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Abstract 

Circulating tumor cells (CTCs) are the seeds of cancer metastasis and can be accessed 

through a simple blood draw. Recent developments in nanomaterials and microfluidic devices have 

enabled the invention of highly sensitive microfluidic platforms such as the graphene oxide (GO) 

chip. Such novel microfluidic devices have drastically advanced the isolation and characterization 

of CTCs, revealing that these rare cells may reflect disease status in cancer patients. However, 

further investigations in the context of clinical treatment studies are still needed to fully elucidate 

the value of CTCs as biomarkers. Additionally, targeting these rare CTCs might be a feasible 

therapeutic strategy to control cancer metastasis.  

In this thesis work, I first optimized the GO chip workflow to isolate CTCs from 16 

metastatic bladder cancer patients. Interestingly, I found that patients with CTCs > 3/mL had worse 

overall survival. Additionally, through amplicon-based targeted sequencing and a novel, 

customized bioinformatic analysis pipeline to remove variances from contaminating white blood 

cell (WBC) signals, I found that several tumor-related genes, including KRT5, KRT10, MMP-2, 

and AKR1C2, were significantly upregulated in patients with metastatic disease.   

This similar workflow was then applied to longitudinal studies in stage III non-small-cell 

lung cancer (NSCLC), in which I developed analytical methods to correlate CTC counts and RNA 

expressions with clinical outcomes. CTCs were isolated and enumerated from 26 NSCLC patients 

and 6 time points across chemoradiation and immunotherapy treatment. The PD-L1 expression 

and RNA profile of these CTCs were characterized using on-chip immunofluorescent staining and 

microarray, respectively. I found that some CTC metrics, including a larger decrease in CTC 
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counts after therapy started, and having ≤ 50% PD-L1+ CTCs at single time points, significantly 

predicted longer, progression-free survival. Compared to pretreatment, significant upregulations 

of genes related to cancer metastasis, invasion, proliferation, and resistance were found in CTC 

samples during chemoradiation.  

To explore potential therapies against these residual metastatic seeds, I hypothesized the 

critical role of NK cells in eliminating CTCs based on existing literature and investigated the CTC–

NK interaction using novel single-cell resolution characterization methods. Through quantified 

NK cytotoxicity, 2 in-house CTC lines were both highly sensitive to NK-mediated killing 

compared to other lung-cancer-cell lines. By calculating an NK and epithelial to mesenchymal 

transition (EMT) score from bulk and single-cell RNA sequencing of CTC samples, I found a 

strong correlation between the NK-sensitive phenotype and EMT. In other words, CTCs, 

especially those with mesenchymal phenotypes, are highly sensitive to NK-mediated killing and 

have NK-sensitive signatures at the RNA and protein levels. 

Lastly, I adapted the GO platform to isolate patient-specific NK cells and generate a novel 

therapeutic agent, NK-derived exosomes. Compared to NK cells, exosomes can potentially 

infiltrate biological barriers and are less influenced by the immunosuppressive tumor 

microenvironment. In a small cohort of NSCLC patients, I isolated NK cells and CTCs and 

produced NK exosomes through a 12-hour, on-chip incubation. The NK cell and NK exosome 

concentrations showed correlations with bloodborne CTC numbers. And preliminary results then 

demonstrated that the NK exosomes harvested from the NK-GO chip had cytotoxic effects on in-

house derived CTCs.  

The findings in this thesis strongly demonstrate the value of CTCs as biomarkers and 

therapeutic targets in clinical cancer management. Further, the methods developed in this work 
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could be further applied to larger studies to advance the clinical utility of CTC-based liquid 

biopsies.  
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Chapter 1 Introduction 

1.1 Cancer metastasis, liquid biopsy, and circulating tumor cells 

1.1.1 Cancer metastasis 

Cancer metastasis refers to the spread of cancer (i.e., new tumor formation) to a secondary 

site in the body. Metastasis is a systemic disease associated with 90% of cancer-related mortalities. 

The metastatic seeding process starts relatively early, often during tumor formation and sometimes 

even before the cancer diagnosis1,2. Subpopulations of tumor cells that have increased invasiveness 

and mobility can enter the bloodstream and spread throughout the body3. While most of these 

disseminated tumor cells fail to initiate a secondary tumor, a few succeed with the help of other 

cell types along the way4. The survival of these disseminated tumor cells might be a primary reason 

for cancer relapse after surgical removal of local tumors. Extensive research is creating new 

options for monitoring and targeting this multistep metastasis process5–7. 

1.1.2 Liquid biopsy and the promise of personalized medicine  

Liquid biopsy is emerging as a popular tool for metastasis research, both biologically and 

clinically. Liquid biopsy uses various analytical techniques to study biomarkers in bodily fluids, 

primarily blood. Because these bodily fluid samples can be accessed without surgical procedures 

and are minimally invasive, studying these biomarkers can potentially enable early tumor 

detection, personalized medicine, treatment response, and residual disease monitoring. The 

available biomarkers include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), 

extracellular vesicles (EVs), metabolites, and RNA molecules8. Among these biomarkers, only 
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assays using ctDNA and CTCs have been approved by the FDA. This thesis focuses on developing 

new pipelines for the characterization, analysis, and targeting of CTCs in the context of cancer 

immunotherapy.  

CTCs are rare cells that are shed from solid tumors into the bloodstream. They are 

metastatic seeds that initiate a secondary tumor. CTC profiling can give comprehensive 

information on DNA, RNA, and protein levels, providing a direct window into metastasis in action. 

In addition, CTCs are fully intact live cells, which allows for drug screening through expansion 

and patient-derived xenograft models. Recent advances in isolation, characterization, and 

expansion technologies have made it possible to interrogate these CTCs and provide relevant 

clinical information.  

1.2 CTC isolation methods 

1.2.1 Overview of CTC isolation principles 

CTCs were discovered over 150 years ago by the Australian pathologist Thomas Ashworth 

in the blood samples of metastatic cancer patients9. Isolation and characterization technological 

developments have helped CTCs become one of the most popular topics in cancer research. CTCs 

are found in a low concentration and with high background signals in clinical blood samples. There 

are approximately one to 10 CTCs per mL, with millions of white blood cells (WBCs) and billions 

of red blood cells (RBCs) in the background. It is worth noting that CTC counts vary based on 

cancer type, cancer stage, and tumor burden. In late-stage metastatic lung cancer patients, hundreds 

of CTCs can be found in one mL of patient blood samples10,11.  

The isolation methods can be divided into two main categories, immunoaffinity-based and 

physical property-based technologies. Immunoaffinity-based technologies take advantage of 

CTCs’ unique cell-surface protein expression and use antibodies against these markers to detect 
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CTCs from peripheral blood mononuclear cells (PBMCs) or whole blood. CTCs have absent 

expressions of leukocyte markers and positive expressions of epithelial-cancer-cell markers, 

including epithelial-cell-adhesion molecule (EpCAM) and cytokeratin (CK) markers. Most 

physical property-based technologies are size-based, taking advantage of the fact that CTCs are 

generally larger compared to WBCs12.  

1.2.2 Immunoaffinity-based technologies 

The immunoaffinity-based separation concept has long been used in traditional cell sorting, 

such as magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). 

The first FDA-approved CTC isolation device, CellSearchTM, uses magnetic beads conjugated with 

antibodies against EpCAM. The device captures CTCs from 7.5mL of patient blood samples; the 

enriched samples are then fixed and stained with cytokeratin and white-blood-cell markers to 

further identify the CTCs. Many large-scale clinical studies have used this technology to show the 

clinical implications of CTCs13–15. Although the CellSearchTM system represented a breakthrough 

in CTC isolation technology, its limitations have been discussed by many researchers16,17. The 

main limitations include the lack of a release mechanism, lack of compatibility for downstream 

molecular or expansion assays, and sole dependency on EpCAM cell-surface expression. These 

deficiencies have motivated biologists and engineers to collaborate to develop new CTC isolation 

methods.  

Microfluidic devices are emerging as a popular tool for in vitro diagnostics because of their 

low cost, small size, low reagent use, and high sensitivity. The CTC-chip, a pioneering invention 

by Nagrath et al., uses anti-EpCAM-coated microposts under controlled laminar flow conditions 

to separate viable CTCs from peripheral whole blood samples18. CTCs were identified in 115 of 

116 (99%) samples from patients with metastatic lung, prostate, pancreatic, breast, and colon 
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cancer. The herringbone chip, developed 2 years after the CTC chip, provides an enhanced, high-

throughput platform for CTC isolation. The herringbone chip contains 8 microchannels with 

patterned chevrons or herringbones on their upper surfaces. These patterns significantly increase 

the interactions between target CTCs and the antibody-coated chip surface by introducing micro 

vortices into the fluid flow and forcing the cells to the antibody-coated surface. CTCs were 

detected in 14 of 15 (93%) patients with prostate cancer. To capture different subtypes of CTCs, 

Pecot et al. used antibody cocktails against a variety of cell surface antigens, such as EpCAM, 

Human Epidermal Growth Factor Receptor (HER2), Mucin 1 (MUC1), Epidermal Growth Factor 

Receptor (EGFR), c-MET, N-cadherin, and mesenchymal stem cell antigen19. Detection of both 

Cytokeratin (CK)+ and CK− CTCs was reported in breast, ovarian, and colorectal cancer.  

The rapid development of nanomaterials has enhanced the functionality of CTC capture 

and characterization. The graphene oxide (GO) chip, developed previously within the Nagrath lab, 

uses angstrom high 2D gold patterns on a silicon substrate to increase capture sensitivity20. As 

shown in Figure 1-1A, GO chip is 24.6 mm × 60mm by size and have over 50,000 gold flowers 

patterned on top of the silicon wafer. GO, as a nanomaterial with a high surface-area-to-volume 

ratio, dramatically increases the number of active sites for cell capture. The 1000 Å gold layer 

provides a rough surface that can influence the device’s flow pattern, allowing for better interaction 

between cells and anti-EpCAM antibodies. Capturing antibodies, such as anti-EpCAM, are then 

conjugated onto the GO through PEG molecules, crosslinkers, and avidin.  On average, the device 

captured 73% of cancer cells from mock samples, even with only 3 to 5 spiked cancer cells. 

Follow-up studies showed successful characterization of CTCs from breast21, prostate22, and lung 

cancer patients23.  
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Figure 1-1 GO chip platform, adapted from20. (A) The schematic drawing of a GO chip; (B) Enlarged 

images of the GO chip chemistry to conjugate antibodies on to GO chips. 

1.2.3 Physical property-based technologies 

The use of CTCs’ physical characteristics for isolation has gained popularity because of its 

promising ability to capture the EpCAM− CTC population. Different techniques, such as filtration, 

acoustic separation, and inertial focusing, are used in various isolation-method designs. The 

isolation by size of epithelial tumor cells (ISET) assay is the earliest filtration-based system for 

CTC isolation from peripheral blood24. In this assay, blood samples are diluted 10 times and 

processed through a membrane with 8 µm cylindrical pores. CTCs were then detected by positive 

immunostaining of cytokeratin (KL1) and negative immunostaining of CD45 (LCA). The 

sensitivity tests with cell-line mock samples and liver-cancer-patient samples showed successful 

isolation of low concentrations of CTCs (0–5/mL). In a follow-up study, CTCs were detected in 

23 of 44 liver cancer patients and were associated with shorter survival25. Despite the initial success, 

the first-generation filtration membranes often ran into problems such as pore clogging, high-

contaminating WBCs, and compatibility of downstream analyses.  

Based on similar principles, microfluidic devices with microgaps and microposts are being 

developed to enhance isolation performance. One of these microfluidic-based systems, the 

ParsortixTM system, recently became the second CTC isolation technology to receive clearance 
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from the FDA26. The key isolation device in the ParsortixTM semiautomated system uses a “step” 

configuration in the channel heights. Smaller cells are forced to pass through, and larger cells are 

retained in the device27. After the isolation step, captured cells can be collected in small volumes 

for downstream analysis by an opposite change in flow direction. Xu et al. calculated an average 

of 92% capture efficiency when spiking fluorescently labeled cell-line samples in different 

concentrations, ranging from 3 to 1,000 cells per mL. Additionally, this system is compatible with 

various downstream applications, including fluorescence in situ hybridization (FISH)28,  bulk RNA 

sequencing29, and single-cell RNA sequencing30. Clinical studies in breast29, lung31, prostate32, and 

ovarian cancer33 have successfully used the ParsortixTM system to identify and characterize CTCs. 

Although ParsortixTM has improved antigen-independent cell isolation in many aspects compared 

to the original ISET filters, it is limited by its low throughput. As stated by Kitz et al., it takes 

approximately 7 hours for the entire workflow, and the system can only process one sample at a 

time34.  

Inertial focusing devices are promising alternatives to increasing throughput while 

maintaining the advantages of a filtration system. CTC-iChip, for example, can process whole 

blood samples at 8 mL/hour and sort 107 cells per second at high efficiency35. The integrated 

system first eliminates smaller particles such as RBCs, platelets, and plasma proteins by 

hydrodynamic size-based sorting, then it uses inertial focusing to streamline cells, which enables 

magnetic beads-based cell separation. The downstream applications of the CTC-iChip include 

using digital droplet PCR to retrieve RNA signatures from hepatocellular carcinoma (HCC)36. The 

Labyrinth device, another approach developed in the Nagrath lab, uses a series of sharp corners to 

force particles of different sizes to form other streamlines. This device can process samples at 2.5 
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mL/min, and the recovery rate from spiked cancer cells in PBS and blood was over 90%. CTCs 

were successfully detected in pancreatic, breast, and lung cancer patients11.  

1.3 CTC detection and characterization methods 

1.3.1 Protein and metabolic analysis  

Immunostaining is one of the most widely used CTC detection methods. It is used by many 

isolation technologies, including CellSearchTM, CTC-chip, and ParsortixTM. CTCs are often 

identified by the positive stain of CK and the negative stain of WBC marker CD45. Other markers 

can be used in the identification panel for different cancer types, such as ASGPR and GPC3 in 

liver cancer and HER2 and EGFR in breast cancer37. Beyond CTC detection, multiplex 

immunostaining panels can be used to profile specific protein expression on identified CTCs. For 

instance, incorporating epithelial markers (EpCAM, CK, and E-Cadherin) and mesenchymal 

markers (Vimentin, fibronectin-1, and N-cadherin) can identify different subtypes of CTCs in the 

EMT spectrum11,33,38. PD-L1 is frequently detected in the CTCs isolated from late-stage breast39 

cancer and NSCLC patients40. In addition, detecting cancer stem cell markers like CD44 and 

TWIST1 on CTCs is predictive of a worse prognosis in hormone receptor-negative breast cancer 

patients41.  

While convenient and compatible with most isolation technologies, immunostaining is 

often limited by its multiplexing capacity and qualitative nature. This field urgently needs novel, 

advanced cell proteomic and metabolic methods to aid understanding of the functional signature 

of single CTCs42. Several different approaches have been developed to fill this gap. For example, 

Sinkala et al. developed a microfluidic single-cell western-blot system, which can conduct 8-plex 

protein analysis for patient-derived CTCs43. This assay was tested on 3 cancer-cell lines and a 

cohort of 12 breast cancer patients, and it observed the intra- and inter-patient heterogeneity of 
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CTCs. Another approach based on single-cell mass spectrometry that focuses on CTC metabolic 

profiling was developed around the same time44. In a cohort of advanced gastric and colorectal 

cancer patients, 119 compounds were identified as upregulated in CTCs compared to lymphocytes, 

with 75 being glycerophospholipids (GPLs). In addition, unique metabolic profile clustering was 

found between gastric and colorectal cancers and between CTCs and lymphocytes. 

Furthermore, a recent study incorporated surface-enhanced Raman spectroscopy (SERS) 

to characterize the protein expression of single CTCs in melanoma patients45. SERS is a powerful 

optical tool with narrow emission peaks to allow ultrasensitive biomolecule detection with better 

multiplexing capacity, an alternative to fluorescent signals. Although that paper only tested 3 

expression markers on patient-derived CTCs, a higher power of multiplexing in tissue samples, up 

to 26 markers, has been revealed using similar technologies46. 

1.3.2 RNA analysis  

1.3.2.1 Bulk RNA analysis methods 

The profiling of CTCs on the transcript level is technically challenging because they have 

an inherently low RNA quantity and quality after multiple handlings in the enrichment process. 

Quantitative, real-time polymerase chain reaction (qRT-PCR) is a molecular biology technique 

commonly used to amplify and quantify specific cancer-related genes in enriched CTC samples. 

For example, Strati et al. investigated a panel of breast cancer-related gene transcripts in CTCs 

isolated with immunomagnetic beads47, including CK-19, MAGE-A3, HER-2, TWIST1, hTERT 

α+β+, and mammaglobin. Similar workflows have been successfully conducted in many other 

studies to investigate the expression of a small set of cancer signatures in CTCs48–50. 

Some studies have exploited microarray or bulk sequencing platforms to incorporate larger 

sets of genes and conduct clustering and differential expression analysis. Smirnov et al. used 
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microarray to show the global gene-expression profile of CTCs isolated immunomagnetically51. 

By comparing the CTC-enriched and CTC-depleted samples (WBCs only), that study could 

identify novel CTC-associated genes, such as AGR2, FABP1, S100A13, S100A14, and S100A16. 

Another study performed bulk mRNA sequencing on breast cancer CTCs isolated using 

fluorescence-activated cell sorting (FACS)52. Despite a 23.9% dropout rate based on library 

quality, the authors successfully identified significant genes and pathways in CTCs compared to 

peripheral blood and primary tumors. In addition, a 75-gene signature that had the highest 

expression in both CTCs and primary tumors was identified and had prognostic values in the 

cancer genome atlas (TCGA) datasets. 

1.3.2.2 Single-cell analysis methods 

Contaminated WBC signals pose a critical challenge to the use of CTC molecular 

characterization for bulk profiling methods. Because of CTCs’ rare frequency in blood, most 

current CTC enrichment samples struggle to obtain a pure CTC population. One potential solution 

is to further partition these enriched CTC samples into single cells and profile them individually. 

Several approaches have been experimented with by multiple groups. For example, Szczerba et al. 

used a micromanipulator to select CTCs, CTC clusters, and WBCs after ParsortixTM-based 

isolation. The transcriptome profiles of individual CTCs and CTC-neutrophil clusters showed a 

high proliferative nature of CTC-neutrophil clusters30.  

The Chromium (10X Genomics) single-cell sequencing platform provides another single-

cell partitioning approach. Using this platform, D’Avola et al. successfully identified CTCs and 

performed differential expression analysis by comparing CTCs to other blood cells53. The 

differential gene analysis showed the upregulation of a series of oncogenic driver genes in 

hepatocellular carcinoma such as IGF2 and other genes related to liver physiology, including 



 10 

apolipoproteins, coagulation factors, alcohol dehydrogenases, and cytochromes in CTCs. The 

DEPArrayTM system is another single cell partitioning approach that uses dielectrophoresis to exert 

force on cells and individually move them. So far, the DEPArray system has only been used to 

analyze CTCs on the DNA level, such as mutations54 and copy number variations55.   

1.3.2.3 Challenges and approaches in the Bioinformatic analysis of CTCs 

The molecular heterogeneity, apoptotic nature, and often-impure samples of CTCs have 

brought unique challenges to the bioinformatics analysis of CTCs. To my knowledge, there is no 

current method to deconvolute WBC-contaminated bulk CTC samples. However, deconvolution 

tools for immune cell populations in tumor microenvironments have been developed. 

CIBERSORT is a well-known digital algorithm that enumerates and characterizes different cell 

compositions of complex tissues from bulk expression profile data sets56.  This tool has not been 

used in CTC profiling, but it could potentially help procure pure CTC signals.  

Different single-cell profiling strategies involving bioinformatically defined CTCs have 

been developed using the 10X Genomics platform. D’Avola et al. used a loosened filtering strategy 

to make the consideration of all genes an input, regardless of the percentage of cells expressing 

them53. CTCs were identified as the outliers after principal component analysis (PCA) of the highly 

variable genes. This method is straightforward but could be conservative, because many CTCs 

have a high level of heterogeneity. To overcome this, Poonia et al. developed the unCTC R 

package, which uses a novel method of clustering (“Deep Dictionary Learning”) and the K-means 

clustering cost (DDLK), designed exclusively for the identification and characterization of 

CTCs57. Considering that CTCs are highly heterogeneous and could be hard to identify through an 

unsupervised clustering method, this method projects the single-cell gene-expression data onto a 

range of well-understood biological pathways to obtain robust cellular clusters. This tool is a big 
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step forward in identifying CTCs from sequencing results, and further development of 

bioinformatics tools specifically for CTCs is urgently needed.  

1.4 Current clinical application of CTCs 

1.4.1 CTC as a prognostic biomarker 

Numerous studies have used CTCs as surrogate biomarkers for many cancer types58. In 

general, the presence of CTCs indicates an invasive and metastatic feature of solid tumors and 

minimal residual disease. CTC counts are the most common quantifiable metric in these clinical 

studies and are generally associated with tumor invasiveness and metastatic potential. The value 

and change in CTC counts could help predict patient outcomes across different cancer stages and 

monitor the treatment response.  

Janni et al. reported a 20.2% CTC detection rate in a meta-analysis of 3,173 non-metastatic 

breast-cancer patients59. Larger tumors, increased lymph node involvement, and a higher 

histologic tumor grade were found in the CTC-positive patients. Using multivariate Cox regression 

analysis, CTCs were also shown to be independent prognostic factors for patients’ disease-free 

survival and overall survival. Similar results have been reported in many other studies, showing 

that CTCs help diagnose and predict recurrence in the early stages of bladder, prostate, lung, and 

other cancer types60–64.  

Further investigation has led to the discovery of other relevant metrics beyond CTC counts 

at single time points, such as changes in CTC counts, presence of CTC clusters, and specific 

invasive CTC phenotypes. For example, Lorente et al. found that a > 30% CTC count that declined 

between baseline and 4 weeks, 8 weeks, and 12 weeks after treatment was associated with an 

increased prostate cancer survival rate65. In a cohort of 54 metastatic breast cancer patients, 

elevated counts of CTC clusters and larger CTC cluster sizes were found to correlate with a higher 
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risk of disease progression and death66. In addition, certain CTC phenotypes, such as mesenchymal 

(represented by the expression of Vimentin and TWIST1) and stemness (represented by the 

expression of CD24, CD44, and ALDH1), have also been associated with therapy resistance and 

high relapse rates67–69.  

1.4.2 Screening CTCs for treatment stratification 

The Treat CTC trial was the first clinical trial to take advantage of the early prognosis value 

of CTCs to guide the following adjuvant therapy for HER2 negative breast-cancer patients70,71. 

High-risk patients were defined as having at least one CTC per 7.5 mL. The study screened 1,317 

patients and detected positive CTCs in 95. Sixty-three of these high-risk patients were then 

assigned to observation and were administered 6 cycles of trastuzumab. The study was stopped 

because the CTC count did not decrease in the treatment arm; nevertheless, it proved the feasibility 

and clinical potential of CTC-based screening. The study also found that CTC-positive patients 

were associated with a higher risk of relapse. 

Developments in CTC characterization technologies have encouraged the screening of 

specific molecular subtypes using CTC samples to guide therapeutic decisions. Marchetti et al. 

reported an 84% (31 of 37 patients) EGFR mutation-detection rate using CTC samples from 

NSCLC patients, corresponding to the matching tumor tissue72. Similar high concordance (85%, 

57 of 67 CTC samples; 67%, 8 of 12 patients) in at least one or more somatic mutations and copy 

number alterations has been reported in metastatic breast cancer73. Discordance of expression 

between CTC and tissue has also been reported, especially for HER2 expression74–76. In the tissue 

of HER2-negative patients, CTCs may acquire a HER2 positive phenotype and exhibit a higher 

potential for proliferation77. Wang et al. observed that patients who had negative HER2 expression 

in primary tumors but positive expression in CTCs (≥ 2 HER2 + CTCs) and who received anti-
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HER2 targeted therapies displayed significantly improved progression-free survival (PFS) 

compared to those who did not78. This difference was not observed in patients with negative HER2 

signals in both tissue and CTC samples (< 2 HER2 + CTCs).  

Beyond evaluating the expressions of single genes, Kwan et al. developed a 17-gene CTC 

score to quantify estrogen receptor (ER) signaling during breast cancer treatment, identifying 

patients who did not respond to endocrine therapy and predicting their early disease progression79. 

Taken together, these findings indicate the unique value of profiling CTCs to guide therapeutic 

decisions.  

1.4.3 CTC expansion and drug testing 

In vitro expansion of isolated CTCs aims to take advantage of the proliferative nature of 

cancer cells and establish patient-derived CTC lines, or mouse models. Current literature on 

successful cases of CTC expansion and drug testing was summarized nicely by Smit et al.80 From 

2014 to 2020, 358 cases of successful CTC cultures were reported, 42 (12%) of which had 

established, long-term CTC lines (≥ 6 months). Some of these studies performed drug testing on 

established CTC lines. Yu et al. comprehensively profiled 6 established, permanent CTC cultures 

from metastatic, ER-positive breast cancer patients and tested anti-cancer agents against molecular 

targets and common chemotherapeutics81. The authors observed concordance between some of the 

CTC drug sensitivity results and clinical histories. Similar concordance was also reported in small-

cell lung cancer (SCLC)82. These findings indicate that CTC-based drug testing models are largely 

representative of solid tumors’ drug sensitivity. 

1.4.4 CTC as a biomarker under the context of immunotherapy 
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1.4.4.1 Cancer immunotherapy 

Standard cancer care has been revolutionized by the recent development and clinical use 

of immunotherapies. Cancer immunotherapies leverage parts of the patients’ own immune system 

to treat diseased tumor cells. Current well-known immunotherapy approaches include immune 

checkpoint inhibitor (ICI) and adoptive cell-based therapies (e.g., CAR-T therapies). ICI targets 

the immune checkpoint pathways activated by cancer cells as immune evasion mechanisms. 

Common immune checkpoint targets include cytotoxic T-lymphocyte antigen-4 (CTLA-4) and 

programmed death (PD-1). So far, seven ICIs have been approved by the FDA for over 15 cancer 

types83. Adoptive cell therapies, on the other hand, aim to isolate, expand, and engineer immune 

cell populations in vitro and reintroduce them to patients. CAR-T cell therapy is the only FDA-

approved cell-based therapy so far. However, there is a large amount of research continuously 

being conducted on other cancer immunotherapy approaches.  

1.4.4.2 CTC metrics that have predictive value in immunotherapies 

Programmed cell death ligand 1 (PD-L1) expression is the best-established predictive 

biomarker of response to ICI treatment on the PD-1/PD-L1 axis84,85. Assessing CTC counts or the 

PD-L1 expression on CTCs for patients receiving immunotherapies provides a noninvasive 

approach for treatment monitoring. Many studies have explored such prognostic values of CTCs 

in the context of cancer immunotherapies.  

High PD-L1-positive CTC counts before immunotherapy treatment are associated with a 

worse survival outcome40,86–89. Yue et al. described a correlation between disease outcome and 

dynamic change in CTC counts or PD-L1-positive/high CTC counts during nivolumab (a PD-1 

inhibitor) treatment in a cohort of 35 NSCLC patients86. Decreased total CTC or PD-L1 

positive/high CTC counts are significantly associated with longer survival. For patients treated 
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with nivolumab, other studies showed that the presence of CTC or PD-L1-positive CTCs during 

treatment could potentially indicate a mechanism of therapy escape and are associated with poor 

PFS40,86,87. Possible therapy resistance channels have recently been proposed through the 

expression of CD47 as an alternative immune-inhibiting signal on CTCs85,90.  

1.5 Targeting CTCs to control metastasis 

The isolation and characterization of CTCs have laid the biological foundations for 

therapeutic targeting of CTCs. Selective targeting of CTCs can serve as an unconventional strategy 

for controlling cancer metastasis. Compared to other anti-metastasis therapies that inhibit the final 

steps of the metastatic cascade6, CTC therapeutics enable potential early intervention and easy 

access to pharmacological and mechanical targeting interventions5,91. Although the CTC 

therapeutics field is relatively new, several noteworthy discoveries and developments have helped 

engineer intervention and immunosurveillance of CTCs.  

1.5.1 Engineering approaches to selectively eliminate CTCs 

Michael R. King et al. developed a series of engineering technologies using the E-selectin 

(ES) adhesion receptor and tumor necrosis factor-related apoptosis-inducing ligands (TRAIL)92–

95. The first-generation approach uses a vascular shunt functionalized with ES and TRAIL 

proteins92. The ES protein causes CTCs to adhere and exhibit ES-mediated rolling alongside the 

shunt, and this rolling process allows for 4 times more efficient exposure to TRAIL molecules, 

inducing apoptosis in CTCs. The second-generation approach takes advantage of the interaction 

between CTCs and other blood components, such as leukocytes and platelets, to deliver ES and 

TRAIL molecules93–95. Mitchell et al. developed ES/TRAIL liposomes to functionalize leukocytes 

in the whole blood93. The study showed effective elimination of cancer cells in cell-line spike-in 

model samples and mouse models, and the functionalization process did not induce significant cell 
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death in endothelial and leukocyte cells. Moreover, Ortiz-Oetero et al. later tested this therapeutic 

approach in clinical blood samples from prostate cancer patients in vitro94. Significantly fewer 

CTCs were found in the group with TRAIL therapy compared to the vehicle control.  

1.5.2 Leveraging immunotherapies to target CTCs 

Efforts have been made to build on current immunotherapy approaches to better target CTC 

populations. For example, since high CTC counts during PD-1/PD-L1 checkpoint inhibitor 

treatment indicate an escape mechanism, it has been proposed that these residual CTCs might use 

CD47 as an alternative immune-suppressing signal. Lian et al. showed that the dual blocking of 

CD47 and PD-L1 could enhance the inhibition of tumor growth more than CD47 or PD-L1 alone96. 

To enhance the delivery of PD-L1 ICIs, Chen et al. invented a platelet-based anti-PD-L1 drug 

delivery strategy to target CTCs.  

Although the above therapeutic strategies are promising, they fail to leverage one of the 

crucial players in CTC immune surveillance: natural killer cells. Recent literature has increasingly 

reviewed the possibilities of targeting CTCs and metastasis using NK-cell based therapies97–99. In 

the following sections I further discuss the biological rationale and advances of NK-cell-based 

therapies. 

1.5.3 NK cell and cancer metastasis 

NK cells are an innate part of the immune system. They can identify and kill abnormal 

cells, including viral infections, cancer cell growth, and tumor spread, without antigen 

presentation. NK cells are regulated by the balance between a series of activation and inhibition 

receptors100–102. Compared to T cells, this mechanism gives NK cells unique advantages in 

recognizing stressed cancer cells and eliminating them. For example, one of the escape 

mechanisms of cancer cells for T-cell-based therapeutics is changing self-expression of the major 
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histocompatibility complex (MHC) class I molecule. MHC class I molecules should be expressed 

on all nucleated cells in the human body. They are essential for antigen presentation during T-cell 

activation and effector T-cell function. Downregulation or loss of MHC class I would impair T-

cell-based immunosurveillance but would serve as an activation signal for NK cells103. Frequent 

downregulation of MHC class I expression is found in many solid tumors in cancers such as 

bladder, breast, lung, and colorectal104,105 and in disseminated tumor cells in bone marrow106.  

NK cells are also known to play a significant role in controlling cancer metastasis97,98, 

supported by an extensive amount of preclinical literature. Higher metastasis burdens were found 

in NK-cell-depleted mice compared to other immune cell-depleted or immunocompetent control 

mice99,107–110. In the NK-cell-deficient or suppressed mouse models, interventions that boost NK- 

cell effector functions, such as adoptive transferring of NK cells and IL-15 treatment, have been 

shown to provide protection against metastasis111,112.  

Because of their exceptional ability to control metastasis in animal models, NK-cell 

therapies have been carried out in over 600 clinical trials investigating their efficacy against cancer. 

See ClinicalTrials.gov (search keywords: “natural killer,” “cancer”). One of the popular concepts 

involves isolating NK cells from peripheral blood samples, expanding and activating them, and 

infusing them back into patients. Promising clinical response has been shown in KIR-mismatched 

allogeneic NK-cell-therapy cases in acute myeloid leukemia113,114.  In metastatic solid tumors, 

adoptive NK cell therapies have limited tumor infiltration, potentially due to the immune 

suppressive tumor microenvironment115. Other challenges of NK-cell therapies include the loss of 

cytotoxicity after cryopreservation, inconsistent expansion scale, costly expansion procedures, and 

unmodified NK cells lacking anti-tumor efficacy116. Strategies to improve NK-cell recruitment and 

infiltration and promote NK-cell activation are active areas of research.  
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1.5.4 NK cells and CTCs 

As a crucial step in the metastatic cascade, CTCs are hypothesized to have unique 

vulnerability to NK-cell-mediated killing. More and more evidence show the interaction between 

NK cells and CTCs. An inverse correlation has been found between circulating NK cells and CTCs 

in breast, lung, colorectal, and liver cancer85,117–121. On the one hand, decreased NK cell numbers 

and cytotoxic activity were found in metastatic cancer patients with high CTC numbers 119–121. On 

the other hand, significantly decreased CTC numbers were found after administration of NK cell 

therapies117,118.  

Efforts have also been made to further explore the biological basis of the CTC–NK 

interaction. On the molecular level, several studies have discussed the connection between NK 

activation and epithelial-to-mesenchymal transition, which is often found in CTCs. Using a gene-

expression-profile data set during TGF-𝛽-induced EMT, Chockley et al. showed that tumor cells 

undergoing EMT suggest increased NK susceptibility122. Others also had similar findings123,124. 

NK activation signals, such as the downregulation of MHC class I molecules, were observed in 

CTCs in mouse models and melanoma patients125,126. In addition, CTC clusters were found to have 

increased NK-inhibitory ligands and decreased NK-activating ligands, exhibiting higher resistance 

to NK-mediated killing compared to single CTCs124. 

1.5.5 Next generation NK based therapy: NK exosomes 

1.5.5.1 Exosomes as therapeutics 

Cell-based therapies face many challenges regarding tumor infiltration, manufacture, 

storage, and transportation127. For NK-cell-based therapies, infiltration of NK cells into solid 

tumors is largely influenced by cytokine profiles of tumor microenvironments128. Parkhurst et al. 

observed high levels of circulating NK cells but limited clinical responses in melanoma or renal-
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cell carcinoma patients after receiving autologous NK cell therapies129. The transferred NK cells 

in these patients persisted in circulation for weeks to months, and tumor cells could not be lysed 

in vitro after re-isolation. These limitations have led to the development of cell-free 

immunotherapy avenues like exosomes. 

Exosomes, a type of extracellular vesicles (EVs), are nanoscopic courier vesicles (30–150 

nm) secreted by various cells. Exosomes are stable in physiological conditions and have a long 

circulating half-life in the blood. Their nano-size and abundance are ideal for cancer treatment via 

effective trafficking to the solid-tumor location and infiltration into the tumor 

microenvironment130. Moreover, exosomes can be modified to increase their delivery capabilities. 

For example, a polyethylene glycol (PEG) coating can increase circulation time, and 

functionalizing the PEG coating with anti-EGFR nanobodies can reduce nonspecific interaction 

with cells131.  Therefore, exosomes are currently being researched as natural drug carriers or agents 

for cancer immunotherapy, both of which aim to reduce the spread of cancer throughout the body 

and inhibit the growth of tumor cells132,133.  

1.5.5.2 NK-cell-derived exosomes 

NK-cell-derived exosomes naturally express IFN-γ, FasL, and multiple cytotoxic proteins 

that can induce apoptosis via multiple killing mechanisms134,135. They provide a promising cell-

free therapy for cancer treatment. Recent studies have demonstrated the effectiveness of NK-cell-

derived exosomes in lysing malignant tumor cells. Boyiadzis et al. isolated, expanded, and 

activated NK cells from 10 healthy donors136. From these expanded NK cells, they collected 

exosomes from the supernatant and tested the cytotoxicity against K562 and other acute myeloid 

leukemia cell lines. Zhu et al. also observed a similar cytotoxic effect in NK-cell line-derived 

exosomes (NK-92MI) against B16F10 (a melanoma cell line) cells137.  
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1.5.6 Mission statement and hypothesis 

The isolation and characterization of CTCs can provide crucial clinical information in a 

noninvasive manner. Current widely used technologies are limited by their capture sensitivity and 

compatibility with newly developed downstream technologies. There is also a critical need to 

develop bioinformatics methods to deconvolute and analyze CTC expression profiles. Moreover, 

targeting CTCs could be an effective therapeutic strategy against cancer metastasis. An increasing 

number of studies are showing promising evidence of the unique immunosurveillance of CTCs by 

NK cells.  

In this thesis, I first optimize and develop protein and RNA co-analysis pipelines for the 

previously developed graphene oxide-based device (the GO chip). This is demonstrated through a 

cohort of patients with metastatic muscle-invasive bladder cancer (MIBC) to discover the clinical 

implication of CTC metrics. Second, I apply modified analytical pipelines to longitudinal studies 

in non-small-cell lung cancer (NSCLC) patients. Through this, I show that the continuous change 

of CTCs is a promising biomarker for identifying high-risk patients early in treatment. Next, I 

investigate the utilization of immunotherapies to eliminate CTCs. In this context, firstly I study 

the interaction between CTCs and NK cells by visualizing NK-cell-mediated cytotoxicity. I further 

demonstrated the molecular basis of the vulnerability of patient-derived CTCs in NSCLC. 

Secondly, I develop an integrated microfluidic system for the biogenesis of NK-cell-derived 

exosomes and explore the cytotoxic capability of this cell-free immunotherapy against CTCs. 

Overall, I explore the GO device’s ability to characterize CTCs and develop NK-cell-based 

therapies in clinical studies. The analytical pipelines and characterization methods in this study 

can be used to further CTC studies in the field. This novel approach to developing NK cell-based 

therapies provides new directions for cancer treatment development. 
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Chapter 2 A Molecular Profiling Workflow for CTC Characterization in Patients with 

Metastatic Bladder Cancer 

2.1 Abstract 

Assessing the molecular profiles of bladder tumors from patients with advanced disease is 

crucial for implementing personalized treatment. The current standard of assessing the tumor 

molecular profile is based on tissue biopsies, which is often limited by their invasive nature. 

Alternatively, liquid biopsy takes advantage of a non-invasive procedure to access tumor materials, 

providing potential to monitor tumor molecular profiles longitudinally in a less invasive manner. 

Circulating tumor cells (CTCs) are one of the key analytes of liquid biopsy.  In this study, we 

developed a protein and mRNA co-analysis workflow for bladder cancer CTCs utilizing the 

graphene oxide (GO) chip. The GO chip was conjugated with antibodies against both EpCAM and 

EGFR to isolate CTCs from bladder cancer patients. Following capture, protein and mRNA were 

analyzed using immunofluorescent staining and ion-torrent-based whole transcriptome 

sequencing, respectively. This is the first time that the ion-torrent-based whole transcriptome 

sequencing was used in a downstream application for GO chips. We found that CTC counts per 

mL were significantly associated with patient disease status at the time of blood draw, and having 

> 3 CTCs per mL was associated with shorter overall survival. Invasive markers, including EGFR, 

HER-2, CD31, and ADAM15 were detected in subpopulations of CTCs. Targeted whole 

transcriptome sequencing showed distinct RNA expression profiles from patients with or without 

tumor burden at the time of blood draw. In patients with tumor burden, we found significant 

upregulations of several metastasis-related genes, including KRT5, KRT10, MMP-2, and 
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AKR1C2, demonstrating the capability of identifying tumor-related RNA signatures from blood 

using GO chip-based assays. 

2.2 Publication information 

Zeqi Niu, Molly Kozminsky, Kathleen C. Day, Luke Broses, Sarah Blumberg, Aaron 

Udager, Phillip L. Palmbos, Mark L. Day, Sunitha Nagrath. “Characterization of Circulating 

Tumor Cells in Patients with Metastatic Bladder Cancer” (In preparation) 

2.3 Introduction 

Over 81,000 patients will be diagnosed with bladder cancer in the United States in 2022 

and about 25% of these patients will have muscle-invasive bladder cancer (MIBC)138 in which the 

tumor invades into the muscularis propria which surrounds urothelium. First-line treatment options 

for these MIBC patients include neoadjuvant chemotherapy and radical cystectomy. Yet, 

approximately 50% of MIBC patients relapse after radical cystectomy, and most of these relapses 

are companied with distant metastasis139. The five-year survival for metastatic bladder cancer 

patients is only 6%. Standard of care treatments for these metastatic patients include cisplatin-

based systemic chemotherapy and checkpoint inhibitor immunotherapy, however, most develop 

resistance to therapy and eventually die. Intertumoral molecular heterogeneity drives differential 

responses and resistance to these therapies, thus contributing to patient mortality140. Molecular 

profiling of MIBC samples has revealed multiple molecular subtypes (i.e. basal, luminal, 

neuronal), which correlate with patient responses to therapy and overall survival141. Therefore, 

real-time molecular profiling of advanced bladder cancer can enable personalized disease care, 

and guide novel therapeutic design. 
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Traditional tissue-based molecular profiling is limited by its invasive nature, resulting in 

few sample points in time and inability to monitor tumor evolution and response to therapy in real-

time. On the contrary, liquid biopsy tests retrieve molecular information about the tumor through 

non-solid tissues such as blood and urine. The collection procedures are non-invasive and can be 

repeated throughout the treatment course. Circulating tumor cells (CTCs) are one of the major 

biomarkers of liquid biopsy tests. As the seeds of metastasis, they offer a unique perspective to 

understanding the molecular landscape of the metastatic disease and have been proven to be a 

highly promising prognostic biomarker in different cancer types23,142,143. In bladder cancer, 

detectable CTCs in the early stage, non-muscle invasive bladder cancer (NMIBC) are found to be 

associated with a significant higher risk for tumor recurrence and progression to muscle-invasive 

disease144. The dynamic changes of CTCs in metastatic patients across baseline and second cycle 

of chemotherapy are predicative of 3-year progression-free survival (PFS) and overall survival 

(OS)145.  

Although these findings are highly promising, the profiling of CTCs in bladder cancer has 

previously been limited by several factors. The majority of CTC studies in bladder cancer utilize 

the CellSearchTM platform, an FDA-approved CTC isolation approach. This technology uses 

magnetic beads conjugated to antibodies against EpCAM (epithelial adhesion molecules) for 

isolation, which are expected to be uniquely expressed on CTCs in the peripheral blood. The 

advances in microfluidic devices have enabled more pure, sensitive capture of viable CTCs146,147. 

Immunoaffinity-based microfluidic devices use similar principles as the CellSearch technology, 

but by conjugating antibodies against additional surface proteins, they provide a more versatile 

capturing capability. We previously developed a graphene oxide nanosheet-based microfluidic 

device (GO device)20, successfully isolating CTCs from breast21, lung23, and prostate22 cancer 
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patients with high purity and sensitivity. The GO device captures CTCs using the near-flat 

nanostructure patterned on the silicon wafer substrate, making it an ideal platform for downstream 

immunofluorescence assays and RNA profiling assays.  

Immunofluorescent staining of CTC protein expression can be used to infer tumor 

characteristics. In bladder cancer, high concordance of HER2 status was found between primary 

tumors, CTCs and lymph node metastasis, suggesting that CTC-based testing could identify 

candidates for anti-HER2 therapy148 and high PD-L1 positive CTCs are found to be associated 

with worse overall survival149. Here, we investigated the role of ADAM15, CK7/8, CD21, EGFR 

and HER2 expression in bladder cancer CTCs to determine whether bladder cancer CTCs 

expressed these biologically important markers and whether they were associated with clinical 

outcomes. ADAM15, a type I transmembrane glycoprotein, is known to be involved in cell 

adhesion and metastasis by modulating tumor-endothelial cell interaction150,151. CD31 is an 

identification marker for endothelial cells. CTCs that are CD31 positive, characterized as 

circulating tumor-endothelial cells (CTECs), can be generated through cell-fusion or 

transdifferentiation152. These CTECs have hybridized properties of vascularization and motility, 

and are associated with worse overall survival153. In addition, extensive research has shown that 

the ErbB family of receptor tyrosine kinases, including EGFR, HER2, HER3, and HER4, are also 

associated with cancer metastasis22. We have previously reported that EGFR is a likely driver of 

prostate cancer bone metastasis. In accordance with this, we also found that EGFR is expressed on 

prostate cancer CTCs in patients with metastatic disease154. In bladder cancer, the overexpression 

of EGFR and HER2 are positively correlated to the clinical stage, pathologic grade and tumor 

recurrence155. Circulating tumor cell-based EGFR and HER2 profiling assay could be utilized to 

screen patients for targeted therapies.  
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Compared with protein immunofluorescent staining, RNA-based assays provide 

quantitative RNA level expression information. Targeted RT-PCR has been primarily used to 

evaluate specific gene expression in RNA samples extracted from enriched bladder CTC samples. 

For example, KRAS, EpCAM, CD133, Survivin, PI3K, VEGF, mTOR and AKT genes were found 

to have significantly increased expression in CTC-enriched samples156. In another study 

investigating colon and bladder cancer patients, the high expression of EGFR and TNC (tenascin 

C) from RNAs extracted from blood samples are found to be indicators of worse clinical 

outcome157. However, RT-PCR is often conducted with only limited gene panels, while other 

technologies, such as microarray and next-generation sequencing may provide a broader picture 

for the CTC molecular landscape. Osman et al. showed preliminary results from Affymetrix 

microarray on all nucleated blood cells showed that samples from bladder cancer patients have 

distinct expression profiles158. One of the difficulties for implementing these high-throughput 

molecular profiling technologies for CTCs is because of their apoptotic nature and low RNA 

quality and quantity after isolation. In tissue FFPE samples that have similar low RNA quality and 

quantity, amplicon-based targeted RNA sequencing technology has been used to profile FFPE 

samples with consistent success159.  

In this study, we used the GO device conjugated with both EpCAM and EGFR to isolate 

CTCs from metastatic bladder cancer patients. We then established protein and mRNA co-analysis 

workflow using immunofluorescent staining and amplicon-based whole transcriptome sequencing. 

Cell line model samples were used to optimize and ensure high capture efficiency and accurate 

characterization. For patient blood samples, three GO devices were processed in parallel (Figure 

2-1). Two of these devices were stained with CTC identification and invasive marker panels, while 

the other device was used for RNA material extraction. To our knowledge, this is the first time 
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that amplicon-based whole transcriptome sequencing was used to molecular profile CTCs in 

bladder cancer. Using this workflow, we showcase the prognostic potential of CTCs in metastatic 

bladder cancer patients. We aim to advance the biomarker discovery and understanding of cancer 

metastasis by profiling CTCs at both protein and RNA levels.  

 

Figure 2-1 Schematic drawing of the GO chip workflow.  

2.4 Materials and methods 

2.4.1 Cell culture 

UC-5, UC-9 and UC-18 cell lines were maintained in DMEM (Gibco) with 10% fetal 

bovine serum (FBS) (Sigma) and 1% antibiotic-antimycotic (Gibco), at 37°C and 5% CO2. They 

were grown to 70 – 80% confluence before subculturing using the TrypLE enzyme (Gibco). Media 

was replaced every 48 – 72 hours between subculturing. Cell lines were routinely tested and 

reported negative for mycoplasma contamination (Lonza). 

2.4.2 GO chip fabrication and functionalization  
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The GO chip is fabricated and functionalized, as described previously. Briefly, a chrome 

layer (100 Å) and gold layer (1000 Å) were first deposited onto the silicon dioxide wafer. A 

positive photoresist (SPR 220) layer was then coated and exposed to UV light under the mask with 

designed patterns. The patterns form on the photoresist when immersed in developing reagents 

and were then etched into the gold and chrome layer. The photoresist was then removed entirely, 

and the devices were cut into the correct sizes and proceeded to functionalization.  

GO suspension was prepared with graphene oxide nanosheets, N, N-dimethylformamide 

(DMF), Tetrabutylammonium (TBA) hydroxide, and phospholipid-polyethylene–glycol-amine 

(PL-PEG-NH2). Silicon substrates are immersed in the GO suspension for 10 minutes, followed 

by the addition of cross-linker compound N-(gamma-maleimidobutyryloxy) succinimide (GMBS) 

and Neutravidin. The silicon substrate and PDMS were bonded using a corona plasma discharge. 

Completed GO chips were then stored at 4℃ till sample processing. On the sample processing 

day, 1mL PBS was first flown through the device at 100 µL/min to wash off the residual 

Neutravidin. Then, the antibody cocktail containing 20 µg/mL anti-EpCAM, and 20 µg/mL anti-

EGFR was processed through a device inlet at 20 µL/min and incubated for 30min, and then 

through an outlet with the same incubation to ensure even antibody coating. 3% bovine serum 

albumin (BSA) solution was then processed through the device at 100 µL/min for 1mL, to prevent 

non-specific binding of WBCs.  

2.4.3 Cancer cell isolation from model samples and capture efficiency calculation 

Target bladder cell lines were pre-labeled with fluorescent green tracker dye 

(CellTrackerTM Green CMFDA) and counted before being added to buffer or blood. Cell capture 

was performed by flowing the model samples through the devices at a flow rate of 1 mL/hr. The 

cells are then fixed and permeabilized on the chip, followed by staining with DAPI (4', 6-
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diamidino-2-phenylindole). The chips are then scanned using an inverted fluorescence microscope 

and the capture efficiency is calculated using the following equation: 

capture efficiency (%) =  
cell number captured on chip

total cell number processed
 ×  100% 

2.4.4 Patient sample collection and CTC isolation  

The experimental protocol was approved by the Ethics (Institutional Review Board) and 

Scientific Review Committees of the University of Michigan, and all patients gave their informed 

consent to participate in the study (HUM00041153). For each patient sample, three GO chips were 

processed in parallel to perform immunofluorescence and RNA extraction within 4 hrs since blood 

draw. Briefly, 1mL of blood sample was processed through the device at 1 mL/hr, following the 

capturing antibody incubation and BSA incubation as described above. Then, 6 mL of PBS were 

processed at 100 µL/min to wash off any unbound, non-specific blood cells. For 

immunofluorescent staining, the immobilized cells on chip were fixed with 4% paraformaldehyde 

(PFA).  

2.4.5 Immunofluorescent staining and CTC identification 

Following 4% PFA fixation and a 1mL PBS wash, the isolated cells were then 

permeabilized using 0.2% Triton-X100 (Sigma-Aldrich) and incubated for 30min. The devices 

were then washed with 2mL PBS and blocked with 2% goat serum (ThermoFisher) and 3% BSA 

to prevent nonspecific staining for 30min. The staining antibodies were then diluted in 1% BSA 

and flowed through the devices at 50 µL/min and incubated at 4℃ overnight. On the second day, 

2mL PBS was flowed through the devices at 100 µL/min to wash off the excess primary antibodies. 

The secondary antibodies were then prepared, flowed through the devices, and incubated for 1.5 

hrs. 2mL of PBS was then again flowed to wash off the excess secondary antibodies. DAPI was 
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then flowed through the device and incubated for 15min and washed off using 1mL of PBS. 

Finally, the devices were scanned and analyzed using Nikon Ti2 fluorescent microscope and the 

Nikon-Elements software. A summary of the antibody products used are shown in Table 1.  

Table 1 Summary of antibodies used for the staining panels.  

CTCs were identified as DAPI+/CK7/8+/CD45- based on the staining images. On these 

identified CTCs, the expressions of the invasive markers were recorded as binary variables for 

further analysis.   

2.4.6 RNA extraction and targeted whole-transcriptome sequencing  

RNA extraction was performed on the third parallel device after blood sample processing 

and PBS washing step. Briefly, 100 µL Arcturus® PicoPure® RNA Extraction buffer (Life 

Technologies) was flowed through the device at 3mL/hr. The device was then incubated at 42 ℃ 

for 30 min. Following the incubation, 100 µL ultrapure DEPC water was flowed through the device 

and the effluent materials were collected. These materials were then purified using Arcturus® 

PicoPure® RNA Isolation Kit according to the manufacturer’s instructions. The resulting 11 µL 

of purified RNA were stored at -80 ℃ until library preparation.   

 We performed amplicon-based whole-transcriptome sequencing using the Ion Ampliseq 

Transcriptome Human Gene Expression Kit (Life Technologies) according to the manufacturer's 

instructions with approximately 0.3 ng of RNA per sample, allowing for interrogation of ∼21,000 

Marker Primary antibody Secondary antibody Staining Panels 

CD45 Santa Cruz Sc-70699 Thermofisher A11006 Panel 1 & 2 

CK7/8 BD 349205 Thermofisher A21133 Panel 1 & 2 

EGFR Thermofisher 2800005 Thermofisher A21240 Panel 1 

HER2 Cell Signaling 2165 Thermofisher SA5-10035 Panel 1 

CD31 R&D Systems BBA7 Thermofisher A21240 Panel 2 

ADAM15 Novopro 101503 Thermofisher SA5-10035 Panel 2 
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RNA transcripts. Library preparation was performed according to the manufacturer's instructions. 

Technical replicate libraries and templates were independently constructed and sequenced on 

separate chips. Reads were mapped and quantified using version 5.16.1 of TorrentSuite's (Life 

Science Technologies) coverageAnalysis plugin with the default parameters. 

2.4.7 Bioinformatics analysis and removing white blood cell variance 

The read count table were exported into R programming environment for further analysis. 

We used RUVseq R package160 to first remove the variance caused by varying WBC signals 

following the package vignette. Briefly, initial normalization was performed using the upper-

quartile method in the EDASeq package161,162. To remove WBC related variance, two input 

parameters are needed including a set of negative control genes and factor number k. For the 

negative control genes, we first selected a broad range of 1746 leukocyte marker genes from 

available databases163,164, and then selected genes that are relevant in our experiments. To do this, 

we first plotted the average and standard deviation for these 1746 gene expression within the 

healthy control samples and cell line samples using a density plot format (shown in Figure 2-2). 

We then set a series of criteria to find the common genes that are highly expressed in processed 

healthy blood control samples and lowly expressed in cell line control samples in our experiment. 

The detailed selection criteria are listed in Table 2. 
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Figure 2-2 Density plots for selected 1746 WBC related genes within cell line samples and healthy control 

samples.  

Table 2 Detailed selection criteria for selecting negative control genes for WBC expression. 

Select genes whose average log expression is: Select genes whose standard deviation is: 

> 5 within all healthy control samples > 1.5 within all healthy control samples 

< 4 within all cell line samples < 0.6 within all healthy control samples 

 

Using this criteria, 84 WBC marker genes were selected as negative control genes. For the 

factor number k, we experimented with k equals 1 to 5 based on the small patient sample size160,165. 

The resulting differential gene expression did not seem to be affected by the k number. We chose 

k equals 2 as final output parameter. After performing RUVseq, the design matrix was entered as 

input with different comparison group into DESeq2 R package. Finally, the adjusted p-val and log 

fold change results for significantly differentially expressed genes (DEGs, adjusted p-val < 0.05, 

fold change > 1.5) were exported for interpretation. Disease ontology enrichment analysis166 were 

performed on the DEGs through the ClusterProfiler package167.  

2.4.8 Statistical analysis 

Comparisons between two groups were performed using unpaired Student’s t-tests, two-

tailed. Correlation was performed using simple linear regression, and the coefficient of 
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determination, R2 was reported.  Survival analysis was performed using Kaplan-Meier survival 

curves using the Log-rank method (Mantel-Cox test). All analysis was conducted in GraphPad 

Prism V9.  

2.5 Results 

2.5.1 Isolation of bladder cancer cells and workflow optimization of the GO chip 

To test the capture efficiencies of the modified GO chip workflow with anti-EGFR and 

anti-EpCAM, we spiked human bladder cancer cell lines (UM-UC9, UC5 and UC18) into PBS or 

healthy control blood. As shown in Figure 2-3A, the capture efficiencies of UC-5 and UC-9 are 

over 88% regardless of their background solutions.  Further, capture required expression of either 

EGFR or EpCAM with only 12.8% of UC-18 cells (low EGFR, low EpCAM) captured. To further 

identify the CTCs from non-specifically bound WBCs, immobilized cells were stained with 

cytokeratin 7/8 (CK7/8, epithelial marker) and CD45 (white blood cell marker). Identified CTCs 

were then further evaluated for their expression of ADAM15, CD31, EGFR and HER2. Examples 

of positive control staining images of these markers are shown in Figure 2-3B and Figure 2-3C.  

To whether the amplicon-based whole transcriptome sequencing method can accurately 

represent the RNA expression profile after GO chip isolation, we compared the expression profile 

from UC-5 and UC-9 captured on chip to previously sequenced UC-5 and UC-9 from cultured 

conditions. As shown in Figure 2-3D, even with batch effects, expression data from the same cell 

line still clustered together in the principal component analysis. The expression profiles of cell 

lines of the same origin between on-chip and cell lines direct from culture are positively correlated 

(Figure 2-3E, UC-5: R2 = 0.6189; UC-9: R2 = 0.7252). Taken together, these results indicate that 

the amplicon-based whole transcriptome sequencing is a viable tool to profile samples isolated 

using the GO chip.  
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Figure 2-3 Workflow optimization using cell line controls. (A) Capture efficiency of bladder cancer cells 
spiked into PBS or healthy control blood samples. (B) Staining optimization of Cytokeratin 7/8 (CK 7/8) 

and CD45 using blood sample spiked with UC-9. (C) Examples of CD31, EGFR, ADAM15 and HER2 

staining with corresponding cell lines.  (D) Principal component analysis of the RNA expression profile of 
UC-5 and UC-9 spike-in model samples, as well as expression profile from RNA extracted from culture. 

(E) Linear correlation of the expression between the UC-5 and UC-9 on-chip samples and the culture 

samples. 

2.5.2 CTC concentrations associate with tumor burden at blood draw and overall survival 

Using the optimized workflow, we then analyzed CTC profiles from a pilot cohort of 15 

bladder cancer patients, including 14 metastatic patients and 1 non-muscle invasive bladder cancer 
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(NMIBC) patient. Patient demographic and other clinical information are summarized in Figure 

2-4A. In this cohort, 9 patients received pembrolizumab, a PD-1 checkpoint blockade 

immunotherapy. 14 patients had single time point blood draws, while one patient had blood draws 

at two sequential time points.  

We first sought to compare the CTC per mL between the different blood draw times with 

respect to their systemic treatments among the metastatic MIBC patients (N = 14). In this cohort, 

3 samples were drawn before patient received systemic treatments, while 6 were drawn during the 

systemic treatment (including 2 samples from one patient drawn at different times during therapy), 

and 5 after treatment was completed. 1 patient was excluded from this analysis because of loss of 

follow up. As shown in Figure 2-4B, no significant difference in CTC concentration was found 

between the different treatment time points, although the before time point had a slightly higher 

average CTC per mL (9.5 CTCs/mL). We then compared CTCs per mL based on burden of disease 

at time of blood draw (Figure 2-4C). The disease burden was determined based on radiographic 

measurements and classified as either, no evidence of disease and metastatic disease (lesions seen 

on most recent imaging). In addition, 4 control samples from healthy blood were processed using 

the same protocol to use as a negative control. Significantly higher CTC concentrations were found 

in patients with metastatic disease (mean 11 CTCs per mL, p-val = 0.0471). 

Overall survival from the time of blood draw and CTC measurement was then analyzed to 

determine the implication of CTC concentration for patient survival. Patients were divided into 

two groups by their CTC counts being above or below 3 CTC/mL. As shown in Figure 2-4D, 

patients with >3 CTCs per mL had significantly shorter overall survival time (p-val = 0.0439). The 

median survival for this higher CTC concentration group is 656.5 days.  
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Figure 2-4 CTC enumeration in a cohort of metastatic muscle-invasive bladder cancer patients. (A) Study 

overview. (B) CTC per mL from patient blood draws that are before, during and after chemotherapy and 
immunotherapy. (C) CTC per mL in blood draws from healthy control, patients with no evidence of disease 

or patients with metastatic disease. (D) Kaplan-Meier curve of CTC per mL greater or less than 3. * CTCs 

per mL on the y-axis is calculated by averaging the two immunofluorescent staining devices. 

2.5.3 Correlation between the presence of CTCs with invasive marker expression and overall 

survival  

Because ADAM15, CD31, EGFR and HER2 were hypothesized to correlate with increased 

tumor invasion and metastatic spread, each was evaluated for isolated CTCs from patient samples. 

Examples of immunofluorescent staining images are shown in Figure 2-5A. 46.7% patients had 

ADAM15+ CTCs, and for these patients, the median positivity per patient is 33.3%. For CD31, 

CTCs from 58.3% patients showed positive staining, and in these patients, and median percentage 

for CD31+ CTCs is 33.3% per mL. Patients who have positive EGFR staining on their CTC 
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accounts for 66.7% of the pilot cohort, and in these patients, the median positivity per patient is 

33.3% per mL. Only 16.7% patients were found to have HER2+ CTCs in our cohort. For each of 

these patients, 1 CTC per mL was found to have positive HER2 staining. In addition, 58.3% of 

patients had at least two invasive markers stained positive for their CTCs.  

We then correlated these CTC expression profile with overall survival data (Figure 2-5B). 

Although the comparison did not reach statistical significance because of the limited sample size, 

patients who had ADAM15+, EGFR+ or HER2+ CTCs tend to have shorter overall survival. These 

trends were expected based on previous literature stating that these markers are associated with 

tumor progression. On the contrary, patients who had CD31+ CTC tend to have longer overall 

survival. This trend was unexpected and could be due to the small sample size in patients without 

CD31+ CTCs. Overall, the relationship between the invasive marker expression on CTCs need to 

be verified using a larger cohort, although our preliminary data reveal that expressions of these 

markers are associated with worse patient survival.   
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Figure 2-5 Invasive marker expression on bladder cancer patient CTCs. (A) Immunofluorescent images of 
CTCs with invasive marker expressions. (B) Kaplan-Meier curve of patients with or without single invasive 

marker presence. 
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2.5.4 Metastasis related RNA signatures found in patients with metastatic tumor present and 

high CTC counts 

To further investigate CTC expression signatures on the RNA level, amplicon-based 

targeted RNA sequencing was performed on 13 samples in this cohort, and the results were 

analyzed using custom pipeline shown in Figure 2-6A. Briefly, the read count table was exported 

from TorrentSuite software and imported into R programming. We then performed normalization, 

quality control and unsupervised clustering. As shown in Figure 2-6B, the expression profiles 

clustered by the sample type suggesting that the RNA signature was being driven by non-tumor 

RNA. However, when we specifically analyzed the RNA signature of CTC samples, the healthy 

control samples and patients with no tumor evidence overlapped with each other, whereas those 

with active tumor clustered separately. We then sought to perform differential gene expression 

analysis to discover tumor related traits within isolated CTCs. We first used RUVseq R package 

with a set of selected WBC control genes to remove the variance generated from contaminating 

WBCs. The differential gene expressions were analyzed between three different groups: 1) healthy 

controls and patient samples; 2) patients who have active metastatic disease and no tumor 

evidence; 3) patients who have CTC > 2/mL and ≤ 2/mL.   
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Figure 2-6 RNA expression analysis from CTC samples. (A) RNA analysis workflow overview. (B) Principal 
component analysis for the RNA expressions. (C)Volcano plot of significantly differentially expressed genes 

between patient samples (N = 13) and healthy controls (N = 4). (D) Volcano plot of significantly 

differentially expressed genes between patients with metastatic disease (N = 8) and patients with no 

evidence of disease at the time of blood draw (N = 5).  (E) Normalized expression of DEGs between patients 

who have CTC > 2 per mL and CTC ≤ 2 per mL.  

Between patient samples (N = 13) and healthy controls (N = 4), 216 genes were found to 

be significantly differentially expressed (adjusted p-val < 0.05, Fold change > 1.5), including 199 

upregulated and 17 downregulated genes (Figure 2-6C). Many genes amongst the 199 enriched 

genes in CTC samples have been shown to be associated with cancer development. Table 3 shows 
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the enriched disease ontologies from these upregulated genes, with 10 genes being closely 

associated with urinary system cancer. For example, highly upregulated gene FLT1 (Fms-related 

tyrosine kinase 1) is the receptor of VEGF (Vascular endothelial growth factor) and is associated 

with cancer angiogenesis and tumorigenesis. High expression of FLT1 and VEGF have been 

shown in 40% of urinary bladder cancer patients168.  

Table 3 Top 3 cancer related disease ontologies and their relevant differentially expressed genes between 

cancer patient and healthy controls.  

DISEASE 

ONTOLOGY 
RELEVANT GENES 

Urinary System Cancer 
FLT1/EDN1/EDNRB/PRTN3/RET/APOE/APOC1/ID1/ALOX5/C

DKN1B 

Kidney Cancer 
FLT1/EDN1/EDNRB/PRTN3/RET/APOE/APOC1/ALOX5/CDK

N1B 

Prostate Cancer FLT1/BUB1B/APOE/NR1H3/HSPG2/ID1/CDKN1B 

As shown in Figure 2-6D, the comparison between patients with metastatic tumor (N = 8) 

and patients with no disease evidence (N = 5) resulted 211 differentially expressed genes (adjusted 

p-val < 0.05, Fold change > 1.5), with 197 of which are upregulated in patients with metastatic 

tumor present. Interestingly, there were only two common genes (MOXD1 and WDHD1) between 

this set of DEGs and previous DEGs between patient samples and healthy controls. This might 

indicate this comparison between different disease status reveal some unique molecular traits that 

are associated with metastasis. For example, MMP-2 (Matrix Metalloproteinase-2) contributes to 

almost every key step in the metastatic cascade including EMT, cancer cell survival, proliferation, 

intravasation and extravasation169. Overexpression of AKR1C2 has been shown to aid the 

development of cisplatin-based chemoresistance and become a high-risk factor in bladder cancer 

patients170,171. STS (Steroid sulfatase) is a steroid sulfate activation enzyme in the androgen 

signaling pathway that has been known to associate with aggressive tumor characteristics172. In 
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bladder cancer, STS has been shown to promote the invasion capability through the regulation of 

EMT173. Moreover, KRT5 and KRT10 were found to be highly upregulated in the metastatic 

patient group. These two genes are often found in basal and intermediate subtypes of bladder 

cancer cells, which are associated with aggressive phenotype as well174. Other examples of well-

studied metastasis-related markers include GATM175, SYTL1176 and CAPN1177.  

We then interrogated the differential expression between patients with high (N = 6) or low 

(N = 7) CTC concentrations with the cutoff being 2 CTCs/mL. There were 21 differentially 

expressed genes between these two groups, as shown in Figure 2-6E. Several genes that are related 

to metastasis including COL5A1, MMP2, MMP13, AKR1C2, KRT10 are detected in some 

samples in the high CTC group. Although the detections of these genes are sparse among the tested 

samples, some universally expressed genes such as CAD and RGPD2 showed interesting trends. 

CAD gene (other name Carbamoyl-Phosphate Synthetase 2, CPS2) showed higher expression in 

CTC enriched samples, as well as the cell line controls. CAD is involved in the biosynthesis of 

pyrimidine synthesis and is upregulated in cancer cells178. RGPD2, on the other hand, are highly 

expressed in several CTC low samples, but not in CTC high or cell line controls. This gene is not 

well studied but shown enriched expression in regulatory T cells. Overall, these results give 

confidence in our CTC profiling platform to find metastasis related traits.  

2.6 Discussion 

Molecular profiling of cancer cells is especially crucial for bladder cancer management 

because of its intertumoral heterogeneity. As part of liquid biopsy, CTCs hold the promise of the 

dynamic monitoring of cancer and personalized treatments. The detection of CTCs in bladder 

cancer often struggles with low detection rate and limited molecular profiling analysis. We present 

a protein and RNA co-analysis workflow using highly sensitive GO device and bioinformatics 
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pipeline to remove variance from contaminating WBCs. Our pilot study tested this workflow on a 

small cohort of 16 bladder cancer patients and 5 healthy control samples, and successfully detected 

CTCs from all 16 samples from cancer patients. The CTC concentrations in patients with 

metastatic disease are significantly higher than those in healthy controls and patients with no 

disease evidence at the time of blood draw. We also show that patients with high CTC 

concentration (> 3 CTCs/mL) potentially have shorter overall survival time. This result is 

consistent with other studies in the literature using other technologies179.  

We used multiplex immunofluorescent staining to investigate the expression of EGFR, 

HER-2, CD31 and ADAM15 on isolated CTCs. We hypothesis that the expressions of these 

markers represent the aggressive CTC subtype that are responsible for vascular invasion and 

contribute to the survival of CTCs and worse disease outcome. Comparing the survival data for 

patients with or without invasive marker positive CTCs, patients who had ADAM15+, EGFR+, 

and HER-2+ CTCs presented shorter overall survival trends. Patients who had CD31+ CTCs had 

longer overall survival results. We think this might be because of the small sample size of CD31- 

patients.  

For the RNA analysis, we developed a workflow that amplicon-based targeted 

transcriptome sequencing and bioinformatics methods to profile the DEGs from bulk RNA 

material in the isolated CTCs. We used a set of 84 WBC marker genes to remove the variance 

caused by contaminating WBCs in these bulk samples and discovered the DEGs between samples 

from cancer patients and healthy control, metastatic patients and patients with no disease evidence, 

and patients with high CTC counts and low CTC counts. Many metastasis-related gene signatures 

that are well studied in the literature, such as KRT5, KRT10, MMP-2, MMP-13, AKR1C2, 

GATM, SYTL1 and CAPN1 were found with upregulated expression in metastatic patient 
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samples. Future studies should investigate correlating expression on CTCs using single cell-based 

profiling approach to confirm our findings.  

It is worth noting that our study has a couple of limitations. Firstly, the sample size for 

comparison is small due to sample collection difficulties. Larger cohorts in the future with multiple 

collection time points is needed to further validate our results.  Secondly, the removing WBC 

variance method hypothesizes that the negative control genes are not related to the comparison 

factor. This means our results are based on the hypothesis that the 84 WBC markers are 

biologically not related to patient disease status and patient CTC number.  

Our results show proof of concept that the GO chip-based workflow can be used to profile 

CTCs from bladder cancer patients on protein and RNA level. This workflow could be potentially 

used for larger clinical studies to further explore CTCs prognostic values.  
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Chapter 3 Analytical Workflow for CTC Characterization in Longitudinal or Multisite 

Clinical Studies 

3.1 Abstract 

Although many studies have shown the initial prognostic value of the CTCs, efforts for 

profiling and analyzing CTC in longitudinal clinical studies are still needed. The profiling of CTCs 

on the RNA level is especially challenging because of the inherent low RNA quantity and quality 

after multiple handling in the enrichment process. Microarray transcriptome profiling can be a 

promising approach for CTC analysis because of its compatibility with low-quality and quantity 

RNA materials. Here, I developed an analytical workflow after profiling CTCs using the GO chip 

and microarray in a cohort with locally advanced (stage III) NSCLC patients treated with 

chemoradiation and immunotherapy. CTC-related metrics were characterized on multiple fronts, 

such as CTC counts per mL, the change of CTC counts over time, protein expressions, and RNA 

expressions, and their correlations with patient outcomes were explored. We found that CTC 

decreases in counts per mL after the start of chemoradiation therapy and having ≤ 50% PD-L1+ 

CTCs significantly predicts longer progression-free survival. From paired differential gene 

expression analysis of RNA profiles, we found significant upregulations of genes that related to 

cancer metastasis, invasion, proliferation, and resistance in CTC samples during chemoradiation 

treatment. I then applied this workflow to other clinical studies and developed a bioinformatic 

workflow to remove the variance from contaminating WBCs in the CTC samples. Overall, the 

workflow developed in this chapter could be further applied to other clinical studies to elucidate 

the value of CTCs as biomarker further.  
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3.3 Introduction 

CTC-based liquid biopsy provides new hope in implementing personalized treatment 

plans. In non-small cell lung cancer (NSCLC), previous CTC studies are mostly performed using 

the CellSearch platform, and have correlated CTC counts to timepoints during treatment40,87,180,181. 

We previously demonstrated the utility of the GO chip workflow in a cohort of stage I-III NSCLC 

patients, finding increasing PD-L1+ CTCs after chemoradiation treatment23. Additionally, we used 

RT-qPCR to further profile the isolated CTCs and found that PD-L1 and LGALS3BP were 

significantly upregulated in the CTCs of patients with earlier progression of their cancer. However, 

a more comprehensive analytical pipeline is needed to correlate CTC counts over time and patient 

survival, as well as profile CTCs on the RNA level.  
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The profiling of CTCs on the RNA level is technically challenging because of the inherent 

low RNA quantity and quality after multiple handling in the enrichment process. The current 

widely used technology, RT-qPCR, can amplify and quantify specific cancer-related genes in the 

enriched CTC samples, yet this assay is limited to only a small number of pre-selected gene sets. 

Alternatively, the microarray transcriptome profiling technologies are compatible with low-quality 

RNA materials (such as FFPE tissue samples) and low RNA input (minimum 0.01ng for the 

Clariom S PICO assay).  

To further expand the clinical value of CTCs, we use the GO chip and microarray 

technologies to profile CTCs from locally advanced (stage III) NSCLC patients treated with 

chemoradiation and immunotherapy. The cohort for this study all received combination 

chemotherapy and radiation for six weeks, with the majority of patients receiving subsequent 

maintenance durvalumab for 1 year following their chemoradiation. We collected blood samples 

with six timepoints for each patient across the treatment course, making this the first study that 

monitored patients for their CTC profiles across both chemoradiation and durvalumab therapy. 

Moreover, an analytical workflow was developed to correlate the CTC counts and RNA 

information to patient survival outcomes. I then applied this workflow to other similar clinical 

studies in NSCLC and hepatocellular carcinoma (HCC). The methods developed in this chapter 

could be further streamlined and applied to future CTC studies.  

3.4 Materials and methods 

3.4.1 CTC profiling workflow  

CTCs were isolated from whole blood using GO20,23 chips similar as described above. The 

device is functionalized to tether the following capture antibodies on the surface for CTC isolation: 

anti-EpCAM, anti-EGFR, and anti-CD133. EpCAM and EGFR are expected to be highly 
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expressed in lung cancer CTCs19, and CD133 is a stem-cell-like marker linked to tumorigenic 

phenotypes in lung cancer182.  As shown in Figure 3-1, two GO chips were run in parallel for each 

patient blood sample, one for CTC enumeration and one for RNA extraction of captured CTCs. 

For the CTC enumeration chip, CTCs were identified and counted DAPI+/CK+/CD45- cells using 

immunofluorescent staining. Identified CTCs were then evaluated for their staining of PD-L1 

(Biolegend, NC0043617). CTC count and PD-L1 data were then compared to clinical metrics to 

generate CTC profiles that were assessed for their ability to predict patient outcomes.  For the 

RNA chip, the extracted and purified RNA materials were sent to Fisher scientific for ClariomTM 

S PICO human microarray assay. The read count data were then returned to our lab for further 

bioinformatic analysis.  

 
Figure 3-1 The schematic of CTC isolation and analysis using GO platform.  

3.4.2 Patient cohort overview 

Patients were profiled through both combined chemotherapy and radiation therapy 

(chemoradiation, chemo-RT) and immunotherapy for a total of six timepoints. These time points 

include pre-treatment (pre-TX), during chemoradiation treatment (Week 1 and Week 4), one 

month after chemoradiation (Week10), and during immunotherapy (Week 18 and Week 30). 

Patients underwent an adaptive radiation plan for a total of six weeks, that is, for the first four 
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weeks, patients received the same radiation dose, however, the dose for the final two weeks was 

determined based on the patient’s FDG-PET scan at week 4 of chemoradiation. Following 

radiation, most patients (16/26) had a 1-month treatment break before starting anti-PD-L1 

immunotherapy, durvalumab. Some patients, however, were enrolled before durvalumab became 

the standard of care. Of these, 2 patients received a different immunotherapy, 8 patients received 

no immunotherapy, and 1 died during radiation. 

 
Figure 3-2 Patient treatment timeline and demographic overview. (A) The timeline of patient sample draws 

corresponding to treatments. The black timepoints indicate no treatment, the blue time points are during 
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radiation therapy, and the green time points are during durvalumab for most patients. (B) Patient clinical 

information summary.  

 

3.4.3 Survival analysis 

Progression-free survival (PFS) time was calculated between the radiation treatment start 

date and the date of progression or last contact. To test the association between CTC metrics and 

PFS, patients are divided to two comparison groups using the factor of interest (Table 4). The 

cutoff is selected to ensure either group can have comparable number of samples. To represent 

CTC changes between two time points, we calculated %CTC change using the following formula: 

% 𝑐ℎ𝑎𝑛𝑔𝑒 =  
(𝐶𝑇𝐶𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 1 − 𝐶𝑇𝐶𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 2)

𝐶𝑇𝐶𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 1
×  100% 

Table 4 Comparison groups for PFS survival analysis 

Factor of interest Group 1 Group 2 

CTC count at single time point 

(CTC counts / mL) 

CTC Pre-TX > 10 CTC Pre-TX ≤ 10 

CTC Week1 > 10 CTC Week1 ≤ 10 

CTC Week4 > 10 CTC Week4 ≤ 10 

CTC Week10 > 10 CTC Week10 ≤ 10 

CTC Week18 > 5 CTC Week18 ≤ 5 
CTC Week30 > 5 CTC Week30 ≤ 5 

%CTC change between two 

time points  

Pre-TX → Week 1 > 0 Pre-TX → Week 1 ≤ 0 

Pre-TX → Week 4 > 0 Pre-TX → Week 4 ≤ 0 

Pre-TX → Week 4 > -75% Pre-TX → Week 4 ≤ -75% 

%PD-L1+ CTC at single time 

point  

%PD-L1 Pre-TX > 50% %PD-L1 Pre-TX ≤ 50% 

%PD-L1 Week1 > 50% %PD-L1 Week1 ≤ 50% 

%PD-L1 Week4 > 50% %PD-L1 Week4 ≤ 50% 

%PD-L1 Week10 > 50% %PD-L1 Week10 ≤ 50% 

%PD-L1 Week18 > 50% %PD-L1 Week18 ≤ 50% 

%PD-L1 Week30 > 50% %PD-L1 Week30 ≤ 50% 

3.4.4 Expression microarray analysis 
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3.4.4.1 Normalization, quality control and filtering step 

Microarray data processing procedures were followed in R programming environment 

(4.0.2). Briefly, raw intensities were imported as CEL files using the oligo package183. The 

intensities were then normalized and summarized into expression values probe-level using a robust 

multichip average (RMA) method184. The probesets were then annotated with gene names using 

clariomshumanhttranscriptcluster.db package. Duplicate mappings were removed by selecting the 

probesets with highest average expression across all samples. Quality control plots, including 

normalized unscaled standard error (NUSE), relative log expression (RLE) as well as principal 

component analysis (PCA) were generated to identify and remove potential outliers in the dataset. 

Before proceeding to differential gene expression analysis, we applied a filtering step to remove 

the low expressing genes. Median expressions of every gene across all the samples were calculated, 

and genes that have lower median expressions (< half of all expression medians) were removed. 

After this filtering, 9256 total genes were left and analyzed for differential gene expression.  

3.4.4.2 Design formula for identifying differentially expressed genes  

Differentially expressed genes were then calculated using different design formulas using 

the limma package185, shown in Table 5. These comparison groups were set up to decipher the 

RNA profile in CTCs across chemo-radiation and between progressing and stable patients. A 

paired-sample design was used for the comparisons between different time points (indicated by *). 

For comparisons based on CTC counts, the CTC high group was defined by CTC per mL > 50 and 

the CTC low group was defined by CTC per mL < 20.  

Table 5 Comparison group summary for differential gene expression analysis. * indicate paired analysis 

was performed. 

Comparison range Group 1 Group 2 

All samples Healthy control Cancer patients 

PD-L1 high PD-L1 low 
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Cancer patients Pre-TX* Week4* 

Pre-TX* Week10* 

Progressing Stable 

CTC high CTC low 

Progressing patients Pre-TX Week4 

Pre-TX Week10 

Stable patients Pre-TX Week4 

Pre-TX Week10 

Pre-TX samples Progressing Stable 

Week4 samples Progressing Stable 

Week10 samples Progressing Stable 

3.4.4.3 Correlation between gene expression and survival 

To assess how gene expressions are correlated with PFS time, we used the survival and 

RegParallel package to perform univariant cox regression survival analysis with gene expression. 

We identified genes from single time point RNA profiles that significantly stratify patients with 

future progressions. To showcase the stratification of patients, we then performed principal 

component analysis based on the significant genes. 

3.4.5 Application of analysis pipeline to other clinical studies 

3.4.5.1 General analysis workflow 

We generalized the analysis workflow for similar clinical studies as shown in Figure 3-3. 

Close coordination is needed for this pipeline between the technology labs and clinical labs. 

Briefly, after blood samples were collected from the hospital, they are usually transported to 

different location for sample processing on the microfluidic devices. Protein characterizations and 

RNA extractions were then performed on the enriched samples. Through the protein 

characterizations, CTCs are usually detected and quantified by the positive staining of cancer 

specific markers, and negative staining of WBC markers. For RNA samples, targeted approaches 

such as amplicon-based targeted sequencing or microarray could be feasible as they were designed 
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to handle low quality samples. The CTC counts and filtered RNA data are then tested as 

biomarkers for patient clinical outcome information.  

 
Figure 3-3 General CTC analysis workflow using microfluidic devices.  

3.4.5.2 Other study cohorts overview 

We applied this workflow to two other clinical studies as shown in Figure 3-4. For study I, 

we collected blood samples from a cohort of 29 patients with hepatocellular carcinoma (HCC). 

These patients are enrolled in a pilot study for individualized adaptive radiation therapies, where 

the treatment dose was adjusted based on patients’ liver function. The majority of patients had 

three blood draws across the treatment course: before the start of radiation, post round 1 radiation 

treatment, and post the completion of radiation treatment. These blood samples were processed 

through the labyrinth device developed by our group186 and analyzed for CTCs using a similar 

protocol as previous study187. RNA was extracted and purified from the enriched CTC samples 

and sent to Fisher scientific for ClariomTM S PICO human microarray assay. The read count data 

was then returned to our lab for further bioinformatic analysis.  

For study II, blood samples were collected from a multicenter phase II study in NSCLC. 

Patients with EGFR mutation and ALK positive were enrolled to receive pembrolizumab in 
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combination with platinum-based doublet chemotherapy. Blood samples were collected from 23 

patients and processed 24hrs after blood draw to ensure enough time of transportation. During 

transportation, the blood samples were kept in K2EDTA tubes and at 4℃. For 11 out of the 23 

patients, we were able to collect two blood draws: before treatment start and before cycle 3 of the 

treatment. We analyzed CTCs using similar GO chip protocols for lung cancer23, where anti-

EpCAM, EGFR and CD133 are used as capturing antibodies and anti-pan-CK, CD45 and PD-L1 

as detecting antibodies. The RNA materials were extracted and purified, then sent to perform 

amplicon-based targeted sequencing. The read count data were then returned to our lab for further 

bioinformatic analysis.  

 
Figure 3-4 Schematic overview of other study cohorts.  

3.4.5.3 Remove WBC contaminations using RUV package  

One of the challenges in implementing this workflow in these studies were the lack of 

statistical significance when comparing RNA profiles between different groups. While the sample 

sizes were small in these two cohorts, we also hypothesized that this problem could be caused by 

the high WBC contamination in microfluidic technologies. As shown in Figure 3-5, for GO chips, 
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the final product include 56 – 5000 WBCs and 0 – 500 CTCs22. For the labyrinth device, it is 

estimated that the final product includes 10,000 – 20,000 WBCs and around 100 CTCs.  

 
Figure 3-5 Final enriched product components of the microfluidic devices.  

To tackle this problem and increase the statistical significance, we used remove unwanted 

variable method to regress out the variations between WBCs. We used RUV R package for 

microarray data and RUVseq package for targeted sequencing data. Two input parameters are 

needed including a set of negative control genes and factor number k. The negative control genes 

were selected similar as described in the previous chapter. Using these negative control genes, we 

tested different k selections by plotting the canonical correlations between negative controls or full 

gene sets and the factors of interest. An example is shown in Figure 3-6 from the HCC cohort. K 

factor is selected by choosing the smallest k to ensure low correlation between negative controls 

and the factor of interest, and high correlation between full gene sets and the factor of interest. In 

the case for the HCC cohort, k = 10 was chosen for further analysis.  

Final product of the GO chip:
WBC: 56 - 5,000; CTC: 0 - 500

Final product of the Labyrinth:
WBC: 10,000 – 20,000; CTC: ~100
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Figure 3-6 Canonical correlation graph to choose the k factor in RUV analysis.  

3.5 Results 

In this section, the majority of results are demonstrated using the RDART dataset in stage 

III NSCLC. Results of interests in the other two studies were briefly discussed in 3.5.5 section.  

3.5.1 Total CTC counts and PD-L1+ percentage as predictive biomarkers for PFS 

We first tested the CTC total counts and PD-L1+ percentage at single time points as 

predictive biomarkers for patient outcomes. The disease status was assessed by two radiation 

oncologists using the RECIST criteria. The average follow-up time was 12.4 ± 8.5 months (range 

= 0-31.3 months), where 0 months follow-up indicated patients were deceased within 1 month of 

chemoradiation. For total CTC counts, no significant PFS time difference was found between the 

high and low CTC count groups. At Pre-TX, Week 18, and Week 30 time points, patients with 

higher total CTCs per mL showed a longer PFS time trend; however, at Week 1, Week 4, and 

Week 10 time points, higher total CTC per mL tend to have shorter PFS time. For PD-L1+ CTC 

percentage, higher PD-L1% are associated with shorter PFS time in all time points. Only Week 1 
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reached statistical significance (p-val = 0.040), while Pre-TX and Week 18 were close to statistical 

significance (Pre-TX p-val = 0.059, Week 18 p-val = 0.053). This finding is consistent with recent 

reports indicating that higher PD-L1 on CTCs is correlated with shorter survival, with several 

studies specifically investigating patients receiving either anti-PD-1 or anti-PD-L1 

immunotherapies23,87,188. 

 
Figure 3-7 PFS by total CTC counts or percentage PD-L1+ at single time points.  

3.5.2 Decrease in CTCs during radiation predicts longer PFS 

We observed a significant decrease in CTC counts from pre-TX to Week 1, Week 10 and 

Week 30. As shown in Figure 3-8A, average CTC counts per mL decrease as patients going 

through both chemoradiation and immunotherapy. For patients who received durvalumab 

immunotherapy, a significant decrease in PD-L1+ CTC counts was observed between baseline and 

Week 18 (the first time point during durvalumab, Figure 3-8B).  
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To investigate how these CTC changes are related to patient outcome, we calculated the 

percentage CTC change for each patient as described in the method section. We divided the 

patients into two groups: percent CTC change greater or less than 75%. As shown in Figure 3-8C, 

a significant difference (p-val = 0.0076) can be observed between the two groups. Among the 

patients who had a greater than 75% decrease in CTC counts between baseline and Week4 were 

all stable. These patients had an average monitoring time of 21 months. This data strongly indicates 

that lack of CTC decrease is an early indicator of future progression. 

We then wanted to investigate how does the CTC change prediction compare to the 

prediction by gross tumor volume (GTV). We plotted receiver operator characteristic curves 

(ROC) for the two metrics percent change in GTV and CTCs between pre-TX and W4. ROC 

analysis assesses the accuracy with which a new patient added to the cohort would be correctly 

predicted to be stable or progressing. Using percent change in GTV to predict future progression 

led to a low area under the curve (AUC) of only 0.56, while, using percent change in CTCs led to 

an AUC of 0.88 (p=0.02), Figure 3-8D.  
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Figure 3-8 The change in CTC counts and its prognostic value. (A) Bar plot of CTCs per mL at each time 

point for all patients. (B) Bar plot of PD-L1+ CTCs per mL at each time points for patients received 

durvalumab. (C) Kaplan Meier curves demonstrating the difference in PFS between patient groups 
determined by the percent change in CTCs between pre-TX and Week 4 for CTCs decreasing by more or 

less than 75%. (D) Receiver operator characteristic (ROC) curve of change in CTCs and change in GTV 

between Pre-TX and Week 4 timepoints. 

3.5.3 CTCs acquire proliferative and invasive phenotype during chemo-radiation treatment 

Three time points from the RNA samples: Pre-TX, Week 4 (during treatment), and Week 

10 (after treatment) were selected to perform microarray expression profiling. We first aimed to 

identify cancer specific signatures by comparing the samples from cancer patients and healthy 

controls. Reassuringly, we found PTPRCAP gene significantly highly expressed in healthy 

controls, and S100A2 gene significantly highly expressed in cancer patients (Figure 3-9A). The 

protein version of PTPRCAP, CD45, is commonly used as a WBC marker in immunofluorescent 

assays. S100A2 is commonly upregulated in tumor and play a crucial role in metastasis189.  
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Next, we categorized the samples by their CTC counts into three groups (high, >50 CTCs, 

medium, 20-50 CTCs, low, <20 CTCs) and performed DEG analysis between the high and low 

groups of samples to further analyze signatures associated with CTCs. Interestingly, G3BP1 was 

found significantly differentially expressed (adjusted p-val = 0.04, Figure 3-9B). In several studies, 

G3BP1 was shown to promote tumor growth and metastasis190, indicating that patients with higher 

CTCs could have a higher risk for metastasis or that G3BP1 is related to the release of CTCs from 

a tumor. 

We then performed differential gene expression analysis between pre-TX, W4, and W10 

timepoints to identify the transcriptomic changes during chemoradiation. All p-values are reported 

as false discovery rate (FDR) adjusted p-values, p < 0.05 were considered significant. Excitingly, 

there were 97 DEGs between pre-TX and W4 (during chemoradiation). We plotted the top 50 

DEGs based on log-fold change were displayed in a heatmap, Figure 3-9D where samples are 

largely sorted by timepoint (n=23/28 samples), pre-TX vs W4, using unbiased clustering. Each 

gene in the top 50 genes was investigated manually to identify relevant literature related to cellular 

proliferation, invasion, drug resistance, metastasis, prognosis, and cancer-related genes, as 

displayed in the annotation in Figure 3-9D. CTCs isolated during chemoradiation (W4) showed 

greater expression of genes related to aggressive and proliferative phenotypes. 

Lastly, patients were classified as either having sustained clinical stability or progression 

at a future date. While no genes were identified to be differentially expressed between the stable 

and progressing groups, 7 genes were upregulated between pre-TX and Week 4 within the stable 

patients. Of these genes, 3 were also upregulated in a comparison of all patients between the two 

timepoints (MMP9, MCEMP1, S100A9). The remaining 4 genes were unique to only patients with 

sustained stability (HK3, TSPO, SHKBP1, RGL4), Figure 3-9E. HK3 expression has been shown 
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to correlate to improved immune cell infiltration and predicts immunotherapy response191. 

Similarly, preliminary results indicate that SHKBP1 was associated with epithelial to 

mesenchymal transition and lymph node metastasis.192 Taken together, these indicate that stable 

patients have CTCs with less metastatic gene expression profiles during radiation compared to 

patients who will have progression. 

 
 
Figure 3-9 Differential expression analysis for microarray RNA samples. (A) Normalized Log2 Expression 
of S100A2 gene between cell line, cancer patients and healthy controls. (B) Normalized Log2 Expression of 
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PTPRCAP gene between cell line, cancer patients and healthy controls. (C) Normalized Log2 Expression 
of G3BP1 gene between cell line, cancer patients and healthy controls. (D) Top 50 differentially expressed 

genes between pre-TX and Week 4. (E) Fold change for four differential expressed genes between pre-TX 

and Week4 timepoints that had different trends in stable or progressing patients. 

3.5.4 Identifying genes that predict patient PFS  

After identifying gene expression changes between timepoints, we then aimed to determine 

an RNA signature that was predictive of PFS. Univariant Cox regression survival analysis was 

performed to identify predictive genes against PFS at each of the three time points (pre-TX, W4, 

and W10). With a p-value cutoff of 0.01, we identified 146 genes at pre-TX, 145 genes at W4, and 

72 genes at W10 that were associated with PFS. The full list of these genes is summarized in 

Appendix A. To reduce the dimensions of the predictive metrics and show the combined 

prognostic value of the gene set, we calculated a principal component analysis (PCA) score based 

on the selected predictor genes for patients at each time point. The analysis pipeline schematic is 

shown in Figure 3-10A, and prediction results from each time point is shown in Figure 3-10B-D. 

Each of the three timepoints had obvious and significant differences in PFS based on principle 

component 1 (PC1), p<0.0001.  These results demonstrate the highly predictive nature of this 

multi-gene analysis.  
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Figure 3-10 Identifying genes that can predict PFS. (A) Schematic in generating principal component based 

predictive metrics for survival. (B) Principal components from identified gene sets that predicts PFS.  

3.5.5 Using RUV method for RNA analysis in other clinical studies  

We then applied these RNA analysis methods to other clinical studies. In doing this, we 

faced the challenge of no significant difference were found between the different comparison 

groups. We hypothesized that this was because of the various WBC contamination in the enriched 

bulk CTC samples, so we developed methods to use RUV R package to remove the variances that 

were caused by contaminating WBCs. The RUV package takes pre-defined WBC marker genes 

and calculate a modified design formula for the differential gene comparison. As shown in Figure 

3-11A, after WBC adjustment in the HCC study, we found 85 downregulated genes between pre-

TX and post round 1 chemotherapy. Interestingly, 21 of these downregulated genes are related to 

liver function (Figure 3-11B), indicating potential decreased liver function during chemoradiation 

treatment.  



 63 

 
Figure 3-11 Differentially expressed genes in enriched CTC samples between baseline and post cycle 1 of 
chemoradiation treatment. (A) Heatmap of 85 significantly down regulated genes after chemoradiation 

treatment. (B) The gene network analyzed using the STRING tool. Highlighted genes are highly expressed 

in liver tissue.  

3.6 Discussion 

In this chapter, I developed analysis workflows for the profiling of CTCs using 

microfluidic devices and microarray to elucidate their role as biomarkers to predict patient PFS. 

The workflow development was performed in a cohort of locally advanced (stage III) NSCLC 

patients treated with chemoradiation and immunotherapy.  

CTCs were enumerated at six timepoints across radiation therapy and immunotherapy. We 

found that absolute number of CTCs at single time points did not correlate with progression-free 

survival time. For patients who went on to receive durvalumab immunotherapy, high PD-L1+ CTC 

subpopulation percentage at single time points may be associated with shorter PFS. This finding 

is consistent with recent reports indicating that higher PD-L1 on CTCs is correlated with shorter 
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survival, with several studies specifically investigating patients receiving either anti-PD-1 or anti-

PD-L1 immunotherapies23,87,188. One of the explanation for this could be that only blocking PD-

L1 is insufficient to halt the immune evasion mechanism on CTCs, blocking other signaling 

pathways, such as CD47 might be necessary for increasing the immunotherapy efficacy96. 

Additionally, when looking at the dynamic change of CTC counts between time points, we found 

that having a larger percent decrease in CTCs between pre-TX and Week4 of chemoradiation was 

significantly associated with longer PFS.  

We then performed differential gene expression analysis using Affymetrix Clariom S PICO 

microarrays. There were significantly upregulated genes between pre-TX and W4 that 

corresponded to a CTC phenotype that was invasive, proliferative, and potentially immune 

evasive. These CTCs may represent the cells that are escaping chemotherapy or radiative cell 

death, and hence have increased proliferative or aggressive phenotypes, however future studies 

would be needed to fully elucidate the effects of these transcriptomic changes on phenotypic 

changes. We also correlated the gene expression at single time points with PFS to identify the 

predictive gene sets. Principle components were calculated from genes that were significantly 

associated (p-val < 0.01) to PFS to showcase the highly predictive power of these genes. This 

method effectively captured the highly significant transcriptomic difference between the CTCs of 

progressing and stable patients (p-val = <0.0001).  

When applying this analysis workflow to other clinical studies, we faced the challenge of 

the lack of statistical significance between the different comparison groups. To solve this problem, 

we developed RUV package-based workflow to remove the variance generated from 

contaminating WBCs.  We found 85 significantly downregulated genes in the HCC study, 

comparing CTC samples from post cycle 1 of chemoradiation and pre-treatment. 21 of these 
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downregulated genes are found related to liver function, which could indicate the decrease of CTCs 

and liver function during treatment.  

In summary, the clinical and RNA analysis workflow developed in this chapter could be 

widely applied to future CTC clinical studies.  
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Chapter 4 Single-cell Characterization of Circulating Tumor Cells in Non-Small Cell Lung 

Cancer on Their NK Sensitivity 

4.1 Abstract 

Natural killer (NK) cell-based therapies are being actively explored as an option for 

increasing the efficacy of current immunotherapies for non-small cell lung cancer (NSCLC). As 

part of the innate immune system, NK cells have been proven to be crucial in limiting distant 

metastasis in pre-clinical models. Tumor cells in circulation (circulating tumor cells, CTCs) serve 

as the seeds of distant metastasis, especially those that exhibit a transition to mesenchymal 

phenotypes. Few studies have investigated these CTCs as targets of the NK cells in the circulation. 

In this work, we systematically assessed the capabilities of NK cell-mediated CTC 

recognition and cytotoxicity using various quantitative methods. Using in-house established 

patient-derived CTC lines, we visualized NK-mediated cytotoxicity using live cell imaging and 

quantitative fluorescent image-based dose-response modeling. Then, we evaluated NK ligand 

expressions at the single-cell level of these established CTC lines and fresh CTCs isolated from 

NSCLC patients. We identified that CTCs, especially those with mesenchymal phenotypes, are 

highly sensitive to NK-mediated killing and have NK-sensitive signatures at the RNA and protein 

levels. In addition, we found a strong correlation between NK and EMT scores based on relevant 

marker expressions in lung cancer cell lines including CTC lines. Lastly, we developed a single-

cell RNA sequencing workflow for fresh isolated CTCs, and found CTCs unbiasedly cluster with 

platelets, although exhibiting higher rates of ribosomal genes. This study aims to showcase NK-
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related biomarkers and novel characterization assays for CTCs and help guide NK-based CTC 

therapies with the ultimate goal of reducing distant metastasis. 

4.2 Publication information 

Zeqi Niu¶, Sarah Owen¶, Yuru Chen, Nina Perry, Alina Yan, Zach Gdowski, Mina Zeinali, 

Lana Garmire, Venkat Keshimouni, Nithya Ramnath, and Sunitha Nagrath. “Single-cell 

characterization of natural killer cell sensitivity of circulating tumor cells in non-small cell lung 

cancer” (In submission) 

4.3 Introduction 

Immunotherapies have changed the treatment paradigm for NSCLC across all stages. In 

earlier stages, FDA has approved immune checkpoint inhibitors (ICIs) as maintenance therapies 

to reduce the risk of distant metastasis and improve disease-free survival193,194 and following 

chemo-radiation treatment for stage III NSCLC195,196. The use of ICI in this setting has led to an 

over 15% improvement in progression-free survival (48-month PFS 35.3% for the treatment group 

versus 19.5% for placebo)195. However, the majority of patients still recur. For example, in 

unresectable stage III NSCLC, the use of maintenance durvalumab still leaves 64.7% who recur 

and progress. Several mechanisms of therapy resistance have been proposed197. One of the rate-

limiting steps for ICI efficacy is the necessity for the HLA class I presentation on the tumor cells 

for recognition by activated T cells following ICI therapy. It is well known that NSCLCs lose 

MHC class I proteins with advancing stages104,198. The loss of HLA molecules is associated with 

reduced tumor-infiltrating T-lymphocytes198, leading to primary or acquired ICI resistance. 

Alternative approaches that are agnostic of HLA class I proteins include NK cell-based 

approaches, either by themselves or in combination with ICI as maintenance therapies. 
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As part of the innate immune system, NK cells do not rely on antigen presentation for 

activation. Their function is regulated by a complex balance of activating and inhibiting ligands 

on the surface of malignant cells. For instance, MHC class I molecules serve as an inhibitory ligand 

for killer cell immunoglobulin-like receptors (KIRs) on NK cells. The absence of MHC class I 

triggers the activation of NK-mediated cytolytic activity, making them a promising cancer 

therapeutic candidate199. Several studies have shown that NK cells are crucial players in cancer 

immune surveillance, particularly in controlling cancer metastasis200. In immune-deficient mice 

with T cell, NKT cell, or NK cell depletion, there is a significantly higher incidence of metastasis 

in  NK cell-depleted mice122,201–203. Additionally, hyperactivation or adoptive transfer of NK cells 

resulted in superior metastatic control201. Therefore, NK-based therapies are being proposed to 

target metastasis resulting from circulating tumor cells (CTCs)97.  

CTCs, considered the seeds of metastasis, are shed from solid tumors into the bloodstream 

and travel to a distant organ to form new tumors. CTCs can be isolated through serial blood draws 

throughout the disease or treatment course and serve as prognostic biomarkers across solid organ 

cancers146,204. They are known to go through epithelial to mesenchymal transition (EMT), which 

equips the cells with enhanced competence to survive in the bloodstream205. Studies have 

demonstrated worse disease outcomes with increasing CTC numbers during treatment206, the 

presence of CTC clusters207,208, and specific mesenchymal and stemness phenotype markers67,68. 

Interestingly, CTC numbers are inversely correlated with circulating NK cell numbers and activity 

in different types of cancer121,209,210. 

Although the role of NK cells in limiting the growth of distant metastasis has been 

extensively studied using transgenic mouse models122,200–203, the interplay between CTCs and NK 

cells has been further explored only recently. For example, Brodbeck et al. first used computer 



 69 

modeling in perforin-deficient mouse models to investigate quantitative cytotoxicity between NK 

cells and CTCs211. Based on the mathematical model, roughly 80% of CTCs were killed through 

the perforin-dependent killing of NK cells. Moreover, EMT phenotypes, which are frequently 

found in CTCs,  are found to be associated with NK-sensitive phenotypes in pre-clinical 

experiments122–124. For example, E-cadherin downregulates during the EMT process212, and serves 

as an NK cell inhibitor through bindings with the KLRG1 receptor. MHC class I downregulation, 

one of the most studied NK activation mechanisms, is found in disseminated tumor cells (DTCs) 

in bone marrow213, CTCs in animal models125, as well as CTCs from melanoma patients214. These 

findings indirectly suggest that CTCs may be inherently susceptible to NK cell-mediated cell death. 

However, to our best knowledge, there is no study that has investigated NK susceptibility and NK-

related marker expressions directly in CTCs isolated from cancer patients.  

Advances in microfluidic technologies during the last decade have enabled the consistent 

isolation and characterization of CTCs from cancer patients215. CTCs are usually identified by 

positive immunofluorescent staining of epithelial marker (e.g., Cytokeratin) and negative staining 

of white blood cell (WBC) marker (e.g., CD45). Although this widely used method is sufficient in 

quantifying CTCs, developments of CTC characterization more extensively and drug testing 

assays are urgently needed. These methodology developments are often hampered by the limited 

CTC numbers. One solution is to increase the CTC number by in vitro expansion to perform drug 

testing and bulk sequencing assays. Although with low success rates, several studies216–218, 

including our lab, have developed stable CTC lines. Another solution is to use technologies with 

lower detection limits. Several recent studies have performed CTC single cell RNA-seq via several 

different approaches, including Chromium (10X Genomics)53, Smart-Seq assay214, or individual 

micromanipulation219.  
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Our lab previously developed a high-throughput label-free microfluidic device, the 

labyrinth device, to enrich CTCs for potential single-cell analysis186. This work aims to decipher 

the NK cell sensitivity of NSCLC patient-derived CTCs via various single-cell resolution assays. 

We visualized the CTC killing process through live imaging, and quantitatively tested the NK 

sensitivity of in-house derived CTC lines. To investigate the NK-CTC interaction on the molecular 

level, we evaluated the protein and RNA expression of NK-related ligands and their correlation 

with EMT signatures. For the first time, we established a workflow of single-cell RNA sequencing 

and analysis for both epithelial and mesenchymal CTCs using Labyrinth and Chromium (10X 

Genomics). The single-cell sequencing results showed detection rates of ribosomal proteins in 

CTCs and no clear association between the EMT status and HLA class I expressions. Overall, the 

results of this study showcase the NK sensitivity and NK-related biomarkers on CTCs and help 

guide NK-based CTC therapies with the ultimate goal of reducing distant metastasis. 

4.4 Materials and methods 

4.4.1 Cell culture 

Cells were maintained at 37°C and 5% CO2. Cells were grown to 70 - 80% confluence 

before subculturing using 0.05% Trypsin-EDTA (Gibco). H1975, H1650, H3255, H441, A549, 

CTC-Lu1, and CTC-Lu2 cells were maintained in RPMI-1640 (Gibco) supplemented with 10% 

fetal bovine serum (FBS) (Sigma) and 1% Antibiotic-antimycotic (Gibco). NK-92®MI cells were 

maintained in suspension culture in Minimum Essential Medium − 𝛼  (MEM-ɑ) supplemented 

with 10% FBS (Sigma), 12.5% horse serum and 1% Antibiotic-antimycotic (Gibco). Media was 

exchanged every 48-72 hours between subculturing. Cell lines were routinely tested and reported 

negative for mycoplasma contamination (Lonza).  
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4.4.2 NK cell cytotoxicity live imaging 

CTC-Lu2 cells were seeded at 2 ×  103 cells per well in an 18-well 𝜇-Slide (ibidi) and 

incubated at 37 ℃, 5% CO2 overnight to adhere. The culture media was replaced with MEM-ɑ 

containing 1 ×  104 NK-92®MI cells before the start of the experiment. The slide was then live 

imaged under Nanolive 3D Explorer with 30s intervals for 1 hr sessions. The images and videos 

were then processed through the Nanolive software Steve. The screenshot images were focus 

stacked together to be able to visualize both NK cells and cancer cells. 

4.4.3 Quantitative NK cytotoxicity assays and data analysis  

Cancer cells were passaged using 0.05% Trypsin-EDTA and incubated with cell tracker 

red CMTPX (Invitrogen) for 45 min in serum free media, and washed with phosphate buffered 

saline (PBS) three times. The cells were then counted using a hemocytometer and diluted to a 

concentration of 50,000 cells/mL. 5,000 cells (100 μL of the cell solution) were seeded into each 

well of a 96-well plate (Corning) and adhered to the plate overnight. The next morning NK-92®MI 

cells were collected and resuspended in 1:1 mix of RPMI-1640 and MEM-ɑ. Cells were then 

counted by hemocytometer and diluted to the appropriate concentration to seed 100 μL of NK cell 

suspension to each well, containing the indicated effector (NK cell) to target (cancer) (E:T) ratios. 

After preparing the NK cell dilutions, media was gently removed from each well in 96-well plate 

and replaced with NK cell suspension. The co-culture was incubated for four hours. 

At the end of the four-hour co-culture incubation period, each well was washed with 200 

μL PBS, then stained with a cocktail containing Calcein-AM (BD bioscience) for live cell staining 

and Hoechst (Invitrogen, final concentration 10 μg/mL) for nuclei staining. After incubating in 

dark at 37°C for 20min, the staining reagents were gently removed from each well and replaced 
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with PBS. The plate was then scanned with three channels (DAPI, FITC, Cy3) using a Nikon Ti2 

inverted fluorescent microscope at 10X magnification. 

The images are then batch analyzed using the “General Analysis” module using the NIS-

elements software. Specifically, “Remove Average Background” function was first applied to 

preprocess the images. For Calcein-AM and cell tracker detection, appropriate intensity and size 

thresholding was then set based on each cell line image to ensure optimal cell counts. “Bright spot 

detection” function was used for cell nuclei detection. Post processing functions such as “Morpho 

Separate Objects”, “Fill Holes'', “Smooth” were used accordingly based on the cell morphology. 

An intersection function was then set to select cell tracker dye, Calcein-AM and cell nuclei positive 

cells and generate a combined binary layer. From this layer, total object number, which correspond 

to live cancer cell number in each well, was recorded to form a count table. Percent cytotoxicity 

was then calculated using the following equation: 

% 𝐶𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 = (1 −  
𝐿𝑖𝑣𝑒 𝑐𝑎𝑛𝑐𝑒𝑟 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡𝑎𝑡 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝐸:𝑇 𝑟𝑎𝑡𝑖𝑜 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑣𝑒 𝑐𝑎𝑛𝑐𝑒𝑟 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡𝑖𝑛 𝑐𝑡𝑟𝑙 𝑤𝑒𝑙𝑙𝑠
) × 100% 

Percent cytotoxicity and E:T ratio was fitted to a built-in nonlinear three-parameter dose 

response curve in GraphPad Prism 8.4.0. Area under the curves (AUCs) were calculated using 

Prism built-in AUC function with Y=0 as baseline.  

4.4.4 Sample collection and labyrinth processing 

The experimental protocol was approved by the Ethics (Institutional Review Board) and 

Scientific Review Committees of the University of Michigan, and all patients gave their informed 

consent to participate in the study (HUM00119934). All patients had a diagnosis of metastatic 

EGFR mutant or ALK mutant lung adenocarcinoma. Specifically, two patients carried mutations 

in Anaplastic lymphoma kinase (ALK) and six carried mutations in epidermal growth factor 
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receptor (EGFR) based on screening of the primary tumor. Most patients were receiving kinase 

inhibitor treatments; however, one patient (patient 2) was originally receiving chemotherapy until 

next generation sequencing results were available and identified an EGFR mutation, at which point 

the patient began kinase inhibitor therapy. 

Blood samples were collected in EDTA tubes and processed through the Labyrinth within 

2 hours of collection. Red blood cells (RBCs) were removed with Ficoll-Paque™ PLUS Media 

(GE Healthcare) based on density separation principles, following the manufacturer's protocol 

prior to processing in the Labyrinth. After RBC depletion, the plasma and blood mononuclear cells 

(PBMCs) fractions were collected and diluted 1:5 with phosphate buffered saline (PBS) based on 

the original blood volume. The subsequent diluted sample was processed through the Labyrinth at 

a flow rate of 2500 μL/min. The resultant from outlet 2 was collected. The CTC-enriched sample 

was used for immunofluorescent staining. 

4.4.5 Immunofluorescence and fluorescent microscopy  

To perform immunofluorescent staining, cells either from culture or from the Labyrinth 

outlet 2 product were processed using Cytospin Cytocentrifuge (ThermoFisher Scientific). A poly-

lysine coated slide was placed into the cytospin funnel (ThermoFisher Scientific), cell suspension 

was added to each cytospin funnel and cytocentrifuged at 800 revolutions/min (RPM) for 10 min. 

Samples were then fixed using 4% paraformaldehyde (PFA) and cytocentrifuged at 800 RPM for 

an additional 10 min. The cells on the glass slides were covered with PBS and stored at 4°C until 

used for immunofluorescence. Two slides were prepared from each patient sample or cell line, for 

the following staining of panel 1 and panel 2 respectively (Table 6). 
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Table 6 Immunofluorescence staining conditions of the two designed panels 

 
Cells or samples on slides were permeabilized with 0.2% Triton X-100 solution for 3 min. 

Slides were then washed 3 times with PBS, followed by blocking using 10% goat serum for 30 

min at room temperature. Primary antibody cocktails with following concentrations (table) for 

each marker were prepared in blocking reagent (10% goat serum) and applied to cover the whole 

slide sample surface. Slides with primary antibodies are then incubated at 4°C overnight. On the 

following day, slides were washed with PBS for 3 times, with 5 min incubation each time. 

Secondary antibody cocktails with concentrations shown below were prepared in blocking reagent 

and applied to cover the sample area for 1.5 hrs. This was followed by three 5 min PBS washes. 

The coverslips were then mounted onto the sample areas with Gold prolong antifade mountant 

reagent with DAPI (ThermoFisher Scientific). The entire sample area of the stained slides was 

scanned using a Nikon Ti2 inverted fluorescent microscope at 20X magnification. 

4.4.6 CTC analysis and enumeration 

The images from the scanned patient sample slides were manually analyzed using the NIS-

Elements software (Nikon). CTCs were defined as DAPI+/panCK+/CD45-, while WBCs were 

defined as DAPI+/panCK-/CD45+. CTCs were further characterized by their expression of NK 

inhibitors (Panel 1) or NK activators (Panel 2) using the following method.  

4.4.7 Quantitative fluorescent intensity data export  

Staining Panel Channel Primary Antibody Catalog number Host (Isotype)

Staining 

cocktail 

dilution

Catalog number (All  

purchased through 

Thermofisher)

Staining 

cocktail 

dilution

Panel 1 & 2 Cy3
Pan Cytokeratin 

(panCK)
BioRad MCA1907T Mouse (IgG1) 1:100  A21123 1:100

Panel 1 & 2 FITC CD45 enQuire 5788-MSM9 Mouse (IgG2b) 1:100  A21141 1:100

Panel 1 Cy5 HLA-A/B/C
Thermo/eBioscience 14-

9983-82
Mouse (IgG2a) 1:50 A21241 1:100

Panel 1 Cy7 E-Cadherin Cell signaling 31955 Rabbit (IgG) 1:50 SA5-10035 1:100

Panel 2 Cy5 MICA/B
Abclonal 

A12622/A9802
Rabbit (IgG) 1:50 A21245 1:100

Panel 2 Cy7 CADM1
MBL International 

CM004-3
Chicken (IgY) 1:50 SA5-10075 1:100
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For patient sample slides, because MHC class I expressions in platelets are generating 

background noises, a background subtraction step was done on panel 1 (MHC class I, E-cadherin) 

using the subtract background function in ImageJ. The rolling ball radius for the algorithm was set 

to the pixel number of the largest cell of interest on each image. The processed images were 

exported as TIFF images and imported to NIS-Elements (Nikon) for further analysis. For cell line 

samples, this step was skipped.   

The Regions of Interest (ROIs) were defined for each selected cell (cell line, CTC, or WBC) 

manually based on panCK (or CD45 for WBC) and DAPI staining using the ROI autodetection or 

drawing tool. Raw intensity values for each channel were exported using the ROI statistics module. 

Normalized intensity z-score for a single marker (inhibitor or activator) was calculated using the 

following formula: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑧 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑥 −  𝜇

𝜎
 

For each cancer cell line, 𝑥 is the intensity of a cell that were chosen randomly across the 

slide. 𝜇  and 𝜎 is the mean and standard deviation, respectively, of intensities for each marker 

across the different cell lines. Over 300 cells per cell line were selected for the data export to 

generate Figure 4-2D. 

For CTC isolated from cancer patients, 𝑥  is the raw intensity of defined ROI around 

identified CTCs. 𝜇 and 𝜎 are the mean and standard deviation, respectively, of the intensities of 

all CTCs found between different patients that were stained with the same marker. NK sensitivity 

score for each cell line was calculated using  ( ∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑧 − 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑁𝐾 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟𝑠 −

 ∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑧 − 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑁𝐾 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑠)  and normalized to 0 to 100 scale using linear 

transformation. 

4.4.8 Bulk RNA sequencing 
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Cells were seeded with 1.5 × 105 cells per well in 12-well plates. After 72 hrs, the cells 

were lysed using 700 µL TRIzolTM Reagent (Life Technologies) and incubated for 5 min at room 

temperature on a plate rocker. RNA was then isolated and purified using the Total RNA 

Purification kit (Norgen) under the manufacturer’s instructions. The purified RNA samples were 

then submitted to the Advanced Genomics Core at the University of Michigan for library prep and 

next-generation sequencing. Input RNA is normalized to 200ng per sample. The RNA library was 

prepared with Poly(A) mRNA Magnetic Isolation Module (New England BioLabs), NEBNext 

Ultra II Directional RNA Library Prep Kit for Illumina (New England BioLabs), and NEBNext 

Multiplex Oligos for Illumina Unique dual (New England BioLabs). The libraries were pooled and 

sequenced on 2.5% of the Illumina NovaSeq S4 Paired-end 150bp, according to manufacturer's 

recommended protocols. Bcl2fastq2 Conversion Software (Illumina) is used to generate de-

multiplexed FastQ files. 

4.4.9 RNA sequencing analysis  

Raw data processing was also performed at the Advanced Genomics Core of the University 

of Michigan. Briefly, snakemake220 was used to manage the bioinformatics workflow in a 

reproducible manner. The reads were trimmed using Cutadapt221 and were evaluated with 

FastQC222 to determine quality of the data. Reads were mapped to the reference genome GRCh38 

(ENSEMBL) using STAR223, and assigned count estimates to genes with RSEM v1.3.3224. 

Alignment options followed ENCODE standards for RNA-seq. QC metrics from several different 

steps in the pipeline were aggregated by multiQC v1.7225. The RSEM were then accessed in R 

programming environment. To increase data power, we incorporated RNA-seq data from cancer 

cell line enclopedia (CCLE)112 for commercial cell lines using ComBat-seq226. Normalization and 
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differential gene expression analysis were then performed between NK sensitive cell lines and NK 

resistant cell lines using DESeq2227. 

4.4.10 Calculation of NK and EMT scores from bulk RNA-seq and CCLE 

Transcripts per million (TPM) results were used for the score calculation. Only lung 

adenocarcinoma cell lines were selected (by searching pattern: “lung” in primary_disease column 

and “adeno” in Subtype column) from the CCLE dataset. 80 cell lines were selected through the 

subsetting. NK and EMT scores were calculated using NK (Table 7) and EMT228 related genes 

from the literature. For each sample, the calculation formulas are following: 

𝑁𝐾 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 =  ( ∑ 𝑇𝑃𝑀 𝑜𝑓 𝑁𝐾 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟𝑠 −  ∑ 𝑇𝑃𝑀 𝑜𝑓 𝑁𝐾 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑠) 

𝐸𝑀𝑇 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 =  ( ∑ 𝑇𝑃𝑀 𝑜𝑓 𝑚𝑒𝑠𝑒𝑛𝑐ℎ𝑦𝑚𝑎𝑙 𝑔𝑒𝑛𝑒𝑠 − ∑ 𝑇𝑃𝑀 𝑜𝑓 𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙 𝑔𝑒𝑛𝑒𝑠) 

These raw scores were then normalized to 0 to 100 scale through a linear transformation: 

𝑁𝐾  𝑠𝑐𝑜𝑟𝑒 =  
𝑁𝐾 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 − 𝑁𝐾𝑚𝑖𝑛

𝑁𝐾𝑚𝑎𝑥 − 𝑁𝐾𝑚𝑖𝑛
 ×  100 

 

𝐸𝑀𝑇  𝑠𝑐𝑜𝑟𝑒 =  
𝐸𝑀𝑇 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 ×  100 

Simple linear regression was then performed between the EMT and NK scores in GraphPad 

V9.4.0.  

Table 7 NK-related markers selected from literature100,229. 

Activators Inhibitors 

Ligand Ligand alias NK receptor Ligand NK receptor 

PVR CD155, NECL5 DNAM1, TIGIT HLA-A KIR 

NECTIN1 CD111 CD96 HLA-B KIR 

NECTIN2 CD112 DNAM1, TIGIT HLA-E CD94 

NECTIN3 CD113 TIGIT HLA-C KIR 

MICA  NKG2D CDH1230 KLRG1 

MICB  NKG2D CDH2 KLRG1 
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4.4.11 Single-cell RNA sequencing 

Single-cell RNA sequencing was performed using 10X Genomics and Illumina sequencing 

platform according to manufacturer's recommended protocols. Briefly, nanoliter-scale Gel Beads-

in-emulsion (GEMs) are generated by combining barcoded Single Cell 3ʹ v3 Gel Beads, a Master 

Mix containing CTC samples, and Partitioning Oil onto Chromium Chip B. Then the Gel Beads 

are dissolved, primers are released, and any co-partitioned cells are lysed. The cell lysate, primers 

and Master Mix containing reverse transcription (RT) reagents are incubated to produce barcoded, 

full-length cDNA from poly-adenylated mRNA. After incubation, GEMs are broken, and pooled 

fractions are recovered. Silane magnetic beads are used to purify the first strand cDNAs from the 

post GEM-RT reaction mixture, which includes leftover biochemical reagents and primers. 

Barcoded, full-length cDNA is amplified via PCR to generate sufficient mass for library 

construction and sequencing. A Chromium Single Cell 3’ Gene Expression library comprises 

standard Illumina paired-end constructs that begin and end with P5 and P7. The 16 bp 10x Barcode 

and 12 bp UMI are encoded in Read 1, while Read 2 is used to sequence the cDNA fragments. 

Sample index sequences are incorporated as the i7 index read. TruSeq Read 1 and Read 2 are 

standard Illumina sequencing primer sites used in paired-end sequencing.  

ULBP1  NKG2D CDH4 KLRG1 

ULBP2  NKG2D CEACAM5 CEACAM1 

ULBP3  NKG2D CEACAM1231 NKG2D 

RAET1E ULBP4 NKG2D CLEC2D CD161 

RAET1G ULBP5 NKG2D PCNA NKp44 

RAET1L ULBP6 NKG2D   

CD48  2B4   

VIM232  NKp46   

HLA-G233  KIR2DL4, CD94   

BAG6  NKp30   

NCR3LG1 B7-H6 NKp30   

CADM1122  CRTAM   

CD70  CD27   
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4.4.12 Single cell RNA sequencing data analysis 

Single cell analysis tool package Seurat234 was used following the result expression matrix 

from CellRanger. Cells with over 20% mitochondrial contamination were excluded from the 

analysis to exclude dying and low-quality cells. The dataset was normalized and scaled following 

the Seurat package vignettes. We then performed Principal Component Analysis (PCA) and non-

linear UMAP dimensional reduction to visualize the dataset in two-dimensional space. Blood cells 

were identified based on a list of canonical blood cell markers, including platelets (PPBP, PF4), 

NK cell (NKG7, GNLY), T cell (CD3D, CD3G, TRBC2, TRAC). To select CTCs, we first selected 

potential cancer cells by the negative expression of all above immune cell markers (NKG7, GNLY, 

CD3D, CD3G, TRBC2, and TRAC) plus CD45(PTPRC). We then calculated the EMT score using 

the method described above and selected the cells that have the top 10% and bottom 10% EMT 

score. In other words, we identified CTCs by the most epithelial (low EMT score) and most 

mesenchymal (high EMT score) profiles among the non-leukocyte population. This strategy 

diagram is shown in Figure 4-5A. Differential expression gene features are tested using statistical 

framework MAST. All analysis were performed in R programming environment. 

4.4.13 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 9.4.0. Significance and p-values 

between samples were determined using a two-sided unpaired t-tests assuming a Gaussian 

distribution, with a 95% confidence level. Plotted error bars represent standard deviation. In simple 

linear regression, R2 represent goodness of fit.  

4.5 Results 

4.5.1 Study overview and rationale 
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The research questions of this study can be divided into two parts; 1) Is there direct 

evidence of NK sensitivity on CTCs? 2) What molecular traits are related to this sensitivity? To 

first test the hypothesis of CTC being highly sensitive to NK-mediated killing, we first visualized 

NK-mediated cytotoxicity against CTC lines using 3D live cell imaging. We then developed an 

image-based cytotoxicity assay to evaluate the NK-mediated cytotoxicity quantitatively. This 

assay was tested using lung cancer cell lines, including CTC-derived cell lines (Figure 4-1A).  

To gain more insights into the molecular mechanisms of CTC-NK interaction, we 

performed a series of quantitative assays for RNA and protein expression on fresh CTCs and CTC 

lines (Figure 4-1B). For protein expressions, we designed two multi-color immunofluorescence 

(IF) staining panels and evaluated the quantitative intensity data for well-known NK cell inhibitors 

and NK cell activators. Due to the channel limitation of IF assays, we only included two NK 

inhibitors: MHC class I molecules (Gene name: HLA-A/B/C) and E-cadherin230 (Gene name: 

CDH1), as well as two NK activators: MHC class I chain-related proteins A and B (MICA/B)235 

and cell adhesion molecule 1 (CADM1)236. The working mechanisms of E-cadherin and MHC 

class I molecules have been described above. MICA/B expressions are often induced by various 

stress or DNA damage responses and can activate NK cells by binding to NKG2D receptors. 

CADM1 is a cell adhesion molecule that has recently been found to activate NK cells through the 

binding with class I-restricted T cell-associated molecule (CRTAM) receptor. There is little work 

done on evaluating the expressions for MICA/B and CADM1 on CTCs isolated from patients. 

Although these markers predict NK sensitivity to some degree, the complexity of NK 

regulation can hardly be explained by only four characteristics. We then performed RNA profiling 

assays, which provide expression snapshots for more NK ligands. Bulk-sequencing was performed 
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for CTC lines, and single-cell sequencing through Chromium (10X Genomics) was performed for 

fresh isolated CTCs.  

 
Figure 4-1 Schematic diagram of characterizing NK sensitivity in patient-derived CTCs. (A) NK 

cytotoxicity assays using an image-based workflow. (B) Protein and RNA level characterization for NK-

related ligands in fresh isolated and patient-derived CTC lines. 

4.5.2 Patient-derived NSCLC CTC lines are sensitive to NK-mediated cytotoxicity 

We first observed NK cell-mediated killing with in-house derived CTC lines using 3D live 

cell imaging. An example of three NK-92®MI cells (smaller in cell size, indicated by blue arrows 

and texts) killing one CTC-Lu2 cell is shown in Figure 4-2A. Within 26min, the CTC-Lu2 cell 

went through apoptosis.  
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To further assess the NK sensitivity of the CTC lines quantitatively, we developed a novel 

semi-automatic imaging-based co-culture cytotoxicity assay. Seven cancer cell lines, including 

two CTC lines (CTC-Lu1 and CTC-Lu2), were fluorescently labeled (Cy3) and incubated for four 

hours with NK-92®MI under ten different effectors to target (E:T) ratios. After the incubation, 

cells were stained with Calcein-AM and Hoechst, followed by imaging under a fluorescent 

microscope. Calcein-AM staining (FITC) helps identify the living cells after the incubation, while 

Hoechst (DAPI) identifies the nuclei. An automatic counting algorithm was defined in the NIS-

Elements imaging software to batch process the images and count the live cancer cells (Cy3, FITC, 

and DAPI positive). The percent cytotoxicity was calculated using live cancer cell counts and fit 

to a three-parameter dose-response curve. Figure 4-2B shows the fitted cytotoxicity percentage 

hyperbolic curve with the 95% confidence interval. CTC-Lu1 and CTC-Lu2 had the highest 

cytotoxicity percentages at all E:T ratios. At E:T ratio 20, over 90% of the CTC-Lu1 and CTC-

Lu2 were killed after four hours of incubation. These results indicate that the two in-house derived 

CTC lines are susceptible to NK cell killing. To compare the rankings of NK sensitivity in all cell 

lines, the area under the curves (AUCs) were calculated using the fitted hyperbolic curves. The 

orders of established lung cell lines are consistent with cytotoxicity results reported by another 

study123 (Figure S1). For the following characterization, we categorized CTC-Lu2, CTC-Lu1, and 

H441 cell lines as NK sensitive, and H1975, H3255, H1650, and A549 as NK resistant.  
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Figure 4-2 NK-mediated cytotoxicity and key NK-related protein expression in expanded CTC and other 
lung cancer cell lines. (A) 3D live cell imaging of several NK cells killing a CTC-Lu2 cell. (B) Percent 

cytotoxicity across ten different effectors to target (E:T) cell ratios fitted to a three-parameter dose-
response curve. (C) Immunofluorescent staining of CTC-Lu2 lines with NK-related markers. (D) Overall 

NK sensitivity score of the lung cell lines tested by sensitivity phenotype. 

To investigate the contributing molecular mechanism for this CTC-NK sensitivity, we 

developed a quantitative immunofluorescence assay to evaluate protein expression with single-

cell resolution. Briefly, two parallel staining panels were designed to distinguish CTCs from 

WBCs and evaluate expressions of four NK-related markers. CTCs are defined by the positive 

stain of cancer cell marker pan-cytokeratin (panCK) and the negative stain of WBC marker CD45. 

The NK-related markers include two inhibitory ligands, MHC class I molecules and E-cadherin, 
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and two activating ligands, MICA/B and CADM1. Examples of fluorescent staining of our in-

house CTC lines are shown in Figure 4-2C.  

Raw fluorescent intensities of each marker were then exported per cell and normalized 

using z-score normalization across all the cell line samples. To assess overall NK sensitivity, we 

calculated a prediction score by assigning equal weights to each marker (Figure 4-2D). Briefly, for 

each cell line, raw sensitivity values were calculated using (∑NK activator z-scores - ∑NK 

inhibitor z-scores). The raw sensitivity values were then ranked between the seven cell lines and 

normalized to a scale of 0 to 100 by a linear transformation. These normalized values represent 

the NK sensitivity score. Since the downregulation of NK inhibiting markers and upregulation of 

NK activating markers correlates to sensitive NK phenotype, a higher sensitivity score is expected 

for NK sensitive phenotype. The results show that the sensitive cell lines (CTC-Lu1, CTC-Lu2, 

H441) have a higher median sensitivity score than the other cell lines based on these four markers.  

4.5.3 Predicted NK sensitivity from NK ligands’ RNA expressions correlates with EMT 

signatures in lung cancer cell lines 

The number of markers that can be evaluated simultaneously for immunofluorescence 

assays is often limited. NK cell regulation involves multiple pathways, and NK activation could 

result from a combination of more than four ligands100. To evaluate a more comprehensive 

collection of NK-related markers at the RNA level, we performed bulk RNA sequencing on the 

set of seven lung cancer cell lines, including the two CTC lines. We first selected a panel of NK-

related ligands from the literature (Table 7), including 19 activating and 11 inhibiting ligands. As 

shown in Figure 4-3A, NK-sensitive cell lines (red) show higher expression than NK-resistant cell 

lines (blue) in NK activator ligands such as MICB and NECTIN3. For NK inhibitor ligands such 

as CDH1 and CEACAM1, NK-sensitive cell lines show lower expression than NK-resistant cell 
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lines. However, this trend is not consistent among all the NK activators and inhibitors. To assess 

overall sensitivity, we calculated the NK score based on these 30 markers and showed that the 

sensitive cell lines (CTC-Lu1, CTC-Lu2, H441) had a higher median sensitivity score value 

(Figure 4-3B). Compared with the score based on immunofluorescence staining, a larger difference 

in sensitivity score was observed between the sensitive and resistant groups (mean difference = 

36.5, compared with mean difference = 8.7 based on immunofluorescence staining). 

We then performed an exploratory differential analysis between the NK-sensitive and NK-

resistant cell lines. To increase the power, we integrated the expression data for non-CTC lines 

from the Cancer Cell Line Encyclopedia (CCLE)112 as duplicates in addition to the in-house bulk 

sequencing data. We discovered 1304 genes that were significantly differentially expressed 

between sensitive and resistant cell lines (cutoff of adjusted p-val < 0.05, fold change > 1.5), 

including 372 significantly upregulated genes and 932 significantly downregulated genes (Figure 

4-3C). Among these, we highlighted the genes that are known to associate with EMT228 or NK 

function (Table 7). Specifically, genes that were previously found228 upregulated during EMT 

(red), such as VIM, DDR2, CDH11, and DCN, were upregulated in the NK-sensitive cell group. 

Conversely, genes that are downregulated during EMT228 (blue), FGFR2, KLK5, IGFBP2, 

COL17A1, CA2, ABCA12, S100A8, KLK7, ARTN, and PTPN3 were downregulated in the NK-

sensitive group. From these results, we suspect that NK sensitivity may correlate with EMT.  

Additionally, NK-related ligands show interesting differential expressions. MICB, an NK 

activator, was significantly highly upregulated in NK sensitive group. Other NK activators, BAG6, 

NECTIN2, NECTIN3, VIM, and CADM1, were upregulated but did not reach statistical 

significance. NK inhibitors, including SERPINB4, were downregulated but did not reach statistical 

significance. HLA-G, which serves as an NK inhibitor and NK activator depending on whether 
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surface or soluble form, is highly upregulated in the NK-sensitive cell lines233,237. The most 

differentially expressed genes (Log2 fold change > 2) were then analyzed for gene ontology 

overrepresentations. Genes related to blood circulation, cell adhesion, icosanoid metabolic 

process, and humoral immune response were highly enriched (Figure 4-3D). The process of EMT 

and natural killer cells mediated cytotoxicity were also found to be overrepresented although not 

reaching statistical significance.  

To further explore the correlation between NK ligands and EMT signatures, we calculated 

EMT scores (see methods) for the seven lung cell lines, with higher EMT scores indicating more 

mesenchymal phenotypes. Interestingly, the NK sensitivity scores and EMT scores had a high 

positive correlation (Figure 4-3E, yellow, R2 = 0.7694, p-val = 0.0095). It is also worth noting that 

the two CTC lines both had high NK sensitivity and EMT scores, indicating their NK sensitive 

and mesenchymal phenotype. Moreover, we analyzed a set of 80 lung adenocarcinoma (LUAD) 

cell lines from CCLE using similar methods. Excitingly, the NK sensitivity scores for these cell 

lines also highly correlate with EMT scores (Figure 4-3E, gray, R2 = 0.5202, p-val < 0.0001).  

In summary, the bulk RNA-seq results show a close correlation between predicted NK 

sensitivity calculated from NK ligands and EMT status in lung cancer cell lines. Especially, in-

house derived CTC lines were predicted NK sensitive and mesenchymal based on ligand 

expressions. 
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Figure 4-3 Bulk RNA-sequencing of lung cancer cell lines. (A) Normalized Log2 expression of 30 NK-
related ligands, including 19 activating and 11 inhibiting ligands. Ligands were arranged in the graph by 

the variance between the seven cell lines (descending from left to right). (B) NK sensitivity score calculated 
based on the 30 NK ligands. (C) Differentially expressed genes between NK sensitive phenotype and NK 

resistant phenotype. EMT-related and NK-related genes were labeled in colors. (D) Over-represented gene 
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ontologies. The relevant gene count for each ontology is indicated in the parenthesis. (E) Correlation 
between NK sensitivity score and EMT score. Lung cell lines from the in-house bulk sequencing dataset are 

labeled in yellow, and lung adenocarcinoma (LUAD) cell lines from CCLE are marked in gray. 

 

4.5.4 NK ligand expressions on Day-0 patient CTCs predict NK-sensitive phenotypes  

We were then interested to see if these NK-sensitive signatures could be found in freshly 

isolated CTCs from patients. A similar quantitative immunofluorescence assay was performed to 

evaluate NK-related marker expression from eight late-stage metastatic NSCLC patients. The 

average patient age was 62 years old and was well distributed between males and females. Four 

patients had two or more time points collected, while the remaining four only had a single time 

point. CTCs were isolated from blood samples using the labyrinth workflow186. The high-

throughput label-free device allows the isolation of heterogeneous CTC subpopulations, 

independent of surface protein expression. After isolation, immunofluorescent staining was 

performed using the two staining panels described above, shown in Figure 4-4A. We then exported 

the intensity values from individual CTCs and surrounding WBCs as internal controls. Z-score 

normalization was performed for all exported cells within each marker, adjusting for the 

background variations.  

We found that CTCs have interesting protein expression profiles compared to the control 

WBCs (Figure 4-4B). For NK inhibitors: MHC class I and E-cadherin, the median expression level 

in CTCs is lower than in WBCs. Conversely, NK activators: MICA/B and CADM1 showed 

slightly higher median expression in CTCs than WBCs.  
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Figure 4-4 Key NK regulator protein expression in freshly isolated CTCs. (A) Examples of 

immunofluorescent staining from the two panels. CTCs were identified as DAPI+/panCK+/CD45-. (B) Z-

score normalized fluorescent intensities of identified CTC and WBC populations. 

4.5.5 Heterogenous EMT profiles observed but not correlated with HLA loss from single-cell 

RNA sequencing on patient CTCs 

To explore the correlation between EMT and NK-related signatures at the RNA level in 

freshly isolated CTCs, we performed single-cell sequencing on enriched CTC samples from three 

patients in the cohort. Patient blood samples were first enriched through previously described 

Labyrinth186. We then selected CTCs by the negative expression of immune cell markers and the 

top 10% epithelial or mesenchymal cells based on the calculated EMT score. This CTC selection 
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strategy is described in Figure 4-5A and the methods. We first performed the uniform manifold 

approximation and projection (UMAP) dimension reduction analysis to reveal the major cell types 

of these enriched samples (Figure 4-5B). Platelets, neutrophils, NK, and T cells were identified 

using canonical markers, along with the CTCs. 

Interestingly, these CTCs clustered with platelets in the UMAP analysis. We were not 

surprised by this result because frequent platelet coating of CTCs has been shown in other 

studies238. To differentiate between these two groups, we analyzed the differential gene 

expressions. A representative volcano plot of the differential expressed genes in Pt-2 is shown in 

Figure 6B. Known cancer-related genes such as MALAT1, EEF1A1, S100A10, VIM, S100A6, 

COL1A1, and COL3A1 were highly expressed in CTCs. Platelet marker genes, such as PF4 and 

PPBP, were highly expressed in platelets. These expression profiles increased our confidence in 

this CTC identification strategy. The complete list of significant DEGs and their detection 

percentage in the two groups are shown in Figure 6C. Interestingly, many genes in the ribosomal 

protein group, such as RPL18A, RPL32, RPL13, and RPL19 upregulated in CTCs. 
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Figure 4-5 Single-cell RNA profiling of freshly isolated CTCs. (A) Schematic of CTC selecting strategy. (B) 
2-D UMAP dimension reduction analysis showing clusters of CTCs and platelets. (C) Volcano plot of 

differential expressed genes between CTCs and platelets. (D) List of differentially expressed genes and the 

detection rate within the CTC and platelet groups. 

We then interrogated the expression of NK, EMT, and other lung cancer-related genes in 

these identified CTCs. We plotted the genes with consistent non-zero expressions (expressed by 

at least two cells) in heatmaps (Figure 4-6A). We arranged these CTCs based on their EMT score 

from high (mesenchymal) to low (Epithelial). As expected, common mesenchymal markers, such 

as VIM, COL3A1, and COL3A2, were highly expressed in the mesenchymal CTCs of Pt2. 

Conversely, epithelial markers, such as TACSTD2239, were highly expressed in the epithelial 

CTCs. Because of the low coverage of the sequencing experiment, only four HLA class I alleles 
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(HLA-A, HLA-B, HLA-C, and HLA-E) among the NK ligands had consistent non-zero 

expressions. We did not see a clear difference in HLA class I expression between epithelial and 

mesenchymal cells. We then quantified the frequency of zero expressions for the four HLA class 

I alleles for mesenchymal or epithelial cells and observed similar indifference between the two 

groups (Figure 4-6B).  

 

 
Figure 4-6 Clustering and further analysis of the single-cell datasets.  (A) Heatmap of the NK and cancer-

related RNA expressions in selected CTCs in Pt-2. CTCs are arranged based on EMT scores from high to 
low. (B) Frequency density plot of zero expressions of the four common HLA alleles: HLA-A, HLA-B, HLA-

C, and HLA-E.  
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4.6 Discussion 

Despite rising evidence supporting NK cells’ role in halting distant metastasis, little work 

has been done to characterize the NK sensitivity on patient-derived CTCs. The rarity of CTCs in 

the blood limits their compatibility with traditional cytotoxicity assays, which require large starting 

cell numbers. Several studies, including our group, have developed techniques to expand CTCs to 

larger numbers216–218,240,241. Two NSCLC patient-derived CTC lines were successfully established 

by our group241. Using these established CTC lines, we were able to capture NK-CTC cytotoxicity 

in real-time and quantify this sensitivity with a set of lung cancer cell lines. Excitingly, we found 

that the CTC lines were both highly sensitive to NK-mediated killing compared to other cell lines. 

To our knowledge, this is the first time that NK sensitivity of patient-derived CTC lines has been 

shown.  

Although CTC expansion offers ex vivo drug testing possibilities, its application for 

personalized medicine is limited mainly because of the inconsistent success rates and long culture 

times240,242. To explore CTC biomarkers for NK-based therapies and investigate the molecular 

mechanism of this sensitivity, we selected four key NK regulators, including MHC class I, E-

Cadherin, MICA/B, and CADM1, to evaluate their expressions on the protein level. We calculated 

an overall sensitivity score by assigning equal weights with opposite signs to the inhibiting (-1) 

and activating markers (+1). Higher scores are anticipated to have a higher sensitivity to NK-

mediated killing. We observed a slightly higher median NK score based on four markers in the 

NK-sensitive lung cancer cell lines. We used a similar method to calculate the NK score for freshly 

isolated day-0 CTCs and hypothesized a correlation with patient disease status. However, we did 

not observe any difference in the NK scores by patient disease status. This could be due to the 

limited numbers of patient samples or the limited four markers in the calculation.  
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To overcome this, we performed bulk and single-cell sequencing on CTC lines and freshly 

isolated CTCs, respectively. We first performed differential gene expression analysis using the 

bulk sequencing data on the lung cancer cell lines. NK-sensitive cell lines have upregulated 

mesenchymal genes, including DDR2, CDH11, and downregulated epithelial genes such as 

FGFR2 and KLK5. These mesenchymal-like expression profiles validate our unique patient-

derived CTC line model. Based on this trend, we calculated NK and EMT scores calculated based 

on known markers from the bulk sequencing results. The two in-house derived CTC lines showed 

high NK and EMT scores, reflecting their mesenchymal and NK-sensitive phenotype. We also 

found a strong correlation between EMT signatures and NK ligands in both our dataset and lung 

cell lines from the CCLE database. Our finding using CTC lines is consistent with previous 

findings in preclinical122 and colon cancer cell line model236.  

We then established an integrated single-cell RNA analysis workflow using the label-free 

labyrinth device and Chromium (10X Genomics). CTCs were defined by cells with no immune 

cell marker expressions and were highly epithelial or mesenchymal based on the EMT score. These 

CTCs were found to cluster with platelets in the UMAP analyses. We suspect this could be because 

of the platelet coating of some of these CTCs, which has been shown in other studies. Differentially 

expressed genes were then identified between CTCs and platelets, showing cancer or platelet 

markers in either of the groups. Interestingly, we found high detection rates of ribosomal genes, 

such as RPL35 and RPL13, in the CTC population. These ribosomal genes have also been shown 

to be upregulated in other studies using in vivo CRISPR screenings in CTCs243. There have been 

increasing discussions about the crucial role of ribosome biogenesis downstream of EMT and in 

multiple steps of metastasis244,245. Additionally, we found no clear associations between EMT 
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signatures and HLA allele expressions. This was also consistent with previous findings by 

Chockley et al. in the expression of MHC class I in response to TGF-𝛽-induced EMT122.  

The limitations of this study include 1) Sample size. Cytotoxicity and bulk RNA-seq were 

only performed with two patient-derived CTC lines. In contrast, fresh CTC immunofluorescence 

and single-cell RNA-seq were tested in eight and three patients, respectively. 2) Low coverage in 

the single-cell sequencing experiment. 3) Lack of NK receptor profiling. Future NK sensitivity 

metrics could include co-profiling patient isolated NK cells and patient-derived CTCs to 

investigate NK-based immune surveillance against CTCs further and design personalized NK-

based therapies. 

Despite these limitations, our study presents a comprehensive workflow for assessing the 

NK sensitivity of CTCs on a single-cell level. Using this workflow, we identified that CTCs, 

especially those with mesenchymal phenotypes, are highly sensitive to NK-mediated killing and 

have NK-sensitive signatures on both protein and RNA levels. We believe our work serves as a 

proof-of-concept study that provides the initial foundation for NK-based therapy design to target 

CTCs and metastasis and could be built upon in future studies with larger cohorts and includes 

patient-derived NK cells.  
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Chapter 5 Development of a Streamlined Microfluidic Workflow to Harvest Cytotoxic NK-

Cell Derived Exosomes 

5.1 Abstract 

Since the recognition between Natural Killer (NK) cells and cancer cells does not require 

antigen presentation, NK cells are being actively studied for use in adoptive cell therapies in the 

rapidly evolving armamentarium of cancer immunotherapy. In addition to utilizing NK cells, 

recent studies have shown that exosomes derived from NK cells also exhibit anti-tumor properties 

Furthermore, these NK cell-derived exosomes exhibit higher stability, greater modification 

potential, and less immunogenicity compared to NK cells. Therefore, technologies that allow 

highly sensitive and specific isolation of NK cells and NK cell-derived exosomes can enable 

personalized NK mediated cancer therapeutics in the future. Here, we propose a novel microfluidic 

system to collect patient-specific NK cells and on-chip biogenesis of NK-exosomes. In a small 

cohort of non-small cell lung cancer (NSCLC) patients, we isolated both NK cells and circulating 

tumor cells (CTCs), and we found NSCLC patients have high numbers of NK and NK-exosomes 

compared with healthy donors, and these concentrations show a trend of negative and positive 

correlations with bloodborne CTC numbers, respectively. We further demonstrated the NK-

exosomes harvested from NK-GO chip had cytotoxic effect on CTCs. We expect this versatile 

system can be used for patient-specific NK-based immunotherapies along with CTCs for potential 

prognostic/diagnostic applications. 
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5.2 Publication information 

Materials in this chapter adapted from: Yoon-Tae Kang*, Zeqi Niu*, Thomas Hadlock, 

Emma Purcell, Ting‐Wen Lo, Mina Zeinali, Sarah Owen et al. "On‐chip biogenesis of circulating 

NK cell‐derived exosomes in non‐small cell lung cancer exhibits antitumoral activity." Advanced 

Science 8, no. 6 (2021): 2003747. 

*These authors contributed equally. 

5.3 Introduction 

Cancer immunotherapy has emerged as a promising strategy to treat cancers, most notably 

by engaging the adaptive immune system (e.g. immune checkpoint inhibitors) or through cell-

based approaches (e.g. Adoptive T cell therapies, NK cell therapies) involving the innate immune 

system246–248. The US Federal Drug Administration (FDA) has approved several of these therapies, 

such as pembrolizumab and ipilimumab (immune checkpoint inhibitors), for both solid organ as 

well as hematological malignancies in the past decade, revolutionizing treatments of many cancer 

that were considered incurable in the past249. Despite these successes, T cell-based therapies are 

handicapped by factors including an expensive, time consuming process of engineering and 

expanding T cells, as well as efficacy limitations arising from low major histocompatibility 

complex (MHC) expression on tumor cells250. To circumvent these issues, other approaches have 

been proposed, which involve the study of other members of the innate immune system, such as 

the Natural Killer (NK) cells.  

NK cells are lymphocytes that can be cytotoxic against a wide range of cells, having the 

ability to destroy infectious as well as transformed cells without antigen presentation251,252. The 

high cytotoxicity of NK cells against circulating tumor cells, which are considered as the seed of 

metastasis, was previously reported253. Because of the broad cytotoxicity and rapid reaction, 
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adoptive NK cell therapy aimed at increasing NK cell numbers may be a promising 

immunotherapeutic approach. Compared with T cell-based therapies, NK cell therapies are 

independent of antigen presentation and can be better controlled to reduce the risk of cytokine 

storms254. However, NK cell-based therapies still struggle to overcome some of the innate 

limitations of cell-based therapies, such as a lack of ability to deliver adequate numbers of NK 

cells to tumors due to limited targeting capabilities. For example, NK cell therapy for brain cancer 

is challenging, given the difficulty in crossing the blood brain barrier (BBB) and the blood-tumor 

barrier (BTB)255,256. To overcome these limitations while simultaneously utilizing NK cell’s 

benefits, several newer approaches, such as utilizing NK cell derived-exosomes or microvesicles, 

have recently been studied by a few groups137,257 in order to improve NK cell based 

immunotherapy approaches.  

Exosomes are a type of extracellular vesicle (EV) secreted by various cells. They are 

nanoscopic courier vesicles (30 - 150 nm) carrying lipids, nucleic acids, metabolites and proteins, 

hence playing a central role in intercellular communication and macromolecule transmission. They 

also enable transport of proteins that convey genetic information between cells. Almost all 

membranous cells within the human body secrete exosomes258, and these exosomes can mimic 

many of the salient features of their mother cells while also displaying their own distinguishing 

features. These innate unique protein compositions of exosomes allow for specific cellular uptake 

and target-homing capabilities, which is differentiated from standard nanoparticle-based drug 

carriers133,259. Exosomes are also characterized as biocompatible and stable in physiological 

conditions with a long circulating half-life in blood260. Therefore, exosomes are currently being 

considered for use as natural drug carriers or agents for cancer immunotherapy, both of which aim 

to curtail the spread of cancer throughout the body and retard the growth of tumor cells261.  In order 
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to utilize innate merits of exosomes, exosomes have been hybridized with conventional 

nanoparticles to be used as a drug carrier for cancer chemotherapy262. 

The unique characteristics of exosomes derived from certain immune cells such as NK 

cells may offer solutions to many of the challenges arising from complications of the tumor 

microenvironment. Their nano-size and abundance are ideal for cancer treatment via effective 

trafficking to the solid tumor location and infiltration into the tumor micro-environment130. 

Exosomes derived from NK cells can penetrate several typically problematic barriers including 

the blood brain barrier and the blood tumor barrier, which has been relatively impenetrable to NK 

cells. As such, NK cell immunotherapies for cancers such as glioblastoma have been restricted in 

their efficacy due to reliance on small tumor-induced BBB disruptions for immune cell uptake263. 

Also, infiltration of NK cells into tumors, such as lung cancer, is largely influenced by cytokine 

profiles of tumor microenvironment, which sometimes impairs NK cell’s activities134. 

NK cell-derived exosomes provide an efficient alternative for treatment of certain cancers. 

They naturally express IFN-γ, FasL and multiple cytotoxic proteins that can induce apoptosis via 

multiple killing mechanism134,135. Exosome’s innate cell-cell transfer ability can stimulate further 

tumor microenvironmental activity or communicate with surrounding cells, activating their 

cytotoxic effects.  

Recent studies have demonstrated the effectiveness of NK cell-derived exosomes in lysing 

malignant tumor cells, including mediating a significant anti-tumor response against acute myeloid 

leukemia and melanoma136,137. While NK cells have shown promising results despite limited tumor 

access, exosomes present an option for unhindered tumor access by particles with NK cell 

properties and associated benefits including stability, consistency, and modification potential260. 
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Therefore, selective isolation of NK cells and the subsequent harvesting of exosomes is a 

promising approach for NK therapies in the future. However, due to the technical challenges of 

isolating highly pure, live populations of NK cells and the subsequent collection of exosomes 

derived from these cells, this approach has not been successfully implemented257. There have been 

several separate attempts to optimize specific cell isolation or cell-derived exosome collection, 

however, to date, there are no streamlined platforms to isolate specific subtypes of cells and to 

harvest specific exosomes from a heterogeneous sample.  

Microfluidics and micro-devices have been utilized for decades for the isolation of cells 

and vesicles from a complex specimen with higher efficiency and sensitivity than conventional 

bulky equipment-based isolation. Microfluidic technologies for liquid biopsies have rapidly 

evolved and have shown success in capturing rare cells, including circulating tumor cells18,264,265, 

stem cells 266,267, and extracellular vesicles267–269, etc. Microfluidic devices functionalized with 

antibodies to capture specific cell populations are a powerful tool to achieve a high purity isolation 

with minimal resources and limited quantity of clinical samples270. In addition, recent advances of 

antibody conjugation chemistry offer an advantage to selectively release isolated targets for further 

downstream analysis and functional studies. Several release strategies have been studied utilizing 

surface antibody conjugates, including cleavable cross-linkers271,272, dissociable thermal sensitive 

polymer substrates273, and methods that take advantage of competing binding affinities between 

biotinylated antibodies and biotin derivatives274–278. Use of cleavable cross-linkers or dissociable 

substrates requires special chemicals or condition changes which may be crucial to the final 

products or might alter the contents of the released targets. Chemical release strategies utilizing 

competing binding affinities such as the use of biotin to displace antibodies conjugated with biotin 

analogs with lower streptavidin bond preference have demonstrated notable success in complete 
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target cleavage under mild conditions274–278. However, incorporation of this chemistry into 

microsystems has rarely been studied.  

Given the combined merits of microfluidic devices and chemical release strategies, we 

propose a streamlined microfluidic platform to harvest NK exosomes (NK-Exos) from viable NK 

cells isolated on chip, as shown in Figure 5-1. By using a graphene oxide microfluidic chip 

functionalized with antibodies against natural killer cells (NK-GO chip), we isolate NK cells on 

chip with high purity and viability. The deposition of two-dimensional GO sheet has a large surface 

area and provides more binding sites to isolate targets compared to the identical sized device 

without GO deposition. Thanks to the biocompatibility of GO, the captured and viable NK cells 

undergo short-term incubation for NK-Exo secretion and the recovery of the NK-Exos is 

accomplished using anti-CD63 conjugated magnetic beads (ExoBeads). For the functional study 

of NK-Exos, here, instead of using irreversible binding of biotin to avidin, we used 

desthiobiotinylated anti-CD63 and avidin-conjugated beads277. Therefore, we were able to easily 

strip the isolated exosomes from the beads using biotin solutions due to competing reactions 

between biotin and desthiobiotin against avidin278. This mild and biocompatible release process 

enables further nanoparticle tracking analysis and functional studies of NK-Exos. Using clinical 

blood samples from patients with non-small cell lung cancer (NSCLC) and healthy donors, we 

compared total NK cell number and NK exosomes in terms of concentration and size, along with 

their correlation with circulating tumor cell (CTC) number in blood. The isolated and released 

exosomes were further characterized using in-house CTC-derived cell line cytotoxicity assay to 

evaluate preliminary therapeutic potential. We believe our novel and versatile platform can set the 

stage for future work relating to NK exosome-based cancer immunotherapy. 
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Figure 5-1 Schematic diagram of the microfluidic technology approach for on-chip natural killer (NK) cell 
isolation, in situ NK cell-derived exosome biogenesis, and recovery for potential therapeutic use of NK 

exosomes. 

5.4 Materials and methods 

5.4.1 Cell culture and model sample preparation 

NK-92®MI cells were cultured in MEM-alpha (Gibco, USA) containing 20% fetal bovine 

serum and 1% penicillin-streptomycin solution. In order to prepare model samples for NK cells, 

NK-92®MI cells were pre-labeled with a CellTracker dye with green (ThermoFisher, USA) and 

approximately 103 to 105 NK cells were spiked into 1mL of PBS buffer or whole blood. For NK 

exosome secretion experiments in well plates, 3 million NK cells were seeded into each 10mm 

suspension cell culture dish (Corning, USA) with media containing exosome-depleted serum 

(Gibco, USA). After 48h of cell seeding, supernatant from 8-10 cell culture dishes was collected 

and centrifuged at 500g for 5 minutes before the supernatant is again centrifuged at 12,000g for 

20 minutes. Model samples for NK cell-derived exosomes were prepared by ultra-centrifuging NK 
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cell culture supernatant. After ultracentrifugation, we measured the exosome concentration using 

NanoSight (Malvern, UK), and a known concentration of exosomes was spiked for model sample 

preparation.  

5.4.2 Human blood sample preparation 

The blood sample collection and experiments were approved by ethics committee 

(Institutional Review Board and Scientific Review Committee) of the University of Michigan. 

Informed consent was obtained from all participants of this clinical study and the blood samples 

of cancer patients were obtained after approval of the institutional review board at the University 

of Michigan (HUM00119934). All experiments were performed in accordance with the approved 

guidelines and regulations by the ethics committee at the University of Michigan. The blood 

samples were used within 2 hours of extraction and each whole blood sample was directly 

processed by NK-GO chip and Labyrinth for NK cell isolation and CTC isolation, respectively. 

5.4.3 NK-GO chip fabrication and surface modification 

Graphene oxide microfluidic devices have been used for the high-purity isolation of rare 

cells20. We improved and optimized this device for NK cell applications. Briefly, gold patterned 

silicon wafers were soaked in graphene oxide (GO) solution for 10 minutes then bonded to a PDMS 

chamber using a corona discharge. NK-GO chips were injected with GMBS cross-linker in ethanol 

and incubated for 30 minutes. The device was then washed with PBS and 500 μl of 10% 

NeutrAvidin in PBS was injected through the device. The prepared GO chips were conjugated 

with NK cell antibodies using avidin-biotin affinity-based immobilization. Biotinylated antibodies 

against CD56 were flowed through the device for NK cell capture. 

5.4.4 NK cell isolation and on-chip NK cell exosome harvesting 
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Before processing each sample containing NK cells, we blocked the device with a 3% 

bovine serum albumin (BSA) solution in PBS to minimize non-specific binding. Cell capture was 

performed by flowing the sample containing NK cells through the devices using a syringe pump 

at a flow rate of 1 mL/hr. PBS buffer was then applied to wash away non-bonded cells. After cell 

isolation and washing, the cells are fixed with 4% PFA solution and permeabilized on the chip, 

followed by staining with 4', 6-diamidino-2-phenylindole (DAPI) fluorescent dye for staining cell 

nuclei. The chips are then scanned under fluorescent microscope (Ti2, Nikon, Japan). After 

scanning, 300μl of MEM-alpha serum free media was then pumped into the device with low flow 

rate (1mL/hr). 12 hours incubation with the whole device is then performed in 37℃, 5% CO2 

incubator Galaxy 14S (Brunswick, USA). 

5.4.5 On-chip NK-92®MI cell enumeration for model sample experiments 

The number of cells captured on the chip is obtained by counting CellTracker Dyed/DAPI+ 

cells on fluorescent images of the device, and the total cell number processed was obtained using 

different methods depending on background solutions. For the cells spiked in buffer, total cell 

number can be obtained by counting the cell number in the solution which flowed out of the chips. 

Under the principle of mass balance, total cell number is simply the sum of cells on chip and cells 

collected in the waste. When the cells are spiked in healthy blood, the total cell number is obtained 

by spiking same amount of cell solution into well plates to be counted.  

5.4.6 Immunofluorescence staining of cells 

In order to verify NK cells in clinical samples, we optimized and set our NK cell staining 

panel. For staining optimization, NK-92®MI and Jurkat cell slides are using 10 minutes, 800 g 

spin cycle on a Cytospin 4 (ThermoFisher Scientific, USA), followed by a 10 min 4% 
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paraformaldehyde (PFA) fixation. Cells are then permeabilized using 0.2% Triton X-100 (Sigma-

Aldrich, USA) for 3 minutes, followed by three 5 min washes using phosphate buffer saline 

(Gibco, USA). The slides are then blocked with 10% goat serum (Invitrogen, USA) for 30 minutes. 

Following that, the primary antibodies were applied for 1 hr at room temperature. After washing 

off the primary antibody using another three 5 min PBS washes, secondary antibodies were applied 

and incubated for 30 minutes. Coverslips were then applied with ProLong Gold antifade reagent 

with DAPI (Molecular Probes, USA). Primary antibodies against CD56 (A7913, Abclonal, USA) 

and NCR1 (A14499, Abclonal, USA) and secondary antibody against rabbit IgG (A21245, 

ThermoFisher, USA) were included in the NK cell staining panel.  

5.4.7 NK cell-derived exosomes isolation/release using magnetic beads 

For the isolation and release of the captured exosomes, desthiobiotinylated anti-CD63 (Life 

Technologies Corporation, USA) was used. Biotinylated anti-CD63 was affixed to streptavidin 

conjugated magnetic beads, DynaBeads T1 (Invitrogen, Norway), as follows. First, 20 to 40μl of 

10mg/mL streptavidin conjugated magnetic beads in solution were deposited into a small vial and 

washed with 0.2 μm filtered PBS multiple times. After that, three different dilution ratios of 

desthiobiotinylated anti-CD63 (1:5, 1:10, and 1:20) solution in 1% BSA was applied to the 

magnetic beads. The beads with antibodies underwent a one-hour incubation period. After this 

incubation, the beads were washed three times with filtered PBS. In each case, a magnet was 

applied to the side of the vial to secure the beads while the solution was extracted. For the control 

beads, instead of antibody solution, we used only a 1% BSA solution without antibody reagent and 

followed the remaining steps the same.  

For NK exosomes isolation and release, 200 μl of supernatant from the device was directly 

applied to the prepared magnetic beads (ExoBead). This mixture was incubated on a rotator for an 
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hour and magnetic beads were separated using a magnet, followed by PBS washing three times. 

The beads right after this step underwent SEM or western blot analysis. For the release of the 

captured exosomes on the beads, 1 mL of 0.5 mM biotin solutions was added to the separated 

beads, consisting of 1mL of filtered water and 10μl of biotin solution and incubated for 0.5 to 2 

hours. The biotin solution was placed in a new tube and analyzed by NTA analysis. In all cases, 

the effluents and resultants after bead removal underwent NTA analysis for verification.  

5.4.8 Ultracentrifugation of NK cell-derived exosome 

Ultracentrifugation was used for two reasons: 1) Characterization of exosome secretion 

from cells in each well plate and 2) ExoBead device characterization. In both cases, we used a 

Sorvall ultracentrifuge (ThermoFisher, USA). For comparison study, the same volume of initial 

plasma sample was used but diluted into 1mL of PBS. Blood samples were first centrifuged at 

2000g for 15 minutes, and then 12000g for 20 minutes. After initial ultracentrifugation at 100,000g 

for 90 minutes, we aspirated the supernatant and injected another 38mL of PBS for a 2nd round of 

ultracentrifugation at the same conditions. The pellet after the 2nd UC was gently spiked into 500μl 

or 200μl, for well-plate samples and ExoBead characterization samples, respectively.  

5.4.9 Field emission scanning electron microscopy (FE-SEM) 

The capture and release of exosomes by ExoBeads was examined by FEI Nova 200 

Nanolab Dualbeam FIB scanning electron microscope under beam energies (2.0-5.0kV) at the 

Michigan Center for Materials Characterization at University of Michigan. Right after capture and 

release experiments, ExoBeads were immobilized on clean carbon tape and the specimen was 

naturally dehydrated. The dehydrated specimen was then mounted on an SEM stub and coated 
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with gold by sputtering. The images from SEM were saved and processed using the desired SEM 

image analysis software. 

5.4.10 Nanoparticle tracking analysis 

Evaluation of exosome concentration and size distribution was analyzed by nanoparticle 

tracking analysis (NTA) using NanoSight NS300 (Marven Instruments, UK). 30 μl of the prepared 

solution was applied to the jig of the system, and laser module was mounted inside the main 

instrument housing. NTA visualizes the scattered lights from the particles of interest based on their 

Brownian motion. This movement was monitored through a video sequence for 20 seconds in 

triplicate. All data acquisition and processing were performed using NanoSight NS300 control 

software, and concentration of particles in exosome size range was used for calculating capture 

and release efficiencies of the present platform.  

5.4.11 Protein extraction and western blot analysis 

RIPA buffer with 1% protease inhibitor was prepared for lysis of captured exosomes.  30 

μl of the prepared buffer solution was injected to post-capture ExoBeads and incubated for 20 

minutes. After incubation, the protein lysate was aspirated and stored separately. Total amount of 

proteins in the lysate from the ExoBeads was measured by standard micro bicinchoninic acid 

(BCA) analysis according to the manufacturer’s instructions. Western blot analysis was performed 

on a precast 4-20% SDS gel (BioRad, USA). The samples were prepared in 4x Laemelli buffer 

with 2-mercaptoethanol and heated to 90°C for 6 minutes before loading onto the gel.  The gel was 

run at 120V for 50 minutes before transferring at 120V for 1 hour on ice. Blocking was performed 

in 5% non-fat milk in TBST for 90 minutes.  Primary antibody incubated overnight on a rocker at 

4°C at a concentration of 1:1000 in 3% non-fat milk in TBST. Thorough rinsing was performed, 
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and then secondary antibody was incubated for 90 minutes at room temperature at 1:1500 in 3% 

non-fat milk in TBST. 

5.4.12 Isolation of circulating tumor cells from NSCLC patients using label-free microfluidic 

device 

Briefly, 18 mL of blood was collected in EDTA tubes and processed through the Labyrinth 

within 2 hours of collection11. Prior to processing in the Labyrinth, RBCs in the blood samples 

were removed using Ficoll-Paque™ PLUS Media (GE Healthcare, USA) following the company’s 

protocol. The supernatant (plasma and buffy coat layers), which included all whole blood 

components except RBCs, was carefully removed and diluted with PBS (1:5). The diluted samples 

were then processed through the Labyrinth at a flow rate of 2500 μL/min. The pass-through 

product from outlet was collected after stabilization. 

5.4.13 NK exosome uptake and cytotoxicity experiment 

NK-92®MI derived exosomes were prepared using UC of cell culture media. For uptake 

experiments, the exosomes were fluorescently labeled using PKH dye (Sigma-Aldrich, USA) The 

exosomes were then added into 96 well plates where patient-derived expanded CTC line were 

seeded 24hr before. After 3hr of incubation, cancer cells were then fixed using 4% PFA for 10 

minutes. Within the well plate, the cells were stained with Cellmask (ThermoFisher, USA) and 

DAPI for 10 minutes. The well was then imaged under a fluorescent microscope. 

5.4.14 NK exosome cytotoxicity experiment using clinical sample-derived NK exosomes 

In-house patient-derived expanded CTC line were used for NK exosome cytotoxicity 

experiments.  Briefly, CTCs from an EGFR mutant NSCLC (encoded R022-V8) were isolated 

using Labyrinth, then they were expanded in vitro successfully241. Given that in-house patient-
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derived expanded CTC line might resemble cancer cells in circulation than conventional cancer 

cell lines, this patient-derived expanded CTCs were used for evaluating cytotoxic potential of NK 

Exos. The cells were seeded into 384 well plate at a density of 100 cells per well and incubated for 

24 hours before the event of NK-Exo treatment. In order to prevent further contaminations from 

biotin and magnetic beads residues, recovered NK-Exos from ExoBeads were ultracentrifuged and 

resuspended into serum free RPMI media. 1-2.3x x107 of NK-Exos were seeded into the wells 

containing pre-seeded cancer cells. After 72 hours of incubation, a live/dead kit-based assay was 

performed under manufacture’s instruction (L3324, ThermoFisher, USA), followed by entire well 

scanning using a fluorescent microscope (Nikon, Ti2). The images were then counted using auto-

recognition of ROIs in the Nikon software.   

5.4.15 Statistical Analysis 

All results are presented as mean ± standard deviation. Statistical analyses were 

demonstrated using Graphpad Prism 9. Unpaired t-tests (two-tailed) were used to compare the 

differences between live cell count between NK exosome treated (n = 4) versus control (n = 4). 

Statistical significance was defined as p < 0.05. 

5.5 Results 

5.5.1 Viable NK cell isolation using a NK-GO microfluidic chip 

The high surface area and biocompatibility of GO nanosheet facilitates sensitive and 

efficient NK cell isolation and on-chip short-term culture for NK-exo biogenesis. The ability of 

the NK-GO chip (Figure 5-2) to isolate NK cells was initially examined using spiked cell 

experiments with two different conditions: 1) NK cell line (NK-92MI) spiked in Phosphate-

buffered saline (PBS) buffer and 2) NK cell line spiked in whole blood. NK cell capturing 
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performance of NK-GO chip was first compared with control device without antibody conjugation 

and showed that the current device isolates more than 95% NK cells spiked in buffer, which 

implies that anti-CD56 and its functionalization on the GO chip is capable of NK cell isolation 

(Figure 5-2b). Based on previous studies279,280, we found that the frequency of NK cells are usually 

in the range of ~105 cells/ 1 mL of peripheral blood, thus we examined our NK-GO chip’s NK cell 

capturing performance at two different concentrations, 103 cells/mL and 105 cells/mL. The pre-

labeled NK cells at two different concentrations were spiked into each of the two different model 

samples and the number of the captured cells were enumerated using a fluorescence microscope. 

Capture efficiencies at four different conditions are shown in Figure 5-2c. In each case, capture 

efficiencies of NK cells spiked in blood were considerably lower (30%) than that of buffer. This 

is expected due to the presence of NK cells in blood, leading to competition for capture at binding 

site on the NK-GO chip; reported capture efficiencies are calculated based only on the number of 

pre-labeled NK-92®MI cells. Linearity plot was also prepared based on NK cell recovered 

compared to NK cell spiked (Figure 5-2d). In addition, the viability of NK cells was evaluated to 

ensure that the isolated NK cells are viable and hence can exosomes during the post-capture 

incubation. Using the live/dead staining assay post-capture, we found that over 70% of the isolated 

NK cells remained viable before and after short-term incubation (Figure 5-2e). 
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Figure 5-2 On-chip NK cell isolation and in situ exosome biogenesis and harvesting from the isolated NK 
cells: a) in situ exosome biogenesis from isolated NK cells on NK-GO chip; b) NK cell capturing 

performance of NK-GO chip compared to control device without antibody conjugation; c) Capture 

efficiency of the NK-GO chip for different concentrations of NK cells spiked in buffer and blood samples. 
d) Captured NK cells depending on spiked NK cells in buffer solution. The red dashed line is a linear fit to 

the data; e) Viability of the isolated NK cells at different time points and conditions (left) and live/dead 
staining of isolated NK cells on chip after 12-hour incubation; f) Exosome secretion from NK cells 

depending on incubation times. 

5.5.2 On-chip NK exosome biogenesis and harvesting using ExoBead 

To evaluate the exosome biogenesis rate from NK cells, we spiked 5,000 NK-92®MI cells 

into a six-well plate and incubated them for 6, 12, 24, and 48 hours. After incubation, we collected 

the supernatant from each well and centrifuged them at 300g for 10 minutes to remove cells or 

cellular debris. The supernatant was then ultracentrifuged using an Airfuge (Beckman, USA) at 

100,000xg for 30 minutes to collect NK-Exos. Exosome concentration was determined by 
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nanoparticle tracking analysis (NTA) and exosome secretion rates showed an increasing trend with 

increased incubation time (Figure 5-2f). However, exosomal purity, the fraction of exosome sized 

vesicles out of all vesicles in the sample, was highest at 12 hours of incubation. It is possible that 

the longer incubations led to cell death and secretion of apoptotic bodies and microvesicles281–283. 

Considering the low O2 concentration in on-chip conditions compared to cell culture flasks, 

combined with the goal of establishing a rapid assay, we implemented the protocol of incubating 

for 12 hours for on-chip NK exosome biogenesis and then NK exosome harvesting. 

Using the supernatant from the NK cells isolated on NK-GO chips, we further isolated the 

exosomes selectively using our ExoBeads (Figure 5-3). Beads without an antibody (anti-CD63) 

conjugation were prepared as a control (control beads). In order to initially evaluate the exosomal 

recovery performance, we prepared three different conditions: (a) ExoBeads with on-chip NK cell 

supernatant sample, (b) control beads with on-chip NK cell supernatant sample, and (c) control 

beads without supernatant sample. Using these conditions, we isolated and released the bound 

vesicles from beads and evaluated their concentration by nanoparticle tracking analysis (NTA). As 

a result, we verified that only the sample prepared with ExoBeads (a) had any detectable amount 

of exosomal vesicles, with more than 83% of purity (Figure 5-3b). Sample from condition (b) had 

the highest purity but its exosomal concentration was considerably lower than that from condition 

(a). After this quantitative study, we imaged the ExoBeads after capturing exosomes from the on-

chip NK cell supernatant samples using scanning electron microscope (SEM). The SEM images 

of the ExoBeads clearly showed that the beads isolated exosomal vesicles. The sizes of these 

vesicles ranged 80-130nm (Figure 5-3a). Given the specific antibody used for exosome capture 

and the size criteria we applied to the resultant, we concluded that our ExoBeads are capable of 
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isolating exosome-like vesicles from heterogeneous samples containing other subtypes of 

extracellular vesicles, such as microvesicles and apoptotic bodies. 

 
Figure 5-3 ExoBead-based NK exosome isolation and release for therapeutic use: a) Scanning electron 
microscope image of the isolated exosomal vesicles on ExoBeads with supernatant from NK-GO chip after 

12 hours incubation; b) Concentration and purity of exosomal vesicles recovered from NK-92®MI culture 
supernatant under three different conditions using ExoBeads (ExoB) and control beads (ConB) non-

conjugated with antibodies. 

5.5.3 Molecular characterization and cytotoxic capabilities of NK cells and NK-Exos using the 

present microsystem 

In order to demonstrate a streamlined microfluidic approach to harvest NK-Exos from 

clinical samples, we first optimized our platform using NK cell model sample having NK cells 

spiked in blood (Figure 5-4a). The NK cell model samples were processed until the PBS wash step 

following our optimized conditions. After PBS wash and application of 300 µL of serum free 

culture media, the devices were then transferred into 37°C, 5% CO2 incubator for exosome 

secretion. After short-term incubation, on-chip supernatant was collected for exosome isolation by 

flowing serum free media into the device. Following exosome harvesting, we ran 4% PFA or RIPA 

buffer through the device to fix or lyse captured cells on chip, respectively. Immunofluorescence 

and western blot were performed to characterize the NK cells captured on chip, while NK 

exosomes were characterized by western blot. In addition, NK exosomes were investigated for 
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cellular uptake and potential cancer cell cytotoxicity. On chip staining of captured cells after 

fixation was conducted using our optimized NK staining panel including CD56 and NCR1. This 

staining panel was used thoroughly to identify and enumerate NK cell number from limited 

number of T cell contamination. 

A direct comparison of CD56 and FLOT1 expression between captured cell lysate and 

ExoBead lysate was evaluated by western blot analysis (Figure 5-4b) using a NK-92®MI spike 

sample. Previously, exosomes derived from NK cells were shown to express NK cell signature 

protein (CD56)257, exosomal protein (ALIX, CD63)137 and lytic protein (FasL and Perforin)284. We 

chose two protein markers, CD56 and FLOT1, for western blot analysis. From our study, CD56 is 

expressed in both cell lysate and ExoBead lysate, with higher expression in our ExoBead lysate. 

Furthermore, FLOT1, an exosomal marker, is expressed in isolated ExoBead lysate sample but not 

cell lysate, which is in alignment with previous studies.  

In order to further evaluate NK-Exo uptake by cancer cells, we prepared cancer cells from 

our in-house patient-derived expanded CTC line241 and exosomes from NK-92®MI cells. The 

prepared cells and exosomes were stained using Cellmask and DiO, respectively, and incubated 

together for 3 hours. After 3 hours, NK cell derived exosomes showed co-localization with cancer 

cells and within cancer cell membrane (Figure 5-4c). Furthermore, we evaluated the potential 

cytotoxicity of NK-92®MI derived exosomes. Live/dead assay was conducted at 24 hr, 48 hr, and 

72 hr individually, then live cells (stained green) were enumerated. A comparison between the 

control and NK-Exo treatment wells was shown by immunofluorescence scanning of the whole 

well (Figure 5-4d), with green fluorescence indicating live cells. In all cases, cell number in control 

wells increased due to cell proliferation, whereas in the NK exosome treated well, the cancer cells 

showed a peak number at 48hr but subsequently decreased and dead after 72 hours (Figure 5-4e). 
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Thus, 72 hours incubation time was applied for preclinical cytotoxicity experiments using NK-

Exos from patients.  

From this model sample experiment, we identified NK cells on chip using a 

DAPI+/CD56+/NCR1+ NK cell panel, showed that the recovered NK-Exos from NK cells express 

CD56 and FLOT1, and that they are able to be taken up by cancer cells and result in cytotoxic cell 

death of the cancer cells.  

 
Figure 5-4 Cytotoxicity of NK cell-derived exosomes: a) NK cells (left) and NK exosomes (center) recovered 

from current platform and theranostic use of NK exosomes with cancer cells (right); b) Western blots 
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showing the positive expression of CD56 and FLOT1 in exosome lysate using a NK-92®MI spike in buffer 
sample for on-chip exosome biogenesis. The cell lysate from the same device also shows positive expression 

for CD56; c) Uptake of NK-92®MI exosomes by in-house CTC-derived cell line. Exosomes are 

fluorescently labeled in green (FITC) channel, and cell membrane is labeled in violet (Cy5). (Scale 

bar=10μm); d) Cytotoxicity comparison between control well and NK exosome treated well at 72hr. (Scale 

bar=800μm); e) In-vitro cytotoxicity experiment using exosomes derived from NK-92®MI. Live cells were 
quantified through a live/dead assay that was performed 24hours, 48hours, and 72hours after treating 

cancer cells with or without NK exosomes. Unpaired t-tests (two-tailed) were used to compare the 
differences between live cell count between NK exosome treated (n = 4) versus control (n = 4). Asterisks 

denote one of three levels of statistical significance (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001) 

5.5.4 Preclinical study of NK cell/exosome using clinical specimens 

Following experiments with model samples, we validated our approach with whole blood 

samples collected from non-small cell lung cancer (NSCLC) patients (n=5) and healthy donors 

(n=2). We used 1-2 mL whole blood sample for each experiment. Whole blood samples were 

processed through NK-GO chip thoroughly and NK-Exos were harvested from the isolated NK 

cells. Figure 5-5a shows NK cells from two NSCLC cancer patients stained by the predefined NK 

staining panel.  

Using 4 clinical samples including cancer and healthy donors, we analyzed the exosomal 

protein expression in NK-cell derived exosomes. The clinical samples, both healthy and patient, 

indicate sufficiently high levels of FLOT1 and HLA-C after isolation using anti-CD63 magnetic 

beads (ExoBeads) (Figure 5-5b). In combination, these bands indicate the presence of EVs isolated 

from our target NK cells. 

The cells captured by NK-GO chip expressed CD56 and NCR1 dominantly. The number 

of NK cells, NK cell-exosome quantity, and their cytotoxicity were evaluated using fluorescent 

staining, NTA and in-vitro cytotoxicity test, respectively. Cancer patients showed a higher number 

and concentration of NK cells and NK exosomes, respectively, compared to two healthy donors. 

(Figure 5-5c). Cancer patients showed higher proportion of NK exosomes among total EV 

concentration as well (Figure 5-5d). Thus far, various studies showed no significant difference in 
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overall NK cell concentration in peripheral blood of patients with various forms of cancers and 

healthy controls. Also, NK cell activity has shown to be decreased in cancer patients, as this may 

be indicator of susceptibility to disease285–287. However, the patients we processed had undergone 

various cancer treatments, such as immunotherapy and anticancer treatment, results here might 

differ from previous studies mostly examining an initial state of cancer. The increase in 

concentration in NK derived EVs shown here may be linked to NK cell activation. Through various 

signaling pathways, such as dendritic cell activation, the presence of tumors in the body leads to 

an increase in NK cell activation288. While some previous investigations have displayed no 

noticeable increase in NK cells285–287 or NK-Exos284,289 in cancer patients, these studies isolated 

bulk exosomes in samples, using less-sensitive methods such as ultracentrifugation. In this study, 

we specifically isolate NK cells, and utilized secreted NK-Exos for following studies. Thus, we 

believe that the exosomes recovered are NK cell-derived and thus can more accurately define the 

specific concentration in patients compared to healthy donors. These results are supported by other 

lymphocytes, such as T cells, which demonstrate significant increases in exosome release once 

converted from resting to active states290. While little investigation has been done into the cause 

of increased exosome release in activated NK cells or NK cells exposed to cancer, it is likely the 

correlation between cell activation and exosome release follows that of T cells. Thus, the higher 

incidence of NK cell activation in the NSCLC patients examined in this study likely leads to the 

increase in extracellular vesicle concentration in these patients compared to healthy donors, as seen 

in Figure 5-5d. The NK-Exo secretion rate normalized by the number of NK cells captured on chip 

also confirmed that NK cells from lung cancer patients secrete more exosomes compared to that 

of healthy donors (Figure 5-5e).  
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We also examined the cytotoxic potential of NK-Exos from clinical samples on cancer 

cells. Same number of NK-Exos from NSCLC cancer patients and healthy donors were applied to 

in-house patient derived expanded CTC line and incubated for 72 hours. Following incubation, the 

cells underwent live/dead fluorescent staining and microscopy scanning to identify live cells. As 

shown in Figure 5-5f, in-house patient-derived expanded CTC line were mostly killed by patient 

(LC4)-derived NK-Exos (center) compared to that without NK-Exos (left) after 72 hours. At the 

same time, the cancer cells were completely killed by NK-Exos from HD2 (right). Live cell 

number per well between control groups (without NK-Exos) and NK-Exo treated groups was 

significantly different (p < 0.0001). 

We then compared NK-Exo’s cytotoxic capabilities between NSCLC patients and healthy 

donors (Figure 5-5g). At the same conditions, NK-Exos from healthy donors show higher average 

specific lysis percentage (98.1%) than that of cancer patients (82.4%). This difference between 

two groups is significant (p=0.0024). This implies that single NK exosomes from healthy donors 

have greater cytotoxic potentials; however, as previously noted, the NSCLC patients tested 

contained significantly more bloodborne NK exosomes than the healthy donors per mL of blood. 
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Figure 5-5 Analysis of clinical samples from NSCLC patients using NK-GO microfluidic platform: a) 

Immunofluorescence image examples of CD56/NCR1 + NK cells captured on NK-GO chip. (Scale 

bar=20µm); b) Western blot analysis for showing the positive expression of FLOT1 and HLA-C in 

exosomes from clinical samples; c) Profiling in quantity of NK cells and NK cell-derived exosomes among 
different patients and healthy individuals observed after 12 hour on-chip incubation; d) Total extracellular 

vesicle concentration and percentage of exosomes among patient samples and healthy control samples; e) 
Biogenesis of exosomes quantified as secretion rate of exosomes per captured NK cells for 12 hours; f) Live 

cancer cell number after 72 hours incubation and percentage of specific lysis between samples from cancer 

patients and healthy donors (Scale bar=20µm); g) Cytotoxicity of clinical sample driven NK-Exos to CTC-

derived cells after 72 hours incubation.  

5.5.5 Correlation study between NK cell/exosome and circulating tumor cell using clinical 

samples 

Five peripheral blood samples enrolled in clinical studies of NK cell/exosome were 

processed through our label-free circulating tumor cell isolation platform to evaluate correlation 

between CTC numbers and NK cell/exosome concentrations (Figure 5-6). These 5 patients were 

with metastatic, stage IV NSCLC patients. Among these 5 patients, there were patients with EGFR 
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mutations (n=3), ROS1 rearrangements (n=1), and ALK fusion (n = 1). After CTC isolation, the 

pass-through samples from outlet #2 was analyzed for CTCs as described previously11. Overall 

CTC numbers for 5 patients is described in Figure 5-6a. CTCs were detected by 

immunofluorescence (IF) staining. CTCs were defined and enumerated if they were 

PanCK+/CD45-/DAPI+. Furthermore, heterogeneous CTC populations, including CTCs 

expressing epithelial (EpCAM), mesenchymal (Vimentin) or both markers were detected. Figure 

5-6b illustrates IF staining of some isolated single/cluster CTCs stained positive for PanCK (red), 

EpCAM (orange), and Vimentin (Pink), and negative for CD45 (green) to distinguish CTCs from 

WBCs. We determined that all 5 patients had detectable CTCs with an average of 212 ± 194 total 

CTCs/mL (Figure 5-6a). Of the captured CTCs among all the patient samples (n=5), 49 ± 54 were 

CTCs/mL, 10 ± 15 were EpCAM+ CTCs, 88 ± 123 were Vimentin+ CTCs, and 65 ± 91 were 

double positive CTCs/mL. 

After this identification of CTCs, we compared CTC numbers to NK cells detected (Figure 

5-6d) and NK Exo concentration (Figure 5-6e). From this correlation study, we discovered a 

negative correlation (r = - 0.580, P-value = 0.305) between NK cell number and CTC number 

(Figure 5-6f). This negative correlation between CTC number and NK number has previously been 

shown in a variety of cancers including NSCLC, breast, colorectal, and prostate cancer119,120. It is 

believed that a decrease in the presence of lymphocytes, including NK cells, provides limited 

immune response which enables tumor cell growth and allows for an increase in CTC 

concentration in blood. A relatively strong positive correlation (r = 0.732, P-value = 0.159) was 

observed between NK-Exo concentration and CTC number. To our knowledge, this finding has 

not been previously reported. This positive correlation could be a consequence of an increased 

presence of bloodborne CTCs leading to more circulating NK cells becoming stressed, which 
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coupled with the proper environment, may induce the stressed NK cells to actively release more 

exosomes. This concept has been demonstrated with other immune cells, such as T cells, which 

release increased amounts of exosomes upon stress induced activation brought on by the presence 

of cancer291. Larger investigations need to be done to have significant results. To evaluate 

individual samples’ NK Exo cytotoxicity with consideration of both NK Exo concentration and 

each NK Exo’s cancer cell lysis performance, we prepared relative NK Exo cytotoxicity for 3 

samples enrolled in the cytotoxicity study. This relative cytotoxicity value shows close correlation 

with CTC numbers in blood (Figure 5-6g). This result suggests that, while NK cell number in 

blood may not in itself affect the total cytotoxicity, the increase of NK-Exos in bloodborne 

concentration brought about by NK activation with abundant CTCs greatly increases its anti-tumor 

capabilities.  
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Figure 5-6 Profiling of circulating tumor cell (CTC) populations in non-small cell lung cancer (NSCLC) 

patients and correlation with NK cells and NK cell-derived exosomes: a) Profiling in quantity of epithelial-

, mesenchymal-, and total CTCs between NSCLC patients; b) Representative images of CTCs recovered 
from the patients; c) Image of label free CTC isolation platform; d) Comparison between total CTC and 

NK cell number; e) Comparison between total CTC and NK exosome concentration; f) Correlation between 

CTC-NK cell (left, r = - 0.580, P-value = 0.305) or CTC-NK Exo (right, r = 0.732, P-value = 0.159); 

g) Correlation between relative total cytotoxicity of NK Exos and total CTC number in samples. 

5.6 Discussion 

As a proof of concept, here we have demonstrated the possibility of a streamlined 

microfluidic approach to on-chip biogenesis and harvest of natural killer cell-derived exosomes 

through comprehensive studies using NK cell lines and clinical samples from lung cancer patients. 

In the future, NK cell-derived exosomes may find a complementary use as both diagnosis and 

therapeutic tools for patients with cancer. Given the burgeoning interest in this field, it is important 



 123 

to fill the technical gaps pertaining to exosome isolation, harvest and expansion. We hereby present 

a highly sensitive method to isolate NK exosomes derived from viable NK cells using our NK-GO 

chip. Using the NK-GO chip, we showed that patients with non-small cell lung cancer presented 

with high numbers of NK and NK cell-derived exosomes compared with healthy donors. These 

concentrations were further correlated with numbers of bloodborne circulating tumor cell in each 

sample, and we found that a sample having a higher number of CTCs shows lower NK cells but 

may lead to a greater secretion of NK cell-derived exosomes. Furthermore, we were able to 

demonstrate functional relevance of NK cell-derived exosomes as shown by their cytotoxic effects 

against in-house patient derived expanded CTC line. The immediate future studies can focus on 

doing the similar analysis with large cohort of patient samples as well as healthy donors to make 

more robust comparisons. Future studies will be needed to further validate our initial observations 

and how best to use this to inform clinical needs. Given the critical diagnostic value of CTCs in 

cancer, immune phenotyping associated immune cells such as NKs may complement and enhance 

their predictive potential of patient prognosis. Moreover, such a precise isolation of cells may also 

help us investigate interactions between CTCs and immune cells in circulation, enabling the 

understanding of potential metastasis-specific immune surveillance mechanisms. We expect that 

our versatile microfluidic platform can provide a foundation to be used for hitherto undiscovered 

roles of exosomes in cancer and other disease states.  
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Chapter 6 Conclusions 

6.1 Research summary 

This thesis can help advance research in the field by answering the two questions. First, 

how can CTC metrics help inform clinical treatment studies? I examined this question in depth 

using the GO chip-based platform in Chapters 2 and 3 regarding bladder, lung, and liver cancer 

translational studies. Second, how can we target cancer metastasis through CTCs? In Chapters 4 

and 5, I hypothesized the critical role of NK cells in eliminating CTCs based on existing literature, 

and I presented workflows to investigate the CTC–NK interaction and develop new NK-based 

therapies. My findings strongly demonstrate the value of CTCs as biomarkers and therapeutic 

targets in clinical cancer management, especially in bladder, lung, and liver cancer.  

6.1.1 CTC profiling using the GO platform in metastatic bladder cancer 

CellSearchTM technology is mainly used to detect CTCs in bladder cancer. But it has a low 

detection rate and limited molecular profiling applications. Based on previous studies using the 

GO platform from our lab20,292, I optimized the GO platform for bladder cancer and presented a 

protein and RNA co-analysis workflow. I first successfully identified CTCs using protein 

immunofluorescent staining from a cohort of 16 bladder-cancer-patient blood samples. I found 

that the CTC concentrations in patients with metastatic disease were significantly higher than those 

in healthy controls and in patients with no evidence of disease at the time of blood draw. Patients 

who had higher CTC counts/mL (> 3 CTCs/mL) potentially had shorter survival times. This result 

is consistent with those of studies that used other technologies179. I also used multiplex 



 125 

immunofluorescent staining to investigate the expression of EGFR, HER-2, CD31, and ADAM15 

on isolated CTCs. I observed positive staining for all of these invasive markers in a subset of CTCs. 

When correlating these expressions to survival data, patients who had positive staining for most 

of these markers had shorter overall survival rates. 

On the RNA level, I showed for the first time the feasibility of profiling GO chip-isolated 

CTCs using bulk amplicon-based targeted transcriptome sequencing. I then developed a 

customized bioinformatics pipeline to perform differential gene-expression analysis while 

removing variance in contaminated WBCs. By comparing patients with and without disease at the 

time of blood draw, I observed the upregulation of many well-studied metastasis-related 

signatures, such as KRT5, KRT10, MMP-2, MMP-13, AKR1C2, GATM, SYTL1, and CAPN1, 

in patients with metastatic disease. This demonstrates the ability of the GO chip and targeted 

sequencing workflow to capture the metastatic signatures of bladder cancer. Although these 

findings will need to be further confirmed in a larger cohort, this study showcases the potential of 

the GO chip and bioinformatics pipeline.  

6.1.2 CTC profiling in longitudinal clinical studies in NSCLC and HCC 

Analyzing CTCs in longitudinal studies could provide unique treatment-monitoring 

insights and enable early prediction of patient outcomes. In the current GO chip workflow, there 

is an unmet need to develop an analytical workflow to handle data sets with time-point information. 

In Chapter 3, I presented the customized analytical pipeline to correlate CTC count metrics and 

RNA microarray data with patient progression-free survival. I first demonstrated this pipeline in 

locally advanced (stage III) NSCLC patients treated with chemoradiation and immunotherapy.  

First, I tested multiple CTC metrics as biomarkers to predict progression-free survival. I 

found that CTC counts at single time points did not correlate with progression-free survival time. 
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For patients who received durvalumab immunotherapy, a high PD-L1+ CTC subpopulation 

percentage at single time points may be associated with shorter PFS. Importantly, I observed a 

significant correlation (P value = 0.0076) with longer PFS in patients who had a large decrease in 

CTC percentage (> 75%) after 4 weeks of chemoradiation.  

Second, I developed custom bioinformatic workflows using open-source packages for 

microarray data analysis. Through the differential gene-expression analyses, I observed 

significantly upregulated genes between pre-TX and week 4 that corresponded to phenotypes that 

were invasive, proliferative, and potentially immune-evasive. I also identified genes whose 

expressions at single points significantly predicted PFS. From these predictive genes, I calculated 

principal components to showcase the predictive power of these genes.  

Lastly, I applied this workflow analysis to other clinical studies in HCC and established a 

workflow to remove contaminated WBC signals in microarray data. I found 85 significantly 

downregulated genes in the HCC study, comparing CTC samples from after the first cycle of 

chemoradiation to pretreatment samples. Twenty-one of these downregulated genes were found to 

relate to liver function, which could indicate the decrease in CTCs and liver function during 

treatment.  

In summary, the findings in Chapter 2 and 3 showcase the prognostic value of CTC counts 

and gene expression profiles. The presence of and increase in CTC counts during treatment are 

signs of minimal residual disease and predict worse patient outcome. The GO platform-based CTC 

isolation and clinical and RNA analysis workflow developed in these first 2 chapters could be 

applied to future CTC clinical studies at large. 

6.1.3 CTCs’ sensitivity to NK cells  
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The study of therapeutic targeting and the immune interaction of CTCs is still an 

underdeveloped field. Based on the existing literature on NK cells’ role in controlling metastasis, 

I hypothesize that CTCs would present a NK-sensitive phenotype. In Chapter 4, I presented a series 

of methods to evaluate and quantify the NK sensitivity in patient-derived CTCs on a single-cell 

level. I observed NK–CTC cytotoxicity through live-cell imaging and quantified this cytotoxicity 

through dose-response model fitting. For in-house derived CTC lines, CTC-Lu1 and CTC-Lu2, 

over 80% of cancer cells were killed through NK-mediated cytotoxicity. These two cell lines also 

had the highest sensitivity compared to the other 5 lung cancer cell lines tested.  

To further investigate the molecular basis of the NK–CTC interaction, I profiled fresh and 

expanded patient-derived CTCs for NK-related ligands using quantitative immunofluorescence 

and bulk and single-cell RNA sequencing. I presented a novel method to calculate NK and EMT 

scores to represent cancer-cell molecular profiles, and I found a strong correlation between these 

2 scores in my data set, including the CTC lines and data from 80 other CCLE lung cell lines. This 

indicates that patient-derived CTCs, especially those with mesenchymal phenotypes, could be 

highly sensitive to NK-mediated killing and that patients could benefit from NK-cell-based 

therapies to control metastasis. Additionally, I established a single-cell analysis workflow to 

identify epithelial and mesenchymal CTC populations utilizing the EMT score. This workflow 

could be applied to future single-cell profiling CTC studies to further investigate the NK–CTC 

interaction on a single-cell level. Taken together, this study demonstrated CTCs’ NK sensitivity 

from multiple different angles and developed widely applicable assays and analysis workflows. 

6.1.4 Development of NK exosome biogenesis workflow and their cytotoxicity against CTCs 

Thus far, over 150 NK-cell-based immunotherapy clinical trials have been performed and 

applied to various cancers, including ovarian, breast293, and non-small-cell lung cancer294. 
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However, NK-cell-based therapies struggle with the ability to deliver adequate numbers of NK 

cells to tumors due to limited infiltration capabilities. To overcome this, I proposed the use of NK-

cell-derived exosomes as therapeutic agents instead. In Chapter 5, I presented an integrated and 

rapid workflow to harvest NK-cell-derived exosomes using the GO platform and ExoBeads. I 

isolated viable NK cells and harvested NK exosomes from model samples, 5 NSCLC patients, and 

2 healthy donors. Through the co-analysis of CTCs from the same blood samples, I found that 

NSCLC patients had high numbers of NK cells and NK exosomes compared to healthy donors, 

and these concentrations negatively and positively correlated with CTC numbers, respectively. I 

also demonstrated that the NK exosomes harvested from the NK-GO chip had a cytotoxic effect 

on CTCs, and I observed over 80% cell death compared to controls after 72 hours of incubation. 

This versatile system can be used for patient-specific NK-based immunotherapies along with 

CTCs for potential prognostic and diagnostic applications. 

6.2 Limitation and future directions 

6.2.1 The improvement and application of microfluidics-based CTC workflow 

In chapters 2 and 3 of this thesis I drew upon multiple clinical studies to discuss the 

prognostic and treatment-monitoring values of CTCs using the versatile GO platform. These 

studies, however, were limited by their small patient sizes and need to be validated in larger 

cohorts. To achieve this, as I discuss below, there are several aspects in the profiling workflow 

that can be improved.  

6.2.1.1 Pre-analytical considerations and study design 

Because of the unstable and apoptotic nature of CTCs295,296, it is generally recommended 

that blood samples using K2EDTA tubes for CTC analysis should be processed within 4 hours 

after blood draw297. This limits most CTC studies to single-center cohorts, resulting in limited and 
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undiversified patient pools. In this thesis, most studies were conducted within the Michigan 

medicine system, except for one multicenter study in Chapter 3, in which NSCLC patients went 

through pembrolizumab in combination with platinum-based doublet chemotherapy. The samples 

were shipped in K2EDTA tubes and on ice, and the clustering and bursting of WBCs caused device 

leak and sample loss in some cases. There are cell-preserving blood tubes currently available on 

the market, such as CellSave tubes (Veridex) and BCT tubes (Streck). However, these tubes 

contain fixatives for cellular proteins, and the RNA materials and viability are not preserved. Thus, 

development of efficient preservation solutions for CTCs is urgently needed to conduct larger 

studies and advance CTC-based liquid biopsy tests in the clinic298.  

In addition, 2 major aspects need to be considered when choosing an appropriate isolation 

technology: clinical study design and downstream applications. A thorough literature review is 

needed to determine the expected size distribution and cell-surface-marker expression level. 

Farace et al. performed a direct comparison on the same cohort of metastatic breast, prostate, and 

lung cancer patients using CellSearch and ISET299. CTC counts were higher using CellSearchTM 

for metastatic breast cancer patients; they were higher using the ISET assay for metastatic lung 

and prostate cancer patients. In another comparison using epithelial and mesenchymal cell-line-

derived mock samples, the ParsortixTM system showed superior capture of mesenchymal cells 

compared to the CellSearchTM system34. There was no significant difference in epithelial cell 

capture between the 2 technologies.  

The second consideration is whether the device is compatible with downstream assays. 

Most immunoaffinity-based devices immobilize captured CTCs so that molecular materials will 

have to be extracted from bulk samples. The physical property-based technologies often have cells 

in solution, which makes single-cell partitioning and single-cell analysis possible. The GO chip 
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workflow developed in Chapters 2 and 3 does not currently have the capability to release captured 

cells; thus, it is compatible only with bulk isolation and analysis of the RNA materials.  

6.2.1.2 Incorporating artificial intelligence in CTC identification 

At the end of the GO platform workflow, CTCs are manually identified using 

immunofluorescent staining, specifically the positive staining of cytokeratin and negative staining 

of CD45. This process is time-consuming, prone to error, and could be easily influenced by 

environmental conditions like computer screen brightness and room lighting. Recent studies have 

been leveraging AI to improve this counting process300,301. Zeune et al. developed an open-source 

CTC scoring tool to help researchers reach consensus in CTC counting300. The tool is based on 

scoring from 15 independent reviewers from 6 different institutes. They also used a deep-learning 

approach to automate the whole process. Another interesting tool to separate morphologically 

similar cell types using machine learning was developed by Ota et al301. Cells were labeled with 

single-color fluorophore and classified based on cytoplasm morphology. The researchers 

successfully identified different cell populations from a mixture of 2 breast cancer cell lines and 

cancer cell lines with PBMCs. For future CTC studies, the advancements in computer-aided 

biomedical image analysis and CTC identification will not only enable efficient workflow and 

larger multicenter studies, but also drive the standardization of CTC-based liquid biopsy assays.  

In addition, one of the challenges in developing automated machine learning tools is the 

lack of large high-resolution and high-quality data sets for algorithm training. Increasing the 

accessibility and transparency of raw CTC images and data sets could be highly beneficial. 

Moreover, standardizing the definition of CTCs and cutoffs in clinical analysis between different 

institutions is also an important future step. Some discussions and efforts have been initiated. For 
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example, Zhao et al. constructed an easy-to-use database for mRNA and lncRNA expression data 

from CTCs in 7 cancer types and 320 studies302.  

6.2.2 Further investigation of the NK–CTC interaction and NK-based therapeutic potentials 

In chapters 4 and 5 I showed preliminary evidence for the potential use of NK-cell-based 

therapeutics against CTCs and cancer metastasis. However, there is still a long way to go. These 

findings need to be translated to a clinical setting to advance the clinical utilization of NK 

therapies. In the following sections, I discuss some aspects that could be further explored to 

uncover the full picture of NK–CTC interaction and improve NK-based therapies.  

6.2.2.1 Co-isolation and analysis of the blood microenvironment 

In Chapter 4, I demonstrated the NK sensitivity of CTCs through in vitro experiments with 

an NK leukemia cell line, NK92-MI. Based on my findings, one of the next logical research 

questions to ask is, why are a patient’s existing NK cells not eliminating CTCs already? To better 

understand the immune evasion mechanism and find new drug targets, future studies need to be 

comprehensively conducted in the metastatic blood microenvironment. Several immune evasion 

mechanisms have been hypothesized for CTCs303. For example, one of the most-studied 

mechanisms involves platelet–CTC adhesion. Platelets can confer NK-inhibitory signals like 

MHC class I molecules onto CTCs to prevent NK-mediated killing304. In addition, platelets can 

secrete TGF-𝛽, which downregulates the NK receptor NKG2D to impair NK cell function305. 

Discussions and developments on antiplatelet therapies are currently ongoing306.  

6.2.2.2 Improvement of NK sensitivity prediction score: Incorporating NK receptor expressions 

Since CTC-evading mechanisms are highly heterogenous among patients, it is critical to 

develop predictive biomarkers through assessing a patient’s blood microenvironment, including 

CTCs. Another exciting finding in Chapter 4 was enabled by calculating a predicted NK-sensitivity 
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score using NK-related ligands on cancer-cell lines. As expected, the cells with NK-sensitive 

phenotypes showed a higher prediction score; however, NK-based cytotoxicity does not solely 

depend on the ligand expressions of cancer cells. The NK-cell population in cancer patients has 

been often reported as decreased or impaired. Thus, co-profiling the receptors on NK cells in the 

same patients or from the adoptive transfer products and incorporating those expressions in the 

NK-score calculation will provide a better biomarker metric. The development of single-cell 

profiling technologies, such as the 10X Chromium system, makes it highly possible to profile 

multiple cell populations on the transcriptomic and genomic levels. I explored this technology’s 

use in Chapter 4; however, more research is needed to draw meaningful conclusions.  

6.2.2.3 Improving NK exosome-based therapies: Study of exosome homing effect 

The NK exosomes derived in Chapter 5 showed a promising a cytotoxicity effect against 

our in-house derived CTC lines. This was again tested only in ex vivo cell-line models. When 

applying these exosome-based therapies to in vivo models or human patients, optimizing the 

biological distribution and achieving a high enough concentration of the target cancer cells are the 

inevitable next steps. Excitingly, recent studies have found that exosomes exert organotropism 

properties307. In other words, exosomes can be preferentially uptaken by specific organs in the 

body.  

To test this phenomenon in lung cancer, I administered fluorescently labeled exosomes 

derived from the lung cancer cell line, H1650, into breast cancer cells (MCF7) and bladder cancer 

cells (UC-5). The concentrations of exosomes and cells between different cell lines are normalized 

to same exosome concentrations per cell. After 18 to 20 hours of incubation (same time between 

different conditions), the cells were washed and assessed for fluorescence. Shown in Figure 6-1, I 

observed the highest fluorescent intensity in the H1650 cells, indicating a potential preferential 
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uptake by exosome parental cells. The investigation of the molecular mechanisms of such 

exosomal tropisms is still ongoing and could potentially enable the engineering of exosomes, 

especially NK exosomes, to specifically target cancer cells.  

 
Figure 6-1 Specific uptake of lung cancer exosomes by 3 different cells from different organs. 

6.3 Conclusions 

My thesis work demonstrated the translational potential of CTCs in liquid biopsy as a 

biomarker and a therapeutic target for cancer metastasis. I developed microfluidic characterization 

and analysis workflows on protein and RNA level for CTCs isolated from single time point bladder 

cancer patient cohorts (Chapter 2), and multi-time point lung cancer patient cohorts (Chapter 3). I 

then investigated the interaction between NK cells and CTCs and developed single-cell based 

workflows to characterize NK-related ligands on patient-derived CTCs (Chapter 4). Lastly, I 

explored NK cell derived exosomes as potential therapeutic reagents to target CTCs (Chapter 5). 

Taken together, CTCs can be used as part of liquid biopsy to monitor and predict cancer patient 

disease status and outcome and can be potentially a therapeutic target for NK based therapies.  
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Appendix A. Gene lists found in the RDART study (Chapter 3)  
Table 8 Genes that predict progression-free survival at a single time point in the RDART study 

 

pre-TX genes 

CD248 FEZF2 GALNT9 SLC7A9 GASK1A IDH2 

LRRC75B FAM86B2 CSPG4P1Y C12orf56 GAREM2 NPM1 

PHLDA1 DMRTA1 C11orf24 KIF17 TDRP PDHB 

ST6GALNAC5 PDGFB OR6C76 STAR KRBOX4 DNAJB6 

LRRC14 SELENOO TCF21 CYP1A2 RMI2 ZNF439 

MBD1 SLC47A2 ENDOV SURF2 MAS1 SYT11 

NKX2.3 ZNF433 CD1E FZD7 OR2Z1 SDHA 

CHGB EXO1 SPON1 UNC5B BRINP1 MRPL32 

UPK3A GTF2H4 IL36A PIP4K2B C7orf25 PPIAP30 

CDC37L1 LRRTM4 ZNF469 RPP25L SERPINB12 GORASP1 

C7orf69 MYT1 FLJ33534 PKD2L2 DUOXA2 ERLEC1 

DAZL KIFC2 ATP10B BRINP2 C1S RNASEH2A 

NUDT15 CAPS PIF1 PACC1 CCDC68 ICOS 

IL13 SPOCK3 VCX2 RAB38 RNASE9 PTCD3 

C1orf35 ASPHD1 CLEC14A IHO1 SLC27A3 UBE2J2 

CTRB1 ZNF205 MAP3K13 INSRR PCCA FANCF 

MST1R TIGD6 ERVV.1 ARIH2 GDPGP1 TSHR 

SYT14 ZNF517 FAM71C HCP5 TCEAL2 HMGN5 

ITPRIPL2 LINC00482 SLIT1 TEX33 PPM1A WFDC9 

PTTG1 SPEGNB CPN1 WDR38 PSMA3.AS1 H3.5 

TUSC2 ALDH7A1 DTX1 CHD5 VPS37A LIN7B 

KRTAP20.4 MUTYH PTPRT SLC2A1 CRYL1 
 

TMEM179 ARHGEF4 TMEM150B NCKIPSD MAPK8 
 

PTRH1 KCNB1 TAGLN ACOX2 MPC1 
 

MYH13 BMPER KBTBD11 PAEP C1orf43 
 

 

Week 4 genes 

GPT LIMK1 VSTM4 THNSL2 OR1S2 RPP21 

HTRA4 BCS1L ELMO1 SMG7 TLR7 CDT1 

BPIFB6 SGCZ NCBP3 CCL23 SWT1 EVI5L 

FYB1 BANF2 WNT11 OR5A1 TBC1D23 KIF21A 

HROB TMEM132E CTPS2 ASAP3 RFX5 S1PR5 

VPS37D PSG6 GOLGA6L1 TAAR5 MPDU1 DMRT1 

VTCN1 AQP11 PPIP5K1 GPAT2 ANKRD52 CELA2A 

DPYSL3 PITX2 CDON KYAT1 PRKCI FAM162B 

CD1B CLDN10 PROSER3 RGS9 SLC25A26 TMEM175 
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CES1 LMO1 QRFPR IL2RG PTPRCAP RHOF 

GOLGA6L9 OR6B3 ADORA1 ZBTB49 PHC3 TAS2R4 

AMPD3 F2RL1 KCNS2 SLC25A35 TAPBPL TCEAL3 

CEACAM6 SLC25A45 PTTG2 SERPINA11 PLCXD1 ZNF615 

CNTNAP2 JPH3 BAMBI ZKSCAN1 SLC39A10 FOXR2 

CCDC174 COLCA2 SNX33 ZNF224 LRATD2 SKA2 

APPBP2 CCSAP LY6G5C CHN1 SCD ZNF627 

GCKR SPATA31A1 WDR53 MANSC1 ELAC2 RWDD2A 

FCGR2A ADSS1 UBE2O PSMD11 ZNF827 MYL1 

DMAC2 SDCBP LINC00654 SIAE RBM48 AKR1C4 

TMEM98 SYT6 ZNF773 ERMAP SEPSECS LINC02877 

GEMIN5 HJURP KLLN ANKRD55 ZNF84 SPOCK2 

H3C13 POMGNT2 EFEMP1 DDX11 DOCK9 ENOX2 

GOLGA8R CREB5 HEPHL1 OR10C1 MRPL54 PDGFD 

NPY4R RABGGTA NDC80 ZNF346 SARM1 BEX2 

OR52J3 
     

 

Week 10 genes 

PAFAH2 TP53 ACBD3 CREB3 GNPNAT1 NUP58 

ELFN2 CD40 HEATR3 ANXA4 RNF6 DHX34 

SALL3 INTS9 FH LOC100130691 ZNF121 SCAMP2 

TRIM41 P2RY10 TBCD DYNC1I2 ANKMY2 SOGA1 

ANP32E PPIB JDP2 SLC25A43 TTN TM9SF3 

JAKMIP3 BNIP1 ALG14 CASP6 GALNT7 PCBP1 

TRIM26 EIF5AL1 ZNF3 AGMO RIOK1 TNF 

CORO1B NFKB1 AZU1 BCL7A OSBPL1A ATP1B1 

WDR24 BPNT1 WDR7 ZNF268 UCHL5 LRRC3C 

MTOR ZDHHC4 ACSF2 NAA30 OR4P4 ALPK2 

TSTD3 LRRC40 HYLS1 ZNF25 NKTR GABRA4 

TMEM150B ASNSD1 GDPD1 RTCB THUMPD1 POF1B 
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