We need to understand the modifiable areas of

2

different types of sensor inputs. Also, we should clearly define the attacker’s capabilities

against different sensors.

• Real-time requirements. Defense mechanisms for the CAV system should satisfy the real-

time requirements of the CAV system. Since the CAV system is safety-critical, the intro-

duced defense mechanisms should not incur high overhead; otherwise, the safety-critical

behaviors may be delayed. For instance, CV Basic Safety Messages (BSMs) must be sent

every 100 ms. Besides, the transmission of in-vehicle control data (e.g., in-vehicle CAN

frames) has strict latency requirements (≤ 10 ms). Therefore, we should design lightweight

defense mechanisms and optimize the overall performance accordingly to ensure the timely

reactions of the CAV system.

My research is dedicated to addressing these challenges. The overall goal is to advance the

security of the CAV system through proactive vulnerability discovery and security enhancement.

Specifically, utilizing formal methods, program analysis, and the trusted execution environment

(TEE), this dissertation research systematically (1) detects design-level flaws in CV communi-

cation protocols, (2) designs practical broadcast authentication approach for the next-generation

in-vehicle Ethernet network, (3) presents rigorous security enhancement against the CV spoof-

ing attack, and (4) uncovers semantic vulnerabilities against the CAV system. In summary, this

dissertation demonstrates that: Proactive vulnerability discovery and security enhancement of the

CAV system can (1) uncover new security vulnerabilities, (2) systematically examine fundamental

vulnerability causes and security consequences, and (3) provide strong security guarantees for the

defense mechanisms.

In this dissertation, formal methods and program analysis are used for design- and

implementation-level analysis, respectively. These two types of techniques enable automated anal-

ysis and can save human efforts in the future. Table 1.1 summarizes the techniques used in the

dissertation for different analysis tasks. Specifically, for design-level analysis, model checking and

formal verification (i.e., Tamarin Prover [142]) offer soundness and strong security guarantees in

vulnerability discovery and security enhancement tasks. On the other hand, for implementation-

3

level analysis, dynamic program analysis can help us uncover exploitable vulnerabilities in com-

plex CAV systems, and static program analysis can assist in automatically extracting sensitive code

sections. By combining these techniques, we conduct systematic security analysis at the design and

implementation levels for vulnerability discovery and security enhancement.

Analysis Level
(Main Technique)

Analysis Task
Vulnerability Discovery Security Enhancement

Design-Level
(Formal method) Model checking Formal verification

Implementation-Level
(Program analysis)

Dynamic program
analysis (fuzzing)

Static program
analysis + TrustZone

Table 1.1: Overview of techniques used in the dissertation.

However, due to the system complexity, applying these techniques in the CAV system is chal-

lenging. To enable the analysis, we present the following approaches for four tasks in the dis-

sertation. First, we propose an abstraction approach, which can largely reduce the state space for

design-level vulnerability discovery when protocol packet data is included in the analysis. Second,

for design-level security enhancement, we follow prior works to transform DoS-related properties

so that they can be verified. Third, we design a novel object-level mutator for CAV sensor data for

implementation-level vulnerability analysis, which can help uncover semantic vulnerabilities for

CAV systems. Last, for implementation-level security enhancement, we abstract the program that

needs protections into a general representation, such that the static program analysis can automat-

ically extract the sensitive code sections.

1.1 Overview

This dissertation validates the thesis statement stated in Chapter 1 on four technical tasks, focusing

on different attack surfaces.

4

1.1.1 CV Network

We perform the first rigorous security analysis to automate the discovery of availability or DoS

(Denial of Service) vulnerabilities, in (1) the latest version of the IEEE 1609 protocol family and

(2) Cooperative Adaptive Cruise Control (CACC) applications (i.e., platoon management protocols

(PMPs)). To achieve the analysis goal, we design a novel system, CVANALYZER, that leverages

(1) a general model checker (MC) [231] and (2) a probabilistic model checker (PMC) [111] to au-

tomate both the attack discovery and the attack assessment. CVANALYZER successfully uncovers

4 new DoS vulnerabilities in Peer-to-Peer Certificate Distribution (P2PCD), which can prevent the

application layer from processing incoming packets, and 15 vulnerabilities (14 of 15 are new) in

PMPs, which can block the communication among platoon members. For these newly-discovered

vulnerabilities, we have constructed practical exploits and validated them in a real-world testbed.

We have also reported to and received confirmations for P2PCD attacks from IEEE 1609 Working

Group [94]. Besides, our case studies demonstrate that P2PCD attacks can lead to traffic acci-

dents, and PMP attacks can affect the speed stability of the victim vehicle. Lastly, we discuss the

fundamental reasons for each identified vulnerability and propose effective mitigation solutions.

1.1.2 In-Vehicle Network

We conduct a systematic analysis of MACsec, IPsec, and TLS for the next-generation in-vehicle

Ethernet network, covering security and performance requirements, which shows that source au-

thentication and DoS prevention are two missing but essential security properties for these candi-

dates. To address identified limitations, we propose a novel gateway-based broadcast authentica-

tion protocol, GATEKEEPER, to ensure source authentication for the in-vehicle Ethernet network.

Additionally, we integrate a DoS protection approach, based on the time-lock puzzle [185], to alle-

viate the impact of an aggressive attacker who aims at frequently triggering computationally heavy

operations at the authenticator. Moreover, we formally verify that GATEKEEPER achieves the de-

sired security properties, using the Tamarin prover [142], which further strengthens the security

guarantee of GATEKEEPER.

5

Although this task targets existing threats, it aims at improving the security of the next-

generation in-vehicle Ethernet network. The in-vehicle security is crucial for the CAV system to

ensure the correctness of processed data and timely delivery of issued control commands. Specif-

ically, the broadcast authentication protocol, GATEKEEPER, can help users defend against the

spoofing attack and alleviate the DoS threat. These two threats are common for the in-vehicle

network, leading to falsified data or in-vehicle network delay. Such negative implications can fur-

ther affect the functionality of the CAV system, as the CAV system eventually needs to consume

and produce data in the in-vehicle network.

1.1.3 CAV System

To prevent compromised vehicles from sending falsified sensor data, we propose a system

CVSHIELD, utilizing the recent advances in hardware-assisted security (e.g., ARM TrustZone).

CVSHIELD can ensure the sensor data integrity from their reading to their transmission at the

vehicle side. In general, we relocate all codes that are related to sensor data reading, processing,

encapsulation, and transmission from the rich execution environment (REE) into the trusted execu-

tion environment (TEE). However, manually extracting code sections is laborious and error-prone.

Also, we should minimize the size of the trusted computing base (TCB) in TEE to reduce the attack

surface. To achieve these goals, we propose leveraging program slicing to extract code sections

automatically and eliminate irrelevant codes. We demonstrate that CVSHIELD can support GPS

data reading, and our optimization can eliminate the time overhead introduced by context switches

of TrustZone.

1.1.4 CAV Sensors

The rapidly evolving Connected and Autonomous Vehicle (CAV) technology brings new security

challenges to vehicular systems, because newly introduced communication and system modules

inevitably increase the attack surface of vehicles. However, the security of the CAV system itself is

largely under explored [230, 201], especially under physical attacks. The CAV system introduces

6

various modules and lots of library dependencies, which raise the bar of the security analysis.

Notably, compromising the CAV system may jeopardize its normal functioning, leading to unex-

pected driving behaviors. Thus, we should thoroughly analyze the CAV system itself. For this

task, we utilize fuzzing to discover potential semantic vulnerabilities in the CAV system under the

physical-world attacks [30, 32, 151, 138]. We prototype CAVFUZZER, which introduces a novel

object-level mutator for camera inputs and loss-based feedback to guide the fuzzer better.

1.2 Thesis Organization

This dissertation is structured as follows. Chapter 2 provides sufficient background on CV tech-

nology, in-vehicle security protocols, the trusted execution environment, and the CAV system.

Related works are discussed in Chapter 2 as well. In Chapter 3, we perform the first rigorous se-

curity analysis to automate the discovery of DoS vulnerabilities in CV communication protocols.

In Chapter 4, we systematically analyze the security protocols in the next-generation in-vehicle

Ethernet network. In Chapter 5, we combine the trusted execution environment with the static

program analysis to protect the sensor data integrity. In Chapter 6, we integrate data-flow feedback

with object-level mutation strategies to uncover semantic inconsistencies in the CAV system. At

last, we discuss future works and conclude the dissertation in Chapter 7.

7

CHAPTER 2

Background and Related Work

In this chapter, we introduce necessary technical background about the CV network (§ 2.1), in-

vehicle security protocols (§ 2.2), the trusted execution environment (§ 2.3), and the CAV system

(§ 2.4). After that, we present related works in these domains.

2.1 CV Technology

CV network, based on Dedicated Short Range Communications (DSRC), provides connectivity

in support of mobile and stationary CV applications, which offers users (e.g., drivers) greater

situational awareness of events, potential threats, and imminent hazards, intending to enhance

the safety, mobility, and convenience of everyday transportation [95]. The Basic Safety Message

(BSM) defined in SAE J2735 [46] is used by a variety of applications, such as Forward Collision

Warning (FCW), Cooperative Adaptive Cruise Control (CACC), to exchange safety data regarding

vehicle state (e.g., location and speed). The transmission rate of BSM is typically 10 times per

second [68].

In the CV network, there are two basic types of devices: (1) On-Board Unit (OBU) in a roaming

vehicle and (2) stationary Road-Side Unit (RSU) along the road. Usually, these devices are ARM

embedded devices and install Linux operating systems [45], and the communication pattern of

the CV network is individual messages that are broadcast without response [93]. As shown in

Figure 2.1, the OBU is mounted in a roaming vehicle and connected with in-vehicle sensors like

GPS and the in-vehicle network such as Controller Area Network (CAN). The OBU is mounted in

8

a roaming vehicle and connected with in-vehicle sensors like GPS and the in-vehicle network such

as Controller Area Network (CAN). The RSU is a stationary unit along the road and connected

with larger infrastructures or core networks such as the Internet. Roaming vehicles with OBUs

installed can not only directly communicate with each other (i.e., V2V) but also communicate with

RSUs (i.e., V2I), collectively called Vehicle-to-Everything (V2X) communication.

Warning!
Accident CAN

Bus

GPS

Location
Speed

Sensors

BSMs

Figure 2.1: OBUs on vehicles read sensor data from GPS and CAN bus, which will be encapsulated
in BSMs for transmission.

2.1.1 CV Network Stack

As shown in Figure 2.2, IEEE 802.11p [96], IEEE 1609 protocol family [91, 93, 92], and SAE

J2735 [46] form the current CV network stack.

IEEE 802.11p [96] and its extension IEEE 1609.4 [92] together define the basis of the CV

network stack, in which IEEE 802.11p disables the authentication, association, and data confiden-

tiality services at the MAC layer to minimize the message latency. Above them, IEEE 1609.3 [93]

defines the WAVE Short Message Protocol (WSMP), which is optimized to minimize communi-

cation overhead. The Basic Safety Message (BSM, a.k.a., the beacon message) defined in SAE

J2735 is used by a variety of applications, such as Forward Collision Warning (FCW), Cooperative

Adaptive Cruise Control (CACC), to exchange safety data regarding vehicle state (e.g., location

and speed). The transmission rate of BSM is typically set to 10 times per second [68, 3, 4].

Due to the safety-critical nature of CV applications, IEEE 1609.2 [91] specifies security mech-

anisms to provide confidentiality, authenticity, integrity, and non-repudiation. It introduces digital

certificates to enable digital signature (ECDSA), with the support of a Public-Key Infrastructure

9

PHY Layer

MAC Sublayer

MAC Sublayer Ext.

802.11p

1609.4

Higher-layer
protocols

Lower-layer
protocols

LLC Sublayer

WAVE
Networking

Services IPv6

TCP/UDP

S
ec

ur
ity

S
er

vi
ce

s

Msg. Sublayer

Safety Application Non-safety
Application

1609.3
1609.2

J2735

Figure 2.2: CV network stack.

(PKI) system called Security Credential Management System (SCMS) [29]. Also, SCMS supports

misbehavior detection and certificate revocation to prevent malicious vehicles from communicat-

ing with others, while the development of the misbehavior detection algorithms is still ongoing.

In particular, IEEE 1609.2 specifies a unique feature called Peer-to-Peer Certificate Distribution

(P2PCD) that helps a CV device to learn unknown certificates. When a device receives a signed

secured protocol data unit (SPDU), it will construct a certificate chain for the signing certificate

within the SPDU. The certificate chain links the signing certificate to a known trust anchor, which

usually refers to the root certificates shared by all CV devices, so the incoming SPDU can be trusted

by the receiver. However, the CV device may be unable to construct such a certificate chain due

to not recognizing the issuer of the signing certificate. In this case, the received SPDU is referred

to as a trigger SPDU, and the CV device will attach the P2PCD learning request field in the next

outgoing SPDU to request peer devices to provide the necessary certificates to complete the chain.

P2PCD learning responses, containing requested certificates, will be sent back through WSMP by

peer devices. Note that, a P2PCD learning response is sent as a protocol data unit (PDU) rather

than an SPDU. That is, the P2PCD learning response itself does not carry the digital signature. The

current IEEE 1609.2 does not mention the verification for the payload of the learning response (cf.

IEEE 1609.2-2016, Clause 8.2.4.1 c)). Besides, the P2PCD example in IEEE 1609.2 (cf. 1609.2-

10

2016 Clause D.4.3.6) only considers VerifyCertificate primitive as an optional step before

AddCertificate primitive.

2.1.2 Platoon Management Protocol (PMP)

CVs form a platoon with minimal following distances to improve traffic density and fuel econ-

omy. The PMP is an essential component for platoon applications to control platoon maneuvers.

Typically, vehicles in a platoon exchange speed, location, platoon ID, and platoon depth by broad-

casting beacon messages periodically. The platoon leader has a depth of 0, increasing as we go

farther. The leader acts as the coordinator and controls platoon decisions such as join/merge, split,

leave, and dissolve. In this paper, We study two PMPs; since PLEXE [174] only specifies the

join-at-tail maneuver that is the same as Join/Merge maneuver in VENTOS, we thus mainly follow

the description of PMP in VENTOS [217].

Join/Merge Maneuver Two platoons, traveling in the same lane, can initiate a merge maneuver

to form a bigger platoon. The leader of the rear platoon will send a MERGE REQ to the front platoon

leader, if it observes that the combined platoon size is no greater than the optimal platoon size by

inspecting the beacon message from the front vehicles. Upon receiving a MERGE ACCEPT from

the front leader, the rear platoon leader will speed up to reduce the front spacing. Then, the rear

leader sends CHANGE PL to notify its followers to change the platoon leader to the front leader.

Meanwhile, the rear leader switches to the follower role after sending a MERGE DONE to the front

platoon leader.

Split Maneuver To break the platoon into two smaller platoons, a platoon leader can either

actively initiate this maneuver at a specific position, or passively trigger this maneuver when the

platoon size exceeds the optimal platoon size. A platoon leader first sends a SPLIT REQ to the

splitting vehicle where the split should occur. After receiving a SPLIT ACCEPT, the platoon

leader sends a CHANGE PL to make the splitting vehicle a potential leader. Besides, the platoon

leader needs to inform followers behind the splitting vehicle, if any, to change their leader to the

splitting vehicle. After that, the platoon leader sends a SPLIT DONE to the splitting vehicle, which

11

then switches to the leader role.

Leave Maneuver A platoon member may initiate a leave maneuver, when approaching the

destination. For the leader leave, the leader will send a VOTE LEADER to all followers to vote

on the new platoon leader. The newly elected platoon leader needs to send a ELECTED LEADER

to the current leader. Then, the leader splits at the position of the elected leader by initiating the

split maneuver, and thus hands over the leadership to the elected leader. For the follower leave,

the follower will send a LEAVE REQ to the leader and wait for a LEAVE ACCEPT. The leader

needs to split at both the succeeding vehicle, if any, of the follower, and the follower to make it a

free agent, defined as a one-vehicle platoon. At this time, the follower can slow down. Once there

exists enough space for the follower to change the lane, it will send a GAP CREATED to the old

leader and finally leave the platoon.

Dissolve Maneuver This maneuver is only initiated by the platoon leader, who broadcasts a

DISSOLVE to all followers. Upon receiving all ACK messages, all platoon members act as free

agents and are free to leave.

2.2 Security Protocols for In-Vehicle Ethernet

2.2.1 MACsec

Media Access Control Security (MACsec) protocol, specified in IEEE 802.1AE standard [86], is

used for securing link-layer communication in Ethernet LANs. More specifically, MACsec can

provide connectionless data integrity, confidentiality, data origin authenticity, replay protection,

and bounded receive delay. For each outgoing Ethernet frame, MACsec adds a security tag to the

frame header and appends an Integrity Check Value (ICV) to the end of the optionally encrypted

frame. In addition, IEEE 802.1X provides the MACsec Key Agreement Protocol (MKA), which

discovers mutually authenticated MACsec peers and elects one as a Key Server that distributes the

symmetric Secure Association Keys (SAKs) used by MACsec to protect frames.

12

2.2.2 IPsec

Internet Protocol Security (IPsec) is a secure network protocol suite that offers secure encrypted

communication between two hosts over an Internet Protocol network. Transport and tunnel mode

can be used with Authentication Header (AH) [103] or Encapsulating Security Payload (ESP) [104]

protocol, which can provide similar security properties as MACsec, such as connectionless data

integrity, confidentiality, data origin authenticity, replay protection, etc. Internet Key Exchange

(IKE) version 2 [102], IKEv2, is a recommended key exchange protocol for IPsec.

2.2.3 TLS/DTLS

Transport Layer Security (TLS) [183] and Datagram Transport Layer Security (DTLS) [184] op-

erate between the application layer and the transport layer. They are widely used on the Internet

for securing data between communicating applications. There are two primary components in

TLS/DTLS: (1) handshake protocol; (2) record protocol. Unlike TLS, which operates over a reli-

able transport channel, typically TCP, DTLS makes changes to TLS to accommodate applications

running over datagram transport. Compared with TLS, DTLS is expected to be used more for in-

vehicle communication due to the delay-sensitive nature and real-time requirements of in-vehicle

traffic.

2.2.4 TESLA

As introduce in RFC 4082 [167], Timed Efficient Stream Loss-Tolerant Authentication

(TESLA) [169, 168, 170] protocol aims at offering source authentication (a.k.a., data origin au-

thentication [19]) for multicast/broadcast communications, where a single packet can reach mil-

lions of receivers. To ensure source authentication in an efficient way, TESLA uses symmetric

cryptography with time-delayed key disclosure. At first, TESLA generates a one-way key chain

for the sender, in which each key only lives for a certain time interval and will be used in reverse

order. While sending broadcast packets, the sender uses the currently active key to generate the

13

message authentication code (MAC). Later, the sender will disclose the key used before so that the

receiver can verify the previously received packets, which is the so-called time-delayed key dis-

closure. In this case, receivers can ensure that the received data really originates from the correct

source.

2.3 Trusted Execution Environment

TZASC CSU GIC

RAM Peripherals ...

Non-Secure
Kernel

Secure Kernel

Secure Monitor

Secure ServicesApplications

Hardware

Kernel

User

Normal World Secure World

Figure 2.3: ARM Trustzone’s secure monitor is responsible for directing call’s to the secure world
to the corresponding secure services and resuming execution in the normal world once it has fin-
ished.

ARM TrustZone is a hardware-enforced isolation technique enabled on ARM Cortex proces-

sors [14]. As shown in Figure 2.3, It creates two isolated execution environments: a trusted ex-

ecution environment (TEE) and a rich execution environment (REE). TEE contains privileged

permissions and can access reserved memory regions. The TrustZone Address Space Controller

(TZASC) [12] provided by ARM TrustZone can partition portions of memory such that they are

available only to the secure world. Besides, i.MX provides a TrustZone compatible component, the

Central Security Unit (CSU), that extends the secure/non-secure access permission to peripherals.

The CSU can be used to enable secure-only access for different peripherals. Any invalid accesses

will result in an asynchronous external abort exception, similar to a device interrupt. With the pres-

14

ence of TEE, asynchronous hardware interrupts can also be routed directly into the secure world,

which allows sensors and CV network interface to map all their interrupts to the secure world.

Regardless of privilege, the normal world processes cannot access the instructions and memory

in the secure world. In order to execute secure instructions, the normal world must trigger a context

switch to the secure world using a special smc instruction, which generates a synchronous excep-

tion and suspends execution in the normal world [13]. The secure monitor handles the exception;

then, the secure world is activated for execution.

OP-TEE. OP-TEE [126] is an open-source implementation of TEE, which usually works with a

non-secure Linux kernel running on ARM. OP-TEE implements TEE Internal Core API v1.1.x,

which is the API exposed to Trusted Applications, and the TEE Client API v1.0, which is the API

describing how to communicate with a TEE. Those APIs are defined in the GlobalPlatform API

specifications [60].

2.4 CAV System

CAV System

Perception

CAN bus

Planning Control

V2X

Prediction

In-vehicle network

CV communication

Sensor
inputs

Figure 2.4: Overview of the CAV system.

The CAV consists of multiple functional modules, as depicted in Figure 2.4. The perception

module is usually the first component in the pipeline, which processes raw sensor data from var-

ious sensors (e.g., Camera, LiDAR). Then, ML-based object detection approaches are adopted to

15

precept the surrounding obstacles. Afterward, the prediction module predicts future trajectories

for observed obstacles, based on the historical location information. With the predicted trajectory

information and the current vehicle status, the planning module calculates feasible trajectories for

the CAV. At last, control commands are transmitted to the CAN bus to control the vehicle’s behav-

ior. Additionally, the V2X module is an emerging module that incorporates the CV communication

capability. Therefore, the V2X module can directly provide the location and speed information of

the surrounding vehicles.

Inevitably, the CAV system introduces new attack surfaces (i.e., red boxes in Figure 2.4).

Among these functional modules, the perception module, the V2X module, and the CAN bus

are the most vulnerable ones, as they directly accept critical data from the external environment.

For example, the attacker can intentionally transmit falsified data through the CV network.

2.5 Related Works

We summarize the related works in several categories below.

CV security analysis. Since the idea of VANET (i.e., the original idea of CV) has been around for

more than ten years, many researches have already studied general threats to CV network [226, 5,

117, 173, 173, 75, 78]. However, existing works generally suffer from three limitations. First, they

rely on manual inspection to identify potential threats [117, 173, 226], as opposed to automatic

discovery in our work. It is also hard to automate the risk assessment of identified threats in these

works. For example, Laurendeau et al. [117] use ETSI’s threat analysis methodology [55], which

relies on human to qualitatively rank the risks of the threats. Similarly, Petit et al. [173] manually

characterized threats in the automated vehicle (e.g., the cooperative automated vehicle with V2X

communication), only annotated the qualitative risk.

Second, they focus on security properties such as integrity, confidentiality, and privacy [172, 29,

212, 5, 75], as opposed to availability in our work. Although USDOT and the protocol designers

have already employed security mechanisms to protect the integrity and confidentiality of CV

16

network communication [212, 5], the protocol stack may still suffer from availability issues. For

instance, if an incoming packet that may result in a safety threat cannot pass the verification, it

will be discarded without triggering any warnings, and the application will not be able to process

any incoming packets. To the best of our knowledge, only one prior work inspected the threats to

availability [226], but it suffers from the third limitation below.

Third, they focus on prior generations of protocols or are conducted before the standardization

of IEEE 1609 [78, 226, 5, 117, 173, 22], as opposed to the latest version studied in our work. For

instance, the latest version of IEEE 1609.3 has integrated WAVE Service Advertisement (WSA)

security considerations [226], in which Whyte et al. identify threats to availability of WSA in IEEE

1609.3-2010 [90] due to misconfigurations or malicious WSA access parameters.

Model checking security protocols. Model checking is a mature formal verification technique

for finite state concurrent systems, and has been applied to several complex network proto-

cols [146, 70, 150, 53, 82]. These works aim at exposing vulnerabilities in network protocols

but does not consider quantitative assessments. CVANALYZER can finish the attack discovery and

the quantitative threat assessment without touching implementation details. Therefore, CVANA-

LYZER can be used by the protocol designer to evaluate the correctness of the protocol and also

understand the severity of identified attacks, which can further guide the design of mitigation solu-

tions. Also, this can largely minimize the cost to fix vulnerabilities, as all problems can be solved

at the early stage.

Secure membership management. For a wireless ad-hoc network, a secure membership man-

agement system is necessary. Usually, network nodes form a peer group to share data with each

other [149, 239, 181], and a group leader or other trusted entity is responsible for membership

management. Wagner et al. [218] designed a decentralized blockchain-based system member-

ship management for the platoon, in which each platoon member maintains a local copy of the

blockchain, storing platoon information; however, it has scalability issues.

Due to the high mobility, the latest CV network does not form different communication groups,

but adopts the digital signature (ECDSA), with the support of a PKI system, SCMS [29], to secure

17

the communication. Any CV devices with valid certificates can broadcast data to others. To man-

age membership, the recently deployed SCMS [29] introduces misbehavior detection to identify

malicious or malfunctioning members and then revoke their certificates. For our attacks, the cer-

tificate revocation in existing SCMS cannot prevent P2PCD attacks but can mitigate PMP attacks.

The learning response in N1 and N2 does not require any signing certificates, so the certificate re-

vocation cannot prevent the attacker from launching these two attacks. In N3 and N4, the attacker

can always generate new syntax-valid certificates for the learning request (i.e., an SPDU). Since

the vehicle cannot distinguish the self-generated certificates with unknown certificates, the learn-

ing request field will still be processed. Unless the vehicle can always connect to the PKI (through

RSU) to check the validity of unknown certificates, it is impossible to prevent the attacker from

using self-generated certificates in the current CV network stack. Unfortunately, communication

with the infrastructure may not always be present due to the deployment difficulties. We admit that

if the PKI supports the online certificate status check, with the infrastructure coverage increase, the

impact of P2PCD attacks will be diminished.

Security analysis for in-vehicle protocols. Zelle et al. [232] have recently studied the appli-

cability of TLS in the resource-constrained in-vehicle network. Lastinec et al. [116, 115] have

also investigated the possibility of applying IPsec for securing in-vehicle communications. How-

ever, they mainly focus on performance evaluation and do not develop a solution to ensure source

authentication. Moreover, Lauser et al. [118] utilize Tamarin prover [142] to analyze the authen-

ticity of AUTOSAR’s Secure Onboard Communication (SecOC) protocol. There are also a list

of works that uses formal analysis to analyze security protocols, such as TLS 1.3 [49, 48], 4G

LTE/5G [82, 21, 47, 83], WPA2 [50], IoT protocols [106], and V2X protocols [77].

Source authentication. Source authentication [19] is not a new topic. To ensure source authenti-

cation in an efficient way, TESLA [169, 168, 170] uses symmetric cryptography with time-delayed

key disclosure, which introduces extra delay for the broadcast communication. In addition, they

do not consider the real-time requirements of in-vehicle communication. To accommodate the per-

formance requirements of the in-vehicle communication, GATEKEEPER does not follow TESLA,

18

but introduces an on-path authenticator to ensure the source authentication with low overhead.

Besides, Origin and Path Trace (OPT) [107] and Passport [133] are two protocols that pro-

vide source authentication and path authentication properties. Both of them are designed for Au-

tonomous Systems (ASes) at the Internet scale. However, we cannot directly adopt them for the in-

vehicle network. First, they only work for two-parties communication. Second, their design does

not consider the resource constraints and thus result in high overhead at the sender side, violating

our design goals. Groza et al. [64] propose LiBrA-CAN for in-vehicle broadcast authentication,

while a LiBrA-CAN sender needs to more number of MAC operations than GATEKEEPER.

Protocol

Time overhead
(# MAC operations) Bandwidth overhead

(# MACs)
Sender Receiver

Intermediate
devices

OPT [107] (M + 1)R 2 2R (M + 1)R
Passport [133] (M + 1)R 1 R (M + 1)R

LiBrA-CAN [64]
(
N−1
G−1

) (
N−2
G−2

) (
N
G

)
−G

(
N−1
G−1

)
GATEKEEPER 2 2 R 2

Table 2.1: Comparison with OPT [107], Passport [133], and LiBrA-CAN [64]. R: the number
of receivers. N: the total number of participants, including both senders and receivers (i.e., N =
R + 1). M: the number of intermediate devices (e.g., routers for OPT and Passport). G: the group
size.

In Table 2.1, we compare GATEKEEPER with OPT [107], Passport [133], and LiBrA-CAN [64].

The intermediate devices represent routers for OPT/Passport, the master node for LiBrA-CAN,

and the authenticator for GATEKEEPER. OPT and Passport are not designed for broadcast com-

munication, so we adapt them to the broadcast scenario and multiply the corresponding time and

bandwidth overhead with the number of receivers M . Obviously, in this case, the time and band-

width overhead of OPT and Passport are higher than GATEKEEPER. Notably, OPT and Passport

can also ensure path authentication, which is one source for the relatively high overhead.

LiBrA-CAN divides all communication participants into different groups with a group size of

G. The sender needs to generate
(
N−1
G−1

)
MACs for all groups that he or she is part of. Therefore,

the time overhead of the sender is always greater than or equal to N − 1 (i.e.,
(
N−1
G−1

)
≥ N − 1).

19

Similiar bounds can be derived for the time overhead of receivers and intermediate devices as well

as bandwidth overhead, and all of them are higher than GATEKEEPER.

TEE-based system. As mentioned in § 2.3, TEE provides isolated execution environments;

thereby, many researchers choose to protect security-sensitive programs inside the TEE. Such TEE-

based systems are widely appeared in different domains, such as mobile applications [187, 128,

204, 120], edge computing [165, 163], cyber-physical systems (CPSs) [145, 221].

Trusted Language Runtime (TLR) [187] provides a small runtime engine for .NET mobile ap-

plications inside the TruztZone TEE. The mobile applications must be partitioned into security-

sensitive and insensitive parts. However, the TLR does not offer access to peripherals in the

secure world and relies on the normal world for peripheral interactions. VeriUI [128] uses

TrustZone to construct a tamper-proof environment for entering and validating users’ passwords.

TrustOTP [204] utilizes TrustZone to isolate the One-Time-Password (OTP) generation. Both

VeriUI and TrustOTP include a secure touchscreen driver and a secure display controller in the

secure kernel for user interactions. Lentz et al. [120] propose SeCloak, which focuses on periph-

eral management. SeCloak allows users to enforce secure and verifiable control over peripheral

availability (on/off).

For secure edge computing platforms, Part et al. [165] propose StreamBox-TZ, a secure stream

analytics engine for the TrustZone TEE on an edge platform. StreamBox-TZ only wraps a trusted

data plane in the TEE to ensure high throughput and low delay properties.

For CPSs, the performance and availability of the system must be considered, in addition to

the security requirements. Mishra et al. [145] present TEECheck, an on-device message checking

system, which protects low-end embedded devices, like ECUs, in the automotive environment.

TEECheck incurs low and predictable overhead and does not consume extra bandwidth in the

CAN bus. Wang et al. [221] design and implement RT-TEE to protect safety-critical CPSs. Except

for the integrity and confidentiality properties, RT-TEE focuses on system availability, leveraging

a two-layer policy-based event-driven hierarchical scheduler.

However, the research works discussed so far all require manual modifications to the original

20

programs so that they can benefit from the TEE. TrustShadow [65] only introduces a runtime

system in the TEE, which intercepts low-level exceptions, forwards them to the Linux kernel in the

normal world, and verifies the return values. By doing so, TrustShadow can protect unmodified

security-sensitive applications from the untrusted normal world.

Automated partitioning of security-sensitive programs. On the other hand, to avoid the human

efforts of re-engineering the security-sensitive programs, many developers propose automated par-

titioning approaches to split the original programs into security-sensitive and security-insensitive

parts. Only the security-sensitive part will be relocated to the TEE, reducing the TCB size. It is

worth noting that prior works have studied the program partitioning of other types of applications

for security policy enforcement or privilege separation [6, 31, 40, 229].

Unlike TLR [187], Rubinov et al. [186] develop an automated partitioning framework for An-

droid applications. The framework generates code fragments relevant to manipulating confidential

data, with privileged instructions for the TEE. However, human efforts are required to translate the

extracted Java code fragments into C code in the TrustZone TEE. A similar system named Glam-

dring [127] is also proposed for Intel’s SGX. Glamdring utilizes static dataflow analysis and static

backward slicing to find all functions accessing and modifying the sensitive data. Also, Civet [209]

focuses on Intel’s SGX and generates partitioned programs for Java applications. Differently, Civet

further hardens the enclave boundary to protect against malicious inputs. Besides, the authors of

Civet develop a lightweight JVM and optimize the garbage collection for enclaves.

Program analysis to assist the program partitioning. SVF [202] is a widely used inter-

procedural static value-flow analysis tool for C and C++ programs. However, SVF is a whole pro-

gram analysis, rendering the analysis unscalable to large-size programs (e.g., Linux kernel) [235].

Instead, PtrSplit [132] presents a modular way of performing the whole program analysis to con-

struct the program dependence graph (PDG). It only requires an intra-procedural pointer analysis,

instead of a global pointer analysis like SVF. The core technique of PtrSplit is called parameter

trees, which can propagate the intra-procedural pointer analysis results inter-procedurally. There-

fore, PtrSplit can be used to partition user-space programs efficiently. KSplit [81] further extends

21

PtrSplit to the kernel-space programs to isolate device drivers in the kernel.

Device driver record and replay. Since many security-sensitive programs have to access the

secure peripherals in TEE-based systems, the corresponding device drivers are needed in the

TEE. Instead of including the whole device drivers, RT-TEE [221] debloats the original drivers

by recording and replaying device/driver interactions to minimize the TCB size. Notably, RT-TEE

is built upon the predictability of CPSs to convert complex device/driver interactions to the simple

replay of a fixed set of I/O interactions. Similarly, GPUReplay [164] also records and replays the

device/driver interactions, but only for GPU devices. CODY [163] further extends the recorder

to a distributed fashion. To generalize the record and replay approach, Guo et al. [66] propose a

holistic approach to generalize and parameterize recordings for a wide set of peripherals, deriving

minimum viable device drivers for the TruztZone TEE.

Related Works Fuzzing Inputs
(controllable?)

Fuzzing Targets
(whole system?)

Methods
Vulnerability TypesGray-box

fuzzing
No

simulator Others

AV-FUZZER [122] Driving scenarios (✗) Apollo (✓) ✗ ✗ - Traffic violations
ASF [79] Driving scenarios (✗) Apollo (✓) ✗ ✗ Trajectory coverage metric Traffic violations

AutoFuzz [238] Driving scenarios (✗) Apollo (✓) ✗ ✗ NN-guided seed selection Traffic violations
FusED [237] Driving scenarios (✗) OpenPilot (✓) ✗ ✗ Fusion error definition Fusion errors

VulFuzz [148] OpenPilot messages (✗) OpenPilot modules (✗) ✓ ✓
Grammar mutation +

directed fuzzing Low-level system crashes

PlanFuzz [220] Road objects (✓)
Planning module

of Apollo/Autoware (✗) ✓ ✓
Object location mutation +

directed fuzzing Semantic DoS of planning

Table 2.2: Comparison with existing CAV fuzzing works.

CAV fuzzing. Table 2.2 presents the comparison between existing CAV fuzzing works. CAV-

FUZZER in Chapter 6 is complementary to existing works because of different analysis goals.

Existing CAV fuzzing works rarely consider the exploitability of identified vulnerabilities. The

first five research works [122, 79, 238, 237, 148] take driving scenarios or internal messages of

the CAV system as fuzzing inputs, which cannot be directly controlled by the attacker. Thus, the

identified vulnerabilities are not exploitable for the attacker. We argue that it is crucial to consider

exploitability. Such considerations can further help developers prioritize the high-risk vulnerabil-

ities (i.e., exploitable vulnerabilities) and avoid being overwhelmed by the analysis results. To

the best of our knowledge, PlanFuzz [220] is the only existing work that considers exploitability.

In contrast, our work, CAVFUZZER, has a more comprehensive threat model than PlanFuzz and

22

employs a novel object-level mutator.

23

CHAPTER 3

Systematic Detection of Design-Level Flaws in CV

Communication Protocols

3.1 Introduction

With the emerging Connected Vehicle (CV) technology [211], Vehicle-to-Vehicle (V2V) and

Vehicle-to-Infrastructure (V2I) wireless communication enables vehicles to exchange important

safety and mobility information with other entities in real time. In September 2016, the U.S. De-

partment of Transportation (USDOT) launched the CV Pilot Program in three sites, New York City,

Wyoming, and Tampa, to spur early CV technology deployment and test CV safety applications in

the real world. As of Fall 2018, the program has entered the third phase, which requires at least

18-month period for long-term operation and key performance measurements [213].

While CV technology can greatly benefit transportation mobility and safety, such dramatically

increased connectivity inevitably increases the attack surface of both vehicles and the transporta-

tion infrastructure. For example, if the CV communication protocol stack is not sufficiently secure,

attackers can directly cause safety hazard to human drivers on the road [1, 131, 34]. Thus, it is im-

perative to understand the potential security vulnerabilities in the CV network stack as early as

possible so that they can be proactively addressed before large-scale deployment. To achieve this,

it is necessary to start with a systematic study of potential design-level security flaws in the CV

network stack, since both the discovery and defense solutions of such flaws can most generally

affect the security of their corresponding implementation instances.

24

Existing work on the analysis of Vehicular Ad-Hoc Network (VANET) or CV security [1, 226,

5, 117, 173, 173, 75, 78, 22] generally suffer from three limitations:

(L1): they lack systematic approaches and rely on manual inspection to identify potential threats

[117, 173, 226, 1], which is both insufficient and inefficient. It is also hard to automate the risk

assessment of identified threats in these works. For example, Laurendeau et al. [117] use ETSI’s

threat analysis methodology [55], which relies on human to qualitatively rank the risks of the

threats. Similarly, Petit et al. [173] manually characterized threats in the automated vehicle (e.g.,

the cooperative automated vehicle with V2X communication), only annotated the qualitative risk.

(L2): The threats to the availability of the higher-layer protocols (i.e., IEEE 1609 proto-

cols [91, 93] and CV applications), which can prevent legitimate protocol participants from ac-

cessing critical services in the network, are largely under explored [172, 29, 212, 5, 75]. Although

USDOT and the protocol designers have already employed security mechanisms to protect the

integrity and confidentiality of CV network communication [212, 5], the protocol stack may still

suffer from availability issues. For instance, as shown in Figure 3.1, if an incoming packet that

may result in a safety threat cannot pass the verification, it will be discarded without triggering any

warnings, and the application will not be able to process any incoming packets. To the best of our

knowledge, only one prior work inspected the threats to availability [226], but it suffers from the

third limitation below.

(L3): Previous works mostly target prior generations of the protocols, ignoring the analysis of

CV applications, or are conducted before the standardization of IEEE 1609 protocol family, and

hence some discovered vulnerabilities do not exist in the latest CV network stack design [78, 226,

5, 117, 173, 22]. For instance, the latest version of IEEE 1609.31 has integrated WAVE Service

Advertisement (WSA) security considerations [226], in which Whyte et al. identify threats to

availability of WSA in IEEE 1609.3-2010 [90] due to misconfigurations or malicious WSA access

parameters.

In this chapter, we perform the first rigorous security analysis to automate the discovery of

1In the following text, without specific notations, “IEEE 1609.*” represents the latest version (e.g., “IEEE 1609.2”
and “IEEE 1609.3” stands for “IEEE 1609.2-2016” and “IEEE 1609.3-2016” respectively).

25

Incoming
packets

Threat
assessment

Signature
verificationThreat level >

threshold

Threat level <=
threshold

Failed

Success

Threat
ignored

Threat
discarded

Driver
notification

Figure 3.1: Verify-on-Demand [5, 110]: a connected vehicle will only verify the signatures of
incoming packets, if packets result in a safety threat level above the threshold.

availability or DoS (Denial of Service) vulnerabilities, in (1) the latest version of the IEEE 1609

protocol family and (2) Cooperative Adaptive Cruise Control (CACC) applications. To address

L1 (i.e., manual analysis), we formulate the analysis as a model-checking problem and design

a novel system, CVANALYZER, that leverages (1) a general model checker (MC) [231] and (2)

a probabilistic model checker (PMC) [111] to automate both the attack discovery and the attack

assessment. Either model checker alone cannot achieve our analysis goal [20]. MC [42, 231, 74,

52] is useful for the attack discovery [146, 70, 150, 53, 82, 21]; while, for tractability reasons,

PMC (e.g., PRISM [111]) has limited support in finding vulnerabilities and mainly focuses on

quantitative property verification. Therefore, we utilize MC and PMC to verify availability-related

properties and quantitative properties respectively.

To address L2 (i.e., no availability threat analysis), we define security properties to cover both

availability-related properties (e.g., “all CV devices should eventually learn unknown certificates”)

and quantitative properties (e.g., “what is the expected time delay of processing next packet?”).

By verifying these properties, we not only identify potential vulnerabilities but also understand the

corresponding security consequences.

To address L3, we inspect the latest specifications [214] of the CV network protocols and one

complicated CV application (i.e., CACC). For the former, we focus on newly added CV-specific

features (e.g., P2PCD); for the latter, we pick two platoon management protocols (PMPs) (VEN-

TOS [217, 8] and PLEXE [174, 192]), which are widely used by researchers, practitioners, and

developers. We choose to study PMP because (1) high importance, since it can directly control

vehicles and thus impact safety [1, 54], and (2) high demand for systematic verification, since it

26

involves distributed collaboration among multiple vehicles and thus highly difficult to effectively

analyze using only manual efforts. We abstract the CV protocols as multiple finite state machines

(FSMs). In the abstract model, each FSM represents a protocol participant, and all participants

communicate with each other through adversary-controlled public communication channels. No-

tably, such abstract model ignores the low-level implementation details, which is suitable for find-

ing design flaws.

By design, CVANALYZER does not trigger any false positives, aiming to guarantee soundness.

That is, if we report a property violation, it is indeed a violation; we cannot, however, detect all

violations. Like existing works on model checking security protocols [146, 70, 82], our analysis is

parameterized by the number of protocol participants. Given a specific number of protocol partic-

ipants and a set of properties, model checking guarantees to exhaustively enumerate all reachable

states. Therefore, a model checker should also have completeness, i.e., if the model checker does

not report any property violations, then the model is proved to be correct. However, due to the

undecidability of parameterized system verification problem [11], achieving both soundness and

completeness is impossible, and we cannot enumerate all possible number of protocol participants.

In this case, we follow the conventional method of aiming for soundness instead of completeness.

In model checking, the model size (i.e., the total number of reachable states) grows exponen-

tially with the number of state variables and the number of protocol participants. To alleviate the

state explosion [44] problem in applying model checking to complex network protocols, we pro-

pose an abstraction approach (§ 3.3), which reduces unnecessary state variables and merges a large

data domain into a small equivalent data domain. We ensure that our state reduction approach does

not introduce wrong property violations (i.e., false positives).

Overall, our contributions are summarized as follows:

• We perform the first rigorous security analysis to find DoS attacks in the latest version of

IEEE 1609 protocol family and two PMPs via the model checking technique. To achieve

this goal, our analysis methodology design aims at providing soundness without triggering

any false positives. To alleviate the state explosion problem, we propose a novel abstraction

27

approach, which does not generate any false positives and can also achieve complete model

coverage.

• Using CVANALYZER, we are able to discover 4 new DoS vulnerabilities in P2PCD, which

can block the certificate learning process and can further prevent the application layer from

processing incoming packets, and 15 vulnerabilities (14 of 15 are new) in PMPs, which

can block the communication among platoon members. Our quantification results show that

their exploits can have as high as 99% success rates, and can double the delay in packet

processing, which violates the latency requirement of CV communication.

• For these newly-discovered vulnerabilities, we have constructed practical exploits and vali-

dated them in a real-world testbed. We have also reported to and received confirmations for

P2PCD attacks from IEEE 1609 Working Group [94]. Besides, our case studies demonstrate

that P2PCD attacks can lead to traffic accidents, and PMP attacks can affect the speed sta-

bility of the victim vehicle. These results thus concretely demonstrate the effectiveness of

CVANALYZER.

• For the identified vulnerabilities, we discuss the fundamental reasons and propose effective

mitigation solutions, including avoiding using truncated hash value (e.g., 3-byte hash value),

mandating verification for P2PCD learning responses, and requiring P2PCD learning re-

quests to be broadcast (§3.6). After our discussion with the IEEE 1609 Working Group [94],

mitigation solutions against P2PCD attacks are planned to be integrated into the next version

of IEEE 1609.2.

3.2 Threat Model

CV communication capability. In our work, we assume that the attacker can compromise OBUs

on her own vehicles or others’ vehicles, which follows recent works on CV security [37, 38, 227].

This assumption is reasonable, as previous works [34, 108] have already shown that in-vehicle

28

systems can be compromised physically or remotely. In this case, the attacker can send malicious

packets to other vehicles through compromised CV devices. All malicious packets should comply

with protocol specifications. Notably, the attacker is allowed to unicast malicious packets to a

specific vehicle (cf. IEEE 1609.3, Subclause 5.5.1).

Passive monitoring. The attacker can passively eavesdrop and capture all network traffic in her

wireless communication range under the promiscuous mode of the wireless adapters.

Cryptography operations. We assume that cryptography operations used in CV protocols

(e.g., signing, verification, and hash) are secure. The attacker thus cannot forge digital signatures

used for packet authentications but can use valid certificates installed in compromised vehicles to

sign outgoing packets. However, the attacker can still (1) passively collect valid certificates by

sniffing the CV network traffic, and (2) construct local certificates, which are not signed by trusted

anchors.

3.3 Analysis Methodology

In this section, we first present our how we construct each component in the model, including the

adversary model and each protocol state machine. We then describe how we reduce the state space

and document how we implement CVANALYZER.

3.3.1 Model Construction

As shown in Figure 3.2, our model, consisting of the environment and protocol state machines (P),

is driven by network and timer events. In general, the environment manages packet/time events

generated by protocol state machines. It delivers triggered events (e.g., packet reception, timeout)

to protocol state machines.

Adversary-controlled communication environment. We follow the design in prior

works [182] and define three sequential steps in a loop for the environment:

1. Retrieve: the environment picks one of many different packet/time events if such an event

29

Model construction

Protocol state
machines

Network, timersEnvironment

Events

General
model checker

Violations:
counterexamples

Availability
properties

Model checking

Counterexamples

Probabilistic
model checker

Domain
knowledge

OR

Result AssessmentAttack Validation

Testbed

Fixing model

Figure 3.2: CVANALYZER overview. (Events: (1) incoming/outgoing packets, (2) added/deleted/-
expired timers)

is available.

2. Process: the protocol state machine processes an event.

3. PostProcess: after processing a given event, the protocol state machine either sends a

new packet, adds a new timer, cancels an existing timer, or does nothing. The environment

needs to update its internal states and keeps track of newly added events.

Our threat model (§ 3.2) assumes that the attacker has communication and eavesdropping capabil-

ities. Thus, we add one more step for the attacker to send and receive arbitrary packets:

4. Attack: the attacker is able to monitor all packets in the environment. If needed, she

can inject arbitrary packets into the environment, which allows a protocol state machine to

process all possible packet events.

To model the network, we construct the communication channel C = {chi,j|i, j ∈ [1, n], i ̸= j},

where chi,j is a FIFO queue from Pi to Pj . In this case, the packet sending and reception are

abstracted as enqueue and dequeue operations on chi,j . Notably, we do not consider network

30

factors for vulnerability discovery, such as network latency and packet loss, because the lossy

and erroneous network weakens the attack’s capability and increases the complexity of the model.

Placing the attacker in her best position can help us uncover all potential attacks. On the other

hand, to model timers, we do not keep track of the absolute time but only care about the temporal

ordering of events, which is a common practice in model checking distributed system [112]. For

progress advancing, all timers will count down simultaneously if there are no active events that

should be delivered to protocol state machines.

Protocol state machine. All protocol participants (Pi, i ∈ [1, n]) are identical; therefore, each

of them can be represented as the same finite-state machine (FSM). Then, our model M can be

defined as a concurrent system M = C||i∈[1,n]Pi, including an adversary-controlled environment

C and n isomorphic processes Pi, where || is commutative and associative.

In our analysis, we abstract the higher-layer protocols in the CV network stack: (1) the commu-

nication model defined in networking services and message sublayer, (2) security services, and (3)

PMP described in [8, 192, 217, 174]. We follow their specifications or codebases to define packet

and timer handlers, which update the internal states of Pi while processing packets and timeouts

delivered by the environment. Our model excludes the handler of certificate revocation in security

services, because it relies on an external public key infrastructure (PKI) like SCMS [29] to revoke

certificates, which is out of the scope of the network stack itself. How SCMS affects identified

vulnerabilities is discussed in § 2.5.

For the security services, we first abstract away cryptographic constructs because we assume

that the cryptography operations in CV protocols are secure. Then, we model both packet type and

packet header data, as they are required by the internal security mechanisms. In CV network, each

protocol participant will have a batch of unique end-entity certificates (a.k.a., signing certificates).

To trigger all internal security mechanisms, for the certificate configuration, we assume that the

issuer of each batch of signing certificates is different from each other and is attached with packets

in transmission.

Probabilities. Network protocol involves many concurrent events (e.g., packet transmission),

31

leading to concurrent transitions in state machines. While building probabilistic models, we de-

velop a discrete-time Markov chain (DTMC) model that assigns uniform probabilities to concur-

rent state transitions, originating from the same state (§ 3.3.2).

State reduction. We now show how we abstract the model to reduce states through a concrete

example. For ease of exposition, we rely on a simplified example (Figure 3.3) derived from N4

(§ 3.4.1.3). Our goal is to reduce unnecessary states to get an abstracted model. Also, we want

to ensure that the counterexample found in the abstracted model is a valid counterexample in the

original model.

1 h(x)
∆
= x%M h(x) = x mod M

2 EventRange
∆
= (0 . . (N − 1))

3 TimerIndexRange
∆
= (0 . . (M − 1))

4 Init
∆
= Initial state

5 ∧ event ∈ EventRange
6 ∧ timer = [i ∈ TimerIndexRange 7→ None]
7 Next

∆
= Specify how to update states

8 ∧ event ′ ∈ EventRange
9 ∧ timer ′ = [i ∈ TimerIndexRange 7→

10 if h(event) = i then TIMEOUT initialize the timer

11 else if timer [i] = None then timer [i] not initialized

12 else if timer [i] > 0 then timer [i]− 1 count down

13 else None] expire

14 Property
∆
=

15 ∀ i ∈ TimerIndexRange :
16 (timer [i] = TIMEOUT) ; (timer [i] = 0)

Figure 3.3: A simplified example derived from N4 (N: the total number of events; M: the total
number of timers; TIMEOUT: the maximum value of the timeout).

In the example, we develop a simplified protocol, in which the model updates the timer

according to the event (Line 9-13), in which the function h(x) abstracts the hash truncation

operation in P2PCD. Assuming that, without the attacker, the range of event is [0, X − 1], where

X < M ≤ N . The attacker in the environment can trigger all possible events [0, N − 1].

For a given event, if h(event) equals to i, then timer[i] will be initialized (Line 10). For

32

other unmatched timers, a timer will (1) remain unchanged if timer[i] is not initialized (None),

(2) count down if it has been initialized, or (3) set as uninitialized if it expires. To capture the

attacker’s behavior, for each Next step in Figure 3.3, we randomly select a value in EventRange

as the next event (Line 8). Notably, events within [X,N − 1] are triggered by the attacker and can

lead to the initialization of all timers. Last, to find counterexamples, we specify a liveness property

(Line 14-16) that all timers should eventually expire if it has been initialized.

Obviously, the state space of the model depends on N and M , which can be arbitrarily large.

For example, the timer index range in P2PCD would be [0, 224 − 1] (i.e., M = 224). The number

of events N can be 2256. Unfortunately, the model checker cannot handle such large state space.

By analyzing the model, we observe that we do not need to track all timer[i], as the protocol

only updates a small set of timers when no attacker is presented. As stated before, without the

attacker, the range of event is [0, X−1]; the model thus only updates timer[i], where i ∈ [0, X−1].

Usually, the protocol instance does not care whether other timers can eventually expire. Therefore,

apart from reducing TimerIndexRange to [0, X− 1], we also derive a weakened property, P̂ rop:

∀i ∈ [0, X − 1] : (timer[i] = TIMEOUT)⇝ (timer[i] = 0)

Since ¬P̂ rop ⇒ ¬Prop, our decision ensures that if the identified counterexample violates P̂ rop,

it also violates Prop and is a valid counterexample in the original model.

On the other hand, we observe that many events triggers the same update on timer. For exam-

ple, both event = 0 and event = M leads to the initialization of timer[0]. Thus, we decide to

keep a small set of EventRange. We first partition EventRange into several equivalence classes:

EventRangei = {j ∈ EventRange|h(j) = i}, i ∈ [0,M − 1]

where every event in EventRangei triggers the same update on timer[i]. For each equivalence

class EventRangei, we then pick one value, EventRangei = {i}, so that we can trigger all

updates on timer. In this case, we reduce EventRange to [0,M−1]. However, among this range,

only events in [X,M−1] is triggered by the attacker, meaning that the attacker itself cannot trigger

all updates on timer. We thus enlarge [X,M − 1] to [X, 2M − 1] so that the attacker itself can

33

trigger the initialization of all timers. Finally, we derive a small ̂EventRange = [0, 2M − 1] and

a mapping function:

f(x) =

x, x ∈ [0,M − 1]

M + i, x ∈ {j ·M + i|j ∈ [1, ⌈N
M ⌉ − 1]}

(i ∈ [0,M − 1])

Moreover, f is a surjective function; thereby, for every x̂ in [0, 2M−1], we can always find at least

one x in [0, N −1] such that x̂ = f(x). In another word, for every identified counterexample in the

abstracted model, we can always find at least one corresponding counterexample in the original

model by applying the inverse function f−1 on event.

By combining the aforementioned two strategies together, we can successfully reduce the

state space of the example and ensure no wrong property violations. In particular, we reduce

TimerIndexRange and EventRange to [0, X − 1] and [0, 2X − 1] respectively.

3.3.2 Model Checking

The goal of using the general model checker is for vulnerability discovery. Given a model M and

security properties, once the model violates a property, the general MC will generate a counterex-

ample, an execution trace leading to the violation. Formally, a model can be defined as consisting

in a finite set of states S, initial states I ⊆ S, the transition relation T ⊆ S × S, and a labeling

function from states to a finite set of atomic propositions L : S → 2AP [43]. Table 3.1 summarizes

the high-level properties to analyze P2PCD and PMPs. For each property, we first refine φi to get

a new property φi′ such that φi ⇒ φi′ and ¬φi′ ⇒ ¬φi. For example, a refinement over φ1 would

be at least one CV device should eventually broadcast a learning request after observing an un-

known certificate. Then, MC is used to find property violations. By analyzing the counterexample,

we can formulate the attack procedure (§ 3.4) and analyze the fundamental reasons for identified

attacks, which is helpful for the mitigation design (§ 3.6). Last, we patch the model to ensure that

the general MC will not generate the same type of violations later.

PMC aims at avoiding manual risk assessment and does not discard identified vulnerabilities

from the general MC. It helps assess the severity of the exposed vulnerabilities and thus allows

34

ID Availability properties

φ1
The application layer should be always able
to consume valid incoming packets.

φ2
Refinement over φ1: All CV devices should
eventually learn unknown certificates.

φ3
Refinement over φ1: All platoon members
should eventually switch to idle state.

Table 3.1: Availability properties used by CVANALYZER

ID Quantitative properties
ψ1 What is the success rate of the attack?
ψ2 What is the expected time delay of processing next SPDU?

Table 3.2: Quantitative properties used by CVANALYZER to quantify the security consequences of
N1-4

the protocol designers to prioritize the solution design. Unlike the general MC, PMC assigns

probabilities for each state transition T : S × S → [0, 1] such that ∀s ∈ S : Σs′∈ST (s, s′) = 1.

Since we assign uniform probabilities to concurrent state transitions, for all reachable successor

states of s in Succs = {s′ ∈ S|T (s, s′) > 0}, the transition probability between s and any s′

is 1
|Succs| . A transition matrix can be derived from the transition probabilities. Thus, PMC can

calculate the likelihood of transitioning from initial states to any target states. If we can formalize

the states of the attack success, PMC can help us generate the attack success rate. Apart from the

probability, PMC can also assign “time” costs for state transitions, which can be used to quantify

time-related properties. In § 3.4, we leverage PMC to quantify the severity of non-deterministic

attacks N1-4, which are defined as attacks that may not always succeed per attempt. We observe

that, P2PCD attacks can succeed, only if malicious packets are delivered to the victim vehicle

exactly within the attack time window. However, the attacker cannot precisely infer the start and

end of the time window, but only roughly predict the start time. Thus, we use PMC to quantify

their severity based on the success rate and the time delay.

35

3.3.3 Implementation

Following the proposed approach, to instantiate CVANALYZER, we use TLC [231] as the general

model checker due to its expressiveness of constructing the model, and pick PRISM [111] as our

probabilistic model checker. As the prior step of model checking, we manually extract the abstract

model of the IEEE 1609 protocol family [214] and PMPs [217, 174]. The abstract model includes

two (i.e., n = 2) legitimate vehicles and one malicious vehicle (i.e., the attacker). Then, we

need to implement concrete models in the modeling languages used by TLC and PRISM. As the

supported maneuvers of PLEXE is a subset of VENTOS, we merge them together as one model.

The properties that we want to verify are shown in Table 3.1 and Table 3.2, covering availability

and quantitative properties respectively.

3.4 Analysis Results

In this section, we describe 4 DoS attacks in P2PCD and 15 attacks in VENTOS [217] and

PLEXE [174] in detail (Table 3.3). Then, we analyze the security implications of identified at-

tacks, and quantify the success rate and the average time delay in packet processing of those non-

deterministic attacks.

ID Name Assumption New? Implications

N1 Response Mute

Known response thresh-
old, optional response ver-
ification, enough comput-
ing power

Yes Stop the CV device from sending learning responses; result in traffic accidents (§ 3.5.2.1)

N2 Request Mute

Optional response verifi-
cation, enough computing
power Yes Stop the CV device from sending learning requests; result in traffic

accidents (§ 3.5.2.1)
N3 Known MAC address
N4 Numb Known MAC address Yes Stop the CV device from recording unknown certificates; result in traffic accidents (§ 3.5.2.1)

A1, A2 (Prerequisites) Available platoon space
A1:
No [1].
A2: Yes

Cause traffic collision [1], lead to A3-15

A3, A4 Split Trigger Centralized platoon coor-
dination Yes Interfere the traffic flow stability, decrease efficiency and safety (§ 3.5.2.2)

A5-14 PMP Block - Yes Prevent platoon members from performing any maneuvers

A15 Inconsistency Inappropriate validity
check Yes Lead to failures of the split maneuver and the leader/follower leave maneuver

Table 3.3: Summary of attacks found in the CV protocols. (N: CV network protocol, P2PCD. A:
CV application, PMP)

36

3.4.1 P2PCD Vulnerabilities

In summary, CVANALYZER finds 4 new DoS attacks that can compromise the availability of CV

network. All 4 vulnerabilities come from P2PCD [91], which prevents victim vehicles from learn-

ing unknown certificates (see Figure 3.4). Without knowing necessary certificates, the victim vehi-

cles cannot verify incoming packets; the CV network stack thus cannot deliver data to the applica-

tion layer. Besides, we discuss the fundamental reasons for these vulnerabilities. Also, we assess

their security consequences.

Recv.
SPDU

Record
unknown cert.

Send
learning req.

Recv.
learning req.

Send
learning res.

Recv.
learning res.

Store
cert.

Peer
CV device

CV
Device

N1
N2, N3N4

Figure 3.4: Four P2PCD attacks can break the whole pipeline of P2PCD learning process to prevent
the CV device from learning/storing the unknown certificate.

In the following descriptions, two CV devices, Vehicle 1 (V1) and Vehicle 2 (V2),

broadcast SPDUs every 100 ms. However, V2 cannot verify packets sent by V1 because V2 does

not know the issuer ca1 of the signing certificate ee1 used by V1. V2 thus wants to learn the

unknown certificate ca1. For each attack presented below, V1 first sends a trigger SPDU to V2.

In the normal case without the attacker, after receiving the trigger SPDU, V2 initializes P2PCD

learning process and attaches learning request information in the next outgoing SPDU. V1 will

construct and send the learning response after receiving the learning request.

3.4.1.1 Response Mute Attack

N1 can prevent a peer CV device from sending the learning response. This attack exploits the

optional verification of learning responses and the throttling mechanism of P2PCD that limits the

number of responses to a single request. The attacker intentionally interact with V1 by sending

multiple malicious learning responses to ensure that the response counter of V1 exceeds the re-

37

sponse threshold. As a consequence, V1 choose not to send the learning response, and V2 fails in

learning the unknown certificate ca1.

Assumptions. For successfully carrying out this attack, the attacker needs to know the exact value

of the response threshold. For example, the response threshold of BSM is 3 [46]. We assume

that V1 does not mandate the verification for incoming learning responses, which is consistent

with the current protocol specification (§ 2.1.1). Also, we assume that the attacker has enough

computing power to efficiently construct learning responses that can cause partial hash collision

(e.g., low-order 3 bytes collision).

Before sending a
learning response

Learning responses:
- h3(certs[0]) == h3(ca1)

Attacker

Learning request

Vehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

Response
available

Wait for
timeout

resCount(h3(ca1))
<= threshold

Discard
response

N

After initializing
the timer

Attack

Attack time
window

Notes:
- q: missing certificate queue
- h3(): get low-order 3-byte hash of the input
- h8(): get low-order 8-byte hash of the input

Count
responses

Figure 3.5: N1: the attacker can stop V1 from sending learning responses to V2 by sending multiple
malicious learning responses.

Attack steps. Figure 3.5 illustrates the attack steps in detail. V1 first sends a trigger SPDU to

V2. Instead of immediately sending the learning request, V2 stores the HashedId8 value of the

unknown certificate ca1 in a queue (cf. IEEE 1609.2 [91], Subclause D.4.2.1.1). V2 attaches the

HashedId3 value of ca1 in the learning request field of its next outgoing SPDU. In P2PCD,

38

HashedId8 and HashedId3 stands for the low-order 8-byte and 3-byte hash of a certificate

respectively. After receiving the learning request, V1 starts to prepare a learning response. Based

on the throttling mechanism, V1 initializes the response backoff timer and the response counter for

the requested certificate.

However, the attacker can observe the trigger SPDU and the learning request, so she can de-

termine that V2 wants to learn an unknown certificate from V1. The attacker thus deliberately

constructs multiple learning responses, in which the HashedId3 value of the first certificate in

the payload matches with the unknown certificate ca1. The attacker then sends out these mali-

cious packets to saturate V1’s response counter (i.e., making it no less than the response thresh-

old). On receiving malicious learning responses, V1 wrongly updates its response counter (via

AddCertificate primitive defined in IEEE 1609.2). When the response backoff timer expires,

V1 checks whether the response counter is less than or equal to the response threshold. Obviously,

based on the current status of the response counter, V1 decides to discard the response at this time.

Discussion. The reason for N1 can be attributed to the use of truncated hash. By design, the hash

function should be resistant to collision attacks. However, the use of truncated hash value com-

promises the security provided by the hash function. For example, for HashedId3 used in CV

network (i.e., three-byte hash), collision could be found in the brute-force number of 224. Most

importantly, the response counter uses HashedId3 as the identifier, which means that the attacker

can manipulate the response counter if she constructs certificates leading to the partial hash colli-

sion. On the other hand, as introduced in § 2.1.1, IEEE 1609.2 does not mandate the verification

for the learning response. Thus, it is still possible that some poorly implemented CV protocols may

not verify the incoming learning response but just store certificates in the payload. Even if the CV

device mandates the verification, the attacker can collect certificates with the attacker-desired hash

values offline (§ 3.6). Note that, since P2PCD learning responses do not carry digital signatures,

the attacker does not need to possess a legitimate certificate to launch N1, making the attack much

more stealthy.

39

3.4.1.2 Request Mute Attack

Both N2 and N3 can stop CV device from sending learning requests. Similar to N1, N2 exploits

the hash collision issue. Readers can refer to Appendix A for more details.

N3 exploits the unicast capability and injects a malicious SPDU with the same learning request

field (i.e., the HashedId3 value of ca1) as what V2 intends to send. As a result, V2 can observe

the malicious learning request and decides not to send its own learning request. V2 hence fails in

learning unknown certificate ca1 because V1 does not receive any learning requests.

Assumptions. To successfully launch this attack, the only requirement is that the attacker needs

to know the MAC address of the victim vehicle V2. This is reasonable because the attacker can

monitor all traffic in the network; it can thus observe V2’s MAC address from packets sent by V2.

Attack steps. As presented in Figure 3.6, V2 initializes P2PCD after receiving a trigger SPDU

from V1. V2 stores the HashedId8 value of the unknown certificate ca1 in a queue. Meanwhile,

since the attacker can observe the trigger SPDU, she constructs a malicious learning request, in

which the learning request field m.lr equals to the HashedId3 value of the unknown certificate

ca1. In P2PCD, after receiving a learning request, V2 removes any matching HashedId8 entries

in the queue. Therefore, V2 removes the entry of the unknown certificate h8(ca1) in the queue,

where h8 is a function to get the low-order eight-byte hash of the input. As the queue becomes

empty, V2 decides not to attach the learning request information in the next outgoing SPDU.

Consequently, V2 is unable to learn the correct unknown certificate.

Discussion. The fundamental reason for N3 is that once a vehicle observes an active P2PCD

learning request, it will not send the learning request for the same unknown certificate. In the

normal case, this mechanism is helpful to reduce the number of simultaneous learning requests

in the fly. However, the attacker can unicast the learning request to the victim vehicle. Notably,

the attacker should not send such learning request to the owner of the unknown certificate (i.e.,

V1 in Figure 3.6). This attack misleads the victim vehicle to believe that some other legitimate

vehicles are requesting the same unknown certificate. The protocol designers do not consider the

use of unicast in P2PCD, which makes the victim vehicle vulnerable to N3. On the other hand,

40

N3 does not require the attacker to possess a legitimate certificate to sign the learning request but

only uses self-generated certificates. As long as the digital signature of the learning request is

valid, the vehicles will process the learning request field in the packet header. In this case, the

signing certificate of the malicious learning request will be treated as an unknown certificate and

will trigger another P2PCD learning process. Therefore, even if the certificates used by the attacker

is revoked, the attacker can always generate new certificates for future use.

3.4.1.3 Numb Attack

First, like N3, this attack exploits the unicast capability and injects a malicious SPDU with the same

learning request field (i.e., the HashedId3 value of ca1) as what V2 intends to send. This causes

the same consequence as N3, in which V2 chooses not to send the learning request and thus cannot

learn the unknown certificate. Then, due to the request active timer (e.g., reqActiveTimer),

V2 still thinks that there should be an active request in the fly. Therefore, while receiving the next

trigger SPDU, V2 chooses not to add the HashedId8 value of the unknown certificate ca1 into

the queue and keeps waiting for learning responses.

Attack steps. As described in Figure 3.6, this attack is similar to N3, but the attacker has different

attack goal that it tries to prevent the victim vehicle V2 from recording unknown certificates. Since

V1 broadcasts BSMs every 100 ms, V2 will receive a trigger SPDU again in a few milliseconds.

At this time, V2 still cannot verify the incoming packet. However, because the request active timer

has been initialized in the last communication round, and the timer is usually set to 250 ms [46],

V2 believes that there is still an active learning request in the fly. Thus, V2 does not add anything

into the queue, which means that it will not attach any learning request information in the next

outgoing SPDU. V2 cannot recover from this malicious state until the request active timer expires.

Discussion. N4 has the same fundamental reasons as N3. The only difference is that the request

active timer blocks the victim vehicle from recording unknown certificates in that the initial value

(i.e., 250 ms) of the timer is around 3 times larger than the broadcast interval (i.e., 100 ms). Fortu-

nately, P2PCD allows the user to configure the parameters for the initial value of timers.

41

Learning request:
- m.lr == h3(ca1)

AttackerVehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

If m.lr is unknown:
- reqActiveTimer(m.lr).init(...)
- isReqActive(m.lr) = true
- For h in q, if h contains m.lr
 - q.delete(h)

q.empty()?

Discard
request

Y

After recording the
unknown cert.

Before sending a
learning request

Attack

Attack time
window

Notes:
- q: missing certificate queue
- h3: get loworder 3-byte hash of the input
- h8: get loworder 8-byte hash of the input
- m: an SPDU
- m.lr: learning request field of m

q.add(h8(ca1))

Trigger SPDU:
- Signer: certA
- (Issuer: ca1)

isReqActive(h3(ca1))?
N

N3
happens!

N4
happens!

Figure 3.6: N3 can stop V2 from sending learning requests to V1 by sending a malicious learning
request.. N4 can stop V2 from recording unknown certificates by sending one or more malicious
learning requests.

42

3.4.1.4 Assessment

We observe that, N1-4 can succeed, only if the attacker delivers the malicious packets to the victim

vehicle exactly within the attack time window. However, one challenge for the attacker is that she

cannot precisely determine the start or end of the attack time window but can only roughly estimate

the time window. Thus, we are motivated to quantify the probability of successfully launching the

attack by using the probabilistic model checker in CVANALYZER.

ID Attack
packet

Attack time
window Succ. Rate Time delay (ms)

N1 RES-H3 0-250 ms 99.47% 580 (280 + 300)
N2 RES-H8 ≤ 100 ms 99.99% 370 (280 + 90)

N3&4 LR-H3 ≤ 100 ms 99.99% 570 (280 + 290)

Table 3.4: Attack assessment results of N1-4.

Table 3.4 summarizes the quantification results. Since N3 and N4 use the same type of packet

to attack the victim vehicles, and the attack time window of them are the same, we merge these

two attacks together and quantify the probability results based on the type of attack packet.

For N1, the success rate is 99.47%. We set the response threshold as 3 in our experiments.

To successfully launch one attack, the attacker has at least send 4 malicious learning responses,

while the rest attacks only need to send one malicious packet. This is why the success rate of N1

is slightly lower than other three attacks. For N2-4, the success rates are 99.99%. If V2 is able to

send the learning request before receiving the malicious packet, the attacker will fail. However,

this is unlikely to happen based on our results.

Figure 3.7: The success rate of N1-4 under packet loss.

43

To have a deeper understanding how the network factor will affect the success rate, we leverage

packet loss to demonstrate the capability of PMC. Figure 3.7 show that the success rate of N1

decays much more than the other three attacks, because the attacker of N1 needs to successfully

send at least 4 malicious packets to ensure success. As N2-4 target the same attack time window,

they have the same success rate. For N1-4, the attacker should immediately launch the attack once

the victim vehicle enters her communication range. Bai et al. [18] show that the packet loss rate

(PLR) and the distance between two CV devices are positively correlated in real-world settings. In

a freeway environment, the PLR is around 42% if two CV devices are 450m apart, in which 450m

is the longest communication distance presented in their study. Thus, we highlight the success rate

when the victim vehicle enters the attacker’s communication range, which is the worst case for the

attacker (PLR: 42%). Although the packet loss decreases the attack success rate, it also affects the

transmission of normal packets, leading to the loss of critical CV safety packets.

Besides, CV communication is time-sensitive [68, 3, 4], so we would like to know the time

delay caused by one round of N1-4, which is defined as the time duration from waiting for the

trigger SPDU to successfully processing an SPDU from other vehicles. By knowing this, we can

infer how long the CV network will recover from the attack if the attacker terminates attacking.

Table 3.4 shows that three of them can at least double the time delay in packet processing.

During the experiments, we notice that there still exists 280 ms time delay even if we disable

the attacker, which is one-time delay introduced by P2PCD itself. For N2, the extra time delay

introduced by the attacker is 90 ms, around one broadcast interval, because the malicious learning

response cancels out the learning request process triggered by the SPDU from V1. V2 thus needs

to wait for next SPDU from V1, which takes one more round of broadcast interval. For N1, N3,

and N4, the extra time delay caused by the attack is about 300 ms. If the attacker stops attacking at

some time, it takes around three broadcast intervals (i.e., 300 ms) for V2 to recover from DoS.

In N1, the extra time delay comes from the long processing time of P2PCD, due to the long

time interval of the response backoff timer, with a random timeout value between 0 and 250 ms.

As shown in Figure 3.5, the attacker sends malicious learning responses to V1 right after V1

44

initializing the response backoff timer. Since the attack occurs at a very late stage, all the time

before the transmission of the learning request become useless. Also, a new P2PCD learning

process to the unknown certificate ca1 will not be initialized again until both the response backoff

timer of V1 and the request active timer of V2 expire. After that, V2 needs to initialize P2PCD

again; thus, one round of N1 double the one-time delay of P2PCD. In N3 and N4, V2 is unable

to process incoming trigger SPDUs until the request active timer expires. However, this timer is

usually set to 250 ms, which largely increase the time delay.

3.4.2 PMP Vulnerabilities

CVANALYZER identifies 15 attacks in the PMPs of VENTOS [217] and PLEXE [174] (see Ta-

ble 3.3). Among identified vulnerabilities, A1-4 are not directly related to availability issues but

are building blocks of other attacks. Although the PMPs analyzed are academic prototypes, our

main contribution is the verification methodology, which can be generally applied to future PMP

protocols. Our results demonstrate the necessity of such a systematic verification methodology:

using manual efforts, a very recent work [1] can only uncover 1 vulnerability (A1). In contrast,

using CVANALYZER for the same PMP implementation, we are able to automatically uncover

not only the same one but also 14 more (A1-15), which demonstrates both substantially improved

efficiency and effectiveness.

In the following descriptions, V1 and V2 still stand for vehicles. V1 is a platoon leader, and V2

is usually a follower. Their relative positions differ case by case.

3.4.2.1 PMP Attack Prerequisites

A1 and A2 allow the attacker to become a valid platoon leader and follower. Abdo et al. [1]

have demonstrated that A1 can lead to the traffic collision and slow down the emergency vehicle.

Although they do not directly cause security or safety breaches, we list A1 and A2 alone because

they are prerequisites of other attacks. As described in §2.1.2, a platoon leader will send a merge

request to a front platoon, if the combined platoon size is no greater than the optimal platoon size.

45

Thus, the attacker can claim herself as a front platoon to take over another platoon or initiate a

merge maneuver to join a platoon, leading to the success of A1 or A2 respectively.

3.4.2.2 Split Trigger Attacks

Both A3 and A4 (see Appendix A for details on A4) can trigger the split maneuver at any positions.

Without sacrificing her own speed stability, in A3, the attacker can further lead to a high-rate of

vehicles entering and exiting a platoon, which decreases efficiency and safety [8].

Attack steps. In A3, the attacker first merges with V1 as a malicious follower. Then, V2

sends a MERGE REQ to V1 and join the platoon. At this time, the attacker intentionally sends

a LEAVE REQ with a wrong depth number of 2 to V1, in which the depth number indicates the

splitting vehicle is V2. V1 thus wrongly initiates the split maneuver at the position of V2. After

the split process, V2 receives beacon messages from the attacker and merges with the front pla-

toon again, as described in §2.1.2. By repeatedly triggering merge and split maneuver of V2, the

attacker downgrades the speed stability of V2.

Discussion. The reason for A3 is that the platoon leader does not verify whether the platoon depth

in the LEAVE REQ matches with the sender ID or not. Usually, if the sender ID is related to unique

signing certificates [91], it is difficult for the attacker to falsify the identity. However, the design

of PMP uses the depth information as the identity, which can be easily modified by the attacker.

Thus, PMP opens a door for the attacker to trigger the leave maneuver, leading to a split maneuver

at arbitrary positions.

3.4.2.3 PMP Block Attacks

This is the most common type of vulnerabilities (A5-14) in the current PMP design of both VEN-

TOS and PLEXE, which misleads the victim vehicle to stay at a busy state. We only describe A7

here. Please refer to Appendix A for more details on others.

Attack steps. In A7, the attacker first joins the platoon by launching A2 and aims at blocking the

split maneuver. Usually, only the platoon leader can initiate the split maneuver, but the platoon

46

follower cannot. However, the attacker can leverage A3 and A4 to mislead the platoon leader to

send a SPLIT REQ to any specified platoon members. In A7, the attacker receives a SPLIT REQ

from V1 but chooses not to reply with a SPLIT ACCEPT. Thereby, the platoon leader will keep

waiting for the split reply. At this time, if V2, which is ahead of the attacker, approaches the

destination and wants to leave the platoon, the leader V1 will not be able to process the leave

request or manage the split process to create space for V2. Without enough space at the front and

rear of the vehicle, it is dangerous for V2 to directly change the lane.

Discussion. The fundamental reason for A5-14 is the lack of error recovery mechanism on com-

munication failures. By design, the CV network stack does not provide reliable communication; it

is the applications’ responsibility to handle communication failures [93]. Researchers have already

discussed the impact of communication failures on the CACC controller [8, 137], but do not pay

much attention to communication failures on PMP. Also, we observe that PMPs in both VENTOS

and PLEXE do not consider “offline” platoon members; thus, they do not design any error recov-

ery mechanisms to reset the vehicle’s state. Although we understand the PMPs of VENTOS and

PLEXE are research prototypes, identified PMP block attacks still emphasize the importance of

error recovery mechanisms in CV application design.

3.4.2.4 Inconsistency Attack

This attack aims at assigning a wrong depth number to a victim follower, which is inconsistent

with the index in the platoon member list. The platoon depth is used in the split maneuver, so the

inconsistent depth number can lead to failures of the split maneuver and the leader/follower leave

maneuver.

Attack steps. In this attack, the attacker first joins V1’s platoon as a follower. Then, the attacker

slows down to create large gap (e.g., 100 m) between herself and V1. At this time, V2 change its

lane and drives behind V1. V2 receives the beacon message from V1 and sends a MERGE REQ

to V1. After merging with V1, V1 updates its local state by appending V2’s ID to the platoon

member list, indicating the real platoon depth of V2 is 2. However, V2 only receives a beacon

47

message with the depth of 0 from the front vehicle V1; V2 thus wrongly sets its platoon depth to

1. At this time, the attacker sends a LEAVE REQ to V1. Since, V1 thinks that the attacker is a

middle follower, and V2 is behind the attacker, it sends a SPLIT REQ to V2 to create rear space

for the attacker. In VENTOS, we observe that CHANGE PL does not present the absolute depth

but carries the relative change of depth information, because it is convenient for the platoon leader

to send all followers one CHANGE PL rather than multiple different CHANGE PL. During the split

maneuver, V2 receives a CHANGE PL from V1 with the depth change of −2. While updating the

depth information locally, PMP of V2 throws an error for the invalid new depth: 1 − 2 = −1,

which may compromise the availability of PMP, as well as terminates the split maneuver.

Discussion. The reason for A15 can be attributed to the inconsistent platoon view on the platoon

leader and follower. When joining a platoon, the vehicle relies on the depth information in the

beacon message from the front vehicle to set its own depth number, while the platoon leader

simply appends a new member to the platoon member list without checking the relative location

information. If the front vehicle is a benign last follower, no inconsistency will appear; otherwise,

any CHANGE PL from the leader to the victim vehicle will lead to a wrong new depth number.

However, the attacker can either create a large gap for the victim vehicle (A11), or can send a

beacon message with a wrong depth number if the attacker is the last follower.

3.5 Evaluation

In this section, we conduct extensive experiments and answer the following three research ques-

tions:

• RQ1: Are identified vulnerabilities practical in a real-world setting?

• RQ2: What are the security/safety impact of identified vulnerabilities?

• RQ3: What is the runtime performance of CVANALYZER?

48

3.5.1 RQ1: Practicality of Identified Attacks

We implement and validate all attacks from both P2PCD and PMP, detected by CVANALYZER,

in a real-world testbed, which thus concretely demonstrates the effectiveness of CVANALYZER.

Interestingly, we also find some poor implementation details in real-world CV devices that actually

make our attacks easier.

3.5.1.1 Testbed Setup and Tool Preparation

As shown in Figure 3.8, we set up a CV network using three Cohda OBUs [45] in our lab. Among

these three OBUs, denoted as OBU 1, 2, and 3 respectively, OBU 1 and 2 are used as victim CV

devices, and OBU 3 is used as the attack device. To control the experiments, we connect a laptop

with three OBUs via Ethernet connections.

OBU 3

Attacker

OBU 1 OBU 2

Ethernet
connections

Victim CV devices

Controller

OBU

Antenna

Figure 3.8: Testbed setup for attack validation.

The Cohda OBU that we use in our experiments is an ARM embedded device running Ubuntu

16.04. It implements the latest version of the CV network stack, which conforms with IEEE

802.11p [96, 97], IEEE 1609-2016 [91, 93, 92], and SAE J2735-2016 [46]. Notably, the imple-

mentation of IEEE 1609.2, called Aerolink, is developed by OnBoard Security [158] and closed

source. As far as we know, Aerolink is the industry-leading implementation of IEEE 1609.2

and has been used by many manufacturers of CV devices (e.g., Cohda [191], Savari [159]) in the

USDOT sponsored Connected Vehicle Safety Pilot program [158].

49

Victim OBU setup. To implement the CV communication model, both victim OBUs run a

simple program that periodically broadcasts a correctly-signed SPDU. This broadcast-based com-

munication also allows the attacker to observe all network traffic. For P2PCD, we place random

data in the SPDU. For PMP, the SPDU stands for the beacon message, which contains the platoon

ID and depth. Besides, both OBUs run PMP programs that are extracted from the source codes of

VENTOS [217] and PLEXE [174].

For two different protocols (i.e., P2PCD, PMP), we assign different roles to OBU 1 and 2. In

P2PCD attacks (i.e., N1-4), following the same assumption in §3.4.1, OBU 2 cannot verify packets

sent by OBU 1 due to a missing certificate, so OBU 2 wants to initialize P2PCD to learn the

unknown certificate from OBU 1. In PMP attacks (i.e., A1-15), by default, OBU 1 and 2 belong to

the same platoon. OBU 1 and 2 are the platoon leader and the platoon follower respectively.

Tool preparation. To launch the attacks, we need to prepare tools that allow us to (1) parse

and construct arbitrary packets and certificates, and (2) sign and verify CV network packets cor-

rectly. For (1), we use asn1c [219] to extract C data structures used by CV network services from

ASN.1 modules in protocol specifications, and port platoon message types from the source codes

of VENTOS and PLEXE. For (2), we follow IEEE 1609.2 to implement the signing and verifi-

cation functionalities. We start from ECDSA APIs provided by OpenSSL 1.1.0j [162]. The

elliptic curve and the hash function that we use with ECDSA is NIST P-256 and SHA-256, re-

spectively. We cross-validate the correctness of our tools using APIs of Cohda CV network stack.

The Cohda CV network stack can process packets and certificates generated by our tool without

throwing any errors.

Certificate configurations. As N1-4 require triggering P2PCD, we need to configure the pre-

installed certificates in both victim OBUs to ensure that OBU 2 cannot construct a certificate chain

while verifying packets sent by OBU 1. Both OBU 1 and 2 can correctly verify packets from OBU

3 (attacker). First, we use our certificate generator to construct a Root CV certificate, referred

as root, which is trusted by all three OBUs. Then, we use root to issue two intermediate

Certificate Authority (CA) certificates: ca1 and ca2. We add both ca1 and ca2 to the local

50

certificate database of OBU 1, but only add ca2 to the database of OBU 2. To generate end-entity

certificates for signing packets, we utilize ieeeAcfGenerator in Cohda SDK to issue two

batches of certificates: batch1 for OBU 1 and batch2 for OBU 2. Each batch is an Aerolink-

specific file and contains 20 end-entities certificates. Besides, we use ca2 to issue another end-

entity certificate ee3 for the attacker so that OBU 1&2 can construct a valid certificate chain for

packets sent by the attacker.

Apart from generating these normal certificates, we also need to construct certificates that can

cause hash collisions. In N1 and N2, the first certificate in the malicious learning response should

match with the low-order 3-byte and 8-byte hash value of the unknown certificate respectively. We

therefore use our certificate generator to construct two CA certificates: ca1-h3 and ca1-h8,

which can lead to 3-byte and 8-byte hash collision with ca1.

Attack programs. Following the attack processes in §3.4, we implement different attack pro-

grams. For each attack program, we set the start condition and the fail condition. The attack

programs will stop only if the fail conditions are satisfied; otherwise, they will keep running. For

P2PCD attacks, the attack fails if she observes any learning response from OBU 1. For example,

the attack program for N1 will send malicious learning responses after observing a learning request

sent by OBU 2 (i.e., Vehicle 2 in Figure 3.5). If it observes a learning response sent by OBU

1, the program will stop, which means that the attack fails. For PMP attacks, the attack fails if the

victim platoon member can still finish the merge, split, leave, or dissolve maneuver.

3.5.1.2 Validation Results

In the real-world experiments, we find that all attacks from P2PCD and PMP are successfully val-

idated. Interestingly, we further find that some implementation details in Aerolink can actually

make P2PCD attacks, N1 and N2, even easier and even block the CV communication indefinitely.

First, we observe that N1 and N2 can indefinitely block the P2PCD learning process. Based

on our model-checking findings in §3.4.1, once the adversary stops sending malicious learning

responses, the victim devices should eventually be able to recover from DoS. However, in our

51

real-world experiments, we find that even after the attack program terminates, OBU 2 still cannot

learn the correct unknown certificate from OBU 1. After analyzing the execution log, we find that

OBU 1 keeps sending the fake certificate (i.e., ca1-h3), while OBU 2 sends learning requests for

the unknown certificate ca1 to OBU 1. By design, a CV device responds to an incoming learning

request only if the learning request field matches with a signing certificate which is recently used by

that device. With the help of a binary disassembler called Hopper [23], we find that Aerolink

actually does not check whether the certificate used for a learning response is indeed a recently

used certificate. For example, in N1, OBU 1 stores the fake certificate (i.e., ca1-h3) carried

by the malicious learning response from the attacker. Thus, during the preparation of the future

learning response, OBU 1 has two candidates, ca1 and ca1-h3, as they have the same low-order

three-byte hash. When receiving learning requests, OBU 1 always picks ca1-h3 and sends it to

OBU 2, which thus permanently prevents OBU 2 to learn the correct certificate.

Second, to launch N1, we find that the attacker only needs to send 3 malicious learning re-

sponses instead of 4. Before running real-world experiments, we first measure the response thresh-

old in Aerolink, and find that the threshold set in Aerolink is actually 2 instead of 3 in the

protocol specifications. This finding is also confirmed using Hopper. In this case, the attacker

only needs to send 3 malicious responses to succeed. Although this may not be a big improvement

for the attacker, it still uncovers an implementation choice in Aerolink that is unexpectedly

favorable to the attacker.

Third, we find that N2 only requires 3-byte hash collision rather 8-byte hash collision, which

largely lowers the bar of launching N2. In P2PCD, by design, a CV device records an unknown

certificate by adding the identity of that certificate (i.e., an 8-byte hash value) into a queue. If the

8-byte hash of a certificate in an incoming learning response matches with any entries in the queue,

that entry will be removed. To launch N2, the attacker has to intentionally cause the 8-byte hash

collision to let the victim CV device wrongly remove an entry in the queue. However, according

to our binary analysis through Hopper, we find that Aerolink actually uses a 3-byte hash of

the unknown certificate to record its status. Therefore, in our real-world experiments, we use

52

(a) No collision, FCW (b) Collision

Figure 3.9: Relative distance between the leading vehicle (V1) and the following vehicle (V2).

ca1-h3 in N2, and the results further validates this finding. Later in §3.6, we will show why this

small truncated hash (e.g., 3-byte hash) is not secure enough. Although the protocol specification

does not clearly state how to record unknown certificates, Annex D in IEEE 1609.2 [91] gives an

example of P2PCD implementation that uses the 8-byte hash as the identity to record the unknown

certificate. Also, while recording the unknown certificate, the most complete identity about the

unknown certificate is the 8-byte hash value. A CV network implementation should always use

complete information rather than truncated information.

3.5.2 RQ2: Attack Impact

The following two case studies demonstrate the impact of identified attacks: (1) P2PCD attacks can

lead to traffic accidents, which eliminates the benefits of V2V safety applications (e.g., Forward

Collision Warning (FCW)); (2) PMP attacks can affect the speed stability of the victim vehicle.

Simulator setup. To evaluate the impact of identified attacks, we use a simulator, VEN-

TOS (VEhicular NeTwork Open Simulator) [217], so that we can demonstrate the driving be-

havior under attacks. VENTOS is built upon SUMO road traffic simulator [203] and OM-

NeT++ [157]/Veins [215, 200] network simulator. These simulators [203, 157, 215] have been

widely used in academia, industry, and the government. We configure it to use the models for the

53

IEEE 802.11p [96] protocol for CV communication. Based on our reverse engineering and study

on Aerolink (§ 3.5.1), we port the digital signature and P2PCD in IEEE 1609.2 to the simula-

tor to secure BSMs and PMP commands. All secured packets are then transmitted through Wave

Short Message Protocol (WSMP) and are directly sent to the data-link layer which uses continuous

channel access based on IEEE 1609.4 [92].

Vehicles Initial Speed Max. Speed Max. Decel. Length
Leader (V1) 30m/s 30m/s 5m/s2 10m

Follower (V2) 20m/s 30m/s 2m/s2 5m

Table 3.5: Vehicle parameters in the rear-end collision scenario.

3.5.2.1 Safety Impact

By design, the CV safety application promises to increase personal safety [210]. However, our

experiment results show that P2PCD attacks can fully eliminate the benefits of CV applications

(e.g., Forward Collision Warning (FCW)), violating the original goal of CV applications.

Rear-end collision scenario w/ FCW. We first set up a rear-end collision scenario and demon-

strate that vehicles with Forward Collision Warning (FCW), a V2V safety application, can avoid

the accident (Figure 3.9a). The rear-end collision scenario includes a leading vehicle (V1) and a

following vehicle (V2) with the initial parameters in Table 3.5. FCW alerts the driver in order to

help avoid the severity of crashes into the rear end of other vehicles on the road [210]. We follow

the FCW’s design in Cohda SDK to actively monitor the distance between two vehicles. Once the

distance is smaller than the safe distance, FCW will warn the driver. As FCW does not directly

control the vehicle, after receiving FCW warnings, we ask the simulated vehicle to maintain a safe

speed. Notably, we leverage Krauss car-following model [109], which is collision-free, to calculate

the safe distance and safe speed.

During the simulation, both vehicles drive in the same lane. By exchanging BSMs, they can

monitor each other’s speed, position, and acceleration. The initial distance between two vehicles

is 30 m, which is smaller than the safe distance at that time, thus triggering FCW. After starting

54

(a) Before attack (b) After attack

Figure 3.10: Speed profiles in A3 (split trigger attack).

the simulation for 10 s, V1 suddenly stops at the maximum deceleration (i.e., 5m/s2). Figure 3.9a

shows that, before 10 s, V2 keeps increasing the distance to the leading vehicle due to the FCW.

Therefore, after the leading vehicle suddenly decelerates, V2 has enough space to slow down

safely.

Vehicles w/ FCW under attacks. Then, we place an attacker on the roadside who follows

§ 3.4.1 to launch P2PCD attacks and aims at causing traffic accidents, leading to a rear-end collision

shown in Figure 3.9b. At the beginning of the simulation, both vehicles launch P2PCD to exchange

certificates so that they can verify and process following BSMs. However, P2PCD attacks prevent

them from learning certificates, meaning that they cannot process any BSMs from the peer vehicle.

During the simulation, we observe that FCW is never triggered, so V2 accelerates to the maximum

speed and follow V1. At 10 s, V1 starts decelerating at the maximum deceleration (i.e., 5 m/s2).

Since two vehicles are too close to each other (i.e., 54 m), and the maximum deceleration of the

V2 is 2m/s2, V2 eventually collides into the rear end of V1.

3.5.2.2 Traffic Efficiency Impact

By design, CACC aims at increasing traffic throughput and improve traffic flow stability [223,

175, 136]. However, A3 and A4 can interfere with the traffic flow stability, even without sacrificing

55

her own speed stability, which violates the design goals of CACC. We place V1, the attacker, and

V2 sequentially in the same lane and follow the attack steps of A3 to run the simulation for 100

seconds. Figure 3.10 presents the speed profiles of V2, the victim platoon. In the normal case

(Figure 3.10a), all vehicles will eventually reach a stable speed of 20 m/s; after launching the

attack starting around time 27 seconds, we increase the standard deviation of V2’s speed by 43%,

further disturbing the following traffic.

3.5.3 RQ3: Performance of CVANALYZER

Table 3.6 presents the runtime performance of CVANALYZER. We run CVANALYZER on a server

with four 2.60GHz (8-core) CPUs and 128G memory. CVANALYZER first explores all reachable

states and then verifies given properties. Notably, without applying the state reduction, these two

model checking tasks will take too long to explore reachable states. The results highlight the

importance and effectiveness of state reduction.

Attacks Distinct States Model Checking Duration
P2PCD 2209351 16s

PMP 142133161 1h 35min

Table 3.6: Runtime statistics of CVANALYZER.

3.6 Defense Proposals

Based on the discussions from previous sections, we propose defense solutions at the protocol

design level:

1. Mandate verification for all learning responses;

2. Increase the truncated hash size for the issuer field in the certificate and the learning request

field in SPDU;

3. Disallow unicast learning requests;

56

4. Bind the sender identity with the CV certificate;

5. Track platoon configuration data locally or remotely;

6. Design and integrate an error recovery mechanism.

Defense against N1 and N2. Solution 1 and 2 are proposed for N1 and N2. Solution 1 by nature

prevents N1 and N2 with local certificates. However, such solution can be evaded if attackers

are still able to collect legitimately signed certificates with the attacker-desired hash values by

sniffing CV network traffic. As estimated in Table 3.7, as long as the attacker can collect over

12000 different certificates, she can almost guarantee (more than 98% probability) that she can

always have a certificate ready for triggering a 3-byte hash collision, which thus allow her to still

launch N1 and N2 in real time. Collecting this many different certificates is completely realistic,

considering that such collection process can be done offline. In addition, the collection process

can also be greatly accelerated since the attacker can actively broadcast learning requests to trigger

surrounding vehicles to return certificates with desired hash values, and also can place multiple

attack devices in different locations to parallelize the collection process.

Number of hash values (k)
Prob. of hash
collision (p)

Number of bits of the hash value (n)
24 64 80 256 512

0.5 4823 5.069 1.2912 4.0138 1.3677

0.99 12431 1.3010 3.3412 1.0339 3.5177

Table 3.7: Number of hash values needed for hash values of n-bits to cause a hash collision prob-
ability at p.

Solution 2 aims at increasing the difficulty of causing a hash collision, the key enabler for N1

and N2. As shown in Table 3.7, it will be much more difficult for the attacker either to compute

or to gather proper malicious learning responses. However, this will increase the DSRC packet

size and thus may decrease the network performance, e.g., increasing network latency. We have

reached out to the protocol developer, and confirmed that it is indeed a design choice to reduce the

57

DSRC packet size. Thus, when applying Solution 2, the new size of the truncated hash type needs

to be carefully chosen to balance such trade-off between security and protocol performance.

From our discussion above, neither solution 1 or 2 can fully eliminate the attack possibilities

for N1 and N2. Thus, to maximize the chance of preventing the attack in practice, the best choice

would be using them jointly.

Defense against N3 and N4. Solution 3 is proposed for N3 and N4, which thwarts both attacks

by making it impossible to unicast the malicious learning request to block the P2PCD process.

However, the down side is that this may break designed usage of unicast-based learning request.

For example, as specified in IEEE 1609.0-2019 [95], CV applications will decide whether to use

either unicast or broadcast, while receiving advertised services. Systematically understanding this

trade off requires surveying and quantifying the demands of unicast-based learning requests at the

CV application level, which we leave as future work.

Defense against A3. Solution 4 can prevent the attacker from triggering the split maneuver

at arbitrary positions, but cannot stop her splitting succeeding platoon members. The certificate

defined in IEEE 1609.2 [91, 29] provides a unique identity for each CV device. Safety-critical CV

applications like PMP should always use unique and secure identities (e.g., certificates) rather than

using self-defined identity (e.g., depth number), which is easily spoofed by the attacker. However,

the attacker can still send a LEAVE REQ to split at the succeeding vehicle and herself, which is

a designed follower-leave behavior. The attacker can then join back to the platoon and launch

the attack repeatedly. To completely address A3, we may require the assistant of misbehavior

detection [29]. For example, a vehicle that keeps leaving and joining a platoon is highly suspicious.

Designing an effective misbehavior detection requires comprehensively characterizing malicious

behaviors, which we leave as future work.

Defense against A4 and A15. Solution 5 aims at eliminating wrong and inconsistent platoon

information caused by A4 and A15. In centralized PMP, a platoon leader is responsible for passing

platoon configuration data to the new leader, when it leaves the platoon. The new leader can only

accept the information from the old leader because it does not store any platoon configuration

58

data. The design goal of the centralized PMP is to improve coordination efficiency and to enhance

privacy because followers dynamically enter and exit the platoon [8]. However, the centralized

design sacrifices the security, as a malicious leader can provide wrong platoon configuration data.

To address A4 and A15, on one hand, the platoon members can maintain a local copy of platoon

configurations. On the other hand, RSUs can also provide services to remotely assist platoon

members for tracking platoon configurations and guarding PMP commands [1]. As RSUs are often

deployed and managed by trustworthy authorities, platoon members can rely on the infrastructures

to correct wrong or inconsistent information.

Defense against A5-14. Solution 6 is straightforward and proposed for all PMP block attacks.

As we mentioned before, CV applications should design their own error recovery mechanisms.

With the error recovery mechanism, PMP should be able to recover from continuous packet loss.

For example, PMP can define the retransmission and timeout threshold to avoid hanging at specific

states. Apart from the classic solution to communication failures, it’s worthing noting that PMP

should also adjust the intra-platoon spacing between the “offline” member and the trailing platoon

members accordingly to avoid traffic collision. If necessary, the platoon leader can dissolve the

platoon and falls back to ACC mode.

3.7 Conclusion

In this chapter, we presents CVANALYZER that harnesses the attack discovery capability of the

general model checker and the quantitative threat assessment of the probabilistic model checker

to automate the analysis. CVANALYZER successfully detects 4 new DoS attacks in P2PCD and

15 attacks in PMP; also, we construct practical exploits and validate them in a real-world testbed.

We have reported 4 P2PCD attacks to IEEE 1609 Working Group [94] and received confirmations.

Also, we discuss the fundamental reasons for these vulnerabilities and propose effective mitigation

solutions.

Future work. In the future, we would like to extend CVANALYZER to verify more secu-

59

rity properties, such as unlinkability. Although we only inspect the availability property in this

dissertation, CVANALYZER is actually general and can be extended to improve the verification

capabilities. On the other hand, CVANALYZER can be also extended to support other protocols in

the context of CV (e.g., SCMS [29]). Also, we would like to improve the usability of CVANA-

LYZER. For example, we can introduce an intermediate representation for the model that can be

automatically converted into the modeling language used by different model checkers. Therefore,

we do not need to write the model twice for two different model checkers.

60

CHAPTER 4

Practical Broadcast Authentication Approach for the

Next-Generation In-Vehicle Network

4.1 Introduction

Due to the increasing data transfer needs of diverse sensors (e.g., cameras, LiDAR) in modern

vehicles, existing in-vehicle networks (e.g., CAN, FlexRay, MOST) cannot meet the critical high-

bandwidth, low-latency, and real-time network requirements. For example, the maximum band-

width of CAN and FlexRay are 1 Mbps and 10 Mbps, respectively. To this end, Automotive

Ethernet [124, 100, 85, 89] is considered to be the next-generation in-vehicle network, because of

its high bandwidth, high throughput, and low cost characteristics. Nowadays, many car manufac-

turers are planning to move to Ethernet for all classes of cars. Hyundai uses Automotive Ethernet

for infotainment systems in upcoming cars. Also, Volkswagen adopts Automotive Ethernet for

driver-assist systems [100].

While the Automotive Ethernet can greatly benefit in-vehicle communication, no common stan-

dard has been established for the security protocol of Automotive Ethernet. Security is especially

important as it is conceivable that an electronic control unit (ECU) can be compromised, subse-

quently violating the integrity of any unencrypted communication among ECUs. This could lead to

sophisticated attacks such as remote braking, as some of the components in the car allow wireless

network access [34, 108].

To better understand the security protocol candidates, we analyze three candidate protocols:

61

MACsec, IPsec, and TLS. We summarize a comprehensive list of security and performance re-

quirements for securing in-vehicle communication. Our goal is to ensure that the in-vehicle se-

curity protocol can secure in-vehicle communication and does not incur high performance over-

head. Our analysis results indicate that three candidate protocols cannot fully satisfy all identified

requirements. Most importantly, they can only provide source authentication for unicast commu-

nication rather than multicast/broadcast 1 communication, which is crucial for secure in-vehicle

communication. If an attacker participates in a broadcast group, a single malicious packet can

potentially impact multiple receivers. To prevent such malicious behavior, the receiver must be

able to verify the identity of the sender. Timed Efficient Stream Loss-Tolerant Authentication

(TESLA) [167] is a well-known protocol to ensure source authentication. Nonetheless, TESLA

introduces unnecessary delay due to the time-delayed key disclosure, which is also confirmed in

our evaluation (§4.6.5).

Furthermore, the three candidate protocols do not consider the Denial-of-Service (DoS) pre-

vention [7] in their designs, in the form of attackers sending a large volume of packets. Note that

DoS prevention is essential for guaranteeing in-vehicle network security. For the common CAN

injection attack, sending malicious CAN frames at a high frequency can “mute” the legitimate

ECU and force others to consume forged CAN frames [39]. On the other hand, deploying a secu-

rity protocol also opens a door for new DoS attacks. For example, Kim et al. [106] demonstrate

that many IoT protocols are vulnerable to DoS attacks, caused by heavy cryptography operations

(e.g., signature generation). Without addressing these challenges, the in-vehicle network is still

vulnerable to cyberattacks, susceptible to safety accidents.

To address the issues mentioned above, we propose GATEKEEPER, a gateway-based broadcast

authentication protocol. It uses symmetric cryptography as the building block because symmetric

cryptography is much more efficient than asymmetric cryptography. Also, ECUs often have limited

resources and cannot afford the expensive asymmetric cryptography operations. Apart from that,

GATEKEEPER takes advantage of the centralized topology of the in-vehicle network (§ 4.2.1).

1Multicast and broadcast are used interchangeably for convenience.

62

We introduce an on-path authenticator, which co-locates with the centralized gateway or domain

controllers. By doing so, we can benefit from the rich computation resources provided by the

gateway or domain controllers. The on-path authenticator can help receivers verify the sender’s

identity during the transmission and thus avoid unnecessary network forwarding. Additionally,

based on the time-lock puzzle [185], we design a DoS protection approach that can slow down

unexpected high-throughput traffic from the attacker and only introduce minimal overhead at the

authenticator side.

To summarize, we make the following contributions:

• We conduct a systematic analysis of MACsec, IPsec, and TLS for in-vehicle Ethernet net-

work, covering security and performance requirements, which shows that source authenti-

cation and DoS prevention are two missing but essential security properties for these candi-

dates.

• We propose a novel gateway-based broadcast authentication protocol, GATEKEEPER, to en-

sure source authentication for in-vehicle Ethernet network. In addition, we integrate a DoS

protection approach, which is based on the time-lock puzzle [185], to alleviate the impact of

an aggressive attacker who aims at frequently triggering computationally heavy operations

at the authenticator. In addition, we formally verify that GATEKEEPER achieves the desired

security properties, using the Tamarin prover [142], which further strengthens the security

guarantee of GATEKEEPER.

• We build a Docker-based testbed and use a realistic ECU board to calibrate its performance

for our evaluations. Based on the testbed, we prototype GATEKEEPER and compare its per-

formance with the TESLA protocol. The evaluation results show that GATEKEEPER incurs

low latency overhead (e.g., 0.03 ms latency overhead for CAN) and significantly outperforms

TESLA on both CAN and LiDAR transmission scenarios. Table 2.1 further highlights the

efficiency of the design of GATEKEEPER, compared to other existing works [107, 133, 64].

63

4.2 Network Topology

In-vehicle network architectures vary considerably in the manufacturer, type, or even configura-

tions [232]. Since no generic architecture exists, in this section, we follow existing works [232, 67]

and assume a general architecture with different domains to motivate the security requirements in

§4.4.

4.2.1 In-vehicle Ethernet Network Architecture

In this chapter, we assume that all connections in Figure 4.1 are realized with Automotive Ethernet.

Automotive Ethernet, running at up to 100 Mbps, is favored for the next-generation in-vehicle net-

work, compared with existing CAN, MOST, and FlexRay technologies. The adoption of Ethernet

also changes the network topology from a bus system to a star system with switches [232, 140].

As shown in Figure 4.1, there exist different domains in the in-vehicle network, such as pow-

ertrain, chassis, body, infotainment, and ADAS (advanced driver-assistance systems). For each

domain, Electronic Control Units (ECUs) are connected to the domain controller, which has Layer

2 (L2) switching capabilities. All domains are isolated from each other and can be further config-

ured to form different security zones through VLANs [100]. Besides, all domain controllers are

then connected to the gateway. Note that the gateway should have Layer 3 (L3) routing capabilities

to support inter-domain communication. Note that, the infotainment domain often offers various

interfaces for external communication [7], such as Bluetooth, USB, Wi-Fi, and V2X (vehicle-to-

everything), which is out of the scope. Thus, we focus on in-vehicle communication over Ethernet

network in the following analysis in §4.4.

4.2.2 Communication Patterns

There exist different communication patterns for the Automotive Ethernet and the in-vehicle com-

munication [140].

Unicast communication is the core transmission mode of a switched Ethernet network. Mes-

64

Gateway

Domain
Controller

Domain
Controller

Domain
Controller

Domain
Controller

Domain
Controller

Powertrain Chassis Body & Comfort Infotainment ADAS

ECU
L3 Router

L2 Switch

Figure 4.1: Ethernet-based in-vehicle network architecture.

sages that are sent to a single network destination are often transmitted through unicast.

Broadcast communication is one of the most commonly used communication patterns for in-

vehicle communication nowadays. ECUs are connected via a bus system and thus can receive all

data that is available on the bus. For compatibility, we can assume that ECUs still broadcast control

messages in the in-vehicle Ethernet.

Inter-domain communication delivers messages across domains, which is more and more

common with the development of the autonomous vehicle. For example, the head unit in the

infotainment domain may receive the picture of a rear-view camera from the ADAS domain.

4.3 Threat Model

In this chapter, we consider both external and internal attackers. As shown in previous

work [171, 34, 108], to launch an automotive attack, the attacker always aims at gaining access to

the in-vehicle network (e.g., CAN bus) to inject CAN frames, resulting in various attack sequences

(e.g., acceleration, hard brake). To achieve the in-vehicle network access, the attacker can either

(1) attach/tap a physical device (e.g., OBD-II dongle [225]) to the in-vehicle network or (2) com-

promise an existing ECU remotely [144, 34]. The former is an external attacker, while the latter

is an internal attacker. The difference between these two cases is that the external attacker cannot

65

access the key materials of the compromised ECU. In contrast, even if the in-vehicle network is

secured by security protocols, the internal attacker can still participate in the communication and

launch attacks (e.g., sending spoofed CAN frames).

Although both external and internal attackers are widely studied over the last decade, we high-

light that it is not easy to compromise a safety-critical ECU. First, ECUs with remote interfaces

(e.g., Bluetooth, Wi-Fi) often belong to a less safety-critical domain (e.g., infotainment), which

unlikely affects safety-critical domains. Second, it is time-consuming to compromise an ECU and

achieve in-vehicle network access [144, 225]. For example, in the Jeep Cherokee hack [144], the

attacker needs to analyze and modify the ECU firmware to gain the in-vehicle network read/write

permission.

In summary, we assume that the attacker has the following broad set of capabilities:

• The attacker can either attach her own device to the network or compromise an in-vehicle

ECU [34, 108].

• The attacker owns the valid key materials and can participate in the in-vehicle communica-

tion. For example, the attacker can extract the key materials of the compromised ECU.

• The attacker can eavesdrop on the network traffic at her position and send arbitrary packets.

• The attacker cannot break existing cryptography algorithms, meaning that she cannot infer

the secret key used by others.

Since the attacker can send arbitrary packets after accessing the in-vehicle network, the follow-

ing attacks are feasible:

• Replay attack: the attacker records a packet then sends it again later in the hopes of it having

the same effect that it had the first time. For example, the attacker captures a CAN frame

that accelerates the vehicle and replays this frame to keep the vehicle accelerating.

• Spoofing attack: the attacker impersonates herself as another in-vehicle node by falsifying

data (e.g., CAN frame), to gain an illegitimate advantage.

66

• Denial-of-service (DoS): the attacker keeps sending packets in the network with the goal

of resource exhaustion, which is also referred to as the flooding attack. This behavior is

common for CAN injection attack [39], because the attacker needs to broadcast forged CAN

frames at a high frequency to override legitimate CAN frames with the same ID. Another

example is that the attacker may intentionally trigger computationally heavy operations (e.g.,

cryptography operations [106]) and tries to slow down or crash the victim.

4.4 Analysis of Security Protocols

In this section, we first summarize a list of security and performance requirements for secure in-

vehicle communication. The requirement list is complete to our best knowledge and are derived

from four different perspectives: (1) in-vehicle communication patterns (§4.2.2), (2) general se-

curity properties (i.e., integrity, confidentiality, and authentication), (3) potential security threats

(§4.3). (4) in-vehicle performance challenges (Table 4.1). We then analyze three security protocol

candidates: MACsec [86], IPsec [103, 104], and TLS [183], and discuss their limitations.

4.4.1 Requirement Items

Security requirements. We summarize 8 security requirements (SRs) as listed below. Our goal is

to ensure that the in-vehicle security protocol can provide a secure channel for in-vehicle commu-

nication including three patterns mentioned in §4.2.2 and prevent potential security threats.

SR1 Key Material: Each in-vehicle node MUST own a cryptography key material, which will

be used to protect the in-vehicle communication. Specifically, the security protocol MUST support

both the symmetric key (e.g., pre-shared key) and the certificate (e.g., public/private key).

SR2 Integrity: The security protocol MUST support integrity protection to prevent tampering

with any data sent over the communication channel.

SR3 Confidentiality: Confidentiality is an OPTIONAL requirement. It can prevent eavesdrop-

ping on the network data. It depends on the use scenarios if this requirement should be enforced

67

(e.g., the transmission of privacy-related data). Besides, enforcing confidentiality brings perfor-

mance overhead, as shown in Figure 4.6. Therefore, we leave this as an optional requirement.

SR4 Authenticity: The security protocol MUST support authentication for the in-vehicle com-

munication. As mentioned in § 4.3, the attacker is able to join the in-vehicle network. There is

no default mechanism of verifying the authenticity of an added malicious device to the in-vehicle

network. Therefore, the security protocol needs to ensure that only pre-authorized ECUs are al-

lowed to participate the in-vehicle communication. Since both the symmetric key and certificate

must be supported (SR1), the authentication can happen via a symmetric pre-shared key (PSK) or

asymmetric cryptography (e.g., RSA, ECDSA).

SR5 Source Authentication / Spoofing Attack Prevention: For broadcast communication, the

protocol participants within a group MUST be able to verify the identity of the sender; otherwise,

a spoofing attack can occur within a given group, which is a well-known vulnerability for CAN

bus.

SR6 End-to-End Protection: The security protocol MUST offer end-to-end security (e.g.,

integrity, optional confidentiality, and authentication), in which “end” means an ECU. If confiden-

tiality is enabled, only the end nodes can decrypt the packet. Due to the integrity protection, any

other nodes (e.g., domain controller, gateway) along a network path cannot modify the packets.

For the given network architecture in this chapter (§4.2.1), there are two types of end-to-end

protection: (1) intra-domain end-to-end protection (security protocol at L2 is sufficient) and (2)

inter-domain end-to-end protection (security protocol at L3 or above is sufficient).

SR7 Replay Attack Prevention: The security protocol MUST be able to prevent replay attacks.

For example, the security protocol can attach a counter [118, 171, 17] or a timestamp in the packet.

This will allow the receiver to discard any messages with a repeated/outdated counter or timestamp.

SR8 DoS Prevention: The security protocol MUST provide the DoS protection mechanism

and prevent the attacker from aggressively consuming network/computation resources, as briefly

discussed in § 4.1 and § 4.3.

Performance requirement. The primary performance requirement is “efficient communica-

68

Data Type
Max. Packet
Size (byte)

Service
Interval (ms)

Bandwidth
Max.
Latency (ms)

Data 1 20 10-100 1.6-16 Kbps 0.1
Data 2 20 10-100 1.6-16 Kbps 10
Camera 786 0.25 25.1 Mbps 45
LiDAR [216] 1248 0.5 19.9 Mbps 45
Audio 1472 8.4 1.4 Mbps 150
Video 1472 1 11.8 Mbps 150

Table 4.1: Performance requirements of different types of traffic (adapted from [232, 119, 123]).

tion”, because in-vehicle ECUs often have limited computational resources. For example, the

CPU speed of the NXP MPC5748G development board is only 160 MHz [195], which is no more

than 10% of a 2 GHz desktop CPU. Most importantly, the timely delivery of safety-critical data

should be guaranteed. That is, the security protocol MUST NOT incur high overhead (e.g., time,

bandwidth) that violates the performance requirements of different types of in-vehicle traffic (Ta-

ble 4.1).

As shown in Table 4.1, different types of traffic have different performance requirements Ex-

cept for LiDAR, other information are based on previous literature [232, 119, 123]. Both Data 1

and 2 are critical control data but are assigned with different latency (i.e., end-to-end delay) re-

quirements. Camera is quite essential for ADAS and can help enhance driving safety, so we should

ensure the transmission of Camera data should be finished in time. We further add LiDAR traffic

characteristics into Table 4.1. LiDAR and Camera are complementary and are essential for the per-

ception module of an autonomous vehicle; therefore, we assign the same latency requirement as

Camera for LiDAR. Multimedia data, like audio and video, are often related to entertainment and

thus have a less restricted latency requirement, 150 ms. In summary, critical control data (i.e., Data

1 and 2) has the strictest latency requirement (≤ 10 ms). Sensor data (i.e., camera and LiDAR)

are essential for the perception of an autonomous vehicle so that their transmission latency must

satisfy the requirements from the perception module (45 ms). Multimedia (i.e., audio and video)

is for entertainment and thus has a less restricted latency requirement (150 ms).

69

4.4.2 Comparison of Security Protocols

Based on the requirement list (§4.4.1), we compare existing security protocols: MACsec [86],

IPsec [103, 104], and TLS [183]. For each security requirement, we refer to the protocol speci-

fications to check whether the corresponding protocol satisfies the requirement. The quantitative

evaluation of the performance requirement is presented in § 4.6.4.

ID Requirements MACsec [86] IPsec [103, 104] TLS 1.3 [183]
SR1 Key Material ✓ ✓ ✓

SR2 Integrity ✓ ✓ ✓

SR3 Confidentiality ✓ ✓ ✓

SR4 Mutual Authentication ✓ ✓ ✓

SR5 Source Authentication ✗ ✗ ✗

SR6 End-to-end Protection Layer 2 Layer 3 Layer 4
SR7 Replay Prevention ✓ ✓ ✓

SR8 DoS Prevention ✗ ✗ ✗

Table 4.2: Comparison of MACsec, IPsec, and TLS.

As shown in Table 4.2, all three protocols can satisfy general security requirements, SR1-4,

and replay attack prevention (SR7). For end-to-end protection, IPsec and TLS can secure both

intra-domain and inter-domain communication. However, MACsec can only protect intra-domain

communication, and thus is insufficient in our assumed architecture.

As mentioned in §4.2.2, broadcast is commonly used for in-vehicle communication. However,

all three protocols are designed for two endpoints; thereby, they do not support the protection for

broadcast communication. Moreover, TLS relies on TCP and thus does not support broadcast com-

munication 2. Indeed, with extra configurations [86, 63], MACsec and IPsec can secure broadcast

communication if a group of nodes shares the same secret key, but they cannot ensure source au-

thentication. Without fixing this problem, the attacker can still forge malicious packets and further

break safety-critical functionalities.

For DoS attacks, none of these security protocols can completely prevent them. We can rely on

other approaches to alleviate the impact of DoS. For instance, we can define filtering policies in

2DTLS may support broadcast protection [105, 134], but no standardized version has been finalized.

70

the domain controller and the gateway to prevent traffic flooding. An Intrusion Detection System

(IDS) can also help detect and prevent malicious behaviors, such as constantly sending malicious

packets to trigger heavy crypto operations in peer nodes.

4.5 Design of GATEKEEPER

In this section, we present GATEKEEPER to ensure source authentication and DoS protection in an

in-vehicle Ethernet network. We first describe the high-level design in § 4.5.1. Detailed workflow

of GATEKEEPER is presented in § 4.5.2. Then, we discuss the DoS threat against GATEKEEPER

and propose a defense mechanism for it. At last, we show how we use Tamarin prover to verify

the security properties of GATEKEEPER.

4.5.1 High-Level Design

As emphasized before, broadcast communication is commonly used in an in-vehicle network. Net-

work participants (e.g., ECUs) form a communication group. A single packet can reach multiple

receivers in the group, leading to the danger that a malicious packet can potentially affect multi-

ple receivers. To prevent such malicious behaviors, the receiver should be able to verify that the

received data really originates from the claimed source and was not modified during transmission

(i.e., source authentication).

Due to the resource limitation, it is challenging to ensure source authentication for the in-vehicle

network and the real-time performance requirement. Overall, except for the source authentication

property, the proposed design should satisfy the following two design goals:

1. Lightweight sender: the proposed design should not incur high overhead at the sender side

during the transmission of broadcast packets. This is important for in-vehicle communica-

tion, because ECUs often have very limited computational resources (e.g., 160 MHz CPU),

as mentioned in § 4.4.1. The high overhead at the sender side will undoubtedly produce

low-throughput traffic with high latency.

71

2. Overall efficiency: although the proposed design will introduce overhead, the overall perfor-

mance should be optimized accordingly, because of the importance of the timely delivery of

safety-critical packets.

To meet these two design goals, GATEKEEPER is built upon two insights. First, symmetric cryp-

tography is much faster than asymmetric cryptography, which is common knowledge and is also

demonstrated in § 4.6.3. Therefore, we mainly utilize symmetric cryptography in GATEKEEPER

to build a lightweight sender. Second, the gateway/the domain controller in an in-vehicle network

usually has more computational resources than in-vehicle ECUs. For example, NXP MPC-LS-

VNP-RDB [196] gateway includes four Arm Cortex-A53 64-bit processors, with up to 1.4 GHz

CPU speed, while NXP MPC5748G [195]) ECU board only has two 160 MHz Power e200Z4 32-

bit CPUs and one 80 MHz Power e200Z2 32-bit CPU. To optimize overall efficiency, we thus let

the gateway or the domain controller handle resource-consuming operations such as cryptography

functions.

Note that, using symmetric cryptography, like HMAC, at the sender side cannot ensure source

authentication in broadcast communication. As we discussed in §4.4.2, existing protocols (e.g.,

MACsec, IPsec, and TLS) do not provide source authentication [63] for broadcast communication.

Since all participants in a broadcast group have the same symmetric key for communication, any

malicious participant in a communication group can impersonate the sender and forge packets

to other receivers. However, in unicast communication, source authentication can be achieved

through the symmetric message authentication code (MAC). While sending a packet, the sender

attaches a MAC with the packet. In this case, the receiver can verify the correctness of the MAC

to verify the packet source identity.

Based on the discussion above, we introduce an on-path authenticator (Figure 4.2), which co-

locates with the switch/router. The broadcast can be either inter-domain or intra-domain; there-

fore, the authenticator can be the gateway or the domain controller, respectively. In a switched

Ethernet network, a broadcast packet is first sent to a switch/router via a unicast channel. Then,

the switch/router forward duplicated packets to broadcast receivers. For a unicast channel, it is

72

Sender Switch/Router

Receiver

Receiver

Receiver

Broadcast
Packet

Unicast

Authenticator

Authenticator: the sender
can be trusted

Figure 4.2: The overview design of GATEKEEPER.

possible to ensure source authentication. Therefore, while observing a broadcast packet, the au-

thenticator can first verify the sender’s identity. Then, the authenticator can construct another MAC

for the broadcast packet and embed it in a proof packet for each receiver. In this way, we delegate

the sender’s identity verification to the authenticator. Once the receiver accepts the proof packet,

the receiver can verify that the broadcast packet is successfully forwarded by the authenticator and

thus carries the correct sender’s identity. Table 2.1 further highlights the low time and bandwidth

overhead of the design of GATEKEEPER, compared to existing works [107, 133, 64].

Key Materials. To protect the broadcast communication, we assume that a group key, KG,

is shared among all senders and receivers based on a key management mechanism [69], which

is outside the scope. For each broadcast participant, while joining the communication group, it

initiates a secure unicast channel and negotiates a shared secret key KU with the authenticator,

following the same handshake protocol of existing security protocols (e.g., MACsec, IPsec, TLS).

For the sake of simplicity, we differentiate the notation of the sender’s key KUS and the receiver’s

key KUR in this chapter.

4.5.2 GATEKEEPER Roles

There are three different roles in GATEKEEPER: (1) sender (S), (2) receiver (R), and (3) authenti-

cator (A). We will describe detailed steps along with three roles in the following paragraphs.

Sender. At the sender side, the sender initializes a packet counter cnt and sends it with the

packet. For each outgoing broadcast packet, the sender attaches a traffic type and a message

73

Authenticator (A) Receiver (R)

T
P
:

Processing
Time

Receive Source
Authentication

Proof

(5)

Receive
Packet

(4)

Verify
MAC

(2)

Proof
Generation

(3)

Generate
MAC

Send
Packet

(1)
Sender (S)

T
SA

: S->A
Transmission

Time

Figure 4.3: Detailed workflow of GATEKEEPER.

authentication code (MAC):

pkt′ = f(KG, cnt ∥ pkt)

macS = MAC(KUS, type ∥ pkt′)

S → A : type ∥ pkt′ ∥ macS

where f can either encrypt the outgoing packet or attach a MAC for integrity protection, depend-

ing on the application scenarios. For the next outgoing packet, the local counter cnt will be incre-

mented.

Authenticator. In GATEKEEPER, the authenticator aims at verifying the identity of the sender

and informing receivers. The functionality of the authenticator is also described in Algorithm 1.

When the authenticator observes a broadcast packet, it picks the corresponding key KUS to

verify the incoming packet. If the authenticator cannot find a key that corresponds to the sender-

authenticator unicast channel, the sender may not be involved in any broadcast communication. In

this case, no proof packet will be generated. The authenticator can also drop the incoming packet

to prevent insecure communication.

If the authenticator finds the secret key KUS , it will verify the correctness of macS in the packet.

74

Algorithm 1: GATEKEEPER authenticator.
Input: Packet type ∥ pkt′ ∥ macS , Sender S

1 key = findKey(S);
2 if key == NULL or macS! = MAC(key, type ∥ pkt′) then
3 drop the incoming packet;
4 return;
5 end
6 forward type ∥ pkt′ to intended receivers;
7 h′ = HASH(type ∥ pkt′);
8 foreach receiver R and KUR do
9 macA = MAC(KUR, h

′);
10 proof = h′ ∥ macA;
11 send proof to R;
12 end

If the macS is incorrect, no proof packet will be generated, and the packet will be dropped. Note

that, the authenticator can remove macS while forwarding it to the receiver, as macS is not needed

for the receiver.

For each receiver R, the authenticator uses the corresponding KUR to calculate a MAC, macA,

over the hash h′ of the original secured packet pkt′. After that, the authenticator constructs a proof

packet h′ ∥ macA and sends it to R.

Receiver. While receiving the broadcast packet pkt′ with the traffic type type from the sender,

the receiver first checks the correctness of it using KG:

cnt ∥ pkt = f−1(KG, pkt
′)

where f−1 is the corresponding decryption or verification function of f . If it is correct, the receiver

should calculate the hash of pkt′ and store the packet pkt locally. Then, the receiver needs to

inspect the counter cnt, by comparing it with the local counter for the corresponding sender. If cnt

is smaller than the expected counter value, the receiver should discard the packet, because a replay

or spoofing attack likely happens. If two values match, the receiver will increase the local counter

for the sender by 1. Note that, cnt may be greater than the expected counter value, due to the

packet loss. In this case, the receiver will still accept the packet if cnt is higher than the expected

75

counter value within a threshold. We follow existing works to set the threshold to 1 [171].

Once the receiver receives the proof packet, the receiver looks for a corresponding packet based

on the hash value h′. If no matching packet is found, the proof packet should be discarded.

Then, the receiver uses KUR to verify the proof packet. If the proof packet is incorrect (i.e.,

MAC(KUR, h
′) does not equal to the received macA), the packet and the proof packet should both

be discarded. To this end, we successfully ensure the source authentication, and the receiver can

now process the broadcast packet pkt.

Similarly, the loss of proof packets could happen, resulting in a large number of stored but

not processed packets at the receiver side. Thus, the receiver will periodically purge the stored

“expired” packets, which are defined as packets that have already violated the maximal latency

requirement of the corresponding traffic type. The receiver can periodically compare the current

timestamp and the receiving timestamp of each stored packet. If the difference between two times-

tamps is greater than the allowed maximal latency, the receiver can discard and delete the stored

packet.

4.5.3 Denial-of-Service Protection

Since we assume that the attacker can compromise an in-vehicle device (e.g., ECU), the attacker

can intentionally send a large number of broadcast packets to the authenticator with the goal of

triggering the proof generation process. To defend against the DoS threat, we propose a coun-

termeasure based on the time-lock puzzle [185] (Figure 4.4). The proposed approach has three

benefits [208]: (1) lightweight puzzle generation and verification, (2) linear granularity delay time

control, and (3) non-parallelizable solving process, while existing countermeasures have several

limitations. For example, both one-way hash chain [135] and hash-based reversal puzzle [56, 101]

cannot achieve fine-grind control over delay time. Besides, both of them require exhaustive search-

ing of a pre-image to solve the puzzle, which is a parallelizable task. Moreover, the puzzle veri-

fication of the two types of puzzles above requires one hash operation, while our approach does

not.

76

When a DoS attack behavior is detected, the authenticator will generate and send out a time-lock

puzzle. Meanwhile, the authenticator will not forward any traffic from this malicious sender until

the sender sends back the correct solution. The puzzle generation and verification are lightweight

for the authenticator, while there is no shortcut for the sender to solve a time-lock puzzle. By

controlling the time to solve the puzzle, the authenticator can slow down the malicious sender.

Authenticator (A)

Detect high throughput

(2)

Send the puzzle

(4)

Send a large
volume of packets

(1)
Sender (S)

- Stop forwarding packets from
the sender
- Generate a puzzle for a given
delay time T

(3)

Solve the puzzle

(5)

- Verify the solution
- Resume packet forwarding if
the solution is correct

(6)

Figure 4.4: DoS protection workflow of GATEKEEPER

DoS signal. First of all, the authenticator needs to identify the DoS behavior (i.e., sending a

large volume of packets). To achieve this goal, we attach a packet type field to the outgoing packets

of each sender. By comparing the performance profile, like Table 4.1, the authenticator is aware

of the expected throughput for a given packet type. Since the authenticator co-locates with the

switch/router, the real-time statistics about the packet forwarding can be calculated easily, by mea-

suring the throughput every time interval l. Suppose the monitored throughput wm is greater than

the expected throughput we. In that case, the authenticator will consider the corresponding sender

as a potential DoS attacker, leading to the generation of the time-lock puzzle. We admit that this is

a rough signal for DoS detection and may result in false positives. However, the DoS detection is

77

orthogonal to the DoS protection approach and can be replaced by more precise versions.

Puzzle generation. While generating the time-lock puzzle, the authenticator (i.e., the puzzle

generator) seals a randomly generated message M in the puzzle and enforces the penalty delay

time T . The penalty delay time T must follow the inequality wm(l−T)
l

≤ we, where the measured

throughput in the next time interval is no greater than the expected throughput we. That is, T

should be at least (1− we

wm
)l. In addition, the authenticator needs to know the number of squarings

per second that can be performed by the malicious sender, notated by S, which can be learned and

configured in the manufacturing time.

Algorithm 2: Time-lock puzzle generation.
Input: Penalty delay time T , The number of squarings per second of the sender S,

Solution message M
Output: Time-lock puzzle (n, a, t, CK, CM)

1 randomly generate two secret primes p and q;
2 n = pq;
3 t = TS;
4 randomly generate a key K;
5 CM = Enc(K,M) ; // encrypt the solution

// using the shortcut to calculate CK
6 randomly generate a, where 1 < a < n;
7 ϕ(n) = (p− 1)(q − 1);
8 e = 2t (mod ϕ(n));
9 b = ae (mod n);

10 CK = K + b (mod n) ; // calculate CK = K + a2
t

(mod n)

As shown in Algorithm 2, the authenticator first calculates a composite modulus n as the product

of two large randomly-generated primes p and q. Then, the authenticator derives the total number

of squarings t from the penalty delay time T and sender’s solving speed S. After that, the pre-

determined solution message M will be encrypted (e.g., AES), using a random key K. At last, the

authenticator will hide the key K, by calculating CK = K + a2
t
(mod n), where a is a random

number between 1 and n (exclusively). Since the authenticator knows p and q, the Euler’s totient

function ϕ(n) can be computed, which enables the efficient computation of CK (Line 7-10 in

Algorithm 2) [185].

Puzzle solving. After receiving the generated time-lock puzzle, the malicious sender (i.e., the

78

puzzle solver) needs to recover the key CK and then decrypt the sealed solution message M. For a

secure encryption algorithm, it is non-trivial to brute force the key; thereby, one feasible approach

is to calculate b = a2
t
(mod n) and derives K. However, without knowing the factorization of n

(i.e., p and q), it is provably hard to compute ϕ(n) from n [185]. That is, there is no efficient way

to compute b, and the only solution is to perform t squaring operations sequentially (Line 1-5 in

Algorithm 3).

Algorithm 3: Time-lock puzzle solving.
Input: Time-lock puzzle (n, a, t, CK, CM)
Output: Solution M
// repeated squarings to calculate b = a2

t

(mod n)

1 b = a (mod n);
2 while t ̸= 0 do
3 b = b2 (mod n);
4 t = t− 1;
5 end
// recover the key

6 K = CK − b (mod n);
7 M = Dec(K,CM) ; // decrypt the solution

Puzzle verification. Puzzle verification is relatively easy, and the authenticator only needs to

compare the stored solution with the received solution. If two values are equal, the authenticator

will resume forwarding the traffic from the sender. Otherwise, the authenticator will keep blocking

the malicious sender.

4.5.4 Formal Verification

To show how GATEKEEPER prevents attacks listed in §4.3, we have formally modeled GATE-

KEEPER and verified security properties using the Tamarin prover [142]. The Tamarin prover has

been widely used for security protocol verification (e.g., TLS 1.3 [49, 48], 5G [21, 47], WPA2 [50],

IoT protocols [106], and SecOC [118]), which supports unbounded verification of symbolic mod-

els. Using the Tamarin prover, we verify three security properties for GATEKEEPER: (1) no packet

replay, (2) source authentication, and (3) DoS protection. Note that, we only model the design of

79

GATEKEEPER as mentioned in § 4.5 and do not include any existing security protocols.

1 lemma NoReplay:
2 " All receiver pkt #i #j.
3 Process(receiver, pkt) @ #i
4 & Process(receiver, pkt) @ #j
5 ==> #i = #j"

Listing 4.1: No replay attack property

For the first property, Listing 4.1 specifies that two identical packet processing events cannot

happen at the same time (#i and #j denotes two timepoint variables in Tamarin). Due to the use

of the counter, we can ensure the receiver will not process the same packet twice, as the counter

will change after packet processing.

1 lemma SourceAuthentication:
2 " All receiver authenticator pkt r_key #k #n.
3 Process(receiver, pkt) @ #k
4 & KeyAccepted(receiver, authenticator, keyr) @ #n
5 ==> (
6 (Ex sender1 sender2 keys1 keys2 #i #j #l #m.
7 Send(sender1, pkt) @ #i
8 & Send(sender2, pkt) @ #j
9 & KeyAccepted(sender1, authenticator, keys1) @ #l

10 & KeyAccepted(sender2, authenticator, keys2) @ #m
11 & (sender1 = sender2) & (#i = #j) & (#l = #m)
12 & (#i < #k)
13)
14 | (Ex sender #x. RevealLtk(sender) @ #x)
15 | (Ex #y. RevealLtk(receiver) @ #y)
16 | (Ex #z. RevealLtk(authenticator) @ #z)
17)"

Listing 4.2: Source authentication property

For the second property, with the help of the Tamarin prover, we show that the attacker is

unable to obtain the group key KG and the shared key KU between the authenticator and the

sender/receiver, unless the attacker compromise an ECU (§ 4.3). Even with both keys, the attacker

cannot impersonate others, because KU is only bound with a single identity during the negotiation.

In this case, we can verify that, for each processed packet at the receiver side, only one legitimate

sender produced the corresponding packet before (Listing 4.2). That is, the source authentication

80

property of GATEKEEPER is validated.

1 lemma DoSProtection:
2 " All authenticator #i.
3 ProofGeneration(authenticator) @ #i
4 ==> (
5 (Ex sender #j.
6 Send(sender, pkt) @ #j
7 & Honest(sender) @ #j
8 & #j < #i)
9 | (Ex sender #r.

10 RevealLtk(sender) @ #r
11 & Honest(sender) @ #i
12 & #r < #i)
13)"

Listing 4.3: DoS protection property

For the last security property, we actually prove a weakened property that only the honest sender

can trigger the generation of proof packets, unless the sender is compromised by the attacker (i.e.,

RevealLtk(sender) in Listing 4.3). An honest sender is defined as a sender whose traffic

throughput is no greater than the claimed throughput in the packet header. While solving the

time-lock puzzle, the statistical throughput value will undoubtedly drop. We therefore consider

the sender as an honest sender, if the sender sends back the correct solution. Then, we follow

an existing work [106] to mark the proof generation as a cryptographically heavy operation and

verify that only the sending event from an honest sender can trigger such heavy operations. It

is worth mentioning that, for the last property, we only verify if the DoS protection mechanism

can be triggered rather than ensure it can quantitatively slow down any malicious senders. This

limitation is inherited from the verification tool, Tamarin prover, as it can only produce a binary

answer (yes or no) for each specified property. Other verification tools, like the probabilistic model

checker [111], can further help generate quantitative verification results.

81

4.6 Evaluation

In this section, we first present the performance evaluation results of MACsec, IPsec, and TLS

in a resource-restricted environment. Unfortunately, none of them can fully satisfy the perfor-

mance requirements (§4.4.1). Besides, we implement our prototype of GATEKEEPER on a Docker-

based testbed. Our simulation results confirm that GATEKEEPER incurs low latency overhead,

can support the transmission of high-throughput LiDAR traffic, and significantly outperforms

TESLA [169, 168, 170, 167].

We want to answer the following research questions:

• RQ0: Can Docker-based testbed produce a similar performance to ECUs?

• RQ1: Can existing security protocols satisfy the performance requirement of the in-vehicle

communication?

• RQ2: What is the performance overhead introduced by Gatekeeper?

• RQ3: Can Gatekeeper scale well if there are multiple broadcast receivers?

• RQ4: What is the performance overhead of the time-lock puzzle generation and solving?

4.6.1 Testbed Setup

Our experiments are conducted on a Docker-based testbed, calibrated to simulate a resource-

restricted environment of the ECU. The Docker-based testbed offers two significant benefits. First,

Docker allows us to control the resource constraints (e.g., memory, CPU) of a Docker container to

simulate a resource-limited environment. Second, we can reuse off-the-shelf protocol implementa-

tions in the container. The development boards of the in-vehicle devices are often microcontroller

boards (e.g., NXP DEVKIT-MPC5748G), running a real-time operating system (e.g., FreeRTOS)

rather than Linux. We only found one available TLS implementation (i.e., TLS 1.3 in WolfSSL),

while MACsec and IPsec are missing. Besides, it is laborious and error-prone to implement IPsec

82

and MACsec on our own. Notably, our goal is to evaluate security protocol candidates and GATE-

KEEPER prototype on a comparable platform to the in-vehicle network. Thereby, we stick to the

Docker-based testbed.

Docker-based Testbed. All Docker containers run on a host machine (Ubuntu 18.04, Linux

kernel 5.4.0-77) with six cores clocked at 3.8 GHz and 16 GB memory. The Docker image uses

Ubuntu 18.04 and installs all necessary applications. For TLS 1.3, we choose WolfSSL (v4.4.0),

a TLS implementation for embedded systems, also used by our development board, DEVKIT-

MPC5748G. IPsec and MACsec communication are provided by the underlying Linux kernel of

the host machine. For IPsec handshake, we utilize strongSwan (v5.6.2). For MACsec handshake,

we install hostapd and wpa supplicant (v2.9 for both). Furthermore, for performance measure-

ment, iperf3 (v3.9) is added to the Docker image as well. We also integrate WolfSSL into

iperf3 so that we can measure the performance of TLS communication.

We instantiate Docker containers for the sender, gateway, and multiple receivers, and only re-

strict the resources of the sender and receiver containers to simulate ECUs. Both sender and

receiver containers are connected with the gateway container through virtual Ethernet interfaces

(100 Mbps links). In the gateway container, we create and configure a bridge device to forward

packets between sender and receiver containers.

Development Boards. The development board we use, NXP DEVKIT-MPC5748G [195], has

two 160 MHz e200Z4 CPUs and one 80 MHz e200Z2 CPU. The memory resource is also limited,

with only 6 MB Flash and 768 KB on-chip SRAM. In the following experiments, the development

board is mainly used to calibrate the resource restrictions of the Docker container. We measure

the performance of the cryptography algorithms on the board and calibrate the parameters of the

container to produce similar results.

4.6.2 Prototype of GATEKEEPER

We implement three different roles of GATEKEEPER (§4.5.2) in C, as shown in Figure 4.5. As a

proof of concept, we currently place all three roles at Layer 2. Note that, GATEKEEPER can also

83

Sender

Authenticator

Receiver

eth1 eth2raw_socket raw_socketbr0veth1 veth2

mitm_auth

Figure 4.5: GATEKEEPER prototype.

be implemented at any layer that supports multicast/broadcast communication.

We choose HMAC-SHA256 and SHA256 to realize the MAC and HASH functions that are

presented in §4.5.2. At the sender side, we utilize Layer 2 raw socket to append the extra message

authentication code to the outgoing broadcast packet (§4.5.2). Also, the Layer 2 raw socket is used

in the receiver container to monitor the broadcast packet and the proof packet. In the authenticator

container, a kernel module, named mitm auth, is loaded to monitor all traffic forwarded by the

bridge device. The kernel module will wrap the generated proof packet in an Ethernet frame with

a self-defined Ethernet type.

4.6.3 RQ0: Performance Calibration

This subsection is a prerequisite for other experiments. We first evaluate cryptography algorithms

on the development board, as summarized in Figure 4.6. Then, we pick AES-128-GCM as the

reference to calibrate the resource restrictions of the container because AES-GCM is supported by

all three security protocols.

The calibrated results are presented in Figure 4.7, showing that the answer to RQ0 is positive.

For symmetric ciphers and hash functions, we measure their throughput of encryption, hash gen-

eration, or message authentication code generation. To achieve similar results to the development

board, the sender and receiver containers are configured to only use 1% CPU resources of one CPU

core. We set the memory resource to 50 MB, as the container itself requires more memory than

the development board.

According to the results in Figure 4.7a, we note that such a resource-limited environment can

hardly satisfy the throughput requirements listed in Table 4.1. Even the best performing ChaCha20-

84

Th
ro

ug
hp

ut
 (M

bp
s)

0

2

4

6

8

10

AES-12
8-C

BC

AES-12
8-C

CM

AES-12
8-G

CM

SHA25
6

HMAC-S
HA25

6

Figure 4.6: Performance of symmetric cipher suites and hash functions on the development board.

Th
ro

ug
hp

ut
 (M

bp
s)

0

5

10

15

CHA-P
OLY

AES-12
8-C

BC

AES-12
8-C

CM

AES-12
8-G

CM

SHA-25
6

HMAC-S
HA25

6

(a) Symmetric ciphers and hash functions

A
vg

. O
p.

 T
im

e
(m

s)

0

200

400

600

RSA-2048 ECDSA-256

Sign Verify

(b) Asymmetric algorithms

Figure 4.7: Performance of cryptography algorithms in the Docker container.

85

Poly1305 cipher suite can only achieve 14.296 Mbps processing throughput. Apparently, the de-

velopment board needs more resources to support the transmission of Camera and LiDAR data.

Figure 4.7b illustrates the operation time of signature generation and verification with two differ-

ent asymmetric algorithms: RSA and ECDSA. Overall, both algorithms incur high overhead. The

ECDSA algorithm performs better in the signing procedure with timing of 203.99 ms, but the ver-

ification is around ten times slower than RSA. The slow performance of asymmetric cryptography

indicates the impossibility of adopting them at the sender side to enforce source authentication.

4.6.4 RQ1: Performance of Security Protocols

We measure the handshake and communication performance of three security protocols. For hand-

shakes, we configure three protocols to use elliptic-curve cryptography (ECC) certificate with a

256-bit ECC key. Each protocol will be initiated 100 times. For communication performance, we

run iperf3 along with three protocols to evaluate their throughput. All three protocols use the same

symmetric cipher, AES-128-GCM, to encrypt the transmitted data, as this is the only cipher that is

supported by three protocols.

Table 4.3 presents the handshake time, the total size of transmitted packets during the hand-

shake, and the communication throughput. TLS 1.3 performs the best among three candidates, and

IPsec is comparable to TLS 1.3. The overall handshake performance of MACsec is worse than

other protocols, because MACsec spends lots of time on MACsec Key Agreement (MKA), which

is the second stage of its handshake procedure. As expected, their communication throughput can-

not satisfy the throughput requirements for Camera, LiDAR, and Video data, as the throughput is

bounded by the chosen cipher suite (i.e., AES-128-GCM in Figure 4.7a). For performance im-

provements, we will discuss the benefits of hardware cryptography acceleration and lightweight

cryptography algorithms in § 4.7.

86

Handshake
Protocol Time (s) Packet Size (bytes) Throughput (Mbps)
MACsec 3.27 5048 2.87

IPsec 1.11 2769.1 2.94
TLS 1.3 0.80 2036.5 3.42

Table 4.3: Handshake and communication performance.

4.6.5 RQ2: Latency Overhead of GATEKEEPER

To demonstrate the effectiveness of GATEKEEPER, we evaluate GATEKEEPER under two scenarios:

(1) CAN over UDP; (2) LiDAR replay over UDP. We think both scenarios are representative:

(1) the first one represents the most commonly used CAN broadcast scenario for the in-vehicle

network; (2) the second one represents the transmission of newly emerging LiDAR sensor data for

the autonomous vehicle. For the first scenario, we replay randomly generated CAN frames every

100 ms. For the second scenario, we replay pre-recorded LiDAR data [216] over UDP, following

its original timing. As discussed in § 4.6.3 and § 4.6.3, without hardware acceleration or additional

computational resources, no security protocol can satisfy the throughput requirement of the large-

volume traffic, like LiDAR. Therefore, we focus on the latency requirement in this subsection. We

measure the end-to-end latency of each transmitted packet and calculate the latency overhead to see

if GATEKEEPER can satisfy the latency requirements in Table 4.1. Note that, we only instantiate

one receiver container in this set of experiments. The scalability evaluation over multiple receivers

is shown in § 4.6.6.

Besides, we compare GATEKEEPER with TESLA in the two evaluation scenarios. For a fair

comparison, we replace MD5 and HMAC-MD5 in the original TESLA prototype with SHA256

and HMAC-SHA256, which are used in GATEKEEPER. The interval duration of TESLA is set to

10 ms. We then follow TESLA’s paper [168] to set up the key disclosure delay as 2. In this way,

we can uncover the performance differences caused by different design choices.

Figure 4.8a shows that GATEKEEPER significantly outperforms TESLA. The latency overhead

of the LiDAR replay scenario is even larger, which is due to the large throughput (18 Mbps) and

87

La
te

nc
y

O
ve

rh
ea

d
(m

s)

0

100

200

300

400

CAN over UDP LiDAR replay

Gatekeeper TESLA

(a) Under resource-limited environments

La
te

nc
y

O
ve

rh
ea

d
(m

s)

0

25

50

75

100

125

CAN over UDP LiDAR replay

Gatekeeper TESLA

(b) Given enough computational resources

Figure 4.8: Latency overhead of GATEKEEPER and TESLA.

high packet rate (2000 Hz) of LiDAR traffic (Table 4.1). On the other hand, the low performance

of SHA256 and HMAC-SHA256 also increase the latency. Nonetheless, the absolute latencies of

GATEKEEPER under two evaluation scenarios are 0.1 ms and 15.98 ms, respectively, which are

within the latency requirements of Data 1 and LiDAR.

One major source for the high latency overhead of TESLA is the time-delayed key disclosure

embedded in the design of TESLA. The receiver cannot verify and process the broadcast packet

until it receives the key disclosure. However, the key disclosure is only available after at most 20

ms, based on our current settings, and is always attached to the next outgoing packet. If the packet

rate is greater than 20 ms, the latency incurred by TESLA can become even higher. GATEKEEPER

does not rely on delayed key disclosure and thus can avoid such high latency.

4.6.6 RQ3: Scalability of GATEKEEPER

We evaluate the scalability of GATEKEEPER to understand if GATEKEEPER can still produce low

latency when there are multiple receivers. Like the previous section, we measure the transmission

latency of CAN traffic, while increasing the number of receivers to 2, 4, 8, and 16. We do not

include TESLA in this subsection, because its latency overhead, by design, will not change with

the number of receivers. Readers can refer to Figure 4.8a for comparison. Figure 4.9 shows the

average latency for all sender-receiver pairs with and without GATEKEEPER.

88

#ECUs
La

te
nc

y
(m

s)
0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16

Baseline Gatekeeper

Figure 4.9: Transmission latency of CAN traffic: linear scaling.

As shown, GATEKEEPER scales well, because the latency caused by GATEKEEPER increases

linearly with the number of receivers. GATEKEEPER starts to violate the latency requirement of

CAN traffic (i.e., 0.1 ms for Data 1 in Table 4.1), when there are 4 receivers. However, it is

worth noting that even the baseline (i.e., w/o GATEKEEPER) cannot satisfy this latency requirement

with 8 receivers. The inefficiency of the baseline scenario is due to the performance limitation of

the software-based bridge interface in our testbed. In the real-world deployment of an in-vehicle

network, we would have a hardware-based switch/router (e.g., NXP MPC-LS-VNP-RDB [196]),

which significantly accelerates the performance of packet forwarding. Thereby, we should focus

on the latency overhead incurred by GATEKEEPER, which is still lower than TESLA’s latency

overhead with increasing number of receivers.

4.6.7 RQ4: Performance of Time-lock Puzzle

In this subsection, we evaluate the puzzle generation time at the authenticator container and the

puzzle solving time at the sender container. We first measure the number of squarings per second

S in the sender container, which is 260 in our testbed, and use AES-128-CBC for the encryption

algorithm. As shown in Figure 4.10, the puzzle generation is efficient, which only takes the authen-

ticator around 1.6 ms. On the other hand, solving a time-lock puzzle costs the sender a relatively

long time, which has a linear correlation with the input parameter T of the puzzle generation (Al-

gorithm 2). Note that, the input parameter T of the puzzle generation is a continuous value, unlike

89

the discrete hardness level for the hash-based puzzle. Thus, the authenticator can precisely control

the penalty delay time for the attacker.

Ti
m

e
(m

s)

0

260

520

780

104

130

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Generation Solving

Figure 4.10: Performance of the time-lock puzzle generation and solving. The x-axis is the input
parameter T for puzzle generation.

4.7 Discussion

Attacker’s capability. Beyond our threat model, a stronger attacker can compromise the gateway.

We can hardly ignore this worst case of the gateway compromise, because the gateway can become

the single point of failure in the assumed network architecture 4.2.1. What’s worse for GATE-

KEEPER, a malicious gateway can collude with a compromised ECU to still launch the spoofing

attack. We also extend the formal model of GATEKEEPER to cover the gateway compromise and

confirm this consequence (i.e., violating source authentication). This worst-case scenario should

engage an OEM’s interests to eliminate gateway attackers. We highly suggest the manufacturer

enforce advanced protection mechanisms, such as Hardware Security Module (HSM) and Trusted

Execution Environment (TEE), for the gateway and safety-critical ECUs. These hardware security

features can bring additional protection for sensitive key materials or safety-critical applications

(e.g., GATEKEEPER) [76].

Hardware acceleration and lightweight cryptography. As indicated in § 4.6.3 and § 4.6.4,

the runtime throughput of security protocols is bounded by the chosen cryptography algorithm.

Our benchmark results indicate that resource-limited ECUs produce low performance of cryptog-

90

raphy algorithms (Figure 4.6 and 4.7). For performance improvement, one option is to enable

hardware acceleration. The NXP MPC5748G board has a hardware security module (HSM) in-

stalled. With HSM enabled, the throughput of AES-128-GCM can be accelerated from 3.24 Mbps

to 81.42 Mbps. Since we do not have similar hardware acceleration on the host machine, we

only use software-based cryptography implementations for evaluations. Another option is to adopt

lightweight cryptography (LWC) algorithms that are suitable for use in constrained environments.

NIST [156] has initiated a process to solicit lightweight cryptographic algorithms for years, be-

cause the performance of current NIST cryptographic standards is not acceptable for constrained

devices. Their benchmark results on 32 candidates [155] further highlight the potential of LWC

for performance improvements. For example, on the ARM Cortex-M0+ platform, about half of

the candidates show performance improvement over AES-GCM. Therefore, for real-world deploy-

ment, the manufacturer should consider enabling the hardware acceleration or adopting lightweight

cryptography algorithms if needed.

Asymmetric cryptography. The design goals of GATEKEEPER include (1) lightweight sender

and (2) overall efficiency. Thus, we relocate computationally heavy operations to the authentica-

tor. Inspired by the imbalanced performance of digital signature signing and verification, can we

replace the HMAC-based proof generation with the digital signature? In this case, the authenti-

cator only needs to generate one digital signature and broadcast it to all receivers. Unfortunately,

the answer to this question is still negative. We replace HMAC generation and verification at the

authenticator and receiver side with RSA 2048 signing and verification operations, respectively.

As demonstrated in Figure 4.11, the end-to-end latency of GATEKEEPER w/ RSA 2048 is around

33 ms, which does not suit the transmission of safety-critical data. Nonetheless, we admit that the

constant scalability, in both TESLA (§ 4.6.6) and asymmetric cryptography, is conceptually better

than GATEKEEPER. Users should adopt TESLA or asymmetric cryptography to avoid unnecessary

operations (e.g., calculating HMAC for each duplicated broadcast packet), if the latency overhead

of them can be reduced further.

91

#ECUs
La

te
nc

y
(m

s)
33.0

33.5

34.0

34.5

35.0

0 2 4 6 8 10 12 14 16

Gatekeeper RSA

Figure 4.11: Latency of Gatekeeper w/ RSA 2048 (baseline is the same as Figure 4.9)

4.8 Conclusion

In this chapter, we revisit three existing security protocols, MACsec, IPsec, and TLS, in the context

of in-vehicle Ethernet. This chapter serves as an initial guidance for the in-vehicle Ethernet, users

can choose the security protocol on their own based on their uses cases and evaluations. Overall,

TLS and IPsec are suitable for inter-domain communication, while MACsec is favorable for intra-

domain communication. Except for the applicablity of securing intra-domain communication, an-

other reason of including MACsec is that AVB/TSN [88, 89, 85, 84] protocols directly work above

Layer 2 and cannot be protected by TLS or IPsec. In summary, we believe that a combination of

TLS and MACsec are preferred candidates for in-vehicle Ethernet, but there are use-cases for IPsec

as well. Besides, users can adopt GATEKEEPER for broadcast authentication, if DoS prevention is

desired, and implement GATEKEEPER on the domain controller and the gateway. Our evaluation

results demonstrate that GATEKEEPER incurs low latency overhead and significantly outperforms

TESLA for both CAN and LiDAR traffic. However, if users have concerns about using GATE-

KEEPER or if there are only a few receivers, users should consider using several concurrent unicast

to ensure source authentication for broadcast communication.

To adopt the existing security protocol for the automotive in-vehicle Ethernet network, we sum-

marize the deployment recommendations for different use scenarios, as specified below and also

in Table 4.4. Note that, for each security protocol candidate, we enumerate implementation re-

92

quirements in the following bullet lists, in which items correspond to four security requirements:

integrity, optional confidentiality, authenticity, and anti-replay. Other security requirements (e.g.,

key materials, end-to-end protection, source authentication, and DoS prevention) are either im-

plemented by design or unsupported features of security protocols, so we do not discuss them in

the following parts. Readers can refer to § 4.4.1 for more details about the justification of these

security requirements.

Scenarios Integrity
Optional

Confidentiality Authenticity Anti-replay Others

Multiple
LANs

TLS
AEAD,

Appendix B.4 in RFC 8446 [183],
Section 4.1.2.4 of RFC 6347 [184]

Handshake protocol,
Section 4 in RFC 8446 [183],

Section 4.2 of RFC 6347 [184]

Per-record nonce,
Section 5.3 in

RFC 8446 [183]
- RFC 7525 [198]
- RFC 8996 [147]

IPsec
AH,

RFC 4302 [103]
ESP,

RFC 4303 [104]
IKEv2,

RFC 7296 [102]

Sequence number,
Section 3.4.3 in
RFC 4302 [103]

- No tunnel mode

Single
LAN MACsec

Default cipher suite,
Clause 14 in

IEEE 802.1AE-2018 [86]

MKA,
IEEE 802.1X-2020 [87]

Packet number,
Clause 10.6 in

IEEE 802.1AE-2018 [86]
- Hardware-based implementation
- Shorter MKA interval, 0.5 s

Table 4.4: Deployment recommendations under different scenarios (AEAD: Authenticated En-
cryption with Associated Data; AH: Authentication Header; ESP: Encapsulating Security Payload;
MKA: MACsec Key Agreement)

Multiple LANs with TLS. First, we consider the assumed network architecture in § 4.2.1.

Since the domain-based in-vehicle network involves both Layer 2 (L2) and Layer 3 (L3) protocols,

users should choose a security protocol that works at Layer 3 or above to ensure the end-to-end

security. TLS serves as the top candidate, because the performance evaluation (§ 4.6.4 and Ta-

ble 4.3) indicate that TLS outperforms the other two protocol candidates on both the handshake

and communication performance. To satisfy the security requirements, users need to:

• Support all features that are classified as “MUST” in RFC 8446 [183] and RFC 6347 [184]

for secure communication

• Support Authenticated Encryption with Associated Data (AEAD), specified in Appendix

B.4 of RFC 8446 [183] and Section 4.1.2.4 of RFC 6347 [184], that offers both integrity and

confidentiality protection

• Support the handshake protocol, defined in Section 4 of RFC 8446 [183] and Section 4.2 of

RFC 6347 [184], including the client authentication capability

93

• Support the per-record nonce to ensure the non-replayability (Section 5.3 in RFC 8446 [183])

• Consider further recommendations according to RFC 7525 [198] and RFC 8996 [147] for a

secure TLS implementation

In addition, for the cipher suite, we recommend ChaCha20-Poly1305 [154], for performance

and security reasons. As explained in RFC 7905 [114], ChaCha20-Poly1305 is designed to be

efficient in software implementations, which outperforms AES-GCM, the only AEAD cipher suite

used by all three security protocol candidates. In contrast, AES-GCM has limited performance (see

Figure 4.6 and 4.7a) and is not easy for software implementation [114]. For users with hardware

accelerations (e.g., HSM, CPU with AES-NI instructions [99]), users should first evaluate cipher

suites and select the best performing one. As indicated in § 4.7, HSM on our development board

can offer excellent performance gains for AES-128-GCM. Besides, ChaCha20-Poly1305 is proven

to be secure [51] and is resilient to side-channel vulnerabilities. Moreover, RFC 7905 [114] and

RFC 7634 [153] have stated the support of ChaCha20-Poly1305 for TLS and IPsec, respectively.

Multiple LANs with IPsec. Second, as explained above, IPsec that works at Layer 3 can also

provides the end-to-end security for an in-vehicle network with multiple LANs. Besides, IPsec has

comparable performance to TLS. To satisfy the security requirements, users need to:

• Support all IPsec features that are classified as “MUST” in RFC 4301 [197] and RFC

4302 [103], except all requirements related to the tunnel mode

• Support the IP Authentication Header (AH) with the transport mode, as stated in RFC

4302 [103]

• Optionally support the IP Encapsulating Security Payload (ESP), as specified in RFC

4303 [104]

• Support the Internet Key Exchange (IKEv2) for the authentication, as described in RFC

7296 [102]

94

• Support the anti-replay service by verifying the sequence number field in the AH packet

header (Section 3.4.3 in RFC 4302 [103])

Note that, IPsec offers security protection for various upper-layer protocols, while TLS or DTLS

only protects TCP or UDP traffic, respectively. For example, Internet Control Message Protocol

(ICMP) and Internet Group Management Protocol (IGMP) operate directly above Layer 3, which

cannot be encapsulated in TLS packets. In this chapter, we consider TLS and IPsec are inter-

changeable, because they can both protect TCP/UDP traffic. We argue that TCP/UDP traffic in the

in-vehicle network is the dominant type of traffic and carries vital control and sensor data; thus,

other types of traffic, like ICMP and IGMP, are less security-critical.

Single LAN with MACsec. Third, we consider only a single Local Area Network (LAN)

scenario. Although the assumed network architecture in § 4.2.1 involves a gateway that has Layer

3 (L3) routing capabilities, the domain-based in-vehicle network can be configured as a LAN,

where the gateway is a Layer 2 (L2) switch instead of an L3 router. In this case, MACsec should

be enough to secure the in-vehicle communication. To satisfy the security requirements, users need

to:

• Support all mandatory requirements of MACsec and MKA, listed in IEEE 802.1AE-2018

(Annex A) and IEEE 802.1X-2020 (Annex A.9 for MKA only)

• Support the integrity protection using the default cipher suite (i.e., AES-GCM-128) provided

by MACsec (Clause 14 in IEEE 802.1AE-2018 [86])

• Optionally support the confidentiality protection using the default cipher suite (Clause 14 in

IEEE 802.1AE-2018 [86])

• Support the MACsec Key Agreement protocol (MKA) for the authentication (IEEE 802.1X-

2020 [87])

• Support the replay protection by checking the packet number (PN) field in the SecTAG of

the received frame (Clause 10.6 in IEEE 802.1AE-2018 [86])

95

We also have two suggestions on the cipher suite and MKA for MACsec. According to our

evaluation results § 4.6.3, the default cipher suite of MACsec, AES-GCM, has the lowest perfor-

mance. Users can either adopt (1) the hardware-based MACsec or (2) implement other efficient

cipher suites. For the former option, hardware chips, like Broadcom BCM82391 [98], can provide

considerable performance gain. For the latter option, user-implemented cipher suites should meet

the criteria specified in Clause 14.2 of IEEE 802.1AE-2018. For MKA, MACsec can be tuned

to have better handshake performance. As mentioned in § 4.6.4, MACsec spends lots of time on

MKA, the second stage of its handshake procedure, while the first stage only costs around 337 ms.

The low performance of the first stage is due to the large transmission interval, 2 s, for MKA. For-

tunately, MACsec supports a shorter MKA interval, 0.5 s (Table 9-3 in IEEE 802.1X-2020 [87]),

which can improve its handshake performance.

96

CHAPTER 5

Rigorous Security Enhancement for CAV System

against CV Spoofing Attack

5.1 Introduction

With the emerging Connected Vehicle (CV) technology [211], Vehicle-to-Vehicle (V2V) and

Vehicle-to-Infrastructure (V2I) wireless communication enables vehicles to exchange important

safety and mobility information with other entities in real time. While CV technology can sig-

nificantly benefit transportation mobility and safety, such dramatically increased connectivity in-

evitably increases the attack surface of CV devices (e.g., vehicles, infrastructures). For example, it

is easy for the attacker to send falsified data, interfering with the CV ecosystem. Chen et al. [37]

have demonstrated that one single attack vehicle can create massive traffic congestion by sending

falsified location and speed data.

Since one malicious sender can reach numerous receivers, it is challenging to ensure that all

these receivers have proper and timely protection against spoofing attacks. In a CV environment,

the diversity of the receivers (e.g., vehicles, infrastructures, and pedestrians) further increases the

challenges. For example, some CV receivers (e.g., pedestrians) may not have the computation

power to deploy the anomaly detection system. Thus, to fundamentally solve the problem, it is

necessary to prevent data spoofing from the sources: malicious vehicles, even if the system is

compromised.

To prevent data spoofing at the vehicle side, our goal is to ensure the integrity of the critical

97

CV data (e.g., location and speed) from the incoming sensor reading to the outgoing transmission

at the On-Board Unit (OBU). However, the challenge is to provide such integrity guarantee in

the presence of potential software-layer compromise in in-vehicle systems. In-vehicle systems are

known to have a large attack surface, including a broad range of Electronic Control Units (ECUs)

(e.g., CD players, Bluetooth, and cellular radio) [34] and more recently malware in the IVI (In-

Vehicle Infotainment) system [141]. More seriously, vehicle owners can compromise their own

vehicles. Thus, as long as in-vehicle systems are not vulnerability-free, such compromises are

always achievable in practice.

To address this challenge, we design and implement CVSHIELD, leveraging recent advances

in hardware-assisted security to provide strong security guarantees. More specifically, CVSHIELD

uses a hardware feature called Trusted Execution Environment (TEE) (e.g., ARM TrustZone [14]).

With this hardware feature, the execution environment is split at the processor level into a normal

world and a secure world. The normal world runs a commodity OS, which provides a Rich Ex-

ecution Environment (REE), and is completely isolated from the secure world running the TEE.

Thus, security-critical data and code can be put in the TEE to guarantee their confidentiality and

integrity even if the commodity OS is compromised. Such isolation can effectively reduce the

attack surface from the whole OS to the code and data residing in TEE, making it much harder to

compromise. Also, since the size of the code and data in TEE is much smaller, it is easier to ensure

its correctness through formal verification or manual review.

CVSHIELD can protect the pipeline of sensor data (1) reading, (2) processing, (3) encapsula-

tion, and (4) transmission in CV (§5.3). For (1) and (4), CVSHIELD first disables the normal world

from accessing peripherals directly, as TEE can control all memory/peripheral accesses and inter-

rupts received by the normal world. Then, CVSHIELD relocates drivers of peripherals into TEE,

which include sensors and CV network interface, so that only TEE is capable of interacting with

security-critical peripherals. (2) and (3) are often handled by user-space applications. However,

the codebases of these applications (e.g., gpsd [62]) are usually large, so putting them as a whole

into TEE will significantly increase the TCB size. Therefore, CVSHIELD analyzes these appli-

98

cations only to extract necessary code sections. Since manual extraction of security-critical code

sections is laborious and error-prone, we propose to utilize the idea of program slicing [224] to

extract code sections of sensor data processing automatically. Apart from protecting the pipeline,

CVSHIELD also exposes trusted APIs to the normal world for sensor information reading and CV

packet transmission, as other applications in the normal world should be able to retrieve sensor

data and exchange CV packets. For example, a trusted GPS API will provide the latest location

information. For the overall design, we should not violate the real-time constraints of CV [68],

which requires the vehicle to broadcast Basic Safety Messages (BSMs) every 100 ms. Overall, our

research goals are summarized as follows:

• Design and implement a TEE-based system CVSHIELD to protect CV sensor data integrity

and prevent CV spoofing attack at the vehicle side.

• Leverage program slicing to reduce TCB size and extract code sections on sensor data pro-

cessing automatically.

• Optimize the overall system performance to meet the real-time requirement of CV.

5.2 Threat Model

In this chapter, we trust the device hardware and exclude the threat of hardware attacks (e.g.,

GPS spoofing [233]). Both secure and non-secure kernels should be able to load the properties

of hardware devices correctly (e.g., physical addresses and buses, interrupts); otherwise, neither

kernel can exchange data with sensors.

Following existing works [37, 130], to ensure the functionality of TEE, we assume that the boot

ROM and boot loader are trusted so that the secure kernel can be faithfully loaded. On the other

hand, the non-secure OS, system services, and all user-space applications in the normal world may

be malicious. This is possible, because previous works [34, 108] have already shown that in-vehicle

systems can be compromised physically or remotely. Note that attacks that aim at compromising

99

TCB (i.e., all code that runs in TEE) are out of the scope. As long as in-vehicle systems are not

vulnerability-free, such compromises are always possible in practice.

5.3 Design of CVSHIELD

As presented in § 5.1, we aim at protecting sensor data integrity and prevent spoofing attacks at

the vehicle side, by relocating code sections of sensor data reading, processing, encapsulation, and

transmission into TEE. The following are design goals of CVSHIELD:

1. Data correctness: the normal world should not be able to directly access security-critical

peripherals (e.g., GPS, CV network interface).

2. Functionality: applications in the normal world should be able to access sensor information

(e.g., GPS location, vehicle speed) and transmit CV packets.

3. Low complexity: irrelevant code sections should be removed from TEE in order to reduce

TCB size.

4. Usability: code extraction and relocation should be automated and should try to exclude

human efforts, which may be laborious and error-prone.

Besides four design goals, we should consider the real-time constraints of the CV network while

implementing CVSHIELD.

To achieve Goal (1), we first utilize a TrustZone-specific feature to configure access permis-

sions of security-critical peripherals. In § 2.3, we mention that i.MX products are equipped with a

TrustZone-compatible component, CSU. Although CVSHIELD prototype is built on i.MX6 SoC,

if other SoCs provide similar security functionality, CVSHIELD is general and can be ported to

other SoCs. Then, to allow TEE to exchange data with peripherals, we relocate necessary device

drivers into TEE, such as the serial device driver required by GPS. After that, by programming the

ARM General Interrupt Controller (GIC), CVSHIELD registers interrupt handlers for protected pe-

100

TZASC CSU GIC

RAM Peripherals ...

Non-Secure
Kernel

Secure Kernel

Secure
Monitor

Normal World (NW) Secure World (SW)

Reading

Processing

Encapsulation

Transmission

Interrupts

Apps Local DB

Policy Check
Policy

Send

Read
sensor

Socket

Figure 5.1: CVSHIELD extends the trust boundary to protect code sections related to sensor data
in green boxes.

ripherals. When new data arrives at the peripherals, only the secure world can receive the interrupt

and retrieve the data.

For Goal (2), we first must port code sections of sensor data processing and encapsulation into

TEE. Then, we expose trusted APIs to the normal world, so applications in the normal world can

still retrieve sensor information (e.g., location and speed) and transmit CV packets. In this case,

CVSHIELD can understand the raw sensor data and extract the sensor information; also, it can

validate outgoing CV packets before the transmission. However, unlike device drivers, sensor data

processing and encapsulation programs usually have large codebases and contain irrelevant code

sections, which may violate Goal (3). For example, gpsd [62] is a commonly used daemon that

receives data from a GPS receiver and provides the data back to multiple user-space applications.

Parsing GPS data and generating location reports is just a small portion of it. Thus, we propose

to utilize program slicing [224] to remove irrelevant parts. Static program slicing takes the source

code and a slicing criterion (e.g., a call site of some function) as input. It then performs static

101

analysis to generate a program slice that may affect the values of the slicing criterion. For instance,

the potential slicing criterion for gpsd can be the function of generating location reports. Also,

program slicing can help us reduce human efforts in code extraction, so Goal (4) can be guaranteed.

To ensure the real-time requirement in the CV environment, we break down the time overhead

for each component in Figure 5.1 and optimize the performance case by case. In § 5.6, we show

our efforts in optimizing sensor data reading, which can eliminate overhead introduced by context

switches between the normal and secure worlds.

5.4 CVSHIELD Static Analysis

In this section, we will describe how the program slicing can be used to remove irrelevant code

sections in the sensor data processing programs.

CV app:
init()
while (true) {
 ...
 raw_data = read_sensor();
 data = process(raw_data);
 ...
}

Source

Sink

Clang
Cross-Compile

Program Slicing

Extract Bitcode

Sliced Lib:
init();
core();

Fill libc & libm
Functions

Link with the
Secure Kernel

func interrupt_init() {
 init();
}

func interrupt_cb() {
 core();
}

Figure 5.2: The workflow of CVSHIELD static analysis

5.4.1 Sensor Data Processing Program Characterization

We observe that sensor data processing programs often share a similar pattern. Sensor data pro-

cessing programs first keep reading and parsing raw data from sensors. Then, the parsed data will

102

be encapsulated into user-defined structures. Based on our observations, we abstract the sensor

data processing program into two parts:

• Initialization: the initialization part contains code sections that start from the program entry

to the beginning of the core processing part. Specifically, this part is responsible for initial-

izing the execution context of the core processing part. For example, any local or global

variables used in the core processing part must be allocated and initialized. Without the

initialization part, the core processing part may not work correctly.

• Core processing: the core processing part includes code sections that read and parse raw

sensor data. Since the sensor data processing program keeps running, the core processing

part is often wrapped in a loop. For each loop iteration, the program will first call an I/O

API to obtain the raw sensor data. Then, the raw data will be parsed and encapsulated into a

user-defined structure, which will be stored in a variable or transmitted via the I/O API (e.g.,

network channel).

To identify the two parts described above, CVSHIELD requires the developer to annotate two

locations where the raw sensor data is obtained (source) and encapsulated (sink). For example

(Listing 5.1), gpsd [62] requires two annotations on (1) read, a socket API, and (2) handler,

a callback function to process the encapsulated GPS data.

5.4.2 Program Dependence Graph

CVSHIELD reasons about the sensor data processing programs using a program dependence graph

(PDG) [132, 57, 207], referred to as P . PDG represents each LLVM instruction as a vertex, and the

edges capture control and data dependencies between instructions. That is, a PDG is a combination

of a control dependence graph (CDG) and a data dependence graph (DDG) for a given program.

With the PDG, CVSHIELD can extract a minimal set of instructions that are related to sensor data

processing, using program slicing [224, 132].

103

1 ssize_t packet_get(int fd, struct gps_lexer_t *lexer) {
2 ssize_t recvd;
3 // sensor data source
4 recvd = read(fd, lexer->inbuffer + lexer->inbuflen,

sizeof(lexer->inbuffer) - (lexer->inbuflen));
5 ...
6 // parsing the data
7 packet_parse(lexer);
8 ...
9 }

10

11 gps_mask_t gpsd_poll(struct gps_device_t *session) {
12 ssize_t newlen;
13 ...
14 newlen = packet_get(session->gpsdata.gps_fd, &session->lexer);
15 ...
16 // encapsulating the parsed data
17 gps_merge_fix(&session->gpsdata.fix, session->gpsdata.set,

&session->newdata);
18 ...
19 }
20

21 int gpsd_multipoll(const bool data_ready, struct gps_device_t *device,
void (*handler)(struct gps_device_t *, gps_mask_t), float
reawake_time) {

22 if (data_ready) {
23 // target loop
24 while (true) {
25 gps_mask_t changed = gpsd_poll(device);
26 ...
27 if (device->lexer.type != BAD_PACKET) {
28 // sensor data sink
29 handler(device, changed);
30 }
31 }
32 }
33 ...
34 }

Listing 5.1: GPSD annotations

104

Control Dependence Graph. A control dependence graph (CDG) embeds all control dependen-

cies for a given program. For any two instructions I1 and I2, I2 is control dependent on I1 if the

execution of I2 is determined by the outcome of I1. For example, the condition value in an branch

instruction (i.e., if-else statement) can control which instruction will execute next. To build a CDG,

the control flow analysis and post-dominator analysis are required. Using the CDG, we can infer

the control dependencies between the sensor data source and sink. However, to extract a complete

set of instructions that are only for sensor data processing, the CDG is not enough.

Data Dependence Graph. To infer a complete set of dependencies, a data dependence graph

(DDG) is another essential component. For any two instructions I1 and I2, I2 is data dependent on

I1 if the correctness of the execution result of I2 is determined by the outcome of I1. In other words,

I2 uses the data produced by I1. To construct a DDG, we need to infer the both def-use dependence

and read-after-write memory dependence among LLVM instructions of the given program [132].

The LLVM framework provides the def-use dependence information. However, it is challeng-

ing to infer the read-after-write memory dependence, which requires pointer analysis. However,

scaling the pointer analysis to the whole program is challenging. Therefore, we incorporate Ptr-

Split’s parameter-tree approach [132] to avoid the global pointer analysis. We follow KSplit’s de-

sign [81] to employ SVF’s wave-propagation-based Andersen’s pointer analysis [202] for the inter-

procedural pointer analysis (i.e., for each function). For each caller-callee pair, the parameter-tree

approach connects the actual parameter trees for arguments at the call sites with formal parameter

trees for parameters in the function definition. Consequently, the intra-procedural pointer analysis

results can be propagated inter-procedurally.

5.4.3 Code Extraction

Boundary identification. Before slicing the sensor data processing programs, we need to first

identify the boundary between the initialization and the core processing part, which is the loop

described in § 5.4.1. Listing 5.1 indicates that the source and sink may not directly appear in the

target loop. Therefore, as specified in Algorithm 4, the loop that we are looking for must be able to

105

reach both the source and sink. For this case, we leverage the PDG to query the reachability of any

two graph nodes. We iterate over all loops in the program and inspect call instructions in the loop.

If the loop can reach both the source and sink, we will mark the loop as the target loop. Moreover,

if both the source and sink are wrapped in multiple nested loops, we will choose the innermost

loop.

Algorithm 4: Identify the boundary between the initialization and the core processing
part.

Input: PDG P , Source Nsrc, Sink Nsink, LLVM module M
Output: The target loop Lt

1 Lt = NULL;
2 foreach loop L in M do
3 canReachSource = false;
4 canReachSink = false;
5 foreach call instruction CI in L do
6 canReachSource| = P.canReach(CI,Nsrc);
7 canReachSink| = P.canReach(CI,Nsink);
8 end
9 if canReachSource and canReachSink then

10 if Lt == NULL or Lt.contains(L) then
11 Lt = L;
12 end
13 end
14 end

Backward slicing. As mentioned above, CVSHIELD extracts the initialization and the core pro-

cessing using PDG-based program slicing. It’s worth noting that we perform an instruction-level

slicing as stated in Algorithm 5, instead of the function-level slicing [132]. The slicing algorithm

is standard [224, 24]. Algorithm 5 describes a worklist-based algorithm, which begins with the

annotated sink node. For each node in the worklist, we collect its neighbor nodes that have con-

trol/data dependence edges to the node. Note that, these dependence edges are directional, which

point to the current node obtained from the worklist. We repeat this procedure until the worklist

becomes empty. By doing so, we gather a set of dependence nodes that lead to the sink node. Since

the PDG is constructed over LLVM instructions, we can infer the corresponding instructions from

the set of collected dependence nodes. Besides, the program slicing technique also ensures that the

106

extracted part is executable, as relevant control and data dependency information are retained.

Algorithm 5: PDG-based backward slicing.
Input: PDG P , Sink Nsink

Output: A set of dependence nodes S
1 S = {Nsink};
2 worklist = S;
3 while !worklist.empty() do
4 n = worklist.pop();
5 forall control/data dependence edge from n′ to n do
6 if !S.contain(n′) then
7 S.insert(n′);
8 worklist.push(n′);
9 end

10 end
11 end

Next, we use the target loop to divide the set of relevant instructions into the initialization

and the core processing part. Given the target loop Lt, we label its parent function as Ft (target

function). For the example in Listing 5.1, Ft is gpsd multipoll function. For each instruction

inferred from S, if the instruction belongs to the target function Ft, the parent function of Lt,

but is not in the loop body of Lt, we will categorize this instruction into the initialization part.

Additionally, if the selected instruction does not belong to Ft, there must exist a path from the

current instruction to the target function in the PDG. Furthermore, we also assign global variables,

which are used in S, into the initialization part. Since the initialization and the core processing part

are exclusive in S, the remaining instructions that are not marked as the initialization part belong

to the core processing part.

Post-processing. After extracting the initialization/core processing part, we then run a pass to

further remove unused code, using a fixed point algorithm (Algorithm 6). We iterate over all

functions and global variables in the LLVM module of the program. If the function or the global

variable has no user, we will erase it from the module. We repeat this step until the analysis reaches

a fixed point where all functions and global variables are alive, except for those in the allowed list.

Additionally, we utilize the dead argument elimination pass in LLVM to clean up unused function

107

arguments or return values. In this way, we can further reduce irrelevant code in the original

program.

Besides, since the sensor data processing programs work in the user space, many external func-

tions may not exist in the secure kernel of TEE. Therefore, we collect a list of external functions

that are used in the extracted code sections. For example, libc and libm are commonly used in

sensor data processing programs, while the secure kernel does not include all of them, because the

secure kernel needs to be small. To ensure the successful execution of the sensor data processing

program in the secure kernel, the list of external functions should be manually imported into the

secure kernel. Note that, integrating the sensor data processing program and the dependent exter-

nal functions enlarges the footprint of the secure kernel. CVSHIELD aims to reduce the size of

the imported sensor data processing program. The developer should be aware of such a trade-off

and leverage other approaches (e.g., program testing, formal methods) to ensure the security of the

newly imported code sections.

Algorithm 6: Remove unused code.
Input: LLVM module M , a list of kept functions/global variables allowlist

1 fixpoint = false;
2 repeat
3 fixpoint = true;
4 foreach function F in M do
5 if !allowlist.contain(F) and F.users().empty() then
6 F.erase();
7 fixpoint = false;
8 end
9 end

10 foreach global variable GV in M do
11 if !allowlist.contain(GV) and GV.users().empty() then
12 GV.erase();
13 fixpoint = false;
14 end
15 end
16 until fixpoint;

108

5.5 Implementation

5.5.1 Sensor Data Reading

As mentioned in § 5.3, we relocate device drivers into the secure kernel. Before that, we integrate

the CSU driver and enable the TZASC-380 driver to allow secure-only access for sensor peripher-

als. We leverage the serial device driver for the GPS data and the network device driver for the CV

network data. For GPS I/O, We reuse imx uart driver in the OP-TEE codebase, which provides

read/write capabilities of the serial device. Since the serial device transmits data byte by byte, we

further wrap it up to provide C-style I/O API. For CV network I/O, we port libethdrivers

provided by seL4’s util libs [193, 194]. In addition, lwip is needed to handle low-level

network packet headers (e.g., Ethernet frame, IP, and UDP header).

5.5.2 Static Analysis for Sensor Data Processing

Following the proposed design in § 5.4, we implement a set of LLVM passes to perform the static

analysis in CVSHIELD (Figure 5.2). The LLVM passes are implemented in 1555 lines of C++,

including the boundary identification pass, code extraction pass, post-processing pass, and exter-

nal function collection pass. For the alias analysis, we follow the existing work [81] and em-

ploy the SVF framework [202]. Based on the results of the external function collection pass, we

manually integrate required libc and libm functions into OP-TEE, which are imported from

newlib [152] (a C library for the embedded system).

5.6 Evaluation

In this section, we first present the TCB size of CVSHIELD. Then, we conduct experiments to

evaluate the performance of the current implementation.

109

5.6.1 Testbed Setup

Our testbed is based on the Boundary Devices Nitrogen6Q development board [28], namely the

SABRE Lite board. The overall hardware of this board is similar to commercial OBUs [45].

The board has 1GB of memory and contains an i.MX6 SoC with a quad-core ARM Cortex-A9

processor with TrustZone security extensions. We use Linux kernel version 4.9.128 [27], provided

by Boundary Devices, as the non-secure kernel. The secure kernel is based on OP-TEE [125].

5.6.2 TCB Size

Following the existing work [120], we also break down the source lines of code for CVSHIELD.

Table 5.1 shows the source lines of code for different sections of the secure kernel implementation.

The main contents in the table summarize all components that are added for CVSHIELD. As

indicated by its name, the “Core” section provides the most critical kernel functionalities, including

memory management, threading, timer, and the secure monitor. For the GPS data, we develop a

Pseudo Trusted Application (PTA) that works in the secure world and exposes secure APIs to the

normal world.

For the “Drivers” section, we add two device drivers to the secure kernel: the serial device driver

(UART) and the network device driver. Apart from these, the secure kernel has already included

GIC, TZASC-380, etc. For the “Library” section, libm is a dependency of gpsd, and lwip is

imported for the network communication. Note that, gpsd in the secure kernel is extracted from

the corresponding user-space program. As mentioned in § 5.5.2, the CVSHIELD analysis reports

all external functions that are used in gpsd, in which many of them are libm functions. We will

discuss how to further reduce the TCB size in § 5.7.

In summary, our newly introduced components occupy 30% of the code base in the secure

kernel. The GPS PTA is the only interface that is exposed to the normal world, which introduces a

limited attack surface. The user in the normal world can only read the GPS data.

For the code reduction percentage, we compare the number of LLVM instructions before and

after the program slicing. The reduction percentage of gpsd is not ideal, only 7%. One reason

110

Type C Src C Hdr ASM Total
Core
GPS PTA 515 45 0 560

Drivers
Serial device 275 15 0 290
Network 4676 4403 0 9079

Libraries
libm 20576 2844 0 23420
lwip 47955 11945 0 59900
gpsd 4150 1686 0 5836

Total 78147 20938 0 99085
Others 146833 33049 6797 186679
Total (whole TEE) 224980 53987 6797 285764

Table 5.1: Breakdown of the source lines of code (SLOC) for different components in the secure
kernel.

is the over-approximation of the static program analysis that is inherited from PtrSplit [132]. We

will discuss this issue later in § 5.7. Another reason is that there are many compound structures

in gpsd’s code base, which blocks us from inferring a correct and complete set of dependencies.

Therefore, we manually simplify the extracted gpsd parts. The total number of SLOC is reported

in Table 5.1, while the full version of gpsd has 48777 SLOC of C code in total.

5.6.3 System Performance Measurement

To understand the performance of sensor reading, we expose read s API to the normal world and

measure its performance with the baud rate of 115200. In the normal world, we develop a small test

program that calls the exposed API repeatedly. The test program invokes the read function 1000

times for different data sizes. We measure the execution time of each function call and calculate

the average value. Table 5.2 summarizes the results on exposed APIs. For a real GPS device, the

polling interval is about 0.044 seconds, and the average size of fetched data is around 7.91 bytes.

Our current implementation can handle real GPS data and only takes around 0.686 ms to read 7.91

bytes of data for each polling.

We then measure the performance of reading the parsed data. The size of the parsed GPS data

111

Size (bytes) 10 100 1000 10000
read s (ms) 0.87 8.79 87.98 880.02
read mem (ms) 0.79 8.71 87.91 879.90

Table 5.2: Performance of exposed serial device I/O APIs.

(i.e., a GPS fix) is a constant (192 bytes for gpsd). Thanks to the abstraction of the sensor data

processing (§ 5.4.1), it only takes 0.042 ms to read the latest GPS location information. For each

triggered interrupt on the GPS device, the secure kernel will be triggered to process the newly

received data, which runs in the background for the user in the normal world. Thus, the core

processing part can simultaneously buffer and parse the raw GPS data. Once a GPS packet is

recognized, the parsed GPS data will be updated. For each function call, the user directly reads

the memory region that stores the parsed GPS data, without waiting until the raw data parsing is

finished.

Optimization. We analyze the execution time of the exposed API (see Figure 5.3) and propose

a passive communication mechanism based on the shared memory, because we want to reduce

introduced overhead as much as possible. In comparison with the normal case (Figure 5.3a), the

extra time overhead in Figure 5.3b comes from (1) context switches (around 0.041 ms) and (2)

memory copy between the normal world and the secure world. In § 2.3, we mention that the context

switch (i.e., smc instruction) generates a synchronous exception and suspends the execution in

the normal world. To avoid synchronous context switches, we design a passive communication

mechanism that utilizes asynchronous hardware interrupts. As shown in Figure 5.3c, the secure

kernel handles interrupts from hardware devices using an idle CPU core. Then, the secure kernel

writes data into a read-only memory chunk that is shared with the normal world. In this case, the

applications do not need to trigger context switches, but only monitor the shared memory (e.g., an

array) and process the latest data accordingly. Based on this design, we implement a sensor data

reading API read mem. By comparing two rows in Table 5.2, we confirm that our optimization

can reduce the time overhead caused by context switches.

112

Apps

Non-sec.
kernel

Device

read()

(a) Normal

Apps

Non-sec.
kernel

Secure
Kernel

Device

read_s()

Context
switch

Polling

(b) w/o Optimization

Apps

Secure
Kernel

Device

read_mem()

Interrupts

Shared
memory

(c) w/ Optimization

Figure 5.3: Optimization of sensor data reading. (a) does not incorporate TEE, while (b) shows
a trusted API of sensor reading. (c) avoids context switches and eliminates the time overhead via
shared memory.

5.7 Discussion

Automate the code extraction for device drivers. As mentioned in § 2.5, KSplit [81] extends

PtrSplit [132] to isolate device drivers from the Linux kernel. KSplit performs static analysis on

the source code of the kernel and the device driver. The analysis is used to identify the shared states

between the kernel and the driver. Since the driver will be isolated from the kernel, the shared states

between the kernel and the driver must be synchronized correctly. CVSHIELD is complementary

to KSplit. We focus on automating the extraction of the user-space sensor data processing parts,

while KSplit aims to isolate the kernel-space device driver. Potentially, KSplit can be extended

to relocate the device driver to the secure kernel automatically. However, the secure kernel has

different services from the Linux kernel, such as memory and thread management. Many APIs

used in the source code of the device driver may not exist in the secure kernel. To bridge the gap

for the device driver relocation, we may provide a detailed API map between the Linux kernel and

the secure kernel so that the device driver can be transformed accordingly.

Dynamic program slicing. The static program analysis is known to be undecidable [113, 71],

leading to imprecise approximations. On the other hand, the dynamic program analysis [2] can

capture the actual behavior of the program, given a specific set of inputs. CVSHIELD relies on

PtrSplit to construct the PDG, while PtrSplit’s design choices incur an over-approximation, which

113

still retains irrelevant code in the extracted slice. For example, indirect function calls (e.g., function

pointers) are challenging to handle for CFG construction. PtrSplit uses the function signature in the

indirect call instruction to match potential callee functions, forming a superset of the correct ones.

That is, the constructed call graph introduces redundant edges, in which the corresponding indirect

function calls will never happen in the program behaviors. Also, over-approximation happens in

the DDG construction. More specifically, while inferring the read-after-write memory dependence,

for each load instruction, PtrSplit enumerates all store instructions in the same function and checks

if they refer to the same memory locations, using the pointer analysis. However, this design choice

does not consider the instruction order, which results in redundant DDG edges. Therefore, in future

work, we would like to combine dynamic program slicing to alleviate the over-approximation issue

caused by the static program analysis. Besides, software debloating [176, 177, 41], which aims at

trimming unused code of a program, can be further incorporated to reduce the size of the relocated

device drivers and newly added libraries.

5.8 Conclusion

Rapid advances in CV technology have increased the probability of cyberattacks (e.g., spoofing

attacks) [37]. In this chapter, we propose a TEE-based system, CVSHIELD, to protect sensor

data integrity. Overall, CVSHIELD relocates security-critical code sections of sensor data reading,

processing, encapsulation, and transmission into TEE so that the malicious attacker in the normal

world cannot modify and transmit falsified data. To automate the security-critical code extraction

and minimize TCB size, we utilize program slicing to remove code sections that are irrelevant

to sensor data processing. To ensure the functionalities of normal-world applications, we expose

trusted services to provide the latest sensor information and CV packet transmission capability

with the normal world. Also, we consider optimization during the design and development phases

to ensure the efficiency of CVSHIELD.

114

CHAPTER 6

Vulnerability Discovery of CAV System under

Physical-World Attacks

6.1 Introduction

After years of research and testing, the Connected and Autonomous Vehicle (CAV) technology

is now used to assist human driving with automated functionalities. Due to its safety-critical na-

ture, CAV manufacturers must ensure that the system functionalities should not be interrupted by

malicious attackers. However, the powerful Connected and Autonomous Vehicle (CAV) system

brings new security challenges to vehicular systems, because newly introduced communication

and system modules inevitably increase the attack surface of vehicles. Security researchers have

demonstrated that physical-world attacks can affect different modules of the CAV system, espe-

cially ML-related modules [33, 32, 199, 188, 77].

Moreover, the security of the CAV system itself is largely under explored [230, 201], especially

under physical attacks. The CAV system introduces various modules and many library dependen-

cies, which raise the bar of the security analysis. Notably, compromising the CAV system may

jeopardize its normal functioning, leading to performance degradation and system crashes. Thus,

we should thoroughly analyze the CAV system itself.

Fuzzing is a practical and efficient dynamic analysis approach for vulnerability discovery, which

has been widely used in both the academia [15, 189, 190, 26, 58] and industry [143, 61]. On

the other hand, the dynamic analysis approach, like fuzzing, incurs low overhead while testing

115

real-world systems. That is, the scalability of fuzzing is much better than other analysis/testing

approaches (e.g., model checking, static program analysis, symbolic execution). Therefore, we

propose to conduct the fuzzing study on the CAV system and present CAVFUZZER, aiming at

uncovering semantic vulnerabilities that can be triggered on the road. Nonetheless, it is still chal-

lenging to apply fuzzing to the CAV system, due to the cyber-physical nature of the CAV system.

(C1) First, identified vulnerabilities are not exploitable/triggerable from the physical world

without considering physical constraints. The classic mutation strategies corrupt the program in-

puts at the byte level, which is meaningless for the CAV system. Even the grammar-based mu-

tator [15] will not help in the vulnerability discovery of the CAV system, because the semantic

information of the surrounding environment is essential while constructing meaningful fuzzing

inputs. For example, the attacker cannot place the sticker or 3D object above the ground.

(C2) Second, the coverage feedback is ineffective for detecting semantic vulnerabilities. Ma-

chine learning (ML) models play essential roles in the CAV system. However, the execution of

ML models includes mainly numeric operations [230, 166]. For different inputs, ML programs

produce almost the same code coverage results. Our initial results also validate this observation.

The fuzzer will not consider input as interesting, if the input results in the same code coverage as

previous inputs. Therefore, many inputs will be ignored by the fuzzer, even if these inputs lead to

wrong decision results.

(C3) Third, the performance of fuzzing the CAV system is fairly low, due to the complexity of

the CAV system. For example, Baidu Apollo [9] involves more than 10 functionality modules, such

as perception, localization, control, and planning. The program under testing has to be reset to the

initial state for each fuzzing input. Given the internal complexity of the CAV system, resetting the

CAV system inevitably introduces extra time overhead. Besides, existing research works often use

a simulator (e.g., LGSVL [121], CARLA [206]) while testing the CAV system [122, 79, 238, 237].

Combining the simulator and the CAV system further slows down the performance of the fuzzing.

For instance, AV-FUZZER [122] takes an average of 3.6 minutes to evaluate each driving scenario.

Therefore, to address (C1), we prototype an object-level mutator for sensor inputs of the CAV

116

perception module, which also considers practical physical-world attack capabilities [30, 151,

138]. Specifically, the object-level mutator first attaches physical objects to the sensor inputs.

Then, the mutator will apply semantic mutation strategies to place new objects or modify existing

objects. For instance, primitive mutation operations for camera inputs include but are not limited

to blurring and rotation. With the proposed object-level mutator, we can ensure that the generated

objects upon the sensor inputs can be reproduced in the physical world.

For (C2), we combine data-flow feedback with the control-flow coverage to assist the analysis

of the CAV system. ML is an essential part of the CAV system; therefore, we propose incorporating

the data-flow feedback to guide the fuzzer for ML-based CAV systems. One well-known metric for

testing the neuron network is the neuron coverage [166]. However, our exploration indicates that

the neuron coverage is not efficient in fuzzing the CAV system. Besides, we further define domain-

specific objectives (e.g., emergency stop function) for the CAV system for semantic vulnerabilities.

Regarding (C3), we adopt manually constructed fuzzing harnesses and avoid using the simulator

to improve the fuzzing efficiency. As mentioned in § 2.4, the CAV system consists of multiple

functional modules. Usually, a runtime framework is needed to coordinate these modules, such as

Cyber RT [10] and ROS [160]. The runtime framework is not reachable from the physical world

and is independent of functional modules. Therefore, it is unnecessary to include the runtime

framework in the fuzzing phase. To exclude the runtime framework, we manually construct a

fuzzing harness for the perception module that can be executed independently. Notably, we do

not modify the core processing logic of the perception module. To avoid using the simulator, we

can add an offline phase to record data traces (e.g., sensor data) in the simulator. Then, during the

fuzzing phase, we can replay the recorded traces and mutate the input sensor data. In this case, we

can reduce the overhead introduced by the simulator at the runtime.

Overall, our key contributions are summarized as follows:

• We design and prototype CAVFUZZER, aiming at uncovering semantic vulnerabilities (e.g.,

wrong perception results) that can be triggered on the road.

• We present an object-level mutator for Camera inputs of the CAV system and introduce the

117

loss-based data-flow feedback to guide the fuzzing.

• We demonstrate that CAVFUZZER can uncover semantic vulnerabilities efficiently and

effectively by comparing the number of identified vulnerability instances with a neuron-

coverage-guided fuzzer [166].

6.2 Threat Model

Since we consider physical-world attacks, we should embed the practical attacker’s capabilities

into the security analysis. We assume the attacker resides in the physical world and is close to the

victim CAV. Besides, we allow the attacker to place the adversarial patch [30] or 3D object [32]

in the surrounding location of the victim CAV. The split-second phantom attack is also within

the scope, in which the attacker can use a portable projector or a digital billboard to embed new

objects in the camera sensor. The ideas of these physical-world behaviors are borrowed from

existing works [30, 32, 151, 138], because they can affect the behavior of the CAV system and can

be controlled by a physical-world attacker. Meanwhile, the attacker aims to trigger the semantic

vulnerability that can lead to wrong perception results in the CAV system. Such attacks can further

mislead the downstream modules, like prediction and planning modules.

6.3 Design and Implementation of CAVFUZZER

Figure 6.1 presents the high-level workflow of CAVFUZZER, introducing three new components

(i.e., green boxes in the figure) to assist the fuzzing. We first present the high-level design of

CAVFUZZER in § 6.3.1. Then, we describe the details of the object-level mutator in § 6.3.2 and

the data-flow feedback/objective in § 6.3.3.

118

Instrumented Program

CAV
System

Sensor inputs

Feedback
Collection

Objective
Checking

Object-level
Mutation

Vulnerability!
YN

Seed inputs

Figure 6.1: Overview of CAVFUZZER

6.3.1 High-Level Design

CAVFUZZER is designed to uncover semantic vulnerabilities in the CAV system, specifically the

perception module. Since the perception module is the first component in the processing pipeline

of the CAV system, any incorrect results in the perception module can affect other downstream

modules. Therefore, we are interested in understanding how malicious sensor inputs can mislead

the perception module to generate wrong prediction results.

Existing fuzzing approaches, like AFL [143], have certain limitations for our analysis goal.

First, the classic fuzzing tools are designed to test command-line programs. For our case, the

CAV system obtains the input data from sensor devices. Therefore, we need to interface the fuzzer

with the semantic inputs from the sensor. Second, as mentioned in § 6.1, the byte-level mutation

is meaningless for the CAV system. For the perception module, the high-level goal is to identify

obstacles in the surrounding environment. Minor byte-level modifications on the sensor inputs may

not change the semantic information (i.e., the perception results). On the other hand, extensive

corruption of the sensor inputs may result in wrong perception results, but it is impractical and not

reproducible in the physical world. Third, the control-flow coverage feedback does not work well

in detecting semantic vulnerabilities. Due to the use of ML models in the CAV system [230, 166],

exercising the program with different inputs produces almost the same code coverage results.

To achieve our analysis goal, we design CAVFUZZER, an extensible fuzzing tool for the CAV

system, which introduces the object-level mutation and data-flow information to assist the fuzzing.

119

CAVFUZZER is built upon LibAFL [59], a framework to build modular and reusable fuzzers.

Currently, we implement the object-level mutation for the camera input and develop loss-based

feedback to guide the fuzzer.

6.3.2 Object-Level Mutation

As the first step in the workflow of CAVFUZZER, we apply the object-level mutation to the seed

inputs (i.e., benign sensor inputs). The goal of the mutation is to generate diverse mutated inputs

such that the system under testing can output unexpected results (e.g., wrong perception results).

According to the threat model (§ 6.2), the attacker can place objects in the physical world to

add objects to the sensor inputs. In our tool, we choose to attach “patches” to the sensor inputs.

Such a design choice is based on existing works about adversarial patches [30], which have been

shown to be effective in fooling image classifiers. Usually, the adversarial patch is generated for a

specific ML model, and it is not easy for the fuzzer to produce a perfect patch from scratch (e.g.,

from a purely white patch). Therefore, we collect a set of existing patches to bootstrap the fuzzing

process. Although the collected patches may not directly mislead the machine model in the system

under testing, we believe that applying image-specific mutations on collected patches can produce

usable ones. This design decision is also based on the seed selection work [72] in the fuzzing

community, highlighting the importance of the initial seeds in bootstrapping the fuzzer.

Our mutator starts with a benign camera input (e.g., an image) and a set of existing patches. At

the initialization stage, CAVFUZZER loads clean images into a queue and existing patches into a

set. The fuzzer then picks an image from the queue for each fuzzing round and enters the mutation

stage. Instead of mutating the whole image, we mutate the patch and overlay it to the chosen

image. Specifically, we define three types of mutation strategies:

• Primitive mutation: this mutation strategy aims at modifying the presence and meta prop-

erties (i.e., size, location) of objects, including four operations: (1) add, (2) delete, (3) resize,

and (4) move. The first two operations are complementary. They randomly insert a loaded

patch or remove an inserted patch that is attached to the image. For any inserted patch, the

120

fuzzer may resize the patch or change its location in the image.

• Local mutation: the local mutation operates on a partial region of the patch. The included

mutation operations are inherited from AFL’s havoc mutations, which modify one or con-

secutive bytes of the raw data of the patch. We exclude any havoc mutations that change the

raw data size; instead, we rely on the resize operation in the primitive mutation to change

the patch size.

• Global mutation: this type of mutation globally modifies the patch. Although local muta-

tions can aggressively modify the patch, it may take longer for the patch to evolve to show

observable changes. Therefore, we introduce global mutations, including two primary op-

erations: (1) blur and (2) add noise. These two operations are complementary as well. The

blur operation reduces the edge content and smooths the color transition in the patch, which

is helpful for removing noise. On the other hand, the noise addition operation introduces

extra random data to the patch. The current CAVFUZZER prototype utilizes OpenCV [161]

to implement the global mutation, including averaging blurring, Gaussian blurring, median

blurring, bilateral filtering blurring, and Gaussian noise.

Note that, we do not directly overlay mutated patches with the chosen image until we feed

the mutated image to the system under testing. That is, every image in the queue carries a list

of mutated patches. The list is empty for the clean image. For each patch in the list, we record

the patch’s location, size, and raw data so that we know how to merge mutated patches with the

underlying image input.

6.3.3 Objective and Data-Flow Feedback

After obtaining the mutated sensor input, we feed it to the system under testing and monitor the

collected feedback and execution results. In addition to the coverage-guided fuzzing, we instru-

ment the system to obtain the data-flow feedback, specifically loss-based feedback for the ML

model in the system under testing.

121

Objective. Our goal is to uncover semantic vulnerabilities, like wrong perception results. We

define the fuzzing objective as follows. For each image input, we evaluate the corresponding

execution results against the ground truth. The ground truth results are collected while exercising

the system with the clean image. A mutated image input is considered vulnerable, if any of the

following three conditions are met:

• The detection probability of any existing objects in the ground truth is decreased;

• New detected objects are introduced to the results;

• Any existing objects in the ground truth are removed from the results.

Data-flow feedback. For the coverage-guided fuzzing, the program under testing is instrumented

at the compile time (e.g., AFL [143, 58, 59]). Besides, hitcounts of each edge are also logged to

a shared bitmap during the execution, in which each byte represents an edge [58]. To avoid path

explosion, the hitcount is bucketed to a power of two. However, the perception module in the CAV

system highly depends on the ML model, which mainly includes numeric operations [230, 166].

For different inputs, the ML-based system produces almost the same code coverage results, as

shown in Figure 6.2.

Figure 6.2: Edge coverage over time while fuzzing an ML-based perception module.

According to the fuzzing objective defined above, we would like to see that the new execution

results of the mutated image can largely deviate from the ground truth. That is, we need a metric

that can quantitatively measure the difference between the new execution results and the ground

122

truth. Thus, we choose to use the loss function of the ML model, as it measures how far an

estimated value is from its ground-truth value, which satisfies our requirements. The loss function

is not fixed and varies case by case. In our prototype, we reuse the loss function of YOLOv4 [25],

as Baidu Apollo [9] also uses YOLOv4 in its camera perception module. Table 6.1 presents the

loss values among 5 different images. The first column and the first row describe the main object

in the image. The values in the diagonal cells of the table are always the minimum value in the

corresponding row. We denote the loss value between two identical images as the ground-truth

loss value. The mutated image is considered interesting, if the loss value between the mutated

image and the clean one is larger than the ground-truth loss.

dog eagle giraffe horses person
dog 1.034905 11.924377 15.891864 19.622555 19.031891

eagle 6.217122 0.000494 5.954041 9.931243 10.347088
giraffe 9.315841 7.262587 0.002287 12.716213 13.063067
horses 17.998217 15.882026 17.525015 0.198861 19.23213
person 12.487648 10.693492 11.531662 15.277912 0.001878

Table 6.1: The loss values among 5 different images.

Before compiling the system under testing, we manually instrument the ML-based system to

collect the results from the output layer of the ML model, which are stored in a shared memory

region and will be used in the loss calculation. At the initialization stage, we calculate the ground-

truth loss value and ground-truth execution results for the clean image. Later, for each fuzzing

round, we will record the output layer results and the execution results. By comparing with the

ground truth, CAVFUZZER reports vulnerable mutated images to the user and saves interesting

ones to the queue for future mutations.

6.4 Evaluation

We evaluate the efficiency and effectiveness of CAVFUZZER on a Ubuntu 20.04 server with two

8-core Intel Xeon Silver 4110 2.10GHz CPUs, 96 GB memory, and four NVIDIA GeForce RTX

123

(a) Neuron coverage over time (b) Produced interesting and vulnerable inputs over
time

Figure 6.3: Neuron-coverage-guided fuzzing for 1h.

2080 GPUs. We prototype CAVFUZZER for the camera perception module (using YOLOv4 [25])

of Baidu Apollo, which is a mature and open-source AV platform.

6.4.1 CAVFUZZER Efficiency and Effectiveness

To validate the efficiency and effectiveness of CAVFUZZER, we first run two experiments to com-

pare with the neuron coverage [166]. For both of them, we stick with the same objective as defined

in § 6.3.3, but configure the data-flow feedback differently:

• Object mutation + neuron coverage: for this experiment, we enable all three categories of

object-level mutations and the neuron coverage feedback [166].

• Object mutation + loss feedback: this configuration is the full version of the current CAV-

FUZZER prototype. We replace the neuron coverage with our proposed loss-based feedback.

Figure 6.3 and Figure 6.4 present the results for two experiments. In the right figures, the blue

line represents the number of interesting test cases in the corpus queue, which push towards the in-

crease of the data-flow feedback value (see § 6.3.3). The orange line illustrates the trend of the total

number of vulnerable over time. By comparing Figure 6.3b and 6.4b, we observe that our loss-

guided fuzzing can generate vulnerable image inputs 2x faster than the neuron-coverage-guided

fuzzing, which validates the efficiency of CAVFUZZER. Meanwhile, by inspecting the percep-

124

(a) Loss value over time (b) Produced interesting and vulnerable inputs over
time

Figure 6.4: Loss-guided fuzzing for 1h.

tion results of the collected vulnerable inputs, we can confirm that they all introduce unexpected

results (e.g., newly detected objects), which demonstrates the effectiveness of finding semantic

vulnerabilities in the CAV system.

6.4.2 Case Studies

Figure 6.5 illustrates two concrete cases while feeding the generated vulnerable inputs to Baidu

Apollo’s camera perception module. In Figure 6.5a, except for the original detection results, a van

is detected with very high confidence (99.1%), while its bounding box overlays with the actual car.

Since the newly detected van is “parked” on the side of the road and does not block the road, this

vulnerable input is less likely to affect the driving behavior of the ego vehicle. For the other case,

as shown in Figure 6.5b, three pedestrians are detected in the front of the ego vehicle, and their

detection confidence is larger than 90%. Although the ego vehicle drives in an urban area at a low

speed, the newly detected pedestrians may still trigger an emergency stop on the ego vehicle, as

the distance between them is pretty small.

125

(a) New van (99.1%) (b) Three new pedestrians (>90%)

Figure 6.5: New objects are inserted to the perception results of Baidu Apollo’s perception module.

6.5 Discussion and Future Work

Mutation practicality. In the current prototype of CAVFUZZER, we attach “patches” to the seed

sensor inputs and semantically mutate their contents. We assume the attacker can place the patch

in the physical world by projecting a digital version or printing a physical one. However, it is not

easy to ensure that the projector or the printer faithfully retains all details of the generated patches

(e.g., color, angle, light, pattern). Therefore, we should consider more physical constraints in the

mutator for the camera input mutation. We admit that the practicality of our current mutator is

limited. To improve the mutation, we can borrow the idea of Expectation Over Transformation

(EOT) [16] from the ML community. EOT is used to generate robust adversarial examples. Since

EOT models 3D rendering and printing, the generated adversarial examples can mislead image

classifiers over various angles, viewpoints, and lighting conditions. For our object-level mutator,

while applying existing mutation strategies (e.g., resize, blur, rotate) to the patch, we can further

add minor perturbations (e.g., angle, viewpoint, and lighting changes) to the generated patch. We

will obtain a set of mutated patches and treat the set as one single input. Only if the whole set of

inputs satisfies the objective, can we assert that one instance of the malicious input is identified.

By doing so, we should be able to improve the practicality of the object-level mutator.

Mutation generality. At the high level, the proposed three categories of object-level mutation

strategies are general, but the mutation operations in the CAVFUZZER prototype are only appli-

126

cable to the image inputs. One direction of improving CAVFUZZER is to support more types of

inputs for the CAV system. We can explore the domain-specific mutations for other sensors, such

as LiDAR, radar, and even the CV network interface. Taking LiDAR as an example, which is the

key enabler for the CAV technology, placing 3D objects around the CAV [32] is a promising threat

model for attacking the LiDAR perception system. The object-level mutation can then modify

various properties (e.g., size, location, shape) of the 3D object.

General and automated data-flow instrumentation. Recent advances in the fuzzing community

have explored the use of data-flow information to guide the fuzzer. DDFuzz [139] utilizes the data

dependency graph (DDG) to assist the fuzzing. Apart from the code coverage, the fuzzer considers

an input interesting if any new edges in the DDG are hit. An LLVM pass for DDG instrumentation

is shipped with DDFuzz, which can be applied during the compile time. The authors of DDFuzz

observe that fuzzing the data dependency edges does not help to increase the code coverage but

can assist the fuzzer to “stress” the already explored code locations thoroughly. datAFLow [73]

is another recent work that introduces data-flow coverage. The authors believe the data flow can

more accurately characterize program behaviors and uncover more bugs than the code coverage.

As a future direction, besides the loss-based feedback in CAVFUZZER, we can incorporate the

general data-flow information to guide the fuzzer.

Snapshot fuzzing. As mentioned above, we would like to reduce the overhead caused by resetting

the CAV system. To achieve this goal, snapshot fuzzing can be further adopted. Snapshot fuzzing

has been used for fuzzing hypervisors [189] and network applications [190]. In short, the fuzzer

first obtains a snapshot (e.g., memory state) of the system’s state directly before executing the

fuzzing input. After each fuzzing run, we can reset the system to a deterministic state by replacing

the snapshot. The cost of this reset is independent of startup complexity and only determined by

the size of the changes to the state of the system caused by executing the fuzzing input [190].

127

6.6 Conclusion

In this chapter, we design CAVFUZZER, an extensible fuzzing solution for the CAV system to un-

cover semantic vulnerabilities. Specifically, CAVFUZZER introduces an object-level mutator that

considers the physical-world attack capabilities. Also, CAVFUZZER utilizes loss-based feedback

to guide the fuzzer, instead of the control-flow coverage. We demonstrate that CAVFUZZER can

efficiently identify semantic vulnerabilities, compared with a neuron-coverage-guided fuzzer.

128

CHAPTER 7

Future Work and Conclusion

This chapter discusses potential future research directions and concludes the dissertation.

7.1 Future Work

7.1.1 Remote Attacks against CAVs

The CV network enables multiple vehicles to work cooperatively, which will be a more valuable

target for the attacker, when the CV network becomes popular in the future. Among the attack

surfaces discussed in the dissertation, CAV attacks against the in-vehicle network and the CAV

sensors require the attacker to be present at the surrounding locations of the victim vehicle. In

contrast, the CV network communication interface has the potential for large-scale remote attacks.

First, more and more collaborative applications that are built upon CV communication are pro-

posed recently (e.g, collaborative perception [236, 179, 178, 36, 35, 222, 129, 180], cooperative

driving automation in the CARMA platform). Second, the attacker can even launch attacks against

CAVs through the Internet, because, eventually, the CV network will connect the infrastructures

with the vehicles and provide Internet connectivity. The attacker can exploit newly emerging CV

applications to launch remote attacks and affect multiple CAVs in a large-scale way.

129

7.1.2 Defense against CAV Threats via Cross-Validating Different CAV In-

puts

Many attack works [77, 33, 32, 37, 188, 199, 205] against the CAVs have been proposed in re-

cent years. However, a systematic defense against existing CAV threats is missing. Prior works

often target one attack surfaces (e.g., CV network [77, 37], sensor inputs [33, 188, 199, 205]).

Intuitively, it is difficult for the attacker to simultaneously attack all three CAV system inputs

(i.e., attack surfaces). Therefore, the inconsistency among different CAV system inputs (i.e., CV

network, in-vehicle network, and sensor inputs) can help detect attacks. Users can develop an

anomaly detection system to inspect three types of data for inconsistency. The anomaly detec-

tion can be executed regarding different properties, such as vehicle status, detected objects, and

time-series consistency. Besides, users can leverage information from other vehicles to assist in

anomaly detection. For example, the object reshaping attack [32] generates a 3D-printed object

that the perception module cannot detect. Nonetheless, the object reshaping attack is optimized for

a specific model in a fixed viewpoint. If any surrounding vehicles can detect the 3D-printed object

and report it through CV communication, such a threat may be thwarted.

7.1.3 Verification of the Safety-Critical CAV System

Due to the safety-critical nature of the CAV system, its security guarantee should never be ignored.

Formal verification would be a powerful approach to verify the correctness and security guarantee

of the CAV system [228, 234]. In Chapter 3 and 4, we have demonstrated that model checking

approaches and the Tamarin prover can help us uncover critical design flaws and ensure the security

guarantee of the proposed defense. However, we only study a small piece of the whole CAV

system, while other modules are under-explored. As mentioned in previous chapters, the CAV

system consists of many functional modules. Zhang et al. [234] propose AVChecker to verify if

the CAV system driving rules can follow the traffic rules in different scenarios. Apart from the

traffic rule checking, another aspect that cannot be ignored is the real-time property of the CAV

130

system. For example, the V2X module of the CAV system (i.e., the CV network interface) should

be able to report its location and speed information every 100 ms. Also, the control command must

be issued in a timely manner while facing complex road conditions. To systematically verify the

real-time property of the CAV system, we need to construct a formal computation model for the

CAV system and verify if a task can be scheduled efficiently to be finished with a specific time

bound. The worst-case execution-time (WCET) analysis may be a potential choice for this line of

future work.

7.2 Conclusion Remarks

After years of research and testing, we can envision that, in the future, the CAV will be a widely-

used and essential technology in our daily work and life. Nowadays, as the CAV system is getting

more and more complex, introducing new attack surfaces, it becomes difficult to assure the ex-

pected security of the CAV system. Such urgent security needs further stimulate researchers to

thoroughly analyze the CAV system and provide strong security guarantees, before the large-scale

deployment.

This dissertation proposes practical solutions to understand design- and implementation-level

flaws in the current CAV system. Also, we inspect the corresponding security/safety consequence

of identified issues so that we can enhance the CAV system accordingly. Specifically, utilizing

formal methods, program analysis, and the trusted execution environment (TEE), my dissertation

research systematically (1) detect design-level flaws in CV communication protocols, (2) design

practical broadcast authentication approach for the next-generation in-vehicle Ethernet network,

(3) present rigorous security enhancement against CV spoofing attack, and (4) uncover semantic

vulnerabilities against the CAV system. In summary, this dissertation demonstrates that: Proac-

tive vulnerability discovery and security enhancement of the CAV system can (1) uncover new

security vulnerabilities, (2) systematically examine fundamental vulnerability causes and security

consequences, and (3) provide a strong security guarantee for the defense mechanisms.

131

APPENDIX A

Summary of More CV Attacks

N2 Request Mute Attack: This attack injects a malicious learning response with the same

HashedId8 value of ca1. Thus, V2 chooses to remove the matching entry with the HashedId8

value of ca1. V2 fails in sending a learning request because V2 wrongly thinks she has learned

the unknown certificate but not.

Learning response:
- h8(certs[0]) == h8(ca1)

AttackerVehicle 2

q.add(h8(ca1))

Vehicle 1
Trigger SPDU:
- Signer: ee1
- (Issuer: ca1)

For cert in certs:
q.delete(h8(cert))

q.empty()?

Discard
request

Y

After recording the
unknown cert.

Before sending a
learning request

Attack
Attack time

window

Notes:
- q: missing certificate queue
- h8(): get low-order 8-byte hash of the input

Figure A.1: N2: the attacker can stop V2 from sending learning requests to V1 by sending a
malicious learning requests.

Assumptions. Similar to N1, we assume that V1 does not mandate the verification for incoming

learning responses. Also, we assume that the attacker has enough computing power to efficiently

construct a learning response that can cause partial hash collision (e.g., low-order 8 bytes collision).

132

Attack steps. As shown in Figure A.1, V2 initializes P2PCD after receiving a trigger SPDU from

V1. V2 stores the HashedId8 value of the unknown certificate ca1 in a queue. Meanwhile, since

the attacker can observe the trigger SPDU, she constructs a malicious learning response, in which

the HashedId8 value of the first certificate in the payload matches with the unknown certificate

ca1. As defined in P2PCD, after receiving a learning response, V2 extracts all certificates in the

learning response and stores them via AddCertificate. At this time, V2 wrongly thinks that

it has successfully learned the unknown certificate but actually not. Thus, V2 removes the entry of

the unknown certificate h8(ca1) in the queue, where h8 is a function to get the low-order eight-

byte hash of the input. As the queue becomes empty, V2 decides not to attach the learning request

in the next outgoing SPDU. Consequently, V2 is unable to learn the correct unknown certificate.

Discussion. Similar to N1, N2 is also caused by the use of truncated hash, and the attacker does

not need to possess a legitimate certificate. In IEEE 1609.2, the issuer field in a certificate is

a HashedId8 value. Therefore, on receiving the trigger SPDU, the vehicle can only store the

truncated hash value in the queue. This opens a door for the partial hash collision attack. Although

HashedId8 is larger than HashedId3 and makes the attacker harder to find a hash collision,

a resourceful attacker (e.g., nation-states, terrorists) can always have enough computing power to

efficiently find the hash collision. The attacker can even prepare these malicious learning responses

in an offline way. On the other hand, due to the optional verfication of the learning response, it is

still possible that some poorly implemented CV protocols may not verify the incoming learning

response but just store them.

A4 Split Trigger Attack

Assumptions. We assume that the leader keeps the configurations (e.g., platoon size, members)

hidden from followers [8].

Attack steps. A4 requires the attacker to be the leader of the victim platoon, which is consist of V1

and V2 sequentially. After becoming the leader, the attacker immediately sends a SPLIT REQ to

V1. At the last step of the split maneuver, the attacker sends a SPLIT DONE to V1, which contains

necessary platoon configuration data. Notably, the attacker can control the optimal platoon size in

133

SPLIT DONE and sets it to 1. Since V1, as a follower, does not store any platoon configurations,

it can only trust the attacker. However, the platoon size exceeds the optimal platoon size; V1 thus

initiates the split maneuver. Most importantly, A4 leads to a chain reaction that V1 will pass the

wrong configuration to the last member in the victim platoon (i.e., V2 in this case). Moreover, V1

and V2 will not able to merge into other platoons or accept any incoming merge requests, because

there is no available space.

A5, A6 Merge Disruption Attack: The attacker initiates a merge maneuver but does not

faithfully complete the whole procedure, so the victim platoon leader V1 is trapped at the busy state

and cannot switch back to the idle state. Therefore, V1 cannot process any incoming messages.

Attack steps. In A5, the attacker first sends a MERGE REQ to V1. Since there exists available

space in the victim platoon, V1 will accept the request and send a MERGE ACCEPT to the attacker.

In the normal case, V1 will wait for a MERGE DONE from the merge request initiator. However,

the attacker chooses not to send a MERGE DONE; thus, V1 will keep waiting.

In A6, the attacker first utilizes A2 to join the victim platoon. If V1 initiates a merge maneuver

to join a front platoon and receives a MERGE ACCEPT, V1 will inform all the followers, including

the attacker, to change their platoon leader by sending CHANGE PL to them. The attacker can

either passively wait for the happening of the merge maneuver or intentionally trigger the merge

maneuver of V1 by conducting the platoon takeover attack (A1). As a malicious follower of V1,

after receiving a CHANGE PL from V1, the attacker chooses not to reply with an ACK. According

to the merge FSM in [8], V1 will keep sending CHANGE PL to the attacker if V1 does not receive

the corresponding ACK.

A8-9 Split Disruption Attack: A8 and A9 have the same goal and consequence as A5 and A6,

but have different attack targets. They focus on vulnerabilities of the split maneuver.

Attack steps. In A8 and A9, the attacker first joins the platoon, which is consist of V1 (leader)

and V2 sequentially, by launching A2 and acts as a malicious follower. In A8, V1 sends a

SPLIT REQ to the attacker. After accepting the request, the attacker does not respond to the

following CHANGE PL sent by V1. Therefore, V1 will not be able to switch back to the idle state.

134

Differently, in A9, V1 sends a SPLIT REQ to V2, the splitting vehicle. After V2 accepting the

split request and acknowledging CHANGE PL, V1 needs to inform the follower behind the attacker

to change the platoon leader. The attacker can remain silent, keeping both V1 and V2 at the busy

state.

A10 Follower Block Attack: This attack is the immediate consequence of A1 and is more

powerful than A5-9, because this attack can block all vehicles in the victim platoon rather than one

or two of them. All members in the victim platoon will be unable to respond any incoming platoon

messages.

Attack steps. The attacker first takes over the victim platoon. Then, she sends SPLIT REQ to all

her followers (i.e., V1 and V2). V1 and V2 accept the split request and reply with SPLIT ACCEPT.

Following the protocol, the attacker sends CHANGE PL to V1 and V2. After that, the attacker can

drive away or keep silence; all followers thus will never receive SPLIT DONE from the attacker

and keep sending ACK.

A11 Gap Attack: The basic idea of this idea is to prevent the vehicle from “creating” enough

space in the front of the splitting vehicle during the leader/follower leave maneuver.

Attack steps. The attacker is the last follower in the victim platoon and initiates a follower leave

maneuver. V1 approves the leave request sent by the attacker. Then, the attacker faithfully re-

spond to SPLIT REQ and CHANGE PL from V1. To make the attacker a free agent, V1 sends a

SPLIT DONE to the attacker. Before the completion of the leave maneuver, V1 has to guarantee

that there exists enough space at the front of the attacker to perform lane change. If the attacker

does not send a GAP CREATED, V1 will keep busy as it wrongly thinks the leave maneuver is still

on-going.

A12, A13 Leave Disruption Attack: A12 and A13 exploit timers in the leader leave maneuver

and the follower leave maneuver respectively.

Attack steps. In A12, when the leader wants to leave the platoon, its followers have to elect a

new leader. The elected leader then sends a ELECTED LEADER to the old leader who then hands

over the leadership to the elected leader, by initiating the leader leave maneuver and safely leave

135

the platoon. However, if the attacker is one of the followers (A2) and becomes the elected leader,

she can choose not to respond. As well, A10 can be used to mislead all followers to a busy state

in advance, so no followers can send ELECTED LEADER to the leader, blocking the leader leave

maneuver.

In A13, a follower wants to leave the platoon and sends a LEAVE REQ to the leader; if no

response is received from the leader, the follower is unable to finish the follower leave maneuver.

The attacker can place herself at the position of the leader through A1, and keep silent. On the

other hand, the attacker can utilize A5-9 to prevent the benign leader from communicating with

other followers. Thus, the victim follower cannot finish the follower leave maneuver.

A14 Dissolve Disruption Attack: To make a follower unavailable, the attacker can either use

A10 to block all followers or join the victim platoon as a silent follower through A2.

136

BIBLIOGRAPHY

[1] Ahmed Abdo, Sakib Md. Bin Malek, Zhiyun Qian, Qi Zhu, Matthew Barth, and Nael B.
Abu-Ghazaleh. Application level attacks on connected vehicle protocols. In Proc. RAID,
2019.

[2] Hiralal Agrawal and Joseph Robert Horgan. Dynamic program slicing. In Proc. ACM PLDI,
1990.

[3] F Ahmed-Zaid, F Bai, S Bai, C Basnayake, B Bellur, S Brovold, G Brown, L Caminiti, et al.
Vehicle safety communications–applications (vsc-a) final report. Technical report, 2011.

[4] F Ahmed-Zaid, F Bai, S Bai, C Basnayake, B Bellur, S Brovold, G Brown, L Caminiti, et al.
Vehicle Safety Communications–Applications (VSC-A) Final Report: Appendix Volume 1
System Design and Objective Test. Technical report, 2011.

[5] F Ahmed-Zaid, F Bai, S Bai, C Basnayake, B Bellur, S Brovold, G Brown, L Caminiti, et al.
Vehicle Safety Communications–Applications (VSC-A) Final Report: Appendix Volume 3
Security. Technical report, 2011.

[6] Devdatta Akhawe, Prateek Saxena, and Dawn Song. Privilege separation in {HTML5}
applications. In Proc. USENIX Security, 2012.

[7] Emad Aliwa, Omer Rana, Charith Perera, and Peter Burnap. Cyberattacks and countermea-
sures for in-vehicle networks. ACM Comput. Surv., 2021.

[8] Mani Amoozadeh, Hui Deng, Chen-Nee Chuah, H. Michael Zhang, and Dipak Ghosal. Pla-
toon management with cooperative adaptive cruise control enabled by VANET. Vehicular
Communications, 2015.

[9] Baidu Apollo. An open autonomous driving platform. https://github.com/
ApolloAuto/apollo, 2022.

[10] Baidu Apollo. ROS (Robot Operating System). https://cyber-rt.readthedocs.
io/en/latest/, 2022.

[11] Krzysztof R. Apt and Dexter Kozen. Limits for automatic verification of finite-state concur-
rent systems. Inf. Process. Lett., 1986.

[12] ARM Ltd. Address Space Controllers – Arm. https://tinyurl.com/uxjdnfz,
2019.

137

https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://cyber-rt.readthedocs.io/en/latest/
https://cyber-rt.readthedocs.io/en/latest/
https://tinyurl.com/uxjdnfz

[13] ARM Ltd. SMC Calling Convention - ARM Infocenter. https://tinyurl.com/
y6gkrpo3, 2019.

[14] ARM Ltd. TrustZone – Arm Developer. https://tinyurl.com/vj29ybd, 2019.

[15] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza
Sadeghi, and Daniel Teuchert. NAUTILUS: fishing for deep bugs with grammars. In Proc.
NDSS, 2019.

[16] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. In Proc. ICML, 2018.

[17] AUTOSAR. Specification of secure onboard communication. AUTOSAR CP R19-11, 2019.

[18] Fan Bai and Hariharan Krishnan. Reliability analysis of DSRC wireless communication for
vehicle safety applications. In IEEE ITSC, 2006.

[19] Elaine Barker, Allen Roginsky, and Richard Davis. Recommendation for cryptographic key
generation (revision 2). 2020.

[20] David A. Basin, Cas Cremers, and Catherine A. Meadows. Model checking security proto-
cols. In Handbook of Model Checking. 2018.

[21] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and Vincent
Stettler. A formal analysis of 5g authentication. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, Proc. ACM CCS, 2018.

[22] John Bellardo and Stefan Savage. 802.11 denial-of-service attacks: Real vulnerabilities and
practical solutions. In Proc USENIX Security, 2003.

[23] Vincent Bénony. Hopper. https://www.hopperapp.com/, 2019.

[24] David W Binkley and Keith Brian Gallagher. Program slicing. Advances in computers,
1996.

[25] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection. CoRR, abs/2004.10934, 2020.

[26] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. Di-
rected greybox fuzzing. In Proc. ACM CCS, 2017.

[27] Boundary Devices. boundarydevices/linux-imx6. https://tinyurl.com/w66kfkj,
2019.

[28] Boundary Devices. i.MX6 ARM Development Board. https://boundarydevices.
com/product/bd-sl-i-mx6/, 2019.

[29] Benedikt Brecht, Dean Therriault, André Weimerskirch, William Whyte, Virendra Kumar,
Thorsten Hehn, and Roy Goudy. A security credential management system for V2X com-
munications. IEEE Trans. Intelligent Transportation Systems, 2018.

138

https://tinyurl.com/y6gkrpo3
https://tinyurl.com/y6gkrpo3
https://tinyurl.com/vj29ybd
https://www.hopperapp.com/
https://tinyurl.com/w66kfkj
https://boundarydevices.com/product/bd-sl-i-mx6/
https://boundarydevices.com/product/bd-sl-i-mx6/

[30] Tom B. Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi, and Justin Gilmer. Adversarial
patch. CoRR, abs/1712.09665, 2017.

[31] David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for privi-
lege separation. In Proc. USENIX Security, 2004.

[32] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang, Qi Alfred
Chen, Mingyan Liu, and Bo Li. Invisible for both camera and lidar: Security of multi-sensor
fusion based perception in autonomous driving under physical-world attacks. In Proc. IEEE
S&P, 2021.

[33] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Al-
fred Chen, Kevin Fu, and Z. Morley Mao. Adversarial sensor attack on lidar-based percep-
tion in autonomous driving. In Proc. ACM CCS, 2019.

[34] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Ste-
fan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno. Com-
prehensive experimental analyses of automotive attack surfaces. In Proc. USENIX Security,
2011.

[35] Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. F-Cooper: Feature
based cooperative perception for autonomous vehicle edge computing system using 3d point
clouds. In Proc. ACM/IEEE SEC, 2019.

[36] Qi Chen, Sihai Tang, Qing Yang, and Song Fu. Cooper: Cooperative perception for con-
nected autonomous vehicles based on 3d point clouds. In Proc. ICDCS, 2019.

[37] Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z. Morley Mao, and Henry X. Liu. Exposing
congestion attack on emerging connected vehicle based traffic signal control. In Proc. NDSS,
2018.

[38] Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Zhuoqing Morley Mao, and Henry Xianghong
Liu. Vulnerability of Traffic Control System Under Cyber-Attacks Using Falsified Data. In
Transportation Research Board 2018 Annual Meeting (TRB), 2018.

[39] Kyong-Tak Cho and Kang G. Shin. Fingerprinting electronic control units for vehicle intru-
sion detection. In Proc. USENIX Security, 2016.

[40] Stephen Chong, Jed Liu, Andrew C Myers, Xin Qi, Krishnaprasad Vikram, Lantian Zheng,
and Xin Zheng. Secure web applications via automatic partitioning. ACM SIGOPS Operat-
ing Systems Review, 2007.

[41] Jake Christensen, Ionut Mugurel Anghel, Rob Taglang, Mihai Chiroiu, and Radu Sion.
{DECAF}: Automatic, adaptive de-bloating and hardening of {COTS} firmware. In Proc.
USENIX Security, 2020.

[42] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An open-
source tool for symbolic model checking. In Proc. CAV, 2002.

139

[43] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on
the state explosion problem in model checking. In Informatics, 2001.

[44] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model checking
and the state explosion problem. In LASER Summer School on Software Engineering, 2011.

[45] Cohda Wireless. Mk5 obu. https://tinyurl.com/y6qepj6h, 2019.

[46] Cross-Cutting Technical Committee. Dedicated short range communications (dsrc) message
set dictionary™ set. SAE International, Mar. 2016.

[47] Cas Cremers and Martin Dehnel-Wild. Component-based formal analysis of 5g-aka: Chan-
nel assumptions and session confusion. In Proc. NDSS, 2019.

[48] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. A
comprehensive symbolic analysis of TLS 1.3. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, Proc. ACM CCS, 2017.

[49] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated analysis and
verification of TLS 1.3: 0-rtt, resumption and delayed authentication. In Proc. IEEE S&P,
2016.

[50] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A formal analysis of IEEE 802.11’s
WPA2: countering the kracks caused by cracking the counters. In Srdjan Capkun and
Franziska Roesner, editors, Proc. USENIX Security, 2020.

[51] Jean Paul Degabriele, Jérôme Govinden, Felix Günther, and Kenneth G. Paterson. The
security of chacha20-poly1305 in the multi-user setting. In Proc. ACM CCS, 2021.

[52] David L. Dill. The murphi verification system. In Proc. CAV, 1996.

[53] Martin Eian and Stig Fr. Mjølsnes. A formal analysis of IEEE 802.11w deadlock vulnera-
bilities. In Proc. IEEE INFOCOM, 2012.

[54] Jeremy Erickson, Shibo Chen, Melisa Savich, Shengtuo Hu, and Z. Morley Mao. Comm-
pact: Evaluating the feasibility of autonomous vehicle contracts. In Proc. IEEE VNC, 2018.

[55] European Telecommunications Standards Institute. Telecommunications and Internet Pro-
tocol Harmonization Over Networks (TIPHON) Release 4; Protocol Framework Definition;
Methods and Protocols for Security; Part 1: Threat Analysis. Technical Specification ETSI,
2003.

[56] Wu-chang Feng. The case for TCP/IP puzzles. In Proc. SIGCOMM Workshop on FDNA,
2003.

[57] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1987.

140

https://tinyurl.com/y6qepj6h

[58] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. {AFL++}: Combining
incremental steps of fuzzing research. In Proc. WOOT, 2020.

[59] Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti. Libafl: A frame-
work to build modular and reusable fuzzers. In Proc. ACM CCS, 2022.

[60] GlobalPlatform. GlobalPlatform Homepage - GlobalPlatform. https:
//globalplatform.org/, 2019.

[61] Google. Oss-fuzz: Continuous fuzzing for open source software. https://github.
com/google/oss-fuzz, 2022.

[62] GPSD project. biiont/gpsd. https://github.com/biiont/gpsd, 2019.

[63] George Gross, Brian Weis, and Dragan Ignjatic. Multicast Extensions to the Security Ar-
chitecture for the Internet Protocol. RFC 5374, November 2008.

[64] Bogdan Groza, Pal-Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede.
Libra-can: Lightweight broadcast authentication for controller area networks. ACM Trans.
Embed. Comput. Syst., 2017.

[65] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and Trent Jaeger.
Trustshadow: Secure execution of unmodified applications with arm trustzone. In Proc.
MobiSys, 2017.

[66] Liwei Guo and Felix Xiaozhu Lin. Minimum viable device drivers for ARM trustzone. In
Proc. EuroSys, 2022.

[67] Peter Hank, Steffen Müller, Ovidiu Vermesan, and Jeroen Van den Keybus. Automotive
ethernet: in-vehicle networking and smart mobility. In Enrico Macii, editor, Proc. DATE,
2013.

[68] John Harding, Gregory Powell, Rebecca Yoon, Joshua Fikentscher, Charlene Doyle, Dana
Sade, Mike Lukuc, Jim Simons, and Jing Wang. Vehicle-to-Vehicle Communications:
Readiness of V2V Technology for Application. Technical report, 2014.

[69] Hugh Harney, Andrea Colegrove, Uri Meth, and George Gross. GSAKMP: Group Secure
Association Key Management Protocol. RFC 4535, June 2006.

[70] Changhua He and John C. Mitchell. Analysis of the 802.11i 4-way handshake. In Proc.
WiSec, 2004.

[71] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Effective program de-
bloating via reinforcement learning. In Proc. ACM CCS, 2018.

[72] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and
Antony L Hosking. Seed selection for successful fuzzing. In Proc. ISSTA, 2021.

[73] Adrian Herrera, Mathias Payer, and Antony L Hosking. dataflow: Towards a data-flow-
guided fuzzer. In Proc. FUZZING, 2022.

141

https://globalplatform.org/
https://globalplatform.org/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/biiont/gpsd

[74] Gerard J. Holzmann. The model checker SPIN. Trans. Software Eng., 1997.

[75] Hsu-Chun Hsiao, Ahren Studer, Chen Chen, Adrian Perrig, Fan Bai, Bhargav Bellur, and
Aravind Iyer. Flooding-resilient broadcast authentication for VANETs. In Proc. MobiCom,
2011.

[76] Shengtuo Hu, Qi Alfred Chen, Jiwon Joung, Can Carlak, Yiheng Feng, Z. Morley Mao, and
Henry X. Liu. Cvshield: Guarding sensor data in connected vehicle with trusted execution
environment. In Proc. AutoSec@CODASPY, 2020.

[77] Shengtuo Hu, Qi Alfred Chen, Jiachen Sun, Yiheng Feng, Z. Morley Mao, and Henry X.
Liu. Automated discovery of denial-of-service vulnerabilities in connected vehicle proto-
cols. In Proc. USENIX Security, 2021.

[78] Yih-Chun Hu, Adrian Perrig, and David B Johnson. Packet leashes: A defense against
wormhole attacks in wireless networks. In Proc. INFOCOM, 2003.

[79] Zhisheng Hu, Shengjian Guo, Zhenyu Zhong, and Kang Li. Coverage-based scene fuzzing
for virtual autonomous driving testing. CoRR, abs/2106.00873, 2021.

[80] Lifeng Huang, Chengying Gao, Yuyin Zhou, Cihang Xie, Alan L. Yuille, Changqing
Zou, and Ning Liu. Universal physical camouflage attacks on object detectors. In Proc.
IEEE/CVF CVPR, 2020.

[81] Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. {KSplit}: Automating device driver isolation. In Proc. USENIX
OSDI, 2022.

[82] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. Lteinspector: A
systematic approach for adversarial testing of 4g lte. In Proc NDSS, 2018.

[83] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and Elisa Bertino.
5greasoner: A property-directed security and privacy analysis framework for 5g cellular
network protocol. In Proc. ACM CCS, 2019.

[84] IEEE. Ieee standard for a transport protocol for time-sensitive applications in bridged local
area networks. IEEE Std 1722-2016 (Revision of IEEE Std 1722-2011), 2016.

[85] IEEE. Iso/iec/ieee international standard - information technology – telecommunications
and information exchange between systems – local and metropolitan area networks – spe-
cific requirements – part 1ba: Audio video bridging (avb) systems. ISO/IEC/IEEE 8802-1BA
First edition 2016-10-15, 2016.

[86] IEEE. Ieee standard for local and metropolitan area networks-media access control (mac)
security. IEEE Std 802.1AE-2018 (Revision of IEEE Std 802.1AE-2006), 2018.

[87] IEEE. Ieee standard for local and metropolitan area networks–port-based network access
control. IEEE Std 802.1X-2020 (Revision of IEEE Std 802.1X-2010 Incorporating IEEE Std
802.1Xbx-2014 and IEEE Std 802.1Xck-2018), 2020.

142

[88] IEEE. Ieee standard for local and metropolitan area networks–timing and synchronization
for time-sensitive applications. IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-
2011), 2020.

[89] IEEE. P802.1dg – tsn profile for automotive in-vehicle ethernet communications. https:
//1.ieee802.org/tsn/802-1dg/, 2020.

[90] IEEE 1609 Working Group. Ieee standard for wireless access in vehicular environments
(wave) - networking services. IEEE Std 1609.3-2010 (Revision of IEEE Std 1609.3-2007),
2010.

[91] IEEE 1609 Working Group. IEEE Standard for Wireless Access in Vehicular Environments–
Security Services for Applications and Management Messages. IEEE Std 1609.2-2016 (Re-
vision of IEEE Std 1609.2-2013), 2016.

[92] IEEE 1609 Working Group. Ieee standard for wireless access in vehicular environments
(wave) – multi-channel operation. IEEE Std 1609.4-2016 (Revision of IEEE Std 1609.4-
2010), 2016.

[93] IEEE 1609 Working Group. Ieee standard for wireless access in vehicular environments
(wave) – networking services. IEEE Std 1609.3-2016 (Revision of IEEE Std 1609.3-2010),
2016.

[94] IEEE 1609 Working Group. 1609 WG - DSRC Working Group. https://tinyurl.
com/y2qju2t5, 2017.

[95] IEEE 1609 Working Group. Ieee guide for wireless access in vehicular environments (wave)
architecture. IEEE Std 1609.0-2019 (Revision of IEEE Std 1609.0-2013), 2019.

[96] IEEE 802.11 Working Group. Ieee standard for information technology– local and
metropolitan area networks– specific requirements– part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications amendment 6: Wireless access in
vehicular environments. IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007),
2010.

[97] IEEE 802.11 Working Group. Ieee standard for information technology–
telecommunications and information exchange between systems local and metropolitan
area networks–specific requirements part 11: Wireless lan medium access control (mac)
and physical layer (phy) specifications. IEEE Std 802.11-2012 (Revision of IEEE Std
802.11-2007), 2012.

[98] Broadcom Inc. Bcm82391 28-nm dual 100g macsec retimer phy. https://tinyurl.
com/3z2pdsaa, 2022.

[99] Intel. Intel© advanced encryption standard instructions (aes-ni). https://tinyurl.
com/2vfr8u3b, 2012.

[100] Ixia. Automotive ethernet: An overview. https://tinyurl.com/ysahfdbj, 2014.

143

https://1.ieee802.org/tsn/802-1dg/
https://1.ieee802.org/tsn/802-1dg/
https://tinyurl.com/y2qju2t5
https://tinyurl.com/y2qju2t5
https://tinyurl.com/3z2pdsaa
https://tinyurl.com/3z2pdsaa
https://tinyurl.com/2vfr8u3b
https://tinyurl.com/2vfr8u3b
https://tinyurl.com/ysahfdbj

[101] Aris Jules and John Brainard. Client-puzzles: a cryptographic defense against connection
depletion. In Proc. NDSS, 1999.

[102] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 7296, October 2014.

[103] Stephen Kent. IP Authentication Header. RFC 4302, December 2005.

[104] Stephen Kent. IP Encapsulating Security Payload (ESP). RFC 4303, December 2005.

[105] Sye Loong Keoh, Sandeep Kumar, Oscar Garcia-Morchon, Esko Dijk, and Akbar Rahman.
DTLS-based Multicast Security in Constrained Environments. Internet-Draft draft-keoh-
dice-multicast-security-08, July 2014. Work in Progress.

[106] Jun Young Kim, Ralph Holz, Wen Hu, and Sanjay Jha. Automated analysis of secure internet
of things protocols. In Proc. ACSAC, 2017.

[107] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee, Yih-Chun Hu, and
Adrian Perrig. Lightweight source authentication and path validation. In Proc. ACM SIG-
COMM, 2014.

[108] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, and
Stefan Savage. Experimental security analysis of a modern automobile. In Proc. IEEE S&P,
2010.

[109] Stefan Krauß. Towards a unified view of microscopic traffic flow theories. IFAC Proceedings
Volumes, 1997.

[110] Hariharan Krishnan and Andre Weimerskirch. “verify-on-demand”-a practical and scalable
approach for broadcast authentication in vehicle-to-vehicle communication. SAE Interna-
tional Journal of Passenger Cars-Mechanical Systems, 2011.

[111] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Proc. CAV, 2011.

[112] Leslie Lamport. Real time is really simple. Microsoft Research, 2005.

[113] William Landi. Undecidability of static analysis. LOPLAS, 1992.

[114] Adam Langley, Wan-Teh Chang, Nikos Mavrogiannopoulos, Joachim Strombergson, and
Simon Josefsson. ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS).
RFC 7905, June 2016.

[115] Jan Lastinec and Ladislav Hudec. A performance analysis of IPSec/AH protocol for auto-
motive environment. In Boris Rachev and Angel Smrikarov, editors, Proc. CompSysTech,
2015.

[116] Jan Lastinec and Ladislav Hudec. A study of securing in-vehicle communication using ipsec
protocol. Journal of Electrical Engineering, 2021.

144

[117] Christine Laurendeau and Michel Barbeau. Threats to security in DSRC/WAVE. In Proc.
ADHOC-NOW, 2006.

[118] Timm Lauser, Daniel Zelle, and Christoph Krauß. Security analysis of automotive proto-
cols. In Björn Brücher, Oliver Wasenmüller, Mario Fritz, Hans-Joachim Hof, and Christoph
Krauß, editors, Proc. CSCS, 2020.

[119] Youngwoo Lee and KyoungSoo Park. Meeting the real-time constraints with standard eth-
ernet in an in-vehicle network. In Proc. IEEE IV, 2013.

[120] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee. Secloak: ARM
trustzone-based mobile peripheral control. In Proc. MobiSys, 2018.

[121] LGSVL. Svl simulator by lg. https://www.svlsimulator.com/, 2022.

[122] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael B. Sullivan, Siva Kumar Sastry
Hari, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. AV-FUZZER: finding safety viola-
tions in autonomous driving systems. In Proc. IEEE ISSRE, 2020.

[123] Hyung-Taek Lim, Kay Weckemann, and Daniel Herrscher. Performance study of an in-car
switched ethernet network without prioritization. In Proc. Nets4Cars/Nets4Trains, 2011.

[124] Maggie Lim. Automotive Ethernet: The Future of In-Vehicle Networking.
https://blogs.keysight.com/blogs/tech/sim-des.entry.html/
2021/06/10/automotive_ethernet-E6FB.html, 2021.

[125] Linaro Ltd. OP-TEE/optee os. https://tinyurl.com/rurhgcl, 2019.

[126] Linaro Ltd. Open Portable Trusted Execution Environment - OP-TEE. https://www.
op-tee.org/, 2019.

[127] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin,
Florian Kelbert, Tobias Reiher, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Christof
Fetzer, and Peter R. Pietzuch. Glamdring: Automatic application partitioning for intel SGX.
In Proc. USENIX ATC, 2017.

[128] Dongtao Liu and Landon P. Cox. Veriui: attested login for mobile devices. In Proc. Hot-
Mobile, 2014.

[129] Hansi Liu, Pengfei Ren, Shubham Jain, Mohannad Murad, Marco Gruteser, and Fan Bai.
Fusioneye: Perception sharing for connected vehicles and its bandwidth-accuracy trade-offs.
In Proc. SECON, 2019.

[130] He Liu, Stefan Saroiu, Alec Wolman, and Himanshu Raj. Software abstractions for trusted
sensors. In Proc. MobiSys, 2012.

[131] Jiafa Liu, Di Ma, André Weimerskirch, and Haojin Zhu. Secure and Safe Automated Vehicle
Platooning. IEEE Reliability Society, 2016.

145

https://www.svlsimulator.com/
https://blogs.keysight.com/blogs/tech/sim-des.entry.html/2021/06/10/automotive_ethernet-E6FB.html
https://blogs.keysight.com/blogs/tech/sim-des.entry.html/2021/06/10/automotive_ethernet-E6FB.html
https://tinyurl.com/rurhgcl
https://www.op-tee.org/
https://www.op-tee.org/

[132] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general pointers in automatic
program partitioning. In Proc. ACM CCS, 2017.

[133] Xin Liu, Ang Li, Xiaowei Yang, and David Wetherall. Passport: Secure and adoptable
source authentication. In Proc. USENIX NSDI, 2008.

[134] Roger Lucas. DTLS Multicast. Internet-Draft draft-lucas-dtls-multicast-00, September
2017. Work in Progress.

[135] Miao Ma. Mitigating denial of service attacks with password puzzles. In Proc. ITCC, 2005.

[136] Hani Mahmassani, Hesham Rakha, Elliot Hubbard, Dan Lukasik, et al. Concept develop-
ment and needs identification for intelligent network flow optimization (inflo) : assessment
of relevant prior and ongoing research. Technical report, 2012.

[137] Hani Mahmassani, Hesham Rakha, Elliot Hubbard, Dan Lukasik, et al. Concept develop-
ment and needs identification for intelligent network flow optimization (inflo) : concept of
operations. Technical report, 2012.

[138] Yanmao Man, Ming Li, and Ryan Gerdes. {GhostImage}: Remote perception attacks
against camera-based image classification systems. In Proc. RAID, 2020.

[139] Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti. Fuzzing with data depen-
dency information. In Proc. IEEE EuroS&P, 2022.

[140] Kirsten Matheus and Thomas Königseder. Chapter 6: Ethernet in Automotive System De-
velopment, page 241–263. Cambridge University Press, 2 edition, 2017.

[141] Sahar Mazloom, Mohammad Rezaeirad, Aaron Hunter, and Damon McCoy. A security
analysis of an in-vehicle infotainment and app platform. In USENIX WOOT, 2016.

[142] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN prover
for the symbolic analysis of security protocols. In Proc. CAV, 2013.

[143] Michal Zalewski. american fuzzy lop (2.52b). https://lcamtuf.coredump.cx/
afl/, 2022.

[144] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015.

[145] Tanmaya Mishra, Thidapat Chantem, and Ryan M. Gerdes. Teecheck: Securing intra-
vehicular communication using trusted execution. In Proc. RTNS, 2020.

[146] John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern. Finite-state analysis of SSL 3.0. In
Proc. USENIX Security, 1998.

[147] Kathleen Moriarty and Stephen Farrell. Deprecating TLS 1.0 and TLS 1.1. RFC 8996,
March 2021.

146

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

[148] Lama Moukahal, Mohammad Zulkernine, and Martin Soukup. Vulnerability-oriented fuzz
testing for connected autonomous vehicle systems. IEEE Trans. Reliab., 2021.

[149] Silja Mäki, Tuomas Aura, and Maarit Hietalahti. Robust membership management for ad-
hoc groups. 2000.

[150] Prasad Narayana, Ruiming Chen, Yao Zhao, Yan Chen, Zhi Fu, and Hai Zhou. Automatic
vulnerability checking of ieee 802.16 WiMAX protocols through TLA+. In Proc. IEEE
Workshop on NPSec, 2006.

[151] Ben Nassi, Yisroel Mirsky, Dudi Nassi, Raz Ben-Netanel, Oleg Drokin, and Yuval Elovici.
Phantom of the adas: Securing advanced driver-assistance systems from split-second phan-
tom attacks. In Proc. ACM CCS, 2020.

[152] newlib. bminor/newlib. https://github.com/bminor/newlib, 2022.

[153] Yoav Nir. ChaCha20, Poly1305, and Their Use in the Internet Key Exchange Protocol (IKE)
and IPsec. RFC 7634, August 2015.

[154] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 8439, June
2018.

[155] NIST NSRC. Benchmarking round 2 candidates on microcontrollers. https://
tinyurl.com/vy8udwm4, 2021.

[156] NIST NSRC. Lightweight cryptography — nsrc. https://tinyurl.com/5c3wtwxw,
2021.

[157] OMNeT++. Omnet++ simulator. https://omnetpp.org/, 2020.

[158] OnBoard Security. Aerolink secure vehicle communication. https://tinyurl.com/
yaklyx47, 2019.

[159] OnBoard Security. Savari and onboard security partner to bring the most secure v2x solu-
tions to the market. https://tinyurl.com/yy9lzmcu, 2019.

[160] Open Robotics. Cyber RT Documents. https://www.ros.org/, 2022.

[161] OpenCV team. OpenCV. https://opencv.org/, 2022.

[162] OpenSSL. Openssl. https://www.openssl.org/, 2019.

[163] Heejin Park and Felix Xiaozhu Lin. Safe and practical gpu acceleration in trustzone. arXiv
preprint arXiv:2111.03065, 2021.

[164] Heejin Park and Felix Xiaozhu Lin. Gpureplay: a 50-kb gpu stack for client ml. In Proc.
ASPLOS, 2022.

[165] Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. {StreamBox-TZ}: Secure
stream analytics at the edge with {TrustZone}. In Proc. USENIX ATC, 2019.

147

https://github.com/bminor/newlib
https://tinyurl.com/vy8udwm4
https://tinyurl.com/vy8udwm4
https://tinyurl.com/5c3wtwxw
https://omnetpp.org/
https://tinyurl.com/yaklyx47
https://tinyurl.com/yaklyx47
https://tinyurl.com/yy9lzmcu
https://www.ros.org/
https://opencv.org/
https://www.openssl.org/

[166] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proc. SOSP, 2017.

[167] Adrian Perrig, Ran Canetti, Dawn Song, Professor Doug Tygar, and Bob Briscoe. Timed
Efficient Stream Loss-Tolerant Authentication (TESLA): Multicast Source Authentication
Transform Introduction. RFC 4082, June 2005.

[168] Adrian Perrig, Ran Canetti, Dawn Xiaodong Song, and J. D. Tygar. Efficient and secure
source authentication for multicast. In Proc. NDSS, 2001.

[169] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Xiaodong Song. Efficient authentication
and signing of multicast streams over lossy channels. In Proc. IEEE S&P, 2000.

[170] Adrian Perrig, Ran Canetti, J Doug Tygar, and Dawn Song. The tesla broadcast authentica-
tion protocol. Rsa Cryptobytes, 2002.

[171] Mert D Pesé, Jay W Schauer, Junhui Li, and Kang G Shin. S2-can: Sufficiently secure
controller area network. In Proc. ACSAC, 2021.

[172] Jonathan Petit, Florian Schaub, Michael Feiri, and Frank Kargl. Pseudonym schemes in
vehicular networks: A survey. IEEE Comm. Surveys & Tutorials, 2015.

[173] Jonathan Petit and Steven E. Shladover. Potential cyberattacks on automated vehicles. IEEE
Trans. Intelligent Transportation Systems, 2015.

[174] PLEXE. The platooning extension for veins. plexe.car2x.org, 2019.

[175] Jeroen Ploeg, Bart T. M. Scheepers, Ellen van Nunen, Nathan van de Wouw, and Henk
Nijmeijer. Design and experimental evaluation of cooperative adaptive cruise control. In
Proc. ITSC, 2011.

[176] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and Wenke
Lee. {RAZOR}: A framework for post-deployment software debloating. In Proc. USENIX
Security, 2019.

[177] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee. Slimium:
debloating the chromium browser with feature subsetting. In Proc. ACM CCS, 2020.

[178] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. AVR: Aug-
mented vehicular reality. In Proc. MobiSys, 2018.

[179] Hang Qiu, Po-Han Huang, Namo Asavisanu, Xiaochen Liu, Konstantinos Psounis, and
Ramesh Govindan. Autocast: scalable infrastructure-less cooperative perception for dis-
tributed collaborative driving. In Proc. MobiSys, 2022.

[180] Andreas Rauch, Felix Klanner, Ralph Rasshofer, and Klaus Dietmayer. Car2x-based per-
ception in a high-level fusion architecture for cooperative perception systems. In Proc. IV,
2012.

148

http://plexe.car2x.org

[181] Michael K. Reiter, Kenneth P. Birman, and Li Gong. Integrating security in a group oriented
distributed system. In Proc. IEEE S&P, 1992.

[182] Stefan Resch and Michael Paulitsch. Using TLA+ in the development of a safety-critical
fault-tolerant middleware. In Proc. ISSRE, 2017.

[183] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August
2018.

[184] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version 1.2.
RFC 6347, January 2012.

[185] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. 1996.

[186] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roychoudhury. Automated
partitioning of android applications for trusted execution environments. In Proc. IEEE/ACM
ICSE, 2016.

[187] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM trustzone to
build a trusted language runtime for mobile applications. In Proc. ASPLOS, 2014.

[188] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin, and Qi Alfred Chen. Dirty
road can attack: Security of deep learning based automated lane centering under physical-
world attack. In Proc. USENIX Security, 2021.

[189] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and Thorsten Holz.
Nyx: Greybox hypervisor fuzzing using fast snapshots and affine types. In Proc. USENIX
Security, 2021.

[190] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and Thorsten Holz.
Nyx-net: Network fuzzing with incremental snapshots. CoRR, abs/2111.03013, 2021.

[191] Security Innovation. Security innovation’s aerolink software to secure cadillac vehicle-to-
vehicle communications. https://tinyurl.com/yy7uacun, 2019.

[192] Michele Segata, Stefan Joerer, Bastian Bloessl, Christoph Sommer, Falko Dressler, and
Renato Lo Cigno. Plexe: A platooning extension for veins. In Proc. VNC, 2014.

[193] seL4. seL4/util libs. https://github.com/seL4/util_libs, 2022.

[194] seL4. The seL4© Microkernel. http://sel4.systems/, 2022.

[195] NXP Semiconductors. Mpc5748g microcontroller data sheet. https://tinyurl.com/
sna8mm4h, 2018.

[196] NXP Semiconductors. Mpc-ls-vnp-rdb fact sheet. https://www.nxp.com/docs/
en/fact-sheet/MPCLSVNPRDBFS.pdf, 2019.

149

https://tinyurl.com/yy7uacun
https://github.com/seL4/util_libs
http://sel4.systems/
https://tinyurl.com/sna8mm4h
https://tinyurl.com/sna8mm4h
https://www.nxp.com/docs/en/fact-sheet/MPCLSVNPRDBFS.pdf
https://www.nxp.com/docs/en/fact-sheet/MPCLSVNPRDBFS.pdf

[197] Karen Seo and Stephen Kent. Security Architecture for the Internet Protocol. RFC 4301,
December 2005.

[198] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). RFC
7525, May 2015.

[199] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. Drift with devil: Secu-
rity of multi-sensor fusion based localization in high-level autonomous driving under GPS
spoofing. In Proc. USENIX Security, 2020.

[200] Christoph Sommer, Reinhard German, and Falko Dressler. Bidirectionally coupled network
and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput., 2011.

[201] Rock Stevens, Octavian Suciu, Andrew Ruef, Sanghyun Hong, Michael W. Hicks, and Tu-
dor Dumitras. Summoning demons: The pursuit of exploitable bugs in machine learning.
CoRR, abs/1701.04739, 2017.

[202] Yulei Sui and Jingling Xue. SVF: interprocedural static value-flow analysis in LLVM. In
Proc. CC, 2016.

[203] SUMO. Simulation of Urban MObility. https://sumo.dlr.de, 2020.

[204] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. Trustotp: Transforming smartphones into
secure one-time password tokens. In Proc. ACM CCS, 2015.

[205] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. Towards robust {LiDAR-
based} perception in autonomous driving: General black-box adversarial sensor attack and
countermeasures. In Proc. USENIX Security, 2020.

[206] CARLA Team. Carla simulator. https://carla.org/, 2022.

[207] Frank Tip. A survey of program slicing techniques. J. Program. Lang., 1995.

[208] Suratose Tritilanunt. Performance evaluation of non-parallelizable client puzzles for defeat-
ing dos attacks in authentication protocols. In Proc. DBSec, 2010.

[209] Chia-che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa, and Don-
ald E. Porter. Civet: An efficient java partitioning framework for hardware enclaves. In
Proc. USENIX Security, 2020.

[210] U.S. Department of Transportation (US DOT). Connected Vehicle Pilot Deployment Pro-
gram. https://tinyurl.com/y29u9czy, 2019.

[211] U.S. Department of Transportation (US DOT). Intelligent Transportation Systems - Con-
nected Vehicle Basics. https://tinyurl.com/yxjj98vr, 2019.

[212] U.S. Department of Transportation (US DOT). Intelligent Transportation Systems - Con-
nected Vehicle Basics - DSRC. https://tinyurl.com/y5spr5cb, 2019.

150

https://sumo.dlr.de
https://carla.org/
https://tinyurl.com/y29u9czy
https://tinyurl.com/yxjj98vr
https://tinyurl.com/y5spr5cb

[213] U.S. Department of Transportation (US DOT). Intelligent Transportation Systems - Con-
nected Vehicle Pilot Deployment Program. https://tinyurl.com/yy5u7am6,
2019.

[214] U.S. Department of Transportation (US DOT). ITS Standards Program — Standards Group.
https://tinyurl.com/yyzb8n4g, 2019.

[215] Veins. Vehicles in network simulation. https://veins.car2x.org/.

[216] Velodyne. Velodyne lidar. https://tinyurl.com/mc2duyeb, 2015.

[217] VENTOS. Vehicular network open simulator. http://maniam.github.io/
VENTOS/, 2019.

[218] Matthew Wagner and Bruce McMillin. Cyber-physical transactions: A method for securing
vanets with blockchains. In IEEE PRDC, 2018.

[219] Lev Walkin. ASN.1 Compiler. http://lionet.info/asn1c/, 2019.

[220] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and Qi Al-
fred Chen. Too afraid to drive: Systematic discovery of semantic dos vulnerability in au-
tonomous driving planning under physical-world attacks. In Proc. NDSS, 2022.

[221] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang. Rt-tee: Real-time system
availability for cyber-physical systems using arm trustzone. In Proc. IEEE S&P, 2022.

[222] Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, and
Raquel Urtasun. V2VNet: Vehicle-to-vehicle communication for joint perception and pre-
diction. In Proc. ECCV, 2020.

[223] Ziran Wang, Guoyuan Wu, and Matthew J. Barth. A review on cooperative adaptive cruise
control (CACC) systems: Architectures, controls, and applications. In Proc. ITSC, 2018.

[224] Mark Weiser. Program slicing. In Proc. ICSE, 1981.

[225] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. Plug-n-pwned: Comprehensive vulner-
ability analysis of OBD-II dongles as A new over-the-air attack surface in automotive iot.
In Proc. USENIX Security, 2020.

[226] William Whyte, Jonathan Petit, Virendra Kumar, John Moring, and Richard Roy. Threat
and countermeasures analysis for WAVE service advertisement. In Proc. IEEE ITSC, 2015.

[227] Wai Wong, Shihong Huang, Yiheng Feng, Qi Alfred Chen, Z Morley Mao, and Henry X Liu.
Trajectory-Based Hierarchical Defense Model to Detect Cyber-Attacks on Transportation
Infrastructure. In Transportation Research Board 2018 Annual Meeting (TRB), 2019.

[228] Tichakorn Wongpiromsarn and Richard M Murray. Formal verification of an autonomous
vehicle system. In Conference on Decision and Control, 2008.

151

https://tinyurl.com/yy5u7am6
https://tinyurl.com/yyzb8n4g
https://veins.car2x.org/
https://tinyurl.com/mc2duyeb
http://maniam.github.io/VENTOS/
http://maniam.github.io/VENTOS/
http://lionet.info/asn1c/

[229] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically partition soft-
ware into least privilege components using dynamic data dependency analysis. In Proc.
IEEE/ACM ASE, 2013.

[230] Qixue Xiao, Kang Li, Deyue Zhang, and Weilin Xu. Security risks in deep learning imple-
mentations. In Proc. IEEE S&P Workshops, 2018.

[231] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifications.
In Proc. CHARME, 1999.

[232] Daniel Zelle, Christoph Krauß, Hubert Strauß, and Karsten Schmidt. On using TLS to
secure in-vehicle networks. In Proc. ARES, 2017.

[233] Kexiong (Curtis) Zeng, Shinan Liu, Yuanchao Shu, Dong Wang, Haoyu Li, Yanzhi Dou,
Gang Wang, and Yaling Yang. All your GPS are belong to us: Towards stealthy manipula-
tion of road navigation systems. In Proc. USENIX Security, 2018.

[234] Qingzhao Zhang, David Ke Hong, Ze Zhang, Qi Alfred Chen, Scott Mahlke, and Z Morley
Mao. A systematic framework to identify violations of scenario-dependent driving rules in
autonomous vehicle software. Proc. ACM SIGMETRICS, 2021.

[235] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and Ruowen
Wang. {PeX}: A permission check analysis framework for linux kernel. In Proc. USENIX
Security, 2019.

[236] Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu, Y Ethan Guo, Feng Qian, and Z Mor-
ley Mao. Emp: Edge-assisted multi-vehicle perception. In Proc. MobiCom, 2021.

[237] Ziyuan Zhong, Zhisheng Hu, Shengjian Guo, Xinyang Zhang, Zhenyu Zhong, and
Baishakhi Ray. Detecting safety problems of multi-sensor fusion in autonomous driving.
CoRR, abs/2109.06404, 2021.

[238] Ziyuan Zhong, Gail E. Kaiser, and Baishakhi Ray. Neural network guided evolutionary
fuzzing for finding traffic violations of autonomous vehicles. CoRR, abs/2109.06126, 2021.

[239] Lidong Zhou and Zygmunt J Haas. Securing ad hoc networks. IEEE network, 1999.

152

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Overview
	Thesis Organization

	Background and Related Work
	CV Technology
	Security Protocols for In-Vehicle Ethernet
	Trusted Execution Environment
	CAV System
	Related Works

	Systematic Detection of Design-Level Flaws in CV Communication Protocols
	Introduction
	Threat Model
	Analysis Methodology
	Analysis Results
	Evaluation
	Defense Proposals
	Conclusion

	Practical Broadcast Authentication Approach for the Next-Generation In-Vehicle Network
	Introduction
	Network Topology
	Threat Model
	Analysis of Security Protocols
	Design of Gatekeeper
	Evaluation
	Discussion
	Conclusion

	Rigorous Security Enhancement for CAV System against CV Spoofing Attack
	Introduction
	Threat Model
	Design of CVShield
	CVShield Static Analysis
	Implementation
	Evaluation
	Discussion
	Conclusion

	Vulnerability Discovery of CAV System under Physical-World Attacks
	Introduction
	Threat Model
	Design and Implementation of CAVFuzzer
	Evaluation
	Discussion and Future Work
	Conclusion

	Future Work and Conclusion
	Future Work
	Conclusion Remarks

	Appendix
	Summary of More CV Attacks
	Bibliography

