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ABSTRACT

An electroencephalogram (EEG)-based brain-computer interface (BCI) is a device

that interprets EEG signal patterns in brain activity in response to external stimuli,

e.g., the event-related potential (ERP), to operate technology. It has been used to

assist people with severe neuromuscular disabilities for normal communication, such

as “typing” words without using a physical keyboard. One of the most popular non-

invasive BCIs is the P300 ERP-based BCI design. The P300 ERP is a particular

ERP that occurs in response to a rare but relevant event (target) among a series

of irrelevant events (non-target). It has a positive deflection in voltage around 300

ms post event time. A P300 ERP speller presents a sequence of events on a virtual

keyboard and analyzes EEG signals in a fixed time window after each event to make

a binary decision whether an ERP response is a target event or not. Despite the

well-established framework with many successful classifiers, the current ERP-BCI

design faces several challenges such as a lack of statistical interpretation of brain

activity, relatively slow spelling speed, and long calibration time. In this dissertation,

we develop several novel statistical methods and algorithms to address the above

challenges.

In the first project, we propose a Bayesian generative model to fit the probability

distribution of multi-trial EEG signals in the BCI system. Existing machine learn-

ing methods focus on constructing the ERP classifiers, but they pay less attention

to interpreting brain activity due to the overlap between adjacent EEG signal seg-

ments during the signal pre-processing procedure; our model explicitly addresses this

xx



challenge by developing a new Gaussian Process (GP)-based model to estimate the

spatial-temporal varying trajectories of P300 ERP responses. The proposed model

can select important time windows in which the average brain activity in response

to the target and non-target stimuli is different (split) or the same (merge); thus,

The GP is termed the split-and-merge GP (SMGP). We also propose a participant-

specific information criterion for brain region ranking and selection. Our inference

results provide statistical evidence of P300 ERP responses, help design user-specific

profiles for efficient BCIs, and demonstrate the importance of ERPs from the visual

cortex for P300 speller performance. We design extensive simulation studies based on

the database from the University of Michigan Direct Brain Interface Lab (UM-DBI).

The robustness and reproducibility of our analysis is justified by cross-participant

comparisons and extensive simulation studies.

In the second project, we develop a sequence-based algorithm for adaptive stim-

ulus selection by Thompson sampling in the multi-armed bandit (MAB) problem

with multiple selections. Thompson sampling is a heuristic algorithm for sequential

decision making that addresses the exploration-exploitation dilemma in the MAB

problem. It chooses the optimal action by maximizing the expected reward function

with respect to the posterior distribution of the parameters. During each sequence,

the algorithm selects a random subset of stimulus groups with a fixed size by the

posterior probability, aiming to identify all target stimuli and to improve spelling

speed by reducing unnecessary non-target stimuli. In addition, we adopt an efficient

method to compute stimulus-specific rewards based on classifier scores under the

Bayesian inference framework. We further improve spelling efficiency by integrating

a language model into the prior specification. We perform simulations to compare

different configurations of stimulus selection paradigms, and show that the proposed

adaptive stimulus selection performs more efficiently than the conventional paradigm.

In the third project, we propose a BAyesian SemI-supervised Classification (BA-

xxi



SIC) method for data integration of EEG-BCI data from multiple participants. Cali-

bration in BCI refers to the procedure of training the classifier. The existing calibra-

tion method only uses data from participants themselves with lengthy training time

and thus introducing the noise due to attention shifts and mental fatigue. BASIC

aims to reduce the calibration time of a new participant by borrowing information

from calibration data of the source participants, which can improve classification ac-

curacy and communication efficiency in the usage of ERP-BCI. BASIC specifies the

joint distribution of stimulus-specific EEG signals among source participants via a

Bayesian hierarchical mixture model. The posterior inference on BASIC is based on

the new participant and selected source participants that are “similar” to the new

participant to construct a potentially more powerful classifier. We demonstrate the

advantages of BASIC using extensive simulations designed according to the EEG-BCI

data collected from the UM-DBI.
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CHAPTER I

Introduction to Brain-Computer Interfaces

1.1 Introduction

A Brain-Computer Interface (BCI) is a device that interprets and converts brain

activity into commands for a computer. A BCI enables the users to respond to their

environment only by their brain activity without using muscle control. It is primarily

developed to assist people with disabilities to communicate, control artificial limbs, or

to control their environment. Research areas include brain activity measurement with

invasive and non-invasive technologies, signal processing, signal classification, and

new BCI application development (Hoffmann, 2007). Among all BCI applications,

an electroencephalogram (EEG)-based BCI speller system is a device that enables a

person to “type” words by EEG signal patterns in the brain activity in response to

external stimuli without using a physical keyboard. It has been used to assist people

with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS),

with regular communication (Wolpaw et al., 2018). The brain activity is measured

with EEG signals, which has the advantage of non-invasiveness, low cost, and high

temporal resolution.

There are several challenges in the EEG-based BCI speller system. First, the

signal-to-noise ratio of EEG signals is very low, so to achieve a decent spelling accu-

racy, users have to repeat the experiment many times to collect enough data. Second,
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when users spend too much time calibrating this BCI, they may experience variations

in attention including fatigue and boredom. Such variations can lead to ignored, mis-

perceived, or delayed brain response activity that may further reduce spelling effi-

ciency. Finally, few methods have made statistical inferences on brain activity under

the setting where users interact with BCI continuously.

In this chapter, we start with the basic concepts that lay the foundation of the

speller system in Section 1.2, introduce the conventional analysis framework in Section

1.3, present commonly used paradigms in Section 1.4, and review the existing methods

for signal classification and online implementations in Section 1.5.

1.2 Basic Concepts

Calibration & Free-typing: We refer to training the binary classifier and testing

on the additional data as the procedures of calibration and free-typing, respectively.

Channel (Electrode): An channel is defined as an electrode capturing the brain

activity at a certain location. In general, multiple electrodes are placed on the scalp

to achieve stable EEG measurement, and the resulting raw EEG signals are in the

form of a long matrix.

Event: A common technique to visualize the EEG signals is to present a task (or

an event) to a participant while the EEG is recording. The goal is to analyze that

part of signal relevant to the event. The event usually starts from the onset of the

event and lasts for hundreds of milliseconds (Rodden and Stemmer , 2008). We also

refer to an event as a stimulus group throughout the entire thesis.

Event-Related Potential (ERP): The technique described previously enables

the researchers to identify important brain activity related to the event in the form

of the EEG measurement. Since the EEG records electrical activity on the scalp in

the unit of voltage, the concept is named the event-related potential (ERP).

Oddball Paradigm: A commonly used experiment that can produce a specific
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Figure 1.1: An illustration of the oddball paradigm, which is commonly used to
produce a specific ERP component (Luck , 2014). Panel A: The subject views the
letter X or O presented on a computer screen. Whenever an X or O appears on the
screen, a computer program sends this information to the program that records the
EEG. The X is presented more often than the O, so a total of 80 times and 20 times are
for the X and O, respectively, while the EEG is continuously recorded. Pre-processing
techniques such as filtering and amplification are performed to better visualize the
EEG signals. Panel B: The EEG is now segmented into 800ms time windows (or
epochs) across events, shown by the rectangles. We observe large variability across
different events. Panel C: However, if we average the signals across characters, the
amplitude change (positive deflection) between 400 ms and 800 ms post event for the
infrequent O is generally larger than the frequent X.
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ERP signal component. We demonstrate the principle using Figure 1.1 by Luck

2014. Two characters X and O are presented to the participant in a random order.

Each character is displayed on the screen for a fixed amount of time. When a new

character appears, the computer will mark and record the EEG waveforms. The

left line of the rectangular block is the onset corresponding to the highlight of each

character, while the EEG signals are recorded continuously. The recorded signals are

filtered and amplified for better visualization. The EEG signal is then extracted and

segmented into 100 response windows of 800 ms, shown by the rectangular blocks.

Since the character O appears less frequently than the character X, a total of 80

and 20 windows are for characters X and O, respectively. Although we observe large

variability across events, the amplitude change (positive deflection) between 400 ms

and 800 ms post event for the infrequent O is larger than the frequent X when we

average the signals across characters.

P300 ERP: A particular ERP that occurs in response to a rare, but relevant, event

under the oddball paradigm. The relevant (target) P300 ERP has a positive deflection

in voltage with latency (the delay from the onset of the event to the first response

peak) around 300 ms. It is primarily used as biological evidence for classifying EEG

signals in the P300 ERP speller (Rodden and Stemmer , 2008). Although P300 ERP

response is a widely accepted term for this particular signal pattern, we do not rule

out other types of ERPs that help interpret and classify brain activity.

1.3 Conventional Analysis Framework

In a visual P300 ERP-BCI speller, participants wear EEG caps that capture multi-

channel EEG signals, while a virtual keyboard (screen) is presented to the partici-

pants. A combination of characters, defined as stimulus groups, are highlighted se-

quentially on the screen with pre-determined time intervals. Participants are asked

to focus on one target character of interest that they wish to type on the screen.
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Participants are asked to mentally count when they see a stimulus group containing

the target character and to ignore all other stimulus groups. When a stimulus group

contains the target character, it is called a target stimulus, and it should elicit a P300

ERP response.

The conventional P300 ERP-BCI design presents a sequence of stimulus groups

on a virtual keyboard. Participants focus on a specific character and respond to dif-

ferent stimulus groups with different brain activity (P300 or no P300). These signals

are recorded by EEG. Artifact removal, filtering, amplification, and segmentation

techniques are applied to raw signals sequentially. The resulting training set consists

of a matrix of EEG feature vectors and a vector of their corresponding true labels.

Classifiers are constructed to analyze the EEG signals from the onset of stimulus

group with a fixed time response window, and make a binary decision whether a

P300 ERP response is elicited. Then, the binary classification results are converted

into character-level probabilities. Finally, the character with the highest probability

is selected and passed to participants as feedback. Figure 1.2 provides a flowchart of

this procedure for the P300 ERP-BCI speller (Hoffmann, 2007).

1.4 Common P300 Speller Paradigms

Most P300 Speller Paradigms are based on the oddball paradigm to elicit P300

ERPs in response to a rare, but relevant event among a series of irrelevant events. The

key here is to incorporate the mechanism of the oddball paradigm into constructing

stimulus groups. We introduce two P300 speller paradigms: the row-column paradigm

and the checkerboard paradigm.

1.4.1 The Row-Column Paradigm

The Row-Column Paradigm (RCP) is one of the most classical stimulus presen-

tation paradigms proposed by (Farwell and Donchin, 1988) in 1988. In RCP, the
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Figure 1.2: An illustration of a closed-loop analysis framework of the P300 ERP-BCI
speller. First, participants are asked to wear EEG caps and sit next to a virtual
screen. The screen presents a sequence of stimulus groups, to which the human
brain elicits different ERP responses. These ERP responses are recorded by the EEG
machine. Certain signal pre-processing procedures, including the artifact removal,
bandpass filter, signal amplification, and signal segmentation, are performed to the
raw signals sequentially such that the resulting dataset consists of a matrix of EEG
feature vectors and a vector of their true labels. For the multi-channel EEG signals,
it usually concatenate each dimension to form a long vector without considering the
spatial dependency. Next, classifiers are constructed to analyze the EEG signals from
the onset of stimulus group with a fixed time response window (usually 800 ms), and
make a binary decision whether it contains a P300 ERP response or not. Then, the
binary classification results are converted into character-level probabilities. Finally,
the character with the highest probability is selected and passed to participants for
the feedback.
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screen for the P300 Speller consists of a 6 × 6 grid of characters. Stimulus groups

are defined as rows and columns of characters on the screen. We define a sequence

as the stimulus groups that loop over all six rows and columns. The row and column

stimulus groups are shown in a random order. Each sequence has exactly two target

stimulus groups that are supposed to elicit P300 ERPs (one row and one column),

and the intersection of two target stimulus groups is the target character of interest.

The left panel in Figure 1.3 provides an illustration of the RCP.

Figure 1.3: Left Panel: An illustration of the virtual keyboard that adopts the row-
column paradigm (RCP) with a 6× 6 grid of characters. The figure is retrieved from
the figure 1 in the work (Thompson et al., 2014). The fourth row is currently being
highlighted. Right Panel: An illustration of the virtual keyboard that adopts the
checkerboard paradigm (CBP) with a total of 84 locations. A scatter of characters
are currently being highlighted. The figure is taken as a snapshot from the software
interface NuVoice software with Unity Language Encoding (PRC-Saltillo, 2009).

1.4.2 The Checkerboard Paradigm

The Checkerboard Paradigm (CBP) is a another popular stimulus presentation

paradigm proposed by (Townsend et al., 2010) in 2010. Instead of using the regular

shapes of rows and columns as the stimulus groups, they define a stimulus group as

a scatter of characters on the screen with more randomness. Within each sequence

under the CBP design, exactly two target stimulus groups are supposed to elicit target

P300 ERP responses, and the intersection of two target P300 ERP responses becomes

the target character of interest. The CBP can be applied to the virtual keyboard with
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more general key configurations. The right panel of Figure 1.3 provides an illustration

of CBP with an 84-key layout. A detailed description with an example can be found

in Section 3.2.1.

1.5 Existing Methods

Existing methods tackle three primary aspects of ERP-based BCI: binary classifier

methods, data-driven stimulus selection methods, and calibration-less methods. In

this section, we introduce existing methods relevant to three aspects. For the advan-

tages and disadvantages of each method, please refer to the introduction within each

chapter. The first aspect is to develop accurate binary classifiers to detect P300 ERPs

by treating it as a supervised learning problem in an offline setting. The second aspect

is to develop data-driven stimulus selection algorithms to increase spelling efficiency

during free-typing sessions, where we assume that the calibration procedure has been

completed. The last aspect is to create a calibration-less BCI by borrowing informa-

tion from existing participants’ data while maintaining similar prediction accuracy.

Here, calibration-less methods refer to those methods that train the classifier with

fewer sequence replications than existing approach. For calibration methods without

using any training data from the new participant, we refer to them as calibration-free

methods.

1.5.1 Binary Classifier Methods

The first fundamental problem in P300 ERP-BCI speller is binary classification.

Many state-of-the-art machine learning (ML) methods have successfully constructed

binary classifiers, such as stepwise linear discriminant analysis (swLDA) (Donchin

et al., 2000), (Krusienski et al., 2008), support vector machine (SVM) (Kaper et al.,

2004), independent component analysis (ICA) (Xu et al., 2004), linear discriminant

analysis (LDA) with xDAWN filter (Rivet et al., 2009), convolutional neural network
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(CNN) (Cecotti and Graser , 2010), logistic regression (LR) (Viana et al., 2014), ran-

dom forest (RF) (Okumuş and Aydemır , 2017), and XGBoost (Leoni et al., 2021).

These discriminant approaches treat target or non-target stimulus groups as the re-

sponse variable and the extracted-and-segmented EEG signals as feature vectors.

Instead of working in Euclidean space, Riemannian geometry (RG) has recently

gained increasing attention due to its fast convergence and it is a natural framework

to leverage information from source participants. The Riemannian geometry classifier

was originally proposed by Barachant et al. in 2011. The input data for Riemannian

geometry are the sample covariance matrices. The distance-based algorithm based on

Riemannian geometry is called Minimum Distance to Mean (MDM). Instead of com-

puting Euclidean distance between EEG signals within Euclidean space, the MDM

method computes the Riemmanian distance between sample covariance matrices on

Riemannian manifold, and predicts the class label of which “mean” covariance matrix

is the closest to the new covariance matrix with respect to Riemmannian distance.

Additional studies, including Congedo et al. 2013 and Barachant and Congedo 2014,

adapted the MDM classifier to the P300 ERP-BCI design by augmenting the covari-

ance matrix with label-specific reference signal patterns. This modified classifier is

a combination of first- and second-order statistics and compensates for the loss of

temporal structure information with referencing signal components.

1.5.2 Data-driven Stimulus Selection Methods

Another important problem in P300 ERP-BCI speller is to improve spelling effi-

ciency and consider physiological constraints in real-time BCI implementations. One

of the most import aspects about data-driven methods is dynamic data collection.

Lenhardt et al. in 2008 developed a method to dynamically change the number and

duration of stimulus groups, according to the subject’s current online performance.

The naive Bayesian dynamic stopping algorithm (NBDSA) (Throckmorton et al.,
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2013) specified a stopping criterion on a participant-independent, probability-based

(unit-less) metric. In addition, a few studies have incorporated historical EEG data

into optimizing decision making on future stimulus selection, known as data-driven

stimulus selection methods. Park and Kim in 2012 applied a partially observable

Markov decision process (POMDP) to compute an optimal decision rule for stimulus

selection under the RCP design. Ma et al. in 2011 proposed a hierarchy of sets of stim-

ulus groups to solve a stochastic control problem of low computational complexity.

They further improved spelling efficiency with a statistical language model. Kalika

et al. in 2017 developed an adaptive stimulus-based stimulus selection algorithm by

maximizing the expected discrimination gain (EDG) function.

1.5.3 Calibration-less Methods

Many recent methods have applied the idea of transfer learning (TL) to reduce

the calibration time of the P300 ERP-BCIs. The idea was originally introduced by

Bozinovski and Fulgosi in 1976. Information was extracted and stored from existing

problems, and applied to solve a new, but similar, problem. In statistics, we also

denote this concept as data integration (Lenzerini , 2002). Different domains for

information leverage have been explored.

General Ensemble Learning Methods An intuitive idea to incorporate data

from other domains is ensembles. Ensembles combine results of different classifiers

within the same training set. Each classifier makes predictions on a test set, and the

results are combined with a voting process. Rakotomamonjy and Guigue in 2008 and

Johnson and Krusienski in 2009 were the first to apply the ensemble method to P300

ERP-BCIs by averaging the outputs of multiple SVMs and swLDAs (See Section

1.5.1), respectively, where a base binary classifier was trained on a small part of the

available data. Völker et al. in 2018 and Onishi in 2020 applied the ensemble method

by averaging the outputs of multiple CNNs to visual and auditory P300 ERP-BCI

10



datasets, respectively. Onishi and Natsume also mentioned that ensemble methods

with overlapping partitioning criterion yielded better prediction performance than

the ensemble methods with a naive partitioning criterion.

Ensemble Learning Generic Information (ELGI) Xu et al. in 2015 proposed

Ensemble Learning Generic Information (ELGI), which combines data from a new

participant with data from source participants to form a hybrid ensemble. The was

the first time that existing methods used data across participants in the setting of

P300 ERP-based BCIs. They split the data of each source participant into target and

non-target subsets. They applied the swLDA method to construct the base classifiers

by combining different subsets as follows: the target and non-target subsets from the

new participant, the target subset from the new participant and the non-target sub-

set from each source participant, and the target subset from each source participant

and the non-target subset from the new participant. Thus, the resulting ensemble

had (2N + 1) base classifiers, where N is the number of source participants. They

further introduced the Weighted Ensemble Learning Generic Information (WELGI)

(Xu et al., 2016) by adding weights to each base classifier. Similarly, An et al. in 2020

proposed a weighted participant-semi-independent classification method (WSSICM)

for P300 ERP-based BCIs, where they used SVM as the base classifier. The base

classifier was fit by combining the entire data from each source participant and a

small portion of data from a new participant. An ad-hoc approach was applied to de-

termine the weighted coefficients of base classifiers for participant selection. Likewise,

Adair et al. in 2017 proposed an Evolved Ensemble Learning Generic Information

(eELGI). The authors argued that grouping training sets by participants was not

an optimal selection criterion. Instead, they developed an evolutionary algorithm by

permuting datasets among source participants to form the base classifiers, which were

constructed using swLDA.

Transfer Learning on Riemannian Geometry Recent studies have built the
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transfer learning by the Riemannian geometry. For example, Rodrigues et al. in 2018

presented a transfer learning approach to tackle the heterogeneity of EEG signals

across different sessions or participants using Riemannian procrustes analysis (RPA).

Before the authors applied the MDM classifier, they applied affine transformations

to raw participant-level covariance matrices such that the resulting covariance ma-

trices were less heterogeneous across sessions or participants while their Riemannian

distances were preserved. Li et al. in 2020 also standardized the covariance matrices

across participants by applying an affine transformation on the participant-specific

Riemannian geometric mean covariance matrix. Finally, Khazem et al. in 2021 pro-

posed another transfer learning approach, denoted as Minimum Distance to Weighted

Mean (MDWM). They combined estimated mean covariance matrices from source

participants and the new participant by Riemannian distance. They controlled the

trade-off between new and source contributions by the power parameter, but they

treated them as a hyper-parameter and did not estimate it during the calibration

session.

1.6 Outline of the Dissertation

The rest of the dissertation is organized into three chapters. Chapters II to IV

describe research specific to three challenges: a lack of statistical interpretation, low

free-typing efficiency, and lengthy calibration time.

In Chapter II, we explore the mechanism of neural activity in response to exter-

nal stimuli and address the challenge of overlapping ERPs between adjacent stimuli

explicitly. We develop a new GP-based prior to the spatial-temporal varying tra-

jectories of P300 ERP responses. The proposed prior facilitates selecting important

time windows in which the average brain activity in response to the target stimuli

and non-target stimuli is different (split) or the same (merge); thus, it is termed the

split-and-merge GP (SMGP). We make fully posterior inferences on participant-and-
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channel-specific P300 ERPs in a fixed EEG response window. Finally, we perform

brain region ranking by the participant-specific information criterion.

In Chapter III, we propose a sequence-based adaptive stimulus selection method

using the Thompson Sampling approach. We frame the problem as a multi-armed

bandit problem with multiple actions. During each sequence, the proposed algorithm

selects a fixed subset of stimulus groups by the posterior probability. The algorithm

aims to identify all target stimulus groups and enhance spelling speed by reducing the

number of unnecessary non-target stimulus groups. We perform extensive simulation

studies based on the CB paradigm and demonstrate the robustness of our algorithm

by considering both ideal and practical scenarios. Finally, we apply the language

model prior to further increase spelling speed.

In Chapter IV, we propose a BAyesian SemI-supervised Classification (BASIC)

method to build a participant-dependent, calibration-less framework. Here, the semi-

supervised framework is slightly different from the regular setting. On the stimulus-

level, it is a supervised learning problem because the stimulus labels are known during

calibration process; on the participant-level, it is a regular semi-supervised learning

problem because we do not observe the participant labels among the pool of source

participants. BASIC reduces the calibration time of a new participant by borrowing

data on the level of source participants and specifies the joint distribution of stimulus-

specific EEG signals via a Bayesian hierarchical mixture model. We specify the cluster

0 to be the one that matches the new participant, and selection indicators indicate

of the resemblance between the new participant and source participants. We use the

cluster 0 directly to predict testing data of the new participant. Finally, our proposed

hierarchical framework is flexible to other base classifiers with clear parametric forms.

In Chapter V, we summarize our contributions of this dissertation and discuss

potential future work.
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CHAPTER II

Bayesian Inferences on Neural Activity in

EEG-Based Brain-Computer Interfaces

2.1 Introduction

2.1.1 Background

A brain-computer interface (BCI) is a device that interprets brain activity to

operate technology. An electroencephalogram (EEG)-based BCI speller system is a

particular BCI device that enables a person to “type” words without using a physical

keyboard by recording EEG brain activity. It has been used for assisting people with

disabilities, such as amyotrophic lateral sclerosis (ALS), with regular communication

(Wolpaw et al., 2018). The brain activity is measured with EEG signals, which have

the features of non-invasiveness, low cost, and high temporal resolution.

The conventional BCI framework is based on the event-related potential (ERP)

BCI design, known as the P300 ERP-BCI design (Farwell and Donchin, 1988). How-

ever, we also include other types of ERPs that help interpret and classify the brain

activity. An ERP is a signal pattern in the brain activity in response to an exter-

nal event. The P300 ERP is a particular ERP that occurs in response to a rare,

but relevant event (e.g., highlighting a group of characters on the screen). The rel-

evant (target) P300 ERP has a positive deflection in voltage with the latency (the
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delay from the onset of the event to the first response peak) around 300 ms (Rodden

and Stemmer , 2008). The rightmost plot in Figure 2.1 shows the typical target and

non-target P300 ERPs from a real participant.

There are three challenges in making valid inferences on brain activity in the

P300 ERP-BCI system. First, the signal-to-noise ratio of the EEG signals is quite

low. A typical P300 ERP-BCI system requires collecting data from multi-dimensional

input and repeated sequences of events. Second, to reduce the time to complete

the sequence of events necessary to present all the keys on the virtual keyboard,

we minimize the time between adjacent events within each sequence and between

adjacent sequences. Thus, the time between events is shorter than the time required

to produce a P300 ERP response. Therefore, the observed EEG signal is a mixture

of overlapping ERP responses, which may or may not contain a P300 ERP. As far

as we know, no formal statistical methods can resolve this mixture and make valid

inferences on the overlapping responses. Finally, during the calibration time in the

current P300 ERP-BCI system, participants may experience variations in attention

from fatigue to boredom, leading to missed or delayed responses that may obscure

statistical inferences.

2.1.2 Conventional Framework with Motivating Dataset

The conventional P300 ERP-BCI design presents a sequence of events on a virtual

keyboard and analyzes the EEG signals in a fixed time response window after each

event to make a binary decision whether a P300 ERP response is produced by that

event, which forms the fundamental basis of the P300 ERP-BCI operation. For

multi-channel EEG signals, channel-specific EEG signal segments are concatenated

for binary classification. Here, an EEG channel is defined as an electrode capturing

brain activity. Multiple electrodes are placed on the head to achieve stable prediction

accuracy. The binary classification results are then converted into character-level
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Figure 2.1: An illustration of the conventional procedure of the P300 ERP-BCI op-
eration. The P300 ERP-BCI design presents a sequence of events on a virtual screen
to the user. The user focuses on a specific character and responds to different events
with different brain signals (P300 or no P300). These brain signals are recorded by
the EEG machine. Classifiers are then constructed to analyze EEG signals in a fixed
time response window after each event to make a binary decision whether a P300
ERP response is produced. Finally, the binary classification results are converted
into character-level probabilities, and the character with the highest probability is
shown on the screen.
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probabilities. We denote “key” and “target key” as a generic character to be typed

and the specific character that the user wants to type, respectively. Usually, events

within each sequence cover all the possible keys, but multiple keys can exist in each

event. Thus, the P300 ERP-BCI is designed to identify the unique key from the

intersection of all events that produce P300 ERP responses within each sequence.

Finally, the conventional P300 ERP-BCI design presents a fixed number of events

(stimuli) with a fixed number of sequences before the final decision is made. Figure

2.1 describes the procedure of the conventional P300 ERP-BCI operation.

To better illustrate the framework, we briefly introduce the motivating dataset

following the experimental protocol by (Thompson et al., 2014). It is part of the

database of non-invasive experimental data in the P300 ERP-BCI experiments con-

ducted at the University of Michigan Direct Brain Interface Laboratory (UM-DBI),

where the data of 41 participants were recorded under the same protocol mentioned

above. Each participant copied one or multiple multi-character phrase(s) during the

experimental session. The dataset of each participant consisted of the training (cal-

ibration) data and the testing (free-typing) data. We created a participant-specific

classifier with the training data and tested on the free-typing data. The study adopted

the row-and-column paradigm (RCP) design developed by Farwell and Donchin in

1988. The BCI display screen was a 6 × 6 grid of characters. Each event was either

a row stimulus or a column stimulus. The order of the row and column stimuli was

random, and it looped through all rows and columns every consecutive 12 stimuli,

called a sequence. For each character of interest, participants were asked to mentally

count when they saw a row or column stimulus containing the character of interest

and to ignore stimuli that did not include the current character of interest. Thus,

each sequence always had two events stimuli that were supposed to elicit P300 ERPs

(one row and one column) out of every 12 events. In particular, the left side of Figure

2.1 shows 36 characters in a 6× 6 grid with the fourth row being highlighted.
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Many state-of-the-art machine learning (ML) methods such as stepwise linear dis-

criminant analysis (swLDA) (Donchin et al., 2000), (Krusienski et al., 2008), logistic

regression (LR) (Viana et al., 2014), random forest (RF) (Okumuş and Aydemır ,

2017), support vector machine (SVM) (Kaper et al., 2004), convolutional neural net-

work (CNN) (Cecotti and Graser , 2010), independent component analysis (ICA) (Xu

et al., 2004), and recent XGBoost (Leoni et al., 2021) have successfully constructed

binary classifiers for P300-ERPs. These discriminant approaches treat target or non-

target stimuli as the response variable and the truncated-and-concatenated EEG sig-

nal segments as feature vectors. Although these approaches are straightforward to

implement, it is difficult for them to make statistical inferences about brain activity

with overlapping P300 ERP responses. The Gaussian graphical model is a powerful

tool to model the conditional dependency structure among multiple Gaussian random

variables, and the fglasso algorithm by (Qiao et al., 2019) studies the conditional de-

pendency among p random functions.

As a flexible tool for Bayesian nonparametrics and machine learning, the Gaussian

Process (GP), a stochastic process where every finite collection of its realizations fol-

lows a multivariate normal distribution, has been widely used for modeling functional

and dependent data over time and space (Rasmussen, 2003). Different extensions of

GPs have been proposed for different neuroscience applications. In particular, for

feature selection in scalar-on-image regression, the soft-thresholded GP prior (Kang

et al., 2018) models sparse, continuous and piece-wise smooth functions. This prior

has also been extended to model the sparsity and dependence in the effects of nodes

over a graph in the framework of Bayesian network marker selection (Cai et al., 2020).

However, none of these existing GPs can be directly applied to detection of our P300

ERPs in EEG signals.
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2.1.3 Our Contributions

To the best of our knowledge, we are among the first to study the probability

distribution of multi-trial EEG signals from real participants in BCI experiments

using a Bayesian generative model. Our Bayesian analysis explores the mechanism

of neural activity in response to external stimuli. Our model explicitly addresses

the challenge of overlapping ERPs between adjacent stimuli, and the model can be

applied to multi-channel EEG signals without signal concatenation nor segmentation.

We develop a new GP-based prior to the spatial-temporal varying trajectories of P300

ERP responses. The proposed prior facilitates selecting important time windows in

which the average brain activity in response to the target stimuli and non-target

stimuli is different (split) or the same (merge); thus, it is termed the split-and-merge

GP (SMGP). We make fully posterior inferences on participant-and-channel-specific

P300 ERPs in a fixed EEG response window.

Based on our Bayesian analysis, we first aim to identify significant split time

windows for frontal, central, parietal, parietal-occipital, and occipital channels. We

do not expect to identify significant split time windows for channels close to ears.

We study the neural activity patterns among both healthy controls and participants

with the Amyotrophic Lateral Sclerosis (ALS) disease under the ERP-BCI design.

Finally, we perform the brain region ranking by the participant-specific information

criterion. We hypothesize brain regions associated with the cognitive function as well

as the visual function will be selected with high reproducibility across participants

(Brunner et al., 2010). In addition, we expect that the signal to detect target P300

ERPs for the participant with ALS is weaker than healthy controls, but it should still

be significant for classification. Finally, we expect that it may take longer for senior

participants than for the young participants to reach the peak of target P300 ERP

responses (Polich et al., 1985).
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2.2 The Model

2.2.1 Notation and Problem Setup

We begin with the notation. Denote by R the real line. For any interval A ⊂ R,

let IA(t) = 1 if t ∈ A and 0 otherwise. Denote by N (µ,Σ) a normal distribution with

mean µ and variance (covariance) Σ. Denote by GP(µ, κ) the GP with the mean

function µ and the covariance kernel κ. All the time variables in this manuscript are

multiples of a pre-specified unit time.

Our model focuses on the multi-channel EEG data for one participant. Suppose

a total of L target characters are typed for BCI calibration in the training data.

For each character l(l = 1, . . . , L), the BCI generates I sequences of J(J = 12)

stimuli consisting of six row stimuli, denoted as 1, · · · , 6 and six column stimuli,

denoted as 7, · · · , 12 on the 6 × 6 keyboard in a random order (Figure 2.2a.). Let

i(i = 1, . . . , I) index the sequence. For the ith sequence of the lth target character,

let Wl,i = (Wl,i,1, . . . ,Wl,i,12)
> represent the starting time points of the J stimuli

(stimulus-occurring indicators) and take values from permutations of {1, · · · , 12}. For

example, Wl,i = (8, · · · , 3, 2, · · · 11︸ ︷︷ ︸
Jdimension

)> indicates that the first row, · · · , the last row, the

first column · · · and the last column appear in the 8th stimulus, · · · 3rd stimulus, 2nd

stimulus, · · · , and 11th stimulus, respectively. Let Yl = (Yl,1, . . . , Yl,12)
> represent

the stimulus-type indicators, where Yl,j ∈ {0, 1} with the constraint
∑6

j=1 Yl,j =∑12
j=7 Yl,j = 1. The event Yl,j = 1 indicates the lth target letter is located in the jth

row stimulus for j = 1, . . . , 6 and the (j − 6)th column stimulus for j = 7, . . . , 12.

Thus, each possible value of Yl uniquely determines one target character on the 6×6

keyboard. For example, Yl = (0, 0, 0, 1, 0, 0︸ ︷︷ ︸
row

, 0, 1, 0, 0, 0, 0︸ ︷︷ ︸
column

)> indicates that the target

letter is “T” located at the fourth row and the second column. We drop the sequence

index i for Yl because the stimulus-type indicators are always the same given the

same character l. For all the sequences, the time domain of the EEG signals are
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registered to [0, T ]. Finally, suppose we consider E channels of EEG signals and let

e(e = 1, · · · , E) index the channel, and we denote Xl,i,e(t) as the observed EEG signal

intensity of the ith sequence and lth target character from channel e at time t ∈ [0, T ].

2.2.2 A Bayesian Generative Model

Suppose we are interested in making inferences on the P300-ERP in a window

of length Tz right after the onset of the stimulus. We refer to Tz as the response

window length and assume Tz is a multiple of d for simplicity, where d is the stimulus-

to-stimulus interval. The total length of time T per sequence is then defined as

T = Tz + (J − 1)d. We consider the observed EEG signals Xl,i,e(t) as a mixture

of the J stimulus-induced potentials given stimulus-type indicators Yl and stimulus-

occurring times Wl,i as follows: For any t ∈ [0, T ],

(2.1)

Xl,i,e(t) = Ml,i,e(t) + εl,i,e(t), τl,i,j = t− (Wl,i,j − 1)d,

Ml,i,e(t) =
J∑
j=1

[β1,e(τl,i,j)Yl,j + β0,e(τl,i,j)(1− Yl,j)] I[0,Tz ](τl,i,j),

where Ml,i,e(t) is the expected EEG signals at time t from channel e induced by J

stimuli that occur at different time points. The two unknown functions β1,e(τ) and

β0,e(τ) (τ ∈ [0, Tz]) represent the average brain activity responses to the target and

the non-target stimulus, respectively. To simplify the problem, we assume that the

shape and magnitude of ERP functions only depend on the stimulus-type indica-

tors, regardless of the stimulus location or the stimulus order. The random noise

εl,i,e(t) characterizes the intrinsic brain activity of channel e that is unrelated to the

stimulus responses. Assuming that εl,i,e(t) is spatially-correlated across channels and
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temporally dependent, we consider the following additive model:

εl,i,e(t) = ζl,i,e + εl,i(t),

ζl,i = (ζl,i,1, . . . , ζl,i,E)> ∼ N (0, Cs),

εl,i(t) = ρt,0 +

q∑
m=1

ρt,mεl,i(t−md) + εl,i,0(t), εl,i,0(t) ∼ N (0, σ2
x),

where ζl,i,e is the channel-specific random effect and ζl,i,1, . . . , ζl,i,E jointly follows a

multivariate normal distribution with the mean zero and the covariance matrix Cs.

The temporal random effect εl,i(t) is assumed to follow an autoregressive model of or-

der q and noise variance σ2
x. For a given channel e and a letter l, Figure 2.2c illustrates

the proposed Bayesian generative model for half the length of a sequence. Among

the consecutive six stimuli, there exists one target stimulus at the 4th stimulus.

2.2.3 The Split-and-Merge GP

To identify the time window that contains major differences in brain activity

responses between target and non-target stimuli, we develop a new GP-based model

to model the joint prior distribution of β0,e(τ) and β1,e(τ), for τ ∈ [0, Tz], named as

the split-and-merge GP (SMGP). For k = 0, 1, we assume that {βk,1(τ), . . . , βk,E(τ)}

are independent and marginally follow the same prior distribution specified by the

SMGP. For simplicity, we drop the channel-specific subscript e to specify the SMGP

as follows:

(2.2) βk(τ) = αk(τ)ζ(τ) + α0(τ){1− ζ(τ)},

where αk(τ) ∼ GP(0, κα) and ζ(τ) ∈ [0, 1]. Note that β0(τ) = α0(τ) and β1(τ) is the

weighted average between α1(τ) and α0(τ) by ζ(τ). When ζ(τ) = 0, β0(τ) = β1(τ)

with probability one, i.e. the two processes are merged; when ζ(τ) = 1, β0(τ) 6= β1(τ)
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Figure 2.2: (a). A figure showing a 6 × 6 grid screen of the ERP-BCI speller sys-
tem, where only one row or one column was being flashed grey for each stimulus.
(b). A figure from Wikimedia Commons by Brylie Christopher Oxley / CC0, 2017,
demonstrating a 64-channel EEG locations using the International 10–20 standard
developed by (Jasper , 1958). Channels marked with red were used in our ERP-BCI
design. (c). An illustration of the data generative mechanism of a single-channel EEG
sequence under the ERP-BCI design. Red, blue, green, and yellow blocks represented
target responses, non-target responses, background noise irrelevant to stimuli, and
observed signals (Xt). W ,Y were stimulus-occurring indicators and stimulus-type
indicators. We assumed each stimulus-related potential could be characterized by β1

or β0 with a long and fixed response window; the observed signal was generated when
we aligned different signal components and summed up at each time point. For exam-
ple, given the target character was “T”, the fourth stimulus was the target one. The
graph in the bottom right of the figure illustrates the empirical ERP estimates from
channel Cz based on a real participant, where target and non-target ERP estimates
were averaged over 570 and 2850 EEG signal segments, respectively. A significant
magnitude difference between target and non-target ERPs was observed around 300
ms post-stimulus.
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with probability one. Thus, we refer to ζ(τ) as the split-and-merge indicator process.

Let Ws = {τ : ζ(τ) > ζ0} and Wm = {τ : ζ(τ) ≤ ζ0} represent the split time window

and the merge time interval, respectively, where ζ0 is a hyper-parameter. For efficient

posterior inference on Ws and Wm, we define the truncated GP (TGP) similar to

the ordinary GP as follows. A time-continuous stochastic process {ζ(τ), τ ∈ T } is

a truncated GP if and only if for every finite set of indices τ1, · · · , τp in the index

set T , ζτ1 , · · · , ζτp follows a multivariate truncated Gaussian distribution, where the

truncated domain has the block rectangular shape. In this case, we assign a TGP

prior with mean 0.5 and covariance kernel κζ truncated on [0, 1] to ζ(τ), i.e. ζ(τ) ∼

T GP [0,1](0.5, κζ).

2.3 Posterior Inference

2.3.1 Model Representation and Prior Specification

LetMN (M ,U ,V ) denote a matrix normal distribution with location matrix M

and two scale matrices U and V (Dawid , 1981). We rewrite equation (2.1) in the

form of matrix normal distribution such that

(2.3) Xl,i ∼MN (Ml,i,Ct,Cs) ,

where Xl,i = (Xl,i,e)
E
e=1 and Ml,i = (Ml,i,e)

E
e=1 are matrix-wise observed EEG signals

and predicted EEG signals using convolution for the ith sequence, lth target character,

respectively. Cs and Ct are the spatial and temporal covariance matrices jointly

characterizing the random error εl,i = (εl,i,e)
E
e=1, respectively. Equation (2.3) can be

expressed as

(2.4) vec(Xl,i) ∼ N (vec(Ml,i),Cs ⊗Ct) ,
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where ⊗ is the Kronecker product and vec(·) is the vectorization operator that con-

verts the matrix to the column vector. The log-likelihood of the matrix normal model

is

(2.5)∑
l,i

−T
2

log det(Cs)−
E

2
log det(Ct)−

1

2
tr
[
C−1s (Xl,i −Ml,i)

T C−1t (Xl,i −Ml,i)
]
.

Therefore, we rewrite the mean structure of Ml,i with convolution as follows:

(2.6)

vec(Xl,i) ∼ N (Diag(Gl,i)vec(β),Cs ⊗Ct) , i = 1, · · · , I, l = 1, · · · , L,

β = (βe)
E
e=1, βe = (βT1,e,β

T
0,e)

T = S(ζe)αe = A(αe)ζe,

α = (αe)
E
e=1, αe = (αT1,e,α

T
0,e)

T ,

where β1,e,β0,e are channel-specific responses to target and non-target stimuli after

we have applied the SMGP prior. α1,e,α0,e are channel-specific responses to target

and non-target stimuli before selection. They follow the GP(0, κα) with the scale

parameters σ2
0,1,e, σ

2
0,0,e. We use a γ−exponential function shown in equation (2.7) to

specify the kernel covariance.

(2.7) k(xi, xj) = σ2
0 exp

{
−
(
||xi − xj||22

s0

)γ0}
,

where 0 ≤ γ0 < 2, s0 > 0. In practice, we treat them as the hyper-parameters and

select the optimal pair by the Bayes factor (Kass and Raftery , 1995). ζe follows the

truncated normal distribution T ND(µ,Σ) with the prior mean 0.5 and the prior

covariance matrix Σζ on the truncated domain [0, 1]Tz . We use the method by (Li

and Ghosh, 2015) in 2015 for efficient sampling. S,A are linear transformations that

map αe, ζe to βe. Gl,i is the linear transformation that maps βe to the predicted

EEG signals via convolution. For Cs, we decompose Cs as σ2
xC̃s, where σ2

x follows

the inverse gamma distribution Γ−1(as, bs) with the shape parameter as and the rate
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parameter bs, and C̃s is a positive definite matrix characterized by the distance mea-

sure among selected channels. To simplify, we assume all selected channels share the

same distance such that C̃s has a compound symmetry structure dependent on the

scalar parameter ρs. We use an adaptive rejection sampling method (Gilks and Wild ,

1992) to sample ρs, where it is originally generated from the uniform distribution

U(0, 1). For Ct, we assume it depends on the vector ρt that follows a discrete uni-

form distribution Ud(Vρ), where ρt is a 2-dimension vector and takes values from a

discrete set Vρ for which the correlation matrix is invertible, i.e., ||ρt||1 < 1. Finally,

the prior specification is as follows:

(2.8)
α1,e ∼ GP(0, σ2

1,eκα), α0,e ∼ GP(0, σ2
0,eκα), ζe ∼ T N [0,1](0.5,Σζ),

σ2
x ∼ Γ−1(as, bs), ρs ∼ U(0, 1), ρt ∼ Ud(Vρ).

2.3.2 Markov Chain Monte Carlo

We perform the standard Markov chain Monte Carlo (MCMC) method to sample

parameters from their posterior conditional distribution given the training set. We

adopt the Gibbs sampler to simulate the posterior distribution of α, ζ, σ2
x, ρs, and

ρt. Since ζ takes continuous values between 0 and 1, we average the posterior sam-

ples of β1,β0 whenever ζ samples are smaller than the threshold ζ0 for the explicit

split-and-merge effect, where ζ0 is a hyper-parameter, and it takes discrete values in

{0.1, 0.2, . . . , 0.8, 0.9} and the optimal one is selected by the Bayes factor. For the

convergence check, we run multiple chains with different seed values, and evaluate

the conditional log-likelihood and Gelman-Rubin statistic of each parameter (Gel-

man and Rubin, 1992). Details of the Gibbs sampling scheme can be found in the

Supplementary Material.
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2.3.3 Posterior Predictive Probability for Character Classification

Under the RCP design, the selection of the target character requires the selection

of the target row among six candidate rows and the target column among six candidate

columns. Let W ∗,Y ∗, and X∗ be I∗ sequences of stimulus-occurring indicators,

stimulus-type indicators, and I∗ sequences of matrix-wise EEG signals from new

observations given the same target character ω, respectively. Let Θ be the parameter

set defined in equation (2.1). Let yω ∈ {0, 1}, rω, cω be the stimulus-type indicator,

row index, and column index associated with the target character ω, respectively.

The probability of ω as the target character is

Pr (Y ∗ = yω |X∗,W ∗,X,W ,Y ) =

∫
Pr (Y ∗ = yw | Θ;X∗,W ∗) π (Θ |X,W ,Y ) dΘ

=

∫
Pr
(
Y ∗ = yω, yωrω = yωcω = 1, y∗j = 0, j /∈ {rω, cω} | Θ;X∗,W ∗) π (Θ |X,W ,Y ) dΘ

where Pr
(
Y ∗ = yω, yωrω = yωcω = 1, yωj = 0, j /∈ {rω, cω} | Θ;X∗,W ∗) is proportional

to

Pr(Y ∗ = yω)
I∗∏
i=1

π(X∗i | Θ; yωrω = yωcω = 1, yωj = 0, j /∈ {rω, cω},W ∗
i ).

Here, Pr(Y ∗ = yω) = 1/36 is the predictive prior on each candidate character if

we do not have prior knowledge about the inferred target character. In practice,

when we need multiple sequences to select the target character, we compute the

cumulative character-based posterior conditional probability vector by multiplying

sequence-specific posterior conditional likelihood estimates together.

2.4 Analysis of EEG-BCI Data

We perform the analysis of EEG-BCI data and demonstrate the detailed results

from one real BCI participant, referred to as Participant A. Since the primary goal of

our analysis is to identify the spatial-temporal pattern of P300 ERP response signals,
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participants with clear signal patterns are preferred. We select ten participants such

that it takes the least squares method fewer than five sequences to achieve 100%

accuracy on the training data. First, we fit the model to all 16 channels using the

spatial dependency correlation of the compound symmetry structure. We identify

the spatial-temporally activated locations. Next, we perform the channel selection

based on our method and fit the model to the data for the selected channels using the

same spatial dependency assumption. Then, we fit six existing ML methods to the

dataset and compare the prediction accuracy of our method to the other ML methods

to evaluate the goodness of model fit. Finally, we provide the cross-participant,

sensitivity and reproducibility analyses.

2.4.1 Dataset and Pre-processing

For the training session, each participant was asked to wear an EEG cap with 16

channels corresponding to different regions on the brain surface and sit approximately

0.8 m from a 17-inch monitor with the BCI display. Figure 2.2b shows the spatial dis-

tribution of channels. Channels marked with red were used for recording and analysis

purposes. The abbreviated names were F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4,

P3, Pz, P4, PO7, PO8, and Oz (Thompson et al., 2014). For the calibration dataset,

each participant copied a 19-character phrase “THE QUICK BROWN FOX” includ-

ing three spaces. The stimulus presentation and recording were controlled using the

BCI2000 software platform (Schalk et al., 2004). An event was defined as a row

stimulus or column stimulus, which highlighted for 31.25 ms and paused for 125 ms

afterwards, and the total of 156.25 ms was referred to as the stimulus-to-stimulus

interval d. We defined the 12 stimuli flashing all rows and columns as a sequence

and defined multiple sequences as a super-sequence. In our P300 ERP-BCI design,

a super-sequence corresponded to the EEG signals associated with the given target

character. During the training session, each super-sequence included 15 sequences,
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and a total of 19 super-sequences were collected. Extra time was recorded after the

last stimulus in the super-sequence. The length of each super-sequence was about

29,000 ms with the sampling rate of 256 Hz.

The data pre-processing steps can be summarized as follows: First, we applied a

notch filter at 60 Hz to remove the power line noise and a band-pass filter between

0.5Hz and 6Hz to all 16 channels and then down-sampled raw signals with a decima-

tion factor of eight. Second, we truncated each character-specific super-sequence into

15 sequence segments, where each sequence segment contained 12 consecutive stimuli

and subsequent signals of 20 time points to record the entire ERP response to the

last stimulus within the single sequence. Each sequence segment contained 2,500 ms,

80 sampling points.

2.4.2 Model Settings

To evaluate the model performance, we chose the odd sequences in the calibration

dataset as the training set and used the even sequences as the testing set. This

splitting scheme reduced the overlap between adjacent sequences and attenuated the

effect of any shift in attention compared to a random training-testing-split scheme.

Since it took time for participants to be familiar with the study design or identify

the target characters, we excluded the first sequence of each super-sequence from

the training set. Therefore, the training set and testing set both ended up with 133

(7 sequences for 19 characters) 80-dimension sequence segments for each channel.

We used the cumulative character-level accuracy at seven sequences for prediction

evaluation.

For the SMGP method, κα was generated from a γ-exponential kernel with hyper-

parameters s0 = 0.5, γ0 = 1.8, σ2
0,1 = 1, and σ2

0,0 = 1. We ran the MCMC algorithm

for 2,000 iterations with 1,000 burn-ins for three chains with different seed values.

We concluded that the algorithm converged, as the Gelman-Rubin statistics for the
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parameters of interest were all smaller than 1.1. In addition, we propose the following

statistics to rank the channels for the efficient multi-channel fitting based on the

SMGP method. The statistics was defined as

(2.9) R2
e =

V ar (E(Xe(t) |Me(t))

V ar (Xe(t))
,

where the numerator and the denominator explained the variability of the convolution

components in equation (2.1) across sequences and the variability of the observed

signals across sequences, respectively. Under our model assumption, R2
e took values

between 0 and 1. The largest R2
e among the 16 channels for Participant A was

around 0.02. To examine the proposed information criterion, we included from the

optimal two and up to five channels for sub-channel analyses. For each combination

of channels, we refitted the model and reported the prediction accuracy.

Figure 2.3: Left Panel: Channel-specific ERP function estimates of target and non-
target stimuli with the 95% credible bands of Participant A. Right Panel: Channel-
specific significant temporal intervals by varying thresholds of median split probabili-
ties of Participant A. The result was produced by the 16-channel model fitting results.
The varying thresholds included 0.6, 0.75, and 0.9. We arranged the channel-specific
plots by their spatial locations. The upper and lower rows represented the front and
back of the head. A “z” (zero) referred to a channel placed on the mid-line sagittal
plane of the skull. Channels with even numbers (2, 4, 6, 8) referred to the electrode
placement on the right side of the head, whereas channels with odd numbers (1, 3, 5, 7)
referred to those on the left.
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2.4.3 Single-Participant Results

We focus on the results of Participant A in this subsection.

ERP Estimates The left panel of Figure 2.3 showed the mean estimated ERP

functions of target and non-target stimuli and their 95% credible bands based on the

16-channel model fitting result. Channel-specific plots are arranged by their relative

spatial locations. In general, we saw a clear separation of target against non-target

ERP functions for all channels except channel T8. Between 400 ms and 500 ms post

stimulus, the target ERP functions gradually declined to zero and collapsed with

non-target ERP functions, which shows that our SMGP prior worked well in this

case.

Split Windows The right panel of Figure 2.3 showed channel-specific significant

split time windows with varying thresholds of median split probabilities of 0.6, 0.75,

and 0.9. We rearranged channel-specific brain activity plots by their spatial locations.

With 90% posterior probability, the split time windows appeared at 50-65 ms and

160-175 ms for channel F3, at 170-205 ms for channel PO7, at 160-170 ms for channel

Oz, and at 150-190 ms for channel PO8 post-stimulus. These significant split time

windows corresponded to the first negative peaks of their target ERP curve estimates.

For channel Cz, the split time windows appear at 370-430 ms post-stimulus with 75%

posterior probability, which approximately corresponded to the first positive peaks

of the target P300 ERP response curve estimates. For channel Pz, the split time

windows appeared at 650-700 ms post-stimulus with 75% posterior probability. For

channels T7, C4, and T8 close to ears, moderate differences in brain activity between

target and non-target stimuli were observed, but no split time window was identified

with more than 60% posterior probability. A common gap of split time windows

around 150 ms was observed, which corresponded to the time points where target

and non-target ERP functions first crossed. For time points when target and non-

target ERP functions were merged, fewer points were generally selected by the SMGP
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prior.

Interpretation Two common patterns were observed among the results of the ERP

estimates. First, the target ERPs of the frontal and central channels (channel names

starting with “F” and “C”) shared the negative drop around 100 ms and reached

their first peak with the latency around 250 ms, which corresponded to the N100 and

P300 pattern described by Rodden and Stemmer in 2008. Second, the target ERPs

of parietal-occipital and occipital channels (channel names starting with “PO” and

“O”) reached their negative peaks around 200 ms post-stimulus, and they gradually

collapsed with non-target ERP functions without reaching a positive peak. Since

channels PO7, PO8, and Oz represented the locations of the visual cortex, observing

only the negative peaks might be indicative of the pattern of the N2 signal (Folstein

and Van Petten, 2008). Several discrepancies were also observed. First, the lengths

of the split time windows differed among channels. For example, the central channels

and frontal channels had the split time window between the onset of the stimulus

and 500 ms post-stimulus and between the onset of the stimulus and 400 ms post-

stimulus, respectively. Second, the shapes of ERP functions differed among channels.

For example, channels C3, CP3, and P3 had secondary peaks around 400 ms post-

stimulus, while target ERP functions of other channels collapsed with the non-target

ones without clear secondary peaks. Those secondary peaks might be indicative of

the pattern of the P3b signals (van Dinteren et al., 2014).

Prediction We compared the prediction accuracy of our SMGP method to other

ML methods for Participant A to evaluate the goodness of our model fit. In addi-

tion to the same band-pass filter, down-sampling procedure, and splitting scheme,

we truncated the original character-specific super-sequence into 180 stimulus signal

segments for existing ML methods, where each stimulus signal segment started from

the onset of a single stimulus and lasts for 780 ms, i.e. 25 sampling points. Therefore,

the training set and testing set both contained 1596 (19 characters, each contained 7
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sequences of 12 stimuli) 25-dimension truncated signal segments for each channel. For

the swLDA method, the inclusion and exclusion probabilities were 0.1 and 0.15, and

at most 30% of the feature vector was selected. Table 2.1 summarizes the cumulative

testing prediction accuracy, comparing the SMGP method to other ML methods at

seven sequences for the top five selected channels and all 16 channels. The SMGP

method achieved 100% accuracy with channels PO8 and PO7, and maintained 100%

with more channels included. It performed better than other ML methods. Both the

SMGP method and swLDA performed perfectly when all channels were used.

Table 2.1: Cumulative prediction accuracy of Participant A for 19 characters com-
paring the SMGP method with ζ0 = 0.4 to other ML methods at seven sequences for
the top five selected channels and all 16 channels. The result of channel selection was
based on the 16-channel joint fitting result of the SMGP method and the proposed
information criterion.

Channels SMGP CNN SVM Logistic RF swLDA XGBoost

PO8, PO7 1.00 0.89 0.95 0.95 0.95 0.95 0.95
PO8, PO7, Oz 1.00 0.89 1.00 1.00 0.95 1.00 0.95
PO8, PO7, Oz, P4 1.00 0.89 1.00 0.95 1.00 1.00 0.95
PO8, PO7, Oz, P4, Cz 1.00 0.89 1.00 0.95 1.00 1.00 0.95
All Channels 1.00 0.89 0.95 0.95 0.95 1.00 1.00

Sensitivity and Reproducibility We performed sensitivity analysis for the dataset

of Participant A by changing the hyper-parameters of the γ-exponential kernel. We

assigned 0.4, 0.5, and 0.6 to the scale parameter s0 and 1.7, 1.8, and 1.9 to the gamma

parameter γ0. We selected channels PO7, PO8, Oz, P4, and Cz for the sensitivity

analysis. Figures S3 and S4 showed the P300 ERP function estimates with 95% cred-

ible bands and channel-specific significant temporal intervals by different thresholds

of median split probabilities for channels Cz and PO8 under nine variations of kernel

hyper-parameters. Overall, the combination of s0 and γ0 did not affect either ERP

function estimates significantly. For channel Cz, we observed the split window with

the threshold of 0.90 when s0 and γ0 were in the middle of the hyper-parameter space.

Table S4 shows the prediction accuracy with channels PO8, PO7, Oz, P4, and Cz at
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seven sequences under nine combinations of kernel hyper-parameters. The analysis

suggested that a combination of moderate s0 and γ0 produced the best prediction

performance for Participant A.

2.4.4 Cross-Participant Comparison

First, we applied our information criterion to all 41 participants to identify top-

selected channels. Then, we identified spatial-temporal patterns of the neural activity

based on selected ten participants. Among ten participants, we selected four typical

participants to compare the neural activity patterns between participants with ALS

and controls as well as between younger and older participants.

Based on the information criterion in equation (2.9), we identified channels PO7,

PO8, Oz, P4, and Cz as the top five selected channels. We performed two sensitiv-

ity analyses on channel ranking with respect to bandpass filters and kernel hyper-

parameters based on selected ten participants. Overall, they did not change the

results much. Details can be found in Section A.3. The target ERPs of frontal and

central channels (channel names with “F” and “C”) shared the negative drops be-

tween 100ms and 150ms and reached their first positive peaks around 300ms post

stimulus. Next, the target ERP functions gradually declined to zero and collapse

with non-target ERP functions between 600ms and 800ms post stimulus. Finally,

the target ERP functions of parietal-occipital, and occipital channels (channel names

with “PC” and “O”) only reached their negative peaks between 200ms and 250ms

post stimulus without reaching further positive peaks.

In comparing the results of Participant E with ALS to the three healthy controls

(A, B, and J), Figure 2.4 showed the ERP function estimates of channels Fz of the

four participants. We identified a common positive peak for target ERP functions

around 300 ms post stimulus although Participant E had the smallest peak magnitude

of 0.6 µV compared to the remaining three above 2.0 µV . Finally, we compared the
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neural activity patterns of two young participants (A and B, around 25 years old)

with two senior participants (E and J, around 60 years old). The split-and-merge

time windows (SMTW) of frontal channels appeared significantly different between

the young and senior participants. On Channel “Fz”, the target ERP functions of

all participants showed another negative peak after the first major positive peak. For

the young participants (A and B), the target ERP functions merged with the non-

target ERP functions after the second negative peak within the 800 ms post-stimulus

window; however, for the senior participants (E and J), the target ERP functions

were significantly below the non-target ERP functions. One reason is that generally,

it takes longer for senior participants to achieve the peak of the target P300 response

(Pavarini et al., 2018). Therefore, for a senior participant, if the ERP response

window is set to be longer, the target ERP functions may merge with non-target

ERP functions after 800 ms.

Figure 2.4: ERP function estimates of target and non-target stimuli with 95% credible
bands of Participants A, B, E, and J at channel Fz. Participants A and B were young
female healthy controls, while Participants E and J were elderly men, of whom only
E was diagnosed with ALS.
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2.5 Simulations

We performed several simulation studies to make statistical inferences and com-

pare the prediction accuracy of our method to other ML methods. To make the

simulated data resemble the real data, we assumed the simulated data with an ad-

ditive signal-and-noise effect. For the signal component, we applied the convolution

rule, and designed the ERP functions based on the work by (Hoffmann et al., 2008)

For the noise component, we considered both Gaussian and student-t distributions

to mimic different tail distributions with variances close to the real data. We also

considered the autoregressive correlation structure to model the temporal association

of the background noise. Finally, we considered a scenario where, given true stimulus-

type indicators, a subset of target stimuli was randomly selected as non-target ones.

This pattern mimicked a situation when participants missed target stimuli due to an

attention shift in practical BCI use.

Section 2.5.1 presents a multi-channel simulation study to examine channel rank-

ing and selection by our information criterion, and to evaluate the SMTW with our

inference-based criterion. Section 2.5.2 presents the single-channel simulation study

with different mis-specification scenarios to test the robustness of our analysis.

2.5.1 Channel Selection and Ranking

Setup We randomly generated stimulus-occurring indicators and stimulus-type in-

dicators with 19 characters of interest, “THE QUICK BROWN FOX,” including

three spaces. To evaluate the performance and the channel ranking, we designed

two groups of pre-specified mean response functions (MRFs 1 and 2). MRF 1 had

different temporal separation effects, while MRF 2 had channel-specific SNR values

(Figure S1). We considered a true generative scenario with two levels of noise vari-

ance, i.e., σ2
x ∈ {20, 40}. We simulated the noise assuming a temporal relationship

of AR(2) with the parameter ρt = (0.5, 0) and a spatial dependency relationship of
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compound symmetry structure with the parameter ρs = 0.5. The EEG signals were

generated with a response window of length 935 ms, i.e. 30 time points. We per-

formed 100 dataset replications for this scenario. For each dataset, we generated five

sequences per character for training and testing.

Model Settings and Diagnostics All simulated datasets were fitted with equa-

tion (2.3). A feature vector was defined as a 3-dimensional super-sequence matrix with

five replications and the channel-specific response window was of length 935 ms, i.e.

30 time points. The covariance kernel κα was assumed with a γ-exponential kernel.

The length-scale, gamma, and scaling of non-target stimuli were s0 = 0.5, γ0 = 1.8,

and σ2
0,0 = 0.5, respectively. For simulation studies with MRF 1, the peak ratios

of target to non-target stimuli were all 5; for simulation studies with MRF 2, the

peak ratios of target to non-target stimuli were 5, 2, and 1, respectively. We ran

the MCMC for 2, 000 iterations with 1, 000 burn-ins. The MCMC convergence was

assessed by running three chains with different seeds and initial values. The Gelman-

Rubin statistics for the parameters of interest were smaller than 1.1, indicating an

approximate convergence for each model fit.

Results To evaluate the SMTW, we defined two quantities, the inference-based

split window ratio (ISWR) and the inference-based merge window ratio (IMWR) as

follows:

ISWR(ζ) =
| {t : ζ̂(t) > ζ0 & ζ(t) = 1} |

| {t : ζ(t) = 1} |
, IMWR(ζ) =

| {t : ζ̂(t) ≤ ζ0 & ζ(t) = 0} |
| {t : ζ(t) = 0} |

.

Since the swLDA method explicitly performed feature selection, we defined the estimation-

based selection window ratio (ESWR) and the estimation-based exclusion window

ratio (EEWR) as follows:

ESWR(ζ) =
| {t : ζ̂(t) = 1 & ζ(t) = 1} |

| {t : ζ(t) = 1} |
, EEWR(ζ) =

| {t : ζ̂(t) = 0 & ζ(t) = 0} |
| {t : ζ(t) = 0} |

.
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Table 2.2: Upper Panel: Cumulative prediction accuracy for the multi-channel sim-
ulation study under the true generative mechanism with σ2

x = 20, ρt = (0.5, 0), ρs =
0.5 comparing the SMGP method to other ML methods. The split threshold of SMGP
method was ζ0 = 0.5. Point estimates and standard errors averaged over 100 datasets
were reported. Results of the SMGP method were marked in bold. Overall, the
SMGP method had the highest and most precise prediction accuracy. Lower Panel:
The ISWR, IMWR of the SMGP method and the ESWR, EEWR of the swLDA
method for the multi-channel simulation study under the true generative mechanism
with σ2

x = 20, ρt = (0.5, 0). Channel-specific point estimates and standard errors
averaged over 100 datasets were reported.

Testing Sequences
Methods 3 4 5
SMGP 0.91 (0.07) 0.96 (0.04) 0.99 (0.03)
Neural Network 0.76 (0.10) 0.87 (0.08) 0.92 (0.07)
SVM 0.81 (0.09) 0.89 (0.07) 0.94 (0.06)
Logistic Regression 0.76 (0.08) 0.87 (0.07) 0.91 (0.06)
Random Forest 0.76 (0.10) 0.86 (0.08) 0.92 (0.06)
swLDA 0.85 (0.08) 0.93 (0.06) 0.97 (0.04)
XGBoost 0.67 (0.11) 0.77 (0.09) 0.85 (0.08)

SMGP swLDA
Channels ISWR IMWR ESWR EEWR

1 0.98 (0.03) 0.56 (0.11) 0.32 (0.07) 0.69 (0.08)
2 0.99 (0.03) 0.56 (0.12) 0.32 (0.07) 0.75 (0.09)
3 0.99 (0.02) 0.59 (0.11) 0.26 (0.07) 0.8 (0.09)

Table 2.2 summarized the channel-specific ISWR, IMWR of the SMGP method

and the ESWR, EEWR of the swLDA method, and the cumulative prediction ac-

curacy over the number of testing sequences with σ2
x = 20 comparing the SMGP

method to other ML methods. The ISWR of the SMGP method was close to 100%,

which indicated that our method identified relevant temporal features better than

the swLDA method. Our method also had the highest and most precise predic-

tion accuracy among all methods. Similar results were obtained when we used

σ2
x = 40. Plots of ERP function estimates for both σ2

x = 20, 40, prediction accu-

racy, and the SMGP prior evaluation for σ2
x = 40 were shown in the Supplementary

Material. For simulation studies with varying SNR values, the means and stan-

dard errors of R2
e estimates were 20.52(1.55), 9.94(1.07), 4.81(0.82) for σ2

x = 20, and
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10.66(1.05), 4.90(0.68), 2.48(0.53) for σ2
x = 40 (values multiplied by 100). The infor-

mation criterion ranked three channels successfully for all the datasets, indicating

that the information criterion worked well.

2.5.2 Mis-specification Scenarios

Setup The stimulus-occurring indicators and stimulus-type indicators were gener-

ated randomly following the same rule as in Section 2.5.1. We illustrated the design of

the pre-specified mean response functions in Figure 2.5. For the data generative mech-

anism, we considered the following five scenarios with the AR(2) temporal correlation

parameter ρt = (0.5, 0) and two levels of the noise variance σ2
x = 10, 20. (i). The true

generative mechanism scenario simulated the data completely from equation (2.1).

(ii). The mis-specified noise scenario simulated the data from equation (2.1) with

the noise following a Student-t distribution with 5 degrees of freedom. (iii). The

scenario of the shorter response window length simulated the data with pre-specified

mean response functions of length 780 ms, i.e. 25 time points. (iv). The scenario

of the longer response window length simulated the data with pre-specified mean re-

sponse functions of length 1,090 ms, i.e. 35 time points. (v). The mis-specified signal

scenario simulated the data with a disproportionate distribution of target and non-

target stimuli. Given true stimulus-type indicators, a subset (10%) of target stimuli

was randomly treated as non-target ones by mistake so that it produced the incorrect

target P300 ERPs. The replication size, training sequences, and testing sequences

were the same as in Section 2.5.1.

Model Settings and Diagnostics All simulated datasets were fitted with the

proposed model with the estimated response window of length 935 ms, i.e. 30 time

points. The covariance kernel κα was set to an exponential squared kernel. The

length-scale, the scaling of target stimuli, and the scaling of non-target stimuli were

s0 = 0.5, σ2
0,1 = 10, and σ2

0,0 = 0.5, respectively. We ran the MCMC for 2, 000 iter-

39



ations with 1, 000 burn-ins. The MCMC convergence was assessed by running three

chains with different seeds and initial values. The Gelman-Rubin statistics for the

parameters of interest were smaller than 1.1, indicating an approximate convergence.

Figure 2.5: The upper and lower panels showed the 95% credible bands of ERP
functions to target and non-target stimuli under five simulation scenarios with true
parameter σ2

x = 10, ρ = (0.5, 0) and σ2
x = 20, ρ = (0.5, 0), respectively. The split

threshold was ζ0 = 0.5. The dots and curves were the true curve values. For the
true generative scenario, the credible bands covered the entire true curve. For the
mis-specified scenarios, the credible bands almost covered the true curves.

Results Figure 2.5 showed the estimated ERP functions for target and non-target

stimuli under five scenarios with true parameters σ2
x = 10 (the upper panel) and

σ2
x = 20 (the lower panel). For the true generative scenario, the credible bands

covered the entire true curves. For the mis-specified scenarios, credible bands almost

covered the true curves. The posterior distributions of σx and ρ concentrated around

the true values. Table 2.3 summarizes the ISWR, IMWR of the SMGP method

and the ESWR, EEWR of the swLDA method under five scenarios with σ2
x = 10

(the upper panel) and σ2
x = 20 (the lower panel). Both point estimates and standard
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errors over 100 datasets were computed. In the single-channel setting, both the ISWR

and IMWR of our method were higher than the ESWR and EEWR of the swLDA

method. This result implied that our method identified time windows better than

the swLDA method. We also summarized the cumulative prediction accuracy under

five scenarios comparing the SMGP method to other ML methods. The prediction

accuracy of the SMGP method among the mis-specified scenarios was consistently

higher than the other ML methods, suggesting that our analysis was relatively robust

to moderate model mis-specifications.

Table 2.3: The detection accuracy of the SMTW of the SMGP and swLDA methods
for the single-channel simulation study under five scenarios with σ2

x = 10, ρt = (0.5, 0)
in the upper panel and σ2

x = 20, ρt = (0.5, 0) in the lower panel. The split threshold
of the SMGP method was ζ0 = 0.5. Point estimates and standard errors averaged
over 100 datasets were reported.

σ2
x = 10 SMGP swLDA

Scenarios ISWR IMWR ESWR EEWR
True Generative 0.89 (0.07) 0.96 (0.05) 0.53 (0.08) 0.75 (0.07)
Mis-specified Noise 0.86 (0.07) 0.94 (0.06) 0.48 (0.07) 0.78 (0.06)
Shorter Window 0.91 (0.07) 0.96 (0.04) 0.64 (0.07) 0.79 (0.07)
Longer Window 0.86 (0.06) 0.96 (0.06) 0.46 (0.07) 0.72 (0.09)
Mis-specified Signal 0.86 (0.07) 0.96 (0.04) 0.49 (0.07) 0.76 (0.07)

σ2
x = 20 SMGP swLDA

Scenarios ISWR IMWR ESWR EEWR
True Generative 0.86 (0.07) 0.94 (0.07) 0.47 (0.07) 0.79 (0.08)
Mis-specified Noise 0.82 (0.08) 0.91 (0.08) 0.41 (0.07) 0.81 (0.07)
Shorter Window 0.88 (0.08) 0.95 (0.05) 0.55 (0.08) 0.84 (0.06)
Longer Window 0.82 (0.07) 0.93 (0.08) 0.41 (0.08) 0.77 (0.08)
Mis-specified Signal 0.83 (0.08) 0.94 (0.07) 0.43 (0.07) 0.81 (0.07)

2.6 Discussion

We have applied a new Bayesian generative framework to model the conditional

distribution of multi-sequence EEG signals from real participants under the P300

ERP design. Our Bayesian analysis explored the mechanism of brain activity in
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response to external stimuli by directly considering the overlapping ERPs between

adjacent stimuli without signal concatenation and segmentation. We developed a

new GP-based prior to identify the spatial-temporally activated intervals with the

split-and-merge GP (SMGP) prior. We proposed an information criterion for channel

ranking and confirmed it with existing literature.

We made fully posterior inferences on participant-and-channel specific P300 ERPs

with the SMGP prior given a fixed EEG response window. Although past studies by

(D’Avanzo et al., 2011) and (Mowla et al., 2018) have developed Bayesian and fre-

quentist filtering methods to estimate amplitude and latency of P300 ERP responses,

their results were based on single-trial (sequence) EEG signals, and both methods

discarded the spatial dependence among channels. Although the fglasso algorithm by

(Qiao et al., 2019) explored the conditional dependence over functional variables, they

assumed that different samples of functional variables were independent. However,

this independence assumption is violated in the multi-trial P300 ERP-BCI design

due to the overlapping signals. Our SMGP method handles multi-channel, multi-

sequence, overlapping EEG signals, produces mean P300 ERP estimates with 95%

credible bands, and achieves comparable prediction accuracy. When we compare the

ERP function estimates of channel Pz for the three methods, they share a small neg-

ative drop in amplitude around 100 ms post-stimulus, followed by a major positive

peak between 200 ms and 450 ms post-stimulus. Then, the ERP function estimates

gradually decline to zero. The identification of channel-specific SMTW provides sta-

tistical evidence for the scientific findings of P300 ERP responses.

In terms of channel ranking and selection, the 2015 study by (McCann et al.,

2015) pointed out that the difference in P300 ERP-BCI communication efficiency

was subtle with five or more channels. Both studies performed channel ranking and

selection using the same cohort of data. They identified Cz, Pz, PO7, PO8, and Oz

as the top selected channels, which overlaps with our identification of PO7, PO8,
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Oz, and Cz. These shared selection results provide statistical evidence for spatial

distributions of P300 ERP responses. In particular, the finding that channels PO8,

PO7, and Oz appear the most frequently supports the finding that the performance

of a P300 speller is associated with eye gaze (Brunner et al., 2010). Finally, the

participant-specific channel selection helps establish user-specific profiles for efficient

brain-computer communications. Thus, we can incorporate user-specific channel se-

lection to design the EEG cap, which increases the implementation speed.

Potential future directions would improve our work. First, we could modify the

stimulus presentation paradigm from the current RCP design to the checkerboard

design (Townsend et al., 2010). The checkerboard design avoids the refractory effect

(Martens et al., 2009) in the RCP design, where participants might miss or fail to

produce the second regular P300 ERP response when two target stimuli are too close.

In addition, we could measure the participant-specific brain connectivity under the no-

control (NoC) condition to specify the prior spatial covariance matrix. For Participant

A, we could assume a multi-block compound symmetry structure to estimate within-

block, intra-block correlation parameters, and the scalar parameter σ2. Finally, we

could develop the framework of a multi-subject analysis to incorporate the age effect

by modifying the priors.

Overall, the proposed generative modeling approach performs innovative statis-

tical inferences on brain activity and provides a promising platform to develop the

simulation study framework to test other online P300 ERP-BCI study designs. The

Bayesian framework also incorporates prior information such as character-to-character

relationships to increase the spelling speed.
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CHAPTER III

Adaptive Sequence-based Stimulus Selection in

ERP-based Brain-Computer Interfaces

3.1 Introduction

A Brain-Computer Interface (BCI) is a device that interprets patterns of brain

activity to assist people with severe neuromuscular diseases with normal communica-

tion, such as “typing” words without using a physical keyboard (Wolpaw et al., 2002).

One of the most popular non-invasive BCIs is the P300 ERP-based BCI speller (Far-

well and Donchin, 1988) recorded in the form of the electroencephalogram (EEG)

signals. The P300 ERP is a particular event-related potential (ERP) embedded in

the EEG signals that occurs in response to a rare, but a relevant event (target stimu-

lus) among a series of irrelevant events (non-target stimuli). The name “P300” comes

from the fact that its shape usually has a positive deflection in voltage around 300 ms

post event time (Rodden and Stemmer , 2008).

In a visual P300 ERP-BCI speller, a virtual keyboard is presented to the partici-

pant (See Figure 3.3). A combination of characters, defined as the stimulus group, are

highlighted sequentially on the screen with pre-specified time intervals. Participants

are asked to focus on one target character of interest such that they want to type it

on the screen and to mentally count when they see a stimulus group containing the
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character of interest and to ignore all other stimulus groups. When a stimulus group

contains the target character of interest, it is called a target stimulus, and it should

elicit a P300 ERP response. The conventional procedure for the P300 ERP speller

analyzes EEG signals in a fixed time window after each stimulus to make a binary

decision whether a target ERP response is elicited. Then, the binary classification

results are converted into character-level probabilities. However, despite the straight-

forward framework, the prediction accuracy is susceptible to noisy EEG signals due

to its low signal-to-noise ratio (SNR) property. Therefore, a typical P300 ERP-BCI

speller requires collecting data from multi-electrodes with many sequences of replica-

tions, where different electrodes are used to capture brain activity on different brain

surfaces.

For most existing visual P300 spellers, the set of stimulus groups is usually fixed

regardless of target characters of interest. The row-column (RC) paradigm by Farwell

and Donchin is a typical stimulus selection paradigm following the principle. In the

RC paradigm, flash groups are rows and columns of characters in the virtual keyboard.

During each sequence, all the row and column stimulus groups are shown with the

order permuted. Each sequence has exactly two target stimulus groups, and the

intersection of the target stimulus groups is the target character of interest. However,

most approaches do not make decisions on subsequent stimulus selection based on

previously observed EEG data.

Recently, a few studies have incorporated historical EEG data into the decision

making on the stimulus selection, known as data-driven stimulus selection methods.

Park et al. (Park and Kim, 2012) applied the partially observable Markov decision

process (POMDP) to compute an optimal stimulus schedule under the RC paradigm.

Ma et al. (Ma et al., 2011) proposed a hierarchy of sets of stimulus groups combined

with a statistical language model to solve a stochastic control problem of low com-

putational complexity. Kalika et al. (Kalika et al., 2017) developed an adaptive and
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greedy stimulus-based stimulus selection algorithm based on the expected discrimi-

nation gain (EDG) function. These approaches have all made progress in improving

the spelling performance compared to the conventional RC paradigm under simu-

lated or real-time BCI settings. However, the POMPD approach becomes difficult to

solve for a real-time system with a large search space. The hierarchical approach is

likely to accumulate errors, especially for participants with poor performance. The

EDG approach also suffers from large computation complexity and approximation

is required to estimate the character-level probabilities in presence of the response

delay. In addition, none of the methods has applied the adaptive stimulus selection

strategies to the Checkerboard (CB) paradigm (Townsend et al., 2010).

We proposed a sequence-based adaptive stimulus selection method by framing the

problem as a multi-armed bandit problem with multiple actions (Komiyama et al.,

2015). During each sequence, the proposed algorithm selected a fixed subset of stim-

ulus groups by the posterior probability. The algorithm aimed to identify all target

stimulus groups and enhance the spelling speed by reducing the number of unnec-

essary non-target stimulus groups. We applied Thompson Sampling to achieve this

goal (Thompson, 1933). We performed extensive simulation studies based on the CB

paradigm and demonstrate the robustness of our algorithm by considering both ideal

and practical scenarios. Finally, we applied the language model prior to initialize the

character-level probability to further increase the spelling speed.

3.2 Background

3.2.1 The Checkerboard (CB) Paradigm

In this work, we developed our adaptive stimulus selection algorithm based upon

the CB paradigm introduced by (Townsend et al., 2010). The traditional RC paradigm

is susceptible to error propagation that leads to attention shifts and frustration for
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two primary reasons (Townsend et al., 2010). First, due to “adjacency-distraction,”

the selection errors are most likely to occur next to the target character, especially

when non-target stimulus rows or columns that are confusing to participants are close

to the target character and they distract the attention of participants. Second, when

the target row and column stimuli are too close, participants may ignore or mis-

perceive the second one, which can change the amplitude and shape of P300 ERP

responses and lead to poor classification performance, known as the “double-flash”

problem. The CB paradigm reduces the impact of the “adjacency-distraction” and

completely avoids the “double-flash” problem.

Figure 3.1 provides a simple example of the CB paradigm. Suppose that we have

a 3 × 6 keyboard with 18 keys labelled from 1 to 18, and we would like to select

the target key with id 8. First, we split the keyboard to two sets (red and blue).

We map each set to a 3 × 3 matrix (hidden matrices 1 and 2). Hidden matrices

are not necessarily square matrices. The method of mapping is not unique. For the

stimulus groups, we extract the rows and columns from each hidden matrix, and end

up with H1R1, ..., H1R3, H1C1, ..., H1C3, H2R1, ..., H2R3, and H2C1, ..., H2C3.

Each element was a stimulus with three characters being flashed together. A total

of 12 stimuli are included within each sequence, and two of them are target ones.

Stimuli are presented in the order of rows from hidden matrix 1, rows from hidden

matrix 2, columns from hidden matrix 1, and columns from hidden matrix 2, but the

order within each row (column) set is random. In this example, H2R3 and H2C1,

containing the target key index of 8, are the target stimuli within this sequence.

3.2.2 Thompson Sampling

The multi-armed bandit (MAB) problem is one of the most widely studied se-

quential decision making problems. In general, during each iteration, a predictor

takes one action among a fixed set of actions and receives a reward associated with
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Figure 3.1: An illustration of the checkerboard design. (a). A 3 × 6 keyboard with
18 keys labelled from 1 to 18 in a row switchback order. (b). The keyboard is split
into two sets (red and blue) and placed in hidden matrices 1 and 2. (c). We extract
rows and columns from two hidden matrices to form 12 stimulus groups within one
sequence. (d). We follow the order of rows from hidden matrix 1, rows from hidden
matrix 2, columns from hidden matrix 1, and columns from hidden matrix 2 for
stimulus presentation. The order within each row (column) set is at random. In this
example, H2R3 and H2C1, containing the target key of id 8, are the target stimuli
within the drawn sequence.
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the selected action. The goal of the predictor is to maximize the cumulative reward

over iterations, and the performance is usually evaluated with a regret, which is de-

fined as the difference of the cumulative rewards between the selected and optimal

actions. Thompson sampling (TS), originally proposed in (Thompson, 1933) in 1933,

is a heuristic for tackling the MAB problem where actions are taken in a certain order

such that the expected reward functions with respect to the posterior distribution of

parameters are maximized. The canonical TS is used to select a single action among

a fixed set of actions over multiple iterations. However, in the setting of the P300

ERP-based BCIs, in order to increase the spelling speed, we aim to identify both

target stimuli and to reduce the number of unnecessary non-target stimuli. Thus,

we need to select multiple actions during each iteration. Fortunately, recent work by

(Komiyama et al., 2015) has extended the canonical MAB problem with single action

to the MAB problem with multiple actions and provided a theoretical analysis of the

optimal regret bound.

In this work, we build our adaptive algorithm upon the problem of the Beta-

Bernoulli Bandit (See Example 3.1 in (Russo et al., 2017)). The number of total

actions K is the number of stimulus groups that divide the entire virtual keyboard

(See Section 3.3.2). An action (or a stimulus group) k produces a reward that follows

a Bernoulli distribution with an unknown parameter θk. Each θk is interpreted as the

success probability for each action. We start from a non-informative prior on each θk

and let these priors follow action-specific Beta distributions with parameters αk and

βk. The conjugate property between Beta and Bernoulli distributions make it easy

to update parameters and fast to converge.

3.2.3 Bayesian Dynamic Stopping Criterion

One of the most important aspects about data-driven stimulus selection methods

is the dynamic data collection. Past work in (Lenhardt et al., 2008) developed the

49



method to dynamically change the number and duration of stimulus groups, according

to the subject’s current online performance. The naive Bayesian dynamic stopping

algorithm (NBDSA) in (Throckmorton et al., 2013) specified a stopping criterion on a

participant-independent, probability-based (unit-less) metric. Although the classifier

scores after each stimulus group (originally transformed by EEG feature vectors via

binary classifiers) serve as the natural inputs of the rewards, the actual values are

too noisy to use directly. Thus, we modify the NBDSA method to compute “clean”

rewards. In general, given the previous character-level probability vector and the

resulting classifier score associated with each stimulus group being flashed, we update

the character-level probability with the likelihoods of classifier scores accordingly. In

this case, other than the rewards that are only available for the selected actions, we

update the rewards for the entire action set, which enhances the spelling speed. In

the next section, we describe the proposed algorithm in detail.

3.3 Proposed Algorithm

3.3.1 Assumptions

First, we simplify the data generation mechanism of the classifier scores. We

assume that the classifier scores of target and non-target stimuli follow normal distri-

butions with means µ1 and µ0, µ1 > µ0, and common variance σ2. We also consider

starting from extracted EEG signals and converted them into µ1, µ0, and σ2 in Sec-

tions 3.4.4 and 3.4.5. Second, we assume that the parameters of these two normal

distributions are transferable between the different flash pattern paradigms under con-

sideration. In other words, we assume that the patterns of P300 ERP responses are

stable under the static paradigm and the adaptive stimulus selection paradigm. Fi-

nally, although we do not incorporate the impact of the practical constraints directly

into the proposed algorithm, we address the modifications for practical implementa-
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tions in Section 3.3.4.

3.3.2 The Stimulus Group Set

The proposed algorithm is applicable to the paradigm that specifies a valid stimu-

lus group set as follows: Let ω be the index for the target character to spell (denoted

as the target index) from a virtual keyboard of size N . We map the characters of the

keyboard to the character index set N0 = {1, · · · , N}. Let S = {Sk : k = 1, · · · , K}

be a stimulus group set such that each element Sk covers character indices of similar

sizes, and for each character index n, we always find exactly two stimulus group in-

dices n1, n2 such that {n} = Sn1 ∩ Sn2 . The stimulus group set is a particular way of

partitioning the character index set, and the partitioning is not unique. In addition,

we can vary the partitioning when we spell the next target character of interest.

3.3.3 The Algorithm

Let T0 and pmax be the total number of sequences and maximum probability

thresholds, respectively. Together they form the stopping criteria. Let Beta(α, β)

be a beta distribution with shape parameters α, β. For t = 0, we initialize the

beta distributions and the character-level probability vector P0 with uniform priors

and discrete uniform probability of 1
N

, respectively. Let θk(t) be the probability

that stimulus group k contains the target index ω for sequence t. We assume that

θk(t) ∼ Beta(αt,k, βt,k) with shape parameters αt,k, βt,k. We sample a vector of {θ̂k(t)}

from the above beta distributions and define I(t) as the indices of the L samples with

the largest values. Let zt,l be the classifier score of stimulus group l during sequence

t. Let N (µ, σ2) be a univariate normal distribution with mean µ and variance σ2.

(3.1) zt,l ∼

 N (µ1, σ
2), ω ∈ Sl

N (µ0, σ
2), ω /∈ Sl.

51



In practice, such a simulation mechanism is equivalent to the complex process de-

scribed in Section 3.4. Then, we compute the “clean” rewards for each character

n, n = 1, · · · , N .

(3.2)

Pt,n =

∏L
l=1 lt,l,n(zt,l)Pt−1,n∑N

c=1

∏L
l=1 lt,l,c(zt,l)Pt−1,c

,

lt,l,n(zt,l) =

 l0(zt,l), n /∈ SIl(t),

l1(zt,l), n ∈ SIl(t),

where l1, l0, and Pt are likelihood functions ofN (µ1, σ
2), N (µ0, σ

2), and the character-

level probability vector after sequence t, respectively. We sum up the probabilities of

which character indices belong to the stimulus group Sk, k = 1, · · · , K. Let IA(x) be

the indicator function that equals 1 if x ∈ A, and 0 otherwise, where A is an ordinary

set, then

(3.3) rt,k =
N∑
n=1

Pt,n · ISk
(n), k = 1, · · · , K.

Finally, we update the shape parameters for each stimulus group k, k = 1, · · · , K.

(3.4) αk ← αk + rt,k, βk ← βk + 1− rt,k.

We repeat the above process until we reach the pre-specified stopping criterion. Al-

gorithm 1 summarizes the adaptive stimulus selection paradigm.

3.3.4 Practical Constraints and Consideration

During the online BCI implementation, we consider two practical constraints: the

response delay (RD) and the double flash (DF) issue. First, there is an inevitable

response time delay between the presentation of the stimulus group during sequence

t and its corresponding classifier score. On one hand, since the inputs of the online
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Algorithm 1 A pseudo-code of our sequence-based adaptive stimulus selection. Here,
we do not directly take response delay and double flash into consideration.

Input: The unit stimulus group set S = {S1, · · · , SK}, the subset size L, (4 ≤ L ≤
K).

Output: Selected Indices I(t) and character-level probabilities P (t).
for k = 1, · · · , K do

Initialize αk = 1, βk = 1.
end for
Initialize P0 with uniform probability.
while 1 ≤ t ≤ T0 and max(Pt) ≤ pmax do

for k = 1, · · · , K do
Sample θ̂k(t) ∼ Beta(αk, βk).

end for
I(t) = Indices of top-L stimulus groups ranked by {θ̂k(t), k = 1, · · · , K}.
for l = 1, · · · , L do

Observe {zt,l} for stimulus groups from the brain responses indexed by I(t).

Pt+1
NBDSA←− Pt, {zt,l}, l0, l1 (See details in Eq.(3.2))

end for
for k = 1, · · · , K do

rt,k =
∑N

n=1 Pt,n · ISk
(n).

(αk, βk)← (αk + rt,k, βk + 1− rt,k)
end for

end while
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implementation are streaming EEG recordings, in order to produce a classifier score,

we first apply the bandpass filter then signal segmentation to obtain the extracted

EEG signal segments, and finally the binary classifier so that the extracted EEG

signal segments can be converted to the scalar values. These procedures require

additional time. On the other hand, more importantly, under the CB paradigm,

the response window of EEG signals (usually 800 ms) is much longer than the time

interval between adjacent stimulus groups (usually shorter than 200 ms). The machine

requires additional time to record a complete ERP response after the stimulus has

been highlighted on the screen. We address the constraint of this response delay by

applying a policy of the “cross iteration update” (See Section 3.4.3). In addition,

although the offline CB paradigm avoids the impact of the double-flash issue, it may

arise when we apply the algorithm to select a subset of stimulus events. Recall that

the CB paradigm divides the entire keyboard into two hidden matrices, where the

order of stimulus events are rows of the first hidden matrix, rows of the second hidden

matrix, columns of the first hidden matrix, and columns of the second hidden matrix.

Since the two target events are within the same hidden matrix, the target row and

column are separated by rows and columns of another hidden matrix, and the time

length should be sufficient to avoid the overlapping components of two target stimulus

events. We address the constraint of the double flash issue only for the data generation

mechanism by considering a third-level classifier score or ERP response functions.

Finally, we further improve the spelling efficiency by incorporating a word-level

language model (LM). In Algorithm 1, before we start the Thompson sampling, we

specify P0 with a uniform probability, which implies that we have no prior knowledge

about the upcoming character to spell. The basic idea of the LM model is that

given a dictionary of words, when each participant is spelling a new character of

a meaningful word, we modify the P0 accordingly. Suppose that the participant

wants to spell “THE” and the BCI speller system has correctly spelled the first two
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Figure 3.2: An illustration of specifying the initial character-level probability P0 using
different prior specifications. Red and blue dots are P0 obtained by with LM method
and without LM method, respectively. In particular, P{E | Without LM} = 0.038,
and P{E | With LM} = 0.269. Thus, the specification with LM method potentially
helps identify the true character “E” faster than the specification without LM method.

characters “TH.” Instead of starting from scratch for the character “E,” we compute

the conditional probability of each character by searching the words starting with

“TH,” and the conditional probability is approximately by the frequency percentage

within the subset of the words starting with “TH.” We demonstrate the difference

between two prior specifications in Figure 3.2. The probabilities of character E given

no prior information and LM prior specification are 0.038 and 0.269, respectively. We

report the results using the LM prior in Sections 3.4.5-3.4.6.

3.4 Experiments and Numerical Results

3.4.1 Experimental Setup

Since there is no available real data to evaluate the online stimulus selection

algorithm, we report the numerical results based on extensive simulation studies to

compare different configurations of our proposed algorithm to the conventional CB
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Figure 3.3: An illustration of an 84-key keyboard with a combination of characters,
denoted as a stimulus group, being highlighted (PRC-Saltillo, 2009). Under the CB
paradigm, stimulus groups are not limited to row and column flashes, and the virtual
screen looks similar to the physical keyboard.
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paradigm. We base the speller grid on Figure 3.3 (PRC-Saltillo, 2009), where the

adjacent stimulus interval and the EEG response window are 160 ms and 800 ms,

respectively. We let L range from 5 to 26. When L = 5, it satisfies two requirements:

5 is the minimum number of events that adjusts for the response delay and two

target events within the reordered stimulus selection group are separated by at least

one event. When L = 26, it is equivalent to the conventional CB paradigm because

no subset selection process is involved. We design five scenarios: score-based without

response delay (testing the algorithm under the most ideal circumstance), score-based

with response delay, signal-based with response delay, score-based with response delay

and LM prior, signal-based with response delay and LM prior; For Scenarios 2 to 5,

we adjust for the response delay by randomly specifying the selected stimulus groups

for the first two sequences.

For Scenarios 1, 2, and 4, we follow the framework in (Kalika et al., 2017) by

directly generating classifier scores of target and non-target stimulus groups from

normal distributions l1(z) and l0(z), respectively. We define the following parameters,

(3.5) d′ =
µ1 − µ0

σ
,

where d′ is the detectability index defined in (Birdsall , 1973); µ1 and µ0 are the mean

parameters for l1(z) and l0(z), respectively; and σ is the standard deviation shared

by both target and non-target stimulus groups. We vary the parameter d′ and the

subset size L to see how they affect the simulation results.

For Scenarios 3 and 5, we use the EEG signals as the signal input using Equation

(2.1). For Scenario 3, we align the single-channel simulated ERP response function

with stimulus-type indicators and add Gaussian noises with a variance σ2
X and an

auto-correlation parameter q. Next, we extract the EEG signal segments from the

onset of the stimulus group with a fixed EEG window as the feature vectors. Then, we
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apply the swLDA method to obtain the corresponding classifier scores. We assume

that the swLDA model has been pre-trained from an additional dataset generated

by the same simulated ERP responses and background noise structure. We vary the

parameter σ2
X and subset size L to see how they affect the simulation results. For

Scenario 5, we directly use the extracted multi-channel EEG signal segments from

the calibration data of Participant A in Section 2.4.3.

We define the probability threshold pmax = 0.90 and time threshold t0 = 5 se-

quences. Since L is an input for the algorithm, we use the number of stimulus groups

for consistency. We report the final accuracy and the number of stimuli to satisfy the

above joint criteria. In addition, we report the information transfer rate (ITR) as in

(Wolpaw et al., 1998) and the BCI utility (BCIU) as in (Dal Seno et al., 2009) to

provide more comprehensive metrics that combine accuracy and speed. For Scenarios

1-3, we assume the participant is spelling one target character (e.g., character index

of 70) without incorporating the prior information into any candidate characters, and

we report the results for L = 5, 10, 13, and 26. For each scenario, we repeat differ-

ent cases 500 times and report the average results with standard deviations across

replications.

3.4.2 Score-based without Response Delay

Assuming no response delay, we perform simulation studies to compare the per-

formance of subset selection to the conventional CB paradigm. We fix µ1 = 0.50 and

µ0 = −0.20, and varied σ among 0.20, 0.30, 0.40, 0.50, and 0.60, or equivalently, d′ =

3.50, 2.33, 1.75, 1.40, and 1.17. Notice that the combination of µ1 = 0.5, µ0 = −0.2,

and σ = 0.3 or d′ = 2.33 is based on the result of a real participant, and we vary σ

to demonstrate the robustness of our method. Table 3.1 shows the mean accuracy,

number of stimulus groups needed, ITR, and BCIU of Scenario 1 under various σ

across 500 replications. The results of Scenario 1 are considered as the upper bound
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of the performance of our algorithm. As the subset size L increases from 5 to 26,

the probability of correctly selecting the target character, ITR and BCIU, while the

number of stimulus groups to reach the stopping criterion increases. This suggests

that our algorithm is more efficient than the conventional CB paradigm.

Table 3.1: The means and standard deviations of the evaluation metrics for the clas-
sifier score-based scenario without response delay (Scenario 1) across 500 replications.
Metrics include the spelling accuracy, the number of stimulus groups, ITR, and BCIU.
We vary the detectability index d′ and the subset size L to examine the their effects
on the simulation results.

d′
Subset
Size L

ITR BCIU Accuracy
Stimulus
Group

3.50 5 0.96 (0.45) 0.95 (0.44) 0.98 (0.05) 35 (15)
3.50 10 0.74 (0.26) 0.73 (0.26) 0.98 (0.05) 43 (15)
3.50 13 0.67 (0.21) 0.66 (0.21) 0.98 (0.07) 47 (16)
3.50 26 0.50 (0.08) 0.50 (0.08) 0.99 (0.02) 59 (12)

2.33 5 0.67 (0.31) 0.67 (0.31) 0.96 (0.11) 48 (22)
2.33 10 0.53 (0.19) 0.52 (0.19) 0.96 (0.12) 58 (21)
2.33 13 0.48 (0.16) 0.48 (0.16) 0.96 (0.09) 63 (21)
2.33 26 0.35 (0.09) 0.35 (0.09) 0.96 (0.11) 83 (21)

1.75 5 0.50 (0.23) 0.50 (0.23) 0.93 (0.15) 63 (27)
1.75 10 0.38 (0.15) 0.37 (0.15) 0.93 (0.17) 78 (25)
1.75 13 0.32 (0.13) 0.32 (0.13) 0.91 (0.20) 88 (25)
1.75 26 0.23 (0.10) 0.23 (0.10) 0.86 (0.24) 110 (21)

1.20 5 0.37 (0.18) 0.36 (0.18) 0.88 (0.23) 79 (28)
1.20 10 0.26 (0.14) 0.25 (0.14) 0.82 (0.28) 100 (27)
1.20 13 0.22 (0.12) 0.22 (0.12) 0.81 (0.29) 110 (23)
1.20 26 0.14 (0.10) 0.13 (0.11) 0.66 (0.35) 120 (13)

1.17 5 0.25 (0.16) 0.24 (0.17) 0.76 (0.33) 98 (28)
1.17 10 0.18 (0.12) 0.17 (0.13) 0.70 (0.35) 110 (21)
1.17 13 0.15 (0.12) 0.14 (0.13) 0.64 (0.36) 120 (19)
1.17 26 0.09 (0.08) 0.07 (0.09) 0.50 (0.34) 130 (6)

3.4.3 Score-based with Response Delay

We perform simulation studies to compare the performance of subset selection to

the conventional CB paradigm with the same parameter set in Section 3.4.2. We

assume that the data collection, classifier score generation, and posterior sampling

associated with sequence j will be completed by the end of sequence (j+1), denoted as
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Figure 3.4: The simulated data generation mechanism with the response delay. The
upper panel is the time frame for stimulus presentation, while the lower panel is the
time frame of data collection and analysis for each sequence. Let F j be the set of
stimulus groups for sequence j. We randomly initialize the stimulus groups for the
first two sequences. We assume that the data collection, classifier score generation,
and posterior sampling associated with sequence j will be completed by the end of
sequence (j + 1), denoted as “cross iteration update”. For sequence j, j > 2, we
generate the stimulus groups based on posterior samples of TS, α − 2,β − 2. The
process is terminated when the stopping criterion is reached (not shown on the figure).
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the “cross iteration update” (See Figure 3.4). Thus, we randomly initialize stimulus

groups for the first two sequences. For sequence j, j > 2, we generate the stimulus

groups based on the Thompson sampling results of the posterior samples αj−2 and

βj−2. Table 3.2 shows the mean accuracy, number of stimulus groups needed, ITR,

and BCIU of Scenario 2 under various σ across 500 replications. Similar patterns to

Table 3.1 are observed. The ITR, BCIU, accuracy, and the number of stimulus groups

in Scenario 2 are, on average, lower than those in Scenario 1 because by assumption,

we record the probability of the sequence prior to the one that reaches the stopping

criterion. However, the differences between the results for Scenario 1 and Scenario 2

are moderate.

Table 3.2: The means and standard deviations of the evaluation metrics for the clas-
sifier score-based scenario with response delay (Scenario 2) across 500 replications.
Metrics include accuracy, the number of stimulus groups, ITR, and BCIU. We apply
the cross-iteration update policy to adjust for the response delay. We vary the de-
tectability index d′ and the subset size L to examine their effects on the simulation
results.

d′
Subset
Size L

ITR BCIU Accuracy
Stimulus
Group

3.50 5 0.79 (0.27) 0.79 (0.26) 0.98 (0.02) 39 (11)
3.50 10 0.60 (0.14) 0.6 (0.14) 0.98 (0.03) 49 (12)
3.50 13 0.55 (0.09) 0.54 (0.09) 0.98 (0.02) 53 (9)
3.50 26 0.35 (0.04) 0.35 (0.04) 0.99 (0.02) 83 (10)

2.33 5 0.59 (0.19) 0.59 (0.19) 0.97 (0.03) 51 (15)
2.33 10 0.43 (0.12) 0.43 (0.12) 0.97 (0.03) 68 (18)
2.33 13 0.39 (0.10) 0.39 (0.10) 0.97 (0.05) 73 (18)
2.33 26 0.26 (0.06) 0.26 (0.07) 0.95 (0.13) 110 (18)

1.75 5 0.43 (0.15) 0.42 (0.15) 0.95 (0.10) 69 (22)
1.75 10 0.32 (0.10) 0.31 (0.10) 0.93 (0.14) 88 (22)
1.75 13 0.28 (0.09) 0.27 (0.10) 0.92 (0.15) 98 (22)
1.75 26 0.17 (0.09) 0.16 (0.10) 0.78 (0.29) 120 (12)

1.20 5 0.32 (0.13) 0.32 (0.13) 0.91 (0.16) 86 (24)
1.20 10 0.23 (0.11) 0.22 (0.12) 0.82 (0.27) 110 (22)
1.20 13 0.18 (0.10) 0.18 (0.11) 0.77 (0.30) 120 (18)
1.20 26 0.10 (0.08) 0.08 (0.09) 0.56 (0.34) 130 (5)

1.17 5 0.23 (0.13) 0.23 (0.14) 0.80 (0.29) 100 (24)
1.17 10 0.15 (0.11) 0.14 (0.12) 0.67 (0.34) 120 (17)
1.17 13 0.11 (0.10) 0.10 (0.11) 0.57 (0.35) 120 (11)
1.17 26 0.06 (0.06) 0.04 (0.06) 0.37 (0.31) 130 (0)
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3.4.4 Signal-based with Response Delay

Figure 3.5: The simulated ERP response functions to target (red) and non-target
(blue) in Scenario 3. Both ERP response functions contain 25 time points, with the
unit time interval representing 32 ms. The peak ratio between target and non-target
stimuli is around 3. We assume that the time interval between adjacent stimuli are
160ms, and the extracted EEG response window has the same length as the simulated
ERP response functions.

We extend Scenario 2 where we start from the simulated EEG time series. We

apply the same updating policy as in Section 3.4.3. We assume that the simulated

EEG signals have an additive signal-and-noise effect. We align the simulated ERP

responses based on the type of stimuli by the rule of convolution to form the signal

component shown in Figure 3.5. We assume the noise component follows a Gaussian

distribution with an auto-correlation structure AR(q) and a variance σ2
X . Here, we

only consider a pair of single-channel ERP response functions without incorporating

the spatial dependency structure. Then, we extract the EEG signal segments from

the onset of each stimulus with the fixed response window as the feature vector, and
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convert them to the classifier scores using the swLDA weights. Here, we obtain the

µ1, µ0, σ, and d′ by computing the sample means and the sample variance of classifier

scores after applying the swLDA weights. Thus, we fix the simulated ERP responses

and the auto-correlation structure of (0.5, 0), and vary the noise variance σ2
X among

{0.01, 2, 5.5, 12.5, 20} to match d′ approximately for better comparison. Table 3.3

shows the mean accuracy, number of stimulus groups needed, ITR, and BCIU of

Scenario 3. The actual d′ here may deviate from the d′ in Scenarios 1 and 2 due to

the randomness in the training set.

Table 3.3: The means and standard deviations of the evaluation metrics for the single-
channel signal-based scenario with response delay (Scenario 3) across 500 replications.
Metrics include accuracy, the number of stimulus groups, ITR, and BCIU. We vary
the noise variance σ2

X to match the detectability index d′ and the subset size L.
The actual d′ here may be different from the values in Scenarios 1 and 2 due to the
randomness in the training set.

d′
Subset
Size L

ITR BCIU Accuracy
Stimulus
Group

3.50 5 0.88 (0.32) 0.87 (0.32) 1 (<0.01) 37 (11)
3.50 10 0.69 (0.15) 0.68 (0.15) 1 (<0.01) 45 (11)
3.50 13 0.61 (0.08) 0.60 (0.08) 1 (<0.01) 49 (6)
3.50 26 0.38 (<0.01) 0.37 (<0.01) 1 (<0.01) 78 (0)

2.33 5 0.67 (0.21) 0.67 (0.21) 0.97 (0.03) 45 (13)
2.33 10 0.48 (0.10) 0.48 (0.10) 0.96 (0.03) 59 (13)
2.33 13 0.43 (0.08) 0.43 (0.08) 0.96 (0.03) 65 (13)
2.33 26 0.28 (0.04) 0.28 (0.05) 0.97 (0.05) 99 (16)

1.75 5 0.45 (0.12) 0.44 (0.12) 0.96 (0.03) 64 (15)
1.75 10 0.35 (0.09) 0.34 (0.09) 0.95 (0.08) 81 (19)
1.75 13 0.28 (0.07) 0.28 (0.07) 0.94 (0.08) 96 (19)
1.75 26 0.19 (0.08) 0.18 (0.09) 0.83 (0.24) 120 (13)

1.20 5 0.19 (0.13) 0.19 (0.14) 0.71 (0.35) 110 (22)
1.20 10 0.06 (0.08) 0.04 (0.08) 0.35 (0.33) 130 (7)
1.20 13 0.06 (0.07) 0.04 (0.07) 0.37 (0.31) 130 (4)
1.20 26 0.04 (0.06) 0.02 (0.05) 0.28 (0.28) 130 (1)

1.17 5 0.11 (0.12) 0.10 (0.12) 0.48 (0.39) 120 (16)
1.17 10 0.03 (0.05) 0.02 (0.05) 0.22 (0.27) 130 (2)
1.17 13 0.02 (0.03) 0.01 (0.03) 0.16 (0.20) 130 (1)
1.17 26 0.01 (0.02) 0.01 (0.01) 0.13 (0.15) 130 (0)
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3.4.5 Score-based with Response Delay and LM Prior

We incorporate the LM prior into the score-based simulation scenario considering

the response delay. We fix the combination of parameters µ1 = 0.5, µ0 = −0.2,

and σ = 0.5 that is based on the training data from a participant. We choose the

word “BIOSTATISTICS” such that the spelling efficiency could heavily benefit from

properly initializing the character-level probability vector. We look at the subset

selection size L = 10 and compare the results to those with L = 26, where no subset

selection is involved. The upper and lower panels of Figure 3.6 show the character-

level spelling accuracy and minimum number of sequence replications required to

reach the stopping criterion, respectively, further stratified by algorithms with and

without the LM prior. We observe that the average character-level accuracy with the

LM prior is consistently higher than the average without the LM prior, and the average

character-level sequence replication size is reduced by at least 50% since the second

character. The upper panel of Table 3.4 shows the means and standard deviations

of ITR and BCIU with L = 10 and 26, stratified by with and without LM methods.

Given the same L, the average ITR and BCIU obtained with LM method are higher

than those obtained without LM method; given the same prior specification method,

the average ITR and BCIU are higher with smaller L.

3.4.6 Signal-based with Response Delay and LM Prior

Finally, we incorporate the language model prior into the signal-based simulation

scenario considering the response delay. We use a pair of single-channel ERP response

functions in Figure 3.5 to generate the simulated EEG signals with σ2
X = 10. We

assume that the participant is spelling the same word as in Section 3.4.5. The upper

and lower panels of Figure 3.7 show the character-level spelling accuracy and minimum

number of sequence replications required to reach the stopping criterion, respectively,

stratified by algorithms with and without the LM prior. We observe that the average
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Figure 3.6: Improvements with the language model prior of the score-based simulation
study with the response delay (Scenario 4). Parameters are specified based on the
training data from a participant as follows: µ1 = 0.5, µ0 = −0.2, σ = 0.5 and
subset size L = 10. The upper panel shows the average character-level spelling
accuracy with the standard deviation across 500 replications, stratified by algorithms
with and without the LM prior. The lower panel shows the average character-level
minimum sequence replications to reach the stopping criterion with the standard
deviation across 500 replications, stratified by algorithms with and without the LM
prior. The average character-level accuracy with the LM prior is higher than the
average accuracy without the LM prior, and the average character-level sequence
replication size is reduced by at least 50%.
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character-level accuracy with the LM prior is consistently higher than the average

without the LM prior, and the average character-level sequence replication size is

reduced by at least 40% starting from the second character. The lower panel of Table

3.4 shows the means and standard deviations of ITR and BCIU with L = 10, 26,

stratified by with and without LM methods. We observe similar pattern to the results

in Section 3.4.5.

Table 3.4: The means and standard deviations of ITR and BCIU for score-based (Sce-
nario 4, upper panel) and signal-based (Scenario 5, lower panel) scenarios adjusting
for response delay across 500 replications. We look at the subset size L = 10 and 26,
where L = 26 is the baseline case that no subset selection is involved. We observe
similar patterns in both scenarios. Given the same L, the average ITR and BCIU
obtained with LM prior are higher than those obtained without LM prior; given the
same prior specification, the average ITR and BCIU are higher with smaller L.

ITR BCIU

L with LM without LM with LM without LM
10 0.69 (0.16) 0.22 (0.04) 0.68 (0.17) 0.21 (0.05)

26 (Baseline) 0.35 (0.08) 0.12 (0.04) 0.35 (0.09) 0.09 (0.05)

ITR BCIU

L with LM without LM with LM without LM
10 0.90 (0.06) 0.38 (0.03) 0.89 (0.06) 0.38 (0.03)

26 (Baseline) 0.43 (0.03) 0.23 (0.03) 0.43 (0.03) 0.22 (0.03)
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Figure 3.7: Improvements with the language model prior of the signal-based sim-
ulation study with the response delay (Scenario 5). A pair of single-channel ERP
response functions in Figure 3.5 are used to generate the simulated EEG signals with
σ2
X = 10. The subset size L is 10. The upper panel shows the average character-

level spelling accuracy with the standard deviation across 500 replications, stratified
by algorithms with and without the LM prior. The lower panel shows the average
character-level minimum sequence replications to reach the stopping criterion with the
standard deviation across 500 replications, stratified by algorithms with and without
the LM prior. The average character-level accuracy with the LM prior is higher than
the average accuracy without the LM prior, and the average character-level sequence
replication size is reduced by at least 40%.
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CHAPTER IV

Bayesian Semi-supervised Classification for Data

Integration in ERP-based Brain-Computer

Interfaces

4.1 Introduction

4.1.1 Challenges and Existing Work

Before participants performed the free-typing sessions, they copied a multi-character

phrase to build a participant-specific training profile. We referred to the previous two

procedures as testing and calibration, respectively. Since the signal-to-noise ratio

(SNR) of EEG signals was generally low, the current calibration strategy simply col-

lected data from participants themselves with a fixed but large amount of sequence

replications. However, a lengthy calibration procedure might cause attention shift

and mental fatigue. Participants tended to feel bored and might elicit biased target

P300 ERPs, which made the calibration process inaccurate and inefficient. Therefore,

the challenge became how to reduce participants’ calibration time with decent pre-

diction accuracy for the free-typing sessions. Existing work has tackled this problem

by applying the idea of transfer learning, which was originally introduced by Bozi-

novski and Fulgosi in 1976, that information was extracted and stored from existing
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problems to solve a new but similar problem. In statistics, we denoted this concept

as data integration (Lenzerini , 2002).

This subsection reviews existing works that have explored transfer learning under

different domains for information leveraging with applications to P300 ERP-BCIs.

First, the general ensemble learning method was an intuitive idea to incorporate data

from other domains that combined the results of different classifiers within the same

training set. Each classifier made predictions on a test set, and the results were

combined with a voting process. Rakotomamonjy and Guigue in 2008 and Johnson

and Krusienski in 2009 applied the ensemble method to P300 ERP-BCIs by averaging

the outputs of multiple SVMs and swLDAs, respectively. Their base binary classifiers

were trained on a small part of the available data. Völker et al. in 2018 and Onishi

in 2020 applied the ensemble method by averaging the outputs of multiple CNNs

to visual and auditory P300 ERP-BCI datasets, respectively. Onishi and Natsume

also mentioned that ensemble methods with overlapping partitioning criterion yielded

better prediction performance than the ensemble methods with a naive partitioning

criterion.

As an alternative solution, Xu et al. in 2015 proposed the Ensemble Learning

Generic Information (ELGI), which combined the data of the new participant with

the data of source participants to form a hybrid ensemble. They split the data of

each source participant into target and non-target subsets. They applied the swLDA

method to construct the base classifiers by combining different subsets as follows:

the target and non-target subsets from the new participant, the target subset from

the new participant and the non-target subset from each source participant, and the

target subset from each source participant and the non-target subset from the new

participant. Thus, the resulting ensemble had (2N + 1) base classifiers, where N is

the number of source participants. They further introduced the Weighted Ensemble

Learning Generic Information (WELGI) by adding weights to each base classifier
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(Xu et al., 2016). Similarly, An et al. in 2020 proposed a weighted participant-semi-

independent classification method (WSSICM) for P300 ERP-based BCIs, where they

used the SVM method as the base classifier. The base classifier was fit by combining

the entire data of each source participant and a small portion of data of the new

participant. An ad-hoc approach was applied to determine the weighted coefficients

of base classifiers for participant selection. Likewise, Adair et al. in 2017 proposed

the Evolved Ensemble Learning Generic Information (eELGI). The authors argued

that grouping training sets by participants was not an optimal selection criterion.

Instead, they developed an evolutionary algorithm by permuting datasets among

source participants to form the base classifiers, which were constructed using the

swLDA method.

Finally, Riemannian geometry has gained increasing attention recently due to its

fast speed to converge and a natural framework to leverage information from source

participants. Rodrigues et al. in 2018 presented a transfer learning approach to

tackle the heterogeneity of EEG signals across different sessions or participants us-

ing the Riemannian procrustes analysis (RPA). Before the authors applied the MDM

classifier, they applied certain affine transformations to raw participant-level covari-

ance matrices such that the resulting covariance matrices were less heterogeneous

across sessions or participants while their Riemannian distances were preserved. Li

et al. in 2020 also standardized the covariance matrices across participants by ap-

plying the affine transformation with the participant-specific Riemannian geometric

mean covariance matrix. Finally, Khazem et al. in 2021 proposed another trans-

fer learning approach, denoted as Minimum Distance to Weighted Mean (MDWM).

They combined estimated mean covariance matrices from source participants and the

new participant by the Riemannian distance. They controlled the trade-off between

new and source contribution by the power parameter, but they treated them as a

hyper-parameter and did not estimate it during the calibration session. Although
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most existing methods applied transformations to make covariance matrices robust

among source participants, Khazem et al. emphasized that further improvement in

prediction accuracy could still benefit from a proper selection of source participants.

4.1.2 Our Contributions

To reduce the calibration time while maintaining similar prediction accuracy,

we propose a BAyesian SemI-supervised Classification (BASIC) method to build a

participant-dependent, calibration-less framework. To clarify, calibration-less meth-

ods refer to those methods that train the classifier with fewer sequence replications

than existing strategy that uses a fixed amount of sequence replications from the new

participants themselves. For calibration methods without using any training data

from the new participant, we refer to them as calibration-free methods. In addition,

the semi-supervised framework here is slightly different from the regular setting. On

the stimulus-level, it is a supervised learning problem because the stimulus labels

are known during calibration process; on the participant-level, it is a regular semi-

supervised learning problem because we do not observe the participant labels among

the pool of source participants. The BASIC framework reduces the calibration time

of a new participant by borrowing data from pre-existing source participants’ pool.

Instead of performing transformation to make all source calibration data similar, we

borrow data on the level of participants, which is an intuitive clustering criterion.

BASIC specifies the joint distribution of stimulus-specific EEG signals from all par-

ticipants via a Bayesian hierarchical mixture model.

Our method has advantages from both inference and prediction perspectives.

First, unlike the conventional clustering approach, we specify the baseline cluster

as the one that matches the new participant. Therefore, our method has a flavor of

semi-supervised learning approach, and the selection indicators has the interpretation

of how close source calibration data resembles the new data on the level of partic-
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ipants. Second, we test on the baseline cluster directly without refitting the model

with the augmented data. Finally, our proposed hierarchical framework is flexible

and can be extended to other classifiers with consistent parametric forms.

4.2 Methods

4.2.1 Problem Setup

Suppose the dataset consists of N source participants and one new participant.

Let n = 0, . . . , N be the participant index, where n = 0 and n = 1, . . . , N refer

to the new participant and the source participants, respectively; Let l = 1, . . . , Ln

and i = 1, . . . , In be the character index and sequence index for participant n, re-

spectively. We follow the conventional RCP design such that each sequence con-

tains J(J = 12) stimuli, including six row stimuli from top to bottom (1, . . . , 6)

and six column stimuli from left to right (7, . . . , 12) on the 6 × 6 virtual keyboard

(See Figure 1.3). For the ith sequence, lth target character, and nth participant,

let Wn,l,i = (Wn,l,i,1, . . . ,Wn,l,i,12)
> be a stimulus code indicator that takes val-

ues from the permutation of {1, . . . , 12}. Under the RCP design, given the tar-

get character and the stimulus-code indicators, there are exactly two target stim-

uli and ten non-target stimuli within each sequence, and we can identify the in-

dices of target stimuli. We define Yn,l,i = (Yn,l,i,1, . . . , Yn,l,i,12)
> as the stimulus-

type indicator for the ith sequence, lth target character, and nth participant, where

Yn,l,i,j ∈ {0, 1}. For example, given a target character “T” and a stimulus-code indi-

cator Wn,l,i = (7, 9, 10, 5, 1, 2, 8, 11, 6, 4, 3, 12)>, we obtain its corresponding stimulus

type indicator Yn,l,i = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0)>, where the indices of 1s corre-

spond to the indices of the 4th row and 2nd column (denoted by 8) in Wn,l,i. Let

k = 0, . . . , K−1 be the cluster index, where k = 0 is the cluster that matches the new

participant and k = 1, . . . , K − 1 are the clusters within source participants. Finally,
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we incorporate E channels of EEG signals and let e(e = 1, . . . , E) be the channel

index. We extract channel-specific EEG segments from the onset of each stimulus

with a long EEG response window length T0. We denote Xn,l,i,j,e(t) as the extracted

EEG signal segment of the jth stimulus, ith sequence, lth target character, and nth

participant from channel e at time t ∈ [0, T0].

For the rest of this chapter, let MN (µ,Σ) be a multivariate normal distribution

with mean and covariance matrix parameters µ and Σ. Let MN (M ,U ,V ) be a

matrix normal distribution with location matrix M and two scale matrix parameters

U and V (Dawid , 1981). Let Diag(·) be a diagonal matrix notation. Let GP(µ, κ)

be a Gaussian process with a mean function and kernel µ and κ. Let LN (µ, σ) be a

Log-Normal distribution with mean and scale parameters µ and σ. Let HC(x0, σ) be

a Half-Cauchy distribution with location and scale parameters x0 and σ. Let U(a, b)

be a Uniform distribution with lower and upper bounds a and b. Let Dirichlet(α) be

a Dirichlet distribution with the concentration parameter α.

4.2.2 A Bayesian Semi-supervised Model

Given sufficient training data from the source participants and a small amount of

training data from the new participant, our primary goal is to reduce calibration time

by integrating a proper subset of training data on the level of source participants into

the augmented training data for the new participant. We make three assumptions to

simplify the model representation as follows: First, let all source participants spell

the same character ω with the same sequence replication size I, so we drop the target

character index l and the source participant index n from In. Second, we assume

that target and non-target ERP functions share the same covariance matrix within

the same cluster. Finally, we only borrow the target ERP data from from the source

participants’ pool and completely ignore the corresponding non-target ERP data.

By dropping the character index l and assuming that all the EEG signals are
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extracted from the onset of the stimulus with a fixed response window of T0 points.

We let Xn,i,j and Yn,i,j ∈ {0, 1} denote the extracted EEG signal matrix of dimension

T0 × E and the binary stimulus-type indicator associated with the jth stimulus, ith

sequence, and nth participant, respectively.

For the new participant, i.e., when n = 0, we assume

(4.1) X0,i,j = B0,1Y0,i,j +B0(1− Y0,i,j) + ε0,i,j.

where B0,1, B0 and ε0,i,j are the target ERP matrix, non-target ERP matrix and

random noise matrix of the new participant.

For the nth source participant, i.e., n ≥ 1, we introduce the latent cluster indicator

Zn ∈ {0, 1, . . . , K − 1} and assume

(4.2) Pr(Zn = k) = πk,

where πk represents the prior probability of the nth source participant belonging to

the kth cluster. With the cluster indicator Zn, we consider a clustering model for the

EEG signal matrix for the nth source participant as follows:

(4.3) Xn,i,j =
K−1∑
k=0

I(Zn = k){Bk,1Yn,i,j +Bk,0(1− Yn,i,j)}+ εn,i,j,

where Bk,1 and Bk,0 are the target ERP matrix and the non-target ERP matrix of

the source participants in the kth cluster. The term εn,i,j represents the random noise

matrix. Of note, (4.1) and (4.3) assume the source participants in cluster 0 have the

same target ERP matrices as the new participant, in which case we can borrow their

data to make inferences on B0,1. However, our models do not imply that B0,0 is

equal to B0. That is, we do not assume that non-target ERP signals of the source

participants in cluster 0 are the same as those of the new participant. This further
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implies that the non-target EEG signals, i.e., {Xn,i,j : Yn,i,j = 0}, are not needed for

making inferences on B0 and B0,1.

For the new participant and each of the source participants, i.e., when n ≥ 0, we

consider an additive model to characterize the spatial-temporal correlation of random

noises for the nth participant ith sequence jth stimulus, i.e.,

(4.4)

εn,i,j = ξn,i,j + εn,i,j,

ξn,i,j = (ξn,i,j,1, . . . , ξn,i,j,T0)
>,

εn,i,j = (εn,i,j,1, . . . , εn,i,j,E)

where ξn,i,j,t, (t = 1, . . . , T0) is a vector of spatial random effects for E channels at

time point t and εn,i,j,e(e = 1, . . . , E) is a vector of temporal random effects for T0

time points of the channel e. Given Zn = k, we assume ξn,i,j,t follows a multivariate

normal distribution with a zero mean vector and a covariance matrix VkΣ
s
kV

T
k , where

Σs
k is a correlation matrix with the compound symmetry structure characterized by a

scale parameter ηk ∈ (0, 1) and Vk = Diag(σk,1, . . . , σk,E). We assume εn,i,j,e follows a

multivariate normal distribution with a zero mean vector and a temporal correlation

matrix Σt
k, where Σt

k has the structure of the exponential decay characterized by a

scale parameter ρk ∈ (0, 1). Furthermore, we assume that within each cluster, the

temporal dependence ρk is shared across E channels with channel-specific variability.

In summary,

(4.5)
(ξn,i,j,t | Zn = k) ∼MVN (0,VkΣ

s
kV
>
k ),

(εn,i,j,e | Zn = k) ∼MVN (0,Σt
k),

Let Θ be a collection of all the unknown parameters, where the primary parame-

ters of interest are those associated with the new participant, i.e., B0,1,B0, σ
2
0,e,Σ

t
0,

and Σs
0. And we are also interested in making inference on the posterior probability
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of matching the new participant, i.e. Pr(Zn = 0 |X,Y ), for each source participant.

The remaining parameters are considered as nuisance parameters.

4.3 Posterior Inferences

4.3.1 Model Reparametrization and Prior Specifications

We rewrite the model by applying the notation of a matrix normal distribution

(4.6)

Xn,i,j | Zn = k, Yn,i,j = 1; Θ ∼MN (Bk,1,VkΣ
s
kV
>
k ,Σ

t
k), n > 1,

Xn,i,j | Yn,i,j = 1; Θ ∼MN (B0,1,V0Σ
s
0V
>
0 ,Σ

t
0), n = 0,

Xn,i,j | Yn,i,j = 0; Θ ∼MN (B0,V0Σ
s
0V
>
0 ,Σ

t
0), n = 0.

Let Σts
k = Σt

k ⊗ VkΣs
kV
>
k , then equation (4.6) can be further expressed as

(4.7)

vec(Xn,i,j) | Zn = k, Yn,i,j = 1; Θ ∼MVN
(
vec(Bk,1),Σ

ts
k

)
, n > 1,

vec(Xn,i,j) | Yn,i,j = 1; Θ ∼MVN
(
vec(B0,1),Σ

ts
0

)
, n = 0,

vec(Xn,i,j) | Yn,i,j = 0; Θ ∼MVN
(
vec(B0),Σ

ts
0

)
, n = 0.

where ⊗ is the Kronecker product operator and vec(·) is the vectorization operator

that concatenates the matrix by its columns. To specify the prior models for the ERP

signal matrices, we write Bk,1 = (βk,1,1, . . . ,βk,1,E) and B0 = (β0,1, . . . ,β0,E). For the

cluster-and-channel-specific target ERP function βk,1,e, we assign a Gaussian process

prior GP(0, κ1) and a kernel variance parameter ψk,1,e; for the channel-specific non-

target ERP function β0,e, we assign a Gaussian process prior GP(0, κ0) and a kernel

variance parameter ψ0,e. We consider a γ-exponential kernel function to specify κ1

and κ0 as follows:

(4.8) k(zi, zj) = ψ0 exp

{
−
(
||zi − zj||22

s0

)γ0}
,
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where 0 ≤ γ0 < 2, s0 > 0. In practice, we treat them as hyper-parameters and

determine the optimal ones by Bayes factors (Kass and Raftery , 1995). For kernel

variance parameters ψk,1,e and ψ0,e, we adopt Log-Normal priors with the a mean zero

and a scale one. For cluster-channel-specific variance intensity parameters, we assign

Half-Cauchy priors with a mean zero and a scale one. For cluster-specific temporal

and spatial dependency parameters ρk and ηk, we assign uniform priors. For the prior

weight π = (π0, . . . , πK−1)
>, we assign a Dirichlet distribution with a concentration

parameter α1K/K, where 1K is a K-dimensional vector of 1s. Finally, the prior

specifications are summarized as follows:

(4.9)

βk,1,e ∼ GP(0, ψk,1,eκ1), β0,e ∼ GP(0, ψ0,eκ0),

ψk,1,e ∼ LN (0, 1), ψ0,e ∼ LN (0, 1),

σk,e ∼ HC(0, 5.0), ρk ∼ U(0, 1), ηk ∼ U(0, 1),

π ∼ Dirichlet(α1K/K).

4.3.2 Markov Chain Monte Carlo

We apply Gibbs sampling to draw posterior samples of βk,1,e,β0,e, ψk,1,e,ψ0,e,σ
2
k,e,

ρk, and ηk. For the convergence check, we run multiple chains with different seed

values and evaluate the convergence by the Gelman-Rubin statistic (Gelman and

Rubin, 1992). For cluster-specific, multi-channel ERP functions βk,1,e, we establish

the relationship with αk,1,e, φk,1,e, and ψk,1,e by

vec(Bk,1) :=



βk,1,1
...

βk,1,e
...

βk,1,E


=
(
Dψk,1

⊗ INΨk,1

)
(IE ⊗Ψk,1)



αk,1,1
...

αk,1,e
...

αk,1,E


,
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where Dψk,1
= Diag(ψk,1,1, . . . , ψk,1,E), I is the identity matrix, NΨk,1

is the number

of eigenvalues associated with Ψk,1. We have a similar expression for vec(B0).

We also improve convergence by incorporating an iterative update procedure to

the prior specification and initialization. In practice, the data of the new participant

arrive in a sequential way, while the data of source participants are assumed avail-

able prior to the calibration procedure. For example, we fit the Bayesian generative

method to each source participant to obtain participant-specific base classifiers, then

we apply the criterion such as K-means clustering algorithm to build K clusters and

use those cluster-specific model parameters for initialization. In addition, before an-

other sequence of calibration data of the new participant arrives, we set the initial

values by the posterior samples from previous sequences’ calibration data.

4.3.3 Remedy for the Label Switching Issue

A common problem of parameter estimation in a Bayesian finite mixture model is

known as “label switching.” The label switching problem arises due to the invariance

of the likelihood functions under relabelling the mixture components. The posterior

distributions of parameters tend to become symmetric and multi-modal, making it

difficult to summarize (Stephens , 2000). Although we specify the cluster 0 to match

the new participant, the identification of remaining clusters in our original clustering

approach is still susceptible to label switching issue. To resolve this problem, we

adopt the log-likelihood function, which is a unit-less measurement and independent

of the shape and magnitude of ERP functions, to rank the fitted clusters. Let Θk

and Pk = {n : Zn = k} be the parameter set and the indices of the participants

associated with cluster k, respectively. Let lk(P) be the log-likelihood values of the

data belonging to the participant set P fitted with model parameters associated

with cluster k. In particular, let lk1(Pk2) be the log-likelihood values of the source

participants’ data belonging to cluster k2 fitted with the model parameters associated
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with cluster k1. At the end of each MCMC iteration, we perform a two-step check

as follows: First, to ensure that cluster 0 always corresponds to the cluster that

matches the new participant, we compute lk({0}), k = 0, · · · , K − 1, the cluster-

specific log-likelihood values with data from the new participant only. We denote the

cluster index associated with the maximum value as kmax. If kmax = 0, we proceed

directly to the next step; otherwise, we further compute lold = l0(P0) + lkmax(Pkmax)

and lnew = l0(Pkmax) + lkmax(P0). If lnew > lold, we swap the cluster indices between

0 and kmax; otherwise, we proceed directly to the next step. Second, we rank the

remaining clusters by the descending order of lk({0}), k = 1, . . . , K − 1. Therefore,

the closer cluster k has to the new participant’s data, the smaller k is.

4.3.4 Posterior Character-Level Prediction

Under the RCP design, the character-level prediction depends on selecting the

correct row and column within each sequence. To simplify, let W ,Y , and X be the

existing stimulus-code indicators, the stimulus-type indicators, and the matrix-wise

EEG signals, respectively. LetW ∗
0 ,Y

∗
0 ,X

∗
0 , and Θ0 be additional one sequence of the

stimulus-code indicators, the stimulus-type indicators, the matrix-wise EEG signals,

and the parameter set, respectively, associated with the new participant. To simplify

notation, we assume that the new participant spells the same target character ω.

Based on the property described in Section 4.2.1, let y∗ω be the possible values of

stimulus-type indicators given W ∗
0 and the target character ω.

(4.10)

Pr(Y ∗0 = y∗ω |X∗0 ,W ∗
0 ,X,W ,Y )

=

∫
Pr(Y ∗0 = y∗ω | Θ0;X

∗
0 ,W

∗
0 ) Pr(Θ0 |X,W ,Y )dΘ0,

Pr(Y ∗0 = y∗ω | Θ0;X
∗
0 ,W

∗
0 ) ∝

K−1∑
k=0

πk Pr(X∗0 | Θ0;y
∗
ω)︸ ︷︷ ︸

Equation (4.6)

·Pr(ω is target),

where Pr(ω is target) = 1/36 is the predictive prior on each candidate character with
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non-informative priors. When we repeat multiple sequences, we modify the above

formula by multiplying the sequence-specific posterior conditional likelihood within

each cluster.

4.4 Simulation Studies

4.4.1 Single-Channel Scenario

Setup We consider the scenario with N = 6 and K = 3. We design three pre-

specified single-channel true ERP functions, the shape and magnitude of which are

based on one participant from the UM-DBI Database. The simulated EEG signal

segments are generated with a response window of 25 time points (T0 = 25). For

cluster 0, we create a typical P300 pattern where the target ERP function reaches

its positive peak around the 10th time point post stimulus; for cluster 1, we consider

a delayed P300 pattern where the target ERP function reaches its peak around the

17th time point post stimulus; for cluster 2, we create a typical N200 pattern where

the target ERP function reaches its negative peak around the 10th time point post

stimulus. We follow the equations (4.1) and (4.2) that the new participant’s data

are generated using the ERP functions from cluster 0 and the three clusters are

evenly distributed among the remaining six source participants. We consider an

autoregressive temporal structure of order 1 (i.e., AR(1)) for the background noises,

where the true parameters for three clusters are (ρ0 = 0.6, σ0 = 3.0), (ρ1 = 0.6, σ1 =

4.0), and (ρ2 = 0.6, σ2 = 2.0). We design two cases for the single-channel scenario,

denoted as SC1 and SC2. For SC1, we assume that there are matched data among

source participants, and that the cluster labels for source participants 1-6 are 0, 0, 1,

1, 2, and 2, respectively. For SC2, we assume that there are no matched data among

source participants, and that the cluster labels for source participants 1-6 are 1, 1,

1, 2, 2, and 2, respectively. We perform 100 replications for each case. Within each
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replication, we assume that each participant is spelling the same character “T” with

ten sequence replications for training, and we generate additional EEG data from

the new participant with 19 characters, ten sequence replications per character for

testing.

Settings and Diagnostics All simulated datasets are fitted with equation (4.6).

To simplify, we consider two covariance kernels κ1 and κ0 for target and non-target

ERP functions, respectively. Both are characterized by γ-exponential kernels. The

length-scale and gamma hyper-parameters of κ1 and κ0 are (0.3, 1.5) and (0.4, 1.5),

respectively. We run the MCMC with three chains, with each chain containing 3,000

burn-ins and 300 MCMC samples. The Gelman-Rubin statistics are smaller than 1.1,

indicating an approximate convergence for each model fit.

Criteria We evaluate our method on clustering and prediction. For clustering, we

report the average binary classification rate each source participant matches the new

participant across 100 replications and produce the ERP function estimates and 90%

credible bands with respect to the training sequence size. For each replication, the

value of selection indicator is determined by the mode among its MCMC samples. For

prediction, we report the character-level prediction accuracy of the testing data, using

Bayesian mixture model with selected source participants’ data (BASIC: Mixture),

swLDA with selected source participants’ data (BASIC: swLDA), Bayesian genera-

tive method with the new participant’s data only (Reference: Mixture), and swLDA

with new participant’s data only (Reference: swLDA). For the purpose of notation

consistency, we use Reference: Mixture to denote the Bayesian generative method

although no hierarchical structure is involved. For BASIC: swLDA, the inclusion

criterion is based on the selection indicators from the BASIC: Mixture method, then

we refit the augmented training data with swLDA to obtain the prediction accuracy

on the testing set for BASIC: swLDA.

Clustering Results The upper and lower panels of Table 4.1 show the average
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binary classification rate that six source participants matches the new participant for

single-channel scenarios SC1 (with matched data) and SC2 (without matched data),

respectively, with respect to the training sequence size of the new participant. We

choose a threshold of 0.5. For SC1, our clustering method successfully identifies source

participants 1-2 and excludes source participants 3-6; for SC2, our clustering method

successfully excludes all source participants. The upper and lower panel of Figure

4.1 show the 95% credible bands of target ERP responses of three clusters for SC1

and SC2, respectively, with five training sequence replications of the new participant.

The red curves are the true ERP response functions. We do not show the non-target

ERP responses because they are not used for matching. For each cluster, the credible

bands cover the entire true curve.

Table 4.1: Average percentages of selection indicator {Zn} for single-channel scenarios
SC1 (with matched data, upper panel) and SC2 (without matched data, lower panel).
For SC1, among six source participants, only participants 1 and 2 were generated from
the same cluster as the new participant. For SC2, among six source participants, none
were generated from the same cluster as the new participant. The numerical values
are stratified with respect to the training sequence replication of the new participant.
We chose a threshold of 0.5, and our method successfully performed the task of
participant selection for two single-channel cases.

Sequence Size
Participant ID 1 2 3 4 5 6 7 8 9 10

1 0.87 0.95 0.93 0.93 0.91 0.89 0.95 0.97 0.94 0.96
2 0.89 0.96 0.93 0.93 0.90 0.87 0.95 0.97 0.95 0.96
3 0.08 0.10 0.12 0.07 0.06 0.10 0.08 0.07 0.07 0.12
4 0.08 0.10 0.12 0.07 0.06 0.10 0.08 0.07 0.07 0.12
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sequence Size
Participant ID 1 2 3 4 5 6 7 8 9 10

1 0.11 0.08 0.08 0.04 0.08 0.16 0.1 0.11 0.15 0.10
2 0.13 0.04 0.10 0.0 0.10 0.10 0.13 0.15 0.14 0.12
3 0.12 0.10 0.10 0.02 0.10 0.13 0.09 0.14 0.18 0.13
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4.1: Cluster-specific target ERP function estimates with their 95% credible
bands for SC1 (upper panel) and SC2 (lower panel), using five training sequence
replications of the new participant. The credible bands cover the entire true curves.
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Prediction Results Figures 4.2 and 4.3 show the means and standard errors of

testing prediction accuracy for SC1 and SC2, respectively, by BASIC: Mixture, BA-

SIC: swLDA, Reference: Mixture, and Reference: swLDA. The results are further

stratified by up to the first four training sequence replications of the new participant.

Within each row, we plot the prediction accuracy of two BASIC methods on the left

side and prediction accuracy of two reference methods on the right side. For SC1,

two BASIC methods show better results than their corresponding reference methods,

suggesting that the selected data among source participants contribute to the pre-

diction accuracy. For SC2, within the same row, two BASIC methods have similar

values to their corresponding reference methods, suggesting that our method is robust

to some extent even though no source data are selected. The prediction accuracy of

two reference methods also show common increasing trend, and the method of Ref-

erence: Mixture performs better. Overall, the prediction accuracy is getting better

when more training data of the new participant are included, which is within our

expectation.

To quantify the data borrowing quality, we look at the number of testing sequence

to reach 90% prediction accuracy for four methods. The upper and lower panels of

Table 4.2 show the number of testing sequence to reach 90% accuracy with up to the

first four training sequences of the new participant for SC1 and SC2, respectively. For

SC1, the average testing sequences required for BASIC methods are smaller than their

corresponding reference methods. For SC2, the average testing sequences required

for BASIC methods are slightly larger than but close to their corresponding reference

methods. It provides numerical evidence that our data borrowing framework is robust

to some extent even though no participants should be selected among the source

participants’ pool.
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Figure 4.2: The testing prediction accuracy of SC1 by BASIC: Mixture, BASIC: swLDA,
Reference: Mixture, and Reference: swLDA. The results are further stratified by up to the
first four training sequence replications of the new participant. Within each row, two BASIC
methods show better results than their corresponding reference methods, suggesting that
the successful selection of source participants from our method contribute to the prediction
accuracy. The prediction accuracy of two reference methods show common increasing trend,
and the method of Reference: Mixture performs better. Overall, the prediction accuracy is
better when more training data of the new participant are included.
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Figure 4.3: The testing prediction accuracy of SC2 by BASIC: Mixture, BASIC: swLDA,
Reference: Mixture, and Reference: swLDA. The results are further stratified by up to
the first four training sequence replications of the new participant. Two reference methods
have similar values to their corresponding reference methods, indicating that our method
is robust to some extent even though no source data are selected.
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Table 4.2: The upper and lower panels show the means and standard errors of testing
sequence replications to reach 90% prediction accuracy for SC1 and SC2, respectively,
by BASIC: Mixture, BASIC: swLDA, Reference: Mixture, and Reference: swLDA.
The upper bound for the testing sequence replication is 10. The results are also
stratified by up to the first four training sequence replications of the new participant.

Training 90% Accuracy
Sequence

Size
BASIC:
Mixture

BASIC:
swLDA

Reference:
Mixture

Reference:
swLDA

1 7.83, (2.01) 8.21, (1.60) 9.16, (1.49) 9.89, (0.49)
2 7.08, (1.94) 8.05, (1.53) 8.74, (1.62) 9.86, (0.64)
3 6.70, (1.83) 7.84, (1.57) 7.89, (1.89) 9.86, (0.49)
4 6.35, (1.57) 7.73, (1.47) 7.47, (1.83) 9.65, (0.86)

Training 90% Accuracy
Sequence

Size
BASIC:
Mixture

BASIC:
swLDA

Reference:
Mixture

Reference:
swLDA

1 9.22, (1.49) 9.9, (0.48) 9.16, (1.49) 9.89, (0.49)
2 8.91, (1.56) 9.86, (0.64) 8.74, (1.62) 9.86, (0.64)
3 8.12, (1.87) 9.86, (0.49) 7.89, (1.89) 9.86, (0.49)
4 7.57, (1.92) 9.65, (0.86) 7.47, (1.83) 9.65, (0.85)

4.4.2 Multi-Channel Scenario

Setup We next consider the multi-channel scenario with N = 6 and K = 3. We

design three groups of two-dimensional pre-specified true ERP functions, the shape

and magnitude of which are based on three participants from the UM-DBI Database.

The simulated EEG signal segments are generated with a response window of 25

time points per channel (T0 = 25). Within each cluster, the shapes between two

channels are similar, but the magnitude of the first channel is larger than that of the

second channel. For cluster 0, both channels have separation effects between target

and non-target ERP response functions (Channels 1 and 2 have positive and negative

target ERP response functions, respectively; for cluster 1, only the first channel has

the separation effect; for cluster 2, neither of two channels have the separation effect.

We consider an autoregressive temporal structure of order 1 (i.e., AR(1)), compound

symmetry spatial structure, and channel-specific variances for background noises.

We determine those parameters from three participants’ real data, where the true
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parameters for clusters 0, 1, and 2 are (ρ0 = 0.6, η0 = 0.2, σ0,1 = 4.0, σ0,2 = 3.0),

(ρ1 = 0.6, η1 = 0.4, σ1,1 = 3.0, σ1,2 = 2.0), and (ρ2 = 0.4, η2 = 0.4, σ2,1 = 2.0, σ2,2 =

1.0), respectively. We design two cases for this scenario, denoted as MC1 and MC2.

The cluster labels of source participants 1-6 for MC1 and MC2 are the same as those

for SC1 and SC2, respectively. We perform 50 replications for each case. Within each

replication, we assume that each participant is spelling the characters “TT,” with ten

sequence replications per character for training; we generate additional testing data

of the same size as those in Section 4.4.1.

Table 4.3: The upper and lower panels show the average percentage of selection indi-
cator {Zn} for multi-channel scenarios MC1 (with matched data) and MC2 (without
matched data), respectively. We choose a threshold of 0.50. Our method successfully
includes source participants 1 and 2 for MC1 but fails to exclude source participants
1-3 for MC2. However, we argue that the prediction accuracy still benefits from the
partial mis-identification results.

Sequence Size
Participant ID 1 2 3 4 5 6 7 8 9 10

1 0.72 0.95 0.77 0.95 0.93 0.93 0.90 0.92 0.98 0.93
2 0.71 0.94 0.77 0.94 0.94 0.94 0.89 0.92 0.98 0.93
3 0.74 0.94 0.77 0.95 0.93 0.94 0.96 0.92 0.98 0.93
4 0.74 0.95 0.77 0.95 0.94 0.94 0.94 0.92 0.97 0.92
5 0.14 0.03 0.23 0.07 0.01 0.01 0.04 0.06 0.02 0.10
6 0.15 0.03 0.22 0.07 0.02 0.01 0.03 0.06 0.02 0.10

Sequence Size
Participant ID 1 2 3 4 5 6 7 8 9 10

1 0.95 0.96 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97
2 0.95 0.96 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97
3 0.95 0.96 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97
4 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
5 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
6 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

Settings and Diagnostics All simulated datasets are fitted with equation (4.6).

We also apply two covariance kernels κ1 and κ0 for target and non-target ERP func-

tions, respectively. The two kernels are characterized by γ-exponential kernels with

length-scale and gamma hyper-parameters as (0.2, 1.2) and (0.3, 1.2), respectively.

We run the MCMC with three chains, with each chain containing 3,000 burn-ins and
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300 MCMC samples. The Gelman-Rubin statistics are smaller than 1.1, indicating

an approximate convergence for each model fit.

Criteria We apply the same evaluation criteria as in Section 4.4.1: clustering and

prediction.

Clustering Results The upper and lower panels of Table 4.3 show the average

binary classification rate that six source participants match the new participant for

multi-channel scenarios MC1 (with matched data) and MC2 (without matched data),

respectively, and the results are stratified by the training sequence sizes of the new

participant. We choose a threshold of 0.5. For MC1, our clustering method success-

fully identify participants 1-2. For MC2, however, our clustering method does not

exclude source participants 1-3. Nevertheless, we argue that the mis-identification of

source participants do not affect the prediction accuracy to some extent.

Prediction Results Figures 4.4 and 4.5 show testing prediction accuracy of MC1

and MC2, respectively, by BASIC: Mixture, BASIC: swLDA, Reference: Mixture,

and Reference: swLDA. The results are further stratified by up to the first four

training sequence replications of the new participant. Within each row, we plot the

prediction accuracy of two BASIC methods on the left side and prediction accuracy

of two reference methods on the right side. For MC1, two BASIC methods show

better results than their corresponding reference methods although the improvements

between BASIC: swLDA and Reference: swLDA are larger. For MC2, we observe a

slightly better prediction accuracy between BASIC: Mixture and Reference: Mixture

but a large improvement between BASIC: swLDA and Reference: swLDA. The plots

of prediction accuracy of two reference methods show common increasing trends,

while Reference: Bayes performs better. Overall, the prediction accuracy is better

when more training data of the new participant are included.

Similarly, we look at the number of testing sequence to each 90% accuracy for

four methods. The upper and lower panels of Table 4.4 show the number of testing
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Figure 4.4: The testing prediction accuracy of MC1 by BASIC: Mixture, BASIC: swLDA,
Reference: Mixture, and Reference: swLDA. Within each row, two BASIC methods show
better results than their corresponding reference methods despite a larger improvement
between BASIC: swLDA and Reference: swLDA. The plots indicate that the selection of
source participants contribute to the prediction accuracy.
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Figure 4.5: The testing prediction accuracy of MC2 by BASIC: Mixture, BASIC: swLDA,
Reference: Mixture, and Reference: swLDA. We observe that BASIC: Mixture performs
slightly better than Reference: Mixture, but BASIC: swLDA performs much better than
Reference: swLDA. The plots show that the prediction accuracy is not affected very much
even if we have partial mis-identification of participant selection.
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Table 4.4: The upper and lower panels show the means and standard errors of testing
sequence replications to reach 90% prediction accuracy of MC1 and MC2, respectively,
by BASIC: Mixture, BASIC: swLDA, Reference: Mixture, and Reference: swLDA.
The upper bound for the testing sequence replication is 10. The results are also
stratified by up to the first four training sequence replications of the new participant.

Training 90% Accuracy
Sequence

Size
BASIC:
Mixture

BASIC:
swLDA

Reference:
Mixture

Reference:
swLDA

1 3.28, (1.62) 3.36, (2.08) 6.28, (2.58) 9.36, (1.29)
2 2.72, (0.89) 2.80, (0.64) 4.18, (1.99) 8.32, (2.27)
3 2.74, (1.27) 3.04, (1.60) 3.42, (1.94) 6.82, (2.37)
4 2.50, (0.61) 2.66, (0.66) 3.10, (1.04) 6.12, (2.45)

Training 90% Accuracy
Sequence

Size
BASIC:
Mixture

BASIC:
swLDA

Reference:
Mixture

Reference:
swLDA

1 4.22, (1.40) 4.54, (1.42) 6.28, (2.58) 9.36, (1.29)
2 3.64, (0.99) 4.22, (1.13) 4.18, (1.99) 8.32, (2.27)
3 3.40, (0.93) 4.18, (1.04) 3.42, (1.94) 6.82, (2.37)
4 3.36, (0.78) 3.94, (1.19) 3.10, (1.04) 6.12, (2.45)

sequence required to reach 90% accuracy with up to the first four training sequences of

the new participant for MC1 and MC2, respectively. For MC1, the number of testing

sequence required for BASIC methods are smaller than that for their corresponding

reference methods. For MC2, the average testing sequences for BASIC: Mixture are

slightly larger than those for Reference: Mixture, while the average testing sequences

for BASIC: swLDA are much smaller than those for Reference: swLDA. It provides

numerical evidence that our method is still robust in terms of prediction accuracy

even if there exists partial false positives of participant selection.

4.5 Discussion

To reduce the calibration time while maintaining similar prediction accuracy,

we propose a Bayesian SemI-supervised Classification (BASIC) method to build a

participant-dependent, calibration-less framework. BASIC reduces the calibration

time of a new participant by borrowing calibration data on the level of participants.
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BASIC specifies the joint distribution of stimulus-specific EEG signals from all partic-

ipants via a Bayesian hierarchical mixture model, and we use a generative approach

as the base classifier. Our method has advantages from both inference and predic-

tion perspectives. First, we specify the baseline cluster as the one that matches the

new participant, so our method is a semi-supervised learning approach on the level

of participants such that the selection indicators indicate the resemblance between

source calibration data and new data on the level of participants. Second, we make

predictions with the baseline cluster directly without refitting the model with the

augmented data. Finally, our proposed hierarchical framework is flexible and can be

extended to other base classifiers with clear and consistent parametric forms.

For single-channel scenarios SC1 (with matched data) and SC2 (without matched

data), our method performs the clustering analysis correctly and achieves similar

prediction accuracy. For multi-channel scenarios, our method over-selects the partic-

ipants 1-3 and 3-4 for MC1 (with matched data) and MC2 (without matched data),

respectively, but the prediction accuracy of the clustering methods benefits from par-

ticipant selection to some extent. This counter-intuitive results could be explained as

follows: Our method cannot fully distinguish cluster 0 from cluster 1 with such small

sample size of the new participant because they share similar ERP function estimates

of the first channel. For BASIC: Mixture, selecting source participants 1-3 messes up

the ERP function estimates of the second channel, which results in the wrong calcu-

lation of log-likelihood values. Therefore, the prediction accuracy of BASIC: Mixture

is not so good as that of the Reference: Mixture. However, the prediction accuracy

of BASIC: swLDA is better than that of Reference: swLDA because selecting source

participants 1-3 still add useful information in terms of the first channel to increase

the separation effect. In addition, swLDA is a discriminant method that does not

heavily rely on the ERP function estimation. In this case, it is more likely to penalize

the feature selection of the second channel, and the resulting swLDA weights lead to
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better prediction accuracy compared to Reference: swLDA.

Although participants themselves form a natural but coarse clustering criterion

(Khazem et al., 2021), the qualities of the collected EEG signals are also susceptible to

other factors, such as stimulus features, mental statuses, and calibration time. Since

there is no feature selection procedure in our current base classifier, selecting on the

level of participants may add unnecessary noises to the new participant’s data even

if selected source participants are overall similar to the new participant. A plausible

solution to the problem would further introduce an event-specific selection indicator,

where the secondary-level indicators are used to remove the “outliers” among the

data pool of “matched” source participants. Thus, the posterior inferences on BASIC

would produce a more powerful classifier. Or we could apply a participant-level

“merge-or-keep” policy such that we would merge them together by sharing the same

group index of parameters if the source participant matched the new participant;

otherwise, we would keep the source-participant-specific parameter set instead.

Finally, we discuss the applicability of our BASIC framework with generative

approach as the base classifier. From our extensive simulation studies, we argue that

the clustering and prediction results depend on the separation effect (continuity level

of target and non-target ERP functions) between target and non-target ERP functions

and the background noise level. When the true target and non-target ERP functions

are closer to continuous functions (with fewer jumps), it is easier to characterize

them with a generative approach (i.e., Gaussian processes). In this chapter, we use

the generative method as the base classifier under the BASIC framework. From

equations (4.1) and (4.2), we could extend our framework to other base classifiers

with specific parametric forms. The semi-supervised structure on the participant

level remains unchanged, and we simply change the likelihood function with respect

to the base classifier. Such extension could potentially solve the problem when EEG

signals of certain participants have less continuous forms or smaller separation effects.
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For example, we could use Riemannian geometry as the base classifier, and we could

specify the likelihood by introducing the Riemannian Gaussian distributions (Zanini

et al., 2016), (Said et al., 2017). Compared to our approach that incorporates the

spatial dependency into the channel-specific ERP function estimates, the Riemannian

geometry method starts with the sample covariance matrix and adds the referencing

ERP signals to compensate for the loss of temporal information. Nevertheless, the two

directions of the model specification indicate that a combination of first- and second-

order statistics is necessary to form the base classifier for the P300 ERP-based BCI

application.
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CHAPTER V

Conclusion

5.1 Summary

In this dissertation, three challenges of current P300 ERP-BCI speller systems are

addressed. We aim to improve the spelling efficiency and to create a personalized user

experience for those participants with severe neuromuscular diseases from the three

different aspects. Conclusions drawn from this dissertation work are summarized

below.

Statistical Inferences on Brain Activity Existing works primarily focused on

constructing binary classifiers to improve prediction accuracy. Very few works looked

at statistical inferences under this specific P300-ERP based BCI design, especially

when the data were collected with multiple sequences and overlapping components

between adjacent EEG signal segments could not be disregarded. This chapter pro-

vides evidence to evaluate BCI use from the perspective of statistical inferences. We

apply a new Bayesian generative framework to model the conditional distribution

of multi-sequence EEG signals from real participants and explore the mechanism

of brain activity in response to external stimuli by directly considering overlapping

ERPs between adjacent stimuli without signal concatenation and segmentation. We

develop a new GP-based prior to identify the spatial-temporally activated intervals

with the split-and-merge GP (SMGP) prior and propose an information criterion for
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channel ranking and confirm it with existing literature. The top selected channels,

including Cz, Pz, PO7, PO8, and Oz, demonstrate the spatial distributions of P300

ERP responses. In particular, the finding that channels PO8, PO7, and Oz appear

the most frequently supports the finding that the performance of a P300 speller is

associated with eye gaze (Brunner et al., 2010). Finally, the participant-specific ERP

response function estimates and channel selection help establish user-specific profiles

for efficient brain-computer communications. Thus, we can incorporate user-specific

channel selection into designing the EEG cap to increase spelling efficiency.

Adaptive Stimulus Selection In addition to training an efficient binary clas-

sifier, the way a sequence of stimulus groups present also affects the efficiency of

real-time BCI implementations. Most existing works applied a static stimulus pre-

sentation paradigm by looping through all the events within a single sequence. Only

a few studies considered history data as the criterion to dynamically determine the

displayed stimulus events in the future, but they based their dynamic stimulus se-

lection algorithms on the level of stimuli, which required intensive computations and

numerical approximations due to the very short time interval between adjacent stim-

ulus events. In this chapter, we propose a sequence-based adaptive stimulus selection

algorithm based on Thompson Sampling, and we frame the problem in a multi-bandit

problem with multiple selections (MAP-MS). The algorithm selects a random subset

of stimuli with a fixed size during each sequence, aiming to identify all target stim-

ulus groups and to improve spelling speed by reducing the number of unnecessary

non-target stimulus groups. The algorithm is easy and straightforward to implement.

We modify the rewards from raw classifier scores via the Bayes’ rule and initialize the

character-level probability vector with the word-level language model (LM) prior. We

perform extensive simulation studies to compare our algorithm to the conventional

CB paradigm. We also show the robustness of our algorithm by considering the phys-

iological and practical constraints, such as response delay and the double flash issue,
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in real-time BCI implementations.

Participant-less Calibration Finally, to reduce the calibration time for a new

participant, we propose a Bayesian SemI-supervised Classification (BASIC) method

to build a participant-dependent, calibration-less framework. BASIC reduces the

calibration time of a new participant by borrowing calibration data on the level of

participants. BASIC specifies the joint distribution of stimulus-specific EEG signals

from all participants via a Bayesian hierarchical mixture model, and we apply a gen-

erative approach as the base classifier. First, we specify the baseline cluster as the

one that matches the new participant. Therefore, our method is a semi-supervised

learning approach on the level of participants such that the selection indicators indi-

cate how close source calibration data are to the new data on the level of participants.

Second, we test with the baseline cluster directly without refitting the model with

the augmented data. Finally, our proposed hierarchical framework is flexible and can

be be extended to other base classifiers with clear parametric forms.

5.2 Future Work

Based on the research in this dissertation, future work of each aspect is shown as

follows:

Statistical Inferences on Brain Activity First, we could modify the stim-

ulus presentation paradigm from the current RCP design to the checkerboard de-

sign (Townsend et al., 2010). The checkerboard design avoids the refractory effect

(Martens et al., 2009) in the RCP design, where participants might miss or fail to

produce the second regular P300 ERP response when two target stimuli are too close.

In addition, we could measure the participant-specific brain connectivity under the

no-control (NoC) condition to specify the spatial covariance matrix prior to the indi-

vidual analysis without estimating them during the calibration procedure. Similarly,

we could apply a more flexible spatial correlation structure for estimation. Instead
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of using a simple compound-symmetry structure, a multi-block compound symmetry

structure would be preferred to estimate within-block, intra-block correlation param-

eters, and the scalar parameter σ2. Finally, we could develop a framework for a

multi-participant analysis to incorporate time-invariant demographic covariates such

as age and neuromuscular disease history by modifying the priors.

Adaptive Stimulus Selection First, since there were no real data available to

evaluate the online stimulus selection algorithm, we only reported numerical results

based on simulated datasets to compare different configurations of our proposed al-

gorithm to the conventional CB paradigm. An ideal future work would be to test our

algorithm on data from real participants. However, this might indicate that we would

need to develop new software to determine the stimulus presentation paradigm and

perform the conventional binary classification simultaneously. In addition, we would

perform a theoretical analysis of the optimal regret bound for the proposed method.

We would establish the results based on the existing proof (Komiyama et al., 2015).

In particular, we would first show that the conditional expectation of the regret given

the classification scores had an optimal upper bound. Then, we would show that the

double expectation also had an optimal bound under certain regularity conditions.

Participant-less Calibration First, although Khazem et al. argued that partic-

ipants themselves formed a natural but coarse clustering criterion, the quality of the

collected EEG signals are susceptible to other factors, such as calibration time. Since

no feature selection procedure is applied in our current base classifier, participant-

level selection may add unnecessary noise to the new participant’s data even if selected

source participants are overall similar to the new participant. A plausible solution

would be to introduce event-specific selection indicators, which are used to remove

“outliers” among the data pool of “matched” source participants. Thus, posterior

inferences on BASIC produce a more powerful classifier. Alternatively, we could ap-

ply a “merge-or-keep” policy such that if the source participant matches the new
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participant, we would merge them together by sharing the same group of parameters;

otherwise, we would keep the source-participant-specific parameter set. Second, we

would apply other base classifiers that are robust to noise, such as the Riemannian

geometry classifier. In that case, we could specify the likelihood by introducing Rie-

mannian Gaussian distributions (Zanini et al., 2016), (Said et al., 2017). Finally,

since the current data generative mechanism for simulation studies ignores the over-

lapping component between adjacent ERP responses, we would extend our framework

to the situation where the EEG signal segments are extracted from the continuous

EEG measurement allowing for the overlapping issue.
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APPENDIX A

Supplement for Chapter II

This supplementary document includes details of the MCMC algorithm in Section

A.1, additional results of the simulation study in Section A.2, results of the sensitivity

analysis of Participant A in Section A.3, and additional results of Participants B, E,

and J in Section A.4.

A.1 Details of the MCMC Algorithm

We present the MCMC algorithm to update the following parameters α, ζ, σ2
s , ρs,

and ρt conditional on the stimulus type indicators Yl,i and matrix-wise EEG signals

Xl,i.

A.1.1 Update α

The distribution of α given Yl,i,Xl,i and all other parameters follows the mul-

tivariate Gaussian distribution. Let N , Gl,i and Σα be the notation of the normal

distribution, the linear map associated with Yl,i, and the channel-specific prior co-

variance. If we write the prior that vec(α) ∼ N (vec(0), IE ⊗ Σα), then
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(A.1)

vec(α) ∼ N
{

Λ−1α ηα,Λ
−1
α

}
,

Λα =
∑
l,i

Diag (Gl,iS(ζe))
T (Cs ⊗ Ct)−1Diag (Gl,iS(ζe)) + (IE ⊗ Σα)−1,

ηα =
∑
l,i

Diag (Gl,iS(ζe))
T (Cs ⊗ Ct)−1 vec(Xl,i).

A.1.2 Update ζ

The linear map A(αe) is

(A.2)

βe = A(αe)(ζe) = A1,eζe + A2,e,

A1,e =



α1,e(1)−α0,e(1) 0 0

0
. . . 0

0 0 α1,e(Tz)−α0,e(Tz)

0 0 0

0
. . . 0

0 0 0


, A2,e =



α0,e(1)

...

α0,e(Tz)

α0,e(1)

...

α0,e(Tz))


,

where A1,e is a matrix of dimension 2Tz × Tz, and A2,e is a 2Tz-dim vector. The

distribution of ζ given Yl,i,Xl,i and all other parameters follows the multivariate

truncated Gaussian distribution. Let T N be the notation of the truncated normal

distribution and we write the prior that vec(ζ) ∼ T N [0,1](vec(0.5), IE ⊗ Σζ), then

(A.3)

vec(ζ) ∼ T N [0,1]{Λ−1ζ ηζ,Λ
−1
ζ },

Λζ =
∑
l,i

Diag (Gl,iA1,e)
T (Cs ⊗ Ct)−1Diag (Gl,iA1,e) + (IE ⊗ Σζ)

−1,

ηζ =
∑
l,i

Diag (Gl,iA1,e)
T (Cs ⊗ Ct)−1 (vec(Xl,i)− vec(Gl,iA2)) + vec(0.5).
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A.1.3 Update Cs

We decompose Cs = σ2
sC̃s, where σ2

s is the scalar parameter and C̃s is the corre-

lation matrix assuming compound symmetry structure with the parameter ρs. The

distribution of σ2
s given Yl,i,Xl,i and other parameters follows the inverse gamma

distribution, while we use the adaptive rejection sampling method to sample ρs. Let

Γ−1, L, I, T, E be the notation of the inverse gamma distribution, the number of

characters of interest, the number of sequences per character, the length of signal seg-

ments, and channel dimension, respectively. We write the prior that σ2
s ∼ Γ−1(αs, βs),

νs > E−1,Ψs is the positive definite matrix, σ2
s ∼ Γ−1(as, bs), where αs, βs > 0, then

(A.4)

σ2
X ∼ Γ−1

{
a+

LT

2
, b+

1

2

∑
l

(Xl −Glβ)T C−1(ρ) (Xl −Glβ)

}
,

Cs ∼ Wishart−1

(
νs + LIT,Ψs +

∑
l,i

(Xl,i −Ml,i)
T C−1t (Xl,i −Ml,i)

)
.

σ2
s ∼ Γ−1

(
αs +

LITE

2
, βs +

1

2
tr

(
C̃−1s

∑
l,i

(Xl,i −Ml,i)
T C−1t (Xl,i −Ml,i)

))
.

A.1.4 Update ρt

We assume ρt generates the temporal correlation matrix of the AR(2) structure

and follows the discrete uniform distribution such that the correlation matrix associ-

ated with ρt is invertible. For the AR(2) structure, the restriction of ρt is equivalent

to ||ρt||1 < 1, where || · ||1 is the L1−norm. Therefore, given Xl,i,Yl,i and other pa-

rameters, we select the optimal ρt by maximizing the conditional log-likelihood such

that

(A.5) ρt,opt = argmax
ρt

∑
l,i

logL(Xl,i | α, ζ, Cs, ρt;Yl,i).
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Figure A.1: Left Panel: A figure of 3-dimensional mean response functions with
different temporal separation effects. Right Panel: A figure of 3-dimensional mean
response functions with channel-specific SNR values. The maximum amplitude ratios
between target and non-target stimuli are 5 : 1, 3 : 1, and 1.5 : 1, respectively.

A.2 Additional Simulations and Results

We provide additional results of the simulation study. For single-channel sim-

ulation studies, Tables A.1 and A.2 summarize the cumulative prediction accuracy

over the number of sequence replications under five scenarios described in Section

5.2 comparing the SMGP method with σ2
x = 10, ρt = (0.5, 0) (Table A.1) and

σ2
x = 20, ρt = (0.5, 0) (Table A.2) to other ML methods. Both point estimates

and standard errors over 100 datasets are calculated. Our method has the highest

and most precise prediction accuracy under five scenarios, which indicates that our

analysis is robust to moderate model mis-specifications. For multi-channel simulation

studies, Figure A.1 shows two groups of multi-dimensional mean response functions.

The first group of mean response functions focuses on detecting temporal activation

regions, while the second group focuses on channel ranking. Figure A.2 shows the

estimated ERP functions of target and non-target stimuli for the true generative sce-

nario with parameters σ2
x = 20 and σ2

x = 40, respectively. Table A.3 summarizes

the ISWR, IMWR of the SMGP method, the ESWR, EEWR of the swLDA method

and prediction accuracy over the number of sequences with σ2
x = 40, ρt = (0.5, 0),and

ρs = 0.5 comparing the SMGP method to other ML methods. Both point estimates

and standard errors over 100 datasets are provided.
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Figure A.2: The upper and lower rows show the 95% credible bands of simulated ERP
functions to target and non-target stimuli for three channels for the true generative
scenario with ζ0 = 0.5, σ2

x = 20 and ζ0 = 0.5, σ2
x = 40, respectively. The dots and

curves are the true underlying values. The credible bands cover the entire the true
curves for three channels.
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Table A.1: Cumulative prediction accuracy for the single-channel simulation study
under five scenarios with σ2

x = 10, ρt = (0.5, 0) comparing the SMGP method to
other ML methods. The split threshold of SMGP method is ζ0 = 0.5. At most 30%
of feature vector is selected for swLDA. Point estimates and standard errors averaged
over 100 datasets are reported. The SMGP results are marked bold.

Testing Sequence Replications
Scenarios Methods 3 4 5
True Generative SMGP 0.84 (0.09) 0.93 (0.06) 0.97 (0.04)

Neural Network 0.65 (0.10) 0.77 (0.10) 0.84 (0.09)
SVM 0.67 (0.11) 0.76 (0.10) 0.82 (0.09)
Logistic 0.71 (0.11) 0.83 (0.08) 0.88 (0.08)
Random Forest 0.73 (0.11) 0.83 (0.09) 0.9 (0.07)
swLDA 0.77 (0.11) 0.87 (0.08) 0.92 (0.07)
XGBoost 0.65 (0.13) 0.75 (0.11) 0.82 (0.09)

Mis-specified Noise SMGP 0.63 (0.12) 0.76 (0.10) 0.84 (0.08)
Neural Network 0.41 (0.13) 0.50 (0.13) 0.6 (0.14)
SVM 0.45 (0.11) 0.55 (0.12) 0.62 (0.12)
Logistic 0.53 (0.12) 0.64 (0.12) 0.72 (0.11)
Random Forest 0.56 (0.13) 0.68 (0.12) 0.76 (0.10)
swLDA 0.59 (0.12) 0.70 (0.11) 0.77 (0.10)
XGBoost 0.49 (0.13) 0.60 (0.12) 0.68 (0.11)

Shorter Window SMGP 0.79 (0.10) 0.89 (0.07) 0.95 (0.05)
Neural Network 0.65 (0.10) 0.76 (0.10) 0.84 (0.10)
SVM 0.66 (0.12) 0.76 (0.11) 0.84 (0.08)
Logistic 0.73 (0.11) 0.83 (0.09) 0.89 (0.07)
Random Forest 0.73 (0.11) 0.82 (0.09) 0.90 (0.07)
swLDA 0.79 (0.10) 0.88 (0.08) 0.94 (0.05)
XGBoost 0.64 (0.11) 0.76 (0.11) 0.83 (0.08)

Longer Window SMGP 0.82 (0.08) 0.90 (0.07) 0.98 (0.04)
Neural Network 0.61 (0.11) 0.72 (0.10) 0.80 (0.09)
SVM 0.60 (0.12) 0.71 (0.10) 0.79 (0.10)
Logistic 0.68 (0.11) 0.80 (0.10) 0.88 (0.08)
Random Forest 0.70 (0.12) 0.81 (0.09) 0.87 (0.08)
swLDA 0.75 (0.11) 0.85 (0.09) 0.92 (0.07)
XGBoost 0.61 (0.11) 0.72 (0.10) 0.80 (0.11)

Mis-specified Signal SMGP 0.72 (0.1) 0.84 (0.08) 0.91 (0.07)
Neural Network 0.56 (0.11) 0.66 (0.12) 0.75 (0.11)
SVM 0.59 (0.11) 0.69 (0.11) 0.76 (0.09)
Logistic 0.64 (0.12) 0.77 (0.09) 0.82 (0.09)
Random Forest 0.63 (0.13) 0.75 (0.09) 0.83 (0.08)
swLDA 0.66 (0.12) 0.78 (0.10) 0.85 (0.09)
XGBoost 0.57 (0.12) 0.68 (0.11) 0.75 (0.10)
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Table A.2: Cumulative prediction accuracy for the single-channel simulation study
under five scenarios with σ2

x = 20, ρt = (0.5, 0) comparing the SMGP method to other
ML methods. The split threshold of the SMGP method is ζ0 = 0.5. Point estimates
and standard errors averaged over 100 datasets are reported. The SMGP method
results are marked in bold.

Testing Sequence Replications
Scenarios Methods 3 4 5
True Generative SMGP 0.54 (0.11) 0.66 (0.11) 0.76 (0.09)

Neural Network 0.36 (0.10) 0.45 (0.11) 0.52 (0.12)
SVM 0.35 (0.10) 0.44 (0.11) 0.53 (0.13)
Logistic 0.45 (0.11) 0.56 (0.11) 0.65 (0.11)
Random Forest 0.44 (0.11) 0.54 (0.11) 0.64 (0.10)
swLDA 0.49 (0.10) 0.60 (0.11) 0.69 (0.10)
XGBoost 0.36 (0.11) 0.46 (0.11) 0.55 (0.13)

Mis-specified Noise SMGP 0.37 (0.12) 0.47 (0.12) 0.55 (0.11)
Neural Network 0.19 (0.10) 0.23 (0.12) 0.27 (0.14)
SVM 0.24 (0.09) 0.29 (0.09) 0.34 (0.10)
Logistic 0.33 (0.11) 0.42 (0.12) 0.47 (0.12)
Random Forest 0.32 (0.11) 0.42 (0.11) 0.48 (0.12)
swLDA 0.34 (0.13) 0.44 (0.13) 0.50 (0.10)
XGBoost 0.27 (0.11) 0.35 (0.12) 0.41 (0.11)

Shorter Response SMGP 0.52 (0.13) 0.64 (0.12) 0.73 (0.10)
Window Length Neural Network 0.34 (0.13) 0.44 (0.12) 0.52 (0.13)

SVM 0.36 (0.12) 0.45 (0.12) 0.52 (0.10)
Logistic 0.46 (0.12) 0.58 (0.12) 0.67 (0.11)
Random Forest 0.44 (0.11) 0.56 (0.11) 0.65 (0.12)
swLDA 0.49 (0.12) 0.62 (0.11) 0.73 (0.11)
XGBoost 0.39 (0.12) 0.47 (0.12) 0.55 (0.14)

Longer Response SMGP 0.56 (0.12) 0.68 (0.1) 0.8 (0.09)
Window Length Neural Network 0.35 (0.12) 0.44 (0.12) 0.52 (0.11)

SVM 0.35 (0.12) 0.42 (0.12) 0.49 (0.10)
Logistic 0.45 (0.12) 0.57 (0.12) 0.65 (0.11)
Random Forest 0.43 (0.11) 0.55 (0.12) 0.64 (0.10)
swLDA 0.51 (0.11) 0.61 (0.11) 0.72 (0.10)
XGBoost 0.37 (0.10) 0.46 (0.11) 0.53 (0.11)

Mis-specified Signal SMGP 0.44 (0.11) 0.54 (0.11) 0.65 (0.11)
Neural Network 0.28 (0.10) 0.35 (0.10) 0.41 (0.12)
SVM 0.30 (0.09) 0.39 (0.11) 0.45 (0.13)
Logistic 0.39 (0.11) 0.49 (0.12) 0.56 (0.10)
Random Forest 0.36 (0.10) 0.46 (0.11) 0.53 (0.12)
swLDA 0.41 (0.11) 0.50 (0.11) 0.59 (0.11)
XGBoost 0.31 (0.10) 0.39 (0.11) 0.46 (0.12)
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Table A.3: Upper Panel: Cumulative prediction accuracy for the multi-channel
simulation study under the true generative mechanism with σ2

x = 40, ρt = (0.5, 0),
and ρs = 0.5 comparing the SMGP method to other ML methods. The split threshold
of the SMGP method is ζ0 = 0.5. Point estimates and standard errors averaged over
100 datasets are reported. Results of the SMGP method are marked in bold. Overall,
the SMGP method has the highest and most precise prediction accuracy. Lower
Panel: The ISWR and the IMWR of the SMGP method and the ESWR and the
EEWR of the swLDA method for the multi-channel simulation study under the true
generative mechanism with σ2

x = 40, ρt = (0.5, 0), and ρs = 0.5. Channel-specific
point estimates and standard errors averaged over 100 datasets are reported.

Testing Sequence Replications
Methods 3 4 5
SMGP 0.67 (0.11) 0.79 (0.09) 0.87 (0.08)
Neural Network 0.55 (0.12) 0.66 (0.11) 0.75 (0.10)
SVM 0.54 (0.11) 0.64 (0.12) 0.73 (0.10)
Logistic 0.53 (0.11) 0.62 (0.11) 0.71 (0.11)
Random Forest 0.50 (0.12) 0.62 (0.12) 0.69 (0.11)
swLDA 0.59 (0.11) 0.71 (0.11) 0.80 (0.10)
XGBoost 0.45 (0.12) 0.56 (0.11) 0.65 (0.11)

SMGP swLDA
Channels ISWR IMWR ESWR EEWR
1 0.98 (0.04) 0.6 (0.13) 0.32 (0.07) 0.76 (0.09)
2 0.97 (0.04) 0.57 (0.14) 0.29 (0.07) 0.76 (0.09)
3 0.97 (0.04) 0.62 (0.14) 0.24 (0.07) 0.83 (0.08)

109



A.3 Sensitivity Analysis

We performed two sensitivity analyses to see how channel ranking, prediction

accuracy, ERP function estimates, and split-and-merge time windows changed with

respect to the kernel hyper-parameters and the bandpass filters.

First, we applied different hyper-parameters of the γ-exponential kernel to Par-

ticipant A. We assigned 0.4, 0.5, and 0.6 to the scale parameter s0 and 1.7, 1.8, and

1.9 to the gamma parameter γ0. Based on our information criterion, channels PO8,

PO7, Oz, P4, and Cz were always selected under nine variations of hyper-parameters.

Figures A.3 and A.4 show the P300 ERP function estimates and significant temporal

intervals by varying thresholds of median split probabilities for channels Cz and PO8,

respectively. Channel Cz is the most clinically relevant, while channel PO8 is selected

the most frequently with the largest value. The thresholds included 0.6, 0.75, and

0.9. Overall, the combination of s0 and γ0 did not affect the ERP function estimates

significantly. For channel Cz, we observed the split window with the threshold of

0.90 when s0 and γ0 were in the middle of the hyper-parameter space. Table A.4

shows the prediction accuracy with channels PO7, PO8, Oz, P4, and Cz at seven

sequence replications under nine variations of kernel hyper-parameters. It suggests

that a combination of moderate s0 and γ0 can achieve 100% correct accuracy.

We also examined the channel ranking with respect to different kernel hyper-

parameters. Table A.5 shows the top six selected channels with respect to nine

variations of kernel hyper-parameters. Overall, the results did not change much.

Channels PO7, PO8, Oz, P3, P4, and Cz were the top six selected channels.

Next, we applied different bandpass filter parameters to all participant data. We

assigned 0.4, 0.5, and 0.6 to the lower bound of the bandpass filter and 5.5, 6, and

6.5 to the upper bound of the bandpass filter. Table A.6 shows the top six selected

channels with respect to nine variations of the bandpass filter. Overall, the results

did not change much. Channels PO7, PO8, Oz, P3, P4, and Cz were the top six
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Table A.4: Prediction accuracy of Participant A using channels PO8, PO7, Oz,
P4, and Cz at seven sequence replications under nine variations of kernel hyper-
parameters.

γ0

s0 0.4 0.5 0.6

1.7 1.00 1.00 1.00
1.8 1.00 1.00 0.95
1.9 1.00 1.00 0.95

selected channels among nine variations of bandpass filter parameters.

Table A.5: The top six selected channels among ten participants with nine variations
of kernel hyper-parameters.

Scale s0 Gamma γ0 Top 1 Top 2 Top 3 Top 4 Top 5 Top 6
0.4 1.7 Channel PO7 PO8 Oz P4 Cz P3

Frequency 10 10 10 7 6 6
0.4 1.8 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.4 1.9 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.5 1.7 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.5 1.8 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.5 1.9 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.6 1.7 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.6 1.8 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
0.6 1.9 Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5

A.4 Additional Results of EEG-BCI Data Analysis

We provide additional results of Participants B, E, and J. Figures A.6-A.8 show

their ERP function estimates with 95% credible bands and channel-specific significant

temporal intervals by varying thresholds of median split probabilities. The results

were produced based on the 16-channel joint model fitting. The thresholds of median
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Figure A.3: Left Panel: A figure of ERP function estimates of target and non-
target stimuli. Right Panel: A figure of significant temporal intervals by varying
thresholds of median split probabilities 0.60, 0.75, and 0.90. All plots were produced
from channel Cz, Participant A under nine variations of kernel hyper-parameters.
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Figure A.4: Left Panel: A figure of ERP function estimates of target and non-
target stimuli. Right Panel: A figure of significant temporal intervals by varying
thresholds of median split probabilities 0.60, 0.75, and 0.90. All plots were produced
from channel PO8, Participant A under nine variations of kernel hyper-parameters.
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Table A.6: The top six selected channels among ten participants with nine variations
of the bandpass filter.

Bandpass Filter Top 1 Top 2 Top 3 Top 4 Top 5 Top 6
[0.4, 5.5] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 6 6 5
[0.4, 6] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 6 6 4
[0.4, 6.5] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
[0.5, 5.5] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
[0.5, 6] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 4
[0.5, 6.5] Channel PO7 PO8 Oz P4 P3 Cz

Frequency 10 10 10 8 7 5
[0.6, 5.5] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
[0.6, 6] Channel PO7 PO8 Oz P3 P4 Cz

Frequency 10 10 10 7 7 5
[0.6, 6.5] Channel PO7 PO8 Oz P4 P3 Cz

Frequency 10 10 10 8 7 5

split probabilities were 0.6, 0.75, and 0.9. We attach the plot for Participant A in

Figure A.5 for convenient comparison. We arranged channel-specific plots by their

spatial locations to better visualize the patterns of brain activity. In particular, the

upper and lower rows represent the front and back of the head. A “z” (zero) refer

to a channel placed on the mid-line (sagittal) plane of the skull. Channels with even

numbers (2, 4, 6, 8) refer to the electrodes placed on the right side of the head, whereas

channels with odd numbers (1, 3, 5, 7) refer to those on the left.

The ERP function estimates among these participants shared similar patterns.

First, the target ERPs of frontal and central channels (channel names with “F”

and “C”) of the majority of participants shared the negative drop between 100ms

and 150ms and reached their first positive peaks around 300ms. The target ERP

functions gradually declined to zero and collapsed with non-target ERP functions

between 600 ms and 800 ms for the majority of participants, which again showed
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Figure A.5: A copy of Figure 3 in the main text. Left Panel: A figure of channel-
specific ERP function estimates of target and non-target stimuli with the 95% credible
bands of Participant A. Right Panel: A figure of channel-specific significant tempo-
ral intervals by varying thresholds of median split probabilities of Participant A.

that our split-and-merge prior worked well for these participants. In addition, the

target ERP functions of the parietal-occipital, and occipital channels (channel names

with “PO” and “O”) also only reached their negative peaks between 200 ms and 250

ms without first reaching a positive peak.

Figure A.6: Left Panel: A figure of channel-specific ERP function estimates of target
and non-target stimuli with the 95% credible bands of Participant B. Right Panel:
A figure of channel-specific significant temporal intervals by varying thresholds of
median split probabilities of Participant B.

For cross-participant evaluation, we compared the neural activity between par-
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Figure A.7: Left Panel: A figure of channel-specific ERP function estimates of target
and non-target stimuli with the 95% credible bands of Participant E. Right Panel:
A figure of channel-specific significant temporal intervals by varying thresholds of
median split probabilities of Participant E.

Figure A.8: Left Panel: A figure of channel-specific ERP function estimates of target
and non-target stimuli with the 95% credible bands of Participant J. Right Panel:
A figure of channel-specific significant temporal intervals by varying thresholds of
median split probabilities of Participant J.

116



Table A.7: Cumulative prediction accuracy of Participant E comparing the SMGP
method with ζ0 = 0.4 to other ML methods at seven sequence replications for the
top six selected channels and all 16 channels. Channel ranking was based on the
16-channel joint fitting result of the SMGP method and the proposed information
criterion.

Channels SMGP CNN SVM Logistic RF swLDA XGBoost

PO8, PO7 0.68 0.84 0.89 0.95 0.89 0.89 0.89
PO8, PO7, Cz 0.74 0.79 0.84 0.95 0.89 0.95 0.89
PO8, PO7, Cz, Oz 0.68 0.58 1.00 1.00 0.89 1.00 0.89
PO8, PO7, Cz, Oz, P4 0.74 0.74 1.00 1.00 0.89 1.00 0.95
PO8, PO7, Cz, Oz, P4,
Pz

0.79 0.84 1.00 1.00 0.95 1.00 0.95

All Channels 0.89 0.58 0.84 1.00 0.84 1.00 0.95

ticipants with ALS and healthy controls as well as between younger and older par-

ticipants. Figure A.9 shows the ERP function estimates of channels Cz and PO8 of

Participants A, B, E, and J. For both channels Cz and PO8, the peak amplitude of

Participant E was smaller than the other three participants, suggesting that the signal

of the P300 ERPs for Participant E at channel Cz was weak; however, the difference

between target and non-target stimuli was still significant. For channel Cz, the target

ERP functions merged with the non-target functions around 500 ms post-stimulus

for younger participants (A and B), while the target ERP functions were significantly

below the non-target functions at the end of the EEG response window for senior

participants (E and J). We did not observe this pattern at channel PO8.
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Figure A.9: The ERP function estimates of target and non-target stimuli with 95%
credible bands of Participants A, B, E, and J at channel Cz (Left Panel) and channel
PO8 (Right Panel). Participants A and B were young female healthy controls, while
Participants E and J were senior males, of whom only E was diagnosed with ALS.
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APPENDIX B

Supplement for Chapter IV

This supplementary document includes the MCMC algorithm for single-channel

scenario in Section B.1 and true ERP functions in Section B.2.

B.1 MCMC Algorithm for Single-channel Scenario

B.1.1 Model Formula

Let Θ := {Θk}K−1k=0 = {βk,1,βk,0, σk, ρk}K−1k=0 . Let H := {Hk}K−1k=0 be the set of

hyper-parameters for Θ. For n = 1, . . . , N ,

Zn | π ∼ Discrete(π),

Xn,i,j | Yn,i,j;Zn = k,Θ ∼MVN (Mn,i,j,k, σ
2
kCorr(ρk)), i = 1, . . . , I, j = 1, . . . , 12,

Mn,i,j,k = βk,1Yn,i,j + βk,0(1− Yn,i,j),

π ∼ Dirichlet
( α
K
, . . . ,

α

K

)
,

where Corr(ρk) is an exponential-decay correlation matrix characterized by ρk. For

n = 0,

Xn,i,j | Yn,i,j; Θ0 ∼MVN (Mn,i,j,0, σ
2
0Corr(ρk)), i = 1, . . . , I, j = 1, . . . , 12.
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B.1.2 Joint Distribution and Prior Specifications

The joint distribution is

Pr({Xn,i,j},Θ, {Zn},π | {Yn,i,j};H, α)

=

(
K−1∏
k=0

Pr(Θk;Hk)

)
Pr(π;α)︸ ︷︷ ︸

PriorDistribution

·

(
N∏
n=1

Pr({Xn,i,j} | {Yn,i,j}, Zn,ΘZn)Pr(Zn | π)

)
︸ ︷︷ ︸

SourceParticipants′ Likelihood

· Pr ({X0,i,j} | {Y0,i,j},Θ0))︸ ︷︷ ︸
NewParticipant′s Likelihood

,

The joint posterior distribution of parameters is proportional to

Pr(Θ, {Zn},π | {Yn,i,j};H, α)

∝

(
N∏
n=1

Pr({Xn,i,j} | {Yn,i,j}, Zn,ΘZn) Pr(Zn | π)

)
· Pr(X0,i,j | {Y0,i,j},Θ0)

·
K−1∏
k=0

Pr(Θk;Hk) Pr(π;α).

For each cluster-specific parameter set Θk, k = 0, . . . , K − 1,

βk,1 ∼ GP(0, ψk,1κ1), βk,0 ∼ GP(0, ψk,0κ0), ρk ∼ U(0, 1), σk ∼ HC(0, 5.0).

By Mercer’s Theorem, we further obtain that

βk,1 = ψk,1Ψ1αk,1, αk,1 ∼MVN (0,Diag(λ1)), ψk,1 ∼ LN (0, 1),

βk,0 = ψk,0Ψ0αk,0, αk,0 ∼MVN (0,Diag(λ0)), ψk,0 ∼ LN (0, 1),

where Ψ1,λ1 and Ψ0,λ0 are eigen-functions and eigen-vectors for target and non-

target ERP response functions, respectively.
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B.1.3 Markov Chain Monte Carlo

We apply the Gibbs Sampler method to draw posterior samples. For parameters

of interest, within each cluster k, we update αk,1,αk,0, ψk,1, ψk,0, σk, and ρk, then we

update latent indicators {Zn}Nn=1 and weight probability vector π. Among the set

of continuous variables, only αk,1 and αk,0 have the closed forms for the posterior

distribution. We resort to the Metropolis-Hastings algorithm to update ψk,1, ψk,0, σk,

and ρk. We use “rest” to denote the remaining parameters for simplicity.

B.1.3.1 Update αk,1,αk,0

For coefficients of the γ-exponential kernel, we specify the priors that αk,1 ∼

MVN (0,Diag(λ1)) and αk,0 ∼MVN (0,Diag(λ0)). For k > 0,

αk,1 | rest ∼MVN (Λ−1αk,1
ηαk,1

,Λ−1αk,1
),

Λαk,1
=
∑
Zn=k

∑
Yn,i,j=1

(ψk,1Ψ1)
> (σ2

kCorr(ρk)
)−1

(ψk,1Ψ1) + Diag(λ−1k ),

ηαk,1
=
∑
Zn=k

∑
Yn,i,j=1

(ψk,1Ψ1)
> (σ2

kCorr(ρk)
)−1

Xn,i,j,

αk,0 | rest ∼MVN (Λ−1αk,0
ηαk,0

,Λ−1αk,0
),

Λαk,0
=
∑
Zn=k

∑
Yn,i,j 6=1

(ψk,0Ψ0)
> (σ2

kCorr(ρk)
)−1

(ψk,0Ψ0) + Diag(λ−1k ),

ηαk,0
=
∑
Zn=k

∑
Yn,i,j 6=1

(ψk,0Ψ0)
> (σ2

kCorr(ρk)
)−1

Xn,i,j,
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For k = 0,

αk,1 | rest ∼MVN (Λ−1αk,1
ηαk,1

,Λ−1αk,1
),

Λαk,1
=

∑
{n:Zn=k}∪{0}

∑
Yn,i,j=1

(ψk,1Ψ1)
> (σ2

kCorr(ρk)
)−1

(ψk,1Ψ1) + Diag(λ−1k ),

ηαk,1
=

∑
{n:Zn=k}∪{0}

∑
Yn,i,j=1

(ψk,1Ψ1)
> (σ2

kCorr(ρk)
)−1

Xn,i,j,

αk,0 | rest ∼MVN (Λ−1αk,0
ηαk,0

,Λ−1αk,0
),

Λαk,0
=

∑
{n:Zn=k}∪{0}

∑
Yn,i,j 6=1

(ψk,0Ψ0)
> (σ2

kCorr(ρk)
)−1

(ψk,0Ψ0) + Diag(λ−1k ),

ηαk,0
=

∑
{n:Zn=k}∪{0}

∑
Yn,i,j 6=1

(ψk,0Ψ0)
> (σ2

kCorr(ρk)
)−1

Xn,i,j,

B.1.3.2 Update ψk,1, ψk,0

For the kernel variance parameters, we specify the priors that ψk,1, ψk,0 ∼ LN (0, 1).

Let fLN (x; 0, 1) be the density function for the Log-Normal prior. For k > 0,

f(ψk,1 | rest) ∝
∏
Zn=k

∏
Yn,i,j=1

φ
(
Xn,i,j;ψk,1αk,1, σ

2
kCorr(ρk)

)
fLN (ψk,1; 0, 1),

f(ψk,0 | rest) ∝
∏
Zn=k

∏
Yn,i,j 6=1

φ
(
Xn,i,j;ψk,0αk,0, σ

2
kCorr(ρk)

)
fLN (ψk,1; 0, 1),

For k = 0,

f(ψk,1 | rest) ∝
∏

{n:Zn=k}∪{0}

∏
Yn,i,j=1

φ
(
Xn,i,j;ψk,1αk,1, σ

2
kCorr(ρk)

)
fLN (ψk,1; 0, 1),

f(ψk,0 | rest) ∝
∏

{n:Zn=k}∪{0}

∏
Yn,i,j 6=1

φ
(
Xn,i,j;ψk,0αk,0, σ

2
kCorr(ρk)

)
fLN (ψk,1; 0, 1),

B.1.3.3 Update σk

For the noise variance parameter, we specify the prior that σk ∼ HC(0, 5). Let

fHC(x; 0, 5) be the density function for the Half-Cauchy prior. LetMn,i,j,k = ψk,1αk,1Yn,i,j+
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ψk,0αk,0(1− Yn,i,j), then

f(σk | rest) ∝
∏
Zn=k

∏
i,j

φ
(
Xn,i,j;Mn,i,j,k, σ

2
kCorr(ρk)

)
· fHC(σk; 0, 5), k > 0,

f(σk | rest) ∝
∏

{n:Zn=k}∪{0}

∏
i,j

φ
(
Xn,i,j;Mn,i,j,k, σ

2
kCorr(ρk)

)
· fHC(σk; 0, 5), k = 0.

B.1.3.4 Update ρk

For the temporal correlation parameter, we specify the prior that ρk ∼ U(0, 1).

The exponential-decay correlation matrix is constructed by

Corr(ρk) =



1 ρk ρ2k · · · ρT0−1k

ρk 1 ρk · · · ρT0−2k

...
. . .

...
. . .

...

ρT0−1k · · · ρ2k ρk 1


,

where T0 is the EEG response window length. Then,

f(ρk | rest) ∝
∏
Zn=k

∏
i,j

φ
(
Xn,i,j;Mn,i,j,k, σ

2
kCorr(ρk)

)
, k > 0,

f(ρk | rest) ∝
∏

{n:Zn=k}∪{0}

∏
i,j

φ
(
Xn,i,j;Mn,i,j,k, σ

2
kCorr(ρk)

)
, k = 0.

B.1.3.5 Update Zn

For the latent indicator Zn, n = 1, . . . , N , we specify the prior that Zn ∼ Discrete(π),

and we obtain that

Pr(Zn = k | rest) ∝ πk
∏
i,j

φ(Xn,i,j;βk,1Yn,i,j + βk,0(1− Yn,i,j), σ2
kCorr(ρk)).
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B.1.3.6 Update π

For the weight probability π, we specify the prior that π ∼ Dirichlet( α
K
, . . . , α

K
),

and we obtain that

Pr(π | rest) ∼ Dirichlet

({ α
K

+mk

}K−1
k=0

)
, mk =

N∑
n=1

1{Zn = k}.

B.2 True ERP Functions for Simulation Studies

Figure B.1: Three true ERP functions for single-channel simulation studies.
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Figure B.2: Three two-dimensional true ERP functions for multi-channel simulation
studies.
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