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(sq) of NOA170 films. Error bars indicate RMS roughness measured by an
integrated AFM. Patterns are printed on bare Silicon using drop-on-demand e-
jet printing in a raster motion. a) Effect of pulse-width (tp) on pattern thickness
and roughness for a fixed pitch=2.4 µm. b) Effect of pitch on pattern thickness
and roughness for a fixed tp =1 ms (droplet diameter of D=2.83 ± 0.12 µm).
Convex patterns result for pitch << D, uniform patterns result for pitch∼D,
and rough patterns result for pitch >D. . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Film quality at the microscale vs micor- and macroscale contact angles
a) Contact angle measurements of a single droplet (2-10 µm) versus RMS
roughness of a film (60 µm × 60 µm) of the same build material onto a pri-
mary or secondary substrate. 3D view of an AFM scan of a single droplet
of a build material on a secondary substrate is shown near the horizontal axis.
Filled markers describe interactions of NOA170 on nLmaterials, while unfilled
markers represent nLmaterials on NOA170 films. Results indicate: full merg-
ing for θ < 15◦, partial merging for 15◦ < θ < 25◦, and failure to merge for
θ > 25◦. Further details are provided on ?? 2.3?? 2.4. b) Contact angle of a
single droplet (∼ 2−4mm) of NOA170 at the macroscale versus RMS rough-
ness of NOA170 on various nL materials at the microscale. Note that at the
macroscale, we only measured the interaction of NOA170 on nL materials). . . 26

2.8 Solid surface energy and liquid surface tension of all inks in this work. . . . . 27

viii



2.9 High resolution printing using e-jet technology. a) Multi-material, single
layer fabrication of high-resolution thin-film patterns. The white line shows
the height average across five pixels in the Y direction. The lighter color pat-
terns are NOA13825 with thickness and roughness of 205 nm and 12 nm,
respectively, and the darker color patterns are NOA170 with thickness and
roughness of 101 nm and 5 nm. b) Average pattern height across five pixels
through the center of the last row. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Multi-material and multi-layer fabrication using e-jet printing. . . . . . . . . . 30
2.11 Multi-material and multi-layer e-jet printed Bayer array filter. . . . . . . . . . 31
2.12 Experimental results for viscosity versus shear rate of Loctite3526. . . . . . . 34

3.1 Schematic of AM spatial dynamics described in ?? 3.1. . . . . . . . . . . . . 41
3.2 Heightmap evolution process. Controlled device fabrication follows the print-

cure-scan cycle, with a change in build material at each new layer. Subscript l
represents a layer and material combination. . . . . . . . . . . . . . . . . . . . 42

3.3 Linear models for layer-to-layer material addition in AM processes. a)
CLR model: evolution of the solid surface topography as a heightmap signal
is modeled by integration of a convolution of input fl with kernel h f , and a
convolution of the previous layer output gl−1 with kernel hg. h f and hg are
integration and space invariant. b) LPV model: evolution of the solid surface
topography as a heightmap signal is modeled by integration of the convolution
of input f with kernel h. h is a function of local variation in g for each pixel in g. 43

3.4 Topography dependent LPV impulse response of Loctite3526 on itself. a)
A 4×4 pixel of a random g signal of UV-Cured Loctite3526 to show the effect
of significant surface variation. b) M2 method in [2]: the 3× 3 model’s cor-
responding impulse response at the spatial location (4,2), h(4,2)(x,y). c) using
M2 method in [2]: The 3× 3 model’s corresponding impulse response at the
spatial location (1,3), h(1,3)(x,y). d) M3 method in [2]: the estimated impulse
response of the topography in ?? 3.4a is spatial invariant meaning that it is the
same for every spatial coordinate of the g(x,y). e) Upper and lower bounds of
h, h̄, h, such that h ⪯ h ⪯ h̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Incidence matrix (D) developed in [3]: the circles and arrows represent nodes
(each discrete spatial location that a single droplet deposits) and the link be-
tween nodes, respectively. D(i, j) is 1 if the link j starts at node j, -1 if link j
ends at node i, and zero if there is no connection between node i and link j. . . 48

3.6 Experimental data for deposition of Loctite 3526: ḡ1, ḡ2, ∆ḡ2 are average
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are the average thickness and RMS roughness of the e-jet printed films. . . . . 36

2.4 Contact angle and surface energetic measurements of NOA170 (nH) on various
low index surfaces (nL) at the macro and microscale. ḡ and sq are the average
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ABSTRACT

Electrohydrodynamic jet (e-jet) printing is a high-resolution additive manufacturing (AM)

technique that holds promise for the fabrication of customized micro-devices. Through

e-jet printing, a 3D structure is generated by sequential addition of material on the sur-

face [1, 6, 7]. The performance of such structures depends on the uniformity and consis-

tency of the layers [1]. Depending on the application, in order to have high performance

and yield, the fabrication process must be able to provide strict adherence to the desired

thickness and spatial resolutions. The lack of real-time monitoring methods that can cap-

ture, analyze and react to in situ measurements has been a challenge for most AM systems,

and in particular µ-AM systems, in which the key dynamics occur at the micro-/nano-

scales. Most AM processes run in open-loop and system parameters are tuned by human

operators through trial and error. AM processes are innately iteration varying and system

parameters change from layer to layer. Control methods that leverage the iterative nature

of AM-processes are needed. In this dissertation, e-jet printing is investigated for its ca-

pability in depositing multi-layered thin-films of multiple materials with microscale spatial

resolution and nanoscale thickness resolution. The traditional method to close the loop

in these processes should be feedback control. However, feedback control requires real-

time measurement at the microscale, which is not possible with µ−scale AM processes

such as e-jet printing, in which, the millisecond time scale and micro to nano-scale length

scale make the online measurements difficult. We leverage spatial iterative learning con-

trol (SILC) and model predictive control (MPC) to enable robust and intelligent controllers

to autonomously direct material addition at the microscale. This dissertation focuses on

xv



modeling material deposition at the microscale, and controlling the deposition process to

fabricate thin-film multi-layered and multi-material structures. First, the material interac-

tions at the microscale are investigated to derive better models of the spatial interactions

within the 3D printing, which led to the development of an empirical model of the deposi-

tion process that relates process and material parameters to the thickness and uniformity of

the layers in multi-layered structures. Then, spatial iterative learning control (SILC) is used

to regulate and automate material deposition at the microscale to improve the performance

and reliability of the AM processes, without requiring a human operator to physically be in

the environment to heuristically tune the process parameters. The proposed SILC frame-

work addresses the combined challenges of incorporating multiple dynamic models into

the framework due to the interactions driven by the different build materials and addressing

iteration varying initial conditions due to the roughness of previous surfaces by leverag-

ing iteration-to-iteration and layer-to-layer learning with the ability to correct the errors

of previous layers. Additionally, this dissertation focuses on extending the SILC frame-

work through the integration of model predictive control (MPC) in order to impose input

constraints associated with AM processes and improve robustness and performance of the

additive process. The feasibility of the proposed spatial control frameworks to direct the de-

position process at the microscale are demonstrated through the experimental validations

and simulation case studies using a model of an electrohydrodynamic jet (e-jet) printing

process.
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CHAPTER 1

Introduction

This dissertation investigates modeling and spatial control solutions for sub-micron fab-
rication using a class of microscale additive manufacturing (AM) techniques known as,
Electrohydrodynamic jet (e-jet) printing, with the goals of 1) understanding material inter-
actions at the microscale and 2) enabling high fidelity µ-AM through design and integration
of intelligent control frameworks in order to achieve autonomous control of material addi-
tion in a layer-by-layer manner. The results of this dissertation are part of a collaboration
between the Barton Research Group at the University of Michigan, Shtein Research Lab at
the University of Michigan, and Hoelzle Research Lab at The Ohio State University.

1.1 Additive Manufacturing

There has been a growing interest in the past decade in the fabrication of high-resolution,
thin-film devices such as optical sensors [8–10], flexible electronics [11], memristor de-
vices [12], photonic crystals [13], organic lasing cavities [14], and transistors [15, 16]. To
realize high-performance, thin-film devices, the manufacturing process requires deposi-
tion of consistent, uniform layers with a repeatable thickness distribution across multiple
material classes. Different manufacturing methods such as spin or dip coating [17], lithog-
raphy [18], doctor blading [19], chemical vapor deposition [20], and others have been used
to fabricate thin-film devices. However, most of these methods are limited by substrate
planarity, high temperatures, harsh chemistries, or the dissolution of previous layers by
non-orthogonal solvents [21]. Furthermore, in certain situations, it is desirable to deposit a
customized pattern or to selectively place components on an existing device structure with-
out disturbing it. For example, creating a pixelated array similar to the desired pattern in
Figure 1.1a requires many costly lithographic steps as described in Figure 1.1a. Expanding
to a larger array with each pixel having multiple materials with different thickness distri-
bution similar to the desired pattern in Figure 1.1b requires a corresponding increase in
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(a)

(b)

Figure 1.1: Manufacturing methods: a) Lithography: a light sensitive polymer ink is
spun into a thin-film. By selective exposure of UV-light through a photomask with defined
opaque area, the desired topography is achieved. b) Additive manufacturing achieves flexi-
ble designs by direct addition of material on the surface without the masking steps required
with Lithography.
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masking steps. It is therefore desirable to use Additive manufacturing (AM) technology as
a mask-free, direct-deposition method that can print complex structures with less material
waste as shown in Figure 1.1b.

To address the challenges noted above, this dissertation examines a micro scale Ad-
ditive Manufacturing (AM) approach and uses it to realize vertically stacked, thin-film
devices using multiple materials. AM processes, also known as 3D printing, are a class of
processes that enable fabrication of a printed device, which could be structural or contain
other functional characteristics such as a sensor, through selective addition of material in a
layer-by-layer manner [1,6,7]. µm-AM technology in principle enables material deposition
on nonplanar surfaces at the microscale, by direct addition of material on existing topogra-
phies, without requiring cleanroom facilities and the use of masking steps more commonly
used with lithography, and less material waste.

Despite the many advantages of µ−AM techniques over competing microscale man-
ufacturing techniques, models describing in-layer and layer-to-layer material interactions
at the microscale are limited or missing for most AM processes. At the microscale, ge-
ometric surface effects dominate the wetting behavior of materials on the surface. The
formation of thin-films from individually printed droplets requires an understanding of the
complex interactions between the printed droplets and previously printed layers. Recent
studies have considered the interactions between a single printed droplet and a previously
printed layer [2, 22, 23]; however, a systematic method to achieve thin-film patterns from
the merging of multiple individual printed droplets is lacking. This introduces an im-
portant gap in understanding how to determine appropriate material combinations
to enable multi-material deposition in a layer-by-layer manner. An important aspect
of deriving this understanding in material interactions requires the ability to monitor these
interactions in situ. However, for most AM systems, it is difficult to integrate real-time
sensing capabilities that can adequately measure the necessary physics in real-time [24].
The lack of real-time monitoring devices that can capture in situ measurements is partic-
ularly challenging for µ-AM systems where the interactions are at time and length scales
that are too fast or too small for many sensing modalities. To address this issue, output
and subsequent error measurements are often available after a layer of material has been
deposited onto the substrate. Additionally, AM processes are iteration varying, and system
parameters and plant dynamics change from layer to layer. Thus, the behavior of a printed
layer depends on material and topology interactions from previous layers, which vary in
real-world applications. Control methods that leverage the iterative nature of these
processes in the presence of iteration varying plant models are needed.
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Background

Thin-film Devices: A thin-film device is defined as a structure that is fabricated
from single or multiple uniform layers ranging from nanometer to several micrometer
in thickness. These devices are in demand for many applications, such as optical
sensors [8–10], flexible electronics [11], memristor devices [12], photonic crystals [13],
organic lasing cavities [14], and transistors [15, 16]. Lithography is the most popular and
widely used micro patterning technology to fabricate thin-film devices. Here, we use
electrohydrodynamic jet (e-jet) printing to deposit multi-material thin-film structures with
resolution comparable to Lithography without the planarity restrictions of Lithography
and other subtractive processes. To realize high-performance devices, the manufacturing
process requires deposition of consistent, uniform layers with a repeatable thickness
distribution across multiple material classes. Figures 1.2c, 1.3 and 2.3 are examples of
thin-film micro devices that are fabricated using e-jet printing.

Inkjet printing: Inkjet printing, which is probably the most well-known µ−AM
technology, has been studied extensively for the creation of multi-material, thin-film
devices with demonstrated transistors [23, 25, 26] and optical sensors [27]. The thermal
or piezo-driven excitation [28] used to deposit materials in a liquid phase in inkjet
printing limits the achievable spatial resolution to larger than 20 µm. Furthermore, high
viscosity inks (>50 cP) necessary for certain applications cannot be printed using inkjet
technology [29]. To enable the use of a range of photopolymerizable inks, which can have
high viscosity (>500 cP), and acheive high resolution patterns, electrohydrodynamic jet
(e-jet) printing is utilized.

Electrohydrodynamic jet printing: Electrohydrodynamic jet (e-jet) printing is a
solution-based fabrication AM technique enabling thin-film fabrication and patterning
without the planarity restrictions of lithography and other subtractive processes. Compared
to inkjet technology, e-jet printing has a much higher spatial resolution (0.05-30 µm), com-
parable to the resolution of lithographic processes [29, 30], while also providing a high
degree of freedom in creating customized patterns. Complex structures can be fabricated
with high controllability and precision in desired locations from the micro- to nanoscale. E-
jet is also capable of depositing a wide range of fluid viscosities from 100−105 cP, several
orders of magnitude larger than that of inkjet printing [28]. This further enables flexibility
in the classes of materials deposited, from biological materials to polymers and conductive
inks [29–31]. Manufacturing speed can also be increased by integrating multiple parallel
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(a)

(b)

(c)
(d) (e)

Figure 1.2: High-resolution fabrication using e-jet printing technology. a) E-jet Printer
testbed located at the University of Michigan, b) Schematic of e-jet printer with dual noz-
zles for multi-material deposition. c), d) and e) AFM scans and optical microscopy of a 40
× 40 µm2 thin-film pattern deposited by the e-jet system in Figure 1.2b.
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printheads depositing multiple materials onto one platform [32].
The main elements of an e-jet printer (see Figure 1.2) include a conductive nozzle hold-

ing the build material, conductive substrate, and voltage amplifier. We use a previously
developed customized e-jet printer [33] with two printheads. An electric field is created
by applying a voltage difference between the nozzle tip and the grounded substrate, chang-
ing the meniscus profile from a pendant shape to a cone shape, defined as a Taylor cone
jet [29]. As the field strength increases, electrostatic forces overcome ink capillary tension
and the liquid build material jets from the tip of the cone to the substrate [30]. The ap-
plied voltage can be pulsed with a pulse-width, tp, from low voltage, Vl, to high voltages,
Vh, as described in Figure 1.2b. Custom structures can be fabricated by synchronizing
the stage motion with the voltage pulses as instructed by a digital file, which enables a
drop-on-demand printing mode with the ability to deposit sessile droplets at pre-defined
locations. It should be noted that a continuous jet-printing mode (with constant voltage) can
also be used to deposit material on the substrate similar to line printing in [34]. However,
the fabrication of uniform thin-films (film spatial resolution < 100× 100 µm2, film thick-
ness < 100nm) similar to the one in Figure 1.2c requires the deposition of high-resolution
droplets (droplet diameter < 2µm, droplet height < 100nm). In a continuous jet-printing
mode, high-resolution droplets are generated by increasing the applied voltage, which si-
multaneously results in higher frequency jetting. High stage speed is then required to space
out the printed material on the substrate to form sessile droplets rather than large conglom-
erations of printed droplets. As the stage speed increases, additional dynamics and noise
are introduced into the process, thus reducing the overall quality of the printed patterns.
Therefore, drop-on-demand printing offers more stability at a particular spatial resolution
by controlling the release of a small volume of material at a desired coordinate and at a
desired time. Throughout this dissertation, we use drop-on-demand printing for thin-film
fabrication, unless it is mentioned otherwise.

1.2 Closed-loop Spatial Control of E-jet Printing

For most AM systems, it is difficult to actuate and sense in real-time due to the speed and
spatial resolution of the dynamics [24]. The lack of real-time monitoring devices that can
capture in situ measurements has been a challenge for most AM systems, and in particular
µ-AM systems such as e-jet printing process, in which, the output and subsequent error
measurements are typically only available using distributed sensing devices (e.g. atomic
force microscopy) after the material is deposited onto the substrate. In many AM struc-
tures, such as the optical sensor presented in Figure 2.11, spatial factors such as droplet
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Figure 1.3: Closed-loop control of e-jet printing process: Material is released from the
nozzle tip to form droplets on the surface. It is assumed that the droplet-to-droplet distance,
known as pitch, is fixed. By adjusting droplet sizes at each spatial location, 3D structures
are formed. The control input is the droplet size at each spatial coordinate, (x,y), which is
controlled through the applied pulse-with, while the low and high voltages are fixed. The
measured output is the topography at each spatial coordinate. The spatial controller uses
the 2D input and error signals to recursively update the input signal.

coalescence or film flatness and consistency play a larger role in device performance than
temporal events. Therefore, for these systems, the spatial tracking errors e(x,y) are more
important than temporal errors e(t). A model of the printed droplet interactions with the
surface must incorporate changes from layer-to-layer since the process spatial dynamics
are iteration varying. Models of iteration varying dynamics provide theoretical and
practical challenges for the development of robust and efficient controllers. An important
aspect of this research is to investigate the formulation of robust control frameworks
that can leverage the iterative nature of these processes, while considering in-layer and
layer-to-layer interactions in order to close the topography loop iteratively as described in
Figure 1.3 (controller block). In the next sections, possible spatial control frameworks are
described in detail.
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1.2.1 Spatial Iterative Learning Control

Iterative learning control (ILC) is a control technique that has been widely used in systems
with repetitive characteristics, even those that lack real-time feedback signals, in order to
achieve (near) perfect output tracking of a reference trajectory over a short number of iter-
ations [35]. Temporal ILC uses past information in the time domain in order to build an ap-
propriate feedforward control signal with the aim of ensuring convergence of the tracking
error from iteration to iteration. Previous studies [36–38] have considered ILC architec-
tures that address bounded iteration varying model parameters, and provide convergence
guarantees to a bounded neighborhood of a nominal system over finite iterations [37, 38].
However, these methods have primarily been considered for temporal rather than spatial
dynamics.

Due to the challenges in real-time monitoring and control, spatial ILC (SILC) provides
an appealing option for recursive control during the additive process ( [39–44]). SILC is
an extension of temporal ILC ( [36, 37, 45]) reformatted for the spatial domain that uses
spatial data (e.g. layer height) from previous iterations to derive a feedforward control
signal for the next printed iteration. In these systems, the SILC algorithm aims to decrease
the spatial tracking error e(x,y) from iteration to iteration. SILC has been demonstrated
for topography control in additive manufacturing (AM) [40]. Here, I integrate different
versions of SILC with the additive process to track a specific trajectory over the spatial
domain by learning from previously fabricated samples.

1.2.1.1 First-Order SILC

In the literature, First-order ILC (FO-ILC) has been extensively used for reference tracking
of systems with repetitive characteristics that execute the same task repetitively. FO-ILC
leverages the data from the most recent iteration, to construct an optimal feedforward sig-
nal. First-order SILC (FO-SILC) has been used in AM processes for topography regulation
of single-layer structures [39–41, 44]. Despite the progress in the area of spatial dynamics,
current SILC algorithms do not consider multiple sets of spatial dynamics due to multi-
materials, nor surface variations in multi-layer structures. Multiple layers leads to initial
condition variability due to previous layer dynamics. Furthermore, in multi-material struc-
tures, the change in spatial dynamics due to the different materials requires a MIMO SILC
approach. Here, I develop a FO-SILC framework for the deposition of multi-material 3D
constructs such as the one in Figure 1.4 that incorporates model uncertainties and spatially
varying dynamics for multiple plant models. In addition, the proposed control method is
useful to regulate material addition for multi-layered structures.
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Figure 1.4: Demonstrative multi-material 3D structure fabricated by AM. nl are arbitrary
build materials at layer l. ∆gd

l is the desired incremental topography at layer l, while gd
l is

the desired total heightmap at layer l with respect to the substrate.

1.2.1.2 Higher-Order SILC

Most ILC literature focuses on first-order ILC (FO-ILC) where the feedforward signal
comes from the most recent iteration. While FO-ILC has proven to be useful for reference
tracking of repetitive systems, it loses performance when uncertainties are high. To improve
performance and robustness to iteration varying uncertainties, higher-order ILC (HO-ILC)
has been developed where the feedforward signal is synthesized from data from multiple
past-history iterations [46–50]. HO-ILC systems have shown faster convergence to nom-
inal behavior and more robustness to uncertainties as compared to FO-ILC systems [48].
Here, I extend the proposed FO-SILC framework in the previous section towards the devel-
opment of a multi-dimensional higher order SILC framework in the lifted- and frequency-
domains. The proposed HO-SILC scheme encompasses interval model uncertainties and
spatially varying dynamics arising in the printing of multi-layered constructs. The pro-
posed HO-SILC framework incorporates vertical learning through the combined effect of
previous layer spatial dynamics and layer-to-layer learning, and horizontal learning from
part-to-part. The proposed HO-SILC differs from traditional HO-ILC frameworks due to
the 2D aspect of the learning. Traditional HO-ILC considers information from previous
data across the iteration axis. The proposed HO-SILC presented here incorporates learning
over two axes; along the part-axis ( j horizontal) and over multiple iterations in the layer
axis (l vertical).

1.2.2 Model Predictive Control

In addition to the layer to layer dynamics, it is important to consider process constraints
within the AM system, such as the requirement of strictly positive control inputs, f (x,y).
Model predictive control (MPC) is a control framework that works especially well for con-
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strained systems and incorporates a forward projection process that is useful for AM sys-
tems in which the current layers directly impact future layers. Similar to ILC, MPC is a
predictive control technique that tries to prevent errors, rather than react to them. MPC
leverages the system model and data from past iterations to predict optimized control ac-
tions for multiple steps ahead in the future ( [51–56]). MPC has been applied to AM
processes to control 1D height increments with a varying reference signal for single ma-
terial structures ( [56]). Similarly, predictive iterative learning control in [57, 58] uses a
similar idea to leverage past information to predict future iterations in order to update the
control input. In this work, I combine an MPC framework with HO-SILC to improve the
performance of the e-jet printing process. Specifically, the combined framework focuses on
enhancing topography control by looking forward through a prediction of future layers and
backward through the incorporation of the available data from previously printed layers to
make appropriate control decisions.

1.3 Contributions and Organization of the Dissertation

This research addresses fundamental gaps in modeling and control of the e-jet printing
process that currently prohibit robust fabrication of thin-film devices. These gaps can be
more formally framed in the context of the following research questions:

1. What is the relationship between material interactions and film quality at the
microscale?

(a) How can we use our understanding of material/film quality relationships to se-
lect successful material combinations?

(b) Can we derive an enhanced understanding of the mapping between process
parameters/material parameters/film quality that will be used to inform model
structure and quantify model uncertainty?

2. How can we use data to design more robust and intelligent controllers?

(a) What control architecture should be used to enable learning to be achieved from
layer-to-layer?

(b) Can the integration of MPC into the learning control framework be used to
reduce model uncertainty and improve robustness?

(c) How can AM constraints be integrated into a learning-based topography con-
troller?
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To answer these questions, the research tasks have been organized into three research aims.

Aim 1: Derive an understanding of material interactions at the microscale that will
inform the development of spatial models to achieve better control decision in 3D
printing
The goal of this task is to understand material interactions at the microscale and leverage
this knowledge to derive appropriate control decisions to achieve high-quality thin-film
devices. E-jet employs a complex ejection mechanism that is affected by the fluidic prop-
erties of the build material, surface energy of the substrate, and process parameters. My
approach in chapter 2 explores in-layer interactions by adjusting the process parameters of
e-jet printing to achieve high-quality films. In addition, my approach investigates layer-to-
layer interactions by measuring 1) the contact angle of a single droplet of one material on
a uniform surface of another material at the microscale, 2) the liquid surface tension of the
build material, and 3) the solid surface energy of the previous layer. The key contributions
from this task are presented in the chapter 2 as follows:

1. An empirical model is developed for multi-material, multi-layered deposition that
relates material and process parameters to the uniformity of thin-films.

2. An experimentally derived understanding that the fabrication of thin-films at the mi-
croscale is contingent on material interactions that demonstrate: (1) low contact angle
at the microscale, (2) high surface tension of the build material, and (3) high surface
energy of the previous layer.

3. Identification of a set of compatible materials (NOA170 and Loctite3526) that en-
ables multi-material deposition and will be used in the control framework.

To demonstrate the feasibility of e-jet printing for thin-film device fabrication, a high-
resolution Bayer filter array is fabricated using two high viscosity inks. The optical
properties of the array are varied by adjusting the layer thickness.

Aim 2: Development of a backward control-learning strategy to close the topography
loop iteratively
The objective of this aim is to achieve an automated topography controller for microscale
additive manufacturing of 3D structures using the information from previous devices/layers
that are already printed in order to improve the performance of future devices/layers that are
going to be deposited. To achieve this objective, I have proposed a spatial iterative learning
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control formalism in conjunction with the additive process to address the combined chal-
lenges of multiple dynamics due to multiple build materials and varying initial conditions
due to roughness of the previous layer surface. The main contributions from this task are:

1. Development of a spatial iterative learning control framework for multi-layered and
multi-material structures.

2. Development of a design methodology for deriving learning filters that directly em-
bed stability criteria for nominal HO-SILC system.

3. Design of a boundary prediction of a maximum allowable uncertainty around the
nominal plant for monotonic convergent of the iterative HO-SILC algorithm.

Aim 3: Development of a forward control-learning strategy to close the topography
loop iteratively
The goal of this task is to achieve an automated topography learning control framework
by looking forward through a prediction of future devices/layers to make appropriate
control decisions. To realize this objectives, I propose to implement a SILC-MPC
method that projects forward the data from future devices/layers using model predictive
control (MPC), and integrates the control framework with the information from previous
devices/layers using SILC. Unlike the proposed SILC framework in Aim 2 that uses a
saturation function to force the negative inputs to zero, Aim 3 can be formulated in a
way that imposes non-negativity constraint of the input signal to preserve the additive
nature of AM processes. In addition, similar to other iteration varying control systems, a
performance/robustness trade-off happens with the proposed SILC framework in Aim 2.
The proposed SILC algorithm loses the performance benefits that could be achieved by
designing an overly robust learning strategy that is designed for the worst possible model
uncertainty. Integrating MPC with the SILC framework can improve the performance and
result in faster convergence to the desired behavior.

The remainder of this dissertation is organized as follows. In chapter 2, Aim 1 is ac-
complished. We investigate the effect of process parameters on film quality and explore
material requirements for multi-material fabrication. A set of compatible materials for
multi-material deposition is introduced that will be used to inform the development of
model-based control designs in multi-material fabrication in chapter 4. In chapter 3, the
preliminaries and notations are presented that will be used in control designs. Additionally,
the plant models are developed in chapter 3 and will be used in chapters 4 to 6 to predict
the behavior of droplets on nonflat surfaces for the materials identified in chapter 2. In
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chapter 4, as part of Aim2, a first-order SILC (FO-SILC) design is developed as a recursive
control strategy that enables closed-loop control of e-jet printing process. The proposed
FO-SILC frameworks is used in multi-material/multi-layer deposition process. At each
iteration, a thin-film pattern is printed and its topography is measured using an integrated
AFM (see Figures 1.2 and 1.3). The FO-SILC design in chapter 4 is extended to a higher-
order SILC (HO-SILC) to improve the controller performance and accomplish Aim 2. A
MIMO configuration is developed that incorporates vertical learning through consider-
ation of previous layer spatial dynamics [33], and horizontal learning from part to part
to derive a diagonal SILC framework. In chapter 6, Aim 3 is addressed. We implement
an SILC-MPC method that leverages the information from previous layers using spatial
iterative learning control (SILC) and projects forward the data from future layers using
model predictive control (MPC) to improve the tracking performance of iteration varying
AM processes. The proposed controllers in chapters 4 and 5 are validated through various
experimental tests using an e-jet printer testbed located at the University of Michigan. The
conclusions are given in chapter 7.
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CHAPTER 2

An Empirical Model for Multi-material
Multi-layer Fabrication Using E-jet Printing

Many applications require multi-material, layered structures with well-defined areas,
smooth interfaces between layers, and controllable thicknesses; however, a systematic
method to achieve these structures by e-jet is lacking. E-jet employs a complex ejection
mechanism that is affected by the fluidic properties of the build material (e.g., surface ten-
sion, electrical conductivity, viscosity, density, etc.) and process parameters (e.g., nozzle
size, electric field, the surface energy of the substrate, etc.). There are many challenges in
material ejection and spreading that need to be investigated to understand the printing pro-
cess and material interactions at the micro and nanoscale toward realizing the full potential
of the e-jet printing process. In this chapter, e-jet printing is investigated for its capability in
depositing multi-layer thin-films with microscale spatial resolution and nanoscale thickness
resolution to create arrays of one-dimensional photonic crystals (1DPC) such as the one in
Figure 2.1 as an example of multi-material deposition. First, the deposition of individual
droplets and how they merge to form continuous layers is studied. Second, this result is
extended to multiple stacked layers comprising different materials, enabling structures like
the vertical Bragg reflectors in Figure 2.1b. An empirical model is developed that corre-
lates process parameters with material properties in multi-material, multi-layer structures
with control of thickness at the nanoscale, and control of in-plane patterning at the mi-
croscale. The model is validated with several photopolymer inks, a subset of which is used
to create pixelated, multilayer arrays of 1DPCs with uniformity and resolution approaching
standards in the optics manufacturing industry.

2.1 Motivation

Archetypal 1DPCs are comprised of alternating layers of high and low refractive index
materials with an optical thickness on the order of the wavelength of the incident light.
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Figure 2.1: Multi-Material thin-film fabrication by E-jet printing. A) Schematic of
e-jet printing process. A high voltage pulse is applied to the nozzle to eject a droplet
of material with droplet volume related to pulse-width, tp. B) One-dimensional photonic
crystals (1DPCs) to be fabricated by e-jet printing. nL and nH are low and high refractive
indices of the corresponding polymeric materials. C) Reflectance response of a 1DPC can
be tuned by modulating the number of layers and corresponding thicknesses.

As optical filters or mirrors, the transmittance or reflectance of light by these 1DPCs can
be tuned by adjusting the sequence, thickness, and refractive index in the stack. 1DPCs
have found wide ranging applications; from conventional lasers and optical filtering to
novel mechanical and chemical sensing devices [59–61]. Polymeric 1DPCs in particular
have attracted attention recently due to their potential for simplified processing, as well as
freedom to design chemically and structurally derived capabilities for new sensory appli-
cations [62]. In a collaboration with the Stein group, the 1D photonic crystals (1DPCs)
in Figure 2.2 are designed and fabricated using e-jet printing, with commercially available
photopolymers [1]. In the next sections, a step-by-step methodology for material selection
and deposition to fabricate multi-layer/multi-material structures such as the optical sensor
in Figure 2.2 is presented. The Stein group developed design criteria to select material
combinations with favorable optical properties for the fabrication of the photonic crystal.
The candidate materials are then tested using the e-jet system to find a set of compatible
materials that enable multi-layer and multi-material deposition in a layer-by-layer manner.
Note that the optical response of the printed photonic crystal can be tuned by the number
of layers and corresponding thicknesses (see Figure 2.1c). The photonic responses of the
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Figure 2.2: Bayer filter array fabricated by e-jet printing [1]. a) Optical image of Bayer
filter array with zoomed region indicating the locations across the area of a specific pixel
that were measured using the optical microreflectance (OM) system. Circles overlaid on
the central sample show exact locations of data collection while the square/triangle sym-
bols indicate the locations (center, NW, SW, NE, SE) of corresponding information in the
reflectance plots. b) Optical response of two samples each of blue, green, and red spectra
samples.

structures printed in this work are quantified via a custom developed microspectroscope.
Due to the flexibility in design provided by the e-jet process, the findings in this chapter
can be generalized for fabricating additional multi-material, multi-layer micro- and nanos-
tructures with applications beyond the field of optics.

2.2 Experimental Methods

In this section, a series of experiments are conducted to find a set of compatible materials
that demonstrate stable jetting behavior during deposition as well as merging charac-
teristics after the material has reached the substrate. Stable jetting behavior describes
materials that form a stable, single Taylor cone jet [63] at the meniscus without clogging
or evaporating. Good merging characteristics describe build materials that spread to a uni-
form thin-film on existing topography. Standard macroscale measurements of solid surface
energy and liquid surface tension are used in conjunction with microscale contact angle
measurements to understand the length scale dependence of material properties and their
impact on droplet merger into uniform microscale thin-films. Moving forward, we will
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(a)

(b)

Figure 2.3: Thin-film fabrication failures in e-jet printing. a) NOA138 evaporated on
the substrate. b) NOA1327 with a low flash point solidifies before landing on the substrate.

refer to the silicon wafer as the primary substrate, while previously deposited, fully merged
and cured photopolymer surfaces will be referred to as secondary substrates.

• Material preparation: In this work, several optical adhesives (Norland Optical
Products (NOA)) are utilized as well as a commercial Loctite formulation. For high-
resolution patterning, nozzles smaller than 1 µm in inner diameter are used with a
20 µm standoff height. Some inks contain large particles (e.g. comprising resin, a
long chain oligomer, or foreign moieties) that must be filtered in order to reduce the
chance of nozzle clogging. Before running the experiments, we filtered Loctite3526
using high pressure and a filter with 0.22 µm diameter pores. The removal of large
particles has the added benefit of reducing the surface roughness of the printed pat-
terns. We note, however, that filtering in some cases changes other ink properties,
e.g., filtered NOA170 has a smaller refractive index value than unfiltered NOA170,
while also exhibiting an unstable spray jet [64] instead of a single stable jet mode at
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the same standoff height and voltage.

• Material requirements for thin-film fabrication: Through the experiments, it is
observed that inks should have a boiling temperature higher than the printing en-
vironment since evaporation precludes the ink from forming a uniform film on the
substrate as can be seen in Figure 2.3a . For example, NOA1348, NOA138, NOA142,
NOA144 gradually evaporate on the silicon substrate. Another critical aspect of jet-
ting behavior is understanding the flashpoint of the inks. Specifically, several of
the photopolymers investigated have a low flash point and become polymerized be-
fore landing on the substrate. For example, we are able to eject both NOA1327
and NOA1328 with a flashpoint of 10 ◦C from the nozzle tip. However, the jetting
stream from both of these inks becomes solidified before reaching the substrate, as
presented in Figure 2.3b. This problem has not been observed in other NOA inks
with flashpoints larger than 175 ◦C.

• Contact Angle Measurement: To measure contact angles at the microscale in Fig-
ures 2.4 and 2.7a, an array of droplets of a build material is deposited onto a surface
(primary or secondary substrate of another material). The droplets are cured, and
their topographies are measured using an integrated Nanite AFM (inset of the hori-
zontal axis in Figure 2.7a). It is assumed that the contact angle of a droplet does not
change with UV-curing; this assumption was confirmed using a slightly larger droplet
(> 20 µm) and an integrated camera. The raw AFM data are then post-processed in
the software package ‘Gwyddion’ to measure the topography and the corresponding
contact angles. We deposit fifteen droplets with varying tp to generate droplets with
diameters ranging from 2 to 10 µm. These droplets were used to measure the average
contact angle and corresponding standard deviations. The standard deviation of the
printed droplets is low (< 6◦, except for NOA13825 that exhibited clogging issue)
as shown in Figure 2.7a. This indicates that the contact angle at the microscale does
not depend on the droplet diameter. At the macroscale, contact angle measurements
are conducted on a Ramé-Hart goniometer by placing millimeter-scale droplets of
various inks on the respective surfaces as presented in Figure 2.4b. ‘DROPImage’
software is used to fit a curve to the acquired image of the droplet and measure the
contact angle.
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(a)

(b)

Figure 2.4: Contact angle measurement a) at the microscale: 3D view of an AFM scan
of an e-jet printed droplet of NOA13825 on a uniform pattern of NOA170 (thickness=85
nm, RMS roughness=6 nm, b) at the macroscale using a goniometer with droplet diameter
ranging from 1-3 mm.

2.3 Process Parameter Investigation for Single Material
Thin-film Fabrication

Thin-film fabrication, using drop-on-demand e-jet printing, is a result of droplet ejection,
droplet spreading, and droplet coalescence. Materials with stable jetting behavior will
form a single stable Taylor cone jet [29] at the meniscus. After the material is ejected
from the nozzle tip, a sessile droplet is formed on the substrate with a spherical cap shape
that is defined based on the droplet diameter and contact angle [22]. The droplet geometry
depends on the electric field, the kinetic energy imparted on the droplet at ejection, the
surface tension of the droplet, surface energy of the substrate, rheological properties of
the ink, and the viscous energy lost during spreading. Several previous studies on e-jet
behavior have utilized UV-curable photopolymer inks deposited onto conductive, smooth
silicon wafers as a model system. They are chosen here again for their combination of
fluid properties as well as having the ability to be cured in situ, without requiring high
temperature operations. As an example, NOA170 was chosen to investigate the formation
of thin-films on a polished silicon substrate based on varying process parameters. In this
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Figure 2.5: Material interactions at the microscale. a) Fully merged: Loctite3526 fully
merges on NOA170 with thickness and RMS roughness of 90 nm and 6 nm, respectively.
b) Partially merged: NOA170 partially merges on NOA144 with thickness and RMS rough-
ness 175 nm and 40 nm, respectively. c) Unmerged: NOA170 does not merge on NOA1348
with thickness and RMS roughness 250 nm and 200 nm, respectively.

section, the process parameters that determine the quality of film formation, which in turn
influences device functionality, are outlined.

The controllable process parameters that can affect the applied electric field, and sub-
sequent droplet volume, include: high voltage value, low voltage value, pulse-width (tp),
nozzle size, and standoff height (distance between the nozzle tip and the substrate in Fig-
ure 1.2). Here, the droplet volume of a specific material is intentionally adjusted using tp,
while keeping all other process parameters constant. tp is chosen because it has a direct
mapping to droplet volume [65] and reduces the introduction of additional jetting dynam-
ics and disturbances, such as nozzle arcing, which are more likely to occur with changes in
other process parameters like high voltage value or standoff height. By design, each droplet
is a result of a single droplet released within the designated tp. Successive droplets can be
placed at a certain distance (center to center) from each other, defined as pitch, to form a
film as shown in Figures 1.3 and 2.6b. The average thickness of a film, ḡ and the root mean
square (RMS) surface roughness, sq, are defined as:

ḡ =
1

N1×N2

N1∑
i=1

N2∑
j=1

gi, j (2.1a)

sq =
1

N1×N2

√√√√ N1∑
i=1

N2∑
j=1

(ḡ−gi, j)2 (2.1b)

where gi, j is the topography of the pattern at the discretized coordinate (i, j), and N1 and N2

are the total number of discretized coordinates in the X and Y direction. Note that both ḡ
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and sq are measured using an integrated AFM. Surface roughness is a representation of the
merging quality of a film such that a low sq value indicates a smoother film. The thickness
and roughness of the printed films can be regulated by adjusting the droplet volume and
pitch. As such, pitch and tp are independent variables while film thickness and roughness
are dependent variables. At small tp or large pitch values (pitch>>D), the droplets become
smaller than the pitch, which yields voids in the pattern and increases the film’s roughness.
To quantify film quality, we define a thin-film pattern with a thickness smaller than 200 nm

as fully merged if it has an sq value less than 20 nm, partially merged for sq values between
20 nm and 50 nm, and unmerged for sq values greater than 50 nm. Figure 2.5 shows these
interactions at the microscale.

Figure 2.6a shows the effect of tp on the average thickness and corresponding RMS
surface roughness (represented as error bars) of NOA170 films (60 µm × 60 µm). The
controlled process parameters include: Vh =500 V, Vl =250 V, nozzle size=1 µm, standoff
height= 20 µm, and pitch = 2.4 µm. The pulse width, tp, is varied between 0.5-12 ms
to investigate its effect on film quality. Note that the diameter of a droplet is varied by
changing tp. It is observed that decreasing tp from 12 ms to 2 ms decreases the pattern
thickness and roughness. A pulse-width of 1 ms (tp =1 ms) resulted in the lowest roughness
(sq =7.23 nm) with a film thickness of 95 nm.

The influence of pitch on average thickness and roughness of NOA170 films is pre-
sented in Figure 2.6b. We use a raster type motion to print a continuous line that merges to
form films, as presented in the inset of Figure 2.6b. The controlled process parameters are
the same as those used to evaluate the effect of pulse width; however, we set tp to be 1 ms,
which yields an average droplet diameter of D=2.83 ± 0.12 µm, and vary the pitch between
1-2.9 µm. As the pitch increases, both the roughness and thickness decrease. A pitch of 2.5
µm resulted in the lowest roughness (sq =8.41 nm) with an average thickness of 89.63 nm.

These results suggest that the thin-film fabrication process has two parameter selection
steps: (1) eject controlled droplets by pulsing from low to high voltage over a designed
time period (shorter tp leads to smaller droplets), and (2) adjust the pitch between deposited
droplets to achieve thin, uniform patterns (pitch values ∼ droplet diameter D).

2.4 Material Requirements for Multi-material Fabrica-
tion

In the previous section, process parameters governing the deposition of smooth, nanoscale
films onto a uniform surface (e.g. polished silicon) were investigated. However, in some

22



(a)

(b)

Figure 2.6: Effect of process parameters on average thickness (ḡ) and surface roughness
(sq) of NOA170 films. Error bars indicate RMS roughness measured by an integrated AFM.
Patterns are printed on bare Silicon using drop-on-demand e-jet printing in a raster motion.
a) Effect of pulse-width (tp) on pattern thickness and roughness for a fixed pitch=2.4 µm.
b) Effect of pitch on pattern thickness and roughness for a fixed tp =1 ms (droplet diameter
of D=2.83 ± 0.12 µm). Convex patterns result for pitch << D, uniform patterns result for
pitch∼D, and rough patterns result for pitch >D.
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cases, tuning the process parameters does not guarantee a fully merged film. It is possible
for a build material to merge into a uniform film on one material, but not on a different ma-
terial (see Figure 2.5c). This raises the question of how to determine appropriate material
interactions in multi-material structures that are fabricated in a layer-by-layer fashion. For
example, to create a multi-material structure such as a photonic crystal in Figure 2.1a, a re-
fractive index contrast (∆n = nH−nL) must be achieved between neighboring layers, which
introduces variations in surface energy for each additional layer being deposited. To quan-
tify the impact of these variations, we study the shape of sessile droplets of a build material
on a previous surface. A range of photopolymers are investigated: NOA170, Loctite3526,
NOA144, NOA142, NOA13825, NOA138, NOA13775, NOA1369, and NOA1348, with
refractive indices ranging from n=1.35 to 1.71, which provides an index contrast maxi-
mum of ∆n=0.35. We chose NOA170 as the nH material due to its high refractive index, nH

=1.70, and search for a low refractive index material (nL) to fabricate a multi-layer structure
such as Figure 2.1a. The low refractive index materials in this work include: Loctite3526,
NOA144, NOA142, NOA13825, NOA138, NOA13775, NOA1369, and NOA1348. In this
section, the material properties and their scale-dependence that contribute to high-quality
film formation are highlighted.

The substrate-ink interaction can be defined by the contact angle, which is a function of
fluidic properties of the build material (Liquid surface tension (LST), viscosity, evaporation
rate, density, etc.), and surface energy of the previous layer [22]. Several previous studies
have investigated how tuning the solid surface energy (SSE) of a substrate can affect droplet
shape and subsequent feature resolution in inkjet printing [34, 65]. This has been extended
to high-resolution e-jet printing, where the microscale contact angles of droplets were used
to predict the merging quality of lines [66] on varying SSE surfaces. Micro- and macroscale
contact angles are also used here to predict the roughness of a deposited layer of a build
material on the surface of a previously printed material.

The microscale material interactions in Figure 2.7a include: NOA170 printed on the
primary substrate (Figure 2.1b, layer 1), the nL materials printed on top of a secondary sub-
strate of NOA170 (unfilled markers in Figure 2.7a, layer 2 in Figure 2.1b), and NOA170
printed on secondary substrates of nL photopolymers (filled markers in Figure 2.7a, layer
3 in Figure 2.1b). Three regimes defined by the roughness of the formed film (60 µm ×60
µm) of a build material on a substrate are delineated for ease of characterization. A mono-
tonically increasing linear relationship on a log-log plot is found between the contact angle
of a single droplet (2-10 µm) of a build material on a substrate (primary/secondary of a
different material) and the roughness of a printed film of the same build material on the
substrate. It is observed that build materials with a low contact angle have a higher likeli-
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hood of adhering to previous surfaces and forming a uniform thin-film on them. Focusing
on the microscale measurements in Figure 2.7a, a printed layer of NOA170 serves as the
secondary substrate for the deposition of low index materials. All low index inks exhibit
fully merged thin-films (< 200 nm) with low contact angles (< 15◦) and low RMS surface
roughness (< 10 nm). Interestingly, the deposition of NOA170 on top of low refractive
index materials (layer 3) does not perform as smoothly. Depending on the material in the
previous layer, the contact angles range from 10◦ to 50◦ with resultant pattern roughness
values ranging from less than 20 nm to greater than 200 nm. The only low index material
that NOA170 fully merges onto is filtered Loctite3526, while NOA170 printed onto several
other low index ink secondary substrates shows partial merging.

It should be mentioned that the results in Figure 2.7a describe material spreading on
a uniform surface with low roughness (<10 nm). Previous work has demonstrated the
impact of previous layer roughness on material spreading [2]. Our investigations in this
work suggest that at the microscale, in addition to the topography, chemical heterogeneity
of the previous layer may play a role in surface roughness (Figure 2.7a). Future studies
will explore the relationship between thickness of the current layer and roughness of the
previous layer.

Next, we explored if macroscale surface energetic measurements could be used to gain
insights into material behavior at the microscale. Figure 2.7b shows the experimental con-
tact angle of NOA170 as a build material on various substrates at the macroscale (with
test droplets ∼ 1-3 mm) versus roughness of an NOA170 films (60 µm×60 µm) at the
microscale on various substrates. Comparing the experimental results in Figure 2.7a and
Figure 2.7b, it is observed that microscale contact angle measurements are not in agree-
ment with the macroscale contact angle measurements. This highlights the fact that ma-
terial interactions at the microscale are different from the macroscale, and subsequently
previous theories derived for the macroscale are not sufficient to describe the layer-to-
layer dynamics at the microscale. For instance, microscale contact angle measurements
return a low value of the contact angle related to the NOA170 – filtered Loctite3526 com-
bination (θ=13◦±0.8◦), indicating that this combination is favorable for forming uniform
films. However, at the macroscale, droplets of NOA170 on a spin-coated film of filtered
Loctite3526 demonstrate one of the highest contact angles at θ=108.3◦±0.8◦. With the vis-
cosity and liquid surface tension of the NOA170 ink held constant, the variables that differ
between the two deposition systems are the heterogeneity of the solid surface energy and
the velocity with which the droplet is impacting the surface.

To further explore material spreading, a macroscale surface energetics study is under-
taken using the standard method of Owens & Wendt [67] and Wu [68] (more details are
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(a)

(b)

Figure 2.7: Film quality at the microscale vs micor- and macroscale contact angles
a) Contact angle measurements of a single droplet (2-10 µm) versus RMS roughness of a
film (60 µm × 60 µm) of the same build material onto a primary or secondary substrate.
3D view of an AFM scan of a single droplet of a build material on a secondary substrate
is shown near the horizontal axis. Filled markers describe interactions of NOA170 on
nLmaterials, while unfilled markers represent nLmaterials on NOA170 films. Results indi-
cate: full merging for θ < 15◦, partial merging for 15◦ < θ < 25◦, and failure to merge for
θ > 25◦. Further details are provided on Tables 2.3 and 2.4. b) Contact angle of a single
droplet (∼ 2−4mm) of NOA170 at the macroscale versus RMS roughness of NOA170 on
various nL materials at the microscale. Note that at the macroscale, we only measured the
interaction of NOA170 on nL materials).
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Figure 2.8: Solid surface energy and liquid surface tension of all inks in this work.

given in the supplemental). While this work focuses on controlling material behaviors at
the microscale, measuring SSE at these length scales is quite difficult; thus, requiring a
surface energetics study at the macroscale. The results of this study are summarized in Fig-
ure 2.8. The silicon wafer showed the highest average SSE (γs =66.3 mNm−1), followed
by NOA170 (γs =48.3 mNm−1), while the lower index materials ( nL=1.35-1.51) exhibited
significantly lower SSE values (γs =11.5-19.5 mNm−1). From previous reports [34], it is
expected that a material with a high SSE value will be a more favorable substrate for realiz-
ing uniform film formation of the next layer. This supports our observations that NOA170
is a favorable substrate for the low index materials evaluated here.

The LST values of all inks are evaluated using the pendant droplet method [69]. In this
work, a highly cohesive ink is defined as an ink that has a high LST value and exhibits
poor wetting behavior due to a preference for attaching to itself rather than adhering to a
substrate. On the other hand, poorly cohesive inks (low LST values) are not able to remain
bonded to themselves to form a uniform pattern on existing topographies. Based on the
values provided in Figure 2.8, NOA170 has a relatively high LST value (37.3 mNm−1).
Note that NOA170 will spread readily on a silicon substrate (γs (silicon)> γl (NOA170)),
but exhibits mixed merging behavior on lower SSE valued surfaces. It is observed that a
highly cohesive ink (e.g. NOA170) is unlikely to adhere to a low surface energy substrate,
(γl (NOA170)> γs ( nLmaterials)). Through our studies we identified two approaches for
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managing these interactions. First, the SSE value of a merged layer of an nL material
could be increased using in-situ modifications such as atmospheric plasma treatments [70].
Second, efforts may be spent in determining methods for decreasing the LST of a high
index material (NOA170 in this case) to promote improved merging quality.

From these studies, we have concluded that material interactions at the microscale are
a result of a trade-off between contact angle, SSE, and LST values. For example, printed
droplets of NOA170 on NOA1348 and NOA138 secondary substrates exhibit similar con-
tact angles at the microscale (Figure 2.9a). However, a lower SSE value for NOA1348 may
help explain why NOA170 fails to result in a merged film on this surface. We also note
that the filtered Loctite3526 and NOA13775 have similar SSE values; however, the higher
contact angle of printed droplets of NOA170 on the printed NOA13775 surface results in
a rougher surface deposition for films of NOA170. In addition, partial merging was ob-
served with the deposition of NOA170 on NOA138, NOA142, and NOA144; which also
showed moderate contact angles of printed NOA170 droplets (15◦ < θ < 25◦) as compared
to NOA1369 with similar SSE values.

2.4.1 Possible reasons for contact angle mismatch between the micro-
and macroscale

Previous reports have shown that surface heterogeneity can lead to significant changes in
SSE values and an artificial increase or decrease in the contact angle of droplets on a surface
depending on the length scale of the heterogeneity and the size of probe droplets used [71].
Furthermore, high deposition velocities with the e-jet process coupled with high viscosity
inks (> 5,000 cP for NOA170) could, at the microscale, overcome surface energetic lim-
itations apparent at the macroscale [72]. Specifically, a high viscosity ink may flatten out
under high deposition velocities. In Figure 2.7b optical micrographs utilizing a 532 nm
bandpass filter were taken of the spun coat layers of NOA138, NOA144, Loctite3526, and
NOA1369. The filter allows the topography of these layers to be investigated at longer
length scales. It was found that NOA138 and NOA144 both demonstrated irregular surface
topography while NOA1369 and Loctite3526 were both relatively smooth. Referencing
the behavior of the same materials at the microscale, it can be seen that the heterogeneous
topography exhibited in NOA138 and NOA144 could artificially increase the contact an-
gle. Specifically, AFM measurements of NOA144 with a scan area <2500µm2 indicate
extremely smooth surfaces (sq < 1 nm), but this does not hold for larger areas (indicated by
interference patterns in the optical micrograph taken by an optical microscope). Interest-
ingly, this does not explain the merging quality between NOA170 – filtered Loctite3526.
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(a) (b)

Figure 2.9: High resolution printing using e-jet technology. a) Multi-material, single
layer fabrication of high-resolution thin-film patterns. The white line shows the height
average across five pixels in the Y direction. The lighter color patterns are NOA13825 with
thickness and roughness of 205 nm and 12 nm, respectively, and the darker color patterns
are NOA170 with thickness and roughness of 101 nm and 5 nm. b) Average pattern height
across five pixels through the center of the last row.

This could potentially be explained by chemical heterogeneity in the sample, which can
lead to pinning of the droplet.

2.5 Results

This section provides a demonstration of e-jet printing of multi-layer thin-film structures.
The results presented in the previous sections were used to select appropriate ink combina-
tions. The experimental results in this section were heuristically obtained by determining
appropriate process parameters that would yield the desired film thicknesses. The desired
thickness values were derived from simulation results provided in our paper in [1] and
chosen as values that would provide a specific optical outcome.

Figure 2.9a shows multi-material microstructures that were fabricated by e-jet printing
of two high viscosity adhesives at room temperature. The design goal is to deposit uniform
high-resolution NOA170 and NOA13825 patterns with layers of 100 nm and 200 nm av-
erage thickness, respectively. The darker color patterns were 20×20 µm films of NOA170
(4400-5000 cP) with an average thickness and RMS roughness of 101 nm and 5 nm, re-
spectively. The lighter colors were deposited 17×17 µm films of NOA13825 (5600 cP)
with an average thickness and RMS roughness of 205 nm and 12 nm, respectively. The
distance between the patterns was set at 5 µm. The pattern profile across the last row of the
printed structure (shown in Figure 2.9b) highlights the flexibility and repeatability of the
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Figure 2.10: Multi-material and multi-layer fabrication using e-jet printing.

e-jet printing process.
The multi-material, multi-layer fabrication of two high viscosity materials using e-jet

printing is presented in Figure 2.10: NOA170 was printed in layers 1 and 3, while filtered
Loctite3526 was printed in layer 2. To achieve the desired effect, each layer is designed to
be approximately 160nm thick. The e-jet process parameters for NOA170 were Vh =600
V, Vl =200 V, tp =1 ms, f=20 Hz, and pitch=1.8 µm. The e-jet process parameters for
Loctite3526 were Vh =500 V, Vl =250 V, tp =5 ms, f=20 Hz, and pitch=2 µm. At each
layer, the liquid patterns were UV-cured and their topography was measured using the
integrated AFM. Figure 2.10 shows the corresponding average total height map over five
pixels from the middle of the pattern at each layer. The overall variation (roughness/ total
height) in the total stack height was less than 6%across a single layer and 4% across the
entire stack. The average total height is 159±9 nm for layer 1, 325 ±13 nm for layer 2, and
489±17 nm for layer 3, respectively. The maximum RMS roughness in all layers is less
than 17 nm, which is a demonstration of the flatness in the overall height. The integration
of control to the e-jet process could be used to mitigate height variations.

Figure 2.11 presents a high-resolution e-jet printed Bayer filter array using a high re-
fractive index polymer (NOA170, n =1.7) and a medium refractive index material (Loc-
tite3526, n =1.51). Patterns 1, 2, and 3 are associated with the red, blue, and green color
spectrum, respectively, and are equally spaced with a 15 µm offset with roughness smaller
than 13 nm. One goal in creating these bi-layer samples was to show the e-jet process
could independently control layer thickness, regardless of the previous printed layer thick-
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Figure 2.11: Multi-material and multi-layer e-jet printed Bayer array filter.

ness, with the end result being control over the reflected light intensity at specific areas of
the spectrum. Thus, the following layer goals were set with the first and second layers at
90 nm and 130 nm for pattern 1, 130 nm and 180 nm for pattern 2, and 90 nm and 180
nm for pattern 3, respectively. These combinations achieved red, green, and blue reflected
peak intensity with differing combinations of thickness of both the NOA170 as base layer
and Loctite3526 as the second layer. The optical response of these structures is explored
further in [1]. Through drop-on-demand e-jet printing, we controlled the thickness of each
layer precisely and by design. As demonstrated, it is possible to create a variable color
spectrum using e-jet printing, as the color spectrum is correlated with the layer thickness
and the corresponding refractive indices of each layer [62]. Therefore, for a fixed material
combination, the optical properties can be varied by adjusting the layer thickness.

The experimental results in this section show that the thickness variation is within 6%
across a single layer. Different factors affect these variations: 1) The integrated Nanite
AFM has ± 10 nm thermal noise that directly affects the roughness measured 2) Com-
mercial inks may contain large particles that increase thickness variations. 3) E-jet is an
iteration varying process and different factors such as nozzle clogging, environment tem-
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perature and humidity, and more can affect the deposition process and eventually affect
the roughness. Future work will explore the integration of control strategies to minimize
variations and achieve higher fidelity printed patterns.

2.6 Conclusion

In this Chapter, we presented an empirical model for e-jet printing that influences the merg-
ing quality of UV-curable polymers in thin-film, multi-material, layered microstructures. A
set of material criteria were introduced that are required for material ejection as well as ma-
terial merging in e-jet printing. The experimental results highlighted the potential of e-jet
printing as a substitute for other manufacturing techniques, such as lithography, to fabricate
high-resolution devices that are made of multiple thin layers of different materials. Further-
more, it was experimentally demonstrated that at the microscale, high-quality films were
most probable with the following material combinations (1) low contact angle, (2) high sur-
face tension of the build material, and (3) high surface energy of the previous layer. The ef-
fects of process parameters demonstrated in Figure 2.6, combined with the empirical model
determined from Figure 2.7a, provide the first steps toward the development of a general-
ized model for describing material spreading of printed layers of polymers as a function of
process parameters and the contact angle of printed single droplets. Additional material in-
teractions should be explored along with a parameterization of different material properties
such as density, viscosity, and conductivity to derive a normalized model that can be used to
predict material spreading for a broad range of materials at the microscale. Ultimately, the
controllability and repeatability of e-jet printing were demonstrated by fabricating a Bayer
filter that consisted of different colors across the spectrum using drop-on-demand printing.

32



2.7 Supplemental

Table 2.1: Density and liquid surface tension of all inks studied in this work.

Ink Density (g cm −3) γl (mN m−1)

NOA170 1.94±0.11 37.3±2.1
Loctite3526 0.94±0.04 25.1±2.1
NOA1369 1.16±0.07 14.5±0.9
NOA13775 1.40±0.04 19.4±0.4
NOA13825 1.57 ± 0.21 21.1 ± 2.5
NOA1348 1.50 ± 0.15 18.6 ± 1.8
NOA138 1.02 ± 0.03 19.3 ± 0.7
NOA142 1.04 ± 0.16 20.7 ± 2.9
NOA144 0.90 ± 0.18 19.1 ± 3.3

Rheological properties of the inks: Generally, we utilized the manufacturer provided
viscosity data. However, we conducted a rheological study to determine the viscosity
dependence on the shear rate for Loctite3526. The manufacturer-supplied value of 17,500
cP was confirmed at shear rates up to 200 s−1. However, higher shear rates led to a
decrease in the apparent viscosity. Future work will focus on the rheological behavior of
all the inks under relevant shear rates encountered while printing.

Liquid Surface Tension Characterization: Based on the density of the ink and the
resulting droplet shape underneath a nozzle, it is possible to compute the LST of an
ink. This study was also carried out on a Ramé-Hart goniometer. Density measurements
were conducted by weighing a known volume of each ink. A summary Table of density
measurements and resulting LST measurements is given in Table 2.1.

Solid Surface Energy (SSE) Characterization: All of the photopolymers studied in this
work were spin-coated onto silicon wafers (approximately 2 cm × 2 cm) at 6000 RPM
within an inert glove box and cured under 365 nm light for 15 minutes to ensure a full
cure. The contact angle-based methods of Owens-Wendt and Wu were selected for this
study to estimate the SSE value [65, 66]. Three droplets of two different probe liquids,
deionized water (γl = 72.8 mN m−1) and diiodomethane (50.8 mN m−1), were placed
at three different positions on the spin-coated samples (as well as the silicon substrate),
and the contact angles were measured using a Ramé-Hart goniometer. The SSE values of
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Figure 2.12: Experimental results for viscosity versus shear rate of Loctite3526.

all inks studied in this work are given in Table 2.2. It should be mentioned that material
deposition has been done in an ambient atmosphere. However, the patterns were cured in
a nitrogen atmosphere due to oxygen inhibition of the photopolymerization of the inks
(excluding Loctite 3526). This was achieved by creating an enclosure around the LED
curing bulb and flowing nitrogen at a high rate over the surface. The surface energies were
not measured in an inert atmosphere. The macroscale surface energetics were determined
at room temperature and pressure.

SSE and LST Measurements: The static contact angle of probe liquids is used to calculate
SSE values via the methods of Owens-Wendt and Wu. These methods are chosen based on
the wide use of the Owens-Wendt method and the accuracy of the Wu method in measuring
low surface energy polymers. They differ primarily in the calculation of the mean of the
polar and dispersive components of the energy, with the Owens-Wendt method using a
geometric mean and Wu using a reciprocal mean;

Owens-Wendt: γls = γs+γl−2(
√
γD

s γ
D
l +

√
γP

s γ
P
l )

Wu: γls = γs+γl−4(
γD

s γ
D
l

γD
s +γ

D
l

+
γP

s γ
P
l

γP
s +γ

P
l

)
(2.2)
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Table 2.2: Static contact angles and solid surface energy of all primary and secondary
substrates. All contact angles are in degrees and all solid surface energies are in mN m−1.

Owens-Wendt Wu
Substrate θwater

s θDIM
s γP

s γD
s γT

s γP
s γD

s γT
s Average

Silicon 27.1±1.0 52.0±3.8 46.6 18.5 65.1 38.6 28.8 67.4 66.3±0.8
NOA170 66.8±0.3 35.5±3.9 10.5 34.5 45.0 36.5 15.1 51.6 48.3±1.4
Loctite3526 109.8±11.6 79.9±4.9 0.4 17.3 17.7 1.7 19.5 21.2 19.4±2.6
NOA1369 109.8±0.8 90.3±1.3 1.3 11.4 12.7 3.5 14.5 18.0 15.3±0.5
NOA13775 104.4±4.6 81.2±3.3 1.6 15.4 17.0 4.1 17.8 22.0 19.5±2.1
NOA13825 109.0±1.5 84.0±3.8 0.9 14.6 15.5 2.8 17.2 20.0 17.7±1.7
NOA1348 118.7±0.5 98.9±0.6 0.5 8.5 9.0 1.7 12.2 13.9 11.5±0.2
NOA138 111.9±0.3 92.3±3.8 1.1 10.7 11.8 3.1 13.8 16.9 14.3±1.3
NOA142 113.5±5.8 90.2±4.8 0.6 12.0 12.6 2.1 15.1 17.2 14.9±2.3
NOA144 108.8±1.1 91.8±5.8 1.8 10.4 12.2 4.2 13.7 17.9 15.1±1.9

where γls the liquid-solid interfacial tension, γs is the SSE, γl is the LST, γD
l the dispersive

portion of the liquid surface tension, γP
l is the polar portion of the liquid surface tension,

γD
s is the dispersive portion of the solid surface energy, and γP

s is the polar portion of the
solid surface energy. Using the Young-Dupre equation, which relates these quantities to the
contact angle on the surface, it is possible to calculate γD

s and γP
l . Table 2.2 summarizes

the contact angles measured and the resulting solid surface energies. The values listed in
the main text are taken as the average of the Owens-Wendt and Wu methods (listed in the
far-right column).

The work of cohesion, WC , of a particular liquid is defined as the work per unit area
needed to divide that homogeneous liquid from itself. In contrast, the work of adhesion,
WA, is defined as the amount of work needed to separate a liquid from a solid surface of
another material;

Wc = 2γl (2.3a)

WA = γl(1+ cosθ) (2.3b)

R =
WA

WC
=

(1+ cosθ)
2

(2.3c)

where θ is the angle the liquid makes with the surface. In general, more energy is
required to separate a liquid from itself (WC) than from a solid surface (WA). Thus, the
R ratio in Eq. (2.3c) is typically less than 1 and has been used previously to show that
liquid/surface combinations with higher R ratios have a higher chance of merging to form
a uniform line [65]. Another benefit to using this ratio is that it is solely dependent on the
contact angle a specific liquid makes with a specific substrate.

Tables 2.3 and 2.4 show material interactions at the micro and macroscale. White cells
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Table 2.3: Contact angle and surface energetic measurements of various low index (nL)
photopolymers on NOA170 (nH) films at the macro and microscale. ḡ and sq are the aver-
age thickness and RMS roughness of the e-jet printed films.

Micro measurement Macro measurement nL film on nH surface
(nL droplet on nH surface) (nL droplet on nH surface)

Build material γl γs WC θ◦ WA R θ◦ WA R ḡ (nm) sq (nm)
Loctite3526 25.1 50.14 11.4±3.2 49.6 0.990 27.7±1.5 47.2 0.943 130.7 8.1
NOA1369 14.5 29.06 6±2.2 28.9 0.997 33.2±1 26.7 0.918 85.5 5.4
NOA13775 19.4 48.3 38.8 7.12±1.1 38.6 0.996 92.6±5 18.5 0.477 123.3 8.7
NOA13825 21.1 42.1 7.8±0.9 41.9 0.995 88.3±7.6 21.7 0.515 100.6 8.6
NOA138 19.3 38.6 - - - 0 38.6 1 280.5 100.2
NOA142 20.7 41.48 - - - 0 41.4 1 250.6 130.6
NOA144 19.1 38.18 - - - 0 38.1 1 280.3 140.1

Table 2.4: Contact angle and surface energetic measurements of NOA170 (nH) on various
low index surfaces (nL) at the macro and microscale. ḡ and sq are the average thickness
and RMS roughness of the e-jet printed films.

Micro measurement Macro measurement nH film on Silicon/
(nH droplet on nL surface) (nH droplet on nL surface) nL surface

Build material γl γs WC θ◦ WA R θ◦ WA R ḡ (nm) sq (nm)
Silicon 66.3 9±3.2 74.1 0.993 49.5±1.1 61.5 0.825 85.2 6.7
Loctite3526 19.4 13±0.8 73.6 0.987 108.3±0.8 25.6 0.343 199.1 18.1
NOA1369 15.3 34.5±4.7 68.0 0.912 88.3±0.9 38.4 0.515 290.2 120.2
NOA13775 37.3 19.5 74.6 34.5±5.8 68.1 0.912 84.7±1.4 40.8 0.547 200.6 130.2
NOA13825 17.7 45.3±12.4 63.5 0.852 87.1±0.3 39.2 0.525 210.3 80.2
NOA1348 11.5 29.5±5.7 69.8 0.935 89.0±0.5 37.9 0.509 295.8 202.7
NOA138 14.3 25.1±5.4 71.1 0.952 113.1±0.1 22.7 0.304 193.1 28.9
NOA142 14.9 20.2±1.6 72.3 0.960 115.7±0.1 21.2 0.284 195 39.1
NOA144 15.1 19.63±2.1 72.4 0.970 114.6±0.3 21.9 0.294 152.5 37.8

indicate full merging, light gray cells indicate partial merging, and dark gray cells indicate
no merging at the microscale. Elucidating the actual discrepancy between microscale and
macroscale measurements could potentially be addressed via a future study using picoliter-
sized droplets to determine the microscale surface energy (γl and γs at the microscale) [73].
As mentioned before, material merging at the microscale is a trade-off between the contact
angle at the microscale, the surface energy of the previous layer, and the surface tension
of the build material. The zero contact angles in Table 2.3mean complete wetting that was
observed at the macroscale. It should be noted that NOA138, NOA142, and NOA144,
quickly evaporate on the substrate and we could not measure their contact angles. To
measure the contact angle of NOA 170 on these materials, we spin-coated the samples
in a glove box and cured them immediately to reduce the evaporation rate, before e-jet
depositing droplets of NOA170 on top of them. In summary, a material combination with
a low micro-contact angle (< 15◦) and high SSE and LST values such that γl < γs has a
higher proclivity to merge. We can quantify all of these parameters by comparing the value
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of R for all material combinations. Based on results in Tables 2.3 and 2.4, and Figures
3 and 6A, full merging at the microscale happens with 0.987<R<1, partial merging with
0.952<R<0.97, and failure to merge with R<0.952.
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CHAPTER 3

Preliminaries of Spatial Iterative Control

In the previous chapter, e-jet printing was introduced and its ability to fabricate high-
resolution features was demonstrated. The following chapters will investigate how to exact
greater control over the addition of material for device fabrication. In particular, the next
few chapters will investigate control strategies that are available to integrate with the e-jet
process to close the topography loop in order to regulate material addition without requir-
ing a human operator to manually tune the process parameters. In this chapter, preliminary
notations, definitions, and models that describe the layer-to-layer material addition are pre-
sented.

3.1 Notation

• The finite set of Zn for an odd and positive integer n, with Z1 ≜ {0} is defined as,

Zn ≜ {
1−n

2
,
3−n

2
, ...,

n−3
2
,
n−1

2
}.

• A generic scalar function p(x,y) sampled at discrete values can be combined in the
following matrix form,

p(x,y) =


p(1−nx

2
1−ny

2 ) p(1−nx
2

3−ny
2 ) · · · p(1−nx

2
ny−1

2 )

p(3−nx
2

3−ny
2 ) p(3−nx

2
3−ny

2 ) · · · p(3−nx
2

ny−1
2 )

...
... . . . ...

p(nx−1
2

1−ny
2 ) p(nx−1

2
3−ny

2 ) · · · p(nx−1
2

ny−1
2 )


,

where finite support of p is supp(p) = {(x,y) ∈ Znx ×Zny : p(x,y) ̸= 0}. Setting nx

and ny as positive odd integers, makes the central location of p at (0,0). An example
of this generic function is the heightmap in µ-AM systems defined as a 2D array of
printed droplets in the spatial domain.
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• The 2D discrete Fourier transform (DFT) representation of p(x,y) is defined as,

P(u,v) =
nx−1∑
x=0

ny−1∑
y=0

(p(x+ x∆,y+ y∆)e−i2π( ux
nx +

vy
ny )),

where x∆ = ⌊nx
2 ⌋+1, y∆ = ⌊ny

2 ⌋+1, and ⌊.⌋ is the floor operator. Hereafter, we will use
bold capital italic font to show the frequency domain variables.

• A vectorization operator ν(.) can be applied to a matrix, p ∈ Rnx×ny , to convert the
matrix into a column vector form, p⃗ ∈ Rnxny×1, given as

p⃗ ≜ ν(P) = vec(PT).

where vec(.) is the conventional column-wise vectorization operator.

• The notation ⪯ and ⪰ are element-wise inequalities such that

A ⪯ B =⇒ [A]i j ≤ [B]i j∀ i, j.

• The Frobenius norm of a matrix A ∈ Rnx×nyis defined as

∥A∥F =

√√√ nx∑
i=1

ny∑
j=1

|Ai, j|2.

• The Frobenius norm of a matrix P ∈ Rnx×ny is related to the l2 norm of the vectorized
matrix by:

∥ p⃗∥2 =
1

√
nx×ny

∥P∥F .

3.2 Definitions

• A scalar h is denoted as an interval parameter if it lies between upper and lower
bounds, h and h as follows

h ∈ [h,h].

• H is denoted as an interval matrix if all elements within the matrix, Hi, j are interval
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parameters, and it is a member of the following matrix set:

HI = {H ∈ RMN×MN |H ⪯H ⪯H}.

• circ(p1, p2, ..., pn) is defined as a block circulant matrix with square submatrices of
the same size, p1, p2, ..., pn, where n is an odd number. The ith block of the middle
column in circ(p1, p2, ..., pn) is always pi [39]. For example, if n = 3,

circ(p1, p2, p3) =


p2 p1 p3

p3 p2 p1

p1 p3 p2


• A matrix is said to be block circulant with circulant blocks (BCCB) if it is defined as

H ≜ circ(H 1−nx
2
,H 3−nx

2
, ...,H nx−1

2
) ∈ Rn×n

Hi ≜ circ(h(i,
1−ny

2
),h(i,

3−ny

2
), ...,h(i,

ny−1
2

)),∈ Rny×ny

where h(x,y) is a discrete function, with the same support as p(x,y). Note that the
l2 norm of H equals the maximum modulus of its DFT representation; i.e., ∥H∥2 =
∥H(u,v)∥∞ = max(u,v)|H(u,v)|. The BCCB property of a matrix makes Fast Fourier
Transforms (FFT) possible, which has been demonstrated to be computationally less
expensive in calculating matrix products and norms [40], especially in applications
with large n values.

3.3 General iteration varying systems

In order to enable automated topography control for droplet based AM processes, models
that describe heightmap evolution in a layer-by-layer fashion are needed. Examples of these
models are presented in [2,3,74–76] and Eq. (3.1). In these models, the printed topography
of the current layer, gl ∈ Rnx×ny , is a linear or nonlinear function (f) of the previous layer
topography, gl−1 ∈ Rnx×ny , and the input signal of the current layer, fl ∈ Rnx×ny .

gl = f(gl−1, fl) (3.1)

The following assumptions are considered for the AM process described in Figure 3.1
and Eq. (3.1),
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Figure 3.1: Schematic of AM spatial dynamics described in Eq. (3.1).

A1 : The spreading behavior of a printed material on a flat surface is different from that
on a nonflat surface [2].

A2 : The spatial dynamics are causal in the temporal and noncausal in the spatial domain,
meaning that the applied input at a given position will affect the output in the ad-
vanced layers and surrounding coordinates [2, 40, 76].

Assumptions A1 and A2 denote that the spatial dynamics of a given AM system are a
function of previous layer topography (g⃗l−1) and the surrounding environment.

3.4 Linear Iteration Varying Models

In order to maintain access to linear control, in this work, linear models are used, or non-
linear models are linearized around their equilibrium points. A simple linear time invariant
(LTI) representation of such a model is described as follows,

g⃗l = g⃗l−1+H(g⃗l−1) f⃗l, (3.2)

with f⃗l ≜ ν( fl(x,y)) ∈ Rn×1 is the input signal, g⃗l ≜ ν(gl(x,y)) ∈ Rn×1 is the output signal,
H(g⃗l−1) ∈ Rn×n is the interval plant matrix that describes the relation between system input
and output, and n = nx × ny. We will use Hl−1 instead of H(g⃗l−1) for brevity. H is an
interval matrix if all of its elements are interval parameters. In other word, the interval H
is a member of the following matrix set:
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Figure 3.2: Heightmap evolution process. Controlled device fabrication follows the print-
cure-scan cycle, with a change in build material at each new layer. Subscript l represents a
layer and material combination.

HI = {H ∈ Rn×n |H ⪯H ⪯H}.

where ⪯ is element wise inequality. Note that the plant bounds are known and fixed prop-
erties of the iteration varying system, and for the AM-system described in Figure 3.1 they
can be measured by running the additive process described in Eq. (3.2) multiple times and
measuring maximum and minimum droplet spreading on spatially varying surfaces [2]. In
addition to the A1 and A2 assumptions in Section 3.3, the following assumption is consid-
ered for the LTI system in Eq. (3.2),

A3 : The plant matrix (H) is considered bounded input, bounded output (BIBO) stable,
meaning that there exist positive finite scalars ξ and ζ such that given a bounded input,
∥ f⃗l(x,y)∥ < ξ, the resulted output will always be bounded, ∥g⃗l(x,y)∥ < ζ, ∀(x,y) ∈
Rnx×ny .

Assumption A3 holds for the additive system described in Figure 3.1 given that material
addition to the substrate is bounded by a pre-defined volume of available material. Further-
more, because of actuator constraints, the input is limited by an upper bound [39]. For
a general additive manufacturing process, we are interested in controlling the heightmap
increment (∆g⃗l ≜ g⃗l− g⃗l−1) with respect to the previous layer described as,

∆g⃗l =Hl−1 f⃗l, Hl−1 ∈HI , (3.3)

where HI is the interval set associated with Hl−1. In Section 3.5, we will describe in detail
the different available models for the additive process in Eq. (3.2).
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(a)

(b)

Figure 3.3: Linear models for layer-to-layer material addition in AM processes. a)
CLR model: evolution of the solid surface topography as a heightmap signal is modeled by
integration of a convolution of input fl with kernel h f , and a convolution of the previous
layer output gl−1 with kernel hg. h f and hg are integration and space invariant. b) LPV
model: evolution of the solid surface topography as a heightmap signal is modeled by
integration of the convolution of input f with kernel h. h is a function of local variation in
g for each pixel in g.

3.5 AM-Model Approximation

Controlled topography evolution requires topography updates, so printing is performed in a
cycle of: 1) printing an array of droplets of varying sizes at discretized coordinates, 2) cur-
ing (solidifying) the droplets, and then 3) scanning the solid surface to obtain a heightmap
measurement of topography. This print-cure-scan cycle is depicted in Figure 3.2. In this
section, we explore three methods to estimate the spreading model of liquid inks, θ, such
that ∥gl+1−ϕ(gl, fl+1)θ̂∥ is minimized, where θ̂ is an estimation of the true θ, and ϕ(gl, fl+1)
is a nonlinear transformation between gl+1 and θ. Note that a linearized form of ϕ can be
used for control design. In the upcoming chapters, the models developed in this section
will be used in the design of different controllers.
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3.5.1 Constrained Linear Regression (CLR)

The sequence of material addition in multi-layer structures using a constrained regression
model is shown in Figure 3.3a, and can be written mathematically as,

gl+1(x,y) = (gl ∗hg)(x,y)+ ( f p
l+1 ∗h f )(x,y)

=

nx−1∑
m=0

ny−1∑
n=0

gl(m,n)hg(x−m,y−n)+
nx−1∑
m=0

ny−1∑
n=0

f p
l+1(m,n)h f (x−m,y−n),

(3.4)

where h f ∈ R5×5 is the discrete impulse response to the current layer input, and hg ∈ R5×5 is
the discrete impulse response to the previous layer output. f p

l+1 ∈ Rnx×ny is the pulsewidth
signal at layer l. In Eq. (3.4), it is assumed that the added material will spread on the
previous layer to a finite extent [76]. The simplified system model can be described using
the following 2-D convolution format. Assuming rotational symmetry of liquid droplets
in [76], h f and hg are defined by only 6 parameters. To find the unknown θLR = [hT

f hT
g ]T ∈

R12×1, the design matrix ϕ(gl, f
p

l+1) ∈ Rn×12 is constructed using the conv2(.) function in
MATLAB and the optimization, ∥gl+1 −ϕ(gl, f

p
l+1)θ̂LR∥, is solved using the built-in solver

lsqlin() in Matlab. Assuming volume conservation from layer-to-layer, hg has only one
non-zero element at the center, hg(3,3) = 1. For Loctite3526, h f is calculated as:

h f =



0.09 0.09 0.21 0.09 0.09
0.09 0.21 0.38 0.21 0.09
0.21 0.38 0.71 0.38 0.21
0.09 0.21 0.38 0.21 0.09
0.09 0.09 0.21 0.09 0.09


(
nm
ms

)

3.5.2 Linear Parameter-Varying Model (LPV)

The layer-to-layer material addition using the LPV model is presented in Figure 3.3b. The
LPV model in [2] is described using the following 2-D convolution equation,

gl(x,y) = gl−1(x,y)+
nx−1∑
m=0

ny−1∑
n=0

h(m,n)
l−1 (x−m,y−n)∗ f LPV

l (m,n). (3.5)

This model assumes a known relationship between pulsewidth and droplet size so that the
control input can be taken as drop size rather than pulsewidth in Section 3.5.1; therefore,
the input signal of the LPV model, f LPV

l ∈ Rnx×ny , is a 2D array of cube roots of drop
volumes. h(m,n)

l−1 ∈ R3×3 is the impulse response that describes the spreading behavior of
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(a)

(b) (c) (d)

(e)

Figure 3.4: Topography dependent LPV impulse response of Loctite3526 on itself. a) A
4×4 pixel of a random g signal of UV-Cured Loctite3526 to show the effect of significant
surface variation. b) M2 method in [2]: the 3×3 model’s corresponding impulse response
at the spatial location (4,2), h(4,2)(x,y). c) using M2 method in [2]: The 3× 3 model’s
corresponding impulse response at the spatial location (1,3), h(1,3)(x,y). d) M3 method
in [2]: the estimated impulse response of the topography in Figure 3.4a is spatial invariant
meaning that it is the same for every spatial coordinate of the g(x,y). e) Upper and lower
bounds of h, h̄, h, such that h ⪯ h ⪯ h̄.

a printed droplet on the neighboring coordinates at steady-state for an input signal with
magnitude one applied at coordinate (m,n) and layer l−1. Both the input f LPV and output
g are heightmaps, but only g represents a scanned topography. Choosing the same height
units for both f and g makes h, and thus the system, dimensionless.

The dependence of h(m,n)
l on existing topography gl is modeled using the multivariate

regression method proposed in [2]. Importantly, the magnitude of gl does not affect the
impulse response; only the local variation in gl affects hl. In this method, numerical simu-
lations of droplets spreading on nonflat surfaces are pre-computed for equilibrium contact
angles associated with a specific material/substrate combination. Subsequently, an ordi-
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nary least squares multivariate linear regression is performed, where the elements from
each 3×3 pixel crop of the heightmap g are the predictor variables, and the elements from
each measured 3×3 pixel impulse response h are the response variables. The fitted regres-
sion model is used to evaluate the spatially varying impulse response (method M2 in [2]),
hl−1(x,y), for the 3×3 pixel crop of the heightmap gl centered at pixel coordinates (x,y).

Figures 3.4b and 3.4c show the impulse response of Loctite3526 on a nonflat surface of
UV-cured Loctite3526 at different spatial locations, using method M2. Figure 3.4b shows
the spreading of the liquid ink on the nearby pixels, if a single droplet with magnitude one
micron is applied at the spatial coordinate coordinate (m,n)=(4,2) in Figure 3.4a with total
height of 185 nm. Note that in Figure 3.4, x and y indicate row and column numbers,
respectively. As it is expected, the model predicts the largest material height at the center
pixel (4,2), where the droplet is deposited. In addition, the model predicts no material
spreading on the nearby pixel with spatial location (3,1). The reason is that it is expected
the liquid droplet does not flow from the lower heights to the higher heights in the nearby
pixels. The nearby pixel (3,1) has higher height value (308 nm > 185 nm) compared to the
height value at the impulse location (m,n)=(4,2). Note that the last row of the h(4,2)(x,y) in
Figure 3.4b is related to the material spill-over from the droplet deposition on the spatial
location (m,n)=(4,2). Figure 3.4c shows a similar behavior for the impulse response applied
at the spatial location (m,n)=(1,3), with height value 11 nm. Similarly, the first row of
h(1,3)(x,y) is related to the material spill-over from the droplet deposition on the spatial
location (m,n)=(1,3).

Taking the average of hl−1(x,y) over all spatial coordinates (x ∈ Znx , y ∈ Zny) results
in a spatially invariant impulse response (method M3 in [2]), hl−1. Note that the spatially
invariant approximation results in a less accurate model than the spatially varying model;
however, the spatially invariant plant matrix is BCCB. Examples of impulse response cal-
culated using method M2 deposition of Loctite3526 on itself is presented in Figure 3.4d.
Unlike Figures 3.4b and 3.4c, the M3 method calculates one single 3 × 3 impulse response
shown in Figure 3.4d for all spatial locations in Figure 3.4a. Note that the estimated impulse
response is still iteration varying.

If method M3 is used to approximate the material addition, the BCCB plant matrices Hl

in Eq. (3.3) can be calculated from the BCCB construction method described in Section 3.2.
However, if M2 method is used to estimate the material spreading in the e-jet process, the
plant matrices Hl in Eq. (3.3) will not be BCCB and should be calculated using the lifted
domain conversion in the next sections. Impulse response bounds are calculated from the
supremum and infimum of each element of hl determined by simulating the deposition of
printed material on multiple topographies of the same substrate material.
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3.5.3 Convolutional Recurrent Neural Network (ConvRNN)

In this section, the ConvRNN model developed in [3] is used to estimate in-layer and layer-
to-layer material addition in e-jet printing process. Although the model is developed in [3],
the model’s parameters are calculated by the experimental data from e-jet printed samples
in Barton Research Lab at the University of Michigan. This model considers the surface
tension of liquid droplets, parameterized by κ known as the flowability parameter, that
causes the droplets to move from higher to lower height locations of nearby pixels.

y⃗t
l = y⃗t−1

l −Dσ(KDTy⃗t−1
l )+Wuu⃗t

l (3.6a)

g⃗l(i) = ln(γ+ ey⃗n
l (i)+v0), i, t ∈ [1,n] (3.6b)

y⃗0
l = g⃗l−1. (3.6c)

where, y⃗t
l ∈ Rn×1 defines the network internal states at layer l and time step t, which refer

to the unmeasured material addition states during in-layer deposition of a single droplet
in liquid form. Note that y⃗t

l is considered internal state since our integrated sensor, AFM,
cannot measure the in-layer dynamics when a new liquid droplet reaches the surface and
interacts with the other liquid droplets on the same layer and the existing solid topography
of the previous layer at the microscale and millisecond timescale. g⃗l ∈ Rn×1 is the measured
topography of layer l once the material has been UV cured. In addition, u⃗t

l ∈ Rn×1 is the
ratio of the size of the deposited droplet at time step t to the maximum droplet size. The
input signal of the entire layer is given by f⃗ ConvRNN

l =
∑n

t=1 u⃗t
l. Note that we assume the

relationship between the applied pulsewidth and droplet size is known. nl is defined as
the number of links between the nodes. The incidence matrix, D ∈ Rn×nl , in Figure 3.5
transforms the height profile of all discretized grids into height differences or links. The
circles and arrows in Figure 3.5 represent nodes (each discrete spatial location that a single
droplet deposits) and the link between nodes, respectively. D(i, j) is 1 if the link j starts at
node j, -1 if link j ends at node i, and zero if there is no connection between node i and
link j.

K = κI ∈ Rnl×nl is constructed as a diagonal matrix with nonzero elements along the
diagonal that captures the material flow along each link. In Eq. (3.6a), σ(lt) represents the
Leaky soft threshold function that is set to zero if the effective flow at each time step is
smaller than a threshold value ϵ, lt =KDTy⃗t−1

l < ϵ. The matrix Wu ∈ Rn×n is a BCCB matrix
associated with the convolution kernel b ∈ R5×5, such that Wuu⃗t

l = ν(b ∗ut
l). Note that, b is

the kernel related to the spreading behavior of the largest droplet. From the definition of
u⃗t

l, the elements of the input signal f ConvRNN
l are bounded between 0 ≤ f ConvRNN

l (i) ≤ 1.
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Figure 3.5: Incidence matrix (D) developed in [3]: the circles and arrows represent nodes
(each discrete spatial location that a single droplet deposits) and the link between nodes,
respectively. D(i, j) is 1 if the link j starts at node j, -1 if link j ends at node i, and zero if
there is no connection between node i and link j.

Lastly, v0 is the material shrinkage parameter due to UV curing, and γ is a non-negative
scalar that ensures that the output heightmap remains nonnegative.

To derive the ConvRNN model, the unknown parameters of θConvRNN = [ϵ,b, κ,γ,v0]
for the printing material of interest (e.g. Loctite3526), are calculated from experimental
data using the steps described in [3]:

ϵ = 6.66, κ = 1.12×10−5, γ = 1.014, v0 = 56.88(nm),

b =



−6.77 −9.99 45.58 −9.99 −9.98
23.97 28.03 58.74 2.72 −1.17
32.68 36.76 100.0 45.12 39.80
7.60 1.08 39.91 −6.38 3.30

24.35 6.66 26.95 0.91 20.98


(nm).

3.5.4 Model Validation

To evaluate the performance of the different modeling approaches, experimental data from
printed samples of Loctite3526 on itself are used to derive the difference between the mea-
sured and predicted output topography. Figure 3.6 shows the experimental data from [76]
that are used for model development and validation. We use 8 devices (63 nodes ×8) in Fig-
ure 3.6 for training, and two devices to test the accuracy of the models of linear regression
and Convolutional Recurrent Neural Network models in the next sections. The variable g1,
g2, and ∆g2 define material height at layer 1, layer 2, and the incremental height at layer
2. To capture the merging behavior of Loctite3526 with itself, we assume a base layer of
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Figure 3.6: Experimental data for deposition of Loctite 3526: ḡ1, ḡ2, ∆ḡ2 are average height
of layers one and two, and incremental height at layer two over a 7×9 discritized domain.

material and start the system identification using the input signal at layer two ( f2). The
layers are printed using a 2D pseudo-random binary sequence (PRBS) pulsewidth signal
(described in [76]), with a 35×45 µm spatial plane discretized into 7 by 9 grids for a 5µm
droplet-to-droplet distance known as pitch.

The error metric is defined as ∥gexp
2 −ϕ(g

exp
1 , f

exp
l+1 )θ̂∥22, where gexp refers to the measured

experimental values, f exp is the derived input signal, and θ̂ is the model from each method,
respectively. Note that the input signal for each model is different.

The results in Figure 3.7 illustrate that the ConvRNN model that considers surface
material flowability is more accurate than the other models. However, the ConvRNN model
is nonlinear and computationally expensive; thus, it is well suited to represent the true

system in the simulation case studies, but cannot be used for linear control design. As
a comparison, the linear LPV and CLR models are approximately 50% computationally
faster than the ConvRNN model. The LPV model captures the wetting nonlinearity due to
non-flatness of the previous layer and yet still maintains access to linear control. However,
the LPV model does not capture droplet-to-droplet effects due to surface tension since the
model assumes that the droplets are placed far away from each other. In this approach,
multiples passes are required to form a thin-film by depositing droplets spatially distanced
from each other, and curing the material between passes to avoid coalescence effects. Since
the experimental layers in Figure 3.6 are fabricated in one printing pass, the LPV model
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Figure 3.7: Performance comparison: Experimental data from printing Loctite3526 is
used to compare the different modeling approaches. The error is computed as e = gexp

2 − ĝ2,
where ĝ2 is the prediction of gexp

2 using different modeling approaches. Note that ĝ2 is a
function of gexp

1 and the input signal at the second layer.

does not capture unmodeled nonlinearities due to surface tension of the droplets for thin-
film formation.

3.5.5 Lifted Conversion

To leverage standard temporal-domain control algorithms, the system defined in Eqs. (3.4)
and (3.5) can be transferred into the lifted-form through the use of a vectorization operator
defined in Section 3.1. A full description of the lifted domain conversion can be found
in [40]. For brevity, we present the lifted form of Eqs. (3.4) and (3.5) in the following lifted
formats,

g⃗l =Hgg⃗l−1+H f f⃗ p
l (3.7a)

g⃗l = g⃗l−1+H(gl−1) f⃗ LPV
l (3.7b)

with f⃗ LPV
l ≜ ν( f LPV

l (x,y)) ∈ Rn×1, f⃗ p
l ≜ ν( f p

l (x,y)) ∈ Rn×1, and g⃗l ≜ ν(gl(x,y)) ∈ Rn×1. H f

and H(gl−1) ∈ Rn×1 are the lifted domain plant matrices associated with h f ∈ R5×5 and
h(x,y) ∈ R3×3 in Eqs. (3.4) and (3.5). Note that the Hg ∈ Rn×1 is the identity matrix, since
the identified hg ∈ R5×5 in Eq. (3.4) has one nonzero element in the center equal to one.
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To convert the ConvRNN model in Eq. (3.6) to the lifted domain and enable access to
linear control, the nonlinear equation in Eq. (3.6) should be linearized around its equilib-
rium. Suppose ( f⃗e,∆g⃗e) are the equilibrium pair of Eq. (3.6). For the multi-layer structure
in Figure 3.1a, the desired incremental height at all layers and iterations is fixed to ∆g⃗d.
Assume that at the equilibrium, the iteration varying spatial dynamics converge to a nomi-
nal behavior and lim

l→∞
∆g⃗l = ∆g⃗d. Since the desired topography is a flat layer with a desired

thickness of d > 0 nm(∆g⃗d = d1⃗n×1), there is no height difference across the layer at the
equilibrium and therefore, no droplet-to-droplet movement along the links is expected,
σ(lt) = 0. In addition, since the reference for all layers is equal, the equilibrium point of
layer one is equal to the equilibrium point of other layers. Simplifying Eq. (3.6b), at the
equilibrium for layer one, y⃗n

e at the equilibrium is calculated as

y⃗n
e = ln(ed+v0 −γev0)1⃗n×1, (3.8)

where, y⃗n
e is the uncured topography at the equilibrium when the last droplet at layer one is

deposited, and 1⃗n×1 is a vector of ones. Substituting Eq. (3.8) into Eq. (3.6a), and assuming
σ(KDTy⃗t−1

l ) = 0 at the equilibrium, the input signal at the equilibrium f⃗e is calculated as,

f⃗e =W−1
u ln(ed+v0 −γev0)1⃗n×1. (3.9)

The linearized approximation model of Eq. (3.6) at ( f⃗e,∆g⃗e), which approximates the
dynamics of the nonlinear Eq. (3.6) around the equilibrium point, is calculated as follows,

∆g⃗l ≃ (
∂g⃗l

∂ f⃗l
−
∂g⃗l−1

∂ f⃗l
)e( f⃗l− f⃗e)+∆g⃗e. (3.10)

Note that future layer inputs do not have an impact on previous layer outputs, ∂g⃗l−1

∂ f⃗l
= 0. In

addition, the Jacobian matrix at the equilibrium is defined as HJ ≜
∂gl
∂ fl

and is calculated as

HJ ≜
∂g⃗l

∂ f⃗l
=
∂g⃗l

∂y⃗n
l

∂y⃗n
l

∂ f⃗l
(3.11a)

∂g⃗l

∂y⃗n
l
= diag(

1
1+γe(v0− y⃗n

l (i)
)), i = 1,2, ...,n (3.11b)

∂y⃗n
l

∂ f⃗l
=Wu−D

n−1∑
t=1

σ′(⃗yt)KDT Wu1(1−t) (3.11c)

Eq. (3.11b) is consistent with the results in [3]. Eq. (3.11c) is calculated from step by step
partial derivation of Eqs. (3.6a) and (3.6b). 1(1−t) ∈ Rn×n in Eq. (3.11) is a block diagonal
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matrix with all elements equal to zero, expect the first t diagonal terms which are equal
to one. For example, 1(1−1) has only one nonzero element equal to one on (i, i) = (1,1).
Similar to [3], σ′(yt) is as follows,

σ′(yt) =


1 if KDT y⃗t(i) > ϵ

δ = 0.01 if −ϵ < KDT y⃗t(i) < ϵ

1 if KDT y⃗t(i) < −ϵ.

(3.12)

∆g⃗l =HJ f⃗ ConvRNN
l +∆g⃗e−HJ f⃗e, (3.13)

Note that the Jabobian matrix in Eq. (3.11a) is not BCCB, because the second element in
Eq. (3.11c) is not BCCB.

3.6 Model Assumptions

In addition to the assumptions in A1−A3, the following assumptions are considered for the
ConvRNN or LPV models in Eqs. (3.7) and (3.13),

A4 : The heightmap increments using the LPV model obey scalar multiplication and linear
superposition. Therefore, the model described in Eq. (3.7b) does not capture drop
coalescence effects.

A5 : The ConvRNN model based on [3] in Eq. (3.6) is geometrically independent and the
Jacobian matrix in Eq. (3.13) is iteration invariant.

A6 : The model developed in Eq. (3.7a), is a constant, local model that is valid on the
range of pulsewidths used in the system identification.

Assumption A4 is a major assumption of the additive model in Eq. (3.7b) that simplifies
the system dynamics for control design. Many AM processes exhibit coalescence/surface
effects that preclude linear super-position [2]. For instance, in a physical AM deposition
process, depositing twice the volume of material does not cause the incremental heightmap
to double. We capture these nonlinearities through model uncertainty applied to the plant
model in Eq. (3.2). The ConvRNN model, on the other hand, considers these surface ef-
fects by implementing a graph structure with nl links between nodes that incorporates the
effect of the liquid material flow between nearby droplets. Assumption A5 implies that the
model parameters of the ink are generalizable to any geometry for the ConvRNN model
in Eq. (3.6) based on the incorporation of a physical understanding of mass conservation
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during height evolution. When we linearize the ConvRNN model around an equilibrium
point, the resulting Jacobian matrix is a constant matrix. Assumption A6 implies that the
CLR model highly depends on process variability, such as nozzle size or standoff height
variations, that would shift the pulsewidth range, and subsequently the h f matrix and even-
tually results in model mismatch. Depending on the ink, after printing for a while, the high
resolution nozzles (< 10 µm) might clog during printing and a higher range of pulsewidths
would be required to pull material out of the nozzle. In addition, although the CLR model
captures droplet-to-droplet effects within the h f matrix, it does not take previous layer to-
pography into consideration, thus ignoring an important consideration for error propagation
from layer to layer. On the other hand, both M2 and M3 methods with the LPV model cap-
ture previous layer topography within the model. One advantage of the CLR model over
method M2 with the LPV approach is that the plant matrix, H f , in Eq. (3.7a) is BCCB and
enables efficient matrix computations using DFT methods. The BCCB formulation comes
from the constant h f for all pixels and layers. Similarly, since the impulse response of the
M3 method with the LPV model is constant for every pixel within the same layer, the plant
matrix associated with it is BCCB. In contrast, the M2 method with the LPV model calcu-
lates the impulse response hl(x,y) for each spatial location, which considers the effects of
previous layer unevenness. Note that if Method M2 is used, the lifted plant matrix, Hl, is
not BCCB.
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CHAPTER 4

First-Order SILC for Multi-material and
Multi-layer Additive Manufacturing

In literature, spatial ILC (SILC) has been used in conjunction with additive processes to
regulate single-layer structures with only one class of material. However, SILC has the
unexplored potential to regulate AM structures with multiple build materials in a three-
dimensional fashion. In Figure 2.11 of chapter 2 an example of these multi-material devices
was presented that has been fabricated using e-jet printing technology. The optical perfor-
mance of such devices depends on the uniformity and consistency of the layers; as such, the
fabrication process must be able to provide strict adherence to the desired design require-
ments through robust control of the process. Due to the challenges in real-time monitoring
and control in e-jet printing process, SILC provides an appealing option to regulate these
process. In this chapter, SILC is used as a recursive control strategy to iteratively construct
the feedforward signal to improve part quality of 3D structures that consist of at least two
materials in a layer-by-layer manner. Estimating the appropriate feedforward input signal
in these structures can be challenging due to iteration varying initial conditions, system
parameters, surface interaction dynamics in different layers of multi-material structures. A
MIMO configuration is proposed that incorporates vertical knowledge through considera-
tion of previous layer spatial dynamics (plant models) [33], and horizontal learning from
part to part to derive a diagonal SILC SILC framework.

4.1 Multi-plant System Dynamics

In chapter 3 and Eq. (3.3), the layer-to-layer material addition and heightmap evolution for
single material deposition was presented. Eq. (3.3) can be extended to combine multi-plant
dynamics into a single MIMO architecture (illustrated in Figure 4.2). As an example, we
will consider the fabrication of a two material construct, n1 and n2, with repeated topology
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Figure 4.1: Demonstrative multi-material 3D structure fabricated by AM. n1 and n2 are two
arbitrary build materials

Figure 4.2: Schematic of bi-material AM spatial dynamics described in Eq. (4.1).

(see Figure 4.1). It is assumed that the device in Figure 4.1 is printed on a thin pad of n2

material to maintain consistency in the two spatial systems, n1 on n2 and n2 on n1. Although
we assume that the spatial dynamics for a given material are invariant to the layer index, we
must still apply the noncausality assumption of A2 to guarantee that the spatial dynamics of
a given layer are a function of previous layer topography and build material. As a result, we
consider two plant matrices, Hn1,n2

l−1 ∈ Rn×n and Hn2,n1
l−1 ∈ Rn×n, that describe spreading of the

n1 and n2 materials on the corresponding previous layer topographies for the bi-material
structure in Figure 4.3. n = nx×ny denotes the total number of discretized spatial locations
(nodes). Note that as described in the previous chapter, depending on the model, the plant
matrices are not necessarily BCCB matrices, but they are bounded by invariant upper and
lower bounds such that H ⪯ Hl−1 ⪯ H. The matrix bounds are (BCCB) as described in
Section 3.2.

Similar to Eq. (3.3), the spatial dynamics for the bi-material structure described in Fig-
ure 4.1 can be expressed as,∆g⃗n1

l

∆g⃗n2
l

 = Hn1,n2
l−1 0
0 Hn2,n1

l−1

  f⃗ n1
l

f⃗ n2
l

 , Hn1,n2
l ∈HIn1,n2 , Hn2,n1

l ∈HIn2,n1 , (4.1)
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with ∆g⃗i
l = g⃗l − g⃗l−1 and f⃗ i

l ∈ Rn×1 denoting heightmap increment and the control input of
the build material i ∈ [n1,n2] in an layer l. Note that HIn1,n2 and HIn2,n1 are the interval sets
corresponding to Hn1,n2

l and Hn2,n1
l .

To aid in analysis and learning filter derivation, we define a nominal system plant matrix
for each build material. These matrices are constructed from the impulse response of the
desired topography at a given layer l,

Hn1,n2
0 =Hn1,n2(g⃗n2

dl
), Hn2,n1

0 =Hn2,n1(g⃗n1
dl

) (4.2)

where g⃗i
dl

is the desired topography of the build material i ∈ [n1,n2] at layer l. In multi-
material and multi-layer structures, the following assumption holds for the plant matrix
along with the assumptions described in A1−A6.

A7: Plant spatial dynamics (e.g. Hn1,n2
l−1 ) are a function of the printing material (e.g. n1),

the build material of the previous layer (e.g. n2), and previous layer topography
(g⃗n2

l−1).

Assumption A7 ensures that the surface energy of different materials is captured through the
spatial dynamics that describe spreading of a sessile droplet as a function of the interactions
induced by a particular material combination and orientation as describes in chapter 2.

To consider an arbitrary number of build materials, Eq. (4.1) can be extended to a
general multi-material model,

∆g⃗l ≜ Hnl,nl−1
l−1 f⃗l, ∆g⃗l ≜


∆g⃗n1

1
∆g⃗n2

2
...
∆g⃗nl

l


, f⃗l ≜


f⃗ n1
1

f⃗ n2
2
...

f⃗ nl
l


(4.3)

where nl is the build material of layer l, and Hnl,nl−1
l is a block diagonal plant matrix de-

scribing the spreading of the nl material on the previous layer topography (g⃗nl−1
l ) through

the diagonal elements Hnl,nl−1
l .

4.2 Diagonal SILC Design for Multi-material Structures

Consider the multi-layer structure shown in Eq. (4.1) with two different spatial plant dy-
namics. The components of the SILC framework are defined below. For this example, we
assume that all devices (denoted by j) in the same layer (and hence same material) have
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Figure 4.3: Diagonal SILC: learning occurs in the horizontal direction from a previous
device and vertical direction to incorporate topography. l denotes layer index and j denotes
iteration (device) index.

the same desired heightmap increment, ∆g⃗dl . It is assumed that the total number of layers
and iterations are limited such that l = 1,2, ...,L and j = 1,2, ..., J.

∆el, j ≜

∆en1
l, j

∆en2
l, j

 , f⃗l, j ≜

 f⃗ n1
l, j

f⃗ n2
l, j


∆g⃗dl ≜

∆g⃗n1
dl

∆g⃗n2
dl

 ,∆g⃗l, j ≜

∆g⃗n1
l, j

∆g⃗n2
l, j


H0 =

Hn1,n2
0 0
0 Hn2,n1

0

 , Hl, j =

Hn1,n2
l, j 0

0 Hn2,n1
l, j


with ∆el, j ∈ R2n×1, ∆g⃗dl ∈ R2n×1, ∆g⃗l, j ∈ R2n×1, f⃗l, j ∈ R2n×1, and Hl, j ∈ R2n×2n. Leverag-
ing the compact form presented above, the predicted error in heightmap increment can be
defined as,

∆el, j ≜ ∆g⃗dl −∆g⃗l, j = ∆g⃗dl −Hl−1, j f⃗l, j, (4.4)

where ∆g⃗l, j is replaced using the structure in Eq. (4.3). Combining the feedforward signal
and corresponding error illustrated in Figure 4.4 yields a SILC update law of the form,

f⃗l, j+1 = L fl, j f⃗l, j+Lel, j∆el, j (4.5)

with L fl, j and Lel, j block diagonal matrices of the input and error filters defined as,
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Figure 4.4: Diagonal SILC, each layer has its own SILC loop and each device is one
iteration. l is layer index and j is iteration (device) index. w is the iteration shift operator,
f j+1 = w f j, n1 and n2 are the build materials corresponding to layer l and l+1. The update
filters are iteration varying.

L fl, j =

Ln1
fl, j

0

0 Ln2
fl, j

 , Lel, j =

Ln1
el, j 0
0 Ln2

el, j

 .
Li

fl, j
and Li

el, j
are the input and error filters corresponding build materials, i ∈ [n1,n2]. Note

that the update law in Eq. (4.5) is based on the error in each layer, ∆el, j, not the total error.
Layer error was selected as the desired goal to ensure layer repeatability and consistency,
which is often a design objective in additively manufacturing constructs. An example of
these structures was presented in Figure 2.11.

To construct the feedforward input signal at iteration j+ 1 in Eq. (4.5), the input and
error signal of one iteration before ( j) at the same layer are used; as such, the SILC in
Eq. (4.5) is called first-order SILC (FO-SILC). In the next chapter, another type of SILC
will be introduced, called higher-order SILC (HO-SILC), that the information from mul-
tiple iterations before is used to construct the feedforward signal.

Substituting Eq. (4.4) into Eq. (4.5) yields the closed-loop SILC algorithm that will be
used throughout the paper.

f⃗l, j+1 ≃ (L fl, j −Lel, jHl−1, j) f⃗l, j+Lel, j∆g⃗dl . (4.6)

The term diagonal learning stems from the inclusion of information from both previous
iterations and previous layers within the update law. This has been illustrated in Figures 4.3
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and 4.4. Note that Eq. (4.6) is used to design the controller in simulation. During the
experiment, we still use Eq. (4.5) to construct the feedforward signal. The reason is that,
Eq. (4.1) (or Eq. (4.4)), is just an approximation of the spreading behavior of the droplets.
In Figure 3.7 of chapter 3, it was demonstrated that depending on the model, there will be
always model mismatch between the true and approximated model.

4.3 Design of Learning Filters

There are many different methods that can be employed from temporal ILC to design the
input and error filters in Eq. (4.6) such as proportional type ILC, model inversion, and Q-
filter design [45]. Here, we implement a norm optimal-SILC (NO-SILC) algorithm [40],
which seeks to minimize a quadratic cost function in the spatial domain. NO-SILC offers
controllability in terms of the convergence behavior and final error. The quadratic cost
function that is minimized to solve for the NO-SILC filters is defined as,

J =∆eT
l, j+1

Qn1 0

0 Qn2

∆el, j+1+ f⃗ T
l, j+1

Sn1 0

0 Sn2

 f⃗l, j+1+( f⃗l, j+1− f⃗l, j)T

Rn1 0

0 Rn2

 ( f⃗l, j+1− f⃗l, j) (4.7)

where Qn1 and Qn2 ∈ Rn×n, Sn1 and Sn2 ∈ Rn×n, Rn1 and Rn2 ∈ Rn×n are symmetric positive
definite matrices that penalize the layer error, input signal and change in the input signal
from iteration to iteration, respectively. We will consider the same weighting matrices for
both systems such that Qn1 = Qn2 = Q, Rn1 = Rn2 = R, and Sn1 = Sn2 = S. The weighting
matrices are defined here as identity matrices multiplied by positive scalars q, s, and r

such that Q = qI, S = sI, and R = rI. Given the assumption of iteration invariant desired
reference trajectories, we can relate two successive errors (iteration to iteration) within the
same layer using the following equation

∆el, j+1 = ∆el, j+Hl−1, j f⃗l, j−Hl−1, j+1 f⃗l, j+1 (4.8)

Substituting Eq. (4.8) into Eq. (4.7) and setting the partial derivatives of J with respect to
f⃗ n1
l, j+1 and f⃗ n2

l, j+1 equal to zero, the following relationships are obtained for the filters,

Ln1
fl, j
= ((S+R)+HTn1,n2

l−1, j+1QHn1,n2
l−1, j+1)−1(R+HTn1,n2

l−1, j+1QHn1,n2
l−1, j) (4.9a)

Ln1
el, j = ((S+R)+HTn1,n2

l−1, j+1QHn1,n2
l−1, j+1)−1(HTn1,n2

l−1, j+1Q) (4.9b)

Ln2
fl, j
= ((S+R)+HTn2,n1

l−1, j+1QHn2,n1
l−1, j+1)−1(R+HTn2,n1

l−1, j+1QHn2,n1
l−1, j) (4.9c)
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Ln2
el, j = ((S+R)+HTn2,n1

l−1, j+1QHn2,n1
l−1, j+1)−1(HTn2,n1

l−1, j+1Q) (4.9d)

The learning filters in Eqs. (4.9a) to (4.9d) are iteration varying matrices that depend
on previous layer topography as well as existing material combinations. If the update law
in Eq. (4.6) converges to some finite input value and the iteration varying spatial dynamics
converge to the nominal model such that

lim
l→∞
j→∞

f⃗l, j = f⃗∞, lim
l→∞
j→∞

Hl, j =H0, lim
l→∞
j→∞

L fl, j = L f0 , lim
l→∞
j→∞

Lel, j = Le0 ,

where L f0 and Le0 are based on the nominal plant model, the converged input would tend
towards,

f⃗∞ = (I−L f0 +Le0H0)−1Le0∆g⃗dl . (4.10)

Under these conditions, the performance of the system can be obtained by substituting
Eq. (4.10) into Eq. (4.4) as follows

∆e∞ = (I−Hl
0[(HlT

0 Q)−1S+Hl
0]−1)∆g⃗dl . (4.11)

The convergence behavior and performance of NO-SILC can be tuned by the weighting
coefficients in the filters ( [39,40]). Extending the learning filters in Eqs. (4.9a) to (4.9d) to
the general linear iterative model described in Eq. (4.3) results in,

Lnl
fl, j
= ((S+R)+H

Tnl,nl−1
l−1, j+1QHnl,nl−1

l−1, j+1)−1(R+H
Tnl,nl−1
l−1, j+1QHnl,nl−1

l−1, j ) (4.12a)

Lnl
el, j = ((S+R)+H

Tnl,nl−1
l−1, j+1QHnl,nl−1

l−1, j+1)−1(H
Tnl,nl−1
l−1, j+1Q). (4.12b)

4.4 Simulation setup

In this section, we investigate the proposed diagonal SILC framework through a simula-
tion study using a model of an electrohydrodynamic jet (e-jet) printing process. Drop-on-
demand of e-jet printing is achieved using synchronized substrate motion and high voltage
pulses applied to either nozzle of a bi-material e-jet printer, with the schematic shown in
Figure 1.2. Varying the rectangular wave pulsewidth allows for variation in printed droplet
size.

For this simulation, the device structure has the topology of Figure 4.3 with layer
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Figure 4.5: Topography dependent impulse response. a) Nominal model: at left is a 3×3
pixel crop of a layer’s reference topography signal away from the edges so that it is uniform
in height. At right is the model’s corresponding impulse response for printing the alternate
material on the flat surface, b) Effect of nonflat surface: at left is a 3× 3 pixel crop of a g
signal, indexed by material. The crop is taken near an edge to show the effect of significant
surface variation. At right is the spatially varying impulse response local to a certain pixel
(x,y) for printing the alternate material at the location corresponding to the crop at left.

heights of 100 nm for n1 and 120 nm for n2. Each layer is printed in a single printing
pass, so the build material alternates between n1 and n2 at each new layer. For the first
(bottom) layer in the simulation, composed of material n1, the underlaying surface, (l = 0),
is assumed to be a pre-layer of cured n2 so that first-layer surface interactions with other
substrate materials need not be considered. It is assumed that the spatial dynamics for a
given material is independent of the layer index, as long as the same material is used on
those layers (Section 4.1). However, due to noncausality of the plants and surface energy of
the previous layer, it is still a function of previous layer topography and its build material.
Therefore, we only consider two plant matrices of Hn1,n2 and Hn2,n1 . Output heightmaps
are measured relative to the top of the flat pre-layer, and the domain is 256× 256 pixels.
The pitch size is considered 1 µm for both materials. The desired output, gdl , at layer l is
uniform except for the four outer rings of pixels, which are reduced by half to better rep-
resent material dropoff at edges. It is assumed that after a layer of one material is printed,
it is UV-cured, and the resulted topography is scanned as described in [33] to measure the
output which is g⃗l, j at any layer l and device j.

To capture material spreading in a layer-by-layer manner, the LPV model in Sec-
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tion 3.5.2 is used. This simulation assumes a known relationship between pulsewidth and
droplet size (cube root of droplet volume [2]) so that the control input can be taken as
droplet size rather than pulsewidth (see Figure 1.3). Heightmap evolution from layer to
layer is simulated according to Eq. (4.1), as depicted in Figures 3.2 and 3.3b. The gl depen-
dence on the convolution kernel h(x,y)

l−1 is modeled using the multivariate regression model
(method M2) of [2]. Since there are two material combinations (n1 printed on n2 and n2

printed on n1), two regression models must be specified. For n1 printed on n2, an equilib-
rium contact angle of 10° is used in the numerical simulations of droplet spreading, whereas
5° is used for n2 printed on n1. The nominal models hn1

0 and hn2
0 , corresponding to the print-

ing of n1 (NOA170) and n2 (Loctite3524(unfiltered)), are calculated using the regression
models’ prediction of spreading on reference topographies gd, denoted hn1

0 = h(gn2
d ) and

hn2
0 = h(gn1

d ), and shown in Figure 4.5a. In contrast, examples of impulse responses pre-
dicted on nonflat surfaces are shown in Figure 4.5b. The nominal plants in Eq. (4.2) can
be calculated based on the BCCB matrix construction defined in Section 3.2. Following
the model of [2], we take a 2D array of cube roots of droplet volumes to be the input, de-
noted fl, j. Both the input f and output g are heightmaps, but only g represents a scanned
topography. Choosing the same height units for both f and g makes h, and thus the system,
dimensionless.

In addition to the deterministic spatial variation in the system described above, stochas-
tic noise is added to the simulation. For n2 printed on n1, the deterministic term is
hn2,n1(gn1

l−1, j), and the additive uncertainty ĥn2 is used, giving hn1,n2
l, j = hn1,n2(gn2

l−1, j)+ ĥn1 ,
and for printing n1 on n1: hn2,n1

l, j = hn2,n1(gn1
l−1, j)+ ĥn2 . The additive uncertainty is normally

distributed as ĥi = N (0,σ2
i )1(3,3), where σi is the standard deviation of the elements of

the nominal model hi
0, 1(3,3) is a 3× 3 matrix of 1’s for i ∈ [n1,n2]. From the impulse

responses h, the plant matrices Hl, j in Eq. (4.1) are calculated from the lifted domain con-
version defined in the Section 3.5.5. The impulse response bounds are chosen such that
hi = hi

0−σ
i1(3,3) and h

i
= hi

0+σ
i1(3,3) for i ∈ [n1,n2]. Similarly, the plant matrix bounds

H and H are calculated from hi and h
i

by the BCCB construction method described in
Section 3.2.

4.5 Simulation Results

In this section, the simulation results of the system described in Section 3.3 with repeated
topology such as Figure 4.1 using diagonal NO-SILC are investigated. A multi-layer struc-
ture with four layers of the n1 material, and three layers of the n2 material is considered
as shown in Figure 4.3. For analysis and ease in implementation, we consider the learning
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Figure 4.6: Average height increments for both materials approach a nominal value over
the iterations (devices). n1 and n2 are the build materials in the odd and even layers, re-
spectively (q = 1,r = 0.2, s = 0.001). Iteration j = 0 refers to the first device.

filters in Eqs. (4.9a) to (4.9d) based on the nominal dynamic model (L f0 and Le0), while
the update law Eq. (4.6) will still use the iteration varying plant dynamics Hl−1, j.

It is important to note that the inputs of the first iteration at layers 1 and 2 are zero,
f⃗ n1
1,1 = 0 and f⃗ n2

2,1 = 0, implying that there is no prior knowledge on the appropriate inputs
for these materials. This results in no material deposition during the first iteration of layers
1 and 2. However, the input of the first device ( j = 1 at other layers, l > 2, comes from
the last device in the previous layer with the same material, such that f⃗l,1 = f⃗l−2,J where
J is the total number of iterations per layer as shown in Eq. (4.1). A normally distributed
white noise signal has been added to the input signal, with the mean and variance of 0.00
and 0.01 µm, to better represent the experimental environment. The signal to noise ratio is
approximately 12 for the n1 and 26 for the n2 material for the mean value of the converged
input. Furthermore, the input will be constrained to positive definite values to ensure an
additive process. The set of simulations was run for 30 iterations (devices) using MATLAB
for different values of s and r. In all simulations, the parameter q was set equal to one
(q = 1). the total heightmap and corresponding standard deviations.

The average height increment and the corresponding desired height increment for each
material class are presented in Figure 4.6. The outputs from the layers of a given material
all converged to roughly the same offset from the desired height increment where better
convergence is observed in higher layers. In additive manufacturing, the design goal often
focuses on achieving consistent layers with a repeatable thickness distribution, which is a
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Figure 4.7: SILC convergence for different values of the NO tuning parameters for the first
layer with n1 material. Iteration j = 0 refers to the first device.

highly desirable characteristic in most sensory applications where uniformity and period-
icity of layers are of great importance.

To compare the effects of the tuning parameters, the performance of the SILC system
in Frobenius norm is demonstrated in Figure 4.7 for different values of the penalty terms
r and s in layer one with n1 material as a representation of all other layers. The weighting
coefficients enable NO-SILC to control the rate of convergence, the final converged error,
and the converged output (Figures 4.6 and 4.7). Increasing the value of the input penalty,
s, would increase the final error. On the other hand, increasing the value of r would reduce
the convergence speed. Due to the nature of the additive process, it is also very important
to use appropriate weighting coefficients to avoid accumulation and propagation of errors
in the successive layers.

4.6 CONCLUSION

In this chapter, we present a novel spatial FO-ILC framework for repetitive systems that
have multiple spatial dynamics with application to microscale additive manufacturing of
multi-material 3D structures. To address the combined challenges of multiple plant dy-
namics due to multiple build materials and varying initial conditions due to roughness of
the previous layer surface, a new diagonal SILC algorithm is proposed. To demonstrate the
performance of the proposed framework, a bi-material structure is considered in simulation
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where the corresponding MIMO configuration involves two subsystems with distinct SILC
control loops that are internally connected due to the layer-wise nature of the AM process.
Simulation results show that FO-SILC can be successfully employed to regulate the input
of the iterative system to improve the heightmap reference tracking and the corresponding
surface roughness.
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CHAPTER 5

Higher-Order Spatial Iterative Learning Control
for Improved Micro-Additive Manufacturing

In the previous chapter, a first-order SILC (FO-SILC) framework was introduced that con-
sidered in-layer and layer-to-layer dynamics to achieve uniformly printed layers in multi-
material 3D-structures [42]. The control input of the proposed FO-SILC was updated from
the previously printed device information along the device-axis ( j horizontal) within the
same layer l. A drawback of the proposed FO-SILC framework stems from the additive
process. The FO-SILC framework only considers current layer errors, ∆el(x,y) (the dif-
ference between ∆gd

l (x,y) and actual incremental height ∆gl(x,y)) rather than total error,
el(x,y) (the difference between gd

l (x,y) and actual printed total heightmap gl(x,y), see Fig-
ures 1.4 and 5.1). In this case, the existing layer errors are accumulated over the layers,
potentially causing large deviations from the desired total height. The learning process will
be more complicated at higher layers in which, large surface variations resulting from the
accumulated error lead to large model uncertainties. Hence, the controller should be able
to compensate for total error el, j(x,y) in the third dimension (layer direction l or z-axis),
which is especially important in cases when a large number of layers are deposited. Thus,
new theories are needed to control in-layer errors as well as the total accumulated error in
multi-layered structures.

While FO-ILC has proven to be useful for reference tracking of repetitive systems, it
might lose performance when uncertainties are high. To achieve better performance with
respect to convergence speed, higher-order ILC (HO-ILC) has been developed, where the
feedforward signal is synthesized using historical data from multiple iterations [38,46–50].
There have been several attributes stated in literature that motivate the implementation of
HO-ILC over FO-ILC. In [50], the authors presented anecdotal evidence of merit to justify
either HO- or FO-ILC depending on the situation. However, in [48,49], the authors argued
that a HO-ILC framework demonstrated better convergence speed and robustness than a
FO-ILC framework, while [77] asserted that the real motivation behind the use of HO-
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ILC was to reduce the effects of disturbances and noise. Similarly, the authors of [46, 47,
78] claimed that a HO-ILC design achieved faster convergence as compared to a FO-ILC
framework due to the effects of learning over several previous iterations. In this chapter,
a higher-order spatial iterative learning control (HO-SILC) scheme is proposed targeting
heightmap tracking of multi-layer structures fabricated by AM technology to achieve better
convergence performance as compared to FO-SILC [46] due to the additional information
that is leveraged from previous layers. The contributions of this chapter are:

1. A HO-SILC framework for AM structures that combines device-to-device and layer-
to-layer learning in the lifted- and frequency-domain, while considering iteration
varying spatial dynamics.

2. A detailed methodology for transforming HO-SILC of AM processes to a FO-SILC
scheme for stability and robustness analysis.

3. The development of a design methodology for deriving learning filters that directly
embed stability criteria for nominal HO-SILC system.

4. The design boundary prediction of a maximum allowable uncertainty around the
nominal plant for monotonic convergent of the iterative norm-optimal HO-SILC al-
gorithm.

5.1 Higher-Order SILC Design for Multi-layer Struc-
tures

In this section, we extend the FO-SILC framework developed in chapter 4 by adding layer-
to-layer learning (vertical direction) as presented in Figure 5.1. HO-ILC processes usually
have faster convergence compared to FO-ILC, because HO-ILC uses the information from
multiple past trials to construct the input control signal. We term the proposed SILC al-
gorithm higher-order SILC because learning occurs over one iteration in the part-axis ( j,
horizontal) and N iterations in the layer axis (l, vertical).

For a multi-layer structure as shown in Figure 5.1a, a HO-SILC update law is proposed.

f⃗l, j+1 = (Lh
f f⃗l, j+Lh

e∆e⃗l, j)+
i=N∑
i=1

(Lvi
f f⃗l−i, j+1+Lvi

e ∆e⃗l−i, j+1) (5.1)

with Lh
f , Lh

e , Lvi
f and Lvi

e ∈ Rn×n defined as the horizontal input and error filters and vertical
input and error filters for i < l, respectively. n is total number of discrete point n = nx×ny.
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(a)

(b)

(c)

Figure 5.1: Closed-loop control of AM process: a) Learning happens from layer-to-layer
(vertical) and device-to-device (horizontal) to control material deposition in 3D structures,
b) Higher-order SILC (HO-SILC) is used as a recursive control strategy to close the loop,
c) Standard HO-SILC block diagram. l denotes layer index and j denotes iteration index.
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Note that in Eq. (5.1), printing is in the horizontal direction from part to part. This is
suitable for devices such as [42,79] in which multiple materials are printed at specific layers
or the reference incremental height is changing from layer to layer. For single material
deposition, the printing can be in the vertical direction, from layer to layer and the SILC
update law would be f⃗l+1 =

∑i=N
i=1 (Li

f f⃗l−i+1+Li
e∆e⃗l−i+1).

5.2 Design of Learning Filters

To implement a norm optimal-SILC (NO-SILC) algorithm similar to Section 4.3, we define
a weighted error vector, e⃗w

l, j+1, as follows

e⃗w
l, j+1 ≜ ∆e⃗l, j+1+α1∆e⃗l−1, j+1+ ...+αl−1∆e⃗1, j+1

α⃗≜ [α0,α1,α2, ...,αl−1]T,
(5.2)

where αi ∈ [0,1] are layer varying user defined control parameters. The quadratic cost
function that is minimized to solve for the NO-SILC learning filters is defined as,

J = e⃗wT

l, j+1Qe⃗w
l, j+1+ ( f⃗l, j+1− f⃗l, j)T R( f⃗l, j+1− f⃗l, j)+ f⃗ T

l, j+1S f⃗l, j+1

+

N∑
i=1

βi( f⃗l, j+1− f⃗l−i, j+1)T R( f⃗l, j+1− f⃗l−i, j+1),
(5.3)

where Q, S, and R ∈ Rn×n are symmetric positive definite matrices that penalize the layer
error, input signal, change in the input signal from iteration to iteration, and change in
the input signal from layer to layer. We design weighting matrices as identity matrices
multiplied by positive scalars q, s, and r such that Q = qI, S = sI, and R = rI; βi ∈ [0,1]
are layer varying user defined parameters to weight the influence of previous layer input
signals, such that β⃗ ≜ [β1,β2, ...,βl−1]T. In order to emphasize more recent layers, we set
α′i =

αi

∥α⃗∥
and β′i =

βi

∥β⃗∥
, with α,β ∈ [0,1]. If α = 1 in Eq. (5.2), the cost function Eq. (5.3)

is optimized over the total error. Note that the weighted error in Eq. (5.2) is not known,
but it can be approximated using any of the models that were developed in Section 3.5 and
Eq. (4.4).

5.2.1 Lifted-domain Learning Filters

Given the assumption of iteration invariant desired reference trajectories in Eq. (4.8) and
substituting Eqs. (4.4), (4.8) and (5.2) into Eq. (5.3) and setting the partial derivatives of
J with respect to f⃗l, j+1 equal to zero, the following relationships can be obtained for the
filters based on the nominal plant, H0,
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Lh
f = ((s+ r+ r

l−1∑
i=1

β′i)I+α
′
0qHT

0 H0)−1(rI+α′0qHT
0 H0) (5.4a)

Lh
e = ((s+ r+ r

l−1∑
i=1

β′i)I+α
′
0qHT

0 H0)−1α′0qHT
0 (5.4b)

Lvi
f = ((s+ r+ r

l−1∑
i=1

β′i)I+α
′
0qHT

0 H0)−1β′irI (5.4c)

Lvi
e =
α′i
α′0

Lh
f (5.4d)

If the iteration varying spatial dynamics converge to the nominal model, lim
l, j→∞

Hl, j =H0, the

converged input would tend towards,

f⃗∞ = [H0(1+
N∑

i=1

αi)+
s
q

(HT
0 )−1]−1(∆g⃗d

l +

N∑
i=1

αi∆g⃗d
l−i) (5.5)

Under these conditions, the converged performance of the system is obtained by substitut-
ing Eq. (5.5) into Eq. (4.4),

∆e⃗∞ = (I− [(1−
N∑

i=1

αi)I+
s
q

(HT
0 )−1H−1

0 ]−1)∆g⃗d
l − [(1−

N∑
i=1

αi)I+
s
q

(HT
0 )−1]−1

N∑
i=1

αi∆g⃗d
l−i

(5.6)

5.2.2 Frequency-domain Learning Filters

If the plant matrix that is used to predict/approximate the error in Eq. (5.3) is BCCB (see
Eqs. (4.4) and (5.1), the M3 method with LPV and CLR models in Sections 3.5.1 and 3.5.2),
the learning filters and update law in Eqs. (5.1) and (5.4) have frequency representations,
which enables us to use computationally efficient fast Fourier transform (FFT) methods.
The frequency domain representation of the learning filters in Eq. (5.4) for a BCCB plant
matrix are presented as,
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Lh
f (u,v) =

α′0qH∗0 ◦H0+ r1n×n

α′0qH∗0 ◦H0+ (s+ r+ r
∑l−1

i=1 β
′
i)1n×n

(u,v) (5.7a)

Lh
e(u,v) =

α′0qH∗0
α′0qH∗0 ◦H0+ (s+ r+ r

∑l−1
i=1 β

′
i)1n×n

(u,v) (5.7b)

Lvi
f (u,v) =

rβ′i1n×n

α′0qH∗0 ◦H0+ (s+ r+ r
∑l−1

i=1 β
′
i)1n×n

(u,v) (5.7c)

Lvi
e (u,v) =

α′i
α′0

Lh
e(u,v) , i = 1, ...,N (5.7d)

where ◦ is the Hadamard or entrywise product of two matrices, and H0 is the frequency
domain representation of the nominal plant. Lh

f , Lh
e , Lvi

f , and Lvi
e ∈ Rnx×ny re 2-D DFTs

(discrete fourier transforms) of the learning filters in Eqs. (5.1) and (5.4). Because of the
BCCB structure of H0 and the learning filters, the update law in Eq. (5.1) for the BCCB
plant model can be equivalently represented in the frequency domain as follows,

fl, j+1(u,v) = (Lh
f ◦ fl, j+Lh

e ◦∆el, j)(u,v)+
N∑

i=1

(Lvi
f ◦ fl−i, j+1+Lvi

e ◦∆el−i, j+1)(u,v), (5.8)

where f(u,v) ∈ Rnx×ny and ∆e(u,v) ∈ Rnx×ny are frequency domain representation of
f (x,y) ∈ Rnx×ny and ∆e(x,y) ∈ Rnx×ny . The update law in Eq. (5.8) is expected to be com-
putationally faster compared to the lifted domain update law in Eq. (5.1) due to entry-
wise product computations using the hadamard product instead of matrix multiplication in
Eq. (5.1).

5.3 HO-SILC Transformation To FO-SILC

In the literature, there are very few examples of monotonic convergence (MC) condition
of HO-ILC frameworks [38,78], while the stability condition of FO-ILC is well described.
It is possible to leverage the proofs for FO-ILC to analyze stability of a HO-ILC system
by converting the HO-ILC algorithm to a FO-ILC framework. In this section, we fol-
low methods developed in [36, 80, 81] to convert the HO-SILC framework in Eq. (5.1) to
FO-SILC. This modified closed-loop FO-ILC framework will then be used to investigate
stability margins for the iteration varying model described in Eq. (3.3). The approach taken
here is a bit different than [36, 80, 81]. The transfer functions from HO-SILC to FO-SILC
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are constructed based on the layer-by-layer nature of AM-process such that the FO-SILC
system incorporates learning along the iteration axis, j, as well as the layer axis, l.

The HO-SILC algorithm defined in Eq. (5.1) can be expressed based on the closed-loop
plant matrices, by inserting Eq. (4.4) into Eq. (5.1) as,

f⃗l, j+1 = Th
l−1, j f⃗l, j+

l−1∑
i=1

Tvi
l−i−1, j+1 f⃗l−i, j+1+ (Lh

e +

l−1∑
i=1

Lvi
e )∆g⃗d, (5.9)

with Th
l, j =Lh

f −Lh
eHl, j and Tvi

l−i−1, j =Lvi
f −Lvi

e Hl−i−1, j being the closed-loop horizontal and
vertical plant matrices, respectively. Eq. (5.9) can be further simplified by concatenating
the input signals over the vertical axis, l, such that,

z⃗l, j+1 = Dl, j⃗zl, j+Kl, j⃗zl, j+1+ C⃗l (5.10a)

z⃗l, j = [ f⃗ T
l, j, ..., f⃗

T
2, j, f⃗

T
1, j]

T ∈ Rln×1 (5.10b)

z⃗l,∞ = (I−Dl,∞−Kl,∞)−1C⃗l, (5.10c)

where Dl, j ∈ Rln×ln, Kl, j ∈ Rln×ln, and C⃗l ∈ Rln×1 are a diagonal block matrix, upper triangu-
lar block matrix, and constant vector, respectively,

Dl, j =


Th

l−1, j 0 · · · 0

0 . . . ...
... Th

1, j 0
0 · · · Th

0, j


, (5.11a)

Kl, j =



0 Tv1
l−2, j+1T

v2
l−3, j+1 · · ·T

vl−2
1, j+1 Tvl−1

0, j+1

0 Tv1
l−3, j+1 · · ·T

vl−2
1, j+1 Tvl−2

0, j+1
. . . . . . ...

...
... 0 Tv1

1, j+1 Tv2
0, j+1

0 Tv1
0, j+1

0 · · · 0


(5.11b)
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C⃗l =



(Lh
e +Lv1

e + · · ·+Lvl−1
e )∆g⃗d

...

(Lh
e +Lv1

e +Lv2
e )∆g⃗d

(Lh
e +Lv1

e )∆g⃗d

Lh
e∆g⃗d


(5.11c)

Eq. (5.10) can be further simplified to the following FO-SILC format,

z⃗l, j+1 = Fl, j z⃗l, j+ F⃗r

Fl, j = (I−Kl, j)−1Dl, j

F⃗r = (I−Kl, j)−1C⃗l

(5.12)

We used the same notation as [36, 78] for transfer matrix and vector Fl, j and F⃗r. The
closed-loop FO-SILC algorithm in Eq. (5.12) will be used in the following section to in-
vestigate the asymptotic and monotonic properties of the closed-loop HO-SILC update law
in Eq. (5.9) following methods described in [36, 38, 39, 78].

5.4 Stability and Convergence

In most control systems, a fundamental goal is to guarantee the convergence of the track-
ing error to zero or within a neighborhood of a nominal value over a small number of
iterations. Asymptotic stability of iteration varying systems requires the joint spectral ra-
dius of the iterative plant to be less than one, which is a difficult problem [39,82]. In many
manufacturing applications, such as the optical sensor presented in [1] and Figure 2.11,
large transient errors may introduce failures in the functional capabilities of the printed
device. Therefore, the controller should be designed to regulate material deposition such
that the layer errors decrease from iteration to iteration and layer to layer. In this work, we
focus on monotonic stability of iterative systems subjected to bounded model uncertainties,
which is an often desirable property for additive manufacturing processes. We combine the
methods developed in [38, 39, 78] to derive stability conditions for closed-loop HO-SILC
algorithms subjected to iteration varying model uncertainties. First, we design the learning
filters such that the nominal system is stable. Then a stability radius, rAIU , is designed
based on the Lyapunov equation such that the iterative system remains stable as long as
the magnitude of model uncertainties is less than the stability radius at all iterations. We
follow [39] and [38] to design the stability margins of the converted FO-SILC subjected to
interval uncertainty.
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Theorem 1 The system in Eq. (3.2) controlled by the FO-SILC in Eq. (5.12) (or HO-SILC

in Eq. (5.9)) is monotonically convergent in the lp norm, ∥⃗zl, j+1− z⃗l,∞∥p < ∥⃗zl, j− z⃗l,∞∥p, if:

∥Fl, j∥p < 1 ∀l, j

∥F⃗r∥p < ξ
(5.13)

where ξ is positive scalar that ensures ∥F⃗r∥p remains bounded.

Corollary 1.1 The monotonic stability condition in Eq. (5.13) can be expressed as follow-

ing:

RMC ≜
1−∥Kl, j∥

l−1
p

1−∥Kl, j∥p
×∥Dl, j∥p < 1 ∀l, j (5.14)

Proof 1 Kl, j is a strictly upper triangular block matrix containing block matrices of higher-

order terms, Tvi
l, j ∈ Rn×n, with l block zero matrices and 0 ∈ Rn×n, along the diagonal. From

linear algebra, Al is zero for a strictly triangular matrix A ∈ Rl×l with dimension l [83–85].

We use this property for strictly upper triangular block matrix Kl, j to avoid matrix inversion

in Eq. (5.12), using the fact that Kl
l, j = 0 (l denotes the number of layers). Here

I−Kl
l, j = (I−Kl, j)(I+Kl, j+K2

l, j+ ...+Kl−1
l, j ) (5.15)

implies that

(I−Kl, j)−1 = (I+Kl, j+K2
l, j+ ...+Kl−1

l, j ). (5.16)

Inserting Eq. (5.16) into Eq. (5.13) results in

∥Fl, j∥ = ∥(I−Kl, j)−1Dl, j∥

≤ ∥(I+Kl, j+K2
l, j+ ...+Kl−1

l, j )Dl, j∥

≤ (1+ ∥Kl, j∥+ ∥Kl, j∥
2+ ...+ ∥Kl, j∥

l−1)∥Dl, j∥

(5.17)

where the right side of Eq. (5.17) is a geometric sum that can be rewritten as 1−∥Kl, j∥
l−1

1−∥Kl, j∥
×

∥Dl, j∥. Therefore, if the RMC parameter 1−∥Kl, j∥
l−1

1−∥Kl, j∥
×∥Dl, j∥ < 1, ∥Fl, j∥ will be less than one.

Note that because of norm properties in Eq. (5.17), the RMC criteria in corollary 1.1 is
more conservative than the criteria presented in Eq. (5.13).

5.4.1 Nominal Stability and Convergence

For the additive model in Eq. (3.2), the nominal plant matrix results from the desired to-
pography, H0 =H(g⃗d). The nominal matrices are:
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D0l =


Th

0 · · · 0
... . . . ...
0 · · · Th

0

 (5.18a)

K0l =


0 Tv1

0 · · · Tvl−2
0 Tvl−1

0
. . . ...

...
0 Tv1

0

0 · · · 0


(5.18b)

In this case, the following properties are true:

∥D0l∥p = ∥T
h
0∥p (5.19a)

∥K0l∥p ≤

l−1∑
i=1

∥Tvi
0 ∥p, (5.19b)

∥Th
0∥ = ∥L

h
f −Lh

eH0∥ (5.19c)

∥Tvi
0 ∥ = ∥L

vi
f −Lvi

e H0∥. (5.19d)

Eq. (5.19b) has an equal sign for l∞ norm of BCCB H0 matrix.

Theorem 2 The system in Eq. (3.2) controlled by a nominal system representation of FO-

SILC in Eq. (5.12) (or HO-SILC in Eq. (5.9)) is asymptotically stable (AS) for the nominal

system if and only if:

ρ(Th
0) < 1, (5.20)

where ρ is the spectral radius.

Proof 2 To prove the nominal stability of Eq. (5.9), we need to prove the nominal repre-

sentation of Eq. (5.12) is stable. The nominal form of the system given by Eq. (5.12) is

asymptotically stable if ρ(F0l) < 1, with F0l = (I−K0l)
−1D0l . (I−K0l)

−1 is a strictly upper

triangular block matrix with block-diagonal matrices equal to I; therefore, the eigenvalues

of F0l are equal to the eigenvalues of D0l . D0l is a block diagonal matrix and its spectral

radius is equal to the spectral radius of the matrix Th
0. Therefore, the nominal system is

stable if ρ(Th
0) < 1.

The monotonic stability of the FO-SILC algorithm in Eq. (5.12) derives from Eq. (5.13);
a nominal system representation of Eq. (5.12) is RMC stable using contraction mapping if
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Figure 5.2: Monotonic nominal stability of HO-SILC: the negative area below contour
level 0 is related to the MC0 stable regions for the nominal system. The area below the
dashed red line is the approximated stable regions.
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∥F0l∥p < 1. Using corollary 1.1, the conservative RMC criteria for the nominal system is

defined as: RMC0 ≜
1−∥K0l∥

l−1
P

1−∥K0l∥p
×∥Th

0∥p < 1. Figure 5.2 shows the design regions of learning

filters that correspond to MC0 ≜
1−∥K0∥

l−1

1−∥K0∥
×∥D0∥−1 for two different layer numbers, where

negative values below a contour level of 0 relate to MC0 stable regions for the nominal
system. Note that if ∥K0∥ << 1, we can ignore ∥K0∥

l−1 for higher layers and the mono-
tonic stability region can be approximated by a line (∥K0∥+ ∥D0∥ < 1). The area below
the dashed red line represents an approximation of the stable region defined by the MC0

parameter. To ensure monotonicity, we design the learning filters such that ∥K0∥+∥D0∥ < 1
(or ∥Th

0∥1+
∑L-1

i=1 ∥T
vi
0 ∥1 < 1). It can be seen that as the number of layers increases the area

related to ∥K0∥+∥D0∥ < 1 approaches the stable boundary condition deonoted by MC0 = 0.
Alternatively, as the number of layers decreases, ∥K0∥+ ∥D0∥ < 1 becomes more conserva-
tive, as evident by the missing stable region shown with the dashed blue lines in Figure 5.2a.

Remark 1 In order to avoid norm calculations of the high dimensional F0l or K0l ∈ Rln×ln,

the l∞ norm can be used. Eq. (5.19b) has an equality sign for l∞, which reduces dimen-

sionality in calculating matrix norms of Tvi
0 ∈ Rn×n instead of K0l ∈ Rln×ln.

5.4.2 Maximum Allowable Interval Uncertainty

In this section, we design the learning gain matrices in Eq. (5.9) such that closed-loop
HO-SILC remains stable for the maximum allowable interval uncertainty (AIU) added to
the nominal plant. Altin et al. formulated the iteration varying system behavior as that
of robustness under interval uncertainties with spatially invariant bounds for a FO-SILC
system [39]. In this section, we extend their results to HO-SILC systems.

Assume that the iteration varying plant Hl, j =H0+∆Hl, j is an interval matrix, and ∆Hl, j

is additive uncertainty of the nominal plant. In order to quantify the maximum amount of
allowable uncertainty, we define the uncertainty radius as ∆Hr ≜

H−H
2 . Given known upper

and lower bounds, we assume that the nominal plant follows the center matrix definition
in [39] such that H0 =

H̄+H
2 . In general, ensuring the asymptotic and monotonic stability

in Eq. (5.20) and Eq. (5.13) for all Hl, j ∈ HI is a difficult problem [39, 86]. The goal here
is to find the maximum allowable interval uncertainty, rAIU , such that the RMC criteria in
Eq. (5.14) is guaranteed for all ∥∆Hl, j∥ < rAIU . We can solve this problem by ensuring the
maximum amount of uncertainty in the system remains smaller than rAIU at all iterations. In
other words, if the learning filters in Eq. (5.7) are designed such that ∥∆Hr∥ < rAIU , we can
ensure ∥∆Hl, j∥ < rAIU for all iterations and layers. Iteration varying matrices in Eq. (5.9)
can be written as Th

l, j = Th
0−Lh

e∆Hl, j and Tvi
l, j = Tvi

0 −Lvi
e ∆Hl, j. We can decompose the rest

of the matrices as:

77



Dl, j = D0l +∆Dl, j (5.21a)

Kl, j =K0l +∆Kl, j (5.21b)

Fl, j = F0l +∆Fl, j (5.21c)

∆Dl, j = −Lh
e


∆Hl−1, j · · · 0

... . . . ...
0 · · · ∆H0, j

 (5.22a)

∆Kl, j = −



0 Lv1
e ∆Hl−2, j+1 Lv2

e ∆Hl−3, j+1 · · · Lvl−1
e ∆H0, j+1

0 Lv1
e ∆Hl−3, j+1 · · · Lvl−2

e H0, j+1
... . . . ...

0 Lv1
e ∆H0, j+1

0 · · · 0


(5.22b)

inserting Eqs. (5.16) and (5.21) into Eq. (5.12), F can be decomposed as the following:

Fl, j = (I+ (K0l +∆Kl, j)+ ...+ (K0l +∆Kl, j)l−1)(D0l +∆Dl, j)

= (a0l +a1l∆Kl, j+a2l∆K2
l, j+ ...)(D0l +∆Dl, j)

(5.23a)

a0l = I+K0l +K2
0l
+ ...+Kl−1

0l
(5.23b)

a1l = I+2K0l +3K2
0l
+ ...+ (l−1)Kl−2

0l
, l ≥ 2 (5.23c)

a2l = I+3K0l +6K2
0l
+10K3

0l
+ ...+

(l−1)(l−2)
2

Kl−3
0l
, l ≥ 3 (5.23d)

Ignoring the higher order terms for small model uncertainties around the nominal plant
(∆Hn ≃ 0 for n > 2),

F0l = a0lD0l ,

∆Fl, j ≃ (a1l∆Kl, j+a2l∆K2
l, j)D0l + (a0l +a1l∆Kl, j)∆Dl, j.

(5.24)

Theorem 3 Given the learning matrices designed for the nominal plant H0 such that the

nominal system is AS (ρ(Th
0) < 1), the iterative system in Eq. (3.2), controlled by the FO-

SILC in Eq. (5.12) remains AS if
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∥∆Hr∥p < rAsym
AIU

rasym
AIU =

−µ1+
√
µ2

1+4 µ2
∥P∥∞

2µ2
,

(5.25)

where µ1 and µ2 are positive scalars that are functions of the learning filters and nominal

plant.

µ1 = 2θ1⟨F0l⟩p, µ2 = 2θ2⟨F0l⟩p+ θ
2
1 (5.26a)

θ1 = ⟨a0l⟩p⟨L
h
e⟩p+ ⟨a1l⟩p⟨T

h
0⟩p

l−1∑
i=1

⟨Lvi
e ⟩p

θ2 = ⟨a1l⟩p⟨L
h
e⟩p

l−1∑
i=1

⟨Lvi
e ⟩p+ ⟨a2l⟩p⟨T

h
0⟩p(

l−1∑
i=1

⟨Lvi
e ⟩p)2,

(5.26b)

where ⟨B⟩p ≜ max(∥B∥p,∥BT∥p) for an arbitrary square matrix B in lp norm. In Eq. (5.25),
P is a symmetric and positive definite matrix that satisfies the Lyapunov stability of the

nominal plant [38],

FT
0l

PF0l −P = −I. (5.27)

Proof 3 Assume the FO-SILC in Eq. (5.12) is Asymptotically stable for the nominal plant;

from Lyapunov stability, there exist a positive definite P > 0 such that Eq. (5.27) is satis-

fied. The iteration varying FO-SILC is asymptotically stable in the Lyapunov sense, if the

following inequality is satisfied with the same P from Eq. (5.27):

FT
l, jPFl, j−P < 0,

l = 1,2, ...,L,

j = 1,2, ..., J.

(5.28)

Defining ∥∆H∥p ≜ maxl, j(∥∆Hl, j∥p), the following induced norms hold for ∆Kl, j and ∆Dl, j:

∥∆Dl, j∥p ≤ ∥Lh
e∥p∥∆H∥p (5.29a)

∥∆Kl, j∥p ≤ (
l−1∑
i=1

∥Lvi
e ∥p)∥∆H∥p (5.29b)

Inserting Eqs. (5.24) and (5.27) into Eq. (5.28), and taking the norm of both sides we have:
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(F0l +∆Fl, j)TP(F0l +∆Fl, j)−P < 0
∥.∥p
−−−→ 2⟨F0l⟩p⟨∆Fl, j⟩p+ ⟨∆Fl, j⟩

2
p <

1
∥P∥p
.

(5.30)

Using Eqs. (5.29a) and (5.29b) and taking lp norm of both sides of Eq. (5.24), we have:

⟨∆Fl, j⟩p ≤ θ2⟨∆H⟩2p+ θ1⟨∆H⟩p (5.31)

where θ1 and θ2 are defined in Eq. (5.26b). Neglecting higher order terms for small model

uncertainties (∥∆H∥np ≈ 0, ∀n ≥ 3), Eq. (5.30) can be simplified to a quadratic equation for

⟨∆H⟩p:

µ1⟨∆H⟩p+µ2⟨∆H⟩2p−
1
∥P∥p

< 0, (5.32)

which is negative when ⟨∆H⟩p <
−µ1+

√
µ2

1+4 µ2
∥P∥∞

2µ2
. µ1 and µ2 are defined in Eqs. (5.26a)

and (5.26b). Therefore, rasym
AIU =

−µ1+
√
µ2

1+4 µ2
∥P∥∞

2µ2
. Note if Eq. (5.32) holds, then Eq. (5.30) is

true, not vice versa.

Note that assuming bounded model uncertainty, Theorem 3 provides sufficient condi-
tion for BIBO stability of the closed-loop HO-SILC in Eq. (5.9).

Theorem 4 Given the learning matrices are designed such that the nominal system is RMC

stable (∥F0l∥< 1, ∀l ), the iterative additive process in Eq. (5.1), controlled by the FO-SILC

in Eq. (5.12), remains robustly monotonically stable if:

∥∆Hr∥p < rmono
AIU ,

rmono
AIU =

−µ1+
√
µ2

1+4 µ2
∥Ps∥p

2µ2
.

(5.33)

Ps is a positive definite matrix that satisfy the following equation:

ST
0l

PsS0l −Ps = −I, S0l =

 0 FT
0l

F0l 0

 (5.34)

Proof 4 As it was explained earlier in Eq. (5.13), monotonic stability of Eq. (5.12) is

achieved if ∥Fl, j∥p < 1. If the l2 norm is used, then ∥Fl, j∥2 = σ̄(Fl, j). Maximum singu-

lar value of a matrix (here Fl, j ) is defined as:
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σ̄(Fl, j) =
√
ρ(FT

l, jFl, j). (5.35)

Eq. (5.35) implies if ρ(FT
l, jFl, j) < 1, then σ̄(Fl, j) < 1. In other words, the maximum singular

value problem for monotonic convergence can be solved equivalently as a eigenvalue prob-

lem. Following the same steps as Eqs. (5.28) to (5.32), maximum allowable uncertainty of

the nominal plant for monotonic convergence of Eq. (5.12) can be achieved [38]. Note that

the eigenvalues of FTF are equal to the eigenvalues of S,

Sl, j = S0l +∆Sl, j, Sl, j =

 0 FT
l, j

Fl, j 0

 , ∆Sl, j =

 0 ∆FT
l, j

∆Fl, j 0

 . (5.36)

Assume the FO-SILC in Eq. (5.12) is monotonically stable for the nominal plant; from

Lyapunov stability, there exists a positive definite Ps > 0 such that Eq. (5.34) holds. Simi-

larly, the iteration varying FO-SILC is monotonically stable based on the Lyapunov stabil-

ity (ρ(Sl, j)= σ̄(Fl, j)< 1), if the following inequality holds with the same Ps from Eq. (5.34):

ST
l, jPsSl, j−Ps < 0 ∀l & j. (5.37)

Inserting Eq. (5.36) into Eq. (5.37), and using Eq. (5.34) we have:

ST
0l

Ps∆Sl, j+∆ST
l, jPsS0l +∆ST

l, jPs∆Sl, j < I. (5.38)

Given ∥S0l∥p = ⟨F0l⟩p and ∥∆Sl, j∥p = ⟨∆Fl, j⟩p, and taking lp norm of both sides of Eq. (5.38)
we have:

2⟨F0l⟩p⟨∆Fl, j⟩p+ ⟨∆Fl, j⟩
2
p <

1
∥Ps∥p

. (5.39)

Using Eqs. (5.24) and (5.31), Eq. (5.39) simplifies to a quadratic equation for ∥∆H∥p,

µ1∥∆H∥p+µ2∥∆H∥2p−
1
∥Ps∥p

< 0, (5.40)

which is negative when ∥∆H∥p <
−µ1+

√
µ2

1+4 µ2
∥Ps∥p

2µ2
. µ1 and µ2 are defined in Eqs. (5.26a)

and (5.26b). Therefore, rmono
AIU =

−µ1+
√
µ2

1+4 µ2
∥Ps∥p

2µ2
. Note that if Eq. (5.40) is true, then

Eq. (5.39) is true, not vice versa.

Remark 2 By direct substitution of S0l into Eq. (5.34), it is evident that Ps = diag(P,P)
and ∥Ps∥p = ∥P∥p, which results in rmono

AIU = rasym
AIU . We denote rAIU ≜ rmono

AIU = rasym
AIU , as an
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Figure 5.3: Topology dependent impulse response. The estimated impulse response is
spatial invariant (Method M3 of [2]) meaning that it is the same for every spatial coordinate
of the g(x,y). Note that the estimated impulse response is iteration varying. a) Effect of flat
surface. At left is a 4× 4 pixel of a flat reference topography signal. At right is the 3× 3
model’s corresponding nominal impulse response (h0). b) Effect of a nonflat surface. At
left is a 4×4 pixel of a random g signal to show the effect of significant surface variation.
At right is the 3×3 model’s corresponding impulse response (h). c) upper and lower bounds
of h, h̄, h, such that h ⪯ h ⪯ h̄.

estimate on the maximum allowable interval uncertainty.

Remark 3 The special structure of K0l in Eq. (5.18), results in ∥K0l∥1 = ∥K0l∥∞.

5.5 Simulation setup

For this simulation, a multi-layered structure with L = 6 layers is considered (Figure 5.1a).
The LPV and ConvRNN models developed in Section 3.5 are used to describe the spreading
of liquid droplets on nonflat surfaces. The reference device structure has the reference
height map, ∆gd, given in Figure 5.1a with 100 nm layer heights for all layers, which is
uniform except for the two outer rings of pixels that are reduced by half to better represent
material drop-off at the edges. Each layer is printed in a single printing pass on top of a
cured surface. For the first (bottom) layer in the simulation, the underlying surface, (l = 0),
is assumed to be a pre-layer of cured printing material so that first-layer surface interactions
with other substrate materials need not be considered. In e-jet printing, droplet volume has
a standard variation of 25% over a wide range of droplet sizes [41]. Therefore; a normally
distributed white noise is added to the input signal. For example, for the LPV model in
Eq. (3.5), a normally distributed white noise with variance of 0.25 µm is added to the input
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signal such that ∆g⃗l, j = Hl−1, j f⃗ LPV
l, j ◦ (1n×1 +N (0,0.252)n×1), where 1 is a vector of ones.

The input will be constrained to non-negative values to ensure an additive process.
It is important to note that the input of the first iteration at the first layer is zero, f⃗1,1 =

0⃗, implying that there is no prior knowledge of the appropriate input. This results in no
material being deposited during the first iteration of the first layer. However, the input of
the first device at higher layers, l ≥ 2, comes from the last device in the previous layer, such
that f⃗l,1 = f⃗l−1,J where J = 30 is the total number of iterations.

The LPV model in Eq. (3.5) is used to design the HO-SILC learning filters in Eq. (5.7)
and the results are shown in Figures 5.4, 5.5a and 5.5b and Tables 5.1 to 5.3. The linearized
CRNN model in Eq. (3.13) is used to design the learning filters in Eq. (5.4), and the results
are shown in Figure 5.6. In the absence of the experimental data, the error is calculated
from the difference between the desired and simulated height increment predicted by the
nonlinear CRNN model in Section 3.5.3 and Eq. (3.6).

For Loctite3526, the nominal impulse response and the invariant bounds for the M3
method of the LPV model in Section 3.5.2 are shown in Figure 5.4, and the corresponding
norms are: ∥∆H0∥2 = 0.411, ∥∆Hr∥2 = 0.118, and ∥∆Hr∥∞ = 0.123. We set q = 1, r = 0.01,
s = 0.09, and look for appropriate α and β, such that ∥F0L∥p < 1 and ∥∆Hr∥p < rAIUp . Note
that (α,β) = (0,0) results in a FO-SILC update law that only leverages device to device
(iteration) learning in the horizontal direction [42]. Unlike [39], we use ”dlyap(FT

0L
,I)” in

MATLAB to solve the discrete-time Lyapunov equation in Eq. (5.27), and calculate P. In
this example, F0L is not BCCB and we cannot use DFT simplifications from [39].

5.6 Simulation Results

In this section, simulation results of the system described in Section 3.3 Section 5.5 using
HO-SILC are investigated. Tables 5.1 to 5.3 show that by proper selection of α and β,
the stability radius, rAIU , can be tuned. It should be noted that α has direct effect on the
total error (performance) as presented in Eq. (5.2). It is expected that higher values of
rAIUp improve robustness to model uncertainties, while smaller values of F0, ensuring
∥F0∥p < 1, increase speed of convergence. In addition, for a constant β, α does not change
the maximum singular value of F0L , σ̄ = ∥F0L∥2, which is approximately equal to ∥Th

0∥2. To
be specific, for fixed β, monotonic stability of the nominal system is achieved if ∥Th

0∥2 < 1.

The reason is that the diagonal elements of FT
0L

F0L are equal to Th2

0 (I+Tv j
i

0 ), while off

diagonal elements are functions of Th2

0 (Tvi
0 ) j for j = 1, ...,2L − 2. Given ∥Th

0∥2 < 1 and
∥Tvi

0 ∥2 < 1, the off diagonal elements are smaller compared to the main diagonal elements,
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Table 5.1: Design methodology for the LPV model, β = 0.0

l2 norm l∞ norm
α ∥K0L ∥ ∥Th

0∥ RMC0 RMCapp ∥F0L ∥ ∥P∥ rAIU ∥K0L ∥ ∥Th
0∥ RMC0 RMCapp

0 ∥F0L ∥ ∥P∥ rAIU
0.00 0.00 0.099 0.099 0.099 0.099 1.01 0.561 0.00 0.190 0.190 0.190 0.189 1.022 0.232
0.25 0.308 0.099 0.144 0.408 0.099 1.01 0.442 0.598 0.189 0.459 0.788 0.210 1.024 0.136
0.50 0.849 0.099 0.450 0.948 0.099 1.01 0.345 1.742 0.188 12.13 1.931 0.241 1.028 0.077
0.75 1.917 0.099 10.24 2.016 0.099 1.01 0.243 4.311 0.185 1552.7 4.497 0.295 1.032 0.034
1.0 4.216 0.099 735.24 4.316 0.099 1.01 0.103 9.822 0.176 176100 9.998 0.394 1.038 0.012

Table 5.2: Design methodology for the LPV model, β = 0.25

l2 norm l∞ norm
α ∥K0L ∥ ∥Th

0∥ RMC0 RMCapp ∥F0L ∥ ∥P∥ rAIU ∥K0L ∥ ∥Th
0∥ RMC0 RMCapp

0 ∥F0L ∥ ∥P∥ rAIU
0.0 0.111 0.088 0.099 0.199 0.098 1.009 0.545 0.216 0.167 0.213 0.383 0.192 1.021 0.198
0.25 0.301 0.088 0.126 0.389 0.098 1.009 0.475 0.670 0.167 0.476 0.837 0.201 1.022 0.135
0.50 0.837 0.088 0.386 0.926 0.098 1.009 0.376 1.781 0.166 11.86 1.947 0.227 1.024 0.079
0.75 1.893 0.088 8.519 1.981 0.098 1.009 0.274 4.257 0.163 1268.9 4.42 0.280 1.027 0.037
1.0 4.141 0.088 587.9 4.229 0.098 1.009 0.127 9.491 0.154 125870 9.645 0.379 1.032 0.014

Table 5.3: Design methodology for the LPV model, β = 0.75

l2 norm l∞ norm
α ∥K0L ∥ ∥Th

0∥ RMC0 RMCapp ∥F0L ∥ ∥P∥ rAIU ∥K0L ∥ ∥Th
0∥ RMC0 RMCapp

0 ∥F0L ∥ ∥P∥ rAIU
0.0 0.148 0.081 0.095 0.229 0.092 1.008 0.562 0.353 0.152 0.236 0.506 0.190 1.019 0.183
0.25 0.297 0.081 0.115 0.378 0.092 1.008 0.501 0.799 0.152 0.601 0.952 0.199 1.019 0.128
0.50 0.829 0.081 0.347 0.911 0.092 1.008 0.400 1.803 0.151 11.49 1.954 0.218 1.021 0.084
0.75 1.876 0.081 7.47 1.957 0.092 1.008 0.298 4.210 0.148 1085.7 4.359 0.255 1.022 0.044
1.0 4.083 0.081 497.8 4.164 0.092 1.008 0.145 9.233 0.139 97126 9.373 0.342 1.026 0.017

which results in ∥F0l∥2 ≃ ∥T
h
0∥2 based on Eq. (5.35). The simulation results in Tables 5.1

to 5.3 show that all pairs of (α,β) satisfy ∥F0∥p < 1. We highlighted the pairs that satisfy
the RMC criteria in theorems 3 and 4, for both l2 and l∞ norms. The results show that the
l∞ norm is more conservative than the l2 norm; therefore, we will focus on the l2 norm.

In 3D structures that are fabricated using AM technologies, the error in previous layers
adds up in the upper layers and affects the total heightmap and corresponding standard de-
viations. HO-SILC can improve the total error by incorporating previous layer errors in the
cost function in Eq. (5.3). Figure 5.4 shows the HO-SILC performance for different values
of (α,β). The results show that HO-SILC can improve the overall performance (smaller
total heightmap error) when compared to FO-SILC. Based on the provided information in
Tables 5.1 to 5.3, a lower value of α (while β is fixed), leads to larger rAIU . However, it also
degrades the overall performance. Larger values of α impose more weighting on previous
layer errors in Eq. (5.2) that results in smaller total errors, el, j. On the other hand, larger
values of β for a constant α result in an increase in the achievable rAIU and decrease the
total error. Therefore, by proper tuning of higher order parameters, the stability robust-
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Figure 5.4: Total error comparison: HO-SILC results in a lower total error compared to
FO-SILC. α = 0 and β = 0 refers to a FO-SILC design that only applies horizontal learning
(iteration to iteration). (L = 30, q = 1, r = 0.01, s = 0.09).

ness and the performance of the HO-SILC with respect to the total error can be improved.
Hereafter, we will set the HO-SILC parameters, α = 0.9,β = 0.5.

Figures 5.5a and 5.5b present the Frobenius norm of the incremental errors, ∆el, j, for
FO-SILC and HO-SILC controllers based on the LPV model in Section 3.5.2. Figure 5.5a
shows that the final incremental errors of the FO-SILC update law are in the same range
over the layers. Figure 5.5b shows that by using HO-SILC a significant improvement
(around 60% for 6 layers) in the incremental errors over the layers is achieved. The first
layer shows the highest error, with the error signals decreasing due to vertical learning
through the iterations. In Figure 5.5, the simulation time associated with the controller
update in Eq. (5.8) is around 1.34s which is 50% faster compared to the control update
time (2.85s) associated with Eq. (5.1) and Figure 5.6 for the linearized CRRN model in
Eq. (3.13). The reason is that the LPV plant model is BCCB, and Eq. (5.8) can be used to
update the feedforward signal in Figure 5.5.

Figure 5.6 shows the performance of the HO-SILC controller designed using a lin-
earized CRNN model (Eq. (3.13)). Recall that the linearized CRNN model in Eq. (3.13)
is from the nonlinear CRNN model used as the true model in the simulation. Note that
the Jacobian matrix is not BCCB, thus DFT calculations are not possible and the controller
derivation requires more time as compared to the HO-SILC algorithm designed with the
LPV model in Figure 5.5. In addition, the computation time required to calculate the Jaco-
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Figure 5.5: Convergence of the Frobenius norm of the incremental error: The LPV
model in Section 3.5.2 is used to design the learning filters in Eq. (5.8). The control update
time associated with Eq. (5.8) for updating the feedforward signal per iteration in simula-
tion is 1.34 s. Iteration j = 0 refers to the first device. (L = 6, q = 1, r = 0.01, s = 0.09).
a) FO-SILC design with α = 0 and β = 0, which only has horizontal learning (iteration to
iteration). No learning happens over layers. b) HO-SILC design with α = 0.9 and β = 0.5.
HO-SILC design, which integrates horizontal learning from device to device with vertical
learning from previous layers. HO-ILC offers better performance over the layers compared
to the FO-SILC.
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Figure 5.6: Performance of the HO-SILC with the linearized CRNN model in
Eq. (3.13): Convergence of the Frobenius norm of the incremental error with HO-SILC
design in Eq. (5.1) and Eq. (5.4), based on the linearized CRNN model in Eq. (3.13). The
average control update time in simulation for updating the feedforward signal per iteration
is 2.8 s.

bian matrix in Eq. (3.13) is approximately 3.5 hours, which is a one-time calculation that
can be done before running the experiment. The results in Figure 5.6 show that, although
the HO-SILC based on the linearized CRNN model considers surface tension effects, the
controller performance is similar to the HO-SILC based on the LPV model. The reason is
that unlike the inkjet printing process used in [3], the e-jet printing process modeled in this
work uses high viscosity inks for which the droplets tend to stay at their deposited loca-
tions. The reduction in movement on the surface post printing reduces the surface tension
and droplet coalescence-related effects and shows minimal effects on film-formation. Fur-
ther, model uncertainties due to surface tension of the liquid droplets are often repetitive
and thus would be learned through the implementation of the HO-SILC.

Therefore, it is recommended to use a more simple model such as LPV in Section 3.5.2
or the CLR model in Section 3.5.1, to design a robust HO-SILC controller based on the
criteria in theorems 1 to 4 and Tables 5.1 to 5.3 that enable the fast DFT calculations in
Eq. (5.8).
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5.7 CONCLUSION

In this chapter, we present a higher-order spatial ILC (HO-SILC) framework for iteration
varying uncertain AM systems. We consider iteration varying model uncertainties as inter-
val uncertainties subjected to spatial invariant bounds. In order to leverage DFT based tools
for computational efficiency, the iteration varying plant model is considered to be BCCB.
An RMC criterion is formalized as a useful tool to predict the stability of the HO-SILC
algorithm in the presence of iteration varying model uncertainties. Our analysis considers
the RMC criterion as a measure of maximum allowable uncertainty around the nominal
plant such that the iterative system remains stable. Simulation results using a model of
an e-jet printing system demonstrate that HO-SILC can be successfully employed in AM
processes to regulate the input of an iterative model and improve the heightmap reference
tracking. We demonstrate that through proper tuning of the higher-order terms of the HO-
SILC algorithm, an improved performance in terms of layer-to-layer and overall height
errors can be achieved. The improvements performance are especially prevalent at higher
layers, where the uncertainties from previous layer variations are more pronounced. Higher
order, spatial learning control has applications outside of additive manufacturing systems.
For example, any system that exhibits spatially dependent dynamics through a repetitive
action (e.g. exoskeletons, robotic pick and place) could benefit from a control framework
that compensates for errors across both a spatial and temporal domain. Importantly, spa-
tial interactions are often disjointed temporally and are commonly ignored. The proposed
framework addresses this issue by incorporating spatial information into the control law.
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CHAPTER 6

Synthesis of Model Predictive Control and
Iterative Learning Control for Topography

Regulation in Additive Manufacturing

In the previous chapter, we applied higher-order SILC (HO-SILC) to a model of an AM
process. This higher-order controller leveraged data from previous devices and previous
layers within the same device to construct an optimized input for the next layer of a 3D
structure. We term this type of learning controller as backward learning. A drawback
of this previously presented HO-SILC framework was that it was overly conservative for
systems with minimal model uncertainty since the controller was designed to ensure robust-
ness for the maximum amount of uncertainty, thus causing the system to lose performance
advancements.

In addition to the layer to layer dynamics, it is important to consider process constraints
within the AM system, such as the requirement of strictly positive control inputs, f (x,y).
Model predictive control (MPC) is a control framework that works especially well for
constrained systems and incorporates a forward projection process that is useful for AM
systems in which the current layers directly impact future layers. MPC has been already
applied to AM process in [56] to control 1D height increment with varying reference. MPC
exploits the system model to predict performance error signals for multiple steps (here, lay-
ers) in the future and consequently make informed control decisions that work to achieve
performance gains across all of the layers. This approach is known as a receding horizon
strategy in which a sequence of input signals for multiple steps (layers) in the future is
planned, and yet only the next control action is applied. The sequence of control inputs
will be recomputed once new information is available. In addition, to achieve a less re-
strictive bound on the prediction horizon, researchers have introduced the implementation
of a finite-tail MPC formulation that solves a constrained optimal control problem based
on prediction and optimization. Although closed-loop stability is not generally guaranteed
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(a)

(b)

Figure 6.1: SILC and SILC-MPC Block diagram comparison. Learning occurs in the
vertical direction. a) SILC framework: SILC utilizes the knowledge from previous layers
to predict the optimized input of the next layer. The knowledge here refers to the input
signal, fl, layer (or incremental) error, ∆el, and total error, el at layer l, which is the sum of
the incremental errors over all layers, el =

∑l
i=1∆ei. b) SILC-MPC framework: Learning

occurs from previous layers using SILC design, as well as a prediction of future layer
depositions using MPC design, by incorporating a prediction of future layer errors, el+n,
to predict the input signal of multiple layers ahead, f⃗ = ( fl+1, ..., fl+Nmpc). At each printing
pass, only the input signal of the first layer, fl+1, is considered. Here, each layer is one
iteration and w−1 is the trial-delay operator. e⃗ = (⃗eT

l+1, ..., e⃗
T
l+Nmpc

), g⃗ = (g⃗T
l+1, ..., g⃗

T
l+Nmpc

),

∆e⃗ = (∆e⃗T
l+1, ...,∆e⃗T

l+Nmpc
), and ∆g⃗ = (∆g⃗T

l+1, ...,∆g⃗T
l+Nmpc

). The FB operator takes a stacked
vector, (for example e⃗), extracts its first block, e⃗l+1, and applies the shift-delay operator to
extract e⃗l.

90



with an MPC framework, adding a final/terminal cost can improve the stability properties
through improvements in convergence speed and tracking error. Stochastic and adaptive
MPC provide alternative techniques that have been used to achieve these desirable proper-
ties ( [87, 88]).

Based on the forward looking framework, the work presented in this chapter investi-
gates whether the integration of SILC with MPC into a combined learning control frame-
work will result in a layer-to-layer process that is more robust to model uncertainty com-
pared to traditional SILC, and yet maintains the high performance advancements expected
from these control architectures. We implement an SILC-MPC method that leverages the
information from previous layers using spatial iterative learning control (SILC) and projects
forward the data from future layers using model predictive control (MPC) to improve the
tracking performance of iteration varying AM processes. Note that in the multi-layer struc-
tures considered in this work, the layers are built on top of each other, such that the printing
behavior for a current layer depends directly on the topography of the previous layers. The
goal of this work is to derive an integrated control framework that leverages the informa-
tion from previous layers using HO-SILC, plus a prediction from future layers using MPC
(see Figure 6.1b), to minimize the total error and individual layer errors within an AM pro-
cess simultaneously, while achieving uniform thin-film fabrication with minimal surface
roughness. The novel contributions of this work include:

• Derivation of a higher-order SILC framework for minimizing layer and total errors
simultaneously (Figure 6.1a) to more effectively fabricate 3D structures in a layer-
by-layer fashion.

• Development of a combined spatial ILC and terminal cost MPC framework that in-
corporates backward learning through SILC with forward learning using MPC to
improve the performance of AM processes.

• Demonstration and analysis of the performance advancements achieved through the
implementation of the combined learning control framework on a simulated model
of a high-resolution printing process for the fabrication of 3D constructs.

6.1 Controller Formulation

In chapters 4 and 5, we used a backward learning method through an SILC design similar
to Figure 6.1a that leveraged the data from previous iterations to construct the optimized
input. From a manufacturing perspective, our goal was to develop a control framework that
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Figure 6.2: High-resolution fabrication using e-jet printing technology. A) schematic
of an e-jet printer with dual nozzles. B) e-jet Printer testbed located at the University of
Michigan. C), D) and E) AFM scans and optical microscopy of a 40 × 40 µm2 thin-film
pattern deposited by the e-jet system in Figure 6.2B.

regulates the deposition process to realize a vertically stacked multi-layer/multi-material
structure with consistent layer thickness, which is a highly desirable characteristic in many
sensory applications, such as optical sensors where uniformity and periodicity of the layers
are of great importance [79, 89]. In these examples, the norm optimal SILC (NO-SILC)
cost function was defined based on the layer errors, ∆e⃗l. The proposed SILC resulted in
consistent layer deposition with ∆e⃗l converging from layer-to-layer, resulting in uniform
layers. However, SILC did not weight the total build error e⃗l, resulting in the total error
increasing over the layers. In AM structures, the layer errors add up during the build and
may result in a large deviation from the desired height, especially when the layer number
is large. Therefore, if the printing objective requires total device dimension convergence as
well as layer-by-layer convergence, minimizing the layer errors alone may not be sufficient.
To address this need, the work in this chapter investigates a modified backward learning
controller that incorporates individual layer as well as total device errors combined with
a forward learning approach that uses MPC to achieve a projection in the printing pro-
cess to enhance the control decisions. The combined control architecture can be found in
Figure 6.1.
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6.1.1 SILC Framework

Similar to previous chapters, we use a norm-optimal SILC (NO-SILC) framework to de-
sign robust learning filters. Assuming a constant desired height for all layers, we modify
our previous cost function in chapter 5 to minimize the total error and layer error simulta-
neously. In addition to the incremental values in Eqs. (3.3) and (4.4), the total height and
total error are as follows,

g⃗l =

l∑
i=1

∆g⃗i =

l∑
i=1

H(gi−1) f⃗i (6.1a)

e⃗l ≜ g⃗d
l − g⃗l =

l∑
i=1

∆e⃗i (6.1b)

g⃗d
l =

l∑
i=1

∆g⃗d
i , (6.1c)

where ∆g⃗d
l and g⃗d

l are the desired incremental and total build height maps at layer l. The
following cost function is proposed

J ILC = ∆e⃗T
l+1Q∆e∆e⃗l+1+ e⃗T

l+1Q1e⃗l+1+ f⃗ T
l+1S1 f⃗l+1+ ( f⃗l+1− f⃗l)TR1( f⃗l+1− f⃗l), (6.2)

where Q∆e,Q1,S1,R1 are weighting matrices used to weight the layer errors, total errors,
control inputs and change in control inputs. These matrices are generally defined as identity
matrices scaled by non-negative scalars such that Q∆e = q∆eI, Q1 = q1I, S1 = s1I, R1 = r1I.
The optimal feedforward signal is achieved by solving the following optimization problem,

∂J ILC

∂ f⃗l+1
= −HT

l Q1(⃗el+∆e⃗l+Hl−1 f⃗l−Hl f⃗l+1)+S1 f⃗l+1

+R1( f⃗l+1− f⃗l)−HT
l Q∆e(∆e⃗l+Hl−1 f⃗l−Hl f⃗l+1) = 0.

(6.3)

Solving for the updated control signal, the SILC update law and learning filters can be
shown to simplify to:

f⃗l+1 = L f f⃗l+Lee⃗l+L∆e∆e⃗l (6.4a)

fl+1(u,v) = (L f ◦ fl+Le ◦ el+L∆e ◦∆el)(u,v) (6.4b)

Assuming H can be written as block circulant with circulant blocks (BCCB) ( [40]),
(Eq. (6.4b)) is the equivalent frequency-domain representation of (Eq. (6.4a)). BCCB ma-
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trices are defined in more detail in [40].
Similar to previous chapter, the control update, fl+1(u,v), is the 2D discrete Fourier

transform (DFT) representation of fl+1(x,y). Note that the update law in Eq. (6.4) is higher
order because the total error in a multi-layer structure is a function of the incremental
errors from all previous layers, e⃗l =

∑l
i=1∆e⃗i. Importantly, if one wanted to design an

iteration invariant controller, the learning filters must be based on the nominal plant H0

from (Eq. (6.3)) as demonstrated below:

L f (u,v) =
(q1+q∆e)H∗0 ◦H0+ r1

(q1+q∆e)H∗0 ◦H0+ (s1+ r1)
(u,v) (6.5a)

Le(u,v) =
q1H∗0

(q1+q∆e)H∗0 ◦H0+ (s1+ r1)
(u,v) (6.5b)

L∆e(u,v) =
(q1+q∆e)H∗0

(q1+q∆e)H∗0 ◦H0+ (s1+ r1)
(u,v) (6.5c)

6.1.2 Modified SILC-MPC Framework

In this section, we extend the higher-order SILC framework in Section 6.1.1 to an SILC-
MPC framework that leverages the information from previous layers, as well as a prediction
of future layers to determine an optimized feedforward input signal.The quadratic cost
function for the combined controller is defined as,

J = J ILC +J MPC = e⃗TQe⃗+ f⃗ TS f⃗ +∆ f⃗ TR∆ f⃗ (6.6a)

J MPC = Jt +

Nmpc∑
j=2

Jl+ j (6.6b)

Jl+ j = e⃗T
l+ jQ je⃗l+ j+ ( f⃗l+ j− f⃗l+ j−1)TR j( f⃗l+ j− f⃗l+ j−1)+ f⃗ T

l+ jS j f⃗l+ j, (6.6c)

where Q j,S j,R j are weighting matrices that are defined as Q j = q jI, S j = s jI, and Ri = r jI,
and q j, s j,and ri are positive scalars. Nmpc denotes the MPC horizon. The other compo-
nents in Eq. (6.6) are defined as:

Q =


Q∆e . . . 0

0 Q1
...

... . . . 0
0 . . . QNmpc +PNI


, S =


S1 . . . 0
... . . . ...
0 . . . SNmpc

 , R =


R1 . . . 0
... . . . ...
0 . . . RNmpc

 , (6.7a)
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f⃗ =


f⃗l+1

f⃗l+2
...

f⃗l+Nmpc


, ∆ f⃗ =


f⃗l+1− f⃗l

f⃗l+2− f⃗l+1
...

f⃗l+Nmpc − f⃗l+Nmpc−1


, e⃗ =



∆e⃗l+1

e⃗l+1

e⃗l+2
...

e⃗l+Nmpc


. (6.7b)

The MPC cost function in Eq. (6.6b) contains two elements. The first element is the
terminal cost, denoted by Jt, that improves closed-loop stability of the MPC algorithm
( [51, 52]). The second term is a projection forward in the layer direction that aims to
minimize the total error in future layers by predicting the system behavior in future layers
and using it to determine the control input for the next layer. We define the terminal cost
as Jt ≜ e⃗T

l+Nmpc
(PNI)⃗el+Nmpc , where PN is a positive scalar. The MPC cost function starts

from j = 2, since j = 1 is already taken into account in the HO-SILC algorithm provided in
Eq. (6.2). We aim to use the available data from previous printed layers, to minimize both
the total and layer errors in order to achieve consistent layer deposition at all layers. Let
u⃗ILC denote a vector that contains the information from previous layers, such that u⃗ILC =

[⃗eT
l , f⃗

T
l ,∆e⃗T

l ]T. To find the optimal control sequence f⃗ ∗, the cost function in Eq. (6.6) is
differentiated with respect to f⃗ and equated to zero.

▽ f⃗ J = [
∂J T

∂ f⃗l+1
, ...,

∂J T

∂ f⃗l+Nmpc

]T = X f⃗ +Z u⃗ILC + y⃗, (6.8)

with X ∈ RnNmpc×nNmpc , Z ∈ RnNmpc×3n, and y⃗ ∈ RnNmpc×1. An analytical expression for X, Z
and y⃗ can be achieved by deriving the partial derivatives given in Eq. (6.8) using the cost
function given in Eq. (6.6). From these derivations, we can determine that the structure of
X, Z and y⃗ have the following relationships:

X[i,i] =HT
0

(
PN I+Q∆e∆(i,1)+

Nmpc∑
n=i

Qn

)
H0+ (Ri+Si+Ri+1),

X[i, j] = −HT
0 (PN I+

Nmpc∑
n=k

Qn)H0−Rk, j = i+1 or j = i−1

X[i, j] = −HT
0 (PNI+

Nmpc∑
n=k

Qn)H0, j < i−1 or j > i+1

(6.9)

where k = max(i, j) and ∆(i,1) = 1 if i = 1 and is zero otherwise. Similarly Z has the
following format
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Z[i,1] = −HT
0 (PN I+

Nmpc∑
n=i

Q j)

Z[1,2] = −HT
0 (Q1+Q∆e)H0−R1

Z[1,3] = −HT
0 (Q1+Q∆e)

Z[i,2] = Zi,3 = 0 i > 1

(6.10)

Likewise y⃗ has the following format:

y⃗(1) = −HT
0

(
NmpcPN I+Q∆e+

Nmpc∑
n=2

(nQn)
)⃗
r

y⃗(i) = −HT
0 (NmpcPN I+

Nmpc∑
n=i

(nQn))⃗r, i > 1

(6.11)

Assuming X is invertible, the optimal control input f⃗ ∗ is then obtained by solving X f⃗ ∗ +

Z u⃗ILC + y⃗ = 0⃗ as:

f⃗ ∗ = −X−1(Z u⃗ILC + y⃗). (6.12)

We only implement the first block of f⃗ ∗, which is related to the control input f⃗ ∗l+1 of
the next layer. The derivation of Eq. (6.9)-Eq. (6.11) is shown in the appendix. Note
that although X is symmetric, and each block matrix of X and Z is BCCB, the overall X
and Z matrices are not BCCB; thus, we have to invert a high dimensional matrix, X, to
calculate the optimal solution f⃗ ∗. It is important to note that this calculation for the SILC-
MCP controller will be computationally more expensive than the update law required for
SILC in Eq. (6.4) and Eq. (6.5). Care must be taken to determine when this approach is
necessary and the computation burden is acceptable for the given system requirements.
Future work will investigate methods to reformulate the SILC-MPC update law in a way
that the DFT computations are possible and will result in a reduced computational burden.
In addition, future work will focus on the relationship between the invertibility condition
of the X matrix and stability and convergence of the SILC-MPC algorithm.

6.2 Simulation Validation

In this section, simulation results for the system described in Section 3.4 controlled by the
SILC-MPC and modified-SILC frameworks are presented. As described in Figure 6.1b, the
SILC-MPC controller uses the information from previous layer depositions ( f⃗l, e⃗l,and ∆e⃗l)
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(a)

(b)

Figure 6.3: Effect of terminal cost on convergence properties of SILC-MPC with
Nmpc = 2. Adding a terminal cost in Eq. (6.6b) improves the SILC-MPC performance for
total error with minimal impact on layer error. a) Normalized total error: higher vales of
PN lead to decreases in total error. b) Normalized layer error: varying values of PN appear
to have no effect on the incremental error. Note that terminal cost is only imposed on the
total error in Eq. (6.6b)

97



Table 1: SILC and SILC-MPC parameters and simulation time
q⃗ s⃗ r⃗ PN Nmpc time per

layer (s)

SIL
C


test 1 1√

26

[
1
5

]
0.03 0.01 − − 1.22

test 2 1√
2

[
1
1

]
0.03 0.01 − − 1.22

test 3 1√
26

[
5
1

]
0.03 0.01 − − 1.22

SIL
C

-M
PC



test 4 1√
3

111
 0.03√

2

[
1
1

]
0.01√

2

[
1
1

]
1 2 2.59

test 5 1√
3

111
 0.03√

2

[
1
1

]
0.01√

2

[
1
1

]
0 2 2.59

test 6 1√
6



1
1
1
1
1
1


0.03√

5


1
1
1
1
1


0.01√

5


1
1
1
1
1

 0 5 20.9

through an SILC design, and leverages a prediction of what will happen in future deposi-
tions (⃗el+2, ..., e⃗Nmpc) through an MPC design, to estimate an optimized feedforward signal
for future layer depositions, f⃗l+1, ..., f⃗l+Nmpc . However, at each printing pass, we only im-
plement the current layer input signal f⃗l+1, recalculating the feedforward signals each layer.
A multi-layer structure similar to Figure 6.2 with 100µm ×100µm spatial resolution, 150
nm layer thickness resolution, and 25 layers is considered. For the first iteration, l = 1, we
use a nonzero input signal such that the first layer thickness was around 130±22 nm, which
is computed based on knowledge of conventional pre-prints.

Method M3 in Section 3.5.2 is used to estimate the impulse response for the learning
filters in Eqs. (6.5) and (6.9) to (6.11), that results in a BCCB plant matrix. The simulation
environment approximates the true model using the M2 method in Section 3.5.2 for a given
layer. To better represent the printing environment, a normally distributed iteration-varying
white noise signal, ∆hl, is added to the plant model, with a mean and variance of 0.00
and 0.2, respectively. Repetitive model uncertainty is also added to represent unmodeled
surface variations or initial tilts within the system and is represented by ∆hrep = 0.1 ∗ h0.
Combining these features together, the iteration varying spatial impulse response used for
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Eq. (3.2) will be hl = h(gl)+∆hl+∆hrep.
To design the weighting parameters for the SILC-MPC cost function in Eq. (6.6), we

define the following vectors, q⃗ = [q∆e,q1, ...,qNmpc]
T , s⃗ = [s1, ..., sNmpc]

T , r⃗ = [r1, ...,rNmpc]
T .

The weighting coefficients for the two frameworks are presented in test1-test3 and test4-
test6 of Table 1, respectively. The weighting parameters are designed to be equally
weighted such that ||q⃗|| = 1, ||s⃗|| = 0.03, ||⃗r|| = 0.01, which are the same weighting param-
eters that we used in our prior work [4].

Figure 6.3 shows the effect of terminal cost in Eq. (6.6) , Jt ≜ e⃗T
l+Nmpc

(PNI)⃗el+Nmpc , on
the SILC-MPC performance. As demonstrated in MPC literature ( [53, 54, 90]), adding
a terminal cost improves the convergence and stability properties of the SILC-MPC algo-
rithm with respect to total error and can regulate both layer and total errors at the same time.
Next, we set PN = 1 and investigate the effect of mpc horizon on the controller performance.

The performance of the SILC and SILC-MPC controllers is compared in Figure 6.4 and
Table 1. Tests 1-3 are related to the SILC framework with q⃗ = [q∆e,q1 = qe]T , s⃗ = [0.03], r⃗ =
[0.01], while tests 4-6 are related to the SILC-MPC framework. The simulation results
imply that there is a trade-off between performance and computation time of the SILC-
MPC controller. The SILC-MPC framework generally has lower total error and surface
roughness compared to the SILC controller and can regulate both layer and total error at
the same time. However, the SILC-MPC framework is computationally more expensive
than the SILC controller. Based on the information in the last column of Table 1, the
simulation time for updating the feedforward signal per layer for the SILC controller is
50% lower as compared to the SILC-MPC controller with a terminal cost. Comparing tests
5 and 6, it is observed that although higher values of the receding horizon, Nmpc, enhance
the SILC-MPC performance, the update-law takes more time to update the input signal.
The reasons for these differences are that 1) matrices X, Z and y⃗ are high dimensional
compared to the SILC learning filters L f , and Le, 2) the structure of H0 allows for the use
of fast DFT computations in Eq. (6.5) that do not require inverse matrix calculations, while
in the SILC-MPC update law, f⃗ ∗ = −X−1(Z u⃗ILC + y⃗), X is not BCCB and cannot use DFT
calculations.

Similar to traditional MPC in [51,55,90,91], simulation results in Figure 6.4b show that
as the MPC horizon increases, the performance of an SILC-MPC control law without the
terminal cost (tests 5 and 6, PN = 0) approaches an SILC-MPC with terminal cost (test 4,
PN = 1). This will be important especially in AM processes in which, high-dimensionality
is problematic. Therefore; instead of high mpc horizons (test 6) that result in high di-
mensional matrices and consequently slower simulation time, it is beneficial to use a short
horizon, Nmpc = 2, with terminal cost (test 4). Comparing the simulation results in Fig-
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(a)

(b)

Figure 6.4: SILC (tests 1-3) and SILC-MPC (tests 4-6) convergence comparison with
||q⃗|| = 1, ||⃗r|| = 0.01, ||s⃗|| = 0.03. SILC-MPC with a terminal cost (test4) results in the lowest
combined layer and total errors.a) Normalized layer error versus layer number: Test 3 with
the largest q∆e gain (smallest qe) (see Table 1) converges faster to a lower final value for
layer error. If repeatable layer deposition is desirable, the SILC controller in test 3 is a good
choice. b) Normalized total error versus layer index: similar to the results in [4], total error
increases over the build if layer error is emphasized.
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(a)

(b)

Figure 6.5: SILC (tests 1-3) and SILC-MPC (tests 4-6) convergence comparison with
||q⃗|| = 1, ||⃗r|| = 0.01, ||s⃗|| = 0.03. a) Surface roughness of total height versus layer index:
roughness in Eq. (2.1b), which is an indication of layer flatness, decreases over the layers
for all tests. Importantly, lower roughness values result in smaller deviations from the nom-
inal plant hl(x,y) −→ h0, which is confirmed in Figure 6.5b. b) Model uncertainty calculated
by the difference between h(gl) and h0 (see Section 5.4.2) derived using the M3 method
from [2] for NOA170 in [4].
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ure 6.4a-Figure 6.5b, the SILC-MPC controller with a terminal cost formulation in test
4 provides a more robust and stable controller that results in decreases to the layer and
total errors simultaneously, leading to highly uniform stacked thin-films with low surface
roughness.

6.3 CONCLUSION

In this work, we present a novel spatial topography controller to enable enhanced depo-
sition at the micro-scale. The framework combines spatial iterative learning control with
model predictive control to achieve enhanced performance and robustness. The proposed
controller is robust to stochastic and repetitive model uncertainty. Simulation results of an
e-jet printed structure controlled by the SILC-MPC framework indicate that high-quality
thin-films with uniform and repeatable thickness resolutions are achievable by tuning the
MPC terminal cost and ILC parameters. The results imply that an SILC-MPC framework
generally has better performance compared to a traditional SILC controller. However, the
SILC update law is much faster (50%) compared to the SILC-MPC algorithm. Future work
should consider non-negativity constraints in the input along with experimental validations.
In addition, reformulation of the SILC-MPC update law in a way that DFT computations
are possible to reduce the computation times is an interesting extension to explore.

Appendix

In this section, we describe step by step derivation of the analytical solution of the SILC-
MPC framework presented in equations (Eq. (6.9)-Eq. (6.11)). Solving Eq. (6.6) and
Eq. (6.8) requires knowledge of future error signals, e⃗l+ j. Although we do not know these
values, we can estimate them based on the values that are known from previous layer de-
positions,

e⃗l+ j = e⃗l+

j∑
n=1

(∆⃗el+n) = e⃗l+ j⃗r−
j∑

n=1

Hl+n−1 f⃗l+n. (6.13)

For a single material deposition, we assume the desired height is constant for all layers such
that ∆g⃗d

l = ∆g⃗d
l+n = r⃗. In addition, the plant spatial dynamics are noncausal in the spatial

domain, meaning that the applied input at a given location will affect the output in the
advanced layers and surrounding coordinates ( [33, 40]). This means that the error signals
of future layers are functions of the input signal from prior layers, e⃗l+ j

f⃗l+i
̸= 0,∀i ≤ j. Note, the
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error signals of previous layers are not function of future layer inputs, e⃗l+ j

f⃗l+i
= 0,∀i > j. From

Eq. (6.13) we have

∂e⃗l+ j

∂ f⃗l+i
= 0, j < i (6.14a)

∂e⃗l+ j

∂ f⃗l+i
= −Hl+i−1, j ≥ i (6.14b)

To determine X, Z and y⃗ from Eq. (6.8), we need to calculate the partial derivative of the
cost function in Eq. (6.6) with respect to the future layer input signals, ∂J

∂ f⃗l+i
. For i = 1, the

situation is different, ∂J
∂ f⃗l+1
= ∂J

mpc

∂ f⃗l+1
+ ∂J

ILC

∂ f⃗l+1
. We already calculated ∂J

ILC

∂ f⃗l+1
in (Eq. (6.3)), now

we need to calculate ∂J
mpc

∂ f⃗l+1
as follows

∂J mpc

∂ f⃗l+1
= −HT

l

Nmpc∑
n=2

Qn(⃗el+nr⃗−
Nmpc∑
k=1

Hl+k−1 f⃗l+k)−

r2( f⃗l+2− f⃗l+1)−HT
l PN (⃗el+Nmpcr⃗−

Nmpc∑
k=1

Hl+k−1 f⃗l+k).

(6.15)

For i > 1, ∂J
∂ f⃗l+i
= ∂J

mpc

∂ f⃗l+i
= −HT

l+i−1PN(⃗el +Nmpcr⃗−
∑Nmpc

n=1 Hl+n−1 f⃗l+n)+
∑Nmpc

j=2
∂Jl+ j

∂ f⃗l+i
. De-

pending on the values of i and j, ∂Jl+ j

∂ f⃗l+i
is as follows

i = j : =−q jHT
l+i−1(⃗el+ j⃗r−

Nmpc∑
n=1

Hl+n−1 f⃗l+n)+ s j f⃗l+ j

+ r j( f⃗l+ j− f⃗l+ j−1)

(6.16a)

j = i+1 : =−q jHT
l+i−1(⃗el+ j⃗r−

Nmpc∑
n=1

Hl+n−1 f⃗l+n)

− r j( f⃗l+ j− f⃗l+i)

(6.16b)

j > i+1 : = −q jHT
l+i−1(⃗el+ j⃗r−

Nmpc∑
n=1

Hl+n−1 f⃗l+n). (6.16c)

and zero for i > j. Summing up Eq. (6.16) over j = 2, ...,Nmpc and adding up the terminal
cost components, and considering (Eq. (6.3)) and Eq. (6.15), X, Z and y⃗ are calculated
based on the nominal plant as presented in (Eq. (6.9)-Eq. (6.11)).
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CHAPTER 7

Experimental Validations

In this chapter, we present the first experimental application of the SILC framework ap-
plied to systems with interval uncertainty described in chapters 3 to 5. The SILC model
is based on a 2D-spatial impulse response presented in chapter 3, and is used with the
proposed control framework to fabricate multi-layer structures using a custom electrohy-
drodynamic jet (e-jet) printing system, in which complex structures are deposited by direct
addition of a build material on the surface in liquid form. Jet-based 3D printing processes
are environmentally friendly, and facilitate multi-material fabrication on non-planar sur-
faces (compared to Lithography) due to the liquid form of the build material. The e-jet
printer is a microscale AM-system, integrated with an in-situ microscale metrology system
in the form of an atomic force microscope (AFM) for in situ quality monitoring. Through-
out this chapter, we demonstrate that a spatial iterative learning controller is capable of
automating the deposition process of an e-jet printer by learning through successive iter-
ations, without requiring a human operator to heuristically tune the process parameters.
A central computer and custom-written Python script is used to coordinate the e-jet printer
with the integrated AFM. Although real-time measurements at the micro scale are not avail-
able, using our integrated metrology system, we are able to register spatial coordinates on
the substrate and measure the topography in a run-to-run fashion. Additionally, through
a series of automated processing techniques in the python code, we are able to automate
a multi-layer deposition process with post-processing AFM scan analysis to be integrated
with our SILC control framework for precision patterning at the microscale.

7.1 Experimental Setup

To experimentally validate the model-based controllers previously developed in chapters 4
and 5, the reference device structure is selected to be a flat layer height map, ∆gd

l (x,y)=150
nm, and the number of the layers is considered L = 4. We use drop-on-demand printing to
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deposit individual droplets of Loctite3526 on predefined locations on the substrate. Suc-
cessive droplets are placed at a certain distance (center to center) from each other, defined
as pitch, to form a film as presented previously in Figures 1.3 and 2.6b. The pitch size is
set to 5 µm for a domain of 11× 11 pixels (121 droplets), which results in a spatial reso-
lution of 55 µm × 55 µm as presented in Figure 7.3. The process parameters are chosen
to be: nozzle size = 2 µm, standoff height = 40 µm, high voltage Vh = 600 V, low voltage
Vl = 200 V. Each layer is printed in a single printing pass and cured successively. The
input will be constrained (saturated f (x,y) ≥ 0) to non-negative values to ensure an additive
process. It is important to note that the input of the first iteration at the first layer is set to
zero, f1,1(x,y) = 0, implying that there is no prior knowledge of the appropriate input signal
(here pulsewidth). This results in no material being deposited during the first iteration (see
Figures 7.5 to 7.8).

Process Variability: As mentioned before, AM processes are innately iteration varying
due to layer dynamics, as well as changes in system dynamics that can occur from time-to-
time. Here we use the CLR model presented in Section 3.5.1 as the baseline model from
which we estimate a nominal model that is used within the controllers in chapters 4 and 5.
The input signal is pulsewidth, and the output is heightmap at each discrete spatial coordi-
nate in the XY frame as presented in Figures 7.2 and 7.3. Process variability was attributed
to slight variations in the process parameters such as nozzle size variations (inner diame-
ter variation of 15%), standoff height offsets (substrate leveled across a 10 mm × 10 mm
region), and room temperature fluctuations. Further, process instabilities were observed to
introduce additional variability in the process dynamics. For example, during the deposi-
tion of Loctite3526, we noticed that clogging of a 2µm nozzle resulted in a 25 ms shift
in the range of feasible pulsewidths for the input signal. More specifically, after printing
for four hours, in order to achieve consistent behavior, we had to apply pulsewidths in the
range of 40ms < tp < 80ms instead of the 15ms < tp < 55ms range used at the beginning of
the experiment, which introduces a repetitive model uncertainty to the system.

Model Uncertainty: To quantify the maximum amount of model uncertainty observed
during the deposition of Loctite3526, we conducted 45 system identification experiments
(described in Section 3.5.1) over 15 days. To reduce the effects of clogging, we used a new
2µm nozzle each day. During each experiment, 10 devices are printed on a 7× 9 spatial
domain as explained in Section 3.5.1. We determine the impulse response (h f ) for each
experiment, and calculate the maximum and minimum value of each element in h f across
all 45 experiments. These values are used to estimate the upper and lower bounds on the
impulse response such that h ⪯ h f ⪯ h, where ⪯ is element wise inequality. The maximum

uncertainty radius is then calculated using ∆hr ≜
h−h

2 , as described in [39] and chapter 5.
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The plant matrix bounds and maximum uncertainty radius H, H, ∆Hr are calculated from
h, h, and hr, respectively, using the BCCB construction method described in Section 3.2.
We then apply the center matrix definition from [39] such that hc =

h̄+h
2 is used to calculate

the nominal impulse response as follows:

hc =



0.088 0.089 0.196 0.089 0.088
0.089 0.196 0.422 0.196 0.089
0.196 0.422 0.735 0.422 0.196
0.089 0.196 0.422 0.196 0.089
0.088 0.089 0.196 0.089 0.088


(
nm
ms

) (7.1)

Note that the center matrix in Eq. (7.1) is very close to the impulse response in Sec-
tion 3.5.1. This further confirms our assumption that the existing model uncertainty due to
nozzle size variations or clogging is repetitive, and that the proposed SILC will be able to
learn this repetitive model uncertainty and account for it in the update law. The norm of
the maximum uncertainty of the plant matrix for Loctite 3526 across all 45 experiments is
∥∆Hr∥2 = 0.356nm

ms , which is approximately half of the magnitude of the maximum element
of the h f in Section 3.5.1.

E-jet printer: We use the integrated e-jet printer/AFM system in Figure 7.1, house in
the Barton Research Lab at the University of Michigan. The system resides within a semi-
cleanroom space mounted on a passive-vibration-isolation optical table. The substrate is
mounted atop a stacked kinematic motorized X,Y, and Z stages with 0.1 µm accuracy and
0.01 µm resolution. Each stage has auxiliary analog and digital inputs and outputs that are
used to control ancillary equipment in Figure 7.1. The nozzle is controlled with a separate
motorized micrometer Z stage, which allows the user to move the nozzle independently
from the substrate. All axes are controlled with motion composer software, an Aerotech
A3200 software based controller, on a PC running Windows 10. An AFM tool is mounted
to a truss constructed from T-slotted aluminum framing, while the nozzle is installed on
a separate vertical aluminum frame as presented in Figure 7.1a. In these experiments, we
focus on the deposition of a a single material (Loctite3526), An Infinity microscope camera
with a 2.5×–20× zoom lens (Edmond Optics VZM1000i) is used for printing visualizations
or setting the standoff height at the beginning of the experiment. We apply pressurized
air to the nozzle liquid reservoir along with high voltage to the nozzle tip to push liquid
ink through the nozzle inner capillary. Once the ink reaches the nozzle tip, the back pres-
sure is set to atmospheric pressure. A pulsed signal at predefined low and high voltages
(Figure 7.1a) is generated from the DAQ (Figure 7.1c) and amplified with a 200 × gain
amplifier (Figure 7.1d).
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 7.1: E-jet Manufacturing system. b) UV curing system: Dymax Bluewave 200.
c) Data Acquisition System (DAQ): National Instruments NI USB-6251. d) High Volt-
age Power Supply and Amplifier: Trek 677B. e) Lumenera INFINITY 2-1R Microscopy
Monochrome Camera. f) Nanosurf Nanite AFM on left and the 3D printed UV cure outlet
box on the right. g) Vibration frequency sweep tuning of phase contrast mode of AFM.
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UV curing system: The UV light generated from a Dymax Bluewave 200 (Figure 7.1b)
is used to cure the deposited patterns.The Dymax Bluewave 200 has a mechanical shutter
that will be open by a motor drive auxiliary digital output and the generated UV light will
be guided through a custom printed 3D focusing box shown in Figure 7.1f (next to the
AFM) The UV box is mounted on the T-slotted aluminum framing, next to the AFM.The
substrate is shuttled to this location once a new pattern has been deposited.

AFM subsystem: We use an Atomic Force Microscope (AFM), Nanosurf Nanite AFM
driven by C3000 control electronics for inline quality control, to measure the output signal,
g(x,y), at each iteration. The AFM location is recorded and maintained for wafer registra-
tion purposes. The substrate will be shuttled to the AFM location in less than 3 s.The Phase
contrast imaging mode of the AFM is used to collect the spatial XY, and lateral height data
of features on the substrate. The phase contrast is a type of dynamic mode, also known
as tapping mode, that refers to the phase channel information (the bottom figure in Fig-
ure 7.1g) that is collected during the scanning of the features based on the contrast of the
deposited inks. The AFM cantilever tip oscillates vertically at a high frequency, close to its
resonance frequency, while it has a gentle contact with the sample as shown in the upper
figure of Figure 7.1g. Depending on the deposited topography, the amplitude and phase of
the cantilever tip varies across the XY domain and will be used to estimate the height of the
features at each spatial location. The maximum allowable scan size is 110 µm × 110 µm
and 22 µm vertical range. Although the AFM range is 22 µm, the scanning time per line
should be high (slow scan) for thick samples in order to avoid AFM tip jumps in locations
such as the corner of a rectangle pattern where height deference exists.

7.2 Experimental Methods:

In this section, we present individual steps used to implement the SILC methods developed
in chapters 4 and 5. Our aim is to achieve automated transfers between the printer, UV
station (Figures 7.1b and 7.1f), and AFM to automatically deposit multi-layer structures
and enable in-situ metrology and quality monitoring.

step0− Wafer Registration:

a1 : A plus mark is deposited on the substrate and the center location (x0,y0) is
recorded in the python code as datum.

a2 : The offset between the nozzle tip centroid and center of the AFM scan in Fig-
ure 7.2a is calculated as (δx, δy) and deducted from all nozzle to AFM distances
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(a) (b) (c)

Figure 7.2: Post-processing. a) Wafer registration step0: A plus mark is printed on the
substrate and the its center location will be used to register the spatial coordinates on the
wafer. b) AFM raw scan. Due to the AFM tip thermal drift, the bare area around the
pattern does not have consistent height value. The height value need to be leveled such
that all silicon area locatiopns have zero height value. c) Processed data step2: The flatten
based leveling function in Gwydion software is used to process the scan data relative to the
bare silicon area around the sample .

in the python code. This step ensures that the nozzle’s centroid is aligned with
the center of the AFM scans.

a3 : The spatial coordinate of every point on the wafer is calculated relative to the
datum (x− (x0 + δx),y− (y0 + δy)). For example, the coordinate of the datum
after registration is (xdatum,ydatum) = (0,0).

step1− E-jet Fabrication: Time = 2 minutes 50 seconds

b1 : The substrate is transferred to a predefined blank location form the datum and
a 3 × 3 dot pattern is deposited with pitch equal to 10 µm (Figure 7.3). The
location of the first droplet of each pattern is recorded in the python code
(xreg j ,yreg j).

b2 : To prevent or resolve clogging issues in the nozzle, the substrate is shuttled to
another predefined location (xd j ,yd j) and a single droplet is printed at a high DC
voltage (e.g. 650 V) for 2 (s).

b3 : To mitigate first-droplet effects, the substrate moves to a predefined location,
(xpre j ,ypre j), and an 11 × 11 pre-pattern is printed with the NO-SILC input
signal calculated in step3. Note that steps (b2 and b3) will not be used in any
ILC calculations.

b4 : The substrate now moves to (xreg + a,yreg) as presented in Figure 7.3a and the
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true 11 × 11 pattern is deposited with pitch = 5µm using the calculated NO-
SILC pulsewidth (input) from Eq. (5.8) and step3.

b5 : The substrate is shuttled to the UV-curing station, and the UV light is applied
for 10 s.

b6 : The substrate is shuttled back to the nozzle location.

step2− Topography Measurement and Post-processing: Time = 2 minutes 15 seconds

c1 : The substrate moves to the AFM scanner station, where the center of the 3 × 3
registration pattern is placed directly under the AFM tip (xreg j−(x0+δx), xreg j−

(y0+ δy)), and the topography and coordinates of the registration dots are mea-
sured for post-processing purposes.

c2 : The substrate moves such that the center of the pattern is located under the AFM
tip and its topography is measured, ḡl, j, using the scan parameters: 79 µm × 79
µm scan size, with 79 points per line, and 0.5 s per line scan time.

c3 : The flatten base leveling function in Gwyddion software is used to process the
raw AFM data relative to the bare area around the pattern (Figure 7.2c).

c4 : The AFM scans are cropped in the python code such that the information in
the area of interest (55 × 55 µm2) is extracted as described in Figure 7.6. The
block − reduce() function in python is used to downsample the 55 × 55 µm2

cropped AFM scans to 11×11 pixelized scans and evaluate the discretized out-
put function, gl, j, in Eq. (3.4).

c5 : The layer height is calculated by subtracting two successive total height maps
of the same device, j, as ∆gl, j = gl, j − gl−1, j. Note that at the first layer, l = 1,
gl, j = ∆gl, j.

c6 : The layer and total errors are calculated as: ∆el, j =∆gd−∆gl, j and el, j = gd−gl, j,
respectively. Note that for this particular example, ∆gd is set as the desired
output, and in our case is a flat layer with 150 nm layer height, ∆gd = 150 ∗
111×11(nm), while 1 is a matrix of ones.

step3− HO-SILC update law: Time = 10 seconds

d1 : The feedforward signal is calculated according to Eq. (5.8).

d2 : Steps 1-3 are repeated, while the HO-SILC in Eq. (5.8) uses the input and error
signals of previous depositions.
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In summery, in order to fully automate the deposition process using e-jet process the
overall time to print a process a single layer is approximately 5 minutes and 15 s. Note
that, in b3, the first-droplet effects in drop-on-demand printing refer to the fact that the
initial printed droplets at a fixed setting usually have a different volume compared to the
other droplets within the set. In c2, we selected a 79 µm × 79 µm scan size, because we
needed a bare area around the sample for post processing purposes. The scan duration
varies depending on the scan parameters, such as scan size, time per line and point per
lines. The overall scan time was approximately 1 minutes and 20 seconds to scan each
layer in Figure 7.3.

7.3 Experimental Results

To compare the effects of the Norm optimal SILC tuning parameters, the performance of
the SILC algorithm using the Frobenius norm is demonstrated in Figure 7.4 for different
values of the penalty terms r and s in layer one with higher-order parameters, (α,β) =
(0.9,0.5). We selected the NO-SILC tuning parameters in Figure 7.4 based on our analysis
in chapter 5, such that they satisfy the nominal stability criteria (∥F0∥2 < 1, ρ(Th

0 < 1))
and theorems 2 to 4 are satisfied. Another criteria that we used was to ensure that each
element of the cost function in Eq. (5.3) had comparable impact. For example, we found
that if ( f⃗l, j+1− f⃗l, j)T R( f⃗l, j+1− f⃗l, j) was too small compared to the other terms in Eq. (5.3),
the controller would not attenuate noise in the system and easily became unstable. We
resolved this issue by selecting a larger r value. It should be noted that other systems may
not require similarly weighted elements within the cost function. However, it is useful for
sensitivity analysis. An example of this analysis can be seen by comparing the outputs from
the tests with weighting gains (q, s,r) = (1,1,0.5) and (q, s,r) = (1,1,5) in Figure 7.4.

The weighting coefficients enable NO-SILC to control the rate of convergence, the final
converged error, and the converged output (Figure 7.4). ILC is known to be robust to repet-
itive model uncertainty and disturbances. In chapter 5, we demonstrated that the higher
order parameters and the SILC tuning parameters should be designed such that the maxi-
mum amount of uncertainty in the system, ∥∆Hr∥2, is smaller than the robustness radius,
rAIU . Note that the rAIU is a design parameter that can be tuned by NO-SILC or higher-
order SILC parameters (q, s,r,α,β). However, we should note that this is an approximation
based on our understanding of the model dynamics, meaning that there might be situations
where ∥∆Hr∥2 > rAIU , and the system with an integrated ILC framework remains stable.
The conservativeness of this condition stems from two factors, 1) the way that ∆Hr is ex-
perimentally calculated, 2) the norm assumptions in proof of theorems 3 and 4 and corol-
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(g) (h)

Figure 7.3: Registration and data processing of iterations 3 and 15 output functions:
The die dimension is 55 µm × 55 µm, which is downsampled to 11 × 11 discretized XY
grid with pitch of 5 µm. ḡl, j(x,y) refers to oversampled AFM scans, while gl, j(x,y) refers
to down-sampled output data (height) that is used in Eq. (3.4). The desired layer height
is 150 nm and the ink is Loctite3526. The three by three dots are printed to register spa-
tial coordinates on the substrate. All patterns are printed at a known distance, a, from
the first registration droplet as described in Figure 7.3a. The ILC tuning parameters are
(q,s,r)=(1,10,5), and the HO-SILC parameters are (α,β)=(0.9,0.9). a,c,e,g) Data regarding
the third device. b,d,f,h) Data regarding the last device.
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(a) (b)

(c)

q s r rAIU ∥F0∥2 ∥Th0 ∥2 ρ(Th
0)

1.0 20.0 0.5 8.713 0.024 0.024 0.024

1.0 20.0 5.0 6.522 0.178 0.153 0.153

1.0 20.0 10.0 5.742 0.275 0.220 0.220

1.0 10.0 0.5 5.020 0.046 0.044 0.044

1.0 10.0 5.0 3.563 0.275 0.220 0.220

1.0 10.0 10.0 3.373 0.378 0.283 0.283

1.0 1.0 0.5 0.730 0.276 0.221 0.221

1.0 1.0 5.0 1.137 0.537 0.366 0.366

1.0 1.0 10.0 1.490 0.566 0.380 0.380

(d)

Figure 7.4: Effects of the NO-SILC tuning parameters: SILC convergence plots for
different values of the NO tuning parameters with Loctite material. a) Average height
versus device number. b) Incremental layer error versus layer number. c) Input signal
versus device number. Iteration j = 0 refers to the first device, and the data is related to the
first layer with (α,β) = (0.9,0.5).

lary 1.1. So in design of the nine experiments in Figure 7.4, we selected the NO-SILC or
higher-order SILC parameters (q, s,r,α,β) in Figure 7.4d such that the nominal system is
stable ( ∥F0∥2 < 1) and the maximum uncertainty of the system remains less than the robust-
ness radius, ∆Hr < rAIU , while ∆Hr is experimentally measured to be ∥∆Hr∥2 = 0.356nm

ms .
Note that higher values of rAIU result in better robustness to model uncertainty, but at the
expense of performance, as will be shown through the following experimental results.

Based on the formulation of the norm optimal controller, we know that increasing the
value of the input penalty, s, will decrease performance (e.g. increase the converged error)
while improving robustness (e.g. larger rAIU value, see the table in Figure 7.4d). This
is confirmed in Figure 7.4b in which, for a constant r = 5, increasing s = 1 to s = 20 re-
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sults in a converged error norm that increases from 15 nm to 80 nm. This observation
follows the well known performance/robustness trade off in control literature [92]. In ad-
dition, the value of r is shown to produce a tradeoff between reducing the convergence rate
(small r), and improving noise attenuation (large r). This is confirmed in Figure 7.4b in
which, for a constant s = 10, the test with r = 10 converges to its final error after three
iterations, compared to the tests, with r = 0.5 and r = 5, that converge to their final values
after two iterations. We should note that although the effect of r on convergence speed
is not appreciable, we still need high values of r for noise attenuation. For example, in
test with (s,r) = (1,0.5), the system easily became unstable after 6 iterations. We believe
that although the robustness radius in Figure 7.4d satisfies theorems 3 and 4 for all cases
and could reject the repetitive model uncertainties in the system due to nozzle clogging
or other environmental conditions, the HO-SILC design with (q, s,r) = (1,1,0.5) could not
reject the high frequency noises in the system and eventually resulted in non-monotonic
response. In this case, the combined effect of low robustness (rAIU = 0.730) due to small
s, and the controller inability to attenuate the system noise due to small r, eventually led to
the instability. More research still needs to be done to provide safety factors that consider
the neglected fast dynamics and high frequency noise in the sensor measurements (AFM),
the actuator (DAQ and amplifier) or our XYZ Aerotech stages in order to achieve design
and control fidelity.

It should be mentioned that in cases with (s,r) = (20,0.5) and (20,10), norm of the
predicted input signal (pulse-width) in Figure 7.4c is none zero, however, it is not enough to
pull material out of the nozzle and in most of the discretized spatial locations, no material
was printed (the average incremental height is zero, ∆ḡ(x,y) = 0 nm or close to zero) at
some of the iterations. This can be resolved using an MPC design, by imposing a lower
limit on the input signal, as suggested in the chapter 8.

The spatial domain demonstration of the e-jet/AFM system regulated by a higher-order
SILC to fabricate multi-layer structures is shown in Figure 7.3. The actual flat patterns are
printed on a predefined distance form the first droplet of the three-by-three dots pattern that
were printed for spatial domain registration on the Silicon wafer. The figures on the left
are related to the samples that were printed at the third iteration, while the figures on the
right are related to the samples that were printed at the last iteration. The first images are
related to the AFM top view camera, the second images are the post-processed AFM data,
and the last images are the pixelized downsampled AFM data that are used for output data
in mathematical formulations. To deal with the oversampling of the AFM and convert the
(79× 79µm2) scan images to discretized output with (11× 11) dimension, the AFM scans
are cropped in the python code such the information in the area of interest (55× 55µm2)
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q s r α β rAIU ∥F0∥2 ∥Th0∥2 ρ(Th
0)

1.0 10.0 5.0 0.0 0.0 5.169 0.333 0.333 0.333
1.0 10.0 5.0 0.9 0.5 3.563 0.275 0.220 0.220
1.0 10.0 5.0 0.9 0.9 3.946 0.257 0.211 0.211
1.0 1.0 5.0 0.0 0.0 0.824 0.833 0.833 0.833
1.0 1.0 5.0 0.9 0.5 1.137 0.537 0.366 0.366
1.0 20.0 0.5 0.0 0.0 8.834 0.024 0.024 0.024
1.0 20.0 0.5 0.0 0.9 8.839 0.024 0.023 0.023
1.0 20.0 0.5 0.9 0.0 8.379 0.024 0.024 0.024
1.0 20.0 0.5 0.9 0.9 8.722 0.023 0.023 0.023

Table 7.1: Effect of higher-order parameters and NO-SILC on HO-SILC robustness and
nominal stability. For better visualization, the FO-SILC data are shown with a light blue
background.

are extracted. We use block− reduce() function in python to downsample the 55× 55µm2

cropped AFM scans to 11×11 pixelized output data as presented in Figure 7.3.
Figure 7.5 compares the performance of the HO-SILC in experiment versus simula-

tion, and demonstrates that the simulation is able to predict the behavior of actual additive
process. For better visualization, the simulation results are shown with a light gray back-
ground. It can be observed that the HO-SILC framework enables learning not only on
the horizontal direction from device-to-device, but also from layer-to-layer and eventually
leads to layer errors convergence over layers and devices in both simulation and experi-
ment. As expected, there are more iteration varying parameters, disturbances, and noise
in the physical system that resulted in less smooth convergence behavior compared to the
simulations. We believe that these parameters are non-repetitive, however due to time- and
length-scale of the µ−AM process, we cannot measure them. Note that the experiment
and simulation data in Figures 7.5g and 7.5h both predict approximately 20 ms for the
first layer, however, the experimental layer error at the first layer in Figure 7.5a is higher
compared to the simulation layer error in Figure 7.5b (58 nm compared to 40 nm). Note
that the AFM has around 10 nm noise and can introduce noise to the output measurements
that were not considered in the simulation. Due to layer-to-layer learning resulted from
nonzero higher-order parameters (α,β), the pulse-width was predicted to be higher at the
higher layers which resulted in a better performance with respect to the layer error. Fig-
ures 7.5g and 7.5h, shows that higher values of the input signal (pulse-width) is needed
during the experiment compared to the simulation. For example, the simulation expected
25 ms at printing of layer four, while during the experiment the algorithm calculated ap-
proximately 40 ms. We believe that there are two justification for this observation, 1) the
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Figure 7.5: Experimental validation of the HO-SILC: The figures on the right are the
simulation results based on the HO-SILC developed in in chapter 5 and [5]. The figures on
the left are experiment results from implementation of the HO-SILC in in chapter 5 to e-jet
printing process.

effect of the nozzle clogging is more pronounced at the higher layers, 2) the electric field is
weaker at higher layers and the electric charges could not be released to the substrate due
to isolation properties of the polymer ink.

Figure 7.6 compares two HO-SILC designs with nonzero higher-order parameters to a
FO-SILC design with no learning in the vertical direction due to zero higher-order parame-
ters, (α,β)= (0,0). For better visualization, the FO-SILC results are shown with a light blue
background. The Experimental results demonstrate that both HO-SILC designs outperform
the FO-SILC design with respect to the layer and total error. The effect of layer-to-layer
learning can be seen at the second iteration, j = 2. While the FO-SILC predicts 18 ms
pulsewidth at iteration j = 2, at all layers which results in no material deposition, the HO-
SILC learns from past layers at the same iterations and predict a higher input signal at j = 2
at higher layers that eventually resulted in a material deposition at those layers (l ≥ 2). The
layer error with the HO-SILC designs at the fourth layer is measured approximately 20 nm
compared the 65 nm resulted from a FO-SILC. Given that the desired height increments at
all layers is 150 nm, the FO-SILC design resulted in less material deposition at all layers.
On the other hand, the HO-SILC designs could successfully learn form their past mistakes
at the first layer and put down more material at the higher layers and increase the incre-
mental height to approximately 150 nm. In addition, the total error at the fourth layer of
both HO-SILC is measured to be approximately 110 nm compared to approximately 250
nm resulted from the FO-SILC design. This is a important advancement in fabrication of
multi-layered micron sized structures, where the dimensionality plays an important role.
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(k) (l)

Figure 7.6: FO-SILC and HO-SILC convergence comparison: HO-SILC outperforms
the FO-SILC with respect to the layer and total errors. Higher layers have lower layer errors
because of the integration of the vertical learning due to none zero higher order parameters.
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Figure 7.7: Effect of Higher-order SILC parameters: The convergence behavior of the
HO-SILC does not have a huge improvement over the FO-SILC due to low value of s as
compared with Figure 7.6.

To test the repeatability of the HO-SILC algorithm in Figure 7.6, we compared the
performance of the HO-SILC with a FO-SILC design in Figure 7.7 with another sets of
the design parameters (q, s,r,α,β). Unlike Figure 7.6, the convergence behavior of the HO-
SILC does not have a huge improvement over the FO-SILC in Figure 7.7. The total error
at the last layer for the FO-SILC is approximately 90 nm in Figure 7.7e compared to 75
nm in the Figure 7.7f for the total error of the HO-SILC design. Comparing the norm
of the input signal in Figures 7.7g and 7.7h, it can be seen that the HO-SILC generates
higher values of the input signal at the higher layers, which resulted in slightly higher
material addition in Figure 7.7d compared to Figure 7.7c. Assuming that the nozzle is
not clogged, we can conclude that a well-designed FO-SILC can be sufficient to close
the topography loop iteratively and adding the higher order parameters might not always
improve the convergence properties significantly.

It should be mentioned that the convergence behavior of the FO-SILC is more smooth
compared to the convergence figures of the HO-SILC designs in Figure 7.6. We believe
this can be due to higher value of robustness radius, rAIU , for the first row of Table 7.1,
compared to the second and third rows which are related to HO-SILC designs in Figure 7.6.
On the other hand, the robustness radius, rAIU , for the HO-SILC in the fifth row of Table 7.1
is higher than the rAIU in the fourth row related to the FO-SILC design in Figure 7.7.
Therefore, the robustness properties (rAIU) and the nominal parameters (∥F0∥2∥ and ∥Th0∥2)
can be deteriorated or improved by adding the higher-order parameters (α,β), based on the
data in Table 7.1 Figure 7.4d. This is consistent with our claims in chapter 5, that the
robustness radius is a function of higher-order parameters as well as tuning parameters.
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In [50], it was claimed that a well-designed higher-order ILC can have a better per-
formance than a poorly-designed first-order ILC; however, opposite might happen if the
design parameters are not selected correctly. The authors presented anecdotal evidence of
merit to justify either HO- or FO-ILC depending on the situation. During various experi-
ments in this chapter, we have not observed that the FO-SILC outperforms the HO-SILC
when the NO tuning parameters (q, s,r) are fixed. However, comparing the FO-SILC per-
formance in Figure 7.7 with the HO-SILC behavior in Figure 7.6, where different values
of NO tuning parameters are used, we can see that the the FO-SILC design in Figure 7.7
outperforms the HO-SILC in Figure 7.6 with respect to the layer and total errors, at the cost
of loosing robustness in Table 7.1.

To investigate the effect of the higher-order SILC parameters, we run the e-jet process
for four different sets of α and β in Figure 7.8. For better visualization, the FO-SILC results
are shown with a light blue background. The results show that at all cases, the HO-SILC
design outperforms the FO-SILC design with respect to the layer and total errors. Interest-
ingly, for nonzero higher-order SILC, the performance of the HO-SILC is similar for all
three cases. One reason could be the stability parameters such as robustness radius, rAIU ,
and nominal matrices, ∥F0∥2 and ∥Th0∥2, in all three HO-SILC designs are approximately
equal, due to high value of the s parameter.

7.4 Conclusion

In this chapter, we implemented the proposed FO-SILC and HO-SILC frameworks
in chapters 4 and 5, to iteratively close the topography loop in a microscale additive
manufacturing process, termed e-jet printing. We were able to achieve high fidelity µ-AM
through autonomous control of material addition in a layer-by-layer manner in e-jet
printing process by design and integration of FO-SILC and HO-SILC frameworks. The
proposed HO-SILC framework combines device-to-device learning with layer-to-layer
learning to generate a feedforward signal that addresses error propagation over layers.
In order to achieve computational efficiency through DFT calculations, we used BCCB
plant matrix in Section 3.5.1. In addition, we used the RMC criterion in chapter 5 as
a useful technique to select the design parameters. Comparing the experimental results
with the simulation data in chapter 5, we found out that our e-jet printing process is more
iteration varying than we expected. We believe that these iteration varying behaviors
come from non-repetitive model uncertainties and disturbances resulted from sudden
changes in the jetting behavior of the ink or existing noises in our measurements, that
are not measurable during the fabrication process. The experimental results demonstrate

122



(a) (b)

(c) (d)

(e) (f)

123



(g) (h)

(i) (j)

(k) (l)

124



(m) (n)

(o) (p)

Figure 7.8: SILC convergence for different values of the higher order parameters.
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that the proposed controllers are able to reject the repetitive model uncertainties that are
resulted from nozzle clogging or environmental changes. Through multiple experiments
and using various design parameters, we demonstrated that adding layer-to-layer learning
to a FO-SILC can significantly improve the process performance. However, we observed
that the convergence behavior of a SILC design, whether FO-SILC or HO-SILC, is limited
by robustness/performance trade off.
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CHAPTER 8

Conclusions and Future work

This dissertation provides important research advancements towards the fabrication of re-
peatable, thin-film functional devices through modeling and spatially derived control solu-
tion for improving the performance of a micro scale additive manufacturing (AM) process.
Thought this dissertation, we investigate Electrohydrodynamic jet (e-jet) printing as a µ-
AM technique for its capability in depositing thin-film devices with microscale spatial res-
olution and nanoscale thickness resolution. Our aim is to understand material interactions
at the microscale and use that knowledge to make a better control decision during the fab-
rication process in order to automate and auto-regulate material addition at the microscale.
The research is validated through both simulation models and experimental testing with a
custom-built e-jet system within the lab. An empirical model for the deposition process
is developed in chapter 2 that relates the process and material parameters to the thickness
and uniformity of the thin-film devices and subsequently helps us identify a set of com-
patible materials that enable multi-material deposition. To tackle the unique challenges
on the µ-AM processes and achieve autonomous control of material addition in a layer-
by-layer manner, we apply different types of offline run-to-run learning-based controllers
that incorporate model uncertainties and spatially varying dynamics, to close the topogra-
phy loop iteratively. To address the combined challenges of multiple plant dynamics due
to multiple build materials and varying initial conditions due to roughness of the previous
layer surface, we developed a first-order SILC (FO-SILC) in chapter 4, that leverages the
information from the most recent deposition to update its control signal. We were able to
improve robustness of the FO-SILC controller and enable high fidelity µ-AM, by integra-
tion of the layer-to-layer learning into the update law that resulted in a novel HO-SILC
method in chapter 5. In chapter 7, we demonstrate both FO-SILC and HO-SILC are able
to auto regulate the e-jet process without human intervention, despite the iteration vary-
ing parameters and process variability. The experimental results in chapter 7 demonstrate
the fabrication accuracy of e-jet printing with both types of proposed controllers. It was
observed that although there is a trade off between performance and robustness, which is
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well-known in control literature [92], by proper tuning of the higher-order parameters, per-
formance of the process can be improved, while the robustness is maintained. We further
improved the HO-SILC controller in chapter 5 by projecting forward the data from future
layers using model predictive control (MPC) and combining it with the information from
previous layers using spatial iterative learning control (SILC) to form a novel SILC-MPC
framework. Simulation results of an e-jet printed structure controlled by the SILC-MPC
framework indicate that high-quality thin-films with uniform and repeatable thickness res-
olutions are achievable by tuning the MPC terminal cost and ILC parameters. It was shown
that the proposed SILC-MPC controller is robust to stochastic and repetitive model un-
certainty. The results imply that SILC-MPC framework generally has better performance
compared to a traditional SILC controller. However, the SILC update law is much faster
(50%) compared to the SILC-MPC algorithm. Future work should focus on implementa-
tion of the SILC-MPC on the experimental e-jet printing platform. In the next sections, I
discuss the remaining research directions that should be investigated in the future work.

8.1 Unconstrained SILC-MPC framework

In chapter 6, we demonstrated a forward learning approach using a projection in the print-
ing process that enhanced the control decisions in simulation. Future work should focus
on experimental validation of the proposed SILC-MPC framework. Additionally, through
the formulation of the SILC-MPC framework in chapter 6, I have identified the following
important research questions that should be addressed:

1. What are the feasibility conditions for Eq. (6.12) to be computationally tractable?

2. Can the high dimensionality of the problem (e.g. X matrix in Eq. (6.12)) be reduced
with minimal effect on the performance or robustness of the controller?

3. Can the problem be formulated to enable stability and convergence analysis? For
example, is X in Eq. (6.12) always invertible, or are there assumptions that lead to
matrix structures that allow for frequency domain transformation?

8.2 Constrained SILC-MPC

An important consideration in additive manufacturing processes is the constraint on the
direction of material addition. In chapters 4 to 6, the proposed controllers did not consider
a non-negativity constraint of the input signal. Instead, a saturation function was used to
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force the negative inputs to zero. To tackle the input-constraint of the AM process, future
work should consider a input constraint SILC-MPC method. To ensure that this practical
requirement is followed, f⃗ must be constrained to be larger than 0⃗. Furthermore, practical
applications of the printing process require an upper limit to the quantity of material de-
posited to ensure stable printing based on physical constraints of the printhead. Therefore,
f⃗ is further constrained to be less than F⃗max > 0⃗. This gives the resulting quadratic program.

minimize
f⃗

J

subject to 0⃗ ≤ f⃗ ≤ F⃗max,

(8.1)

where J is the cost function in Eq. (6.6a). The solution to this problem provides a spatially
distributed, SILC-MPC constrained input sequence that can be deposited at subsequent
layers and iterations. Note that the cost function in Eq. (8.1) is convex with respect to f⃗ .
The AM-constraint in Eq. (8.1) can be rewritten as the following convex and affine function
with respect to f⃗ ,

C( f⃗ ) =

 I
-I

 f⃗ −

F⃗max

0⃗

 ≤ 0⃗. (8.2)

To solve the constraint problem in Eq. (8.1), the following Lagrangian is proposed:

L( f⃗ ,λ) = J +λC( f⃗ ), (8.3)

where λ is a positive scalar called the Lagrange multiplier. Suppose that f⃗ ∗ is a minimizer,
the following necessary condition holds from Karush-Kuhn-Tucker (KKT) conditions [93].

▽ f⃗ L( f⃗ ∗,λ) = 0⃗

C( f⃗ ) ≤ 0⃗

λ ≥ 0

(8.4)

Future work should focus on deriving solutions to the SILC-MPC optimization problem
given in Eq. (8.4). Research questions related to the constrained SILC-MPC problem in-
clude:

1. How does the reframing of the problem into the constrained formulation of (8.4)
impact the complexity of the robustness and convergence proofs?

2. Are there assumptions that lead to matrix structures that allow for transformation into
the frequency domain?
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Figure 8.1: data-driven MPC: a data-driven MPC is proposed that predict the plant model
in future trials (Hl+, j+). SILC-MPC cost function will minimize the tracking error, as well
as model uncertainty (∆Hl+, j+). (l+, j+) refers future layers and iterations.

8.3 Development of a data-driven MPC to minimize vari-
ations in the plant models

Thus far, we have been dealing with an iteration varying system, in which our ability to
achieve robustness is highly dependent on the magnitude of the plant model variations
(∆Hl, j). From the additive manufacturing standpoint, model uncertainties play a big role
in terms of prediction of material spreading and can influence our ability to implement
either SILC or SILC-MPC especially in multi-layered structures in which, layers at later
iterations suffer from larger surface variations. In this work, we assume that the plant
models are known from either methods in chapter 3. In order to achieve robustness, we
designed the SILC learning filters for the maximum amount of model uncertainty (worst
case uncertainty); as such, the SILC algorithm was overly robust.

Future work should investigate whether a data-driven MPC can reduce model uncer-
tainty and improve the robustness of the SILC control framework. Therefore, I suggest
the implementation of a fully data-driven MPC in combination with the developed SILC
framework to achieve improved performance and robustness. The data-driven MPC should
assume that there is no prior knowledge of the plant models. The proposed method can
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use the concept of model predictive control to estimate the plant models using the informa-
tion collected from previous iterations as presented in Figure 8.1, and account for model
mismatches in the controller such that the iterative model converges to the nominal model,
Hl, j −→ H0 (or ∆Hl, j −→ 0). Compared to optimizations in Eqs. (5.3), (6.6a) and (8.1), the
proposed MPC should be used to design the input signal to minimize not only the tracking
error, but also the variations in the plant model in order to maintain consistency so that the
plant model remains near the nominal model. I hypothesize that this forward projection
will make the iterative model in Eq. (3.2) inherently more robust to model uncertainty. In
this case, we can relax weighting on the robustness and enhance the weighting on the per-
formance to design more aggressive controllers that achieve higher performance. Research
questions related to this proposed work include:

1. What machine learning algorithm should be used to maximize performance?

2. What amount of data will be necessary to achieve reasonable model matching to
ensure a robust control design?

3. Will the design of the SILC cost function impact the model identification of that
data-driven MPC?

8.4 Practical Considerations:

Although this research is originally motivated by thin-film micro-devices that are fabricated
using e-jet printing, the contributions of this research can be applied to improve the perfor-
mance of any AM process that aims to fabricate multi-material 3D structures with flexible
designs and non-uniform thickness resolutions. The potential AM processes include Inkjet
printing, FDM 3D printing, or even metal AM processes such as Direct Energy Deposition
(DED) in [56]. Note that although we were able to fully automate the deposition process
in e-jet printing, the experimental steps in Section 7.2 are still too slow and should be
improved for rapid production. The printing process, substrate transfers and data process-
ing steps in Section 7.2 take about 5 minutes for each layer and part of the reason is the
oversampling of our metrology system which makes the scanning process and output mea-
surements slow. To deal with the unnecessary oversampling and extract the value of the
output at discredited locations, we downsampled the AFM scans to lower resolutions. To
achieve rapid production, faster metrology tools such as Keyence 3D laser scanning confo-
cal microscopes (VK-X Series) are proposed. In addition, lower resolution metrology tools
such as profilometer in [94], 2-D height profile laser sensor in [3], and optical sensor in [95]

131



can be used in lower resolution AM processes such as Injket printing for faster output mea-
surement. It should be mentioned that because of the fact that all controllers designed in
this work are model-based, the system identification experiment (Section 3.5), should be
run before implementing the controller to the system. Interestingly, the SILC paradigm
does not need a very accurate model to predict the behavior of the system and can learn
the repetitive model uncertainty and disturbances of the system. The model uncertainty
during the deposition process is mainly repetitive, resulted from a shift in the pulsewidth
range due to clogging or nozzle size variations. Therefore, the repetitive model uncertainty
can be learned by the SILC part of the controller, and one system identification experiment
should be sufficient to predict the behavior of the system. Therefore, to predict the behavior
of the system in chapter 7, we run the system identification in Section 3.5.1 once before
the controller implementation that took about 2 hours. The 45 system identifications ex-
plained in Section 7.1 has been used to find the maximum amount of the uncertainty in the
system which can be ignored by approximately assuming the maximum magnitude of the
uncertainty in the system by half of the maximum element of the impulse response.

In addition, the proposed control frameworks developed in this work have applications
outside of additive manufacturing systems. For example, any system that exhibits spatially
dependent dynamics through a repetitive action (e.g. exoskeletons, robotic pick and place)
could benefit from a control framework that compensates for errors across both a spatial
and temporal domain. Importantly, spatial interactions are often disjointed temporally and
are commonly ignored. The proposed framework here addresses this issue by incorporating
spatial information into the control law.
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“Film morphology and thin film transistor performance of solution-processed olig-
othiophenes,” Chemistry of materials, Vol. 16, No. 23, 2004, pp. 4783–4789.

[17] Manfredi, G., Lova, P., Di Stasio, F., Rastogi, P., Krahne, R., and Comoretto, D., “Las-
ing from dot-in-rod nanocrystals in planar polymer microcavities,” RSC advances,
Vol. 8, No. 23, 2018, pp. 13026–13033.

[18] Ferrarese Lupi, F., Giammaria, T., Volpe, F., Lotto, F., Seguini, G., Pivac, B., Laus,
M., and Perego, M., “High aspect ratio PS-b-PMMA block copolymer masks for
lithographic applications,” ACS applied materials & interfaces, Vol. 6, No. 23, 2014,
pp. 21389–21396.

[19] Ramı́rez Quiroz, C. O., Bronnbauer, C., Levchuk, I., Hou, Y., Brabec, C. J., and
Forberich, K., “Coloring semitransparent perovskite solar cells via dielectric mirrors,”
ACS nano, Vol. 10, No. 5, 2016, pp. 5104–5112.

[20] Anderson, N., Prabhat, P., and Erdogan, T., “Ion-beam sputtered (IBS) thin-film inter-
ference filters for nonlinear optical imaging,” Multiphoton Microscopy in the Biomed-
ical Sciences XII, Vol. 8226, International Society for Optics and Photonics, 2012, p.
82260O.

[21] Wang, J., Wang, L., Song, Y., and Jiang, L., “Patterned photonic crystals fabricated
by inkjet printing,” Journal of Materials Chemistry C, Vol. 1, No. 38, 2013, pp. 6048–
6058.

134



[22] Pannier, C. P., Barton, K., Hoelzle, D., and Wang, Z., “A model of liquid-drop spread-
ing for electrohydrodynamic jet printing,” Dynamic Systems and Control Conference,
Vol. 57250, American Society of Mechanical Engineers, 2015, p. V002T34A012.

[23] Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai,
R., and Hasegawa, T., “Inkjet printing of single-crystal films,” Nature, Vol. 475, No.
7356, 2011, pp. 364–367.

[24] Huang, Y., Leu, M. C., Mazumder, J., and Donmez, A., “Additive manufacturing:
current state, future potential, gaps and needs, and recommendations,” Journal of
Manufacturing Science and Engineering, Vol. 137, No. 1, 2015.

[25] Jang, J., Kang, H., Chakravarthula, H. C. N., and Subramanian, V., “Fully Inkjet-
Printed Transparent Oxide Thin Film Transistors Using a Fugitive Wettability
Switch,” Advanced Electronic Materials, Vol. 1, No. 7, 2015, pp. 1500086.

[26] Kelly, A. G., Hallam, T., Backes, C., Harvey, A., Esmaeily, A. S., Godwin, I., Coelho,
J., Nicolosi, V., Lauth, J., Kulkarni, A., et al., “All-printed thin-film transistors from
networks of liquid-exfoliated nanosheets,” Science, Vol. 356, No. 6333, 2017, pp. 69–
73.

[27] Camposeo, A., Persano, L., Farsari, M., and Pisignano, D., “Additive manufactur-
ing: applications and directions in photonics and optoelectronics,” Advanced optical
materials, Vol. 7, No. 1, 2019, pp. 1800419.

[28] Hoath, S. D., Fundamentals of inkjet printing: the science of inkjet and droplets, John
Wiley & Sons, 2016.

[29] Park, J.-U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., Lee,
C. Y., Strano, M. S., Alleyne, A. G., Georgiadis, J. G., Ferreira, P. M., and Rogers,
J. A., “High-resolution electrohydrodynamic jet printing,” Nat. Mater., Vol. 6, No. 10,
aug 2007, pp. 782–789.

[30] Onses, M. S., Sutanto, E., Ferreira, P. M., Alleyne, A. G., and Rogers, J. A., “Mecha-
nisms, capabilities, and applications of high-resolution electrohydrodynamic jet print-
ing,” Small, Vol. 11, No. 34, 2015, pp. 4237–4266.

[31] Han, Y. and Dong, J., “Electrohydrodynamic printing for advanced mi-
cro/nanomanufacturing: Current progresses, opportunities, and challenges,” Journal
of Micro and Nano-Manufacturing, Vol. 6, No. 4, 2018.

[32] Sutanto, E., Shigeta, K., Kim, Y., Graf, P., Hoelzle, D., Barton, K., Alleyne, A.,
Ferreira, P., and Rogers, J., “A multimaterial electrohydrodynamic jet (E-jet) printing
system,” Journal of Micromechanics and Microengineering, Vol. 22, No. 4, 2012,
pp. 045008.

[33] Pannier, C. P., Ojeda, L., Wang, Z., Hoelzle, D., and Barton, K., “An electrohy-
drodynamic jet printer with integrated metrology,” Mechatronics, Vol. 56, dec 2018,
pp. 268–276.

135
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[36] Norrlöf, M. and Gunnarsson, S., “Time and frequency domain convergence properties
in iterative learning control,” International Journal of Control, Vol. 75, No. 14, 2002,
pp. 1114–1126.

[37] Meng, D. and Moore, K. L., “Robust iterative learning control for nonrepetitive un-
certain systems,” IEEE Trans. Automat. Contr., 2017.

[38] Ahn, H.-S., Moore, K. L., and Chen, Y., Iterative learning control: robustness and
monotonic convergence for interval systems, Springer Science & Business Media,
2007.

[39] Altin, B., Wang, Z., Hoelzle, D. J., and Barton, K., “Robust monotonically conver-
gent spatial iterative learning control: interval systems analysis via discrete Fourier
transform,” 2018.

[40] Hoelzle, D. J. and Barton, K. L., “On Spatial Iterative Learning Control via 2-D Con-
volution: Stability Analysis and Computational Efficiency,” IEEE Trans. Control Syst.
Technol., 2016.

[41] Hoelzle, D. J. and Barton, K. L., “A new spatial iterative learning control approach for
improved micro-additive manufacturing,” 2014 American Control Conference, IEEE,
2014, pp. 1805–1810.

[42] Afkhami, Z., Pannier, C., Aarnoudse, L., Hoelzle, D., and Barton, K., “Spatial It-
erative Learning Control for Multi-material Three-Dimensional Structures,” ASME
Letters in Dynamic Systems and Control, Vol. 1, No. 1, 2020.

[43] Aarnoudse, L., Pannier, C., Afkhami, Z., Oomen, T., and Barton, K., “Multi-layer spa-
tial iterative learning control for micro-additive manufacturing,” IFAC-PapersOnLine,
Vol. 52, No. 15, 2019, pp. 97–102.

[44] Wang, Z., Pannier, C., Ojeda, L., Barton, K., and Hoelzle, D. J., “An application of
spatial iterative learning control to micro-additive manufacturing,” 2016 American
Control Conference (ACC), IEEE, 2016, pp. 354–359.

[45] Bristow, D. A., Tharayil, M., and Alleyne, A. G., “A survey of iterative learning
control,” IEEE control systems magazine, Vol. 26, No. 3, 2006, pp. 96–114.

[46] Bu, X., Yu, F., Fu, Z., and Wang, F., “Stability analysis of high-order iterative learning
control for a class of nonlinear switched systems,” Abstract and Applied Analysis, Vol.
2013, Hindawi, 2013.

136



[47] Wei, Y.-S. and Li, X.-D., “Robust higher-order ILC for non-linear discrete-time sys-
tems with varying trail lengths and random initial state shifts,” IET Control Theory &
Applications, Vol. 11, No. 15, 2017, pp. 2440–2447.

[48] Bien, Z. and Huh, K. M., “Higher-order iterative learning control algorithm,” IEE
Proceedings D (Control Theory and Applications), Vol. 136, IET, 1989, pp. 105–112.

[49] Chen, Y., Gong, Z., and Wen, C., “Analysis of a high-order iterative learning control
algorithm for uncertain nonlinear systems with state delays,” Automatica, Vol. 34,
No. 3, 1998, pp. 345–353.

[50] Phan, M. Q. and Longman, R. W., “Higher-order iterative learning control by pole
placement and noise filtering,” IFAC Proceedings Volumes, Vol. 35, No. 1, 2002,
pp. 25–30.

[51] Rawlings, J. B., Mayne, D. Q., and Diehl, M., Model predictive control: theory,
computation, and design, Vol. 2, Nob Hill Publishing Madison, WI, 2017.

[52] Li, D., He, S., Xi, Y., Liu, T., Gao, F., Wang, Y., and Lu, J., “Synthesis of ILC–
MPC controller with data-driven approach for constrained batch processes,” IEEE
Transactions on Industrial Electronics, Vol. 67, No. 4, 2019, pp. 3116–3125.

[53] Lee, K. S., Chin, I.-S., Lee, H. J., and Lee, J. H., “Model predictive control tech-
nique combined with iterative learning for batch processes,” AIChE Journal, Vol. 45,
No. 10, 1999, pp. 2175–2187.

[54] Xie, S. and Ren, J., “Iterative learning-based model predictive control for precise
trajectory tracking of piezo nanopositioning stage,” 2018 Annual American Control
Conference (ACC), IEEE, 2018, pp. 2922–2927.

[55] Rosolia, U. and Borrelli, F., “Learning model predictive control for iterative tasks. a
data-driven control framework,” IEEE Transactions on Automatic Control, Vol. 63,
No. 7, 2017, pp. 1883–1896.

[56] Gegel, M. L., Bristow, D. A., and Landers, R. G., “Model predictive height control
for direct energy deposition,” Dynamic Systems and Control Conference, Vol. 59148,
American Society of Mechanical Engineers, 2019, p. V001T10A006.

[57] Yu, Q. and Hou, Z., “Data-driven predictive iterative learning control for a class of
multiple-input and multiple-output nonlinear systems,” Transactions of the Institute
of Measurement and Control, Vol. 38, No. 3, 2016, pp. 266–281.

[58] Wang, L., Freeman, C. T., and Rogers, E., “Predictive iterative learning control with
experimental validation,” Control Engineering Practice, Vol. 53, 2016, pp. 24–34.

[59] Jewell, J., Scherer, A., McCall, S., Lee, Y.-H., Walker, S., Harbison, J., and Flo-
rez, L., “Low threshold electrically-pumped vertical-cavity surface-emitting micro-
lasers,” Optics News, Vol. 15, No. 12, 1989, pp. 10–11.

137



[60] Lissberger, P. and Wilcock, W., “Properties of all-dielectric interference filters. II.
Filters in parallel beams of light incident obliquely and in convergent beams,” JOSA,
Vol. 49, No. 2, 1959, pp. 126–130.

[61] Howell, I. R., Li, C., Colella, N. S., Ito, K., and Watkins, J. J., “Strain-tunable
one dimensional photonic crystals based on zirconium dioxide/slide-ring elastomer
nanocomposites for mechanochromic sensing,” ACS applied materials & interfaces,
Vol. 7, No. 6, 2015, pp. 3641–3646.

[62] Lova, P., Manfredi, G., and Comoretto, D., “Advances in functional solution pro-
cessed planar 1D photonic crystals,” Advanced Optical Materials, Vol. 6, No. 24,
2018, pp. 1800730.

[63] Park, J.-U., Hardy, M., Kang, S. J., Barton, K., Adair, K., kishore Mukhopadhyay, D.,
Lee, C. Y., Strano, M. S., Alleyne, A. G., Georgiadis, J. G., et al., “High-resolution
electrohydrodynamic jet printing,” Nature materials, Vol. 6, No. 10, 2007, pp. 782–
789.

[64] Cloupeau, M. and Prunet-Foch, B., “Electrohydrodynamic spraying functioning
modes: a critical review,” Journal of Aerosol Science, Vol. 25, No. 6, 1994, pp. 1021–
1036.

[65] Lee, S.-H. and Cho, Y.-J., “Characterization of silver inkjet overlap-printing through
cohesion and adhesion,” Journal of Electrical Engineering and Technology, Vol. 7,
No. 1, 2012, pp. 91–96.

[66] Park, J., Kim, B., Kim, S.-Y., and Hwang, J., “Prediction of drop-on-demand (DOD)
pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag
colloid ink,” Applied Physics A, Vol. 117, No. 4, 2014, pp. 2225–2234.

[67] Owens, D. K. and Wendt, R., “Estimation of the surface free energy of polymers,”
Journal of applied polymer science, Vol. 13, No. 8, 1969, pp. 1741–1747.

[68] Wu, S., “Calculation of interfacial tension in polymer systems,” Journal of Polymer
Science Part C: Polymer Symposia, Vol. 34, Wiley Online Library, 1971, pp. 19–30.

[69] Saad, S. M., Policova, Z., and Neumann, A. W., “Design and accuracy of pendant
drop methods for surface tension measurement,” Colloids and Surfaces A: Physico-
chemical and Engineering Aspects, Vol. 384, No. 1-3, 2011, pp. 442–452.

[70] Ionita, E., Ionita, M., Stancu, E., Teodorescu, M., and Dinescu, G., “Small size
plasma tools for material processing at atmospheric pressure,” Applied Surface Sci-
ence, Vol. 255, No. 10, 2009, pp. 5448–5452.

[71] Israelachvili, J. N. and Gee, M. L., “Contact angles on chemically heterogeneous
surfaces,” Langmuir, Vol. 5, No. 1, 1989, pp. 288–289.

138



[72] Pannier, C. P., Diagne, M., Spiegel, I. A., Hoelzle, D. J., and Barton, K., “A dynamical
model of drop spreading in electrohydrodynamic jet printing,” Journal of Manufac-
turing Science and Engineering, Vol. 139, No. 11, 2017.

[73] Taylor, M., Urquhart, A. J., Zelzer, M., Davies, M. C., and Alexander, M. R., “Picol-
iter water contact angle measurement on polymers,” Langmuir, Vol. 23, No. 13, 2007,
pp. 6875–6878.

[74] Doumanidis, C. and Skordeli, E., “Distributed-parameter modeling for geometry con-
trol of manufacturing processes with material deposition,” J. Dyn. Sys., Meas., Con-
trol, Vol. 122, No. 1, 2000, pp. 71–77.

[75] Guo, Y., Peters, J., Oomen, T., and Mishra, S., “Control-oriented models for ink-jet
3D printing,” Mechatronics, Vol. 56, 2018, pp. 211–219.

[76] Wang, Z., Sammons, P. M., Pannier, C. P., Barton, K., and Hoelzle, D. J., “System
Identification of a Discrete Repetitive Process Model for Electrohydrodynamic Jet
Printing,” 2018 Annual American Control Conference (ACC), IEEE, 2018, pp. 4464–
4471.

[77] Moore, K. L., “An iterative learning control algorithm for systems with measurement
noise,” Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.
99CH36304), Vol. 1, IEEE, 1999, pp. 270–275.

[78] Norrlof, M. and Gunnarsson, S., “A frequency domain analysis of a second order
iterative learning control algorithm,” Proceedings of the 38th IEEE Conference on
Decision and Control (Cat. No. 99CH36304), Vol. 2, IEEE, 1999, pp. 1587–1592.

[79] Afkhami, Z., Iezzi, B., Hoelzle, D., Shtein, M., and Barton, K., “Electrohydrody-
namic Jet Printing of One-Dimensional Photonic Crystals: Part I—An Empirical
Model for Multi-Material Multi-Layer Fabrication,” Advanced Materials Technolo-
gies, Vol. 5, No. 10, 2020, pp. 2000386.

[80] Amann, N., Owens, D. H., and Rogers, E., “2D systems theory applied to learning
control systems,” Proceedings of 1994 33rd IEEE Conference on Decision and Con-
trol, Vol. 2, IEEE, 1994, pp. 985–986.

[81] Rogers, E. and Owens, D. H., Stability analysis for linear repetitive processes, Vol.
175, Springer, 1992.

[82] Chu, B. and Owens, D. H., “Iterative learning control for constrained linear systems,”
International Journal of Control, Vol. 83, No. 7, 2010, pp. 1397–1413.

[83] Cayley, A., “A Memoir on the Theory of Matrices.” Proceedings of the Royal Society
of London Series I, Vol. 9, 1857, pp. 100–101.

[84] Crilly, T., “Cayley’s anticipation of a generalised Cayley-Hamilton theorem,” Historia
Mathematica, Vol. 5, No. 2, 1978, pp. 211–219.

139



[85] Szabo, F., The linear algebra survival guide: illustrated with Mathematica, Academic
Press, 2015.

[86] Blondel, V. D., Theys, J., and Tsitsiklis, J. N., “When is a pair of matrices stable?”
Unsolved problems in mathematical systems and control theory, 2004, pp. 304.

[87] Sun, J., Park, H., Kolmanovsky, I., and Choroszucha, R., “Adaptive model predictive
control in the IPA-SQP framework,” 52nd IEEE Conference on Decision and Control,
IEEE, 2013, pp. 5565–5570.

[88] Bichi, M., Ripaccioli, G., Di Cairano, S., Bernardini, D., Bemporad, A., and Kol-
manovsky, I. V., “Stochastic model predictive control with driver behavior learning for
improved powertrain control,” 49th IEEE conference on decision and control (CDC),
IEEE, 2010, pp. 6077–6082.

[89] Lequime, M., Abel-Tiberini, L., Mathieu, K., Berthon, J., and Lumeau, J., “2× 2-
array pixelated optical interference filters,” Optical Systems Design 2015: Advances
in Optical Thin Films V , Vol. 9627, International Society for Optics and Photonics,
2015, p. 96270V.
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