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ABSTRACT

Adding intelligence to uncrewed aerial vehicle (UAV) design to improve perfor-

mance in a variety of dynamic environments offers benefits to many civilian and

military mission objectives. Urban areas with tall buildings and vast street systems

create drastic changes in the flight environment that are challenging for autonomous

flight vehicles to overcome. Forrest fires with large temperature gradients also create

difficult wind conditions for a drone to accurately survey the area. Autonomously

reacting to these environmental changes would improve the adaptability of a single

UAV design, allowing performance in a broader range of conditions and effectively

increasing the mission scope for these vehicles. Thus far, the fields dedicated to devel-

oping adaptive and intelligent systems for aircraft have remained split. One popular

area of focus uses multifunctional smart materials to create unique shape changes in

an aircraft structure, known as morphing. Another area of research that is rapidly

gaining interest is the field of artificial intelligence and machine learning for controller

development. In this work, I brought these two fields together to create an intelligent

multifunctional morphing system for autonomous adaptive flight.

First, I developed a reinforcement learning (RL) training format for autonomous

policy development in a physical hardware environment. The pseudo-episodic train-

ing scheme alternates traditional training episodes with exploration episodes designed

to randomly reset the following training episode. This format creates space for ad-

ditional policy updates using off-policy actor-critic and experience replay between

traditional training episodes. I tested the pseudo-episodic training format on an

airsled-airtrack experimental environment used as a one-dimensional analogy for an

xix



aircraft at equilibrium. The inclusion of these additional updates improved learning

speed and consistency

Next, I used deep reinforcement learning (DRL) to create two controllers for a

macro fiber composite (MFC) actuated camber morphing airfoil. I tested the two

DRL controllers on the physical morphing airfoil over a series of step responses when

using true state observations from an external sensor, and imperfect state observations

from the two state inference models. I compared the performance of the two learned

controllers to a traditional proportional-derivative (PD) controller. I found that the

learned controllers were faster and more accurate than the PD method, and were able

to account for the hysteretic behavior inherent to the piezoelectric MFC actuators

when provided imperfect feedback.

Finally, I used DRL to train gust load alleviation (GLA) controllers for an MFC

morphing wing that consisted of three morphing sections. The trained controller used

pressure sensors for state observation and learned to reduce the change in lift experi-

enced during upward and downward gusts. I found that increasing from one pressure

tap to three pressure taps significantly improved overall controller performance, but

increasing from three pressure taps to six pressure taps did not show significant im-

provement. Overall, the controllers were able to reduce the change in lift experienced

by the wing during a gust by 71% to 87%.

In summary, the work presented in this dissertation shows a gradual increase in

environmental complexity from chapter to chapter in order to develop intelligent con-

trollers for adaptive morphing UAVs. I began with a simple one-dimensional analogy

for trim, and ended with an autonomous gust alleviation system trained entirely on

hardware using DRL. This work offers an exciting combination of multifuncitonal

material morphing with learned autonomous control as a step towards developing

truly intelligent morphing UAVs.
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CHAPTER I

Introduction

1.1 Motivation and Scope

1.1.1 Intelligent Aircraft

Adaptability is an objective of great interest in the field of aerospace engineering

[1]. A single aircraft with the ability to perform under a variety of circumstances

is valuable for military, commercial, and civilian application. This focus has pushed

the field to look toward implementing intelligent systems in aircraft design to allow

uncrewed aerial vehicles (UAV) to autonomously react to changes in their environ-

ment. For the purposes of this dissertation, these intelligent systems are categorized

into three primary focuses, including: morphing structures, multifunctional materi-

als, and autonomous control (Fig. 1.1). At the intersections between these primary

subjects are interesting questions that must be addressed to achieve truly intelligent

aircraft design.

Currently one of the most popular intersections for study falls between multifunc-

tional materials and morphing structures [2], [3]. This intersection seeks to answer

the question, how can we efficiently perform these structural shape changes through

incorporating smart material actuators. These systems show improvement in me-

chanical complexity, weight reduction, and aerodynamic efficiency over traditional
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Figure 1.1: Representation of UAV intelligence components.
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methods [4], [5].

Another intersection of interest is that between morphing systems and autonomous

control. Researchers in this field look to determine when to produce structural shape

changes to improve aircraft efficiency or performance [6], [7].

Finally, the least explored of these intersections looks at the relationship between

multifunctional materials and autonomous learned control [8]. Although smart mate-

rials provide many benefits for aircraft design, they come with challenges for consistent

control. For this reason, it is important to find control methods that effectively mit-

igate these challenges, so the benefits of these multifunctional materials can be more

fully used to our advantage.

1.2 Gust Alleviation

1.2.1 Motivation

Maneuverability is a key characteristic for an adaptable aircraft, and in this the-

sis will be referred to as an aircraft’s ability to change translational and rotational

velocity in magnitude and direction [9]. This allows the aircraft to respond quickly to

environmental changes. However, achieving this comes at the direct cost of stability

[10]. Longitudinally speaking, stable aircraft are designed to have the aerodynamic

center (AC) behind the center of gravity (CG), so that flight in a perturbed state

would naturally push the aircraft back toward a level trim condition. Although this

is beneficial for efficient flight at cruise, stable flight reduces an aircraft’s ability to

deviate rapidly from trim, requiring greater forces to overcome its natural tendency

toward level steady flight. Unsteady aircraft require smaller forces and moments to

adjust flight trajectory, improving maneuverability, but are unable to passively reject

external perturbations. This is amplified as aircraft weight decreases, increasing the

impact for small UAVs [11].
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Birds overcome this obstacle by shifting between stable and unstable flight [12].

They are able to change their AC without significantly adjusting their CG, allowing

for a rapid change between flight conditions. Many highly maneuverable aircraft also

can adjust flight stability using wing sweep; however, these shape changes currently

occur over a longer period of time [1]. Until aircraft are able to change stability

configuration more rapidly, it is beneficial to combine an inherently unstable aircraft

design with an active control system to reject perturbations, thus allowing for stability

and maneuverability when needed [10].

In addition to added maneuverability, gust alleviation systems reduce structural

loads experienced by aircraft during external disturbances [13]. Structural designs

are constrained by stresses experienced during peak load situations, such as gusts.

Therefore, reducing the loads experienced during gusts can relax design requirements,

allowing for lighter and more efficient designs [14].

Combining these ideas, gust load alleviation (GLA) systems allow design engi-

neers to focus more heavily on efficiency than structural and aerodynamic stability,

allowing greater use and production of highly efficient aircraft that are typically inher-

ently unstable, such as flying wing designs [15]. Shifting aircraft design focus in this

direction would improve aircraft performance in both maneuverability and efficiency,

creating aircraft that are more adaptable to changes in the environment and require

less fuel. Greater adaptability means fewer variations of specialized aircraft designs,

further reducing the carbon footprint associated with the manufacturing process.

1.2.2 Gust Alleviation Methods

With the goal of automatic gust alleviation, passive systems have been developed

to reduce loading without the need for extra energy expenditure. Many of these

methods include hinge and spring systems that allow a wing tip or flap to give when

subject to excessive aerodynamic loads. These methods are useful; however, they are

4



highly sensitive to spring stiffness and therefore are unable to adjust to a variety of

flight conditions [16].

Active methods typically use predictive models and traditional control surfaces

(ailerons, elevators, and spoilers) to achieve GLA [17], [18]. Model predictive control

(MPC) methods use predictive models and optimization for action selection [19].

Dillsaver used a linear quadradic gaussian (LQG) controller to reduce gust effects by

47% [20].

Recently, these active methods have started using non-conventional techniques for

sensing and actuation. State observations are crucial for effective control. Traditional

aircraft sensors are often used with Kalman filters for state inference [19]. Recently,

Light Detection and Ranging (LIDAR) forecasts wind disturbances 50 meters ahead

of the aircraft [21], [22]. Pankonien recently incorporated hair-like sensors for gust

perturbation sensing [23]. Outside of traditional control surfaces, alternative control

methods have been used for more efficient gust alleviation. Li used fluidic actuators

to change the airflow around a wing during a gust, and wang used spanwise trailing

edge morphing [14], [24]. In this work, we focus on multifunctional smart material

actuators for morphing based control.

1.3 Multifunctional Materials for Morphing

1.3.1 Smart Material Actuators

Incorporating intelligence into aircraft design is not a new topic of research. In

the 1990s NASA began an Aircraft Morphing Program dedicated to developing “self-

adaptive flight” [25], [26]. This program focused on improving aircraft efficiency by

incorporating intelligent sensing, actuation, and control systems. Smart materials

became a large focus in this program due to their unique behaviors promoting multi-

functionality. Acting as both structure and actuator, these smart materials reduced
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mechanical complexity in morphing systems, limiting the number of components capa-

ble of failing. Through this program, NASA identified shape memory alloys (SMA),

magnetostrictive materials, and piezoelectric fiber composites for containing these

useful qualities [25].

Shape memory alloys experience strains of up to 8% when subject to a thermal

load. Capable of relatively large force production, SMAs are limited in actuation

frequency due to the time constraints necessary to cycle the material temperature

[27]. Still, SMAs are used widely in aircraft morphing (Fig. 1.2a) [4], [28], [29].

Magnetostrictive material operates more rapidly, but produce limited strains of only

0.2%, reducing their functionality for aircraft morphing [5]. Macro fiber composites

(MFC) combine piezoelectric rods within an epoxy layup to produce a material with

rapid actuation and relatively high strains. For this reason, MFCs are a popular

multifunctional actuator for morphing UAV design, including pitch and yaw control

effectiveness and yaw stability for a novel avian inspired rudderless UAV with camber

morphing MFC tail actuator (Fig. 1.2b) [30]–[33]. MFCs are my actuator of choice

for the remainder of this dissertation. For this reason, I next provide a more in depth

review of the uses and challenges of MFCs in morphing aircraft design.

1.3.2 MFC Morphing Aircraft

Macro fiber composites are low-profile piezoelectric actuators which have gained

substantial attention within the morphing aircraft community [1]. Piezoelectric actu-

ators operate by generating strain when voltage, and hence an electric field, is applied

to the electrodes [35]. Piezoelectric actuators are also well known for their capabil-

ities to produce high force output and a high-speed actuation response. Yet unlike

traditional piezoelectric actuators which are composed of solid piezoelectric mate-

rial, MFCs are manufactured using a series of thin piezoceramic rods in a composite

laminate layup, allowing them to exhibit excellent flexibility while still maintaining
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a) b)

c)

Figure 1.2: Smart materials are used for aerospace morphing designs. Antagonistic
SMA springs are used to actuate an avian inspired planform morphing tail
a) [28]. Two custom designed MFCs are used for yaw control in an avian
inspired UAV b) [30]. Smooth spanwise camber morphing is achieved by
implementing several MFCs c) [34].
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a)

b)

c)

d)

Figure 1.3: MFCs are used for camber morphing. MFCs are very flexible, a), and can
be bonded to a thin intextensible substrate to create bending geometries
b) [1], [38]. Combining two antagonistic MFC unimorphs, we can develop
a system capable of deflecting the trailing edge of an airfoil upwards, (c),
and downwards, d).

the performance benefits attributed to traditional piezoelectric actuators, including

actuation speeds up to 700kHz [31], [36]. Furthermore, MFCs exhibit large out-of-

plane curvatures when bonded to a thin inextensible substrate like steel shim which

shifts the structure’s neutral axis (Fig. 1.3). This behavior is especially attractive for

camber morphing airfoil applications and has spurred a large subset of research in

the field of morphing aircraft [1], [37].

Though the field of morphing aircraft is brimming with novel morphing mecha-

nisms, camber morphing wings and airfoils have proven to be especially beneficial due

to their ability to increase control authority and improve efficiency [39]–[42]. Macro

fiber composite actuators have been widely used in camber morphing wings in part

because they are capable of seamlessly generating cambered actuation, allowing them

to serve both as the airfoil skin and actuator [1]. Furthermore, the lightweight na-
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ture of MFCs, in addition to their rapid actuation response, is advantageous in UAV

applications, as reductions in aircraft weight lead to greater fuel efficiency, and rapid

actuation allows for greater maneuverability. Initial research into MFC-driven cam-

ber morphing airfoils constructed the airfoil’s trailing edge using an MFC bimorph

as the upper and lower surface, and integrated a flexure box which permitted sliding

shear motion during actuation at the junction between the rigid and morphing sec-

tions [37]. This camber morphing airfoil was later used in the Spanwise Morphing

Trailing Edge concept, which integrated a series of 6 MFC-based camber morphing

actuators along the span of a wing (Fig. 1.2c) [34]. With this wing configuration, the

spanwise camber of the wing could also be locally optimized to adapt to and recover

from adverse aerodynamic disturbances including stall [43]. Camber morphing MFCs

have also been used in rudderless UAV applications. When integrated in a spanwise

morphing configuration, simulations of a rudderless UAV with camber morphing MFC

wings showed large improvements in efficiency in addition to impressive roll and pitch

controllability [44].

Although MFCs have demonstrated incredible potential for camber morphing ap-

plications, they are not without drawbacks. While piezoelectric actuators generate

high force output, the thin and flexible nature of MFCs make them vulnerable to

displacement under large out-of-plane forces (Fig. 1.4). As the wings of aircraft are

the primary lifting surface, large aerodynamic loads are prone to inducing aeroelas-

tic deformation of MFC-actuated airfoils, reducing the total camber. However, this

can be remedied using control algorithms which utilize feedback control to tune the

actuator’s input voltage such that the desired camber or trailing edge displacement

is achieved [5]. Though this has proven successful, the inherent hysteresis of MFCs

is a challenging hurdle for traditional control algorithms, many of which are linear

by nature [45]. In contrast, deep reinforcement learning is well equipped to handle

nonlinear control relationships and may be a promising alternative.
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Figure 1.4: MFCs have reduced range of motion under out of plane loading. These
hysteresis curves show the change in deflection through the actuation
cycles of an MFC camber morphing airfoil and wind tunnel flow speeds
ranging from 0 m/s to 20 m/s [5]

1.4 Reinforcement Learning

Reinforcement learning has gained significant attention in the field of artificial

intelligence over the past several years. Agents and environments are the two funda-

mental pieces of any RL problem, where the agent is the subject of policy-determined

actions, and the environment is the defined space within which the agent may act

(Fig 1.5). The RL problem is traditionally further defined by a Markov decision

process (MDP), consisting of every possible state-action combination, and their state

outcomes, for the agent within the environment. Depending on the goal of the agent,

certain state-action pairs may be preferable over others, as determined by rewards.

Although reward-based learning algorithms are not a new concept, recent ad-

vancements in hardware and increased data accessibility have made it possible to

achieve accurate estimation of nonlinear systems using large quantities of data [47]–

[49]. Artificial neural networks (ANN), deep ANNs specifically, are frequently the

preferred method of function approximation in supervised learning tasks and have
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Figure 1.5: Reinforcement learning is a controller development scheme through trial-
and-error. Each RL problem contains an agent and an environment. The
agent selection actions based on its current state, and the environment
provides the agent with a new state and reward to represent the cost or
benefit of the previous state-action selection [46]

gained popularity in the reinforcement learning community. There is now a subset

of RL dedicated to the use of multilayered ANNs called deep reinforcement learning

(DRL). This is not without merit, for they have led to superhuman performance in

Atari game environments, Dota 2, and Go, as well as many simulated physics envi-

ronments offered by the OpenAI libraries and MuJoCo to name a few [48], [50]–[52].

While this is impressive, and certainly beneficial for the RL community, it is nec-

essary to build from what we’ve learned using simulated environments, where data

accumulation is plentiful and instrumental wear and tear plays no role, and apply

that knowledge to real-world environments and robotics.

1.4.1 RL in aerial environments

UAV flight and maneuverability provide interesting control problems, particularly

when operating in variable environments where adaptability offers a great benefit. We

are not the first to aspire toward this objective. The ability to autonomously adapt

to aerial environments is an exciting goal that many in the reinforcement learning

community are pursuing. The literature has many examples where control is achieved

in simulated flight environments. Bohn and his colleagues achieve attitude control

competitive with traditional proportional integral derivative (PID) methods using
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proximal policy optimization (PPO) for a simulated fixed wing UAV [53]. Koch et

al. achieved similar results, outperforming PID methods when using PPO to train

an open-source simulation for quadrotor flight [54]. In addition to attitude control,

navigating a simulated environment is another challenge frequently accomplished with

RL methods [55], [56]. Each of these cases shows the power of RL in simulation,

but impressive work has been achieved in the real world as well. In 2003, Ng et

al. used reinforcement learning to achieve autonomous control for a helicopter [57].

More recently, a trained quadrotor was capable of recovering from complex initial

conditions, including an upside-down position [58]. However, in both cases a model

or simulation was first developed for training, and no training was performed in real-

time on the physical equipment. In 2018, navigation of an unknown environment was

achieved in by a Parrot AR quadrotor drone; however, PID was used to aid in control

of the UAV and, due to the constraint of battery life, human intervention was allowed

for learning to continue after a UAV failure [59].

1.4.2 RL in real-world environments

While there has been substantial success in the simulated DRL environments,

the data-hungry nature of ANNs has led to solutions geared towards artificially in-

creasing the amount of data available to these nonlinear approximation functions.

Many examples in the literature use transfer learning techniques to train an agent

in a simulated environment and then load the pre-trained policy onto the physical

agent of a real-world environment [60]–[62]. Other examples use imitation learning,

manually guiding the agent through the motions desired for acceptable performance

[63], [64]. Both methods are popular ways to limit the time spent training on hard-

ware, and reduce wear and tear on equipment; however, not all environments lend

themselves easily to accurate simulation. In many cases, manual examples may not

be desirable, or even possible, to produce. For this reason, I emphasize the use of
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model-free methods in this dissertation. The reinforcement learning methods used

in this research fall under a category called temporal difference (TD) learning. TD

learning allows for policy development through experiences gathered directly from

agent-environment interaction. This presents an opportunity to develop a controller

without mathematically approximating the dynamics of the environment. In two

chapters I perform training directly on the physical hardware environment (ch. II,

IV). In Chapter III I train a model using only data gathered directly from the physical

hardware environment to develop a simulation for training.

1.5 Outline and Contributions of Dissertation

This dissertation is designed to gradually build toward autonomously developed

controllers for complex morphing wing system to improve efficiency and adaptability

in small UAVs. Each chapter represents separate projects that build on information

gained from the previous. Adding complexity to the system at each step, I began with

a very simple unsteady experimental analogy for trim and ended with a self-taught

gust alleviation system for a multifunctional morphing wing.

Chapter II focuses on developing a reinforcement learning format capable of au-

tonomously completing training on the physical hardware environment. As men-

tioned, the environment is a simple analogy for achieving and maintaining trim after

beginning in a perturbed state. Much of the RL community is focused on improving

algorithm designs to achieve state-of-the-art performance in simulated environments.

Those that venture outside of simulation typically rely heavily on modeling to train

quickly in physical hardware. This limits the potential benefit of using RL since one

of its greatest attributes is the ability to produce controllers for environments of great

complexity. My contribution is a training method that doesn’t rely on prior modeling

or human intervention and is cognizant of time and safety constraints for learning in

hardware by creating space to improve learning speed and consistency. I achieved
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this by alternating on-policy and off-policy updates during training and exploration

episodes. I presented this and related work as a poster at the Multifunctional Mate-

rials and Structures Gordon Research Conference in Ventura, California, on January

22, 2020, and at the International Conference on Adaptive Structures and Technolo-

gies Digital Workshop, which was held virtually on October 7, 2020. Additionally, a

version if this chapter has been published [65].

Chapter III increases environmental complexity by applying DRL to an multi-

functional MFC morphing airfoil. Previously, this morphing system used traditional

control methods, including PD and PID, with internal flex sensor signals for feedback

[5]. I used machine learning techniques to improve state inference over the tradi-

tional linear inference method, and PPO to develop two controllers for the morphing

system. I found that ML techniques improved state inference and controller perfor-

mance. Additionally, the learned controllers improved speed and accuracy in control.

Finally, I found that including an additional penalty within the reward structure re-

duced controller overshoot, producing an overall better controller over a traditional

PD method, especially when the less accurate linear inference method was used. I

presented this and related work at the CIMTEC Forum on New Materials in Peru-

gia, Italy, on June 27, 2022, and at the American Society of Mechanical Engineers

(ASME) conference on Smart Materials, Adaptive Structures, and Intelligent Sys-

tems (SMASIS) in Dearborn, Michigan, on September 13, 2022 [66]. Additionally, a

version of the work presented in this chapter has been published [67].

Chapter IV presents the culminating achievement of my dissertation work. With

the primary goal of improving adaptability and efficiency in small UAV flight, I used

DRL to develop a gust alleviation system for an MFC morphing wing capable of

responding to environmental changes directly from on-board pressure signals. As

mentioned previously, much of the work in gust rejection relies on modeling and pre-

diction to detect gust appearance and infer the aerodynamic impact on lift production
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before determining an appropriate response through traditional control surface actu-

ation. Here, we eliminated this prediction, reducing computational complexity and

potential for modelling error, resulting in a rapid fly-by-feel reaction as the gust oc-

curs, similar to the autonomic perturbation response in avian flight. I presented

the work in this chapter as a poster at the Multifunctional Materials and Structures

Gordon Research Conference in Ventura, California, on September 26, 2022.

Chapter V provides a summary of the work presented in this dissertation and

presents my conclusions and contributions.
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CHAPTER II

Autonomous Training using Pseudo-Episodic

Format

2.1 Summary

For practical considerations, reinforcement learning has proven to be a difficult

task outside of simulation when applied to a physical experiment. Here I derived an

approach to model-free RL, achieved entirely online, through careful experimental de-

sign and algorithmic decision making. I designed a reinforcement learning scheme to

implement traditionally episodic algorithms for an unstable 1-dimensional mechanical

environment. The training scheme was completely autonomous, requiring no human

to be present throughout the learning process. I showed that the pseudo-episodic

technique allows for additional learning updates with off-policy actor-critic and ex-

perience replay methods. I showed that including these additional updates between

periods of traditional training episodes improved speed and consistency of learning.

Furthermore, I validated the procedure in experimental hardware. In the physi-

cal environment, several algorithm variants learned rapidly, each surpassing baseline

maximum reward. The algorithms in this research were model free and used only

information obtained by an onboard sensor during training.
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2.2 Motivation and Background

Reinforcement learning is a subset of ML that, through trial and error, and the

use of a reward system, is capable of autonomously developing controllers for agents

in a variety of environments. The preferability of a state is defined by its value, and

is determined by calculating the long-term reward obtained by the agent, from the

environment, after residing in the specified state. In many algorithms the state values

are used to determine the agent’s policy, which is a map deciding which actions are

to be taken given the current state. In the simplest cases, values can be recorded in a

table; however, when environments become more complicated, requiring a continuous

state space, they must be approximated. In recent years, ANNs have been the cutting-

edge function approximation method of choice for many in the field of RL, and for

good reason. Given the correct structure and enough data, ANNs are incredibly

proficient at accurately approximating nonlinear functions. This type of RL is known

as DRL. The success of DRL has brought a surge in popularity for the RL community,

resulting in new algorithms and techniques to improve learning speed and final overall

performance. This is particularly true for traditional baseline environments, including

Atari games and MuJoCo physics simulators for higher dimensional problems [68]–

[70].

This work focused primarily on policy gradient methods, specifically actor-critic

based methods, to achieve learning. Actor-critic methods consist of two function

approximators, an actor and a critic. The Actor is a parameterized policy function

and uses a soft-max distribution to represent each action as a probability. Actor and

critic weight updates, ∆θ and ∆w, are performed with gradient decent, using

∆w = αδ∇V̂ (s,w), (2.1)
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and

∆θ = αδ∇πθ(a|s,θ), (2.2)

where α is the learning rate. V̂ (s,w) is the value of the current state, s, given the

critic weights, w. For linear function approximation, the gradient of V̂ (s,w) is equal

to the state features, x(s, w), for which I used 3rd order Fourier cosine basis functions

[71]. For updating the actor’s weights, θ, I used the natural log gradient of the trained

policy, πθ, calculated as

∇lnπθ(a|s,θ) = x(s, a)−
∑

b
πθ(b|a,θ)x(s, b), (2.3)

where a is the current action. To perform both of these updates I first calculated the

temporal difference error, δ, found as

δ = R + γV̂ (s′,w)− V̂ (s,w), (2.4)

the difference between the current value and the combination of the expected value

of the next state, s′, and the newly obtained reward, R. In this work, the discount

factor, γ, is equal to one.

The algorithms of choice are Advantage Actor-Critic (A2C), Actor-Critic with

Eligibility Traces (A2C(λ)), and Proximal Policy Optimization (PPO) [46], [72]. El-

igibility traces are a means to use information gathered from each time step and

propagate it through parameters updated in previous time steps, according to the

contribution of the previous states. The update equations for the actor and critic

including eligibility traces are

zw ← γλwzw +∇V̂ (s,w), (2.5)

zθ ← γλθzθ +∇lnπθ(A|S,θ), (2.6)
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∆w = αδzw, (2.7)

and

∆θ = αδzθ. (2.8)

When calculating the eligibility trace vectors for the actor and critic, zθ and zw respec-

tively, trace decay rates, λθ and λw, are used to adjust an update’s impact on previous

states. PPO is one of the current leading on-policy actor-critic algorithms, showing

impressive performance in several high dimensional MuJoCo physics environments.

This performance improvement was achieved through the introduction of clipping.

Clipping is a simple implementation for an idea akin to trust region policy optimiza-

tion (TRPO), meant to limit the size of policy updates and mitigate overshooting

[72], [73]. This is done by looking at the ratio, r, between an action’s probability

under the new and old policies, and limits that ratio to fall within 1 ± ϵ, where ϵ

is the clipping parameter. I used the suggested value ϵ = 0.2. This relationship is

described by the objective function,

LCLIP (θ) = Ê[min(r(θ)δ, clip(r(θ), 1− ϵ, 1 + ϵ)δ]. (2.9)

2.2.1 RL in the physical world

Learning in real-world environments, such as robotics and vehicles, emphasizes

different challenges in the reinforcement learning problem. Dulac-Arnold et al. lists

several of these challenges, including safety constraints and learning from limited

opportunities for data collection [74]. Due to the innate cost of completing training

in the physical environment, such as wear and tear on equipment from extended

use and the time necessary to accumulate experience required for learning, some

researchers choose to take their learning off-line, using batch updates or simulated

environments [62], [75]–[77]. When accurate simulations aren’t easily attainable, and
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learning must be performed online, sample efficiency becomes more crucial. Improving

sample efficiency is a common research problem in RL. Many have found that the use

of models during training can accelerate learning [78]–[80]. Others have delved into

the field of meta RL, where the goal of an algorithm is to learn how to learn more

quickly [81].

Reinforcement learning is a powerful tool to solve complex problems; however,

these problems often take hundreds of thousands or millions of iterations to solve.

Because of this, the push for autonomy in RL is highly preferable. Instead of human

intervention, some RL problems in the literature are performed in environments with

already well established means of control, and the goal of the RL algorithm is to

discover a more optimal policy [82]. This can provide a safety net for the agent for

cases where exploration approaches a known portion of the state space prone to dam-

aging equipment and allows for simple episode reset, but limits RL to environments

where control has already been achieved. Haarnoja et al. use Soft Actor-Critic to

train a four-legged robot to locomote over a variety of walking surfaces [70]. This

was achieved model-free and without simulation, but human intervention was neces-

sary for resetting the environment when the robot fell over or wandered too far from

the initial state. Zhu et al. pushed towards true autonomy in RL, abandoning the

use of resetting mechanisms and relying solely on the robots’ own sensors for state

observation and reward signaling [83].

In this research I produced an option for model-free reinforcement learning that

can be achieved autonomously and entirely online. In this work I considered training

time and equipment safety through careful experimental design and algorithm decision

making. Due to the limited availability of data and the computationally expensive

nature of ANNs, I chose to forgo the use of these nonlinear function approximators,

opting instead for linear function approximation. Although ANNs were not used

in this work, I leveraged some techniques that found success in DRL. I chose to
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design the experiment to imitate the episodic style of many simulated reinforcement

learning problems while maintaining strict autonomy of the agent. Additionally, I

took advantage of the pseudo-episodic format to create additional opportunities for

learning, where traditionally there are none, by using time and actions taken during

the preparation of subsequent training episodes to perform policy updates.

The rest of this chapter is organized in the following manner. Section 2.3 presents

the theory and methods I followed to achieve learning and preliminary simulation work

used to determine algorithm viability and hyperparameter values. Section 2.4 de-

scribes the experimental setup used to demonstrate and validate the training scheme

a real-world environment. In section 2.5 I discuss the results of the experiments. The

conclusions and future work are found in section 2.6.

2.3 Theory and Simulation

In this section I cover the theory behind the decisions made and methods used in

order to achieve learning in the air-sled environment. I first describe the approach to

achieve sufficient exploration while considering the safety of the equipment. Subse-

quently I present the additional updates I chose to implement during the “exploration

episodes” that are at the heart of the pseudo-episodic training method. Although this

method is designed to perform in physical environments, I investigated its viability

in simulation to reduce unnecessary wear and tear on experimental hardware. The

simulated training was not used to accelerate real-world learning, but is described at

the end of this section for completeness.

2.3.1 Exploration and Safety

Exploration is essential for achieving optimal control through reinforcement learn-

ing; however, it often comes at the expense of compromised safety when operating

in the real world. Because of this, methods are often implemented to limit the ex-
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ploration necessary to achieve sufficient learning, including transfer learning and im-

itation learning, as mentioned earlier. For the purposes of this research, with the

goal of fully autonomous learning, I chose to use only online and model-free temporal

difference learning methods; therefore, any exploration of the environment must be

achieved by the physical agent itself.

In this work, I achieved exploration by means that are often successful in simulated

environments, including randomized initial positions, negative rewards, and epsilon-

greedy. The latter two are easily implemented in the physical environment as well as

in simulation. The use of negative rewards facilitates exploration when the adjustable

weights of the approximation function are initialized to zero, presetting the values for

each state-action combination to zero. When rewards are negative, a value of zero

is only achieved when the goal is met perfectly, which is impossible to reach for

practical purposes. At this point, any action taken in any state would result in a

reward less than what is expected, resulting in different future action selections when

following the learned policy. This method is known as optimistic initial values, and

is particularly useful early in learning and for stationary tasks specifically [46]. To

achieve this technique, I assigned rewards as the negative squared distance between

the current position and the target. Another common technique used to facilitate

the exploration of the action space is epsilon-greedy [46]. At the time of action

selection there is a set probability, ε, that a random action is selected. For this

case,the ε value was 0.1, prompting for random action selection approximately 10%

of the time. The other 90% of actions selected were considered “greedy” and followed

the agent’s trained policy, πθ, for achieving highest expected reward. Performing

RL in simulated environments lends itself easily to an episodic format that comes

with built-in exploration. At the conclusion of each individual training episode, the

environment may be reset with any initial conditions within the state space, allowing

for the potential of a previously unseen, or rarely seen, state to be visited. By
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randomizing this initial position, the agent may explore the state space in a relatively

uniform manner. Unfortunately, selecting an initial state for an agent that has yet

learned to control itself can be difficult. Additionally, for the sake of autonomy,

setting this initial state via human intervention was not an option. To overcome this,

I chose to alternate training episodes with what I called “exploration episodes,” in

which the agent selected actions randomly from a modified action space for half the

number of steps in a training episode. This allowed each training episode to begin in

a pseudo-randomized state; however, I found that, due to a slight bias in the action

space, the agent would end the exploration episode predominantly in a portion of

the state space below the target position. To enable more complete exploration of

the state space, I split the exploration action space into two modified spaces, one

containing the six lowest motor outputs and another containing the six highest. By

alternating between these two action spaces for each exploration episode I ensured

initial states occurring both above and below the target position.

While this method allowed for ample exploration of the state space, choosing

random actions for extended series of consecutive timesteps is potentially hazardous

to the equipment, running the risk of relatively high-speed collision between the

air-sled and the end of the air-track. To account for this, I implemented several

safety precautions, one of which was achieved during action selection. If the air-sled

came within a specified distance of either end of the air-track, 5 centimeters, and

did not have a velocity of at least 0.1 m/s toward the center of the air-track, then

the maximum or minimum action was selected appropriately and automatically to

accelerate the air-sled back toward the safe exploration zone.

2.3.2 Exploration Updates

Implementing this method of alternating learning episodes with exploration episodes

as a means of randomized initial position had benefits for exploring the state space
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but was accomplished at the cost of time. The period of each exploration episode

occurred without updating any weights for the actor or critic, yet the equipment

still experienced the wear and tear of additional use and fuel or energy consumption.

This time, although not wasted, could be spent more efficiently by including addi-

tional updates. The two methods studied in this work were using off-policy updates

and applying an experience replay (ER) during the exploration episodes.

Off-Policy Actor-Critic (Off-PAC) is an algorithm introduced by Thomas Degris et

al. for updating both the actor and critic from actions made using a decision process

other than the trained policy [84]. For this case, these updates were performed using

the randomized actions selected during exploration episodes. As with any off-policy

algorithm, an importance sampling ratio was included to estimate the expectation of

the trained policy when given a sample from the acting policy. Off-PAC traditionally

uses an eligibility trace format to perform updates; however, for the purposes of

this research, I chose to set the trace decay rates to zero so that the updates were

equivalent to that of a one-step TD algorithm. I chose to do this because the goal was

not to further complicate traditional learning algorithms with additional parameters

in need of tuning, but to illustrate the advantage of exploiting time otherwise ignored

during autonomous training in a physical experiment.

Experience replay is another tool commonly used in RL to increase the speed of

learning and mitigate catastrophic forgetting in deep learning by keeping a memory

of previous quadruples, (S,A, S ′, R), each containing a state and action with the fol-

lowing state and corresponding reward earned [85]–[87]. More recently, this technique

has been applied to actor-critic methods and has become incredibly popular for DRL

methods due to its ability to provide series of uncorrelated data for batch updates

for a neural network [88], [89]. In this case I built a mini-batch that held up to 5

episodes’ worth of the most recent quadruples, from which they were selected ran-

domly in sets of 10 for each exploration episode timestep. The quadruples contained
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enough information to calculate a gradient and perform an update similar to that

which I performed when using Off-PAC, but with an importance sampling ratio of

one since actions were selected following the trained policy. This allowed for the agent

to continue to learn from past experiences when updates would otherwise not occur.

The implementations of these methods are further illustrated in Algorithm 1.

Algorithm 1: Exploration with Off-PAC or Experience Replay

Input: Off-PAC ← Boolean
Input: REPLAY← Boolean
initialization;
NE ← Number of episodes;
NS ← Number of steps per episode;
NR← Number of updates from replay buffer;
for iteration=0,1,...,NE do

if iteration is even then
for step=0,1,...,NS do

Follow policy πθ;
Update θ and w;
if REPLAY is True then

Save (S,A,S’,R) to replay buffer;
end

end

end
for step=0,1,...,NS/2 do

Follow random action policy;
if Off-PAC is True then

Update θ and w using Off-PAC;
end
else if REPLAY is True then

for replays=1,2,...,NR do
Sample (S,A,S’,R) from replay buffer;
Update θ;

end

end

end

end
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2.3.3 Simulations

Due to wear and tear experienced by equipment from regular use, it was preferable

to limit time spent tuning and training in the physical environment. Because of

this, I decided to perform preliminary tests in a simulated environment, where many

repetitions of training could be used for tuning hyperparameters and testing algorithm

designs, without the consequence of equipment damage. The environment that I

simulated is depicted in Figure 2.1. For this air-sled/air-track environment, the target

position for the air-sled was 0.6 meters from the end of the air-track. The state space

was continuous and two dimensional, capturing all position values within the range

of 0 and 1.2 meters and velocities falling between -1 and 1 meters per second. Set at

a 10-degree incline, the sled had an analog DC propeller motor that produced a force

output for position control. The incline rendered the open loop system unstable. The

physics of the air-track/air-sled environment are captured by these iterative kinematic

equations:

xk+1 = xk +
Tk −G

2
∆t2 + vk∆t (2.10)

and

vk+1 = vk + (Tk −G)∆t. (2.11)

Here G is the acceleration due to gravity, which in this case is 0.52 m/s2 to account for

the air-track incline,Tk is the acceleration from thrust, ∆t is the simulation timestep

size of 0.05 seconds, xk is the position at timestep k, and vk is the velocity at time

step k. An air-sled mass of 0.170 kg was used to determine Tk. These equations were

used to determine the air-sled’s state (position and velocity) over the 400 timesteps

of each training and testing episode as well as the 200 timesteps of each exploration

episode.

This research aimed to achieve learning in a real-world environment; thus, it
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Figure 2.1: Air track and air-sled environment. Because the track was tilted at a
10-degree angle, the system was inherently unstable, requiring constant
feedback control to maintain the air-sled’s position.

was important to create as accurate a simulation as possible. Incorporating the

noise produced by the propeller thrust output was crucial to accurately model the

uncertainty experienced by the controller. Modeling the propeller thrust noise was

achieved by first measuring samples of the output force produced by the propeller

at a series of motor values. I chose to make force measurements for ten different

motor values ranging from 25 to 250. These measurements were taken at 1000 Hz

for 5 seconds each, resulting in 5000 force output readings for each determined motor

value. These samples created a series of non-Gaussian distributions best represented

by the triangular distribution function in python’s “scipy” statistics library. Due to

the 0.05 second timestep, a force output for a given motor value was determined

by averaging fifty samples from the respective triangular distribution. Following the

central limit theorem, this led to Gaussian distributions of force outputs for each

motor value. These average acceleration values, calculated using the air-sled’s mass,

and their standard deviations are shown in Figure 2.2. As illustrated, 90% of the

average acceleration from the propeller was achieved by a motor value of 100, after

which the increase in propeller force diminished. Because of this, I chose to limit

27



Figure 2.2: Average acceleration due to propeller output for each measured motor
value. A fitted line represents the sampling mean during simulation. The
shaded area is 1 standard deviation from the averaged measurement val-
ues.

the discrete action space to 11 evenly spaced motor values ranging from 0 to 100.

The average motor values not covered by the original data set were estimated with

the fitted curve also depicted in Figure 2.2. The average standard deviation of force

output samples for motor values up to 100 was 0.005. I used this to determine the

distributions from which the acceleration values were sampled in simulation.

To mimic the real-world environment as closely as possible, I used the unique ex-

ploration methods described in Section 2.3.2. This required forgoing the traditional

random initialization of each episode to instead incorporate alternating exploration

episodes, simulating the pseudo-episodic format of the physical experiment. Addi-

tionally, during exploration episodes, I implemented the safety zones meant for aided

collision prevention. Throughout each training iteration, the total reward earned from

every other training episode was stored for later comparison between algorithms. This

was done to account for the alternation of action spaces between exploration episodes

so that recorded rewards came from episodes with similar initial positions given the

pseudo-episodic format. Although training occurred during these episodes in the

same way as experienced in the other training episodes, I denoted these episodes as

“testing episodes” for clarification. It is important to keep in mind that although
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I performed a total of 101 episodes for each rendition of training, the graphs only

consider the testing episodes, starting with the first, to set a baseline performance

without training, and then occurring every fourth episode subsequently.

Figure 2.3 presents the learning curves for each base algorithm and their respective

variants in the simulated environment. Because consistency is crucial when applying

RL to real-world applications, several iterations of training occur. For the simulated

case, I chose to average 10 iterations for each base algorithm and its variants, each

iteration with random seeds ranging from 0 to 9. Since the final goal wasn’t to achieve

learning in simulation, but instead on the physical system, I only briefly describe the

simulation results. Off-PAC appeared to accelerate learning for each of the baseline

algorithms; however, the average reward earned converged on values slightly less than

that achieved by the baseline algorithms. The inclusion of ER during exploration

showed the fastest learning of all algorithm variations for A2C and PPO, and, in

all cases, earned the highest average reward. These results were encouraging for

implementing the learning algorithm completely online in the experimental hardware.

As with any implementation of RL, hyperparameter tuning was a necessity. This

intermediate step allowed us to pinpoint hyperparameter values for each algorithm

that found success in this reinforcement learning problem. Several of these hyper-

parameters remained unchanged when learning was moved to the experimental envi-

ronment. Only the learning rates for each algorithm, α, αOP and αER were subject

to change, but the relationships between the exploration update learning rates, αOP

and αER, and the common learning rate, α, was maintained. These relationships and

all other hyperparameters are given in Table 2.1.

Determining these hyperparameters was one of two main purposes of this simu-

lation work. The second of which was as a justification to the merit of applying the

new training format, including policy updates during exploration episodes, to this
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Figure 2.3: Average reward earned per testing episode in simulated training environ-
ment. I performed training for each baseline algorithm (A2C, A2C(λ),
and PPO) and exploration episode update variants (Off-PAC and Ex-
perience Replay). It is important to note that a combined total of 101
episodes of traditional training and exploration were completed for each
round of training. Testing episodes occurred every other training episode
(every fourth episode when including exploration) to improve initial po-
sition consistency for testing and reward comparison.

RL problem before real-world implementation. So, although the experiment did not

use any offline training, I did use simulation to determine a reasonable approach for

hardware autonomy.

2.4 Experimental Demonstration and Validation

The objective of this research was to present an autonomous training scheme for

developing learned controllers in a physical environment that would typically require

human intervention or an additional controller for environment reset. In this section

I introduce the experimental setup chosen to demonstrate such an environment, in-

cluding the additional safety measures put in place to mitigate hardware damage.

Additionally, I describe an adjustment made to the action selection strategy used in

the traditional learning algorithm, and my reasoning for making this adjustment for

hardware implementation.
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2.4.1 Experimental Environment

Stability is the cost of maneuverability for aerobatic aircraft, requiring autonomous

feedback control to maintain trim without explicit piloting. Using sensor input to

accomplish equilibrium in an unstable environment provides an appropriate analog

for such maneuverable flight vehicles. Therefore, to demonstrate the capability of

the pseudo-episodic training scheme with exploration updates I chose to develop a

controller for an air-sled such that it maintains a desired position on an inclined one-

dimensional air-track, as seen in Figure 2.1. A pump is used to force air through a

series of holes set along the length of the track to allow for a near frictionless surface

for the sled to slide along, controlled by a single propeller, simulating one dimensional

trimmed flight. The propeller output was connected through a motor control board

to an Arduino Nano microcontroller. In addition to providing a motor value signal

between 0 and 100 to the motor control board, the Arduino Nano received position

information from an infrared distance sensor and communicated with external de-

vices through USB. Distance gauged by the infrared sensor was used to calculate the

velocity of the air-sled after each 0.05 second timestep. The USB connection allowed

information to be relayed between the air-sled and a laptop. The laptop ran a cus-

tom Python-based RL script that used state data (position and velocity) as inputs

and output the selected action for each timestep. Distance values were continually

measured and stored as averaged sets of two in the Arduino Nano’s serial buffer. At

each timestep, when the learning algorithm asked for the air-sled position, the two

most recent averaged values were read into the Python script to be averaged again

and the serial buffer was emptied. This was done to limit the amount of data stored

in the serial buffer and to smooth the noisy distance data obtained from the infrared

sensor.

After moving to the hardware environment, two physical safety measures were put

in place, in addition to adjusted exploration action selection, to mitigate the severity
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of any impact that may occur. The first physical safety measure occurred naturally

through the placement of the power supply wiring and communication wires between

the air-sled’s Arduino Nano and the computer. By using the correct length and

placement of this wiring, mounted above and centered over the air-track, the air-sled

moved freely about most of the state space; however, when the air-sled approached

either end of the air-track, an additional force was applied to air-sled toward the center

of the air-track due to the weight of the wiring. This reduced the velocity of the air-

sled and often prevented a collision all together. This safety measure did come at a

cost. Any movement experienced by the wire had momentum and placed additional

external force on the air-sled. This created a greater variance in the accelerations

experienced by the air-sled to be overcome during training. In case this safety measure

failed to prevent the air-sled from bumping into either end of the air-track, I included

padding at either end of the air-track to mitigate any damage that may have occurred.

2.4.2 Deterministic Policy Gradient

Each of the algorithms chosen for this experiment were actor-critic methods which

are typically stochastic in their decision-making processes. While stochasticity has

many benefits for certain environments and allows for exploration to be more implicit

in an algorithm’s action selection, a stochastic controller continues to take suboptimal

actions after training. Although this undesirable decision-making is infrequent, it can

lead to less stability in the final control of the air-sled, particularly when training time

is limited. One option to get around this issue is to use a stochastic policy during

training and then only select the action of highest probability during testing; however,

this too failed to guarantee sufficient control after a short period of training in the

experiment. As mentioned, one point of concern for training in a hardware-based

environment is the amount of time necessary to achieve sufficient control of the air-

sled. While time is always a constraint in RL, it becomes more influential in the
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physical setting due to wear and tear on equipment, potential accidents, and fuel

consumption.

I found that by switching to a deterministic action selection during training, not

only was the air-sled capable of smoother control, but it learned to do so in a much

shorter training period, completing training in under 30 minutes. Figure 2.4 high-

lights this improved learning speed. To account for the loss of intrinsic exploration, I

chose to implement an epsilon greedy action selection, as described in Section 2.3.2.

Although deterministic policy gradient methods have been used before, as in [90], I

took an approach similar to a simple off-policy update, using an importance sampling

ratio between the stochastic probability of an action’s occurrence, defined by trained

policy, and the probability defined by the action selection policy. When following the

deterministic action selection policy this probability was equal to one; however, when

the action was selected following the random policy, occurring 10% of the time due

to epsilon-greedy, the action selection probability was the inverse number of available

actions. This led to the full update equation,

∆θ = αδ∇lnπθ(A|S,θ) ∗
πθ(A|S,θ)
πb(A|S)

. (2.12)

I applied the autonomous learning concepts to hardware, taking that step toward

self-adaptive flight. After tuning the common learning rate, α, I found that a value

of 10e-4 allowed for learning to be fast enough to complete training in 101 episodes

(25 minutes) for all but one case, but slow enough to be stable and allow for recog-

nizable differences between algorithm variants. All other hyperparameter values are

available in Table 2.1. Although the values of the exploration update learning rates

were adjusted for real-world training, their relation to the common learning rate was

maintained as described in Table 2.1. All other hyperparameters were consistent with
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Figure 2.4: Training comparison between stochastic and deterministic PPO. Deter-
ministic PPO earned higher average reward per testing episode in the
second half of training on the physical experiment. The shaded area in-
cludes all reward values earned by each random seed in respective testing
episodes.

those used in simulation.

2.5 Results

Episode reward is a common metric used to gauge an algorithm’s ability to learn.

Additionally, due to noise and randomness that occurs naturally in physical envi-

ronments, consistency becomes increasingly important for measuring the viability of

an algorithm. To account for consistency, each algorithm of consideration, and its

two additional variants, were repeated 5 times. The rewards from the 5 renditions,

each with a different random seed ranging from 0 to 4, were averaged to represent

the reward for that algorithm or variant thereof. These values, along with the stan-

dard deviation of reward earned per episode, are shown for each algorithm and the

additional variants in Figure 2.5. While standard deviation may not be specifically

meaningful for these small distributions, it can still be a useful means to quantify

spread, and therefore consistency, of the algorithm’s operation. In addition to consis-

tency, another metric I considered for an algorithm’s performance is speed of learning.

This is crucial for learning in a real-world environment. In addition to the increased
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Table 2.1: Algorithm Hyperparameters

Hyperparameter A2C A2C(λ) PPO

α 0.01 0.01 0.01
αOP 3α 3α 3α
αER 0.5α 0.2α 0.1α
αzw 0.01 0.01 0.01
λ - 0.4 -
ϵ - - 0.2

a The variant learning rates, αOP and αER,
are listed as relationships to common
learning rate, α

b α is adjusted to 10e − 4 when training on
experimental equipment

wear and tear placed on the equipment during lengthy training sessions, this extends

the period in which poor actions may be taken, putting the agent in potentially dan-

gerous positions. A black dashed line is included to represent the highest reward

earned for each of the base algorithms, allowing us to quantify the speed of learning

as the number of episodes required for each algorithm variant to surpass the base

algorithm’s maximum reward.

Figure 2.5 shows that with the basic A2C algorithm, the separate additions of

Off-PAC and ER during the exploration episodes dramatically accelerated learning

in the first several episodes, approaching and surpassing the maximum after 11 and

7 testing episodes for the addition of Off-PAC and ER respectively. The baseline

A2C did not achieve this until the 22nd testing episode. The standard deviation

plots show that incorporating Off-PAC and ER during exploration episodes both have

improved the consistency of the algorithm’s learning. One thing to note when looking

at the standard deviation plots is that, across all three base algorithms, the standard

deviation is always highest when the algorithm is doing most of its learning and the

reward is still increasing. Similar performance between iterations was achieved at

the episode in which the standard deviation dropped below and maintained a value
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Figure 2.5: Performance comparison between baseline algorithms (A2C, A2C(λ), and
PPO) and their exploration episode update variants (Off-PAC and Expe-
rience Replay) in real-world training. The top 3 plots show the average
reward earned per testing episode. The dashed black line represents the
maximum average reward achieved by the respective baseline algorithm.
Consistency in learning performance is gauged by the bottom three plots
illustrating the standard deviation of rewards earned per training episode
for each algorithm and its variants. I consider a standard deviation held
below 4 as an indication of consistent learning performance.
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beneath a defined low point. This addressed to the consistency of an algorithm’s

learning. After 9 test episodes, A2C had relatively high standard deviation. This

means that although one of the algorithm’s iterations may have approached its highest

reward, and learned a suitable policy, several iterations had yet to do so. This is true

even after training has concluded; however, this changed with the addition of Off-PAC

or ER. Adding Off-PAC to the algorithm allowed for consistency in learning after 17

test episodes. For the case of ER, consistency was almost achieved as early as test

7, but there were two high peaks in standard deviation that occur around tests 10

and 15, and then again a smaller spike at 19. Because of this, I defined the metric

of “achieving consistency” (σ < 4) as the first test episode in which the standard

deviation dropped below 4, represented by the red dotted line in the Fig. 2.5, and

then remained below 4 until training was completed. Additionally, I chose to record

the total number of test episodes with standard deviations below 4. With this metric,

A2C with ER achieved consistency after 21 episodes and had a total number of 13

test episodes where learning was consistent. These comparisons, in addition to the

number of test episodes needed to reach the baseline algorithm’s maximum reward

(TTBM) as well as the overall maximum reward of each variant, were made for each

of the three base algorithms and presented in Table 2.2.

Through these metrics, several patterns developed. In each case, the addition of

Off-PAC or ER improved the overall learning achieved by the baseline algorithm when

comparing highest average rewards achieved during training, with the ER variant

consistently earning the highest average rewards overall. With regards to learning

speed, measured by TTBM, the implementation of ER surpassed both the baseline

and Off-PAC variant for each of the three algorithms; however, the addition of ER did

not frequently aid in learning consistency. This is well illustrated in both the A2C and

A2C(λ) cases. Although implementing ER would typically achieve standard deviation

values below 4 early in training, as the training continued the standard deviation
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Table 2.2: Hardware Learning Performance Metrics

Algorithm Max avg. reward TTBM σ < 4(total)

A2C -10.7 22 (4)
A2C Off-PAC -6.02 11 17 (12)

A2C ER -5.85 7 21 (13)
A2C(λ) -6.05 12 11 (15)

A2C(λ) Off-PAC -5.88 25 10 (18)
A2C(λ) ER -4.71 6 23 (14)

PPO -5.62 23 13 (18)
PPO Off-PAC -4.83 10 8 (22)

PPO ER -3.78 2 5 (24)

a Metrics include the maximum average reward achieved, the
number of test episodes needed to reach the baseline maximum
rewared (TTBM), and the earliest test episode in which the re-
ward standard deviation dropped below and maintained a value
less than 4 through the remainder of training (σ < 4)

b The total number of test episodes achieving a standard devi-
ation less than 4 during training is also listed underσ < 4 in
parenthesis.

frequently spiked, briefly increasing to a value above 4. These spikes often only lasted

for one episode, but at times the spike required 3 testing episodes before reducing

back to a value representative of consistent learning. On the other hand, introducing

Off-PAC updates during the exploration phase improved consistency in every case.

Off-PAC was not the fastest algorithm variant when comparing TTBM. When added

to A2C(λ), Off-PAC was slower than the baseline. However, adding Off-PAC updates

during exploration achieved learning consistency after the fewest number of testing

episodes for 2 of the 3 algorithms. Interestingly, this was not the case for PPO, where

ER proved to give an advantage in speed and also showed capability in consistent

learning. This could be due to PPO’s clipping mechanism that is designed specifically

to prevent updates from becoming too large and overshooting, potentially improving

learning consistency. Although PPO’s baseline algorithm does not appear to be as

fast at achieving consistency as A2C(λ) according to σ < 4, this could be due to

PPO’s slower learning speed, not reaching its maximum average reward until episode
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23. Therefore, when another algorithm was used to accelerate learning, such as ER,

the result was a fast learning algorithm where the overall standard deviation of reward

remained low.

In addition to reward earned throughout training, it was important that the policy

learned by the algorithms could control the air-sled to a satisfactory degree after

training was completed. Figure 2.6 presents the position values over a period of 20

seconds for the random seed of best performance for each of the base algorithms and

their variants. In each plot I see the behavior for two initial positions, one near each

end of the air-track. Due to the noise of the infrared sensor, I applied an averaging

technique for smoothing the data to improve recognition of the air-track’s position

for each timestep. The black dotted lines represent locations of 10% error from the

target position of 0.6 meters from the end of the air-track. In many cases of control,

metrics such as rise time and settling time are used to gauge performance. However,

the controllers were trained based on another metric, earned reward, which I used

again to compare overall performance between learned policies for the two initial

conditions. When considering traditional metrics, A2C(λ) with Off-PAC achieves the

best control from an initial position of 0.2 meters and the baseline A2C algorithm

trained the best policy for control from an initial position of 1 meter, needing only 4.2

and 6.25 seconds to settle between the 10% error margins respectively. However, when

I compare the rewards earned over the duration of the control test, the overall best

performance was achieved by the PPO algorithm with Off-PAC exploration updates,

earning a combined reward of -11.35. The next best performances in order came

from A2C(λ) with ER, A2C(λ) with Off-PAC, and A2C with ER, each earning a

combined reward greater than -13. The top 4 performances came from algorithms

with the addition of Off-PAC or ER. This suggests that the inclusion of some form

of off-policy update during the exploration episodes can benefit training for control

with a variety of actor-critic algorithms, assuming performance is measured by the
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Figure 2.6: Learned controller response performances. I compared position over
time of the air-sled on the air track for the best performing policy from
each baseline algorithm (A2C, A2C(λ), and PPO) and their exploration
episode update variants (Off-PAC and Experience Replay). Two initial
positions were considered, each located ±0.4 meters (±1.31 ft) from the
target. The target position of 0.6 meters (1.97 ft) is represented as a red
dashed line and positions of 10% error from the target are black. Reward
earned for each time series and the combined total reward are given in
the bottom right corner of each plot.

reward system used to direct learning.

2.6 Conclusion and Future Work

The implementation of reinforcement learning in physical experiments has proven

to be a difficult task. In this work I developed a pseudo-episodic approach for the

autonomous training of an RL agent in a one-dimensional, unstable environment.

Our method is model-free and used only information gathered by an on-board sensor.

Although training was performed entirely online, its structure allowed for additional
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policy updates to occur between training episodes. Additionally, I validated this

autonomous training method in experimental hardware. The addition of ER and

Off-PAC updates during the exploration episodes showed training benefits such as

improved speed and consistency in learning respectively. When paired with PPO,

ER performed particularly well, overcoming its weakness in maintaining learning

consistency. Further improvement was displayed in controller performance when using

reward as the compared metric.

This work focused on using novel techniques to improve speed and consistency

in learning, while maintaining safety and autonomy in a real-world environment;

however, the resulting controllers lacked accuracy. Learning quickly and safely may

be prioritized over accuracy in many environments, such as a UAV with precious

cargo adapting to a new environment where it is more important to quickly learn

safe flight than to achieve optimum performance. With that being said, there are

several environments where final performance is the priority; therefore, future work

should be dedicated to achieving optimal control, at the sacrifice of speed if necessary.

Another potential avenue for this work is to implement neuromorphic chips to allow

fast and continuous hardware based learning in this unstable system, taking another

step toward in flight adaptation [91].
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CHAPTER III

Intelligence for MFC airfoil

3.1 Summary

Smooth camber morphing aircraft offer increased control authority and improved

aerodynamic efficiency. Smart material actuators have become a popular driving force

for shape changes, capable of adhering to weight and size constraints and allowing

for simplicity in mechanical design. As a step towards creating UAVs capable of

autonomously responding to flow conditions, this work examines a multifunctional

morphing airfoil’s ability to follow commands in various flows. I integrated an airfoil

with a morphing trailing edge consisting of an antagonistic pair of MFCs, serving as

both skin and actuator, and internal piezoelectric flex sensors to form a closed loop

composite system. Closed loop feedback control is necessary to accurately follow

deflection commands due to the hysteretic behavior of MFCs. Here I used a deep

reinforcement learning algorithm, PPO, to control the morphing airfoil. Two neu-

ral controllers were trained in a simulation developed through time series modeling

on long short-term memory recurrent neural networks. The learned controllers were

then tested on the composite wing using two state inference methods in still air and

in a wind tunnel at various flow speeds. I compared the performance of the neu-

ral controllers to one using traditional position-derivative feedback control methods.

The experimental results validate that the autonomous neural controllers were faster
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and more accurate than traditional methods. This research shows that deep learn-

ing methods can overcome common obstacles for achieving sufficient modeling and

control when implementing smart composite actuators in an autonomous aerospace

environment.

3.2 Motivation and Background

Uncrewed aerial vehicles are growing in popularity for both civilian and mili-

tary applications, which makes improving their efficiency and adaptability for various

aerial environments an attractive objective [1]. Many studies pursue this goal using

morphing techniques that incorporate shape changes not typically seen in traditional

aircraft [2], [3]. Due to weight and volume constraints consistent with smaller flight

vehicles, smart materials, such as MFCs, have been used to achieve the desired shape

changes [4], [5]. Macro fiber composites are flexible and lightweight, and when bonded

to a thin inextensible skin, like steel shim, can create smooth out-of-plane curvatures.

These qualities allow MFCs to behave as both the skin and actuator for a camber

morphing airfoil, which offers benefits in efficiency and control authority [1], [37],

[39]–[42].

Although MFCs provide aerodynamic and structural benefits in camber morphing

applications, they bring some challenges as well. The thin and flexible nature of

MFCs that allows the out of plane morphing behavior also makes them susceptible to

displacement when subject to large aerodynamic loads. This reduces the total camber

achieved by the multifunctional actuators. Using feedback control can mitigate this

problem, but the hysteresis and creep associated with MFCs provide an additional

challenge for traditional linear controllers. [5], [45]. Deep reinforcement learning has

proven to be proficient at performing accurately in nonlinear control environments

and may be a promising alternative.

As mentioned previously, RL is a means of autonomously achieving control through
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trial-and-error. Like in biological systems, a reward system is used to meet a spec-

ified goal. Each reinforcement learning problem consists of two fundamental parts,

the agent, or object of concern whose actions are determined by a learned policy, and

the environment in which the agent observes its state and performs actions. A state’s

value is measured as the long term expected reward to be received after residing in

that specific state [46]. If the state space is large and best represented as continu-

ous, function approximation is used to reduce memory requirements. ANNs are an

effective method for function approximation because of their ability to accurately rep-

resent nonlinear functions when trained on large quantities of data. Recent work has

combined multi-layered ANNs with RL to create the subfield DRL, which has found

great success in many simulated and game based environments [48], [50]–[52], [92].

Success in perfectly controlled environments, such as games and simulations, contin-

ues to advance the field; however, there is a growing need to apply the knowledge

gained through simulation to robotics and other physical hardware environments [60],

[61], [65], [74].

Aerial vehicles have been the environment of choice for many reinforcement learn-

ing problems with the goal of creating autonomous UAVs that can adapt to their

environment or a changing mission [54], [58]. RL supports the complexity of a mor-

phing aircraft by producing a controller that learns to use morphing control surfaces

and operates in several configurations as well as by determining the best configuration

for a given flight situation [93]–[95]. Although these shape changes are achieved using

traditional methods, such as servos and motors, some have implemented RL in smart

material based morphing simulations [7], [96]. One case presented by Goecks et al.

implemented deep deterministic policy gradient (DDPG) with an SMA actuated air-

foil [8]. They found learning in the physical hardware environment to be difficult due

to limited time constraints; however, through deep learning, they were able to accu-

rately model the behavior of the SMA actuated airfoil in a wind tunnel and achieved
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control in a simulated morphing environment. Much of the work performed in DRL,

and almost all of the current literature around RL in morphing UAV environments,

is performed entirely in simulation.

Through a sim-to-real policy transfer I present the first successful application

of RL for an MFC actuated morphing system in a physical hardware environment

(Fig. 3.1). In this research, I found that DRL countered the hysteretic behaviors

present in the MFC morphing airfoil to effectively control trailing edge tip deflection

in the physical hardware. In the simulated environment, I trained two controllers

for use on the physical morphing airfoil, including one with a simple position error

based reward system (RL) and another with an adjusted reward system designed to

mitigate overshoot (MO). Control effectiveness of these two controllers and a tradi-

tional proportional-derivative (PD) controller was compared on physical hardware in

situations where “true” state information was supplied through an external Keyence

profilometer, as well as for on-board sensing where state information was estimated

through a piezoelectric flex sensor signal. I used two methods for state inference with

the flex sensor signal including a linear model (LIN) and a long short-term memory

(LSTM) neural network model. I first made comparisons in an unloaded environ-

ment, where system dynamics data was gathered initially to develop the simulation

for training, and then additionally when the airfoil was subjected to aerodynamic

loads at three different flow speeds.

I found that the learned controllers, specifically the MO controller, outperformed

the traditional PD feedback method. This was especially true for control metrics

considering speed and accuracy. From this, I verified that autonomously developed

controllers are not only viable for MFC actuated camber morphing, but may be a

superior option for erratic environments in which rapid adjustments must be made,

as in the case of turbulent flow.
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Figure 3.1: Image of the morphing airfoil system within the 1’x1’ wind tunnel. Also
visible in the upper left corner is the Keyence 2D profilometer used to
measure the true deflection of the trailing edge.

3.3 Methods

3.3.1 Morphing Airfoil System Design

I assessed the performances of the learned controllers using the camber morphing

airfoil design developed by Pankonien et al. [34].The baseline geometry for the mor-

phing airfoil was a NACA0012 airfoil with a 310 mm chord (Fig. 3.2). I 3D printed the

leading edge using an Objet Connex500 multi-material 3D printer, which can print

both rigid and flexible materials. The multi-material printing capabilities were crucial

for this airfoil design. The flexure box with integrated compliant material hinges inter-

faced the rigid leading edge with the morphing trailing edge. This allowed a shearing

motion that amplified the maximum tip displacement of the morphing trailing edge

[34]. I assembled the morphing trailing edge using 2 MFC unimorphs, one on either

side of the airfoil. I constructed each unimorph by bonding a M8557-P1 MFC to a

0.025 mm thick sheet of stainless steel shim. The morphing section also included two

Flex Sensors from Spectra Symbol, which function as unidirectional variable resistors.

To increase the sensor sensitivity, I bonded each flex sensor to a 0.025 mm thick strip

of stainless steel shim as well. The flex sensors measured the internal displacement
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Figure 3.2: Image of the morphing airfoil system including two antagonistic MFC
unimorphs, two piezoelectric flex sensors, the multi-material flexure box,
and NACA 0012 leading edge.

of the morphing trailing edge, and were wired in a voltage divider configuration.

The control architecture for the morphing airfoil can be seen in Figure 3.3. A

Keyence LJ-V7300 2D profilometer gathered true deflection information, and two

piezoelectric flex sensors within the morphing section provided signals for deflection

inference. This sensor information was fed through an Arduino Mega to a laptop

where it was stored during data collection for model training or used for action se-

lection via a Python script in Jupyter notebooks. For controller deployment, either

true deflection information or a flex sensor signal in conjunction with one of the two

inference models (LIN or LSTM) was used to provide state information to one of the

three controllers (PD, RL, MO) to determine an output voltage signal [66]. From

the Python script, a voltage signal was sent to the Arduino Mega and converted into

a pulse width modulation (PWM) signal for the voltage amplifier. From there the

corresponding voltages were supplied to the antagonistic MFC unimorphs that form

the trailing end of the airfoil.

3.3.2 Data Collection

Reinforcement learning, although a powerful tool, is time consuming due to its

trial and error format. To refrain from subjecting the system to unnecessary wear

and tear, I created a simulation in which I could experiment with RL methods to
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Figure 3.3: Data flow diagram for the morphing airfoil experiment. Deflection infor-
mation was captured through the 2D profilometer and two piezoelectric
flex sensors and provided to a laptop for data collection and controller
decision making.
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develop a sufficient controller. Since I performed all training in simulation and trans-

ferred that controller directly to the hardware system, any inaccuracy in this model

would contribute to poor controller performance. In addition to the complex non-

linear behavior of the system, any imperfections that occurred in manufacturing the

composite wing provide a potential for variation in the behavior of the MFC actua-

tors. To accomplish accurate modeling specific to the morphing airfoil’s dynamics, I

collected true deflection and flex sensor information from randomized sweeps of the

action and state space of the morphing trailing edge.

During data collection, I ensured sufficient coverage of the state-action space by

applying a range of voltage changes from a randomized series of initial voltages. The

randomization of the voltage selection was crucial to accurately capture the hysteretic

behavior of the MFC system. The set of initial voltages included all even percentages

of possible voltage outputs. For this case, a voltage signal of 0 represented the largest

negative supplied voltage and a signal of 100 was the largest positive supplied voltage.

Thus, 50 was a neutral supply of 0 volts. From the initial voltages, a random voltage

change signal was selected from the range of even values between -30 and 30. This

change in voltage signal was applied to the MFC actuators for 100 timesteps of 0.05

seconds, supplying the new voltage for five seconds in total, after which the initial

voltage was again supplied for another five seconds. This was repeated until the set

of voltage change signals was exhausted and then restarted for the next randomly

selected initial voltage signal. This process was repeated ten times for ten different

random seeds.

3.3.3 Modeling Dynamics

Following data collection I implemented three neural network structures to com-

paratively model the dynamics of the system, consisting of a multi step dense (MSD)

network, a one-dimensional convolutional neural network (CNN), and a long short-
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term memory (LSTM) network [97]–[99]. The input for each of the models included

state information over the ten previous timesteps. Each timestep state consisted of

the current deflection value and the current and previous voltage signal. From this

input, the models predicted the deflection for the next immediate timestep. Of the

ten datasets collected using different random seeds, the first nine were combined and

split into an 8:2 ratio for training and validation respectively. The tenth data set

was not included in the training process and was used solely for testing. I found that

the LSTM model achieved the lowest error in both validation and testing (Fig. 3.4a).

This is visualized by the LSTM model’s ability to accurately represent the system’s

dynamics for a 100 second example section of the collected testing data (Fig. 3.4b).

The dynamics modeled here were based on the true deflection of the morphing trailing

edge and did not include any information from the piezoelectric flex sensors. This

must be considered when implementing controllers trained in a simulation informed

by this model.

3.3.4 Reinforcement learning environment and controllers

Many RL algorithms have been developed to fit a variety of learning problems.

Model free methods remove computational complexity attributed to learning a model

of the environment. Instead they focus on learning a function to dictate which actions

are preferred given the current state [46]. That function is known as the policy.

Focusing on learning a policy, as opposed to an environment model, creates a reactive

controller concerned only with the current state instead of selecting actions based

on predicted outcomes. On-policy methods use the learned policy for all decision

making and are frequently safer since they actively avoid states that result in low

reward during training [46]. It is for these reasons that I chose to use the model free

on-policy algorithm, PPO [72].

I developed the learned controllers using PPO in a simulation informed by the
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Figure 3.4: Comparison of learned dynamics models, including multi-step dense
(MSD), convolutional neural network (CNN), and long short-term mem-
ory (LSTM). The normalized mean absolute error (MAE) earned during
training validation (Val) and testing (Test) is presented in a), and b) illus-
trates the performance of the different models over a 100 second section of
data collection when given the true state at time 0. Mean absolute error,
in terms of millimeters, over the 100 seconds for each model is shown in
parentheses.
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LSTM dynamics model. PPO is among the top RL algorithms in many Atari, Ope-

nAI, and MuJoCo environments and is frequently a baseline for comparison for new

algorithm performance [70]. At its base PPO is an actor-critic method. This means

that it approximates two functions, the critic, a value function that represents the

preferability of being in a given state, and the actor, that learns the policy π. Given

that there are two neural networks to update in PPO, there are also two loss functions

to be combined when performing gradient ascent. The actor and critic loss functions

are defined as follows,

LCLIP (θ) = Ê[min(r(θ)Ât, clip(r(θ), 1− ϵ, 1 + ϵ)Ât], (3.1)

Lcritic(w) = (Vw(st)− V target
t )2, (3.2)

where At is the advantage at time t described by

Ât = δt + (γλ)δt+1 + ...+ ...+ (γΛ)T−t+1δT−1, (3.3)

with

δt = Rt + γV (st+1)− V (st), (3.4)

and rt(θ) is the ratio between the new and old policy for the current action, at and

state st,

rt(θ) = πθ(at|st)/πold
θ (at, st) (3.5)

In the above equations, θ is the vector of weights for the policy network, w is the

vector of weights for the value network, and V is the value of a state. The parameter

γ is a discount factor used to gradually degrade the impact of future state values on

the current state value, hence emphasizing the impact of more imminent states. The

smoothing factor, Λ, is used to reduce the variance in training and improve stability.

Finally, the main difference between PPO and previous actor-critic methods comes
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from the actor loss function where the clipping factor, ϵ, is introduced to limit overall

step size of the policy update to prevent an individual update from growing too large.

The values of these parameters, γ, λ, and ϵ, were set to equal 0.99, 0.95, and 0.2

respectively, which are the values suggested by Schulman when first presenting PPO

[72]. the implementation of PPO was drawn from an opensource example in Pytorch

[100]

The network structures for both the actor and critic are presented in Figure 3.5.

State observations presented to the controller consisted of the current normalized

deflection observation, the normalized goal deflection, as well as the current and

previous normalized voltage signals for each timestep. I used a 1D CNN for the initial

layer of both the critic and actor networks in the PPO algorithms, each followed by

three fully connected layers with rectified linear unit (ReLU) activation functions

[98], [101]. This input layer was given the ten most recent state observations and

goal deflections, providing additional temporal information to both the critic and

actor for value approximation and policy generation. Instead of using a continuous

action space to cover the large selection of voltage signals, I used a smaller discrete

action space consisting of seven potential changes in voltage signal ranging from -6

to 6. Training consisted of 5000 training episodes, each lasting 200 timesteps and

beginning with randomized initial conditions and goal deflection values. I trained

two controllers in the simulated environment. For the first learned controller the

action space included voltage signal changes [-6, -4, -2, 0, 2, 4, 6] and a simple reward

scheme that distributed negative rewards equal to the squared error between the

current deflection and the goal deflection. After initial testing of this controller in

the physical hardware environment, I noticed room for improvement regarding the

overshoot experienced. In the second learned controller I chose to include smaller

potential voltage changes within the action space, [-6, -2, -1, 0, 1, 2, 6], with the

goal of achieving finer control. Additionally, I augmented the original reward scheme
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Figure 3.5: Actor and critic neural network structures. The actor and critic networks
each have the same structure, including a 1D CNN layer and three fully
connected layers with ReLU activation functions. The actor produces
a probability distribution for each possible action, and the critic a single
value representing the estimated long term expected reward of the current
state.
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for the second learned controller to include an extra penalty equal to ten times the

original cost when the controller experienced an overshoot greater than 1% of the

tested response step size. Both these controllers were compared to a traditional PD

controller. To distinguish between the two learned controllers, I referred to the initial

controller with the simple reward scheme as the RL controller, whereas the second

one trained with the amended reward scheme was labeled the mitigated-overshoot

(MO) controller.

3.3.5 Modeling flex sensor

The controllers developed in simulation were based on true deflection information

gathered by the 2D profilometer and did not account for errors that occurred in state

estimation. However, in a realistic implementation of these controllers, state informa-

tion would be observed through onboard sensors, in this case piezoelectric flex sensors,

that give imperfect state measurements. Therefore, to provide accurate state obser-

vation, I used the information gathered during data collection (Sec. 3.3.2) to model

the relationship between the piezoelectric flex sensor signals and the true deflection of

the MFC trailing edge (Appendix 5.2)[66]. For the purposes of this model I used two

methods, a traditional linear method (LIN) and a time series neural network. The

LIN inference model was structured as neural network with a single node and a linear

activation function, leading the model to behave as a sum of weighted state values

and an additional bias. Initially, I trained models using information only from the

current timestep and included supplied voltage values. Although these appeared to

be accurate in training, implementation showed that the voltage values were heavily

weighted in the model, neglecting the sensor values and ignoring the hysteretic be-

havior. Therefore I removed the voltage values from the state inference model input

and used a time series of the 10 most recent timesteps to infer the current deflection.

Each time step consisted of the current sensor reading and the previous estimate of

55



Figure 3.6: State inference comparisons. This plot compares the flex inference mod-
els using 3 different neural network structures, including multi-step dense
(MSD), convolutional neural networks (CNN), and long short-term mem-
ory (LSTM), with the mean absolute error shown in parentheses. The
LSTM inference model provided the most accurate state approximation.

the true deflection. Once again I found LSTM networks provided the most accurate

prediction when compared to the other neural network structures (Fig. 3.6).

3.3.6 Experiment

Using the same data flow strategy as described in Figure 3.3, for each test I im-

plemented a series of step responses spanning a portion of the state space ranging

from normalized deflection values of -1 to 1. The composite airfoil began each test

in a neutral position without deflection and performed eight step responses of mag-

nitude 0.5 (3.31 mm), beginning with two positive steps, followed by four negative

steps, and finishing with two additional positive steps to complete a cycle within

the designated testing space. Similar to data collection, each step response was held

for 100 timesteps before transitioning to the following step. Due to the black-box

nature of these learned controllers, stability is still an open research problem in RL
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control[102]. For this reason, I use repetition to empirically show what response and

overall performance can be expected from these controllers. Therefore, I repeated

each test five times for each controller and state observation method, providing us

40 step responses for each controller-observation method combination. As a point of

comparison, I used the Ziegler-Nichols open loop method to tune a PID controller;

however, the controller experienced high overshoot and integral windup [103]. To mit-

igate this, I used two anti-windup methods including the addition of an anti-windup

term based on controller saturation, as well as a reduction of the integrated error

value [104]. I found that dropping the integral term, and therefore using a PD con-

troller, produced an accurate controller that limited the overshoot when compared

to the other PID methods. This was particularly true when paired with the flex

sensor inference methods, providing a fair and interesting baseline for comparing to

the learned controllers (Appendix A). Figure 3.7 presents the step response cycle

for a PD controller using each of the inference models in an unloaded environment.

Both the inferred position (blue), as determined by the flex sensors and the respective

inference model, and the true position (green), as determined by the 2D profilometer,

are illustrated. Although the inferred deflection often followed the target position

closely, the true deflection was sometimes off by several millimeters for the less accu-

rate inference models. Increasing in complexity, and accuracy, from the linear model

to the LSTM model, I found a decrease in state estimation error that is particularly

noticeable in the intermediate steps. For the remainder of this paper, although state

information was provided to the controllers using each of the inference methods, per-

formance metrics and comparisons were made based on the true deflection achieved

by the MFC airfoil.

I compared controller performance using several metrics including three traditional

controller step response metrics: rise time, settling time, and overshoot. The rise time

and settling time were measured from the beginning of a step response until the true
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Figure 3.7: Controller performance changed with state observation accuracy. The far
left plot shows the performance of the traditional PD controller when
given true deflection information. The following two plots show the true
deflections and inferred deflections experienced by the PD controller when
provided the linear (LIN) and LSTM inference models.

deflection first crossed, or remained within, a 10% maximum test deflection boundary

of the goal position. The overshoot was measured as a percentage with respect to

the size of the step response. I included an additional metric common to RL: total

earned reward. This was the value optimised by the RL algorithm. For consistency,

I chose the simpler reward of squared error between the true position and the goal

position as the metric for each of the controllers. As an error based metric, I used it

as an indicator for the overall accuracy achieved in a test run.

MFCs are known to perform differently under mechanical loads, but all of the data

used for training the controller and state estimation models were collected without

consideration for aerodynamic loading [34]. Therefore, to seriously consider these

controllers for autonomous UAV flight, I performed the same step response tests for

a variety of flow speeds. For this purpose, I repeated the testing process in a 1’x1’

(30 cm x 30 cm) wind tunnel for three flow speeds, 5 m/s, 7.5 m/s, and 10 m/s, to

determine the controllers’ ability to adapt to the environmental differences. These

58



tests provided information on the learned controllers’ performances in the presence

of aerodynamic loading. It was not within the scope of this project to perform any

aerodynamic analysis of the airfoil and therefore the angle of attack was maintained

at 0◦.

Note that prior to conducting the wind tunnel tests a new flex sensor circuit was

integrated into the composite wing, due to a malfunction in the original. The circuit

was built in the same manner, however there was a noticeable shift in the sensor

readings. To account for this, the mean and standard deviation of the sensor values

were adjusted, allowing the normalized values to be similar to those experienced prior

to the changed circuit. All testing performed within the wind tunnel was subject to

this change and therefore comparisons between controllers with shared flow speeds

were fair.

3.4 Results

3.4.1 Unloaded environment

For the initial experiments I compared the learned controllers to that of the tuned

PD controller in the environment in which they were trained, without aerodynamic

loading. The step response tests for each controller when provided true state infor-

mation and using each of the 3 inference methods are visualized in Figure 3.8. I

found that each of the controllers were able to track the target value with precision

when accurate state observations were provided by the 2D profilometer. The learned

methods reached the desired deflections more rapidly than the PD method, although

the RL controller often overshot the target. The MO controller improved on this

while still maintaining most of the speed seen by the initial RL controller.

Next I investigated the three metrics (rise time, overshoot, settling time) as well

as the total earned reward (Fig. 3.9). This figure visualizes the eight step responses in
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Figure 3.8: Controller tracking comparisons.This plot shows the step responses of
each controller (PD, RL, and MO) in an unloaded environment when
supplied true deflection information as well as state observations provided
by the two piezoelectric flex sensor inference models (LIN and LSTM).

each of the five tests for the three controllers. From this, each controller’s strengths

and weaknesses are shown. Of the three controllers, PD (green lines) consistently

earned the lowest reward. This was expected because the two learned controllers

directly used this reward, or at least some form of it, to develop their policies. In

addition to the low reward, the PD controller typically had a longer rise time, and

a lower overshoot percentage. Although these characteristics allowed for smoother

control, they may have led to the observed higher settling times (Fig. 3.9). In contrast,

the RL controller (blue lines) achieved the highest reward and fastest rising times,

but at the cost of much higher overshoot percentages. However, even with the higher

overshoot, the RL controller had fast settling times that frequently outperformed

those of the PD controller. Finally the MO controller (orange lines), found a middle

ground between the two aforementioned, with medium rewards and rising times that

were generally faster than the PD controller but typically not as fast as the RL

controller. Where the MO controller greatly improved over the RL controller was

in its overshoot percentage, experiencing much lower values than the PD controller.

60



Figure 3.9: Performance metric comparisons. Comprehensive presentation of per-
formance metrics achieved by each controller given true state observa-
tions. This plot includes every step response performed in testing and
can therefore be used to determine expected trends for each controller’s
performance.

The MO’s performance highlighted how the adjusted reward scheme led to a lower

overshoot percentage. Additionally the MO controller achieved the fastest settling

times of the three controllers.

Although the improved performance of the learned controllers, especially the MO

controller, over the traditional PD method built confidence in these more complex

controllers, it is not realistic to expect an airfoil controller to have perfect state obser-

vations during flight. Thus, I conducted the same step response tests using both of the

state inference methods (LIN and LSTM). I found a substantial impact of the state

observation accuracy for each of the controllers (Fig. 3.7). Interestingly, although the

different controllers were provided the same modeling methods for state inference, in

some cases the learned controllers were quicker to overcome the obstacles offered by

inaccurate estimation, settling on deflections closer to the designated goal than that

achieved by the traditional PD controller. This was particularly apparent in the early

steps for the linear model, and the intermediate steps for the LSTM model. For a

more direct comparison, Figure 3.9 considers each of the performance metrics and
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presents the average performance difference between a given learned controller and

inference model combination and the PD controller when using the same estimation

method. The error bars represent 95% confidence intervals to illustrate significance

in difference. With the exception of overshoot, both the learned controllers outper-

formed the PD controller on average. This difference was significant in all cases when

considering rise time, and for 5 separate controller/inference model combinations in

reward and settling time. As mentioned before, overshoot was the metric where the

learned controllers struggled the most; however, when paired with the linear model

for state observation, the MO controller trended towards achieving a lower average

overshoot than the PD controller.

3.4.2 Loaded environment

The step response tests for all three controllers when given perfect and imperfect

state information in the tested environment of 10 m/s flow speed are visualized in

Figure 3.11. These loaded responses with true state information indicate that the

controllers responded quickly and accurately to the various changes in goal deflection,

similar to that seen without loading. There were similar trends to those seen in the

unloaded testing when comparing the performance metrics of the controllers in a

10 m/s airflow environment (Fig. 3.12). Interestingly, the learned controllers out-

performed their unloaded condition, specifically the MO controller with regard to

overshoot.

The step response plots in Figure 3.11 provide an example of each controller’s step

response given the available state observation models. Unlike when given true state

observations, the control was less smooth. This may have been caused by vibrations

in the sensors due to airflow. To further investigate the results, I examined the

average absolute error between the true state and model observed state (Fig. 3.13).

I found a substantial improvement in the linear model accuracy from the unloaded
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Figure 3.10: Direct comparison of average performance achieved by learned con-
trollers in the unloaded environment for each metric to those achieved
by the PD controller given the same state observation method. Com-
parisons that trend in the favor of the learned controller are in light
green, and those in favor of the PD controller are in dark red. 95%
confidence interval error bars are provided to clarify significance of per-
ceived difference. Labels on the y axis are color coded, those in blue
represent comparative RL controller performances and those in orange
depict comparative performances achieved by the MO controller.

Figure 3.11: Loaded step responses. This plot shows the step responses of each con-
troller (PD, RL, and MO) in an 10 m/s aerodynamically loaded envi-
ronment when supplied true deflection information as well as state ob-
servations provided by the two piezoelectric flex sensor inference models
(LIN and LSTM).
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Figure 3.12: Loaded performance metrics. Comprehensive presentation of perfor-
mance metrics achieved by each controller given true state observations
in a 10 m/s airflow environment. This plot includes every step response
performed in testing and can therefore be used to determine expected
trends for each controller’s performance.

environment in the wind tunnel tests, possibly due to the normalization adjustment

mentioned previously. The LSTM model was not substantially affected, in some cases

performing better and other cases performing worse. This suggests that the LSTM

model generalized well to the adjusted environment.

As with the unloaded testing, the main objective was to compare the performance

of the controllers developed through RL to that of the traditional PD controller. These

direct comparisons are presented in Figure 3.14 for all three flow speeds. The learned

controllers no longer completely dominated the settling time and reward metrics. For

all but one of the tests in which the PD controller outperformed the compared learned

controller in at least one of these two metrics, the most complex state estimation

method (LSTM) was used. The one exception to this was for the average settling

time when the controllers had access to true state observations. In this case the

average difference between the PD controller and the RL controller was 0.014 seconds.

This difference was less than the time-step size of 0.05 seconds, and therefore was

not significant enough to consider a trend in either direction. Additionally, of the
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Figure 3.13: Average error for all controller/flex model combinations at all four flow
speeds. Noticeable improvement in linear inference error is possibly due
to the normalization adjustment made between unloaded and loaded
environment testing.

tests where the PD controller outperformed the learned controller, this difference in

performance was only great enough to be considered significant in two of the cases

according to the 95% confidence intervals, but the trend was still worth mentioning.

On the other hand, when using the linear model for state estimation, both learned

controllers significantly outperformed the PD controller at all flow speeds. The MO

controller specifically, when combined with the linear inference model, was the only

controller-inference model combination to outperform the PD controller, on average,

for all four performance metrics, including overshoot, at all three flow speeds and at

rest. This does not mean that this was the best controller-inference model combina-

tion overall, only that it performed better comparatively given the same flow speed

and state estimation conditions. To determine the best performances overall, Fig-

ure 3.15 presents the average performance metric values for each controller, inference

model, and flow speed.

Assuming perfect state observations, the previous comments were further vali-

dated. The learned controllers excelled in achieving fast and accurate control, ac-

cording to rising time, settling time, and reward. The PD controller still achieved the
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.

Figure 3.14: Average performances achieved by learned controllers in the aerodynam-
ically loaded environments. Each metric is directly compared to that
achieved by the PD controller given the same state observation method.
Comparisons that trend in the favor of the learned controller are in light
green, and those in favor of the PD controller are in dark red. 95%
confidence interval error bars are provided to clarify significance of per-
ceived difference. Labels on the y axis are color coded, those in blue
represent comparative RL controller performances and those in orange
depict comparative performances achieved by the MO controller.
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Figure 3.15: A summary of the average performances for each controller, under all
flow speed conditions, and with both observation methods.
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lowest overshoot of the controllers on average, but the MO controller produced only

2.13% greater overshoot on average. This was a great improvement over the additional

10% of average overshoot produced by the RL controller than the PD controller. I

found a continuation of this trend when considering imperfect state observations. I

found the learned controllers consistently outperformed the PD controller when using

the linear flex sensor model, LIN. The PD controller only outperformed one learned

controller, the RL controller, in the single metric of overshoot. I found that the more

accurate LSTM model improved performances for all controllers in the unloaded envi-

ronment and most cases in the Loaded environment. Interestingly, the RL controller

did not see notable improvement in performance from the more accurate inference

model in the loaded environment, but the MO controller did, showing decreased over-

shoot compared to using the LIN inference method and achieving the fastest settling

times and highest reward of all 3 controllers. The improved accuracy produced notice-

able improvement in most metrics for the PD controller as well. Given these findings,

the MO controller appeared comparable, and often preferred, over the traditional PD

controller, especially for instances where rapid control and overall accuracy was the

primary focus.

3.5 Discussion

These results provide insight for future controller design in the pursuit of fly-by-feel

solutions for morphing composite wings. I have validated the use of learned controllers

in the physical multifunctional morphing airfoil environment. Furthermore, I found

that through DRL techniques, I developed controllers superior to a traditionally tuned

PD controller. This was particularly true when emphasizing speed and accuracy in

control. For instances where overshoot is the only metric worth optimizing, choosing

a traditional PD controller with the most accurate state inference method available

(True or LSTM) would be the primary option. However, this is rarely the case. When
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considering all controller metrics used in this research, the learned controllers show

superior overall performance. Additionally, the MO controller produced comparable

speed and accuracy to the RL controller while greatly reducing the overshoot. This

superior performance was most emphasized when state inference complexity was lim-

ited to a linear model. Because the learned controllers most clearly outperformed the

PD controller when using the least accurate inference model, I suspect the learned

controllers were internally accounting for the hysteretic behavior of the system. Since

the learned controllers used 1D convolutions of the ten most recent time steps of

state information, RL and MO learned to recognize the nonlinear pattern within the

dynamics of the system to better inform action selection. The PD controller had

no internal mechanism to recognize hysteresis and therefore relied heavily on the

accuracy of the feedback signal.

The improvement achieved by the MO controller brought to light another ques-

tion: can I further optimize the controller through additional reward engineering?

There is a philosophy that achieving general intelligence in a trial and error format

only requires a simple reward structure that captures the goal of the controller [105].

This was the philosophy I followed when designing the first controller (RL), and found

it created a strong controller with emphasis on speed and accuracy. However, after

seeing it struggle to mitigate overshoot, I added a rule to the reward scheme. This

amendment created a controller with an impressive balance between speed, accuracy,

and overshoot (MO). It may be argued that for this purpose, mitigating overshoot

falls within the bounds of the goal that must be characterized by the reward function.

Others may suggest that this is an example of the Reward Engineering Principle: “as

reinforcement-learning-based AI systems become more general and autonomous, the

design of reward mechanisms that elicit desired behaviours becomes both more impor-

tant and more difficult” [106]. Regardless of philosophy, I tested one reward function

augmentation, and in doing so developed a highly effective controller for the desired
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purpose. This suggests that there are a variety of controllers that can be learned,

each with adjusted reward schemes designed to emphasize controller characteristics

crucial for an individual control problem on the MFC morphing system. Additionally,

this idea of greater customization in controller development can lead to larger and

more complex problems with multifunctional MFC airfoils.

This project showed that MFC morphing UAVs present an environment where

RL is not only a possible solution, but often a preferable one. However, the control

problem in this work was limited to the basic functionality of the multifunctional

morphing airfoil under loading at a single neutral angle of attack. On this basis, future

projects can look toward using RL to pursue goals more complex than achieving a

desired tip deflection. This may include stall rejection, efficiency optimization, or gust

alleviation [43], [107], [108]. Additionally, in this work, all training was performed

in simulation. If I aim to produce truly adaptive controllers for complex varying

environments, another avenue for future research is to pursue these goals with real

time learning on the physical hardware instead of offline in simulation. Finally, the

learning algorithms and control commands were executed on an external computer,

not contained within the airfoil. For autonomous morphing aircraft, future work will

need to use adaptive learning techniques with embedded systems or neuromorphic

chips [91], [109]. The next missing link to creating totally autonomous composite

wing systems for morphing is understanding how to integrate computing chips into

a composite material. Researchers must solve the mechanics of composite issues

associated with embedding a computing chip into a layered composite to allow it

to survive mechanical loads and thermal gradients caused by self-heating without

degrading RL performance.
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3.6 Conclusion

In this work, I presented the first successful application of RL to a physical MFC

actuated system, outperforming traditional PD control methods. To achieve this, I

compared three controllers for an MFC morphing airfoil: a traditional PD controller, a

learned controller using a simple error based reward scheme (RL), and another learned

controller incorporating an additional penalty to mitigate controller overshoot (MO).

Through deep supervised learning, I accurately modelled the dynamics of the smart

composite actuators, capturing their hysteretic behavior. These models were used to

develop a simulation to train effective controllers for an MFC system through offline

policy optimization. Due to the nonlinear hysteretic MFC behavior, this environment

required closed loop feedback for accurate control. For this reason, two state inference

methods, consisting of a linear and an LSTM network, were used in coordination with

piezoelectric flex sensors for imperfect on-board state observation. I first tested these

controllers with the different state observation methods in an unloaded environment

and then at three flow speeds. I used a tuned PD controller as the comparative

baseline.

I found both learned controllers to be comparable, and in many cases preferable,

to the traditional PD controller. The MO controller in particular had impressive

control effectiveness. This was especially true for instances where controller speed and

accuracy were a priority. This result is promising for the field of autonomic morphing

aircraft, where smart composites are used, and adapting to erratic environments is

required.
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CHAPTER IV

Learned Fly-By-Feel Gust Alleviation

4.1 Summary

Recently, there has been a growing expectation for UAVs to perform in a variety

of new environments. Cities have been gaining interest for UAV operation; however,

the tall buildings and street systems cause dynamic changes in the wind environment

that pose a challenge for small UAV flight. Gusts of wind perturb small UAVs, de-

tracting from effective mission completion and operational efficiency. Modern gust

alleviation methods rely on traditional control surfaces and computationally expen-

sive modeling to predict the effect of gusts before selecting a control action, leading to

a delayed response. In this work I used DRL to create an autonomous gust load alle-

viation (GLA) controller for an MFC spanwise camber morphing wing, to reduce gust

impact by 84%, directly from on-board pressure signals. Additionally, I found that

performance differences between GLA controllers operating from three pressure tap

signals and six pressure tap signals were not significant. Producing control decisions

directly from pressure tap signals removes the need for computationally expensive

dynamics models and state inference. This fly-by-feel style of control will allow small

UAVs to react more rapidly to an environmental change, effectively reducing the im-

pact of gusts. Achieving rapid gust alleviation improves UAV effectiveness in dynamic

aerial environments to enable mission completion in previously inoperable locations.
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4.2 Motivation and Background

In recent years, civilians and the military have added urban areas to the list

of environments in which UAVs are expected to perform. Be it for surveillance,

reconnaissance, or package delivery, UAVs must be capable of adapting to the dynamic

environment offered by a large city [110]–[113]. The presence and position of tall

buildings creates additional wind conditions that a UAV must account for during

flight [114]. This is not limited to the strong winds experienced within passageways

between buildings, but vertical wind velocities, such as updrafts and downdrafts, are

strongly amplified in regions above buildings and street systems within a city [115].

A UAVs inability to adjust to these erratic environmental changes could result in a

dropped package, inadequate surveillance, or a failed mission. For this reason, I look

to alleviate the impact of these aerodynamic perturbations, or gusts, on UAV flight.

Gust response has been an interest in the field of aerospace since early aircraft

design [21], [116]. Perturbations impact flight performance and tracking predefined

trajectories [117]. This is especially true for small UAVs due to their lightweight

nature. Traditionally, a pilot, or autopilot, responds to a perturbation with an an-

tagonistic action. For instance, when a gust pitches the aircraft upward, the natural

response is to deflect the elevators downward to apply a counteractive negative pitch-

ing moment. If maintaining a specific altitude is an important mission parameter,

such as nap-of-the-earth flight, the aircraft would require additional negative pitch

to achieve the correct effective angle of attack and lift through a sustained upward

gust [118]. However, these corrections occur after the external force has accelerated

the aircraft upward, and therefore, additional corrections are necessary to put the air-

craft back on track, assuming the initial acceleration did not compromise the mission.

Instead of responding to a perturbation after it occurs, it is beneficial to adjust the

aerodynamic forces on the wings directly by changing the lift produced during a gust

with GLA [13], [21]. In addition to mitigating deviations from the desired trajectory,
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Figure 4.1: Birds change the shape of their wings to react to environmental changes.
This inspired the use of camber morphing to create smooth shape changes
that adjust lift production in response to gusts.

GLA reduces the loads experienced during a gust to alleviate critical stresses placed

on the aircraft structure . This reduces the material, and therefore mass, improving

overall aircraft efficiency.

For much of the history of GLA, traditional control surfaces, such as ailerons, ele-

vators, and spoilers, have been used to mitigate the impact of environmental changes

during flight [21]. Recently, unique methods have grown in popularity to improve

actuation speed, efficiency, and mechanical complexity [14], [24]. One such method

is structural morphing. UAV morphing is often inspired by a bird’s ability to change

shape to adapt their flight characteristics to a changing environment [119]. This

ability has allowed birds of prey to adapt to hunting in an urban environment [120].

Similarly, morphing allows UAVs to perform smooth shape changes and maintain

a continuous surface when actuated, improving adaptability, efficiency, and control

effectiveness [1], [39]–[42], [119]. Birds are observed performing large shape changes

to their wings when impacted by a gust [121]. Instead of performing a large shape

change dominated by inertial effects for gust rejection, UAVs can use spanwise cam-

ber morphing techniques to reduce the aerodynamic loads placed on an aircraft wing

during gusts (Fig 4.1) [24], [34], [122].

However, weight and volume constraints associated with small UAV design bring

additional challenges for morphing implementation. Smart materials are frequently

74



used to combat these challenges [1], [4]. MFCs have been used as multifunctional

morphing mechanisms, acting as both actuator and skin to produce smooth camber

morphing [30], [34], [36], [37]. This produces benefits in aerodynamic efficiency, speed,

mechanical complexity, weight reduction, and overall improved control authority when

compared to traditional rigid flap actuation methods [5], [43]. These characteristics

make MFCs a desirable option as multifunctional actuators for GLA. However, MFC

actuation also has attributes that make controlling the material challenging, including

hysteresis, creep, and inconsistent performance under out of plane loading. Modeling

and feedback control are often used to combat these challenges [5], [66], [123]. These

challenges must be considered when using MFC camber morphing for GLA.

Many forms of control have been used for GLA, including feed-forward, PID, op-

timal control, and MPC, most of which require a model of the system [17]–[19], [124],

[125]. Model-based controllers rely heavily on model accuracy to achieve sufficient

control. Error in any of the models used before action selection propagates through

the controller. This includes dynamics models as well as those used for state in-

ference. Regardless of the control scheme, state observation is crucial for effective

control. Typically the state of the system cannot be directly observed and therefore

needs some form of state inference, such as a Kalman filter or a neural network, be-

fore the controller makes an action selection [19], [23]. Each model used for inference

or prediction adds a layer of computational complexity to the control system and

increases the time necessary to make a control action. Light Detection and Ranging

(LIDAR) has grown in popularity for MPC and feedforward control to sense an in-

coming gust before perturbing the aircraft [21], [22], [126], [127]. This preview aides

with potential delay in controller response, but still adds complexity that may not fall

within a UAVs computational constraints [128]. Model-free DRL has shown enormous

success in producing effective controllers capable of making action decisions directly

from raw sensor inputs without using dynamics or state inference models [50]. Ad-
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ditionally, DRL has been shown to account for MFC hysteresis and produce effective

deflection control in a camber morphing airfoil [67].

Reinforcement learning is a machine learning method used to develop controllers

through trial-and-error [46]. Trial-and-error is often considered the “natural” method

of learning in biological settings [46]. For instance, KleinHeerenbrink showed Harris’

hawks learn to minimize distance flown in stall when perching after repeatedly flying

between two perches [129]. Through a structured reward system, RL autonomously

develops a controller that maximizes the earned reward during training. Rewards are

used to update the value and policy functions, where the value of a state-action is an

estimation of long-term reward and the policy is what dictates action selection given

the current state [46]. As control environments grow more complex, it is beneficial

to use DRL, where deep neural networks are used as the base model structure to

approximate the value and policy for each visited state and action. DRL has grown

rapidly in popularity since achieving superhuman performance in a variety of complex

environments [50], [130].

Using DRL to control adaptive UAVs is an ongoing research topic. Hu et. al used

DRL to train a reconfigurable UAV to perform in different environments or mission

scopes [93]. Motors and servos are traditionally used to perform these shape changes,

but RL has also been applied to simulated and hardware smart material environ-

ments [7], [8], [96]. Recently, PPO was used to improve controller speed and accuracy

for a MFC camber morphing environment [67]. PPO is an online actor-critic DRL

algorithm that includes clipping to prevent training updates from overstepping opti-

mal weights to achieve state of the art performance for training controllers in highly

complex environments [72]. Most successful applications of RL are performed in sim-

ulation, but some environments are too complex to accurately model without a large

computational cost. Methods used to accurately characterize gusts and turbulence

are computationally expensive, and popular simplified engineering approximations

76



are known for their high uncertainties [14], [131]. For this reason, there is a field

dedicated to minimizing this uncertainty using data-driven approaches [132]. I avoid

the computational costs and uncertainty associated with simplified approximation by

using autonomous methods for training directly on the physical hardware environ-

ment [65]. In this work, I applied PPO directly to a physical morphing wing in a

variable gust environment.

To create a gusting environment in which DRL could develop a GLA controller, I

installed an MFC driven spanwise morphing wing in a wind tunnel downstream of a

rigid airfoil acting as a gust generator (Fig 4.2). Deflecting the rigid airfoil changed the

incoming freestream angle and velocity experienced by the morphing wing (Fig 4.3).

[21], [23]. I used PPO to train controllers to make action decisions directly from

on-board sensor signals in the physical hardware system. I used pressure taps in

three different configurations for state observation [133]. The controllers achieved

average performances ranging from 71% to 87% gust rejection for six gust conditions.

Increasing the number of pressure taps improved overall performance and consistency,

but the improvement between sensing configurations with three pressure taps and six

pressure taps was not significant.

4.3 Methods and Materials

4.3.1 Morphing Wing Construction

I created the morphing wing with three 42 mm wide active sections separated by

two 51 mm wide passive sections to form a 228 mm wide wing with a 320 mm chord.

To construct the active sections, I followed the methods established in previous work,

which combine a NACA0012 leading edge with a double antagonistic MFC unimorph

trailing edge [34]. I used multi-material 3D printing to include a flexure box design

at the interface between the rigid and morphing portion of the active wing section to
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Figure 4.2: A rigid airfoil was mounted 30 cm in front of the MFC driven spanwise
morphing wing. This airfoil was deflected to create a gusting environment
within the University of Michigan 1’ x 1’ (30 cm x 30 cm) wind tunnel.

maximize deflection potential. Unlike in the previous work, I used narrower M8528-

P1 MFCs to allow for three active sections to fit within the wind tunnel. Using epoxy,

I bonded each MFC to a 0.025 mm stainless steel shim to produce a bending shape

change when actuated. I used epoxy to attach the active trailing edge section to the

flexure box interface at the rear of the rigid leading edge.

I constructed the passive sections following methods established by Pankonien et

al. for a spanwise morphing wing [34]. The passive sections contain a rigid NACA0012

leading section, but don’t have a rigidly structured trailing end. Instead, structure

is provided by the spanwise skin extending across the full wing. Bonding a soft 3D-

printed mixed cruciform honeycomb to the elastic silicon skin provided additional

strength to the trailing edge of the passive section [28], [134]. This allowed the

passive sections to change shape with the active sections while maintaining structural

integrity under out of plane aerodynamic loading.

Within each passive section of the wing, I installed six 0.5 mm pressure taps for

state observation. The pressure taps were located at positions of 0, 1.5, 5, 10, 40, and

50 percent of the chord length measured from the leading edge. I offset pressure taps
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at an angle of 30◦ for the front four pressure taps to mitigate the effect of upstream

pressure taps on the flow [135]. Due to the large separation between the front four

and rear two pressure taps, I installed the two rearmost pressure taps at a separate

30° angle, not including the front four taps to allow all taps to fit within the passive

wing section . Each 1.5 mm pressure tap hole was included in the 3D printed NACA

0012 leading section of the airfoil. I used epoxy to fasten ethyl vinyl acetate (EVA)

tubing into the pressure tap locations. After installation, I used a razor to cut the

end of each pressure tap to be tangent with the surface of the morphing wing to avoid

disrupting the flow over the wing.

4.3.2 Experimental Setup

The final morphing wing design was installed in the 30cm x 30cm wind tunnel

at the University of Michigan (Fig 4.3). I mounted the morphing wing in the center

of the wind tunnel at a 10◦ angle of attack operating at a 10 m/s flow, measured

ahead of the gust generator. I included elliptical endplates on the wing to prevent

wing tip vortices from forming, limiting this analysis to 2D airfoil effects. Mounted

at the quarter-chord, I measured the morphing wing’s lift using a six-axis ATI Delta

load cell. Six compact differential low pressure transducers measured the pressures

experienced by the six pressure taps in comparison to the static pressure located

at the front of the testing section of the wind tunnel, as measured using a pitot-

tube. Located 60 c m upstream of the morphing wing I mounted the 15 cm chord

NACA 0012 rigid airfoil with a 25 cm span at its quarter-chord. I used a step-motor

operated turntable to vary the rigid airfoil’s angle of attack and create the desired

gust deflection [21].

I used particle image velocimetry (PIV) to characterize the effects of the various

gusts generated by the rigid airfoil (Fig 4.4). Oil based smoke particles were accel-

erated through the open-loop wind tunnel. An EverGreen double-pulse quantel laser
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Figure 4.3: Data flow structure of the gusting wind tunnel experiment for controller
training and testing. Training and testing were orchestrated using a
Jupiter Notebook written in Python on a PC. The Python script informed
the motor controller to rotate the turn table to deflect the rigid airfoil to
a desired magnitude and direction. The change in airflow in the wake of
the rigid airfoil was detected by the six pressure taps on the MFC morph-
ing wing. The pressures were measured nd compared to a static pressure
measured in front of the experimental setup using six differential pressure
transducers. Signals from these pressure transducers were acquired by
the NI-DAQ, and provided to the Python script. The Python script used
this information for action selection. The selected action was provided
to the NI-DAQ and transformed into an MFC Voltage signal which was
then amplified to power the MFC camber morphing trailing edge of the
wing. The lift produced by the change in camber was measured by the
load cell, and provided to the Python script for reward calculation during
controller training or performance measurement during controller testing.
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mounted outside the wind tunnel illuminated a two-dimensional sheet of particles in

the longitudinal dimensions. Above the wind tunnel, two Imager sCMOS cameras in

a stereo configuration captured 50 sets of paired images with 15 microsecond inter-

vals. From this, I captured the velocity profiles in the vertical and streamwise (x and

z) directions of the wind frame of reference up stream of and around the morphing

wing.

To create learned controllers capable of reacting to the changing environment, I

used proximal policy optimization (PPO) to develop policies for the camber morphing

wing. The DRL environment included a discrete action space comprised of 7 voltage

changes [-6,-2,-1,0,1,2,6], and a continuous state space including normalized pressure

signals [-2.5,2.5] and normalized MFC voltage signals [-2,2]. The actor and critic

network structures are described in Figure 4.5, including a temporally aware 1D CNN

input layer with the ten most recent state measurements for state observation. This

layer included convolutions with kernel lengths of three and a stride length of one.

The two subsequent hidden layers were structured linearly with 512 nodes each, and

rectified linear unit activation functions [98], [101]. I used Adam optimization with a

0.0003 learning rate [136]. As validated by Magar, lift is sufficient for state estimation

in a longitudinal pitch-plunge environment [124]. Therefore, I used change in lift as

the optimization parameter, using load cell measurements to provide a reward for the

learning algorithm. The goal of the learning algorithm was to develop a controller that

minimized the change in lift experienced during a gust. Although lift measurements

were used for the reward structure during training, the controllers did not use lift

information for action selection. The learned policies only used pressure and MFC

voltage signals for action selection. During testing, the load cell provided information

to judge controller performance.

A Python script in Jupyter Notebooks orchestrated controller training and testing.

Figure 4.4 presents the data flow structure for the experiment. Due to electromagnetic
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Pressure Taps MFCs

Wind Tunnel 

Figure 4.4: Illustration and characterization of the variable gusting wind tunnel en-
vironment. The rigid airfoil is mounted upstream of the MFC morphing
wing. The MFC morphing wing includes six pressure taps to sense gusts.
The rigid airfoil deflects upwards (yellow) and downwards (green) at vary-
ing degrees (depicted by opacity) to create a variety of velocity wakes (as
measured using particle image velocimetry) to which the morphing wing
must react to maintain lift.
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Figure 4.5: The neural network structure for the actor and critic models in the PPO
algorithm. Each network has the same base structure, including a 1D
CNN layer followed by three fully connected layers with ReLU actuation
functions. The input for each network includes the ten most recent volt-
age signals supplied to the MFCs, and the ten most recent pressure tap
signals, containing either 1,3, or 6 measurements for each time step de-
pending on the pressure tap configuration.
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interference, the load-cell and pressure sensors were unable to provide accurate signals

during step-motor operation. For this reason, I limited the experiments to a discrete

square gust column environment, also known as a sharp-edge gust [117], [137], [138].

During training and testing, the script paused policy updates and data collection

during gust wing rotation, then resumed training and testing when the rotating wing

achieved the desired deflection. For this work, I defined a gust as a change in effective

wind velocity, including speed and direction. This is analogous to a discrete updraft

or downdraft, often used as a simplified model for gusts in the environment [21],

[117], [137]–[139]. I chose to avoid the highly variable effects that occur in the wake

of a stalling airfoil. Thus, I limited the gust generating wing to deflections between

positive and negative 13◦ to prevent stall from occurring.

Training consisted of 1000 episodes, each episode consisting of 200 timesteps of

0.05 seconds each. Each episode began by rotating the gust generating airfoil, alter-

nating between beginning the new episode at zero degrees and a random deflection

within the range± [7◦, 13◦]. At zero gust deflection, the MFC actuators began without

camber morphing in either direction. From this position the pressure taps provided a

baseline signal for comparative pressure observations throughout the episode. After

initialization, the policy was activated and the action selection and learning updates

began. The initialized pressure and goal lift values were held for the following episode

after the discrete square gust operation. The discrete gust was performed by deflect-

ing the gust generating airfoil to a randomized position where it was held for the

length of an episode, 200 timesteps, simulating an extended 10 second gust. The end

of the gust operation signaled the end of the training episode, which returned the gust

airfoil to zero degrees and the morphing wing MFCs to a neutral deflection position to

begin a new episode and initialization. I used this procedure to train ten controllers

for each of three different pressure tap configurations: using all six pressure taps,

the front three pressure taps, and a single pressure tap on the leading edge of the
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morphing wing. I selected these pressure tap configurations based on the pressure

distribution expected for the top surface of a symmetric airfoil and the sensitivity of

the respective tap locations [135]. In all, this approach resulted in 30 controllers.

4.3.3 Testing

I performed testing in a similar manner for the six different gust conditions

(−12.5◦,−10◦,−7.5◦, 7.5◦, 10◦, 12.5◦) where positive values represented upward gust

deflections and negative values represented downward gusts. Each testing episode

began with an initialization period to reset the expected pressure tap signals during

typical flow. After initialization, the tested controller began action selection. After

100 timesteps of neutral airflow, the gust generating airfoil deflected to a specified

gust condition and held that position for 200 timesteps. Finally, the gust generat-

ing airfoil returned to a deflection of zero, concluding the discrete gust (Fig 4.6a). I

tested each controller for each gust condition ten times. Additionally, I performed

testing on the wing when unactuated to create a baseline for comparative controller

performance.

I measured performance using a comparative lift error (CLE) experienced by the

active camber morphing wing (Fig 4.6b). The lift error is a measurement of the

change in lift that occurred during a discrete gust. The comparative lift error was

the ratio between the lift error experienced by the wing when actuated by a given

controller, LEC , and the average of the lift error that occurred for an unactuated

wing as a baseline, LEB,

CLE(t) =
|LEC(t)|

| 1
Tg

∑Tg

t=0 LEB(t)|
, (4.1)

Where t is an individual timestep and Tg is the number of timesteps during the

gust. Figure 4.6a illustrates the average lift error experienced by the morphing wing

in actuated (solid line) and unactuated (dotted line) flight when subject to the largest
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magnitude gust conditions in the upward and downward directions.

Due to the black-box nature of neural networks, and the policies developed using

such methods, I accounted for stability and robustness of control through repetition.

I repeated gust alleviation performance tests ten (10) times for each combination of

pressure tap configurations (3), trained controller (10), and gust condition (6). In all,

this approach amounted to 1800 gust rejection tests in total. Figure 4.6 illustrates

consistency in performance between tests, gust conditions, and training iterations

when the other variables are held constant for the six-tap configuration. I calculated

settled CLE (SCLE) for each gust response test by averaging the last 100 timesteps

of lift error and comparing that to the average baseline lift error,

SCLE =
| 1
100

∑Tg

t=0 LEC(t)|
| 1
Tg

∑Tg

t=0 LEB(t)|
. (4.2)

For a single training iteration and gust condition, the average standard deviation

of SCLE between individual tests was 0.039 (Fig 4.6c). When comparing SCLE

between average test performances for a single controller under each gust condition,

performances typically varied with a standard deviation of 0.105 (Fig 4.6d). The

average performances achieved by each training iteration for a single gust condition

produced standard deviations of 0.082 (Fig 4.6e). Since the individual and average

comparisons achieved standard deviations below 10%, I determined that the average

performances achieved by an averaged controller provided a fair representation of the

CLE for each gust condition (Fig 4.6b). However, the highest standard deviation

was experienced when comparing performances between gust conditions (0.105) and

was considered further in the discussion section (4.5 A comprehensive collection of

the raw CLE test data, as shown in Figure 4.6c, for all gust conditions and pressure

tap configurations is provided in Appendix B.

I compared the performance achieved by each of three pressure tap configurations,

including all six pressure taps, the front three pressure taps, and only one pressure tap
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Figure 4.6: Trained controller comparative lift measured during gusts. I quantified
the performance of the trained controllers by comparing the change in lift
(Lift Error) experienced by the morphing wing during a gust between the
actively controlled wing and inactive baseline, (a), as a Comparative Lift
Error, (b). To account for controller robustness, I repeated ten (10) tests
for each trained controller (10) in each gust condition (6). I compared all
individual tests for one controller at a single gust condition to measure
consistency between tests (c). I compared average performance for a single
controller all for each gust deflection to quantify consistency between
gust conditions (d). I compared average performance between individual
trained controllers at a single gust condition to measure consistency in
training (e).
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located on the leading edge of the wing. Figure 4.7a illustrates one such comparison

for a single gust condition where the black dashed lines represent the average SCLE

values. These values were used to determine to overall gust reduction percentage

(GRP ),

GRP = |1− SCLE| × 100%, (4.3)

for each test. For fairest comparison and representation of data, I calculated the

GRP values for each individual test, providing distributions of n=100 GRP values

for each combination of gust condition and pressure tap configuration. Due to the

maximum bounded nature of this metric, many of distributions are skewed to varying

degrees with an average skewness of -0.7 between distributions. For this reason, I used

the mean as a conservative estimate of central tendency for the primary performance

metrics. Additionally, I used a linear mixed effects model to determine the relation-

ship between GRP and the number of pressure taps while considering the potential

for random effects between individual tests for each trained controller. This allowed

me to comment on the significance when comparing performances between different

pressure tap configurations.

Finally, I measured the speed of the controllers using rise time, measured as the

time needed for the learned controllers to adjust the CLE from 10% to 90% of the

total achieved gust reduction (Fig. 4.8a). Rise times were also measured for each

test. These distributions were highly skewed, with an average skewness of 1.7. For

this reason, I used median and inter-quartile range (IQR) to represent the central

tendency and spread for the controller speed metrics.
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4.4 Results

GRP generally improved as the number of pressure taps used for state observa-

tion increased (Fig 4.7a). The simplest configuration, with only one pressure tap,

achieved an average GRP of 76%. Including an additional two pressure taps sig-

nificantly improved performance (p = .009), reducing the effect of gusts by 82% on

average. Using six pressure taps, the learned controllers achieved a GRP of 84% on

average, significantly outperforming the single-tap configuration (p < .001), but the

improvement over the three-tap configuration was not significant (p = .25).

The trained controllers struggled to reject the −7.5◦ gust deflection when com-

pared to the other five gust conditions. This was particularly noticeable for the three

and six pressure tap configurations, where this condition had a significantly reduced

GRP . When not considering the −7.5◦ gust condition, the range of GRP achieved by

the three-tap and six-tap gust conditions were 82% to 85% and 84% to 87% respec-

tively, where the bottom of each range was at least as high as their average overall

performance. I explored the reason behind this reduced performance in detail in the

discussion section (Sec. 4.5.2).

Performance consistency is important if this approach is to provide safe and reli-

able flight control for a future UAV. To quantify consistency, I calculated the standard

deviation of theGRP distributions (Fig. 4.7b). Although standard deviation provided

a good metric for general consistency, it is only a single value for each distribution

and cannot provide information regarding significance when comparing the consis-

tency metric. In addition to standard deviation, I measured the Euclidean distance

from the mean for each GRP test value, calculated as an absolute difference between

a single GRP value and the mean GRP of the distribution to which the single value

belonged. From these new sets of data representing the spreads of the GRP distri-

butions, I used another linear mixed effect model to determine the significance of

consistency comparisons between pressure tap configurations. The single pressure
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Figure 4.7: Gust reduction performance. I calculated the mean Gust Reduction Per-
centage (GRP) from the Settled Comparative Lift Error (SCLE) achieved
in each gust response test (a). Increasing the number of pressure taps im-
proved mean GRP, where SCLE was represented by the dashed black lines
(b). Significance in improvement was represented by dashed and dotted
lines where comparison to the one-tap configuration was represented by
dashed lines alternating with a single dot, and comparisons to the three-
tap configuration was represented by dashed lines alternating with three
dots. Improvement was significant when increasing the number of pres-
sure taps from one to three or six (p = .009 and p < .001 respectively) as
represented by an open circle (b). Controller consistency was measured
by standard deviation (std) where the only significant improvement was
between using one pressure tap and six pressure taps (p = .04) (c).
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tap configuration produced GRP distributions with an average standard deviation of

15%. The three-tap configuration improved consistency over the single tap with an

average standard deviation (std) of 14% but was not statistically significant (GRP

std = 14%; p = .19). The six-tap configuration improved consistency significantly

over the one-tap configuration (GRP std = 12%; p = .04), but was not statistically

different from the three-tap case (p = .42). Again, the −7.5◦ gust deflection achieved

the worst performance of all gust conditions, demonstrated by a higher standard devi-

ation. This was apparent specifically for the three and six pressure tap configurations.

When not considering the −7.5◦ gust, the standard deviation ranges become 12% to

15% for the three-tap configuration and 8.6% to 12% for the six-tap configuration.

Similar to the gust rejection and standard deviation, I found that increasing the

number of pressure taps improved the controller speed, quantified by the median rise

time. The median rise times ranged from 0.30 seconds to 0.45 seconds, 0.33 seconds

to 0.50 seconds, and 0.35 seconds to 0.62 seconds for the six-tap, three-tap, and one-

tap configurations respectively (Fig. 4.8b). The three-tap and six-tap configurations

both outperformed the one-tap configuration significantly (p < .001), whereas the

difference in controller speed between the three-tap and six-tap configurations was

not significant (p = .09). Additionally, increasing the number of pressure taps from

one to three or six significantly improved consistency in controller speed (p < .001),

and the difference between three pressure taps and six pressure taps was not significant

(p = .07) (Fig. 4.8c).

4.5 Discussion

4.5.1 Strengths and Impact

The strength of this work is from the extensive testing performed to ensure trust-

worthy results. I developed ten (10) controllers for each pressure tap configuration

91



80% Rise Range

Rise Time (s)

a) b)

c)

Figure 4.8: Trained controller speed. I calculated the rise time as the time needed
to reduce the gust impact from 10% to 90% of the total reduction (a).
This metric is used to represent the speed of the controller. Due to the
highly skewed nature of these results, 1.7 average skewness, I presented
the median rise time to illustrate central tendency for the speed metric.
Increasing the number of pressure taps above one significantly improved
rise time (p < .001) (b). Consistency of in speed was also significantly
improved by increasing the number of pressure taps to three or six (p
< .001) (c). However, in both cases, the difference between using three
pressure taps, and six pressure taps was not significant (p = .09 and p =
.07).
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(3), and repeating testing ten (10) times at each gust condition (6) for controller.

Therefore, I accumulated 1800 test results to verify the robustness of the findings and

establish confidence in the conclusions.

I combined two novel approaches, multifunctional material camber morphing and

DRL, to develop an effective gust alleviation system. The trained controllers used

minimal sensor requirements and no dynamics or state inference modeling to achieve

comparable, and often superior, performances to methods requiring significant mod-

eling, prediction, and controller design. This is particularly impactful for smaller

UAV design with the added weight, volume, and computational constraints. Addi-

tionally, although much of the work in the individual fields of gust alleviation and

DRL is performed in simulation, I completed this work entirely in a physical hardware

environment.

By using wing morphing for gust alleviation, the reaction reduces the change lift

experienced by the wings during a gust, which mitigates associated perturbations

to the aircraft’s orientation and speed. The active control provided by the morph-

ing wing allows UAVs to benefit from similar gust alleviation as birds that change

their wing shape to potentially mitigate deviation from their flight path through a

gust. Additionally, using MFCs to perform camber morphing improves aerodynamic

efficiency and reduces the structural mass, an important variable for overall aircraft

efficiency. GLA to mitigate critical loads experienced during gusts relaxes structural

requirements, further reducing the overall weight of the aircraft [14].

Through DRL I developed policies that effectively controlled the MFC camber

morphing wing to mitigate gust loads directly from pressure sensor signals without

additional modeling or state inference. Traditional control methods, adaptive con-

trol, and MPC rely heavily on dynamics and state inference models. Achieving high

accuracy comes with computational costs that grow with environment complexity.

Modeling turbulence and MFC morphing mechanics requires model simplification,

93



leading to suboptimal behavior due to approximation inaccuracies. A DRL controller

reduces operational computational complexity by developing a policy to map pres-

sure signals directly to actions, requiring no additional model, achieving fly-by-feel.

Additionally, I found that the difference in performance between using three pressure

taps and six pressure taps was not significant. Therefore, future designs do not need

to incorporate the last three pressure taps. This reduces mechanical complexity and

costs associated with the manufacturing process. Additionally, minimizing the num-

ber of input signals required for action selection further reduces the computational

complexity of the neural controller. This reduced computational complexity makes

this control method ideal for small UAVs. Operating continuously beneath the high-

level navigation controllers, this will improve small UAV surveillance, reconnaissance,

package delivery, and target tracking missions in erratic environments, such as cities.

4.5.2 Reduced GRP at −7.5◦ Gust

On average, the trained controller performance degraded when reacting to the

−7.5◦ gust condition. Since GRP was measured as a comparative percentage of

reduced gust, it depended on the average baseline lift error, LEB (Eq. 2-3), which for

the lower magnitude gusts was a smaller value. Therefore, the actual lift error, LEC ,

was not necessarily any higher than that experienced at the other gust conditions

(Fig 4.9a). The average lift error LEC for the −7.5◦ gust was well within the range of

LEC experienced at the other gust configurations. Although this is true, by this logic

I should see similar GRP for the 7.5◦ gust deflection, but I found the performance

was not as severely reduced as in the −7.5◦ gust (Fig 4.7).

Although the LEC for the −7.5◦ gust is similar to that experienced at the other

gust conditions, there is a greater change in LEB between the smallest and largest

magnitude gusts in the downward direction than there is for the upward direction.

This is partly because the downward gusts generally showed a greater impact on

94



a) b)

c)

Figure 4.9: Considerations for low performance at −7.5◦ gust condition. The trained
controllers achieved mean lift error at the −7.5◦ gust deflection simi-
lar that achieved at the other gust conditions (a). At the −7.5◦ gust
condition, the trained gust alleviation controllers using six pressure taps
overshot zero lift error (b). Although the first three pressure taps pro-
duce sensitive pressure signals for the upward gust deflections, the third
pressure tap is much less sensitive to downward gusts (16.7%) (c).
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LEB than the upward gusts. I looked at the change in lift error between the upward

and downward gusts as percentages of the lift error at maximum gust magnitude in

that direction. For the upward direction, the 10◦ and 7.5◦ gust conditions generated

average baseline lift errors that were 78% and 69% of the average baseline lift for 12.5◦

respectively. Whereas for the downward direction, the−10◦ and−7.5◦ gust conditions

generated average baseline lift errors that were 83% and 50% of the average baseline

lift for −12.5◦ respectively. This greater change in gust impact between deflection

magnitudes could contribute to some of the controllers overshooting zero lift error

for the −7.5◦ gust condition (Fig. 4.9b). The overshoot experienced at the smallest

downward gust suggests that some of the controllers expected the gust to produce a

larger impact on the change in lift, as opposed to the 7.5◦ gust condition that does

not overshoot zero.

I found that the controllers were limited in their ability to differentiate between

downward gusts due to a reduced sensitivity in pressure readings for downward gusts

(Fig 4.9c). I analyzed the sensitivity of each pressure tap for all tested gust conditions.

For the tested gust conditions, the front three taps experienced greater change in

pressure signal than the three rear pressure taps. The leading-edge pressure tap

showed the greatest sensitivity for both positive and negative gust deflections. The

second pressure tap showed less sensitivity for the downward gust than the upward

gusts (27% reduction). The third tap, however, showed a steep reduction in sensitivity

when experiencing a downward gust compared to an upward gust (83% reduction).

This reduced sensitivity suggests some controllers that rely on the third pressure

tap for state observation could have struggled to differentiate between the different

magnitudes of downward gusts.

To determine why the system experienced reduced sensitivity for downward gusts,

I performed particle image velocimetry (PIV) to measure the velocity changes across

the top surface of the morphing wing at each tested gust condition compared to the
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baseline neutral gust condition (Fig 4.10). In the top plot I noticed that even for

the 7.5◦ gust condition, there is a notable increase in velocity over the first three

pressure taps. For the −7.5◦ gust condition, I saw a reduced velocity at the leading

edge of the wing. However, near the third pressure tap there was a thin line of white,

representing a location where the change in velocity shifted from negative to positive.

This resulted in a very minor change in velocity at that point. For the −12.5◦ gust

deflection, there was a larger reduction of velocity at the leading edge of the wing,

illustrated by the darker blue. However, the velocity still transitioned from negative

to positive near surface of the wing where the third pressure tap was located.

Between the greater change in lift between downward gust conditions and the

location of the third pressure tap leading to a reduced sensitivity for downward gusts,

the learned controllers struggled to reduce the −7.5◦ gust condition as consistently

as at the other gust conditions. However, it is important to note that the trained

controllers still achieved average GRP values above 73% for the three-tap and six-

tap configurations. Additionally, the controllers reduced the small downward gusts to

average LEC values like those achieved for the other gust conditions. Finally, I expect

that this issue would be mitigated by including sensors on the bottom surface of the

wing at positions mirroring the second and third pressure tap on the top surface.

4.5.3 Limitations

There are key assumptions made to facilitate this study that impose limitations

on the extrapolation of the results. First, the stepper-motor that drove the gust

generating airfoil produced electromagnetic signals that rendered the pressure sensors

unreadable during gust-airfoil rotation. Therefore, I was unable to perform pressure

or lift measurements during the growth and decay periods of each gust. For this

reason, the presence of the gust is visible as a square wave in lift error as opposed

to the traditional simplification of a 1-cosine model (Fig 4.6a). Sharp edged gust

97



Figure 4.10: Particle image velocimetry (PIV) shows the environmental changes ex-
perienced by the wing during different gusts. The change in velocity is
stronger over the front three pressure taps in the upward gust than in
the downward gusts. This is most noticeable at the third pressure tap
location.
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models were first used in early gust alleviation research, and are still used today to

represent gust columns like those experienced when encountering an updraft between

two buildings [21], [117], [137], [138]. Further, this provided an additional challenge for

the learned gust alleviation controllers: reacting to a gust without initial ramp up or

warning. Instead, the controller began operation after the deflecting airfoil was at full

magnitude, delaying the controller’s response until the gust was already at its peak.

Thus, the rise times presented in this work provided controller speed information when

subjected to this limitation. Therefore, I focus the discussion on total reduction of

gust influence on the wing, using the SCLE and GRP measurements as opposed

to rise time and other controller speed metrics. With that being said, the trained

controllers achieved rise times of less than 0.5 seconds. Between the square nature of

the gust environment and this rapid response, I expect future controllers, trained in

a continuous environment, to be effective for continuous gust alleviation.

I performed all training and testing in this work at one flow speed, 10 m/s. Achiev-

ing control at other flow speeds will require additional training at a range of speeds

encompassing the flight envelope for the small UAV operation. An additional state

input measured by an upstream pitot tube should be included to differentiate inter-

pretations of on-board pressure taps at different speeds.

Finally, this work is dedicated to mitigating gusts represented as a change in

experienced airflow velocity, including magnitude and direction. I did not consider

gust control for the highly variable flow that occurs behind a stalling wing. For

this reason, the tested gusts were limited to magnitudes between deflection angles of

−12.5◦ and 12.5◦.

4.6 Conclusions and Future Work

In this work I used DRL to produce gust alleviation controllers for a multifunc-

tional MFC spanwise camber morphing wing. These controllers achieved fly-by-feel,
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capable of making action decisions directly from pressure sensor signals. The GLA

controllers reduced gust impact on lift by 71% to 87% for state observation con-

figurations including six pressure taps, three pressure taps, and only one pressure

tap. The three-tap and six-tap sensor configurations significantly outperformed the

one-tap configuration in GRP and speed, but the difference between the three-tap

and six-tap configuration was not significant. These results inform autonomous GLA

design for future intelligent morphing aircraft.

Future work will consider more complex gusting environments. I will incorpo-

rate continuous gusting environments, including single 1-cosine gusts, continuous

frequency-based gusts, and continuous randomized perturbations. From these gusting

environments we can establish and mitigate aeroelastic and vibrational effects due to

gusts. This will also allow the exploration of more chaotic and variable environments.

The fly-by-feel nature of this work creates interesting opportunities for localized gust

alleviation. For larger aircraft, different sections of the wings may experience varying

gust levels. For this reason, it may be beneficial to incorporate multi-agent DRL to

develop several controllers dedicated to alleviating gusts on individualized sections of

the aircraft’s lifting surfaces.

Additionally, thus far this work focused primarily on reducing the impact of a

gust on the lift produced by the morphing wing. Although lift is considered suf-

ficient for state measurement in gust alleviation, DRL allows the optimization of

control variables that are more complex, and directly applicable, through reward de-

sign [124]. By incorporating dynamics models with the physical morphing system,

we can develop controllers capable of directly minimizing change in pitch, plunge, or

vibrations. This direction of research can include the training controllers for more

high-level maneuvers, such as perching, as well. To maintain the fly-by-feel design,

dynamics models should only be used for controller development, and unnecessary for

controller operation since decisions would still be made directly from on-board sensor
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signals.

Finally, to push toward learning on-the-fly, it is beneficial to incorporate embedded

systems and neuromorphic technologies on the morphing systems [109]. For this

reason, it is important to characterize the material and performance constraints placed

on embedded micro-computers and learning hardware when installed within an active

morphing structure. From there we can begin to incorporate learning algorithms

during flight, so that the intelligent UAV can learn to adapt to changing environments

as it experiences them.
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CHAPTER V

Conclusion

5.1 Key Results and Contributions

Frequently changing dynamic environments continue to provide a challenge for

UAV design. Introducing intelligence to the system can allow UAVs to perform in

various environments as well as react to perturbations. Although there is substantial

work in the community focusing on morphing structures, multifuncitonal materials,

and autonomous learned control, little work has been done to tie all three of these

fields together. This dissertation aims to forge that connection between fields to

create intelligent, autonomous, multifunctional morphing UAVs. Considering each

problem from the angle of learned autonomous control provides an adaptive solution

that may be applied to a variety of questions surrounding morphing UAV design.

Each subsequent chapter of this dissertation provided a control problem of increased

complexity, each solved through RL and applied on the physical system. This ensues

confidence in the capability of RL to achieve desired control objectives so long as a

repeatable environment can be produced, and a reward can be structured to represent

the desired goal.
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5.1.1 RL problem design allows autonomous controller development

In Chapter II I designed an RL training scheme that allowed training to be com-

pleted autonomously, without any human interaction, in a physical hardware environ-

ment.The environment was an airsled-airtrack experiment designed as a 1-dimensional

analogy for an aircraft maintaining trim after experiencing an external perturbation.

Additionally, I found that incorporating additional policy updates between traditional

training episodes improved learning speed and consistency [65].

The pseudo-episodic training format I developed provided an opportunity to train

a physical hardware environment in a manner similar to episodic methods tradition-

ally seen in simulated environments. One of the greatest benefits of episodic training

is the added exploration offered by beginning each new episode in a random state.

Achieving a similar benefit in physical hardware often requires human intervention,

external mechanical reset devices, or an additional controller operating specifically

for resetting each episode. In each of these cases, the autonomy of the trained agent

is compromised resulting in additional effort and careful observation by an external

entity, limiting the benefits of using RL in the physical environment. The pseudo-

episodic training format achieved episodic resets by following a randomised policy

between traditional training episodes. Following the random policy improved ex-

ploration, similar to that seen in epsilon-greedy exploration techniques, while also

providing time to incorporate additional policy updates.

I used methods such as Off-PAC and experience replay to perform additional

policy updates during the exploration episodes used for autonomous episode resetting

for three actor-critic RL algorithms: A2C, A2C(λ), and PPO. My results showed

that each algorithm-exploration update combination was able to successfully return

the airsled from a perturbed state to the trim position after only 25 minutes of

training on the physical environment in real time. The inclusion of Off-PAC during

exploration improved training consistency while including experience replay improved
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training speed and overall training performance. The best combination for training

performance and consistency was using the PPO algorithm with experience replay

updates during exploration.

Although training was fast and consistent, the resulting controllers lacked some

accuracy. In some cases learning quickly is a priority to achieve safe operation in a

changing environment; however, achieving optimum performance would likely require

additional training, and future work for more complex environments should be willing

to sacrifice training speed for superior performance. The work presented in this

chapter is a version of a published research [65].

5.1.2 DRL accounts for hysteretic MFC behavior for accurate morphing

control

In Chapter III I developed the first DRL controller for an MFC camber morphing

airfoil, achieving faster and more accurate step response tracking than a traditional

PD method [67].

For this work I used an LSTM network structure to develop a time-series fore-

casting model for the dynamics of the morphing airfoil tip deflection. This model

simulated the morphing environment for training two controllers using PPO. The

second trained controller incorporated an additional penalty for overshoot experi-

enced during step response (MO). These controllers were tested on a series of step

responses at a variety of airflow speeds and compared to a traditional PD controller.

When operating with perfect feedback, the learned controllers achieved greater speed

and accuracy, but the PD controller experienced less overshoot.

For more realistic implementation, I used internal flex sensor signals to provide

imperfect feedback to the controllers. Two state inference models were trained us-

ing a linear model and an LSTM model to compare controller performances when

operating with different levels of feedback accuracy. I found that the PD method
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relied more heavily on feedback accuracy than the learned controllers. When us-

ing the LSTM model, the PD controller still outperformed the learned controllers

in overshoot. However, when using the linear inference model, the MO controller

outperformed the PD controller in all performance metrics. This suggested that the

trained controllers learned the behavior of the MFC tip deflection, and intrinsically

accounted for the material hysteresis during controller operation, even with limited

feedback accuracy.

The successful implementation of DRL for controller development in an MFC mor-

phing environment ensues confidence in using learned control for morphing UAVs.

Learning policies that intrinsically account for challenging control behaviors inherent

in smart material actuators can reduce computational complexity during controller

operation. These learned controllers map system states directly to actions, and there-

fore do not require a complex dynamical model for action selection. Reduced compu-

tational complexity combined with the speed and accuracy of the learned controllers

make DRL an attractive method for developing controllers for rapidly reacting to

environmental changes, such as gusts. A version of this chapter is published [67].

5.1.3 DRL achieves fly-by-feel morphing gust alleviation

In Chapter IV I trained 30 gust load alleviation controllers capable of reducing

the impact of a variety of vertical gusts directly from pressure sensor signals using

DRL.

In this work I constructed a spanwise morphing wing with three active MFC

sections, similar to the morphing aileron presented in Chapter III. In the rigid leading

edge of the morphing wing I installed a series of pressure taps for detecting changes in

the aerial environment. These environments were generated by mounting a rigid airfoil

upstream of the morphing wing. By deflecting the rigid wing, I created turbulent

gusts similar to updrafts and downdrafts for the morphing wing to experience. After
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training each controller on a series of randomized gusts using PPO, the morphing

wing learned to mitigate the change in lift experienced during such gusts.

I tested the gust alleviation response for six different gust conditions with three

different pressure tap configurations. I found that by increasing the number of pres-

sure tap signals from one to three significantly improved controller speed and total

gust rejection, but increasing to six pressure taps did not offer significant improve-

ment over using three. For all pressure tap configurations, the learned controllers

achieved average gust rejection of 71% to 87%.

Using model-free policy development via DRL for morphing aircraft gust allevi-

ation offers many benefits to the UAV community. Implementing controllers that

operate directly from sensor signals, offering fly-by-feel capabilities, reduces the com-

putational requirements compared to state inference and model based methods. This

makes gust load alleviation systems more implementable on smaller UAVs that typi-

cally require computation constrains. Additionally, it increases the scope of possible

mission environments to include locations with dynamic wind conditions, such as

cities. Finally, this work showed that DRL can overcome challenges inherent to MFC

systems so that their multifunctionality, resulting in weight and aerodynamic benefits,

may be fully exploited for efficient flight and GLA.

5.2 Future Work

This dissertation presents my work using reinforcement learning to develop au-

tonomous control systems for intelligent morphing UAVs. I began from a simple one

dimensional analogy for trim and ended with a much more complex morphing wing

trained to reject gusts. From here we can continue to increase complexity and imple-

ment the trained controllers in a more complete autopilot system for small UAVs.

Reinforcement learning creates controllers designed specifically to optimize goals

defined by our reward function. This allows us to create controllers for highly complex
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environments and mission objectives with limited computational complexity during

operation by mapping state observations directly to actions. Future work will take

advantage of this to create controllers dedicated to more than low level lift manage-

ment. Reward function engineering can take advantage of the spanwise morphing

capabilities to reduce wing root moments in addition to root shear forces. Addi-

tionally these controllers will be trained in a continuous gusting environment where

vibrations and frequency response can be mitigated for structural health. Further-

more, learning could use a continual format as opposed to the traditional episodic

scheme.

In addition to continuing research on camber morphing control, future research

should consider additional shape changes for gust alleviation. Drawing inspiration

from avian fliers, we can use RL for unique control actions such as change in dihe-

dral, sweep, or wing shapes that simulate variations in bird elbow and wrist angle.

Additionally, we can look at alternate control surfaces such as the tail.

Thus far my work focused on a small wing section. Future work will incorpo-

rate RL on a full UAV. This increase in scale offers new challenges by increasing

complexity from added actuators and sensors. This creates interesting opportuni-

ties for implementing hierarchical learning systems. We can implement our learned

controllers under traditional high level autopilot systems to determine viability of

controller cooperation. Additionally we could compare the performance between de-

veloping a single controller for the whole system as opposed to several cooperative

but individually trained controllers.

In this work we emphasized training directly on physical hardware without model-

ing the dynamical system. However, future work can incorporate models to simulate

UAV flight based on measurements of a physical system within a wind tunnel. Using

this combination would allow the physical hardware sensors and actuator response to

inform the simulation, and provide an opportunity to build a reward structure from
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higher level control objectives within the simulated environment. This would inform

design decisions regarding sensor placement and action selection for achieving specific

maneuvers or operating in dynamic environments. This increase in complexity brings

the system closer to achieving complete physical flight.

Finally, the goal of this research is to develop controllers capable of rejecting

perturbations in a dynamic UAV environment. For this reason future research should

continue to push toward implementation on an unassisted small UAV flying in a

gusting environment.
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APPENDIX A

Intelligent Sensing for MFC Airfoil

In Chapter III I consider feedback control for an MFC camber morphing airfoil

using piezoelectric flex sensors. Because of their size, weight and flexibility character-

istics, these sensors were capable of reporting deflection information without imped-

ing the performance of a camber morphing airfoil. However, they are also subject to

hysteresis and creep, producing imperfect state observations that must be modeled

to provide accurate feedback for the controller. Although a simple linear inference

method is typically used to model this relationship, it is ill-equipped to support the

nonlinear and time dependent behavior of such sensors. In contrast, deep learning

(DL) is becoming a popular tool for modeling such relationships. This appendix pro-

vides the methods used to achieve state inference from these models, and the impact

of state inference accuracy on feedback control [66].

Data Collection

Developing an accurate inference model through ML requires sufficient data col-

lection to represent the desired behavior. In this case, the system’s variability from

previous deflection due to hysteresis and creep was the primary behavior I wished to
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accurately represent; therefore, data collection had to be designed accordingly. In-

stead of performing simple voltage sweep through signals of 0 to 100, I performed 10

complete but randomized explorative sweeps in the following manner. Each explo-

rative sweep began at a randomly selected voltage signal. Beginning at this initial

voltage, a new voltage was generated by randomly selecting a voltage change value

from a signal change space consisting of all even numbers between -30 and 30. This

new voltage was held for 5 seconds, 100 timesteps, before returning to the initial volt-

age and held for an additional 5 seconds. This was repeated until each signal change

value had been randomly sampled from the signal change space without replacement.

This process was repeated for initial voltages including all even values throughout the

voltage signal space for 10 random seeds. Throughout the 10 randomized explorative

voltage sweeps, deflection information was gathered by the internal flex sensors as

well as an external Keyence LJ-V7300 2D profilometer to provide the true deflection

achieved by the system.

Modeling

Initial modeling used traditional supervised learning techniques to train a 3 layered

feed forward neural network for inferring the true deflection achieved from applied

voltage and flex sensor signal information. To incorporate some temporal information

into initial inference modeling, the model inputs included the flex sensor signal and

applied voltage at the current timestep, as well as the voltage applied at the previous

timestep. Although this method appeared to accurately track the true deflection,

after further inspection I found that the inference model heavily weighted the supplied

voltages, ignoring the flex sensor signals and failing to account for hysteretic behavior.

Since the goal was to develop a model to accurately infer the system deflection from

flex sensor signal, regardless of applied voltage, I removed the voltage values from

the model input, instead redesigning the training as a short time-series forecasting
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problem as opposed to single time-step inference. In doing so I used three different

neural network structures, each with an input including the flex sensor signal and

approximated true deflection for the ten most recent consecutive time-steps. The

three tested structures consisted of an MSD, a one-dimensional CNN, and an LSTM

recurrent neural network, each built and trained using Tensorflow (Fig A.1). The

MSD and CNN networks included ReLU activation functions and dropout layers

with dropout rates of 0.2 between hidden layers while the LSTM network relied on a

single layer with only the sigmoid and hyperbolic tangent activation functions found

within a typical LSTM.

After training each model using the Adam optimizer with a learning rate of 0.0001

and early stopping to prevent overfitting, I found the LSTM model achieved the great-

est accuracy in training according to mean squared error in validation and testing

(Fig A.2a). I trained two models using each network structure with two different

methods for introducing the data to the model. In the first method, I simply com-

bined all the training data from the eight training data sets, and then trained the

model straight through. For the second method of training, I let the eight training

sets remain separate (split) and then completed training the model on each set of

data individually before continuing training on the next set. The two models were

combined into an ensemble to improve robustness during inference. An additional

performance comparison included implementing each model on a sequence of flex

sensor and deflection data not used during training. Figure A.2 illustrates the perfor-

mances of each neural network structures when given the same true initial position

information and subsequent flex sensor signals over 100 seconds. It is visible that

the LSTM inferred observations most closely follow the true deflection shown by the

dashed black line.

In the literature, a simple linear model was used to map flex sensor signals to

trailing edge deflection values [5]. Therefore, I developed a model in Tensorflow
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Figure A.1: Neural network structures used for state inference. The input data struc-
ture for state observation inference with a time-series forcasting format
uses the ten most recent flex sensor signals as well as the ten previ-
ously inferred deflection observations to estimate the current deflection
observation. I tested the performance of this style for three different
network structures: Multi Step Dense (MSD), 1D-Convolutional (CNN),
and Long Short-Term Memory (LSTM)
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a) b)

Figure A.2: State inference training and testing performance. LSTM achieved great-
est accuracy for training on both complete and split data in validation
and testing (a). When tested on a 100 second time-series of flex sensor
signal data, LSTM inferred observations that followed the True Deflec-
tions with the greatest accuracy, with the mean absolute error in terms
of millimeters shown in parenthesis (b)

using a single node without an additional nonlinear activation function for a linear

comparison.

Results

When comparing the impact of observation accuracy on controller performance,

it was useful to compare the inferred deflections with the true deflections for both

inference models. When given true observations, the PD controller performed well,

accurately tracking the desired deflection signal. When the controller made decisions

from states observed by the flex sensor models, although the observed deflection

(represented by the blue line) still tracked the target deflection signal well, there was

a discrepancy between true and observed deflection states. This led the true deflection

(represented by the green line) to lack accuracy in tracking. With that being said, the

more complex observation model, LTSM, provided more accurate results, particularly

for the intermediate steps, as indicated by the reduced gap between the true and

observed deflection values.

Additionally, since the morphing system is meant for flight, it was important to
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observe the performance of the controller and sensor inference methods while under

aerodynamic loading. This was particularly necessary since all sensor data used for

training was accumulated in an unloaded environment, and therefore it is crucial to

show the learned inference models can generalize to perform under changes in sensor

behavior that may come from varied dynamics within the system due to the out of

plane loading, or vibrations that may occur due to wind. To do so, I performed the

same series of step response tests in a 1’x1’ wind tunnel under three additional flow

speeds of 5 m/s, 7.5 m/s, and 10 m/s (Fig A.3). In comparing these performances,

I only used the true deflection achieved by the controller when operating under the

three different state observation methods, true, linear, and LSTM. As expected, when

provided true state observations (indigo line) the PD controller had the strongest

performance, tracking the step signal accurately regardless of additional airflow. The

linear state inference model (teal line) appeared to perform well; however, there was

a noticeable lack of accuracy in the intermediate step responses occurring between 15

and 35 seconds in the test sequences. The LSTM inference method (light green line)

appeared capable of improving the PD controller’s ability to track the target deflec-

tion signal in these intermediate steps, even under aerodynamic loading conditions,

performing more similarly to the PD controller with true observations than the linear

method.

Finally, although looking at the step response curves can provide some insight into

the performance of the PD controller when using the various observation methods, us-

ing specific metrics can provide a means for more direct and quantifiable comparison. I

performed the series of step response tests 5 times for each observation method at each

loading condition and determined the average performance in traditional modeling

and control metrics (Fig A.4). The first metric I considered was the inference model

error, used to determine the difference in millimeters between the inferred deflection

and the true deflection achieved by the morphing system. This metric showed that in
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Figure A.3: Compared controller tracking performances using state inference meth-
ods. A series of eight step response tests performed at flow speeds 0 m/s,
5 m/s, 7.5 m/s, and 10 m/s show consistent improvement in tracking
between tests where the PD controller was provided state observation in-
formation by the linear and LSTM inference models. This improvement
is most noticeable at intermediate step response between times 15 and
30.
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the unloaded environment the average error achieved by the LSTM model was nearly

half of that produced by the linear method. Although that error increased slightly

for the loaded environments, as indicated by filled points, the overall average error

was still only 59% of that experienced by the linear models. The other metrics are

specifically used to gauge the performance of the PD controller when operating with

the variable levels of accuracy in state inference. This is the performance that the

UAV ultimately will depend on. The first of these metrics was the settling time, used

to determine how long it takes, in seconds, for the controller to bring the trailing

edge to maintain a position within a distance of the goal deflection equal to 10% of

the total step size. This metric shows that although the true deflection information

provides the fastest control, on average the LSTM model provides control that is 1.6

seconds faster than the linear model. Another metric that is often balanced with

controller speed is how far past the goal position the controller directs the deflecting

trailing edge before settling on the correct position. This overshoot is measured as

a percentage of the step size. Here the improved accuracy of the LSTM inference

method reduced the average overshoot experienced by the controller when compared

to the linear model by 10.6%. This was equivalent to cutting the overshoot to less

than half of that experienced by the linear model. Finally, we considered rise time,

another metric used to consider the quickness of the PD controller by measuring the

time it takes to initially meet, and often surpass, the target position. Interestingly, we

see an inverse relationship between what had been established in the previous met-

rics. In this case, the least accurate inference method achieved the quickest rise times

on average. With that being said, all of the observation methods achieved rise times

between 0.9 and 1.1 seconds, but this initial quickness may relate to the differences

in overshoot and eventual final settling times.
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Figure A.4: Average controller metrics when using state inference methods. Metrics
used to determine the impact of improved inference accuracy offered by
the LSTM time-series model regarding traditional controller performance
included model error, settling time, overshoot, and rise time. The values
presented are the averages of 5 rounds of testing where each test included
8 step responses. The LSTM model achieved greater accuracy in esti-
mating trailing edge deflection. This allowed the controller to achieve
faster settling times and smaller overshooting improvements in accuracy
did not show large difference in rise times.

Conclusion

In this work I showed the benefit of using time-series forecasting machine learning

methods for state inference in smart material morphing aircraft systems. Long short-

term memory networks greatly improved accuracy over traditional linear models for

observing deflection states from piezoelectric flex sensor signals. The improved model

accounted for hysteresis and creep behavior within the flex sensor system, providing

accurate feedback for a traditionally tuned PD controller to achieve superior control

authority in a series of step response tests.
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APPENDIX B

PD vs PID control

When beginning my work designing a controller for the MFC morphing airfoil in

chapter III, I developed a PID controller for a baseline comparison. I found that using

a PD controller provided a better, and more interesting, baseline for this comparison

due to the integral windup and overshoot experienced by the PID controller. After

completing the work presented in Chapter III, I performed additional tuning, and

used anti-windup techniques on original PID gains to compare and verify that the

PD controller used was still a fair and interesting baseline for comparing to the learned

controllers. This appendix presents the work used for this verification.

Method

To make sure that I provided a fair representation of the traditional control meth-

ods, I conducted additional experiments to compare the performance between the

PD controller and more complex PID controller methods. To maintain consistency

between controllers, I used the weights obtained using the Ziegler-Nichols open loop

tuning method as a baseline and performed anti-windup and overshoot adjustments

from there. All comparisons were made in still air. Additionally, the flex sensor signal
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True LIN LSTM

Figure B.1: A series of eight step response tests performed using true, LIN, and
LSTM state inference to compare tracking performances between PD,
PID, PIDw, and PIDz, controllers.

circuit was recreated since initial testing shown in Chapter III, so the normalization

mean and standard deviations were adjusted to improve performance. Because of

this, the performances cannot be directly compared to those experienced in Chap-

ter III, but comparison between the methods shown here are fair. In addition to

the PD method used, I showed the performance of the initial PID controller, a PID

with a saturation based anti-windup component and a reduced integration function,

reducing the integral component to incorporate only the two most recent timesteps

(PIDw), and an additional PID controller that sets the integral to zero after switching

between positive and negative error (PIDz) (Fig B.1).

Initial tests using the “True” state observations from the external laser showed

that the PID methods were more accurate (measured by the reward) than the PD

method used, but there is a significant increase in overshoot and the settling times

were comparable (Fig B.2). When using the state inference methods, I notice a

large change in performance. The PD method achieved the best accuracy and lowest

overshoot. The PID methods experienced large oscillations about the goal position,

gaining dramatically higher overshoot and settling times. There was an additional

increase in inconsistency as shown by the error bars in these methods. When com-

pared to the performances achieved by the learned controllers shown in Chapter III,
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Figure B.2: Performance metrics used to compare the PD, PID, PIDw, and PIDz,
controllers. These included: Reward, overshoot, rise time, and settling
time. Metrics were mesured using true, LIN, and LSTM state inference
methods.

the learned controllers achieve comparable and more often superior results to the PID

based methods in speed, accuracy, and overshoot (particularly when using the state

inference methods).

In addition to the PD controller’s strong performance overall when paired with

the LIN and LSTM state inference models, its ability to achieve low overshoot pro-

vided a definitive challenge for the learned controllers to compete with. The initial

learned controller was fast and accurate but struggled to perform well in overshoot,

which led to the development of a second learned RL controller designed to penalize

overshoot. Therefore, I believe using the PD controller as a baseline was not only fair

but provided a more interesting comparison.
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APPENDIX C

Raw Tests for Gust Alleviation

In developing GLA controllers for a morphing wing, I performed extensive test-

ing to provide a robust representation of the performance that can be expected from

the DRL controllers. I trained ten controllers for each of the three pressure tap

configurations, and tested the controllers ten times for each of the six gust condi-

tions considered. Figure 4.6c in Chapter IV presents an example of the raw CLE

measurements taken during the ten repeated tests for a single controller at a single

gust condition. Here I present the same plot for all trained controllers under all test

conditions for each of the three pressure tap configurations.

The average standard deviation between test repetitions for each controller and

gust condition was 0.038 for the six pressure tap configuration.

The average standard deviation between test repetitions for each controller and

gust condition was 0.043 for the three pressure tap configuration.

The average standard deviation between test repetitions for each controller and

gust condition was 0.048 for the six pressure tap configuration.
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Figure C.1: CLE measurements of controller 1 for six pressure taps at all gust con-
ditions.

Figure C.2: CLE measurements of controller 2 for six pressure taps at all gust con-
ditions.
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Figure C.3: CLE measurements of controller 3 for six pressure taps at all gust con-
ditions.

Figure C.4: CLE measurements of controller 4 for six pressure taps at all gust con-
ditions.
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Figure C.5: CLE measurements of controller 5 for six pressure taps at all gust con-
ditions.

Figure C.6: CLE measurements of controller 6 for six pressure taps at all gust con-
ditions.
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Figure C.7: CLE measurements of controller 7 for six pressure taps at all gust con-
ditions.

Figure C.8: CLE measurements of controller 8 for six pressure taps at all gust con-
ditions.
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Figure C.9: CLE measurements of controller 9 for six pressure taps at all gust con-
ditions.

Figure C.10: CLE measurements of controller 10 for six pressure taps at all gust
conditions.
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Figure C.11: CLE measurements of controller 1 for three pressure taps at all gust
conditions.

Figure C.12: CLE measurements of controller 2 for three pressure taps at all gust
conditions.
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Figure C.13: CLE measurements of controller 3 for three pressure taps at all gust
conditions.

Figure C.14: CLE measurements of controller 4 for three pressure taps at all gust
conditions.
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Figure C.15: CLE measurements of controller 5 for three pressure taps at all gust
conditions.

Figure C.16: CLE measurements of controller 6 for three pressure taps at all gust
conditions.
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Figure C.17: CLE measurements of controller 7 for three pressure taps at all gust
conditions.

Figure C.18: CLE measurements of controller 8 for three pressure taps at all gust
conditions.
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Figure C.19: CLE measurements of controller 9 for three pressure taps at all gust
conditions.

Figure C.20: CLE measurements of controller 10 for three pressure taps at all gust
conditions.
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Figure C.21: CLE measurements of controller 1 for one pressure tap at all gust con-
ditions.

Figure C.22: CLE measurements of controller 2 for one pressure tap at all gust con-
ditions.
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Figure C.23: CLE measurements of controller 3 for one pressure tap at all gust con-
ditions.

Figure C.24: CLE measurements of controller 4 for one pressure tap at all gust con-
ditions.
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Figure C.25: CLE measurements of controller 5 for one pressure tap at all gust con-
ditions.

Figure C.26: CLE measurements of controller 6 for one pressure tap at all gust con-
ditions.

135



Figure C.27: CLE measurements of controller 7 for one pressure tap at all gust con-
ditions.

Figure C.28: CLE measurements of controller 8 for one pressure tap at all gust con-
ditions.
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Figure C.29: CLE measurements of controller 9 for one pressure tap at all gust con-
ditions.

Figure C.30: CLE measurements of controller 10 for one pressure tap at all gust
conditions.
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