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Abstract 

 

A model-based approach was developed to elucidate etiological differences between and 

within patient groups representing the two dominant heart failure diagnoses: heart failure with 

reduced (HFrEF) and preserved (HFpEF) ejection fraction. A closed-loop model of the 

cardiovascular system informed by patient-specific transthoracic echocardiography (TTE) and 

right heart catheterization (RHC) data was used to identify key parameters representing 

cardiovascular mechanics and hemodynamics. Model simulations were tuned to match RHC and 

TTE pressure, volume, and cardiac output measurements in each patient. The underlying 

physiological model parameters were compared to model-based norms and between HFrEF and 

HFpEF diagnoses. Our results confirm the main mechanistic parameter driving HFrEF is reduced 

left ventricular contractility, whereas HFpEF exhibits a more heterogeneous phenotype. To 

determine subgroups within the HFpEF diagnosis, we conducted a principal component analysis 

on the optimized parameters, which combined with machine learning techniques including k-

means and hierarchical clustering methods reveal (i) a group of HFrEF-like HFpEF patients that 

share characteristics with HFrEF, (ii) a HFpEF group that exhibit classical characteristics of 

patients with diastolic dysfunction, and (iii) a group of HFpEF patients that share characteristics 

of both types of dysfunction. These subgroups cannot be distinguished from the clinical data alone. 

However, reanalyzing the clinical data of each of these newly determined subgroups reveals that 

elevated systolic and diastolic LV volumes seen in both HFrEF and the HFrEF-like HFpEF may 

be used to identify this patient population. Similar HFpEF groupings have been identified by other 

studies using extensive clinical measures (e.g.,   non-routine echocardiography and heart biopsies) 
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whereas our study analyzes data from standard clinical procedures, such as TTE and RHC. Hence, 

our methodology has great translational potential to be broadly accepted in the clinic. These results 

suggest that physiology-informed model-based analysis of standard clinical data in conjunction 

with unsupervised machine learning can distinguish subgroups of HFpEF as separate phenotypes. 

Moreover, this methodology has the potential to retrospectively assess patient selection in past 

HFpEF clinical studies, aid in the optimization of prospective HFpEF subgroup selection for future 

clinical trials and elucidate patient-specific treatment strategies for HFpEF. 
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Chapter 1 Introduction 

1.1 Heart Failure: Definitions and Diagnoses 

The heart pumps blood to meet the metabolic demands of the body by circulating blood 

through the lungs and the systemic periphery. Oxygen delivered via the blood is a crucial substrate 

for oxidative ATP synthesis in the tissues of the body. The heart has two main pumping chambers, 

the left, and right ventricles. Blood ejected from the right ventricle (RV) is delivered to the 

pulmonary circulation where it unloads carbon dioxide and takes up oxygen. Oxygenated blood 

returned from the lung to the heart is ejected from the left ventricle (LV) to the systemic circulation. 

Maximal cardiac output (CO)—the maximum rate of blood pumping—occurs at maximal 

voluntary exercise (maximum whole-body oxygen consumption, VO2max). Under physiologic 

conditions, the recruitable reserves of CO and cardiac power (a measure that integrates pressure 

and flow in the cardiovascular system, and thus, another measure of cardiac pumping) are close to 

four to five times the resting basal level. Heart failure (HF) is suspected when the heart is unable 

to pump to match physiologic CO and recruitable cardiac power reserves. The most classically 

accepted definition of HF was developed by Lily et al. stating that:  

“Heart failure is present when the heart is unable to pump blood forward at a sufficient rate to meet 

the metabolic demands of the body or is able to do so only if cardiac filling pressures are 

abnormally high (Lilly LS, 2016).” 

 This classical understanding of HF has focused on cardiac dysfunction alone. Yet, 

definitions of HF focusing on the whole-body impacts of the disease are beginning to emerge. For 
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example, a recent definition emphasizes diminished reserve cardiac power and impaired exercise 

capacity as the defining features of HF(Beard et al., 2021).  

1.1.1 Causes of HF 

The loss of cardiac pumping function in HF is associated with cardiac structural adaptations 

to a precipitating cause. Cardiac function may be impaired due to acute causes (i.e., structural 

damage from cardiopulmonary bypass surgery, infection) or chronic cardiovascular diseases (i.e., 

structural adaptions due to hypertension or coronary artery disease (CAD)). For example, in the 

case of CAD, cholesterol plaque formation in the coronary artery, disrupts proper cardiac oxygen 

delivery, compromising bioenergetics and eventually leading to cardiac dysfunction (Shao et al., 

2020). Cardiac infarction, one of the end-stage manifestations of CAD leads to a high incidence 

of HF(Murphy et al., 2020). Diseases causing cardiac structural remodeling such as dilated 

cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can be triggered by 

compensating adaptations but can also be due to inherited genetic mutations (i.e., familial HCM 

and DCM) (Marian & Braunwald, 2017; Orphanou et al., 2022). Challenging hormonal states such 

as hyperthyroidism and pregnancy, can increase CO and cardiac power demand and likewise 

trigger the development of HF(Bright et al., 2021). While helpful at cardiac disease onset or in 

states of increased CO and cardiac power demand, in the long-term cardiac structural adaptive 

responses have negative consequences on the cardiac, pulmonary, and systemic circulation. 

1.1.2 Compensatory Physiological Changes to Maintain CO in HF 

Whether an acute or chronic event leads to HF, the classical understanding is that patients 

with HF have a decreased CO (Campia et al., 2010). CO can be influenced by stroke volume (SV), 

the amount of blood ejected during the cardiac cycle, and heart rate (HR), the heartbeat frequency. 
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In summary, all cardiovascular compensatory adaptations (i.e., changes in vascular function, blood 

volume, and neurohumoral status) aim to increase HR and SV to maintain CO. In the long term, 

however, these adaptive mechanisms can backfire to produce the general signs and symptoms 

associated with HF (i.e., elevated systemic and pulmonary pressures that often lead to peripheral 

and pulmonary congestion). 

Compensatory Sympathetic Cardiac Activation 

Norepinephrine acts on cardiomyocyte β1-adrenergic receptors, thereby increasing HR and 

cardiac inotropy (contractility), resulting in sympathetic cardiac stimulation. Chronic sympathetic 

overstimulation of the heart exacerbates HF and has negative effects such as ventricular 

hypertrophy, enhanced arrhythmias, and activation of molecular/biochemical mechanisms leading 

to dysfunction (Richard E. Klabunde, 2015). 

Compensatory Sympathetic Systemic Activation 

 

At the systemic level, HF leads to compensatory activation of the sympathetic nervous 

system within the autonomic nervous system (ANS) activation of the renin-angiotensin system 

and increases vasopressin and atrial natriuretic peptide (ANP) release. α1-adrenergic receptors 

present in arterial and venous vessels are activated by the norepinephrine released from the 

sympathetic nerves innervating them increasing arterial/venous vasoconstriction (Pepper & Lee, 

1999).  The vasoconstriction helps maintain arterial pressure and increase venous pressure under 

conditions of low CO in HF. However, because aortic pressure increases in response to 

vasoconstriction, the ‘load’ the LV must push against to eject blood into the systemic circulation 

(afterload) also increases.  Thus, over-activation of the sympathetic nervous system affecting the 

vasculature may have overall negative effects on the pumping function of an already failing heart.     

Because activation of the sympathetic nervous system also leads to vasoconstriction of smaller 
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arterioles, these compensatory mechanisms can negatively impact exercise by limiting muscle 

perfusion. Venous vasoconstriction causes more fluid to flow out of the venous compartment into 

efficient circulation, thereby increasing SV and cardiac preload (initial stretching of 

cardiomyocytes before contraction), however an increase in venous pressures can also lead to 

peripheral edema (Fudim et al., 2017). Increased sympathetic stimulation on renal β-adrenergic 

receptors stimulate renin release, which is one of the clinical HF biomarkers (Heidenreich et al., 

2022). Circulating renin on its turn stimulates angiotensin II production and aldosterone release. 

The overall effect of these circulating hormones is to increase blood volume by activating renal 

mechanisms of sodium and water retention, thus helping increase venous return to the heart and 

increase SV(Pepper & Lee, 1999). Angiotensin II also leads to vasoconstriction and increases 

systemic vascular resistance (SVR). These hormones can also lead to cardiac remodeling that 

occurs in HF (Richard E. Klabunde, 2015). 

Maximizing venous return takes advantage of the intrinsic mechanical properties of the 

heart described by the Frank-Starling mechanism in which preload—the force that stretches the 

heart prior to contraction— is proportional ventricular filling.  Increased ventricular filling leads 

to an increase in active tension and shortening developed by the muscle fibers in the 

cardiomyocytes, causing higher SV. A compensatory response to the high preload present in the 

atria and ventricles during HF is increased natriuretic peptide (NP) release. The heart and brain 

release NPs to lower arterial pressure, these act by decreasing blood volume and systemic vascular 

resistance. Atrial and ventricular dilation stimulates NP release. Neurohumoral stimuli also 

stimulate NP release in response to HF. There are two NPs: Atrial Natriuretic Peptide (ANP) and 

Brain Natriuretic Peptide (BNP). Atrial myocytes synthesize and release ANP. Other factors such 

as angiotensin II, endothelin, and sympathetic stimulation (activating β-adrenoreceptors) 
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precipitate ANP release. The brain and ventricular myocytes synthesize BNP's pre hormone form 

Pro-NPP, and its release is triggered by physiologic factors similar to ANP. Pro-NPP, is cleaved 

to BNP and N-terminal-proB-type natriuretic peptide (NT-proBNP). Both BNP and NT-proBNP 

are sensitive diagnostic markers for HF in the clinic (Heidenreich et al., 2022). 

1.1.3 HF Classification 

The classical understanding of HF is that CO is decreased due to cardiac systolic or 

diastolic dysfunction. Ejection Fraction (EF) is the volumetric fraction of blood ejected from a 

chamber in the heart with each heartbeat. EF is calculated by dividing SV by EDV. For a healthy 

individual at rest, SV is ∼70 mL and EF is ∼65% in the LV (although volumes should be similar 

for the right ventricle (RV)). LVEF is a measure of the effectiveness of the heart’s pumping action 

into the systemic circulation, and as early as the 1930s it was proposed as a useful metric to assess 

cardiac function (Nylin G, 1933). LVEF is now considered the most important metric in the 

classification of patients with HF, and most clinical trials select patients based on LVEF as their 

primary criterion (Yusuf et al., 2003; Hoendermis et al., 2015; Palau et al., 2020; Nassif et al., 

2021). Clinicians have classified HF patients into two categories based on whether their LVEF is 

below or above 50% (Heidenreich et al., 2022). If a patient’s EF is ≤50% they are diagnosed with 

heart failure with reduced ejection fraction (HFrEF). In HFrEF, the reduction in EF is because of 

inefficient systolic contraction leading to an increased EDV and ESV.  Thus, HFrEF patients are 

often described as having ‘systolic’ HF (Murphy et al., 2020). If a patient has HF symptoms but 

their EF is ≥50%, they are diagnosed with heart failure with preserved ejection fraction (HFpEF). 

In HFpEF, EF is preserved out of the proportionally small ESV and EDV (although this is not 

always the case, some HFpEF patients can have higher than normal ventricular volumes). The 

classical assumption is these patients have low small ventricular volumes due to ‘diastolic’ HF 
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(Dunlay et al., 2017). Exercise intolerance, impairment of recruitable oxygen reserves, and cardiac 

power are measurements that consider other contributing peripheral factors and are moving away 

from looking at the heart alone as the sole cause of HF (Beard et al., 2021). Unlike EF, which 

focuses only on the systolic function of the heart, cardiac power aims to combine information from 

the afterload and chronotropic state of a patient by considering arterial pressure, flow, and HR, 

thus expressing the required energy transfer from the LV to the aorta (Fincke et al., 2004). 

Although some of these measurements are beginning to make their way as biomarkers that 

correlate with the severity of HF and mortality rate, the current HF diagnosis remains based on 

EF. 

1.2 Heart Failure with Reduced Ejection Fraction 

1.2.1 Etiology and Pathophysiology 

The burden of HF has increased worldwide, but particularly in the countries where the 

increased quality of life and expectancy has led to a large aging population struggling with 

cardiovascular disease as well as metabolic comorbidities (i.e., obesity, diabetes, CAD) that may 

contribute to the development of HF (Heidenreich et al., 2022). It is now estimated that over 11 

million people worldwide are diagnosed with HF with reduced ejection fraction (HFrEF) (Murphy 

et al., 2020). HFrEF is characterized by progressive LV dilation. Thus, the classical understanding 

of HFrEF, is that patients in this category have ‘systolic’ HF, due to a loss of ventricular 

contractility that reduces their ability to pump blood to the systemic circulation during systole 

(Pinilla-Vera et al., 2019). Because about half of HFrEF cases are of ischemic etiology, newly 

diagnosed patients need an evaluation for CAD, as patients with CAD are prone to myocardial 

infarction (which would damage cardiac capacity even more). Typical symptoms of HFrEF include 

difficulty breathing, fatigue, and ankle swelling (Murphy et al., 2020). 
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In HFrEF, cardiac contractility of an intrinsically weak heart can be maximized by greater 

ventricular filling and the Frank-Starling mechanism.  This increased filling of the ventricles may 

in part lead to the ventricular dilation observed in HFrEF. In HFrEF patients, the neurohumoral 

response to low CO, triggers a signaling cascade leading to increased venous and arterial 

vasoconstriction. Although helping to increase ventricular filling, abnormally high venous 

pressure will also lead to systemic edema and contribute to swelling of the extremities, particularly 

in the legs of HFrEF patients. Likewise, the renin-angiotensin system activation will lead to fluid 

retention and volume overload. In the beginning mechanisms increasing mean arterial pressure as 

well as venous constriction will help with preload.  However as arterial pressure increases, the 

increased afterload can negatively impact the function of a heart already struggling with systolic 

dysfunction. The inability to push blood out from the LV to the systemic circulation will lead to a 

high ESV. High LV volumes and pressures will eventually lead to high volumes and pressure in 

the left atria (LA). Because of its relationship with pulmonary circulation, high pressure in the LA 

can lead to complications such as pulmonary edema and pulmonary hypertension. Ventricular and 

atrial distention will lead to the release of NPs which paradoxically starts to lower blood volume 

and ventricular filling counteracting some of these initial compensatory mechanisms.  Overall, 

HFrEF is characterized by a heart dysfunction that typically leads to some initial compensatory 

adaptations, but these compensatory adaptations when overactivated or chronically stimulated lead 

to worsened cardiac function.  For these same reasons effective treatments and therapies for HFrEF 

have been challenging.    

1.2.2 Diagnosis of HFrEF 

To diagnose HFrEF accurately, initial testing involves the measurement of 

echocardiography, NPs, electrocardiography, and chest x-ray. As mentioned earlier, HFrEF may 
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be associated with ischemic etiologies such as CAD. To test for the formation of obstructive 

plaque, clinicians may prescribe invasive coronary angiography. Likewise, for patients with a low 

probability of ischemic disease, a non-invasive test using computed tomography can be used 

instead (Murphy et al., 2020). 

Chest-X ray 

 

When clinicians suspect HF, patients undergo chest X-rays. Clinicians will use it to look 

for routine radiographic features of HF, such as an enlarged heart. The presence of septal lines 

may indicate pulmonary venous congestion. Air gaps, opacities, and pleural effusions are 

hallmarks of pulmonary effusion and may suggest pulmonary edema (Chait et al., 1972). 

Echocardiography 

 

Transthoracic echocardiography (TTE) is a non-invasive and widely available imaging 

technique able to visualize cardiac structures such as the ventricles and atria (Lang RM et al., 

2016). TTE images are particularly important for HF diagnosis as they are used to quantify LV 

volumes in systole and diastole and estimate a patient’s EF, hence allowing the clinician to confirm 

the HFrEF diagnosis of an LVEF of 50% or less. The LV volumes are typically measured as either 

(i) a single diameter across the LV just below the mitral valve leaflet tips (Teichholz et al., 1976) 

or (ii) tracings of the LV from apical two- and four-chamber views. Volumes derived from the 

two- and four-chamber views are calculated by the Method of Discs (MOD), also known as 

Simpson’s Method, which is now the preferred method for the estimation of LV volumes. From 

TTE measurements, clinicians may obtain additional information, such as CO based on the 

calculated SV andthe patient’s HR, the left ventricular out tract flow velocity time integral (LVOT 

VTI), and the cross-sectional aortic valve area for each patient (Lang RM et al., 2016). 
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Cardiac Magnetic Resonance  

Although not widely used in every patient, an excellent non-invasive method to visualize 

left and right ventricular volumes is cardiac magnetic resonance (CMR). In addition to assessing 

cardiac morphology, CMR can provide rich information on ventricular function, myocardial 

perfusion, tissue characteristics, flow quantification, and CAD (Russo et al., 2020). A modification 

of CMR, Phosphorus-31 MRS (31P-MRS), is an imaging modality capable of measuring high-

energy phosphate metabolism and can be used to characterize in vivo myocardial energy status in 

HF patients (Bakermans et al., 2017). 

Right Heart Catheterization 

A right heart catheterization (RHC) is an invasive procedure in which a Swan-Ganz 

catheter is inserted through the jugular vein and measures the pressure at the tip of the catheter as 

it is advanced into the pulmonary artery, allowing for direct measurement of pressures in the heart. 

An RHC may be indicated in patients with worsening HF symptoms without a clear cause, before 

cardiac transplantation or insertion of a Left Ventricular Assist Device, and in post-infarction 

mechanical complications like a ventricular aneurysm. Specifically, RHC measures pressures in 

the right atria (RA), right ventricle (RV), pulmonary artery (PA), and the pulmonary capillary 

wedge pressure (PCWP). Normal RA pressures range between 0-7 mmHg, they are an indicator 

of RV volume status and preload. RA pressures are elevated when there is a disruption in 

forwarding cardiac flow or an increase in intravascular volume, such as in RV and valvular disease, 

pulmonary hypertension, HF, and cardiomyopathies. Normal RV pressures range from 15-25 

mmHg and 3-12 mmHg in systole and diastole respectively. Because RV pressures are surrogates 

for PA pressure, high RV pressures are often elevated with diseases that elevate PA pressures. 
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Normal PA pressures are often reported in systole as 15-25 mmHg, 8-15 mmHg diastole, and mean 

values of 10-19 mmHg. PA pressures are elevated by acute conditions such as pulmonary edema 

and hypoxemia-induced pulmonary vasoconstriction, as well as in chronic diseases such as 

pulmonary hypertension (mean PAP > 20 mm Hg is an important diagnostic criterion for this 

disease). Normal PCWP is between 4-12 mmHg, is an important surrogate measurement for LA 

pressure and LV end-diastolic pressure (preload). PCWP increases in proportion to elevated 

preload when HF, cardiomyopathies, or valve disorders are present (Vanderbilt University Medical 

Center, 2020). 

In addition to pressure information, indirect RHC calculations include CO, pulmonary 

vascular resistance (PVR), and cardiac power. CO is estimated by using the Fick or thermodilution 

methods. The Fick method measures venous and arterial O2 saturation and often presumes a given 

whole body oxygen consumption (VO2) based on weight, height, and sex. The accuracy of the 

Fick method hinges on correctly estimating VO2, and it has been determined that it can vary by as 

much as 25% when compared to a direct measurement of V̇O2 (Narang et al., 2014). During RHC, 

the thermodilution technique estimates CO by measuring the dispersion of a bolus injection of cold 

saline at the proximal end of the catheter and with a temperature sensor at the distal end of the 

catheter. PVR is an indicator of how much the pulmonary circulation “resists” CO, and it can be 

calculated from RHC measurements by subtracting the pulmonary arterial wedge pressure 

(PAWP) or LA pressure from the mean PAP (Chemla et al., 2015). Cardiac power is a novel 

hemodynamic measure of cardiac pumping incorporating pressure and flow and is calculated by 

multiplying the CO and mean arterial blood pressure. In recent studies, cardiac power was shown 

to be instrumental in the diagnosis of cardiogenic shock and chronic heart HF (Fincke et al., 2004).  
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Laboratory Evaluation 

Several laboratory evaluations are recommended for patients suspected of HF (Heidenreich 

et al., 2022).Complete blood count and iron studies are amongst these evaluations to rule out 

anemia as a possible cause for symptoms (i.e., fatigue) (Said Hajouli & Dipesh Ludhwani, 2022). 

Urinalysis, serum electrolytes, blood urea, nitrogen, and serum creatinine are all indicators of 

kidney function, which as mentioned earlier is altered and often compromised during HF. 

Electrolytes and kidney function should be monitored after diagnosis because some of the 

therapeutics can cause additional abnormalities (Heidenreich et al., 2022). Glucose, fasting lipid 

profile, liver function tests, and thyroid-stimulating hormone are also recommended to provide 

important information on patients’ comorbidities (i.e., diabetes), suitability for and adverse effects 

of treatments, or potential causes of HF (Heidenreich et al., 2022). Assays for BNP and NT-

proBNP are frequently used to establish the presence and severity of HF and are equally reliable 

for diagnostic purposes (Taylor & Hobbs, 2010). NT-proBNP, <300 pg/mL and BNP <50 pg/mL 

values are used to rule out acute HF, while BNP <35 pg/mL or NT-proBNP <125 pg/mL values 

are used to rule out chronic HF in HFrEF patients (Murphy et al., 2020). 

1.2.3 Evidence-based Treatment of HFrEF 

A number of drug- and device-based therapies have improved outcomes in HFrEF (Yancy 

et al., 2006; Pinilla-Vera et al., 2019). Pharmacological treatment of HFrEF is primarily aimed at 

inhibiting the chronic overactivation of compensatory pathways present in this type of HF that 

were described earlier, such as renin-angiotensin-aldosterone and the sympathetic nervous system 

(Murphy et al., 2020). 
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β-Blockers: Bisoprolol, Metoprolol succinate, Carvedilol  

As mentioned before in HF to sustain CO, the sympathetic nervous system releases a large 

amount of epinephrine and norepinephrine. When actuated by these hormones, β1-receptors 

trigger a signaling cascade by which phosphorylation of proteins involved in excitation-contraction 

takes place, the result in greater contractility, HR, diastolic distensibility, and relaxation. To adjust 

for this sympathetic hyperactivation response, β1-receptor density declines by 60% in cardiac 

tissue. Even though β1 receptors are downregulated in the failing heart, cardiomyocytes are still 

under the influence of toxic hyper-adrenergic stimulation. Drugs that block the action of 

norepinephrine and epinephrine on beta receptors are known as β-blockers.  Several β-blockers for 

treatment of HFrEF are currently FDA approved including Bisoprolol, Metoprolol succinate, and 

Carvedilol (Anon, 1999a, Anon, 1999b; Packer et al., 2001).  β-blockers inhibit the hyper 

sympathetic state further, providing both a cardioprotective response and leading to an increased 

expression of β1 receptors. Moreover, βAR blockers have beneficial hemodynamic effects, 

decreasing cardiac work, afterload, and oxygen consumption. Multiple random controlled trials of 

β-blockers in HFrEF patients have revealed reduced hospital admissions, improved quality of life, 

slowed disease progression, and reduced mortality (Pinilla-Vera et al., 2019). 

Angiotensin-converting enzyme (ACE) inhibitors: Captopril, Ramipril, Enalapril, Lisinopril  

As mentioned before the upregulation of the renin-angiotensin-aldosterone system results 

in not only fluid retention and peripheral arterial vasoconstriction but also adverse remodeling as 

seen in cardiomyocyte hypertrophy and interstitial fibrosis (Richard E. Klabunde, 2015). ACE 

inhibitors such as Captopril, Ramipril, Enalapril and Lisinopril are some of the main treatments 

for HFrEF (Murphy et al., 2020). They act by blocking the conversion of angiotensin I to 

angiotensin II. This action prevents vasoconstriction and causes relaxation of the vasculature; thus, 
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they lower peripheral resistance and reduce the afterload on the failing myocardium(Pinilla-Vera 

et al., 2019). 

Angiotensin II Receptor Blockers (ARBs): Candesartan, Losartan, Valsartan 

 ARBs, like ACE inhibitors, reduce the effects of the overactive renin-angiotensin-

aldosterone system in HF. ARBs such as Candesartan, Losartan and Valsartan were developed to 

overcome the deficiencies of ACE inhibitors.  When ACE is inhibited, compensatory increases in 

renin and angiotensin I levels often overcomes the ACE inhibitory effect. Furthermore, 

accumulation of other ACE substrates such as bradykinin and other tachykinins, and circulation of 

angiotensin II not produced by ACE also reduce the effectiveness of ACE inhibitors in some 

patients (Barreras & Gurk-Turner, 2003). 

Angiotensin receptor–neprilysin inhibitor: Sacubitril/Valsartan 

 

Some drugs combinations target multiple overactive compensatory pathways in HFrEF.  

Sacubritil/Valsartan is a combination neprilysin inhibitor and angiotensin II receptor blocker.   

Valsartan counters the hypertensive effect of the hyperactive renin-angiotensin-aldosterone system 

as described above. Neprilysin is a neutral endopeptidase that degrades ANP and BNP. As 

mentioned earlier in this chapter NPs are responsible for regulating cardiovascular and renal 

homeostasis in response to atrial and ventricular distension. Because Neprilysin cleaves circulating 

NPs, its inhibition allows the anti-hypertensive effects of ANP and BNP to last longer.  Thus, the 

combined drug counters the hypertensive response in HF through two independent mechanisms. 

Mineralocorticoid receptor antagonists (MRA): Eplerenone, Spironolactone 

MRAs are a class of diuretics that promote sodium and water excretion as well as potassium 

retention by competitively inhibiting mineralocorticoid receptors in the distal convoluted tubule 

(Sica, 2005). MRAs are primarily used to treat fluid buildup in HFrEF. Because of concerns of 
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adverse events such as hypotension, MRAs are often underused in treating treat HFrEF patients 

(Serenelli et al., 2020). 

Vasodilators: Hydralazine, Isosorbide dinitrate, Fixed-dose hydralazine/Isosorbide dinitrate 

Combination therapy with nitrates and hydralazine in chronic HF was first developed to 

achieve the hemodynamic benefits of both preload and afterload reduction. Hypothesized 

mechanisms include stimulation of nitric oxide signaling in vascular smooth muscles that leads to 

vasodilation and reduction of oxidative stress by hydralazine; although these hypotheses have not 

been fully elucidated(Pinilla-Vera et al., 2019). 

Heart Rate Modulator: Ivabradine 

 

An increase in HR caused by hyper sympathetic stimulation is one of the hallmarks of HF. 

Hence, reducing the increased HR has been considered as a therapeutic strategy. HR is modulated 

first in the pacemaker of the heart, the sinoatrial node, before the signal is transmitted to the 

atrioventricular node and the Purkinje fibers. Ivabridine selectively blocks the funny channel (If) 

current which is, responsible for the depolarization required to create the pacemaker activity in the 

sinoatrial node.  Treatment with Ivabradine results in a slower HR without affecting blood 

pressure, myocardial contractility, or conduction (Pinilla-Vera et al., 2019). 

1.3 Heart Failure with Preserved Ejection Fraction 

1.3.1 Etiology and Pathophysiology 

HFpEF now represents more than half of HF cases, and its incidence is increasing with an 

aging population, and a high prevalence of associated risk factors (e.g., obesity, systemic 

hypertension, CAD, and diabetes) (Yancy et al., 2006; Owan et al., 2006; Hummel et al., 2009; 

Little & Zile, 2012). Patients with HFpEF suffer poor quality of life and long-term outcomes. The 

classic HFpEF paradigm implicates LV diastolic dysfunction as the main driver of exercise 
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intolerance and HF progression (Zile et al., 2004).  Increased large arterial stiffness (Tartière-Kesri 

et al., 2012), reduced ventricular systolic reserve (Shah et al., 2015), chronotropic incompetence 

(insufficient heart rate for the degree of exercise) (Borlaug et al., 2006, 2010), peripheral and 

coronary microcirculatory dysfunction (Maréchaux et al., 2016; Lee et al., 2016; Franssen et al., 

2016; Taqueti et al., 2018) and venous volume redistribution (Fudim et al., 2017) also contribute 

to HFpEF to varying degrees. This heterogeneity underlies the failure of multiple treatment 

strategies to demonstrate sustained benefit in HFpEF. The scientific consensus is that improved 

phenotyping is needed to effectively target therapies and improve outcomes in this complex 

syndrome (Senni et al., 2014; Shah et al., 2016, 2020). 

1.3.2 Diagnosis of HFpEF 

Chest-X ray 

 

As mentioned earlier, when HF is suspected, clinicians recommend intensive evaluation of 

the patient to determine the type of HF present and any comorbidities contributing to the disease. 

A chest X-ray showing elevation and lateral displacement of the LV border may indicate 

enlargement of the ventricular walls, such as a hypertrophic state associated with HFpEF. Such X-

rays may look different from HFrEF hearts, in which LV systolic dysfunction ultimately results in 

increased volume and enlargement of all four cardiac chambers (Chait et al., 1972). 

M-mode and 2D Echocardiography 

 

As mentioned earlier, TTE is the current standard for assessing LVEF, which is the main 

discriminator in differentiating patients with HFrEF and HFpEF. Therefore, all patients with 

features of HF and an LVEF equal to or greater than 50% are diagnosed with HFpEF.  

 

 



 16 

Cardiac Magnetic Resonance  

 

As stated, before while most of the research and patient diagnosis for HF has focused on 

assessing LV dysfunction as the dominant cause of HF, there is increasing recognition that the 

pulmonary circulation and RV may be of equal or even greater importance during exercise for HF 

patients. Thus, to direct patient-specific therapies addressing potential heterogeneity in HFpEF, 

there is a need for an imaging technique capable of accurately assessing both cardiac ventricles at 

rest and during exercise such as CMR (Russo et al., 2020). Myocardial and interstitial fibrosis in 

patients with HFpEF can be assessed in vivo by means of T1 mapping and extracellular volume 

computation in CMR. These tools may be of clinical importance as they are beginning to be used 

as quantifiable markers of the extent and severity of diffuse interstitial fibrosis, which is believed 

to be a major contributor the impairment of cardiac relaxation and stiffness in HFpEF (Chamsi-

Pasha et al., 2020). 

Right Heart Catheterization 

 

HFpEF is classically characterized by diastolic dysfunction caused by impaired relaxation 

and stiffened myocardium. These structural changes are believed to be caused by increased arterial 

stiffness, which creates a greater afterload and places a greater burden on the LV. High pressures 

on the left side of the heart, particularly the LA can challenge the lung vasculature with pulmonary 

edema and hypertension. Therefore, RHC can provide rich information to assess whether patients 

have increased RV and PCWP stress, which may indicate the development of this remodeling 

(Guazzi, 2014). Patients with HFpEF may appear to maintain normal pressure at rest, however, 

individuals may exhibit impaired hemodynamics during exercise. Patients are generally 

considered to have HFpEF if they have PAP ≥ 25 mmHg and PCWP ≥ 15 mmHg at rest or PCWP≥ 

25 mmHg with exercise (Hoendermis et al., 2015; Borlaug et al., 2022). 



 17 

Laboratory Evaluation 

 

The same laboratory tests recommended for patients with HFrEF are also recommended 

for patients with HFpEF (i.e., blood counts, renal function, metabolic panel). In the United States, 

more than 80% of patients with HFpEF are overweight or obese. Because of mechanisms not fully 

understood, NP levels are much lower in obese than nonobese patients.  Thus, for many HFpEF 

patients, their NP levels are below the standard diagnostic cut-off level for HF (Kitzman & Lam, 

2017). 

1.3.3 Evidence-based Treatment of HFpEF 

Despite this large individual and public health burden, HFpEF lacks a framework for 

evidence-based pharmacotherapy (Yancy et al., 2013). Long-term management of HFpEF focuses 

on (i) the treatment of any existing comorbidities, (ii) therapeutics that decrease LV diastolic 

pressures, and (iii) general symptom reduction. Several clinical trials in large cohorts of HFpEF 

patients have failed to demonstrate consistent benefits. The drugs used include Sildenafil (Guazzi 

et al., 2011; Borlaug et al., 2015; Hoendermis et al., 2015; Liu et al., 2017), Sacubitril/Valsartan 

(Solomon et al., 2019), Losartan (Wachtell et al., 2010), Candesartan (Yusuf et al., 2003), 

Spironolactone (Edelmann et al., 2013; Cohen et al., 2020), and Isosorbide mononitrate (Redfield 

et al., 2015). It has been suggested that selecting the correct HFpEF cohort is an important factor 

in treatment success (Borlaug et al., 2015), but the wide range of HFpEF phenotypes at the 

mechanistic cardiovascular system level makes selecting these cohorts from upper-level clinical 

data difficult. Because HFpEF is a catch-all category for HF patients based mainly on EF estimates, 

the inability to have a standard treatment for these patients may be an indicator of the physiologic 

heterogeneity underlying HFpEF. Hence, identifying subgroups of HFpEF patients with similar 

cardiovascular etiologies is a crucial task required to target appropriate therapies for these patients. 
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1.4 Precision Phenotyping in HFpEF 

1.4.1 Attempts at Finding HFpEF Subgroups Using Clinical Data and Machine Learning 

Recent studies have used clinical outcomes to identify subgroups of patients diagnosed 

with HFpEF including quantitative echocardiography, plasma protein profiling, and RNA 

sequencing combined with unsupervised machine learning (ML) techniques (Kao et al., 2015; 

Shah, 2019; Cohen et al., 2020; Hahn et al., 2021).  

Kao et al. identified six HFpEF subgroups with significant differences in event-free 

survival by using latent class clustering analysis (a type of unsupervised ML) on eleven clinical 

features of HFpEF patients (Kao et al., 2015). The six HFpEF subgroups identified by Kao et al. 

consisted of patients with a median age between 65-75 years and hinted at some sex-driven 

differences between the phenotypes with some of the subgroups consisting of either mostly men 

or women (Kao et al., 2015). For example, subgroups Kao-I and Kao-V consist of male patients 

only. The main difference between the two is that Kao-I patients had higher alcohol use, renal 

dysfunction, and valvular disease while Kao-V patients show lower BMI, excess AF, and CAD 

when compared to other groups. Groups Kao- II, IV, and VI consist of mostly women. Kao-IV 

consists of female patients who have average rates of DM but show markers of metabolic 

comorbidities such as hyperlipidemia, obesity, as well as renal insufficiency. Kao-II and Kao-VI 

are two equally female-dominated subgroups. Both subgroups are characterized by renal 

dysfunction, valvular disease, and anemia. The main difference between them is that Kao-II 

patients have low rates of AF and Kao-VI patients are elderly women having low BMI and high 

rates of AF. Finally, Kao-III is a subgroup of heterogeneous sex with high rates of metabolic 

comorbidities, also displaying CAD, anemia, and worse renal function than other subgroups. Both 

Kao-III and Kao-VI subgroups had the worst levels of event-free survival when compared to other 
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groups (Kao et al., 2015). Although no differences in the subgroups were found between the 

median baseline LVEF and the systemic blood pressure, the NT-proBNP median values ranged 

from 143 pg/mL (Kao-II) to 950 pg/mL (Kao-VI) (Kao et al., 2015). The fact that the baseline 

LVEF was similar among all these diverse groups could be interpreted as an indicator that although 

helpful to diagnose HFrEF, LVEF is not very useful in diagnosing subgroups of HFpEF. While 

differences in clinical outcomes along with unsupervised ML were used by Kao et al. to identify 

subgroups of HFpEF, these outcomes are vaguely described as obese patients with diabetes or 

older individuals with a high prevalence of atrial fibrillation. Moreover, there were no detailed 

echocardiographic or biomarker data available in their subgroup descriptions (only LVEF and n-

Terminal B-type natriuretic peptide) (Kao et al., 2015). 

In a second study, Shah et al. utilized quantitative echocardiography phenotyping with an 

unsupervised ML to identify three HFpEF subgroups with differing clinical and echocardiographic 

characteristics and outcomes (Shah et al., 2019): a group with natriuretic peptide deficiency 

syndrome; a group with extreme cardiometabolic syndrome; a group with right ventricular cardio-

abdominal-renal syndrome.  

A third study used plasma protein analysis combined with latent class clustering to identify 

three clinical phenotypes of HFpEF characterized by distinct echocardiographic parameters and 

large arterial stiffness (Cohen et al., 2020). The first group showed LV enlargement that was not 

surprisingly characterized by low LV wall thickness compared to other groups. It likewise had the 

lowest values of resistive and pulsatile arterial load as calculated by the systemic vascular 

resistance and total arterial compliance from clinical records. This group also displayed the lowest 

level of arterial stiffness as calculated by the carotid-femoral pulse wave velocity. A second group 

had a distinct pattern of clinical features characterized by a small LV with decreased LV mass, 
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enlarged left atria, and the highest resistive and pulsatile load, as well as increased arterial stiffness 

when compared to the other two groups. A third group showed LV hypertrophy with increased 

wall thickness and mass along with low resistance arteries but high pulsatile arterial load.  

A fourth study analyzed RNA sequencing of RV septal endocardial biopsies on control, 

HFrEF, and HFpEF patients through unsupervised ML and identified three HFpEF transcriptome 

subgroups with distinctive pathways and clinical correlations (Hahn et al., 2021). The first HFpEF 

transcriptome subgroup showed clustering of transcriptome changes close to HFrEF, the largest 

LV volumes, and showed the worst clinical outcomes combined with metabolic dysfunction. The 

second HFpEF transcriptome subgroup had a smaller heart and inflammatory and stromal features. 

Interestingly all the patients in this group were female and perhaps not surprising had the smallest 

heart size of all three groups. The third HFpEF transcriptome subgroup had a heterogeneous 

phenotype including pronounced HF symptoms and smaller hearts, but lower NT-proBNP levels. 

1.4.2 Missing Link: Cardiovascular Hemodynamics, its Relationship With the Pulmonary and 

Systemic Vasculature, and the Uniqueness of each Patient within a Group  

These studies show novel classifications of HFpEF subgroups based on clinical outcomes 

(Kao et al., 2015), detailed clinical, laboratory, electrocardiogram (ECG), and echocardiographic 

data, phenotyping (S. J. Shah, 2019), plasma biomarker profiling (Cohen et al., 2020) and 

transcriptomic analysis of endomyocardial biopsy obtained through RHC (Hahn et al., 2021).  

Each of the studies point out clinical markers that may describe this novel HFpEF classifications 

(i.e., NT-proBNP marker, inflammatory signal differences between groups). However, the nature 

of cardiovascular hemodynamics, its relationship with the pulmonary and systemic vasculature, 

and the uniqueness of each patient within a group have not been addressed. While TTE and RHC 

provide detailed ventricular volume and pressure data for individual patients, the challenge of 



 21 

integrating these measurements into a single representation of a patient’s cardiovascular state is 

only made qualitatively in the clinic. One way to quantitatively reconcile what these clinical 

datasets describe is with a closed-loop computational model of the cardiovascular system which 

through modeling can derive quantitative estimates of the hemodynamics of the right and left sides 

of the heart and the systemic and pulmonary circulation. To combine these two sets of data, we 

must take into consideration that (i) the two datasets are not obtained simultaneously, (ii) they may 

include a combination of data points taken at specific instances, and (iii) time course data are often 

not available. 

1.4.3 Attempts at Using Mathematical Models to Integrate Cardiovascular Hemodynamics in 

HFpEF 

Recognizing that the characterization of HF patients using only LVEF is questionable, and 

that more mechanistically driven approaches are needed to understand HF, Wang et al. attempted 

to reconcile patient hemodynamics derived from CMR and catheter pressure measurements using 

a patient-specific finite element model of the LV myocardial wall (Wang et al., 2018). Using this 

tool, they estimated LV diastolic myocardial stiffness and stress. Because HFpEF is classically 

thought to be caused by diastolic dysfunction, they hypothesized that LV diastolic myocardial 

stiffness and stress estimation would allow better characterization of HFpEF patients by producing 

more specific information about myocardial mechanical behavior than global chamber indices 

traditionally obtained from TTE in the clinic. Using modeling they estimated a wide range of 

diastolic myocardial stiffness across the HF patient groups. Likewise, myocardial stiffness was 

larger in the HFpEF groups compared to the control subjects (Wang et al., 2018).  

Acknowledging that estimation of subject-specific myocardial stiffness and contractility is 

difficult in current clinical practice, Rumindo et al. obtained stiffness and contractility indices 
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using a personalized inverse finite element modeling approach from standard CMR acquisitions. 

Their estimations were validated against relevant clinical metrics extracted from CMR data such 

as circumferential strain, wall thickness, and fractional thickening. Although this research was 

performed on healthy humans, their goal was that these estimates could be used as a reference 

when evaluating disease (Rumindo et al., 2020). 

In a later study, Wang et al. used model simulations that reproduced ECGs and mechanical 

phenotypes in healthy individuals and individuals at three distinct phases of ischemic cardiac 

events (which can lead to the development of HF). Using a sensitivity analysis, they calibrated 

their model’s mechanical parameters “to achieve physiological peak pressure and EF” replicating 

the pathophysiology of these patients (Wang et al., 2021). This study showed that subendocardial 

infarct caused very little disturbance to either the ECG or the pressure-volume characteristics of 

three post-ischemic states, highlighting the limitation of ECG and LVEF to reflect the full picture 

of the disease and the different stages of disease progression (Wang et al., 2021). Another group 

used a computational model to integrate ventricular electromechanics and sensitivity analysis to 

test which parameters influence the biomechanical markers of HF including EF, end-systolic 

pressure, longitudinal fraction shortening, and wall thickening. After matching their model 

parameters to their biomechanical markers representing the mean of a healthy human, they ran 

simulations of the model to match the mean value for patients with DCM, CAD, ischemic heart 

disease, and HF (though they assume that HF patients are those only with EF below 40%). One of 

the limitations of this work is the lack of a patient-specific approach, as they match their model 

simulations to an average patient in each of the diseases, they are trying to represent.   Another 

limitation of this study was the emphasis on modeling the heart and thus the influence of the 



 23 

systemic and pulmonary circulations on these cardiovascular diseases was ignored (Levrero-

Florencio et al., 2020). 

Collectively, these previous studies sought to reconcile pressure, volume, and ECG data in 

cardiovascular disease, paying close attention to the mechanical properties of the LV in control 

and HF states. Likewise, they all acknowledged the limitations of using LVEF as the ultimate 

diagnostic tool to distinguish between HF types. In these studies, the modeling the 

pathophysiology of HF was rarely done in a patient-specific manner, as averages of healthy 

controls and HF patients were constantly compared to each other without acknowledging the 

diversity of HF patients, and sometimes only considering those with an EF <40% as true HF. 

Moreover, although characterizing the mechanical properties of the LV is important in HF, the 

pulmonary and systemic circulations are rarely integrated into these models. To address this gap 

in these previous studies, we have developed a method to represent the cardiovascular state of both 

HFpEF and HFrEF patients to illustrate the underlying mechanistic differences between diagnosis 

of these two types of HF.  Our overall goal was to improve the identification and diagnosis of 

subpopulations of patients with similar types of HFpEF that may in turn be responsive to 

mechanism targeted therapies.   

1.5 Overview of this Thesis 

Here, we aim to discern subgroups within the HFpEF cohort using mathematical modeling 

and an unsupervised ML approach. To this end, clustering analysis is performed on estimated 

model parameters identifying HFpEF subgroups that provide hemodynamic insight into functional 

differences between HFpEF subgroups. Others have attempted to classify HF patients using 

unsupervised ML on clinical data alone (Kao et al., 2015; Shah, 2019; Cohen et al., 2020; Hahn 

et al., 2021) and clinical data inform cardiovascular modeling (Wang et al., 2018, 2021; Levrero-



 24 

Florencio et al., 2020; Rumindo et al., 2020) to our knowledge, ours is the first study that uses 

model-based analysis of clinical data and physiology-informed ML to determine sub 

classifications of HFpEF integrating the cardiac, systemic and pulmonary compartments in the 

cardiovascular system. This synergistic approach is in line with similar studies that combine 

mathematical and statistical techniques to predict physiologic function at the patient-specific level 

(e.g., the “digital twin” (Corral-Acero et al., 2020). A workflow of the approach used in this study 

is shown in Figure 1.1. 

 

Figure 1.1 Methodology. This schematic shows the workflow analyzing clinical data from right heart catheterization 

(RHC) and transthoracic echocardiography (TTE) from patients with heart failure with preserved (HFpEF) and 

reduced (HFrEF) ejection fraction using a patient-specific cardiovascular systems model. A subset of model 

parameters is optimized to RHC and TTE data for each patient. These parameter values can then be used to observe 

differences between HFpEF and HFrEF patients and determine subgroups of HFpEF using unsupervised machine 

learning. 

1.5.1 HFpEF Patient Phenotyping 

In Chapter 2 of this paper, we develop a method to represent the cardiovascular status of 

patients with HFpEF and HFrEF and illustrate the underlying mechanistic differences between 

diagnoses of three distinct subgroups of HFpEF.  In Chapter 3, we validate our physiology-based 

ML approach to HFpEF grouping versus transcriptomics-based grouping of HFpEF patients, and 

we retrospectively identify selected HFpEF subgroups in clinical trials of atrial shunt devices and 

drugs that may in future trials be more responsive to therapy.   



 25 

1.5.2 Control of Myocardial Substrate Selection 

Mechanistically, parallel work in our lab has shown that decreased cardiac function in HF 

is also characterized by a change in mitochondrial metabolism and metabolic fuel utilization 

(Lopez et al., 2020). HF has also been shown in animal models and humans to alter calcium 

handling in cardiac muscle cells (Kwong et al., 2015, 2018). In Chapter 4, we determine if and 

how [Ca2+] affects the relative use of carbohydrates versus fatty acids in vitro, by measuring 

oxygen consumption and tricarboxylic acid (TCA) cycle intermediate concentrations in 

suspensions of cardiac mitochondria with different combinations of pyruvate and palmitoyl-L-

carnitine in the media at various [Ca2+] and ADP infusion rates. Stoichiometric analysis of the data 

reveals that when both fatty acid and carbohydrate substrates are available, fuel selection is 

sensitive to both [Ca2+] and ATP synthesis rates. 
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Chapter 2  Phenotyping Heart Failure Using Model-based Analysis and Physiology-

Informed Machine Learning 
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2.2 Abstract 

To phenotype mechanistic differences between heart failure with reduced (HFrEF) and 

preserved (HFpEF) ejection fraction, a closed-loop model of the cardiovascular system coupled 

with patient-specific transthoracic echocardiography (TTE) and right heart catheterization (RHC) 

data was used to identify key parameters representing hemodynamics. Thirty-one patient records 

(10 HFrEF, 21 HFpEF) were obtained from the Cardiovascular Health Improvement Project 

database at the University of Michigan. Model simulations were tuned to match RHC and TTE 

pressure, volume, and cardiac output measurements in each patient. The underlying physiological 

model parameters were plotted against model-based norms and compared between HFrEF and 

HFpEF. Our results confirm the main mechanistic parameter driving HFrEF is reduced left 
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ventricular (LV) contractility, whereas HFpEF exhibits a heterogeneous phenotype. Conducting 

principal component analysis, k-means clustering, and hierarchical clustering on the optimized 

parameters reveal (i) a group of HFrEF-like HFpEF patients (HFpEF1), (ii) a classic HFpEF group 

(HFpEF2), and (iii) a group of HFpEF patients that do not consistently cluster (NCC). These 

subgroups cannot be distinguished from the clinical data alone. Increased LV active contractility 

(p < 0.001) and LV passive stiffness (p < 0.001) at rest are observed when comparing HFpEF2 to 

HFpEF1. Analyzing the clinical data of each subgroup reveals that elevated systolic and diastolic 

LV volumes seen in both HFrEF and HFpEF1may be used as a biomarker to identify HFrEF-like 

HFpEF patients. These results suggest that modelling of the cardiovascular system and optimizing 

to standard clinical data can designate subgroups of HFpEF as separate phenotypes, possibly 

elucidating patient-specific treatment strategies. 

2.3 Introduction 

Heart Failure with preserved ejection fraction (HFpEF) is diagnosed in patients with the 

hallmarks of heart failure (HF) and a left ventricular (LV) ejection fraction (EF) equal to or above 

50%. HFpEF now represents more than half of HF cases, and its incidence is increasing with an 

aging population and a high prevalence of associated risk factors (e.g., obesity, systemic 

hypertension, coronary artery disease, and diabetes) (Yancy et al., 2006; Owan et al., 2006; 

Hummel et al., 2009; Little & Zile, 2012).  Patients with HFpEF suffer poor quality of life and 

long-term outcomes. Despite this substantial individual and public health burden, HFpEF lacks a 

framework for evidence-based pharmacotherapy (Yancy et al., 2013). Long-term management of 

HFpEF focuses on (i) the treatment of any existing comorbidities, (ii) therapeutics that decrease 

the LV diastolic pressures, and (iii) general symptom reduction. Several clinical trials in large 
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cohorts of HFpEF patients have failed to demonstrate consistent benefits. The drugs used include 

Sildenafil (Guazzi et al., 2011; Borlaug et al., 2015; Hoendermis et al., 2015; Liu et al., 2017), 

Sacubitril/Valsartan (Solomon et al., 2019), Losartan (Wachtell et al., 2010), Candesartan (Yusuf 

et al., 2003), Spironolactone (Edelmann et al., 2013; Cohen et al., 2020), and Isosorbide 

mononitrate (Redfield et al., 2015). 

HFpEF was previously termed “diastolic” HF with symptoms attributed to increased 

ventricular stiffness, impaired relaxation, impaired ventricular filling during diastole, and higher 

average pressures during the cardiac cycle. However, patients with HFpEF have dysfunction in 

multiple cardiovascular domains, some of which may become evident only during exercise 

(Dunlay et al., 2017).  It has been suggested that selecting the correct HFpEF cohort is an important 

factor in treatment success (Borlaug et al., 2015), but the wide range of HFpEF phenotypes at the 

mechanistic cardiovascular systems level makes selecting these cohorts from upper-level clinical 

data difficult. Since HFpEF is a catch-all category for HF patients based mainly on EF estimates, 

the inability to have a standard treatment for these patients may be an indicator of the physiological 

heterogeneity underlying HFpEF. Therefore, identifying subgroups of HFpEF patients with similar 

cardiovascular etiologies is a crucial task required to target appropriate therapies for these patients.  

Patients presenting with HF and an EF below 50% are diagnosed with heart failure with reduced 

ejection fraction (HFrEF). The classical understanding of HFrEF, also known as “systolic” HF, is 

that loss of ventricular contractility causes reduced ability to pump blood to the systemic 

circulation during systole (Pinilla-Vera et al., 2019). Unlike HFpEF, numerous medication and 

device-based therapies improve outcomes in HFrEF (Yancy et al., 2017; Pinilla-Vera et al., 2019) 

.  
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To diagnose and monitor patients with HF, two clinical procedures are commonly used: 

transthoracic echocardiography (TTE) and right heart catheterization (RHC). TTE is noninvasive 

and widely available, and these images may be used to quantify LV volumes in systole and diastole 

to estimate a patient’s EF. From TTE measurements, we may obtain additional information, such 

as cardiac output (CO) based on the heart rate (HR), the left ventricular out track flow velocity 

time integral (LVOT VTI) and the cross-sectional aortic valve area for each patient. RHC is used 

to measure right ventricular (RV) and pulmonary artery (PA) pressures during systole and diastole 

along with CO, HR, and pulmonary capillary wedge pressure (PCW). While TTE and RHC 

provide detailed ventricular volume and pressure data for individual patients, the challenge of 

integrating these measurements into a single representation of a patient’s cardiovascular state is 

only made qualitatively in the clinic. One way to quantitatively reconcile what these clinical 

datasets describe about the hemodynamics of the right and left sides of the heart and the systemic 

and pulmonary circulation is with a closed-loop model of the cardiovascular system. To combine 

these two sets of data, we must take into consideration that (i) the two datasets are typically not 

obtained simultaneously, (ii) they may include a combination of data points taken at specific 

instances, and (iii) time course data are often not available.  

In this retrospective study, we have developed a methodology to represent the 

cardiovascular state of both HFpEF and HFrEF patients to illustrate the underlying mechanistic 

differences between diagnoses and specifically within the diagnosis of HFpEF. Recent studies 

have determined subgroups of the HFpEF diagnosis using RNA sequencing (Hahn et al., 2021), 

quantitative echocardiography (Shah, 2019), and plasma protein profiling (Cohen et al., 2020) 

combined with unsupervised machine learning techniques.  
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Here, we aim to discern subgroups within the HFpEF cohort using a mathematical 

modeling and unsupervised machine learning approach. To this end, a clustering analysis is 

performed on estimated model parameters identifying HFpEF subgroups that provide 

hemodynamic insight into functional differences between HFpEF subgroups. Others have 

attempted to classify HF patients using clinical data to inform cardiovascular modeling (Wang et 

al., 2018).   To our knowledge, ours is the first study that uses model-based analysis of clinical 

data and physiology-informed machine learning to determine subclassifications of HFpEF. This 

synergistic approach is in line with similar studies that combine mathematical and statistical 

techniques to predict physiological function at the patient-specific level (e.g., the “digital twin” 

(Corral-Acero et al., 2020)). A workflow of the approach used in this study is shown in. A 

workflow of the approach used in this study is shown in Figure 1.1. 

2.4 Clinical Data 

The Cardiovascular Health Improvement Project (CHIP) repository, supported by the 

Frankel Cardiovascular Center at the University of Michigan, was queried to extract clinical data 

from patients diagnosed with HFpEF or HFrEF. This retrospective data capture was approved by 

the Institutional Review Board at the University of Michigan, and informed consent was obtained 

for all subjects in the database. This research-ready biorepository of DNA, plasma, serum, and 

tissue samples includes de-identified electronic health records (EHRs) from consenting patients 

with HF, aortic disease, arrhythmia, and dyslipidemia. Through the CHIP office, a search was 

made to collect clinical data from HFpEF and HFrEF patients with both TTE and RHC 

measurements in their EHR. The criteria for determining whether a patient has HFpEF or HFrEF 

is a history of HF symptoms and an EF above 50% or below 50%, respectively. Patients with both 
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procedures within 90 days of each other were extracted from all HFpEF and HFrEF records in a 

time range from February 2016 through February 2019. With this query, 62 patient records (26 

HFrEF and 36 HFpEF) were collected. Patient records missing the minimal number of 

measurements (see below) from RHC and TTE procedures eliminated 10 HFrEF and 13 HFpEF 

records, leaving 34 patient records (11 HFrEF and 23 HFpEF). Finally, one HFrEF and two HFpEF 

records that appeared to be outliers during the initial phase of our analysis were followed up in the 

patient record and found to have procedures or treatments that changed their original 

cardiovascular diagnosis (e.g., chemotherapy changing a patient from HFpEF to HFrEF). These 

three patients were omitted from our final analysis, leaving 31 patient records (10 HFrEF and 21 

HFpEF). 

2.4.1 RHC Data 

During this invasive procedure, a Swan-Ganz catheter was inserted through the jugular 

vein and measured the pressure at the tip of the catheter as it advanced into the pulmonary artery. 

RHC CO was estimated by using the thermodilution or Fick methods. The thermodilution 

technique estimates CO by measuring dispersion of a cold saline bolus injected at the proximal 

end and then sensed at the distal end of the catheter. The Fick method measures venous and arterial 

O2 saturation and often assumes a given whole body oxygen consumption (V̇O2) based on weight, 

height, and sex. The accuracy of the Fick method hinges on correctly estimating V̇O2, and it has 

been determined that it can vary by as much as 25% when compared to a direct measurement of 

V̇O2  (Narang et al., 2014). Since all RHC records in this study used estimated V̇O2, we have chosen 

to use the thermodilution method as a consistent measure of RHC CO. 
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The selected RHC datasets came from reports that contained at least the following 13 

clinically measured values: systolic and diastolic RV pressures, systolic and diastolic PA 

pressures, average PCW pressure, systolic and diastolic SA pressure, HR during the RHC, CO 

(thermodilution and Fick), body weight, height, and sex (Table 2.1). To ensure that the RHC 

measurements used are consistent, HR and systolic and diastolic systemic pressures were gathered 

from the RHC report only during catheter insertion. If multiple measurements were taken during 

this period, an average was computed of the values recorded.  

2.4.2 TTE Data 

The selected TTE data include at a minimum: measurements of LV volume in systole and 

diastole and HR during TTE. The LV volumes are measured as either (i) a single diameter across 

the LV just below the mitral valve leaflet tips or (ii) tracings of the LV from apical two- and four-

chamber views (Lang RM et al., 2016).  The single diameter derived volumes assume the LV can 

be approximated as a truncated prolate spheroid with a nonlinear relationship between the diameter 

and length of the ventricle (Teichholz et al., 1976). Volumes derived from the two- and four-

chamber views are calculated by the Method of Discs (MOD), also known as Simpson’s method 

(Lang RM et al. 2016). Since MOD is preferred for the estimation of LV volumes over the single 

diameter estimation, all patient raw TTE images were reviewed by a cardiologist to: (i) Obtain a 

MOD estimate of LV volumes when the quality of the image allowed, (ii) Determine the HR, and 

(ii) Extract an LVOT VTI estimate of CO, when possible.  
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Table 2.1 Right heart catheterization (RHC) data, transthoracic echocardiogram (TTE) data, and patient biometrics. 
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HFrEF – heart failure with reduced ejection fraction. HFpEF – heart failure with preserved ejection fraction.  

P – pressure. V – volume. CO – cardiac output. HR – heart rate. BW – body weight. Sys – systole. Dias – diastole. 

Subscripts: LV – left ventricle. RV – right ventricle. PA – pulmonary arteries. PCW – pulmonary capillary wedge. SA 

– systemic arteries.  Bar notation indicates an average pressure.  
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Figure 2.1 Decision trees. These trees are used to determine which calculation of ejection fraction (EF) and cardiac 

output (CO) should be used in the right heart catheterization (RHC) and transthoracic echocardiography (TTE) data. 

A. EF from TTE data. This decision tree is used to resolve discrepancies between the reported EF in TTE records and 

those calculated by Method of Discs (MOD) and Teichholz’s formula (EFT). The result is set to EF1. EF2 and EF3 are 

calculated using Equations 2.1 and 2.2, respectively. B. CO from TTE data. An estimate of CO from left ventricular 

(LV) volumes in systole and diastole through the MOD (COMOD) is our first choice. If COMOD is not available, CO 

estimates are calculated from LV diameter data during systole and diastole using Teichholz’s formula (COT). The 

result is set as CO1. If a left ventricular out track flow velocity time integral (LVOT VTI) CO estimate (COLVOT) is 

also available, COLVOT is averaged with CO1. C. CO from RHC data. CO determined via thermodilution (COThermo) 

takes precedence over CO calculated using the Fick method (COFick). 

 

2.5 Clinical Data Inconsistency/Discrepancy  

2.5.1 Ejection Fraction 

All patients had a reported EF determined visually by a cardiologist. To quantitively 

determine the EF, Cameron revisited the TTE images to reassess LV volumes by MOD (EFMOD) 

(Wyatt et al., 1979). There are some patients where the two- and four-chamber images were not 

of high enough resolution to yield a MOD estimate. In these cases, the LV volumes and CO are 

calculated from a single diameter measured across the top of the LV using the Teichholz equation 
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(EFT).  (Teichholz et al., 1976). If EFMOD was able to be calculated, we assign this value as EF1, 

and if not, EF1= EFT. This method revealed discrepancies between the reported EF and EF1. To 

address this discrepancy, we had a third evaluation performed by Hummel to determine whether 

EF1 should be used. If the distance between the reported EF and EF1 is less than 0.1, we use EF1. 

Otherwise, we apply the rule 

EF2 =
SV𝐿𝑉𝑂𝑇 

𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡
, (2. 1) 

 

 

where SVLVOT is the stroke volume (SV) determined by LVOT VTI, and 𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡 is the 

diastolic LV volume determined by MOD or Teichholz. If the distance between the reported EF 

and EF2 is less than 0.1, we use EF2 Equation 2.1. Otherwise, we apply the rule 

EF3 =
SV𝐿𝑉𝑂𝑇 

𝑉𝐿𝑉,𝑠𝑦𝑠𝑡 + SV𝐿𝑉𝑂𝑇
, (2. 2) 

 

 

 

where 𝑉𝐿𝑉,𝑠𝑦𝑠𝑡 is the systolic LV volume determined by MOD or Teichholz. The decision 

tree for the reassessment of EF is shown in Figure 2.1A and Table 2.2 lists the EF calculation 

used for each patient: EF from MOD (EFMOD), EF from Teichholz’s equation (EFT) (Teichholz et 

al., 1976), EF2 calculated using Equation 2.1 and EF3 calculated using Equation 2.2.  
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Table 2.2 Ejection Fraction (EF) calculation for each patient 

Patient  Method Patient  Method 

HFrEF     

1 EFMOD 6 EFMOD 

2 EFMOD 7 EFT 

3 EFMOD 8 EFMOD 

4 EF2 9 EF3 

5 EF2 10 EFMOD 

HFpEF     

11 EFMOD 22 EFT 

12 EF3 23 EF3 

13 EFT 24 EFMOD 

14 EFT 25 EFMOD 

15 EFT 26 EFMOD 

16 EFMOD 27 EFMOD 

17 EFT 28 EFT 

18 EFT 29 EFT 

19 EFMOD 30 EFMOD 

20 EFMOD 31 EFMOD 

21 EFT   
EFMOD - EF from Method of Discs (Wyatt et al., 1979). 

EFT - EF from Teichholz’s equation (Teichholz et al., 1976). 

EF2 - Equation 2.1 

EF3 – Equation 2.2 

2.5.2 Cardiac Output 

Both TTE and RHC data can contain multiple estimates of CO. The TTE itself resulted in 

a possibility of three separate CO estimates:  

(i) HR times the SV using MOD (COMOD), 

(ii) HR times the SV using the Teichholz equation (COT), and 

(iii) HR times LVOT VTI times the cross-sectional area of the outflow tract (COLVOT) (Lang 

RM et al., 2016). 

We have developed a systematic method to rank the quality of these measurements and 

determine a CO estimate to be used for parameter optimization, as shown by the decision tree 



37 

 

 

(Figure 2.1B). If COMOD is available, we assign this value as CO1, and if not, CO1= COT. If COLVOT 

is available, we average CO1 and COLVOT. Otherwise, CO1 is taken as the TTE CO for the patient.  

For the RHC, there are two CO estimates: 

(i) CO by thermodilution (COThermo), and 

(ii) CO calculated via the Fick method (COFick). 

If COThermo is available, it is taken as the patient’s CO from RHC. If not, COFick is used (Figure 

2.1C). Table 2.1 shows the data used in this study screened with these decision criteria.  

2.6 Mathematical Modeling Framework 

The cardiovascular systems model is similar to that used in a previous study from our lab 

(Colunga et al., 2020) and is based on the formulation developed by Smith et al. (Smith et al., 

2004). Figure 2.2 shows the detailed cardiovascular model schematic including the 6 

compartments represented by the model: left ventricle (LV), systemic arteries (SA), systemic veins 

(SV), right ventricle (RV), pulmonary arteries (PA), and pulmonary veins (PV). The model 

complexity was reduced significantly since the clinical data used for parameterization here do not 

have enough informational content to uniquely identify the parameters of the full Smith et al. 

model. In our previous reduced version of the model, ventricular-ventricular interaction and fluid 

inertance after each heart valve were omitted. Additionally in this study, the pericardial 

compartment was removed, and the zero pressure (or dead space) volumes in all vascular and 

ventricular compartments were set to zero.  
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Figure 2.2 Model schematic. The cardiovascular system model is described using an electrical circuit analogy where 

pressure, volume, and flow correspond to voltage, charge, and current, respectively. There are 6 compartments 

(clockwise): left ventricle (LV), systemic arteries (SA), systemic veins (SV), right ventricle (RV), pulmonary arteries 

(PA), and pulmonary veins (PV). The model has a systemic (𝑅𝑠𝑦𝑠) and pulmonary (𝑅𝑝𝑢𝑙) resistance denoting the drop 

in pressure from the arterial to venous compartments. Heart valves are simulated as diodes (triangles) with an 

associated resistance: mitral valve (𝑅𝑚𝑣𝑎𝑙), aortic valve (𝑅𝑎𝑣𝑎𝑙), tricuspid valve (𝑅𝑡𝑣𝑎𝑙), and pulmonary valve (𝑅𝑝𝑣𝑎𝑙).  

 

Overall, the model used here has 6 states (compartmental blood volumes are listed in 

Equations (2.20) – (2.25)) and 16 parameters each with a specific physiological interpretation 

(Table 2.3). Equations for the reduced cardiovascular system model used in this study are given 

below and model code without parameter optimization can be found at (Carlson & Jones, n.d.).  
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Table 2.3 Model parameters for patients at rest. 

Symbol Units Description Value Lower bound Upper bound Fixed Adjustable 

Left Ventricle (LV) 

𝐸𝐿𝑉 mmHg mL-1 LV active contractility  4.32 0.1 10  X 

𝑃0,𝐿𝑉 mmHg LV diastolic reference pressure 0.12 0.01 5 X  

𝜆𝐿𝑉 mL-1 LV passive stiffness 0.02 0.005 0.1  X 

Right Ventricle (RV) 

𝐸𝑅𝑉 mmHg mL-1 RV active contractility 0.70 0.05 5  X 

𝑃0,𝑅𝑉 mmHg RV diastolic reference pressure 0.22 0.01 5 X  

𝜆𝑅𝑉 mL-1 RV passive stiffness 0.02 0.005 0.1  X 

Pulmonary arteries (PA) and veins (PV) 

𝐸𝑃𝐴 mmHg mL-1 PA stiffness 0.26 0.05 5  X 

𝐸𝑃𝑉 mmHg mL-1 PV stiffness 0.01 0.0005 0.1  X 

𝑅𝑝𝑢𝑙 mmHg s mL-1 Pulmonary resistance 0.13 0.005 1  X 

Systemic arteries (SA) and veins (SV) 

𝐸𝑆𝐴 mmHg mL-1 SA stiffness 0.90 0.05 5  X 

𝐸𝑆𝑉 mmHg mL-1 SV stiffness 0.01 0.0001 0.1 X  

𝑅𝑠𝑦𝑠 mmHg s mL-1 Systemic resistance 1.28 0.05 15  X 

Heart valve resistances 

𝑅𝑚𝑣𝑎𝑙 mmHg s mL-1 Mitral valve  0.016 0.005 0.5 X  

𝑅𝑎𝑣𝑎𝑙 mmHg s mL-1 Aortic valve  0.018 0.005 0.5 X  

𝑅𝑡𝑣𝑎𝑙 mmHg s mL-1 Tricuspid valve 0.024 0.005 0.5 X  

𝑅𝑝𝑣𝑎𝑙 mmHg s mL-1 Pulmonary valve  0.006 0.0004 0.25 X  

 

2.6.1  Model Equations  

The cardiovascular systems model used for this study is a reduced version of the Smith et 

al. model (Smith et al., 2004) adapted from our previous study(Colunga et al., 2020). This reduced 

version balances the degree of model complexity with the informational content of the clinical 

data. Further reduction was made by omitting the pericardium and all zero pressure volumes in 

each compartment were set to zero. The elastance function driving heart systole and diastole 

depend on a periodic τ, the time from the beginning of the current cardiac cycle, as 

𝑒τ = exp {−HR(τ −
1

2HR
)
2

} . (2. 3) 
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LV and RV ventricular pressure from end-systolic (es) and end-diastolic (ed) pressure-volume 

relationships are 

𝑃𝑒𝑠,𝐿𝑉 = 𝐸𝐿𝑉  𝑉𝐿𝑉 , (2. 4) 

𝑃𝑒𝑑,𝐿𝑉 = 𝑃0,𝐿𝑉  (𝑒
λ𝐿𝑉 𝑉𝐿𝑉 − 1) (2. 5) 

𝑃𝐿𝑉 = 𝑒τ𝑃𝑒𝑠,𝐿𝑉 + (1 − 𝑒τ)𝑃𝑒𝑑,𝐿𝑉 , (2. 6) 

𝑃𝑒𝑠,𝑅𝑉 = 𝐸𝑅𝑉  𝑉𝑅𝑉 , (2. 7) 

𝑃𝑒𝑑,𝑅𝑉 = 𝑃0,𝑅𝑉  (𝑒
λ𝑅𝑉 𝑉𝑅𝑉 − 1), 𝑎𝑛𝑑 (2. 8) 

𝑃𝑅𝑉 = 𝑒τ𝑃𝑒𝑠,𝐿𝑉 + (1 − 𝑒τ)𝑃𝑒𝑑,𝑅𝑉 , (2. 9) 

 

where Vi is the compartment volume, Ei is a stiffness parameter, P0,i is a reference pressure, and λi 

reflects the passive stiffness. The systemic arterial (SA), systemic venous (SV), pulmonary arterial 

(PA), and pulmonary venous (PV) pressures are 

𝑃𝑆𝐴 = 𝐸𝑆𝐴𝑉𝑆𝐴, (2. 10) 

𝑃𝑆𝑉 = 𝐸𝑆𝑉𝑉𝑆𝑉 , (2. 11) 

𝑃𝑃𝐴 = 𝐸𝑃𝐴𝑉𝑃𝐴, and (2. 12) 

𝑃𝑃𝑉 = 𝐸𝑃𝑉𝑉𝑃𝑉 . (2. 13) 

 

Blood flow is modeled using Ohm’s law. Flow through the systemic (sys) and pulmonary (pul) 

circulations are 

𝑄𝑠𝑦𝑠 =
𝑃𝑆𝐴 − 𝑃𝑆𝑉
𝑅𝑠𝑦𝑠

 𝑎𝑛𝑑 (2. 14) 

𝑄𝑝𝑢𝑙
= 𝑃𝑃𝐴 − 𝑃𝑃𝑉

𝑅𝑝𝑢𝑙
 . (2. 15) 
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Flows through the heart valves mitral (mval), aortic (aval), tricuspid (tval), and pulmonary 

(pval) are treated as diodes to prevent backflow, that is, 

𝑄𝑚𝑣𝑎𝑙 = {

𝑃𝑃𝑉 − 𝑃𝐿𝑉 
𝑅𝑚𝑣𝑎𝑙

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

𝑖𝑓 𝑃𝑃𝑉 > 𝑃𝐿𝑉 (2. 16) 

𝑄𝑎𝑣𝑎𝑙 = {

𝑃𝐿𝑉 − 𝑃𝑆𝐴 
𝑅𝑎𝑣𝑎𝑙

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

𝑖𝑓 𝑃𝐿𝑉 > 𝑃𝑆𝐴 (2. 17) 

  

𝑄𝑡𝑣𝑎𝑙 = {

𝑃𝑆𝑉 − 𝑃𝑅𝑉 
𝑅𝑡𝑣𝑎𝑙

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

𝑖𝑓 𝑃𝑆𝑉 > 𝑃𝑅𝑉 (2. 18) 

and 

𝑄𝑝𝑣𝑎𝑙 = {

𝑃𝑅𝑉 − 𝑃𝑃𝐴 
𝑅𝑝𝑣𝑎𝑙

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

𝑖𝑓 𝑃𝑅𝑉 > 𝑃𝑃𝐴 (2. 19) 

    

This model conserves volume by formulating differential equations using Kirchoff’s Law, that is, 

d𝑉𝐿𝑉
d𝑡

= 𝑄𝑚𝑣𝑎𝑙 − 𝑄𝑎𝑣𝑎𝑙 , (2. 20) 

𝑑𝑉𝑆𝐴
d𝑡

= 𝑄𝑎𝑣𝑎𝑙 − 𝑄𝑠𝑦𝑠, (2. 21) 

𝑑𝑉𝑆𝑉
d𝑡

= 𝑄𝑠𝑦𝑠 − 𝑄𝑡𝑣𝑎𝑙 , (2. 22) 

𝑑𝑉𝑅𝑉
d𝑡

= 𝑄𝑡𝑣𝑎𝑙 − 𝑄𝑝𝑣𝑎𝑙 , (2. 23) 

𝑑𝑉𝑃𝐴
d𝑡

= 𝑄𝑝𝑣𝑎𝑙 − 𝑄𝑝𝑢𝑙 , (2. 24) 
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𝑑𝑉𝑃𝑉
d𝑡

= 𝑄𝑝𝑢𝑙 − 𝑄𝑚𝑣𝑎𝑙 . ( 2. 25) 

2.6.2 Normal Cardiovascular Function Parameterization 

Table 2.3 describes all model parameters and lists the nominal values that result in normal 

cardiovascular function. This set of parameters prescribes a patient with roughly 120/80 mmHg 

SA pressure, 20/9 mmHg PA pressure, 85 mL LV diastolic volume, 57 mL LV SV (for EF of 

67%), and 4.6 L min−1 CO). These values vary from the original Smith model parameters because 

we have reduced their model and then adjusted the remaining parameters to produce cardiovascular 

function similar to the full Smith model. Figure 2.3 shows the model predictions for normal 

cardiovascular function corresponding to the parameters listed in Table 2.3. 

 

Figure 2.3  Simulation of normal cardiovascular function. 
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2.6.3 Nominal Parameters and Initial Conditions 

Nominal estimates of all parameters are determined starting with the set of expressions from 

our previous study (Colunga et al., 2020) as a guide. However, some estimated values used in the 

previous nominal parameter calculations can be replaced with data or calculated directly since 

TTE measurements are available. Therefore, a reformulation of some nominal parameter 

expressions has been made in this study: 

● LV elastances were calculated from measured volume and estimated pressure in systole.  

● LV diastolic stiffness was calculated from measured volume and estimated pressure in 

diastole.  

● RV elastances were calculated from measured pressure and estimated volume in systole.  

● RV diastolic stiffness was calculated from measured pressure and estimated volume in 

diastole.  

● Systemic elastances were calculated from measured arterial pulse pressures, estimated 

venous pulse pressures, and estimated stressed volumes.  

● Pulmonary elastances were calculated from estimated and measured pulse pressures and 

estimated stressed volumes.  

● Systemic and pulmonary resistances were calculated from measured systemic and 

pulmonary average arterial pressures and estimated systolic venous pressure along with 

the measured RHC CO.  

Resistances across the four valves were calculated in exactly the same way as in our previous 

study, and the ventricular end-diastolic reference pressures were set to normal values from Smith 

et al. More details on the exact expressions used for nominal calculations are shown below.   
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2.6.4 Calculation of Nominal Parameters  

Nominal values for 14 of the 16 parameters in the model are specified for each patient using a 

combination of each patient’s clinical data, the model equations, and values from the literature. 

The equations below are a summary of the nominal parameter calculation function from the code. 

A. Estimating Patient-specific Model Pressures and Volumes from Clinical Measures 

The following equations calculate estimates for pressures and volumes in systole and diastole 

from the clinical data listed in Table 2.4.  

Table 2.4 Clinical measures used for calculation of nominal parameter values 

 

 

 

 

 

 

 

The bar notation (⋅)̅ indicates a nominal estimate whereas no bar indicates a clinical measure. 

RV compartment volume estimates are assumed to be 90% of the LV volumes in both systole 

(syst) and diastole (diast), that is, 

𝑉̅𝑅𝑉,𝑠𝑦𝑠𝑡 = 0.90 𝑉𝐿𝑉,𝑠𝑦𝑠𝑡, and (2. 26) 

𝑉̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 = 0.90 𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡. ( 2. 27) 

 

Symbol Description 

𝑉𝐿𝑉,𝑠𝑦𝑠𝑡 LV systolic volume 

𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡 LV diastolic volume 

𝑃𝑅𝑉,𝑠𝑦𝑠𝑡 RV systolic pressure 

𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 RV diastolic pressure 

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡 SA systolic pressure 

𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡 SA diastolic pressure 

𝑃𝑃𝐶𝑊,𝑎𝑣𝑒 Average PCW pressure 

𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 PA systolic pressure 

𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡 PA diastolic pressure 

𝑃𝑆𝑉,𝑝𝑝 SV pulse pressure 

𝐶𝑂𝑅𝐻𝐶 Right heart catheter cardiac output  

PCW- pulmonary capillary wedge. 
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Pressure drop across the aortic and pulmonary valve is assumed to be ∼2.5%. Also, pulse 

pressure (pp) in the pulmonary veins is assumed to be ∼20% of the PA pulse pressure, whereas 

SV pulse pressure is ∼5% of the SA pulse pressure. The following summarize the pressure 

estimates: 

𝑃𝐿𝑉,𝑠𝑦𝑠𝑡 = 1.025 𝑃𝑆𝐴,𝑠𝑦𝑠𝑡 (2. 28) 

𝑃𝐿𝑉,𝑑𝑖𝑎𝑠𝑡 = 0.975 𝑃̅𝑃𝑉,𝑑𝑖𝑎𝑠𝑡 (2. 29) 

𝑃̅𝑃𝑉,𝑝𝑝 = 0.20 (𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 − 𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡) (2. 30) 

𝑃̅𝑆𝑉,𝑝𝑝 = 0.05 (𝑃𝑆𝐴,𝑠𝑦𝑠𝑡 − 𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡) (2. 31) 

𝑃̅𝑃𝑉,𝑑𝑖𝑎𝑠𝑡 = 𝑃𝑃𝐶𝑊,𝑎𝑣𝑒 −
1

3
𝑃̅𝑃𝑉,𝑝𝑝 (2. 32) 

𝑃𝑃𝐴,𝑎𝑣𝑒 =
1

3
 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 +

2

3
 𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡 (2. 33) 

𝑃𝑆𝐴,𝑎𝑣𝑒 =
1

3
 𝑃𝑆𝐴,𝑠𝑦𝑠𝑡 +

2

3
𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡 (2. 34) 

𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 = {

1

2
𝑃𝑆𝑉,𝑝𝑝 𝑖𝑓 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 ≤ 0

𝑃𝑆𝑉,𝑝𝑝              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2. 35) 

𝑃̅𝑆𝑉,𝑑𝑖𝑎𝑠𝑡 =
1.025 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 𝑖𝑓 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 ≤ 0

1.025 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡  > 0
(2. 36) 

𝑃̅𝑆𝑉,𝑠𝑦𝑠𝑡 = 𝑃̅𝑆𝑉,𝑑𝑖𝑎𝑠𝑡 + 𝑃̅𝑆𝑉,𝑝𝑝 (2. 37) 

𝑃̅𝑃𝑉,𝑠𝑦𝑠𝑡 =

{
  
 

  
 𝑃𝑃𝐶𝑊,𝑎𝑣𝑒 + 

2

3
𝑃̅𝑃𝑉,𝑝𝑝

𝑖𝑓 0.975 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 ≥

0.4854 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡

𝑖𝑓 0.975 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 <  𝑃𝑃𝐶𝑊,𝑎𝑣𝑒  +  
2

3
𝑃̅𝑃𝑉,𝑝𝑝

𝑃𝑃𝐶𝑊,𝑎𝑣𝑒 +
2

3
𝑃̅𝑃𝑉,𝑝𝑝 (2. 38) 
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For the nominal values of  𝑉̅𝑃𝐴,𝑠𝑦𝑠𝑡 , 𝑉̅𝑃𝑉,𝑠𝑦𝑠𝑡 ,  𝑉̅𝑆𝐴,𝑠𝑦𝑠𝑡 ,see nominal/initial volume calculation in 

see in section below. 

B. Calculating Nominal Parameters from Pressure and Volume Estimates  

The LV and RV end-diastolic reference pressures (P0,LV = 0.1203 mmHg and P0,RV = 0.2157 

mmHg) are set at nominal values so the ventricular end-diastolic stiffness exponents (λLV and λRV) 

can be estimated explicitly from the model equations, i.e., 

λ̅𝐿𝑉 =
𝑙𝑛(𝑃𝐿𝑉,𝑑𝑖𝑎𝑠𝑡/𝑃0,𝐿𝑉)

𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡
and (2. 39) 

𝜆̅𝑅𝑉 =

𝑙𝑛(𝑃̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡/𝑃0,𝑅𝑉)

𝑉̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡
 𝑖𝑓 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 ≤ 0

𝑙𝑛(𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡/𝑃0,𝑅𝑉)

𝑉̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡
 𝑖𝑓 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 > 0 

(2. 40) 

 

For the nominal RV passive stiffness (λRV), when the RV diastolic pressure (PRV,diast) is 

nonpositive, a positive value is calculated from the estimate of the SV pulse pressure (PSV,pp). 

When dealing with clinical data, some measurements are not consistent with each other. For 

example, the pulmonary arterial systolic pressure (PPA,syst) is sometimes greater than the RV 

systolic pressure (PRV,syst), likely due to the fact that these two measurements are made serially 

rather than simultaneously. In this case, computation of the nominal pulmonary valve resistance 

(Rpval) value is made differently than if PRV,syst is greater than PPA,syst. For the nominal tricuspid 

valve resistance (Rtval), when the RV diastolic pressure (PRV,diast) is nonpositive, a positive value is 

calculate from PSV,pp. For the nominal pulmonary valve resistance (Rpval), when the measured 

PPA,syst is larger than PRV,syst, a pressure drop of 2.5% across the pulmonary valve is assumed to 

generate a nonnegative estimate of RPV. All heart valve resistances are computed as 
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𝑅̅𝑚𝑣𝑎𝑙 =
𝑃̅𝑃𝑉,𝑑𝑖𝑎𝑠𝑡 − 𝑃̅𝐿𝑉,𝑑𝑖𝑎𝑠𝑡

𝐶𝑂𝑅𝐻𝐶
(2. 41) 

𝑅̅𝑎𝑣𝑎𝑙 =
𝑃̅𝐿𝑉,𝑠𝑦𝑠𝑡 − 𝑃̅𝑆𝐴,𝑠𝑦𝑠𝑡

𝐶𝑂𝑅𝐻𝐶
(2. 42) 

𝑅̅𝑡𝑣𝑎𝑙 =

{
 
 

 
 𝑃̅𝑆𝑉,𝑑𝑖𝑎𝑠𝑡 − 𝑃̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡

𝐶𝑂𝑅𝐻𝐶
 𝑖𝑓 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 ≤ 0

𝑃̅𝑆𝑉,𝑑𝑖𝑎𝑠𝑡 − 𝑃̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡
𝐶𝑂𝑅𝐻𝐶

 𝑖𝑓 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡 > 0

(2. 43) 

  

𝑅̅𝑝𝑣𝑎𝑙 =

{
 
 

 
 𝑃𝑅𝑉,𝑠𝑦𝑠𝑡 − 𝑃̅𝑃𝐴,𝑠𝑦𝑠𝑡

𝐶𝑂𝑅𝐻𝐶
 𝑖𝑓 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 ≤ 𝑃𝑅𝑉,𝑠𝑦𝑠𝑡

𝑃̅𝑆𝑉,𝑑𝑖𝑎𝑠𝑡 − 𝑃̅𝑅𝑉,𝑑𝑖𝑎𝑠𝑡
𝐶𝑂𝑅𝐻𝐶

 𝑖𝑓 𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡 > 𝑃𝑅𝑉,𝑠𝑦𝑠𝑡

(2. 44) 

For the nominal pulmonary resistance (Rpul), calculating Rpul from the clinical data led to three 

different scenarios. In most cases, adding 2/3 of the estimated PV pulse pressure (PPV,pp) to the 

average pulmonary capillary wedge pressure (PPCW,ave) resulted in a pressure that was smaller 

than average PA pressure (PPA,ave). In some cases, this is not true, but this sum is still less than 

the PA systolic pressure (PPA,syst), so we substitute PPA,syst for PPA,ave. In a small number of cases, 

the PPCW,ave is actually much larger than the upstream PPA,syst, which is not physiologically 

possible. In this case, we estimate the PV systolic pressure (PPV,syst) from the average ratio of the 

two pressures from all other patients in our study. The nominal resistance values are calculated as 

𝑅̅𝑠𝑦𝑠 =
𝑃𝑆𝐴,𝑎𝑣𝑒 − 𝑃̅𝑆𝑉,𝑠𝑦𝑠𝑡

𝐶𝑂𝑅𝐻𝐶
(2. 45) 
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𝑅̅𝑝𝑢𝑙 =

{
 
 
 

 
 
 

𝑃𝑃𝐴,𝑎𝑣𝑒 − 𝑃̅𝑃𝑉,𝑠𝑦𝑠𝑡
𝐶𝑂𝑅𝐻𝐶

𝑖𝑓 0.975 𝑃𝑃𝐴,𝑎𝑣𝑒 ≥ 𝑃𝑃𝐶𝑊,𝑎𝑣𝑒 +
2
3
 𝑃̅𝑃𝑉,𝑝𝑝

𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 − 𝑃̅𝑃𝑉,𝑠𝑦𝑠𝑡
𝐶𝑂𝑅𝐻𝐶

𝑖𝑓 0.975 𝑃𝑃𝐴,𝑎𝑣𝑒 < 𝑃𝑃𝐶𝑊,𝑎𝑣𝑒 +
2
3
 𝑃̅𝑃𝑉,𝑝𝑝

( 2. 46) 

All elastance parameters were approximated using the systolic pressure and stressed volume 

estimates as 

𝐸𝐿𝑉 =
𝑃̅𝐿𝑉,𝑠𝑦𝑠𝑡
𝑉𝐿𝑉,𝑠𝑦𝑠𝑡

(2. 47) 

𝐸𝑆𝐴 =
𝑃𝑆𝐴,𝑠𝑦𝑠𝑡 − 𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡

𝑉̅𝑆𝐴,𝑠𝑦𝑠𝑡
(2. 48) 

𝐸̅𝑆𝑉 =
𝑃̅𝑆𝑉,𝑝𝑝 

𝑉̅𝑆𝑉,𝑠𝑦𝑠𝑡
(2. 49) 

𝐸̅𝑅𝑉 =
𝑃𝑅𝑉,𝑠𝑦𝑠𝑡 

𝑉̅𝑅𝑉,𝑠𝑦𝑠𝑡
(2. 50) 

𝐸̅𝑃𝐴 =
𝑃𝑃𝐴,𝑠𝑦𝑠𝑡 − 𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡

𝑉̅𝑃𝐴,𝑠𝑦𝑠𝑡
(2. 51) 

𝐸̅𝑃𝑉 =
𝑃𝑃𝑉,𝑝𝑝

𝑉̅𝑃𝑉,𝑠𝑦𝑠𝑡
(2. 52) 

2.6.5 Calculation of Total Blood Volume 

Total blood volume is calculated based on the height, weight, and sex of each patient as 

described in Colunga et al. (Colunga et al., 2020), utilizing the expression originally developed by 

Nadler et al. (Nadler et al., 1962). This total blood volume is comprised of stressed and unstressed 

volumes. The unstressed blood volume is the volume in each compartment at which the pressure 

is zero. The stressed volume is the difference between the total and unstressed volumes.  The initial 
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distribution of stressed and unstressed blood volume among the six vascular compartments is based 

on the work by Beneken (Beneken & DeWit, 1967), in which a total stressed volume of 18.75% 

was assumed. In this study, we assumed 30% of the total blood volume is stressed volume (Colunga 

et al., 2020; Maas et al., 2012), so additional volume was recruited from the four systemic and 

pulmonary compartments based on the unstressed volume available in each compartment. Explicit 

details on determining patient-specific stressed volume for each model compartment can be found 

below and the model code (Carlson & Jones, n.d.).  

A. Recalculation of Initial Volume Distributions 

A recent theory with regards to HFpEF is that there is some dysfunction in the ability to adjust 

volume distribution in the cardiovascular system. Our model can take into consideration different 

percentages of total stressed volume which might vary across patients. Even though we have this 

option for the purpose of discriminating HFpEF phenotypes, we have fixed the total stressed 

volume at 30% of total blood volume. This still leaves us with the problem of how to estimate the 

initial volume distribution across compartments and to ensure the percentages of stressed volume 

in each compartment sum up to be 30% of total blood volume.  

We start with the nominal values of stressed, unstressed, and total blood volume in each 

compartment from Beneken (Beneken & DeWit, 1967). The difference here is that Beneken’s 

stressed volume distributions add up to be only 18.75%, which is now generally taken to be too 

low. In the code, we recalculate an initial stressed volume distribution to a 30% stressed volume 

that is appropriate. Table 2.5 is a summary of blood volume distributions from Beneken. 
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Table 2.5 Blood volume distributions in mL adapted from Beneken (Beneken & DeWit, 1967) 

 

Stressed Unstressed Total 

Left Atrium (LA) 

Vs,B,LA 50 Vu,B,LA 30 Vt,B,LA 80 

Left Ventricle (LV) 

Vs,B,LV 125 Vu,B,LV 0 Vt,B,LV 125 

Systemic arteries (SA) 

Vs,B,SA 160 Vu,B,SA 425 Vt,B,SA 585 

Systemic veins (SV) 

Vs,B,SV 219 Vu,B,SV 2697 Vt,B,SV 2916 

Right atrium (RA) 

Vs,B,RA 50 Vu,B,RA 30 Vt,B,RA 80 

Right ventricle (RV) 

Vs,B,RV 125 Vu,B,RV 0 Vt,B,RV 125 

Pulmonary arteries (PA) 

Vs,B,PA 69 Vu,B,PA 50 Vt,B,PA 119 

Pulmonary veins (PV) 

Vs,B,PV 54 Vu,B,PV 460 Vt,B,PV 514 

Totals      

Vs,B,tot 852 Vu,B,tot 3692 Vt,B,tot 4544 

 

The total blood volume in Beneken is 4544 mL, which is different than the blood volume 

calculated for each patient. Therefore, we will estimate the percentages of stressed and unstressed 

volumes for different total stressed volume percentages with respect to the Beneken volumes and 

then use those percentages to calculate the initial volume distributions for the patient-specific total 

blood volume. We start by adjusting what volumes are stressed and unstressed in the heart. 

Beneken assumes 100% stressed volume in the ventricles and 60% stressed volume in the atria, 

which we change to 70% and 50% respectively. To adjust this, we calculate new volumes in the 

heart as 

𝑉𝑠,𝐵,𝐿𝑉
∗ = 0.70 𝑉𝑡,𝐵,𝐿𝑉 (2. 53) 

𝑉𝑠,𝐵,𝑅𝑉
∗ = 0.70𝑉𝑡,𝐵,𝑅𝑉 (2. 54) 
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We need to recruit volume over the Beneken values, and we assume that this recruited volume 

will come from only the systemic and pulmonary circulations and not from the heart. So, we take 

the Beneken stressed volumes and then subtract off the heart chamber stressed volumes as 

𝑉𝑠,𝐵,𝑛ℎ = 𝑉𝑠,𝐵,𝑡𝑜𝑡 − 𝑉𝑠,𝐵,𝐿𝑉 − 𝑉𝑠,𝐵,𝑅𝑉 , (2. 55) 

where the subscript nh denotes “non-heart". 

To obtain a total stressed volume fraction of 30% for each patient, we have  

𝑉𝑠,𝐵,𝑡𝑜𝑡
∗ = 0.30 𝑉𝑡,𝐵,𝑡𝑜𝑡 . (2. 56) 

Then, we subtract off the new heart chamber stressed volumes as 

𝑉𝑠,𝐵,𝑛ℎ
∗ = 𝑉𝑠,𝐵,𝑡𝑜𝑡

∗ − 𝑉𝑠,𝐵,𝐿𝑉
∗ − 𝑉𝑠,𝐵,𝑅𝑉

∗ . (2. 57) 

The difference between these stressed volumes is the amount of recruited volume over and above 

the Beneken stressed volumes, that is, 

𝑉𝑠,𝑅,𝑡𝑜𝑡 = 𝑉𝑠,𝐵,𝑛ℎ
∗ − 𝑉𝑠,𝐵,𝑛ℎ. (2. 58) 

The recruited volume in each compartment is calculated based on the fraction of the unstressed 

volume in each compartment with respect to the total unstressed volume, 𝑉𝑢,𝐵,𝑡𝑜𝑡, that is 

𝑉𝑠,𝐵,𝑅,𝑆𝐴 = 𝑉𝑠,𝑅,𝑡𝑜𝑡 (𝑉𝑢,𝐵,𝑆𝐴/𝑉𝑢,𝐵,𝑡𝑜𝑡), (2. 59) 

𝑉𝑠,𝐵,𝑅,𝑆𝑉 = 𝑉𝑠,𝑅,𝑡𝑜𝑡 (𝑉𝑢,𝐵,𝑆𝑉/𝑉𝑢,𝐵,𝑡𝑜𝑡), (2. 60) 

𝑉𝑠,𝐵,𝑅,𝑃𝐴 = 𝑉𝑠,𝑅,𝑡𝑜𝑡 (𝑉𝑢,𝐵,𝑃𝐴/𝑉𝑢,𝐵,𝑡𝑜𝑡), 𝑎𝑛𝑑 (2. 61) 

𝑉𝑠,𝐵,𝑅,𝑃𝑉 = 𝑉𝑠,𝑅,𝑡𝑜𝑡 (𝑉𝑢,𝐵,𝑃𝑉/𝑉𝑢,𝐵,𝑡𝑜𝑡), (2. 62) 

Adding these recruited volumes to the Beneken values will give the volumes with the desired 

30% total stressed volume as  

𝑉𝑠,𝐵,𝑆𝐴
∗ = 𝑉𝑠,𝐵,𝑆𝐴 + 𝑉𝑠,𝐵,𝑅,𝑆𝐴, (2. 63) 

𝑉𝑠,𝐵,𝑆𝑉
∗ = 𝑉𝑠,𝐵,𝑆𝑉 + 𝑉𝑠,𝐵,𝑅,𝑆𝑉 , (2. 64) 
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𝑉𝑠,𝐵,𝑃𝐴
∗ = 𝑉𝑠,𝐵,𝑃𝐴 + 𝑉𝑠,𝐵,𝑅,𝑃𝐴, 𝑎𝑛𝑑 (2. 65) 

𝑉𝑠,𝐵,𝑃𝑉
∗ = 𝑉𝑠,𝐵,𝑃𝑉 + 𝑉𝑠,𝐵,𝑅,𝑃𝑉 . (2. 66) 

Dividing these new volumes by the total compartment volumes from Beneken gives the 

fraction of stressed volume for each compartment, that is, 

𝑓𝑉𝑠𝐵,𝑆𝐴 = 𝑉𝑠,𝐵,𝑆𝐴
∗ /𝑉𝑡,𝐵,𝑆𝐴, ( 2. 67) 

𝑓𝑉𝑠𝐵,𝑆𝑉 = 𝑉𝑠,𝐵,𝑆𝑉
∗ /𝑉𝑡,𝐵,𝑆𝑉 , (2. 68) 

𝑓𝑉𝑠𝐵,𝑃𝐴 = 𝑉𝑠,𝐵,𝑃𝐴
∗ /𝑉𝑡,𝐵,𝑃𝐴, and (2. 69) 

𝑓𝑉𝑠𝐵,𝑃𝑉 = 𝑉𝑠,𝐵,𝑃𝑉
∗ /𝑉𝑡,𝐵,𝑃𝑉 . (2. 70) 

These fractions are used for the patient-specific total volume to get an initial stressed volume 

distribution across compartments assuming a 30% total stressed volume see Table 2.6. 

Table 2.6 New blood volume distribution in mL with 30% volume. 

Stressed Unstressed Total 

Left Atrium (LA) 

𝑉𝑠,𝐵,𝐿𝐴
∗  40 𝑉𝑢,𝐵,𝐿𝐴

∗  40 𝑉𝑡,𝐵,𝐿𝐴
∗  80 

Left Ventricle (LV) 

𝑉𝑠,𝐵,𝐿𝑉
∗  88 𝑉𝑢,𝐵,𝐿𝑉

∗  37 𝑉𝑡,𝐵,𝐿𝑉
∗  125 

Systemic arteries (SA) 

𝑉𝑠,𝐵,𝑆𝐴
∗  230 𝑉𝑢,𝐵,𝑆𝐴

∗  355 𝑉𝑡,𝐵,𝑆𝐴
∗  585 

Systemic veins (SV) 

𝑉𝑠,𝐵,𝑆𝑉
∗  662 𝑉𝑢,𝐵,𝑆𝑉

∗  2254 𝑉𝑡,𝐵,𝑆𝑉
∗  2916 

Right atrium (RA) 

𝑉𝑠,𝐵,𝑅𝐴
∗  40 𝑉𝑢,𝐵,𝑅𝐴

∗  40 𝑉𝑡,𝐵,𝑅𝐴
∗  80 

Right ventricle (RV) 

𝑉𝑠,𝐵,𝑅𝑉
∗  88 𝑉𝑢,𝐵,𝑅𝑉

∗  37 𝑉𝑡,𝐵,𝑅𝑉
∗  125 

Pulmonary arteries (PA) 

𝑉𝑠,𝐵,𝑃𝐴
∗  77 𝑉𝑢,𝐵,𝑃𝐴

∗  42 𝑉𝑡,𝐵,𝑃𝐴
∗  119 

Pulmonary veins (PV) 

𝑉𝑠,𝐵,𝑃𝑉
∗  130 𝑉𝑢,𝐵,𝑃𝑉

∗  384 𝑉𝑡,𝐵,𝑃𝑉
∗  514 

Totals      

𝑉𝑠,𝐵,𝑡𝑜𝑡
∗  1355 𝑉𝑢,𝐵,𝑡𝑜𝑡

∗  3189 𝑉𝑡,𝐵,𝑡𝑜𝑡
∗  4544 
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In this study, the percent of stressed volume remains the same across all patients. However, 

regulation of stressed and unstressed volume is a current topic of discussion in the field of HF 

(Fallick et al., 2011; Fudim et al., 2017) Click or tap here to enter text.and the ability to change the 

ratio of stressed and unstressed volume can be explored in future studies.  

2.6.6 Global Sensitivity Analysis 

Since the inverse problem investigated here is ill posed, a sensitivity analysis is performed 

to assess the practical identifiability of the parameters, i.e., determine which of the parameters can 

be identified with the given clinical patient data.  Due to the vast variation in parameter values 

across subjects, we conducted a global sensitivity analysis using Sobol’ indices to explore the 

entire parameter space. Sobol’ indices apportion the variance in the output to the effect of each 

parameter (Sobol′, 2001). In particular, we use total effect Sobol’ indices to characterize the effect 

of both the parameter and parameter interactions on the residual variance (Randall E. B. et al., 

2021). All parameters were varied within their physiological bounds, listed in Table 2.3. The 

residual (Equation 2.83) was calculated by determining the least square error between simulations 

and RHC and TTE data in a similar fashion to that described in Colunga et al. (Colunga et al., 

2020).  The Sobol’ indices were calculated using Monte Carlo integration by computing 

103(16 + 2) = 1.8e4 model evaluations similar to the procedure described in Randall et al. 

(Randall E. B. et al., 2021).  

We then ranked the total effect Sobol’ indices (Figure 2.4) to determine a set of influential 

parameters that substantially affect the variance of the residual, i.e., a subset of parameters that 

have an index above the threshold 𝜂 = 10−3. Parameters below the threshold were excluded from 

consideration for optimization and set to their nominal values. Though the parameters 𝑃0,𝐿𝑉, 𝑃0,𝑅𝑉, 
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and 𝐸𝑆𝑉 were above 𝜂, they are correlated to other parameters with a higher sensitivity and 

therefore cannot be determined explicitly (Colunga et al., 2020). Hence, 𝑃0,𝐿𝑉, and 𝑃0,𝑅𝑉 were set 

to the values used in Colunga et al., and 𝐸𝑆𝑉 was calculated using Equation 2.49. Note that our 

previous study used only RHC data to determine model parameters. Since TTE data were included 

here, two additional model parameters could be identified: 𝐸𝐿𝑉 and 𝐸𝑅𝑉. From the set of influential 

parameters, we obtained the subset 

 

𝜃 = 𝜆𝐿𝑉, 𝜆𝑅𝑉 , 𝐸𝐿𝑉 , 𝐸𝑅𝑉 , 𝐸𝑆𝐴, 𝐸𝑃𝐴, 𝐸𝑃𝑉 ,  𝑅𝑠𝑦𝑠, 𝑅𝑝𝑢𝑙 (2. 71) 
 

 

to optimize. This subset consists of parameters 𝜆𝐿𝑉, 𝜆𝑅𝑉, 𝐸𝐿𝑉, and 𝐸𝑅𝑉, which are used to 

describe cardiac function. All others are hemodynamic parameters that define cardiovascular 

function as a whole, which may be important for distinguishing particular subgroups of HFpEF. 

This methodology produced a subset of uncorrelated parameters that can be estimated for each 

patient. In particular, none of the parameters reached their physiological bounds when estimated, 

giving confidence that the parameter subset in Equation 2.71 is well prescribed to investigate the 

HF questions discussed here.  

 

Figure 2.4 Global sensitivity analysis. Ranked total Sobol’ indices for all 16 adjustable parameters with an index 

above the threshold 𝜂 = 10−2 were plotted with a log-scaled 𝑦-axis. This analysis shows that 12 parameters are 

influential to changes in the residual. From these parameters, we selected a subset of parameters to optimize, given in 

Equation 2.71.  
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A. Residual Equation Used for Sensitivity Analysis and Optimization  

A residual function was used to assess parameter influence in our global sensitivity analysis 

and optimize model parameters to patient data. The change in this residual with changes in 

parameter values over a sampling of the entire parameter space is used to rank the sensitivity of 

each parameter with respect to each other. For optimization, a set of parameter values is found that 

minimizes the residual function producing a patient-specific model that most closely represents a 

given set of patient data. Two simulation runs are made to compute the residual: one at the RHC 

heart rate and the second at the TTE heart rate. The following equations show the eleven pressures, 

volumes, and cardiac output measures from these two simulations used to compute the eleven 

residuals between the simulation and clinical measures using an appropriate normalization for each 

residual: 

𝑃𝑅𝑉,𝑠𝑦𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑃𝑅𝑉,𝑠𝑦𝑠𝑡
𝑠𝑖𝑚 − 𝑃𝑅𝑉,𝑠𝑦𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 72) 

𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡
𝑠𝑖𝑚 − 𝑃𝑅𝑉,𝑑𝑖𝑎𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 73) 

𝑃𝑃𝐴,𝑠𝑦𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡
𝑠𝑖𝑚 − 𝑃𝑃𝐴,𝑠𝑦𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 74) 

𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡
𝑠𝑖𝑚 − 𝑃𝑃𝐴,𝑑𝑖𝑎𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 75) 

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑠𝑖𝑚 − 𝑃𝑆𝐴,𝑠𝑦𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 76) 

𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡
𝑠𝑖𝑚 − 𝑃𝑆𝐴,𝑑𝑖𝑎𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 77) 



56 

 

 

𝑃𝑃𝐶𝑊,𝑎𝑣𝑒
𝑟𝑒𝑠 =

∣ 𝑃𝑃𝐶𝑊,𝑎𝑣𝑒
𝑠𝑖𝑚 − 𝑃𝑃𝐶𝑊,𝑎𝑣𝑒

𝑑𝑎𝑡𝑎 ∣

𝑃𝑆𝐴,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 78) 

CORHC
𝑟𝑒𝑠 =

∣CORHC
𝑠𝑖𝑚−CORHC

𝑑𝑎𝑡𝑎∣

max(CORHC
𝑑𝑎𝑡𝑎,COTTE

𝑑𝑎𝑡𝑎)
, (2. 79)  

𝑉𝐿𝑉,𝑠𝑦𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑉𝐿𝑉,𝑠𝑦𝑠𝑡
𝑠𝑖𝑚 − 𝑉𝐿𝑉,𝑠𝑦𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑉𝐿𝑉,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 80) 

𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡
𝑟𝑒𝑠 =

∣ 𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡
𝑠𝑖𝑚 − 𝑉𝐿𝑉,𝑑𝑖𝑎𝑠𝑡

𝑑𝑎𝑡𝑎 ∣

𝑉𝐿𝑉,𝑠𝑦𝑠𝑡
𝑑𝑎𝑡𝑎 , (2. 81) 

COTTE
𝑟𝑒𝑠 =

∣ COTTE
𝑠𝑖𝑚 − COTTE

𝑑𝑎𝑡𝑎 ∣

max(CORHC
𝑑𝑎𝑡𝑎, COTTE

𝑑𝑎𝑡𝑎)
. (2. 82) 

 

The residuals are then averaged with no additional weights as: 

𝑅𝑒𝑠 =
∑ 𝑃𝑖

𝑟𝑒𝑠7
𝑖=1 + ∑ CO𝑗

𝑟𝑒𝑠2
𝑗=1 + ∑ 𝑉𝑘

𝑟𝑒𝑠2
𝑘=1

11
(2. 83) 

2.6.7 Optimization 

For each patient, we estimate the adjustable parameters in Equation 2.71 by minimizing 

the least square error between the simulations and data for ten measurements: RV pressure in 

systole and diastole, PA pressure in systole and diastole, average PCW pressure, systemic artery 

pressure in systole and diastole, CO during RHC, LV volume in systole and diastole, and CO 

during TTE. Since the HR during RHC and TTE can be different, two separate simulations are 

run: one simulating the RHC and one simulating the TTE. However, both simulations are run with 

one set of parameter values with the assumption that the parameters representing cardiac function 

do not change appreciably across procedures for a single patient. Values of the clinical data are 

calculated over the cardiac cycle after the system has reached a steady state of pulsatile pressures 
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and flows. This is assured by allowing our simulations to run for 50 beats. Once this steady state 

is reached, the maximum and minimum values of the pressure and volume data of the last 5 beats 

are used to compute the total residual error. The PCW pressure and CO represent average values 

over the cardiac cycle; because of this, their values are averaged over the cardiac cycle before 

being compared to the TTE and RHC data. Estimates for the adjustable parameters are obtained 

using the genetic algorithm with a population size of 500 and a stall generation limit of 10 

generations implemented in MATLAB (MathWorks Natick, Ma). All other specifications were set 

to their default MATLAB value. To check to see if the parameter space was explored adequately, 

we ran the optimization for each patient 10 times and observed a consistent residual across the best 

few runs. The run with the lowest cost was chosen for our final results. More details about 

MATLAB's implementation of the genetic algorithm can be found at mathworks.com. 

2.7 Machine Learning 

We utilized one classification and two different clustering techniques using the built-in 

MATLAB 𝑘-means and hierarchical clustering functions to group individuals within a population 

based on similar characteristics. In theory, patients within the same groups should share similar 

physiological characteristics. The clinical data and optimized parameter values were compiled into 

separate matrices where each row represents a given patient, and each column represents a clinical 

measure or optimized parameter value (Table 2.1 and Table 2.3). Before any of the clustering 

methods are applied, each column is centered by subtracting the average of each column from each 

element in that column. Because our clinical data and optimized parameters had different units 

within their respective matrices, we normalized each clinical measure or parameter by its standard 
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deviation. To mitigate any bias in these analyses, no additional weighting is placed on any of the 

clinical measurements or optimized parameters. 

2.7.1 Principal component analysis (PCA) 

We performed a PCA (Jolliffe IT, 1986), which is simply a singular value decomposition 

identifying an orthogonal change of basis within the clinical data or optimized parameter spaces 

that retains the greatest variation across patients, independent of the level of dimension reduction 

selected. For the optimized parameter matrix P, the decomposition 𝑃 =  𝑈𝑆𝑉𝑇 produces unitary 

matrices 𝑈and 𝑉and diagonal matrix S, representing the portion of the total variation explained by 

each principal component. The PCA score, which gives the position in this rotated space that 

maximizes variation, is given by the product of 𝑈 and 𝑆.  We plot the two-dimensional space of 

the first two principal components describing more than 50% of the total variance. Subsequent 

principal components each accounted for less than 15% of the total variance and are not plotted 

for clarity. A convex hull was prescribed about the HFpEF and HFrEF groups. HFpEF patients are 

then assigned a group based on the following clustering methods. 

2.7.2 k-means Clustering 

𝑘-means clustering creates 𝑘 unsupervised clusters from the data. In this study, we chose 

to group the patients into two clusters, that is, two patients are randomly chosen as cluster 

centroids, and all other patients are grouped relative to their L1-distance from each centroid. This 

method is dependent on the random initial cluster centroids selected, so we run this process 20 

times and select the clustering result that has the smallest total cluster variance (Eisen et al., 1998; 

Wilkin & Huang, 2008). Figure 2.6B shows the two 𝑘-means clusters of the clinical data 

superimposed on the PCA hulls. 
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2.7.3 Hierarchical Clustering 

In this clustering method, each patient starts as a cluster, and then the two closest patients 

are grouped together. This process is repeated, grouping the two closest clusters together to reduce 

the total number of clusters by 1 until all the patients are in one cluster (Kraskov et al., 2005). This 

method forms a hierarchical cluster tree known as a dendrogram that can then be truncated to 

produce the desired number of clusters. To do this in MATLAB, the linkage function is used and 

the Ward metric (Ward, 1963) is selected to group the two clusters together at each step that 

minimize the total in-cluster variation. Using the dendrogram, we partitioned our patients into two 

clusters by cutting the dendrogram halfway between the second-from-last and last linkages. Figure 

2.6C superimposes the hierarchical clusters of the clinical data on the PCA hulls.  

Our focus is to identify groups that cluster consistently among these methods, especially 

since they use different concepts to group the data. If two HFpEF patients share a PCA hull region, 

a 𝑘-means cluster, and a hierarchical cluster, they are included in the same group. Since our 

purpose here is to subdivide only the HFpEF patients all HFrEF patients are grouped according to 

their clinical diagnosis independent of whether they may cluster with HFpEF in one of the 

clustering methods used. The clusters with the most HFrEF patients are considered the most 

“HFrEF-like”. Patients that switch between clusters for different methods are deemed not 

consistently clustered (NCC).  

To classify the HFpEF patients that fall in the PCA overlap region, we rely on the clustering 

methods. If a HFpEF patient in the overlap region falls in the 𝑘-means and hierarchical clusters 

that contain a majority of the HFrEF patients, we classify them as HFrEF-like HFpEF and thus are 

part of HFpEF1. Conversely, if they fall in the 𝑘-means and hierarchical clusters that contain a 

https://www.mathworks.com/help/stats/linkage.html
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majority of HFpEF patients, we classify them as “pure” HFpEF and are part of HFpEF2. If they 

switch between clusters, they are classified as NCC.  

2.8 Results 

2.8.1 HF Subgroups Determined From Clinical Data 

 Our retrospective cardiovascular systems analysis consists of a cohort of 31 patient records 

(10 HFrEF and 21 HFpEF). First, we consider the clinical data explicitly from the RHC and TTE 

(Figure 2.5). Statistically significant differences in the means of TTE derived measurements (𝑝-

value < 0.001) such as EF, systolic & diastolic LV volumes, and CO (𝑝-value < 0.01) are found 

between HFrEF and HFpEF patients (Figure 2.5A-D). Consistent with their systolic dysfunction 

phenotype, HFrEF patients have greater ventricular volumes than the HFpEF cohort, with patients 

1 and 6 showing particularly extreme ventricular dilation (Figure 2.5B and C). In the HFpEF 

cohort, pulmonary artery systolic and diastolic pressures as well as RV systolic pressures are 

significantly higher (𝑝-value < 0.01) than the HFrEF cohort (Figure 2.5E-G). Systolic arterial 

pressure is likewise significantly higher (𝑝-value < 0.05) in the HFpEF cohort when compared to 

HFrEF patients (Figure 2.5H). 

To determine if novel subgroups of HF patients with similar cardiovascular etiologies 

could be discerned from clinical data alone, we perform a PCA along with two unsupervised 

clustering methods on the clinical data available from the RHC and TTE (Figure 2.6). All RHC 

and TTE patient data to which the model was optimized (Table 2.1) except EF, height, and weight 

were included in the PCA. Since EF was a major factor used to determine clinical diagnosis and 

LV diastolic and systolic volumes are already included in the PCA analysis, EF was excluded. In 

Figure 2.6A, PCA scores for the first and second principal components are plotted, and convex 
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hulls are drawn around each diagnosis. The first two principal components of our clinical data 

PCA describe 52% of the total variance. The convex hulls for HFrEF (orange) and HFpEF (blue) 

overlap, consisting of HFrEF patients 2, 4, 5, 7, and 9 and HFpEF patients 11, 24, and 18. As PCA 

only captures the greatest variance across all patients, the HFpEF patients in the overlap region 

required further analysis.  

 

 

Figure 2.5 Box plots of clinical data with significant differences between heart failure patients based on their HFrEF 

and HFpEF diagnosis. A. Ejection fraction (%). B. Systolic left ventricular (LV) volume (mL). C. Diastolic LV volume 

(mL). D. Cardiac output (L min-1) from the TTE data. E. Systolic pulmonary arterial (PA) pressure (mmHg). F. 

Diastolic PA pressure (mmHg). G. Systolic right ventricular (RV) pressure (mmHg). H. Systolic systemic arterial 

(SA) pressure (mmHg). The light gray dashed line denotes the group average, and the grey box contains one standard 

deviation above and below the mean of each clinical value (*𝑝-value <0.05, **𝑝-value <.01, ***𝑝-value <.001). 
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Figure 2.6 Clustering analysis of clinical data. A. Principal component analysis (PCA) of the clinical data. Convex 

hulls for the HFrEF (orange) and HFpEF (blue) patients are determined by individual patient diagnosis. B. 𝑘-means 

clustering of patient data superimposed on the PCA hulls where cluster A (purple) is more HFrEF-like and cluster B 

(teal) is more HFpEF-like. C. Hierarchical clustering of patient data superimposed on the PCA hulls where cluster A 

(purple) is more HFrEF-like and cluster B (teal) is more HFpEF-like. 

 



63 

 

 

To test if we could attribute the HFpEF patients that fall in the PCA overlap region into a 

distinct phenotype associated with the HFrEF or HFpEF clinical groups, we employ 𝑘-means and 

hierarchical clustering (Figure 2.6B and C). We superimpose the 𝑘-means clusters on the PCA 

convex hulls (Figure 2.6B). Since all HFrEF patients except patient 5 fall into 𝑘-means cluster A, 

we designate cluster A as more HFrEF-like and, conversely, 𝑘-means cluster B as more HFpEF-

like. We observe in the overlap region, HFpEF patient 11 is in 𝑘-means cluster A whereas patients 

18 and 24 are 𝑘-means cluster B. Also, HFrEF patient 5 falls in 𝑘-means cluster B. Lastly, HFpEF 

patients 16, 17, 20, 21, 23, and 27 fall into 𝑘-means cluster A. In a similar fashion, hierarchical 

clustering results are superimposed on the PCA convex hull (Figure 2.6C). Similarly, we specified 

hierarchical cluster A as more HFrEF-like and hierarchical cluster B as more HFpEF-like. Of 

particular interest is that all HFpEF patients in the overlap region now fall in hierarchical cluster 

B.  Details of the patient designation based on the clinical measurement clustering analysis are 

given in Table 2.7. Among the clustering methods used here, Table 2.8 denotes which patients 

consistently cluster in the following groups: “pure” HFrEF (𝑛 = 10) - patients that fall in the 

HFrEF PCA hull.  “pure” HFpEF (𝑛 = 13) - patients that fall in the HFpEF PCA hull, 𝑘-means 

cluster B, and hierarchical cluster B. NCC (𝑛 = 8) - patients that do not consistently cluster. Note 

that this methodology shows no subgroups of HFpEF. Also, almost half of the HFpEF patients fall 

in the NCC designation.  

HFrEF patients 1 and 6 show extreme ventricular dilation compared to other HFrEF 

patients in this cohort with large systolic and diastolic volumes (outliers in Figure 2.5B and C). 

Therefore, these patients were excluded from further analysis.  
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Table 2.7 Clinical data cluster classification. 

Patient 

  

Hull 

Location 

k-means 

Cluster 

Hierarchical 

Cluster 

Group 

  

HFrEF 

1 HFrEF A A HFrEF 

2 HFrEF A B HFrEF 

3 HFrEF A A HFrEF 

4 HFrEF A B HFrEF 

5 HFrEF B B HFrEF 

6 HFrEF A A HFrEF 

7 HFrEF A B HFrEF 

8 HFrEF A A HFrEF 

9 HFrEF A B HFrEF 

10 HFrEF A B HFrEF 

HFpEF 

11 HFpEF A B NCC 

12 HFpEF B B HFpEF 

13 HFpEF B B HFpEF 

14 HFpEF B B HFpEF 

15 HFpEF B B HFpEF 

16 HFpEF A A NCC 

17 HFpEF A B NCC 

18 HFpEF B B HFpEF 

19 HFpEF B B HFpEF 

20 HFpEF A A NCC 

21 HFpEF A A NCC 

22 HFpEF B B HFpEF 

23 HFpEF A A NCC 

24 HFpEF B B HFpEF 

25 HFpEF B B HFpEF 

26 HFpEF B B HFpEF 

27 HFpEF A A NCC 

28 HFpEF B B HFpEF 

29 HFpEF B B HFpEF 

30 HFpEF B B HFpEF 

31 HFpEF B B HFpEF 

HFrEF – heart failure with reduced ejection fraction.  

HFpEF – heart failure with preserved ejection fraction.  
NCC - not consistently clustered. 

 

 

 

 



65 

 

 

Table 2.8 Patient classification from clustering results based on clinical data (left) and optimized parameters (right). 

Clinical data Optimized parameters 

HFrEF HFpEF NCC HFrEF HFpEF1 HFpEF2 NCC 

1 12 11 2 11 12 13 

2 13 16 3 17 14 15 

3 14 17 4 18 16 22 

4 15 18 5 29 19 23 

5 19 20 7 30 20 28 

6 22 21 8  21  

7 24 23 9  24  

8 25 27 10  25  

9 26    26  

10 28    27  

 29    31  

 30      

 31      

       

       

HFrEF – heart failure with reduced ejection fraction.  

HFpEF – heart failure with preserved ejection fraction.  

NCC – not consistently clustered.  
 

2.8.2 HF Subgroups Determined From Optimized Parameter Values 

To learn about the underlying physiological differences between our patient cohorts that 

cannot be determined from clinical data alone, patient clinical measurements are used to 

parameterize a simplified cardiovascular systems model. We conduct a global sensitivity analysis 

exploring the entire permissible parameter space and ranked the parameters due to their 

contribution to the residual. Figure 2.4 displays the ranked total Sobol’ indices for all 16 adjustable 

parameters. This analysis shows that 12 parameters are influential to the residual from which we 

selected a subset of 9 parameters to optimize (Equation 2.71).  Optimized parameter values for 

each patient are listed in Table 2.9. 

Our model simulations predict that the HFpEF cohort has a much wider distribution of the 

parameter values than the HFrEF cohort. We perform the same methods applied to the clinical data 
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to the optimized parameter values to see if in the parameter space we could identify subgroups of 

HFpEF patients with similar cardiovascular etiologies (Figure 2.6). The first two principal 

components of our optimized parameter PCA describe 59% of the total variance. Since the clinical 

data and parameter space are two entirely different representations of the patient population no 

conclusion should be drawn from the fact that both PCA analyses represent an equivalent total 

variance for the first two principal components.  

The PCA scores of the optimized parameters show that HFpEF patients 11, 17, 18, 29 and 

30 fall in the PCA overlap region (Figure 2.7A). We conducted 𝑘-means (Figure 2.7B) and 

hierarchical (Figure 2.7C) clustering on the optimized parameters revealing a much different 

structure than clustering based on raw clinical data alone. In both clustering methods, the majority 

of the HFrEF patients fell into one cluster, which we designate as cluster A (all HFrEF patients 

except 2 and 9 are in 𝑘-means cluster A whereas all HFrEF patients are in hierarchical cluster A). 

Notably, all HFpEF patients in the overlap region also fall into cluster A for both methods. 

Therefore, we conclude that this is a distinct HFpEF subpopulation. Details about the hull location 

and clustering for each patient based on the optimized parameter values are shown in Table 2.10.  

Table 2.8 shows that this independent analysis with PCA, 𝑘-means clustering, and 

hierarchical clustering on the optimized parameter values reveals that the 29 patients fall into 

distinct groups: HFrEF (𝑛 = 8) - patients that fall in the HFrEF PCA hull. HFpEF1 (𝑛 = 5) - 

HFpEF patients that fall in the PCA overlap region, 𝑘-means cluster A, and hierarchical cluster A. 

HFpEF2 (𝑛 = 11) - HFpEF patients that fall in the HFpEF PCA hull, 𝑘-means cluster B, and 

hierarchical cluster B. NCC (𝑛 = 5) - HFpEF patients that do not consistently cluster.  
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Table 2.9 Patient-specific optimized parameter values. 

Patient 𝐸𝐿𝑉 𝜆𝐿𝑉 𝐸𝑅𝑉 𝜆𝑅𝑉 𝐸𝑃𝐴 𝐸𝑃𝑉 𝑅𝑝𝑢𝑙 𝐸𝑆𝐴 𝑅𝑠𝑦𝑠 

HFrEF 

2 1.09 0.04 4.09 0.07 2.18 0.09 0.24 0.93 1.53 

3 0.78 0.03 0.37 0.03 0.70 0.07 0.02 0.67 1.03 

4 1.33 0.04 2.49 0.05 0.40 0.06 0.14 1.09 1.21 

5 1.96 0.03 0.76 0.03 2.99 0.10 0.03 0.88 1.25 

7 1.63 0.03 0.37 0.02 0.46 0.02 0.11 1.49 1.05 

8 2.88 0.04 0.48 0.01 0.24 0.01 0.17 0.54 1.05 

9 1.15 0.04 1.14 0.05 2.61 0.09 0.19 1.84 1.92 

10 0.65 0.03 0.36 0.01 0.73 0.02 0.11 0.68 1.37 

 Mean 1.44 0.04 1.26 0.03 1.29 0.06 0.13 1.02 1.30 

 Median 1.24 0.04 0.62 0.03 0.72 0.07 0.13 0.91 1.23 

 SD 0.68 0.00 1.27 0.02 1.04 0.03 0.07 0.42 0.29 

HFpEF1 

11 1.73 0.03 2.98 0.03 0.49 0.03 0.06 1.14 0.94 

17 1.77 0.04 1.39 0.02 2.12 0.02 0.08 0.97 1.04 

18 1.52 0.03 0.45 0.02 0.62 0.08 0.03 0.75 0.72 

29 1.49 0.04 1.57 0.03 2.74 0.09 0.11 0.71 0.85 

 30 2.39 0.07 1.43 0.01 1.19 0.04 0.11 0.89 0.69 

 Mean 1.78 0.04 1.56 0.02 1.43 0.05 0.08 0.89 0.85 

 Median 1.73 0.04 1.43 0.02 1.19 0.04 0.08 0.89 0.85 

 SD 0.32 0.02 0.81 0.01 0.87 0.03 0.03 0.15 0.13 

HFpEF2 

12 2.55 0.06 1.77 0.05 1.29 0.05 0.74 1.02 1.90 

14 6.84 0.06 1.31 0.03 0.65 0.10 0.59 1.36 1.50 

16 8.65 0.09 2.16 0.05 0.89 0.02 0.29 3.16 2.70 

19 5.38 0.06 1.09 0.03 1.11 0.10 0.05 1.34 1.39 

20 7.67 0.08 2.00 0.04 1.75 0.03 1.00 2.07 2.13 

21 6.11 0.09 1.01 0.03 0.73 0.02 0.17 2.01 2.11 

24 5.77 0.07 1.20 0.05 0.60 0.10 0.30 1.33 1.51 

 25 5.63 0.07 3.13 0.05 2.18 0.10 0.29 1.38 1.39 

 26 9.99 0.09 3.40 0.06 0.88 0.10 0.32 1.29 1.72 

 27 5.60 0.06 2.21 0.01 0.77 0.01 0.45 1.15 1.67 

 31 5.68 0.08 3.19 0.07 1.90 0.03 0.08 2.26 1.81 

 Mean 6.35 0.07 2.04 0.04 1.16 0.06 0.39 1.67 1.80 

 Median 5.77 0.07 2.00 0.05 0.89 0.05 0.30 1.36 1.72 

 SD 1.85 0.01 0.84 0.02 0.52 0.04 0.27 0.61 0.38 

NCC 

13 3.58 0.05 0.07 0.10 0.91 0.04 0.11 1.97 1.18 

15 4.30 0.05 2.74 0.04 0.42 0.05 0.14 1.21 1.12 

22 6.69 0.05 3.26 0.04 0.89 0.04 0.15 1.36 1.02 

23 6.32 0.04 0.62 0.02 0.26 0.03 0.09 1.08 0.95 

28 3.40 0.06 4.48 0.06 0.74 0.10 0.44 0.86 1.34 

Mean 4.86 0.05 2.23 0.05 0.64 0.05 0.19 1.30 1.12 

Median 4.30 0.05 2.74 0.04 0.74 0.04 0.14 1.21 1.12 

 SD 1.38 0.00 1.65 0.03 0.26 0.03 0.13 0.38 0.13 

HFrEF – heart failure with reduced ejection fraction. HFpEF – heart failure with preserved ejection fraction. NCC – 

not consistently clustered.  
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Figure 2.7 Clustering analysis of optimized model parameter values. This analysis determines three distinct groups 

of HFpEF patients. A. Principal component analysis (PCA) of the optimized model parameters. Convex hulls for the 

HFrEF (orange) and HFpEF (blue) patients are determined by individual patient diagnosis. B. 𝑘-means clustering of 

optimized parameter values superimposed on the PCA hulls where cluster A (purple) is more HFrEF-like and cluster 

B (teal) is more HFpEF-like. C. Hierarchical clustering of optimized parameter values superimposed on the PCA hulls 

where cluster A (purple) is more HFrEF-like and cluster B (teal) is more HFpEF-like.  
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Table 2.10 Optimized parameter cluster classification 

Patient 
Hull 

Location 

k-means 

Cluster 

Hierarchical 

Cluster 
Group 

 

HFrEF  

1 HFrEF B A HFrEF  

2 HFrEF A A HFrEF  

3 HFrEF A A HFrEF  

4 HFrEF A A HFrEF  

5 HFrEF A A HFrEF  

6 HFrEF A A HFrEF  

7 HFrEF A A HFrEF  

8 HFrEF A A HFrEF  

9 HFrEF B A HFrEF  

10 HFrEF A A HFrEF  

HFpEF  

11 HFrEF A A HFpEF1  

12 HFpEF B B  HFpEF2  

13 HFpEF A A NCC  

14 HFpEF B B  HFpEF2  

15 HFpEF B A NCC  

16 HFpEF B B  HFpEF2  

17 HFrEF A A HFpEF1  

18 HFrEF A A HFpEF1  

19 HFpEF B B  HFpEF2  

20 HFpEF B B  HFpEF2  

21 HFpEF B B  HFpEF2  

22 HFpEF B A NCC  

23 HFpEF A A NCC  

24 HFrEF B B  HFpEF2  

25 HFpEF B B  HFpEF2  

26 HFpEF B B  HFpEF2  

27 HFpEF B B  HFpEF2  

28 HFpEF B A NCC  

29 HFrEF A A HFpEF1  

30 HFrEF A A HFpEF1  

31 HFpEF B B  HFpEF2  

HFrEF – heart failure with reduced ejection fraction. HFpEF – heart failure with preserved ejection fraction. NCC – 

not consistently clustered.  
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Since HFpEF1 shares most of the characteristics of the pure HFrEF group, we consider this 

group as more HFrEF-like, whereas HFpEF2 is “purely” HFpEF. All of the patients belonging to 

NCC are HFpEF patients.  

2.8.3 Analysis of the Optimized Parameter Values From the 4 HF Subgroups  

Figure 2.8 illustrates the patient-specific values of key model parameters representing LV 

active contractility (𝐸𝐿𝑉), LV passive stiffness (𝜆𝐿𝑉), systemic arterial stiffness (𝐸𝑆𝐴), and systemic 

(𝑅𝑠𝑦𝑠) and pulmonary (𝑅𝑝𝑢𝑙) resistance when broken out into the parameter-based HFrEF and 

HFpEF groups.  Parameter values that indicate normal cardiovascular function (listed in Table 

2.3) are indicated by the dotted lines, and all parameter values are normalized to these values in 

Figure 2.8. When comparing 𝐸𝐿𝑉 (Figure 2.8A), HFrEF and HFpEF1 tend to be below normal 

and HFpEF2 and NCC above normal. (Table 2.11). When compared to both HFrEF and HFpEF1, 

HFpEF2 (𝑝-value < 0.001) and NCC (𝑝-value < 0.001) show significantly higher 𝐸𝐿𝑉. No 

significant differences were found between HFrEF and HFpEF1, whereas HFpEF2 had a 

significantly higher 𝐸𝐿𝑉 when compared to NCC (𝑝-value < 0.05).  

When comparing 𝜆𝐿𝑉 (Figure 2.8B), all groups have above normal levels when compared 

to normal (Table 2.11). Although no significant differences were observed between HFrEF and 

HFpEF1, both groups have above normal values where 𝜆𝐿𝑉 in HFpEF1 is double the normal value. 

HFpEF2 and NCC have a 𝜆𝐿𝑉 almost triple the normal value (Table 2.11). When compared to both 

HFrEF and HFpEF1, HFpEF2 shows significantly higher 𝜆𝐿𝑉 (𝑝-value < 0.001). NCC has higher 

𝜆𝐿𝑉 when compared to HFrEF (𝑝-value < 0.001). HFpEF2 had a significantly higher 𝜆𝐿𝑉 when 

compared to NCC (𝑝-value < 0.01).  
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Looking at 𝐸𝑆𝐴 (Figure 2.8C), both HFrEF and HFpEF1 are near normal whereas HFpEF2 

and NCC are above normal (Table 2.11). HFpEF2 shows significantly higher 𝐸𝑆𝐴 when compared 

to both HFrEF (𝑝-value < 0.05) and HFpEF1 (𝑝-value < 0.05). No significant differences were 

observed between HFrEF and HFpEF1. Likewise, no significant differences were observed 

between NCC and HFpEF2.  

 

Figure 2.8 Box plots of the optimized parameter values with 4 heart failure groups. Analysis of the optimized 

parameters gives us an understanding of the mechanistic differences between the three HFpEF groups that cannot be 

seen by analyzing the clinical data alone. A. Left ventricular (LV) active contractility (𝐸𝐿𝑉, mmHg mL-1). B. LV 

passive stiffness (𝜆𝐿𝑉, mL-1). C. Systemic arterial (SA) stiffness (𝐸𝑆𝐴, mmHg mL-1). D. Systemic resistance (𝑅𝑠𝑦𝑠, 

mmHg s mL-1). E. Pulmonary resistance (𝑅𝑝𝑢𝑙, mmHg s mL-1). All values are plotted relative to the normal model 

values given in Table 2.3, indicated by the horizontal dashed blue line. The light gray dashed line denotes the average, 

and the gray box contains one standard deviation above and below the mean of each parameter value (*𝑝-value <0.05, 

**𝑝-value <0.01, ***𝑝-value <0.001). 
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Table 2.11 Subgroup optimized parameter mean values compared to model-based norms listed in Table 2.3. 

Subgroup 𝐸𝐿𝑉 𝜆𝐿𝑉 𝐸𝑅𝑉 𝜆𝑅𝑉 𝐸𝑃𝐴 𝐸𝑃𝑉 𝑅𝑝𝑢𝑙 𝐸𝑆𝐴 𝑅𝑠𝑦𝑠 

 

HFrEF 0.3 1.7 1.8 1.7 5.0 5.7 1.0 1.1 1.0 

HFpEF1 0.4 2.1 2.2 1.2 5.5 5.2 0.6 1.0 0.7 

HFpEF2 1.5 3.6 2.9 2.1 4.5 5.9 3.0 1.9 1.4 

NCC 1.1 2.5 3.2 2.6 2.5 5.0 1.4 1.4 0.9 

HFrEF – heart failure with reduced ejection fraction.  

HFpEF – heart failure with preserved ejection fraction.  

NCC – not consistently clustered.  

 

 

Strikingly, 𝑅𝑠𝑦𝑠 (Figure 2.8D) in both HFrEF and NCC are normal, whereas it is decreased 

in HFpEF1 and increased in HFpEF2 (Table 2.11). This is the only parameter in which significant 

differences are observed between HFrEF and HFpEF1 (𝑝-value < 0.01).  HFpEF2 shows 

significantly higher 𝑅𝑠𝑦𝑠 when compared to HFrEF (𝑝-value < 0.01), HFpEF1 (𝑝-value < 0.001), 

and NCC (𝑝-value < 0.001).  NCC shows significantly higher 𝑅𝑠𝑦𝑠 when compared to HFpEF1 

(𝑝-value < 0.05). 

Of note, 𝑅𝑝𝑢𝑙 is normal in HFrEF and reduced by almost half in HFpEF1 whereas it is 

increased in the HFpEF2 and NCC (Table 2.11). HFpEF2 shows significantly higher levels of 

𝑅𝑝𝑢𝑙 when compared to HFrEF (𝑝-value < 0.05), and HFpEF1 (𝑝-value < 0.05) (Figure 2.8E). No 

significant differences were observed between HFrEF and HFpEF1. Likewise, no significant 

differences were observed between NCC and HFpEF2. 

These results show that the main cardiac parameters influencing both HFrEF and HFpEF1 

are reduced 𝐸𝐿𝑉 and slightly elevated 𝜆𝐿𝑉 (Figure 2.8A and B), indicating that systolic dysfunction 

is the primary driver for both patient cohorts. Consistent with the classical definition of HFpEF 

characterized by diastolic dysfunction, our simulations show that HFpEF2 has significantly 

increased 𝜆𝐿𝑉 and 𝐸𝐿𝑉 at rest (Figure 2.8A and B). When compared to model-based norms, 
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HFpEF2 and NCC show elevated 𝐸𝑆𝐴 and 𝑅𝑝𝑢𝑙 (Figure 2.8C and Table 2.11), and HFpEF2 has 

an elevated 𝑅𝑠𝑦𝑠 (Figure 2.8D). Strikingly, HFpEF1 shows reduced levels of both 𝑅𝑝𝑢𝑙 and 𝑅𝑠𝑦𝑠, 

whereas HFrEF patients show near normal levels of 𝑅𝑠𝑦𝑠, 𝑅𝑝𝑢𝑙, and 𝐸𝑆𝐴 (Figure 2.8 C-E and 

Table 2.11).Taken together, these results stress that changes in the systemic and pulmonary 

vasculature coupled with changes in cardiac function paint a more complete picture of the 

cardiovascular state of HFpEF patients.  

2.8.4 Analysis of the Clinical Data From the 4 HF Subgroups  

Using the 4 HF subgroups, we reanalyze the patient RHC and TTE clinical data (Figure 

2.9) between groups. The EF between the HF groups reveals very significant differences between 

all distinct HF subgroups (Figure 2.9). The EF in HFpEF1 is still significantly higher (p-value < 

0.01) than that of the HFrEF cohort even though they are the most HFrEF-like. As expected, the 

EF in HFpEF2 and NCC are significantly higher (p-value < 0.001) than the HFrEF cohort. Of note, 

the different HFpEF groups have an EF above 50%, consistent with their HFpEF diagnosis yet 

significant differences amongst EF between HFpEF subgroups are observed. Although no 

significant differences were found between HFpEF2 and NCC, the HFpEF2 and NCC have a 

significantly higher EF (p-value < 0.05) than HFpEF1. 
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Figure 2.9 Box plots of the clinical data with 4 heart failure groups with significant differences between heart failure 

patients based on their HFrEF and HFpEF diagnosis. A. Ejection fraction (%). B. Systolic left ventricular (LV) volume 

(mL). C. Diastolic LV volume (mL). D. Cardiac output (L min-1) from the TTE data. E. Systolic pulmonary arterial 

(PA) pressure (mmHg). F. Diastolic PA pressure (mmHg). G. Systolic right ventricular (RV) pressure (mmHg). H. 

Systolic systemic arterial (SA) pressure (mmHg). The light gray dashed line denotes the group average, and the grey 

box contains one standard deviation above and below the mean of each clinical value (*𝑝-value <0.05, **𝑝-value 

<.01, ***𝑝-value <.001). 

 

The HFrEF cohort displays significantly higher LV systolic volumes (Figure 2.9) when 

compared with HFpEF2 (𝑝-value < 0.001) and NCC (𝑝-value < 0.001) yet no significant difference 

is found between HFrEF and HFpEF1. Similar to HFrEF, HFpEF1 shows significantly higher LV 

systolic volumes than both HFpEF2 (𝑝-value < 0.001) and NCC (𝑝-value < 0.05). NCC shows 

significantly higher LV systolic volumes when compared to HFpEF2 (𝑝-value < 0.05). LV 

diastolic volumes show similar results as the LV systolic volumes. No significant differences were 

found between HFrEF and HFpEF1 (Figure 2.9). Both HFrEF (𝑝-value < 0.001) and HFpEF1 (𝑝-

value < 0.001) show significantly higher diastolic volumes when compared to HFpEF2. NCC has 

significantly larger diastolic volumes when compared to HFpEF2 (𝑝-value < 0.001). Comparing 
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the TTE CO at rest between groups did not reveal significant differences between HFrEF and 

HFpEF1 (Figure 2.9). NCC has a significantly higher TTE CO at rest when compared to HFrEF 

(𝑝-value < 0.01) and HFpEF2 (𝑝-value < 0.001). HFpEF1 had significantly higher values when 

compared to HFpEF2 (𝑝-value < 0.05.) 

RHC pressure measurements revealed that HFpEF2 had significantly higher systolic and 

diastolic pulmonary arterial pressures when compared to HFrEF (𝑝-value < 0.05.) (Figure 2.9E 

and F). Likewise, HFpEF2 shows higher systolic RV pressures when compared to HFrEF (𝑝-value 

< 0.05) (Figure 2.9G). Systolic arterial pressure in both HFpEF1 and NCC is significantly higher 

when compared to HFrEF (𝑝-value < 0.05) (Figure 2.9H).  

Overall, analysis of the clinical data with 4 HF subgroups reveals that all patients have 

higher pressures at rest, with HFpEF2 showing significantly higher pressures when compared to 

HFrEF. The main distinguishing factor between groups are systolic and diastolic LV volumes 

where HFrEF and HFpEF1 both have ventricular volume overload, signifying that greater LV 

volumes could be used as a biomarker for HFrEF-like HFpEF patients.  

2.9 Discussion  

From this analysis of optimized parameter values representing patient-specific 

cardiovascular mechanics coupled with unsupervised machine learning techniques, we determine 

distinct HFpEF subgroups that share similar deep mechanistic phenotypes. These groups could not 

be determined from clinical data alone but reveal that large LV volumes could be used as a 

biomarker to indicate HFrEF-like HFpEF patients. Our methodology distinguishing HFpEF 

groups describes not only the functional details of the cardiovascular system for each population 

but also for each patient in the population. This approach not only considers mechanical function 
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and hemodynamics in the heart but also the pulmonary and systemic vasculature providing a 

deeper understanding of the cardiovascular state for each population and each patient.  

2.9.1 Clustering of HFpEF Groups  

While HFrEF is characterized by a well-defined phenotype, HFpEF is comprised from a 

large constellation of changes at the cardiovascular system level. We found that the HFpEF group 

presented here can be subdivided into 3 subgroups: HFpEF1 described as “HFrEF-like HFpEF”, 

HEpEF2 as “consistent HFpEF”, and NCC as “HFpEF patients that are not consistently clustered” 

(Figure 2.7A-C). Using PCA and clustering techniques to analyze clinical data alone, the same 

HFpEF distinctions cannot be seen (Figure 2.6A-C), suggesting that key discriminators of HFpEF 

into distinct phenotypes reside at the mechanistic level revealed only by using our methodology. 

Simply looking at the underlying mechanistic parameters from our patient-specific modeling 

(Figure 2.8 for groups HFpEF1, HFpEF2, and NCC), we see that the range of values for the 

HFpEF population is widely heterogeneous. After finding the 2-dimensional reduced space of 

parameters derived from the patient-specific tuned models that produces the largest variation 

across patients through PCA, we can see that there are some HFpEF patients that lie in the same 

region as the HFrEF patients (Figure 2.7A).  Extracted physiological parameters, such as 𝐸𝐿𝑉 and 

𝜆𝐿𝑉, are shown to play an important role in describing these distinct patient populations.  

2.9.2 HFpEF1 as HFrEF-like HFpEF  

In the HFrEF population, we observe elevated  𝜆𝐿𝑉, an observation in accordance with the 

increased diastolic myocardial stiffness reported in HFrEF patients  (Wang et al., 2018). This is 

coupled with a reduced 𝐸𝐿𝑉 at rest (Figure 2.8A and B). Our observations are consistent with the 
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current understanding of HFrEF, where systolic dysfunction is the main pathological characteristic 

describing this phenotype (Pinilla-Vera et al., 2019). 

In the heterogenous HFpEF population, we surprisingly found that HFpEF1 (HFrEF-like 

HFpEF) shares the same overall mechanistic parameter trends as the HFrEF group except with 

lower 𝑅𝑝𝑢𝑙 and 𝑅𝑠𝑦𝑠 (Table 2.11). Patients in the HFpEF1 group have significantly higher EF than 

HFrEF patients but a significantly lower EF than the other two HFpEF groups (Figure 2.9A). This 

could be explained by the fact that while both HFrEF and HFpEF1 show systolic and diastolic LV 

volume overload when compared to HFpEF2 and NCC (Figure 2.9B and C). These results suggest 

a possible biomarker in high LV volumes for HFpEF patients, identifying patients belonging to 

HFpEF1. Since they share such similar physiological characteristics with the HFrEF cohort, 

therapeutic strategies currently employed to alleviate systolic dysfunction in HFrEF patients might 

be employed in HFpEF1 patients. Likewise, our results indicate that both HFrEF and HFpEF1 

patients would benefit from treatments that would improve LV contractility.  

2.9.3 HFpEF2 and NCC 

HFpEF2, the “pure” HFpEF group, has very high 𝜆𝐿𝑉 coupled with increased in 𝐸𝐿𝑉 at rest 

(Figure 2.8A and B, Table 2.11). These patients have reduced ventricular filling during diastole, 

which leads to low systolic volumes (Figure 2.9B and C). This phenotype presents a particular 

challenge in situations such as exercise where the normal physiological response involves the 

recruitment of increased SV along with an increased HR requiring a rapid ventricular relaxation 

for proper filling. The elevated ventricular stiffness in this cohort could explain the increased levels 

of systolic and diastolic pulmonary artery pressure, systolic RV pressure, and systemic arterial 

pressure observed in the clinical data of these patients (Figure 2.9E-H). The combination of 𝜆𝐿𝑉, 
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𝐸𝑆𝐴, and higher pressures in the pulmonary and systemic vasculature may account for the increased 

𝑅𝑠𝑦𝑠 and 𝑅𝑝𝑢𝑙 also observed in this patient cohort (Figure 2.8C-E).  

The NCC group was created out of the need to cluster patients that were distinct from 

HFrEF but did not fall clearly into HFpEF1 or HFpEF2. In falling between two more clearly 

defined groups, the NCC group may represent a “spectrum” of patients more than a clearly defined 

subgroup. Perhaps, this is a population of HFpEF undergoing remodeling and given time may 

decompensate to HFrEF-like HFpEF. Individuals from the NCC group clearly do not behave like 

individuals from HFrEF or HFpEF1, as they show high 𝜆𝐿𝑉 coupled with elevated 𝐸𝐿𝑉 at rest 

(Figure 2.8A and B, Table 2.11). Despite this, NCC displays a milder phenotype than that of the 

“pure” HFpEF2 group. From the clinical data, NCC EF is the highest among the HFpEF groups, 

with a systolic LV volume similar to HFpEF2 but diastolic LV volumes similar to HFpEF1 (Figure 

2.9 A-C).  

2.9.4 Possible Clinical Presentation of HFpEF Subgroups  

The distinct HFpEF populations found here are consistent with recent studies describing 

HFpEF as a disparate phenotype. In three of these studies, machine learning methods were used 

on a variety of clinical and experimental data (Shah, 2019; Cohen et al., 2020; Hahn et al., 2021). 

In one such study, analysis of RNA sequencing of RV septal endocardial biopsies on control, 

HFrEF, and HFpEF patients through unsupervised machine learning identified three HFpEF 

transcriptome subgroups with distinctive pathways and clinical correlations (Hahn et al., 2021). 

These HFpEF subgroups include:  

(Hahn-I)- A HFpEF group close to HFrEF showing the worst clinical outcomes when coupled 

with metabolic dysfunction. 
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(Hahn-II)- A HFpEF cohort with smaller hearts and inflammatory and matrix signatures. 

(Hahn-III)- A heterogeneous phenotype with pronounced HF symptoms and smaller hearts but 

lower N-terminal-proB-type natriuretic peptide (NT-proBNP) levels. 

Patients in Hahn-I had higher LV volumes, perhaps consistent with the ventricular volume 

overload we observe in both the HFrEF and HFpEF1 patients in our study. The transcriptome of 

HFpEF Hahn-I is potentially the closest to HFrEF. Patients in Hahn-II were all female and had the 

smallest LV size. The small LV size seen in these patients is in accordance with the very small LV 

volumes observed in our HFpEF2 patients, the only group in our study that has a majority of female 

patients. Likewise, our NCC group could belong to the heterogeneous Hahn-III.  

In a second study, Shah et al. utilized quantitative echocardiography phenotyping with 

unsupervised machine learning to identify 3 HFpEF phenogroups with differing clinical and 

echocardiographic characteristics and outcomes (Shah, 2019):  

(Shah-I)-A group with natriuretic peptide deficiency syndrome.  

(Shah-II)-A group with extreme cardiometabolic syndrome.  

(Shah-III)-A group with right ventricular cardio-abdomino-renal syndrome   

One of the characteristics of Shah-II was that it had the most severely impaired cardiac 

relaxation compared to the other HFpEF groups. Our HFpEF2 group shows very high 𝜆𝐿𝑉 and 

perhaps falls in this same category.  

A third study used plasma protein profiling coupled with latent class clustering analysis was 

performed, identifying 3 HFpEF clinical phenotypes characterized by distinct echocardiographic 

parameters and large artery stiffness(Cohen et al., 2020):  

(Cohen-I)- A group with the least concentric LVs, largest LV cavities, lowest absolute and 

relative LV wall thickness, lowest LA volumes, lowest values of resistive arterial load (systemic 
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vascular resistance), pulsatile arterial load (total arterial compliance), and large artery stiffness 

(carotid-femoral pulse wave velocity).  

(Cohen-II)- A group with a distinct pattern characterized by small concentric LVs with the 

lowest LV mass among the groups, the largest left atria, the lowest mitral annular tissue velocities, 

the stiffest large arteries, and the highest pulsatile and resistive arterial load.   

(Cohen-III)- A group with a distinct pattern of concentric LV hypertrophy with the highest 

values of LV wall thickness, LV mass, and LV mass indexed for height; this phenogroup also 

exhibited relatively low values of resistive arterial load but high pulsatile arterial load indexed for 

body size (total arterial compliance index). In our study, when compared to the other HFpEF 

patients, HFpEF1 has the lowest 𝑅𝑠𝑦𝑠. Hence, HFpEF1 matches Cohen-I. Similarly, HFpEF2 has 

the highest 𝑅𝑠𝑦𝑠 and 𝐸𝑆𝐴 and is similar to Cohen-II.  

These studies show novel classifications of HFpEF subgroups based on transcriptomic 

analysis of endomyocardial biopsy obtained through RHC (Hahn et al., 2021), a detailed clinical, 

laboratory, ECG, and echocardiographic data phenotyping (Shah, 2019), and plasma biomarker 

profiling(Cohen et al., 2020) These studies point out clinical markers that may describe these novel 

HFpEF classifications (i.e., NT-proBNP marker, inflammatory signal differences between 

groups). However, the nature of cardiovascular hemodynamics, its relationship with the pulmonary 

and systemic vasculature, and the uniqueness of each patient within a group requires a deep 

phenotyping approach using clinical data to power cardiovascular model-informed machine 

learning to define HFpEF subgroups. The methodology presented here identifies similar groupings 

to these three studies using advanced clinical data and in one case endomyocardial biopsies. 

However, only routine clinical data is needed, making this methodology more amenable in the 

clinic once validated. 
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2.9.5 Role of the Systemic Vasculature in HF 

The physiological parameters derived from our cardiovascular system model aligns with 

the understanding that HFrEF patients have reduced 𝐸𝐿𝑉, slightly increased 𝐸𝑆𝐴, and normal 𝑅𝑝𝑢𝑙 

when compared to normal cardiovascular function (Figure 2.8). This alignment of the underlying 

mechanistic cardiovascular parameters of the model with the conventional wisdom concerning 

HFrEF suggests that the clinical data used here is sufficient to describe HFrEF. This also gives us 

confidence in the profile of the deep phenotypes of HFpEF that are revealed here. Our results 

reveal that that focusing purely on cardiac function may consistently capture the underlying 

dysfunction in HFrEF but is not a good approach for understanding HFpEF. For example, HFpEF2 

patient 20 has increased 𝑅𝑝𝑢𝑙 and 𝑅𝑠𝑦𝑠, exhibiting large deviations from normal function in the 

systemic and pulmonary vasculature. Likewise, NCC patient 28 shows increased 𝜆𝐿𝑉 and 𝑅𝑝𝑢𝑙 but 

has similar 𝐸𝐿𝑉 and 𝐸𝑆𝐴 to HFrEF. In both patients, addressing the cause for increased resistances 

in the systemic and pulmonary vasculature may reduce the burden of the heart in HF. 

2.9.6 Limitations 

In this study, a general HFrEF group was used as the only reference patient population. 

This methodology determined five HFpEF1 (HFrEF-like HFpEF) patients. Though this is a small 

cohort of subjects, this accounts for 25% of the total HFpEF patients in our study. It is of interest 

to see if this percentage holds with a larger patient cohort in the future. Here, two clustering 

methods were selected that used different approaches, but we could have used other common 

unsupervised methods (e.g., mean-shift).  The selection of k-means and hierarchical clustering in 

this study was made since these are robust and complementary approaches that can be applied to 

a wide variety of data sets. Applying a thorough clustering analysis with not just HFpEF and 
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HFrEF phenotypes but other clinical diagnoses such as pulmonary hypertension might provide 

greater clarity into the physiological differences between groups.  

Based on the TTE systolic and diastolic volumes, HFrEF patients 1 and 6 have severe 

ventricular dilation. Our cardiovascular systems model was unable to account for these large 

volumes. Hence, making appropriate changes, such as      recruiting different stressed volumes for 

each patient, decreasing ventricular elastance, or implementing a more detailed model, may 

capture the pathological complexity of these patients. Regardless of future directions taken, the 

physiological parameters derived from this simple cardiovascular system model can still be useful 

determinants for HF classification purposes beyond EF.  

2.10 Conclusions 

HFrEF and HFpEF have classically been defined based on ejection fraction. The HFrEF 

diagnosis itself is much more understood than HFpEF, which is largely heterogeneous. In 

accordance with other recent studies, we have determined 3 subgroups of HFpEF with our 

methodological deep phenotyping approach that uses cardiovascular model-informed machine 

learning: a HFrEF-like HFpEF group, a “pure” HFpEF group, and a group that exhibits 

characteristics of both. Moreover, our methodology reveals that potential biomarkers for 

identifying HFpEF-like HFrEF patients are elevated left ventricular systolic and diastolic volumes. 

However, these biomarker differences necessary to determine HFpEF subgroups could not be 

distinguished based on the clinical data alone. Ultimately, the combination of mathematical 

modeling analysis and machine learning techniques provides immense insight into the 

classifications of HF as a pathology.  
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Chapter 3 Application of Physiology Informed Machine Learning to Clinical Data Sets 

3.1 Introduction  

In the preliminary work described in Chapter 2, we have developed a mathematical model 

of the cardiovascular system in which mechanistic functional parameters were optimized to match 

individual patient’s pressure, volume, and CO found in TTE and RHC clinical records. The unique 

parameters of each patient-specific model represent information not directly assessed clinically, 

such as unbiased estimates of LV passive stiffness and active contractility. Applying ML methods 

to patient-specific models, we identify three HFpEF subgroups with a distinct cardiovascular 

function: (Jones-I) a ‘HFrEF-like HFpEF’, (Jones-II) a ‘classical HFpEF’, and (Jones-III) patients 

that did not fall into a distinct cluster. In our follow-up work, we have defined these groups as 

systolic (SD), diastolic (DD), and mixed (MD) dysfunction HFpEF. Despite EF ≥ 50% across all 

HFpEF types, an unbiased analysis clustered SD HFpEF patients with HFrEF, whereas DD HFpEF 

patients had higher LV active contractility and passive stiffness. This chapter is a logical extension 

of our previous work in HFpEF phenotyping. 

Here, we applied the functional phenotyping model described in Chapter 2 to the RHC and 

TTE data from a combined group of patients studied by Jones et al. (Jones et al., 2021)  and Hahn 

et al. (Hahn et al., 2021). With our methodology, we also retrospectively analyzed clinical data 

from two HFpEF clinical trials: an interatrial shunt device (IASD) (Feldman et al., 2018), and a 

pilot randomized intervention trial comparing the efficacy of trimetazidine (TMZ) (van de 

Bovenkamp et al., 2020). Briefly, for all these studies, we applied unsupervised ML to the resulting 
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optimized parameters from our patient-specific simulations, creating HF groups. The first two 

principal components (PCs) describing >50% of the total variance of the patients in the defined 

HF groups, were used as input for supervised ML (support vector machine, SVM) where defined 

regions of a similar phenotype for patients were created for systolic, mixed, and diastolic 

dysfunction (SD, MD, and DD HFpEF, respectively). HFpEF patients that did not consistently 

cluster (NCC) were excluded from the supervised ML SVM algorithm. To predict NCC 

dysfunction phenotype, the first two PCs of the NCC HFpEF optimized parameters were 

superimposed on the SVM plot. 

3.2 Precision Phenotyping of Cardiovascular Dysfunction in Heart Failure 

3.2.1 Acknowledgements 

This chapter section is being prepared for publication as an academic journal article at the 

Journal of the American Heart Association:  

Jones, E.; Hahn, S.V.; Randall, E.B.; Hummel, S.; Cameron, D.; Beard, D.; Carlson, B.; “Precision 

Phenotyping of Cardiovascular Dysfunction in Heart Failure”. Manuscript in preparation. 

3.2.2 Introduction 

HF patients are classified based on their LVEF. The pathophysiology of HFrEF, (LVEF 

40%) and mildly reduced EF (HFmrEF, LVEF 41-49%) are well-studied and have several 

targeted therapies in clinical use and under development. In contrast, HFpEF (LVEF 50%) is a 

heterogeneous condition with fewer evidence-based treatments in which phenotyping has been 

advocated to target therapies (Shah et al., 2020). 
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We recently reported two potentially complementary approaches to subgroup HFpEF 

patients using unsupervised ML Jones et al. (Jones et al., 2021) applied functional phenotyping to 

analyze data from TTE and RHC using a mathematical model of the cardiovascular system to 

derive patient-specific functional parameters, resulting in three HFpEF subgroups with distinct 

cardiovascular function: (Jones-I) a ‘HFrEF-like HFpEF’, (Jones-II) a ‘classical HFpEF’, and 

(Jones-III) patients that did not fall into a distinct cluster. While cardiac systolic dysfunction 

represents the primary cardiovascular defect in our analysis of HFrEF and the Jones-I patients, the 

other HFpEF patients were characterized by dysfunction in the heart and the entire vascular 

system. Hahn et al. (Hahn et al., 2021) analyzed RNA sequencing data from RV septal endocardial 

biopsies on control, HFrEF and HFpEF patients, revealing three HFpEF transcriptome subgroups 

with distinct pathways and clinical correlations: (Hahn-I) A HFpEF group with larger hearts, more 

severe pulmonary hypertension, higher NPs, and a transcriptome most similar to HFrEF; (Hahn-

II) an all-female HFpEF group with smaller hearts, lower NPs, and higher inflammatory and 

extracellular matrix gene expression; and (Hahn-III) a mixed phenotype. To determine if these 

approaches reveal complementary information, all patients from the original studies Jones et al. (8 

HFrEF, 21 HFpEF) and Hahn et al. (41 HFpEF) were used for functional phenotyping as in Jones 

et al. (Jones et al., 2021).   

3.2.3 Methodology 

Clinical Data Used to Parameterize Cardiovascular System Model 

For the Hahn et al. HFpEF (n=41) the general clinical data provided included: body weight, 

height, and sex.  RHC data included PA and SA pressures (mmHg) at systole and diastole as well 

as average PCW. RV pressures were derived from PA pressures. Likewise, HR (beats/min), and 
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thermodilution CO (L/min) were also available from RHC records. TTE data included only the 

LV inner diameter at diastole (mm), which was used to estimate LV volume at systole and diastole 

with the Teicholz equation (Teichholz et al., 1976). Thus, HR was assumed to be the same for 

RHC and TTE records. For the Jones et al. HFrEF (n=8) and HFpEF (n=21), the same general, 

RHC, and TTE clinical data available to inform the patient-specific model optimizations as in our 

previous work were used (Jones et al., 2021).   

PCA 

We performed a PCA for the visualization of the spread in the parameter space. Using two 

unsupervised clustering methods on our optimized model parameters, we determined if as in our 

previous work (Jones et al., 2021), three distinct subgroups of HFpEF patients with similar 

cardiovascular etiologies are discerned from our model simulations. Since our purpose here is to 

subgroup HFpEF patients only, we grouped all HFrEF patients according to their clinical diagnosis 

and considered the clusters with the most HFrEF patients as the most “HFrEF-like.” We also 

considered patients who switched between the clusters of different methods as not-consistently 

clustered (NCC). However, unlike our previous work, we assigned HFpEF patients to different 

subgroups based only on clustering rather than whether they belonged to the HFrEF, PCA overlap 

region. We chose this approach because we defined the PCA hulls for HFrEF and HFpEF by 

patients’ diagnostic EF. The inadequacies of categorizing HF patients primarily by EF have been 

exposed previously (Beard et al., 2021), and here, we would like to move towards functional 

phenotyping for HFpEF classification. 

Unsupervised ML: k-means and Hierarchical Clustering 
 

With an expanded data set of 70 HF patients and having previously found three distinct 

HFpEF groups (Jones et al., 2021) in line with the work of others (Shah, 2019; Cohen et al., 2020; 
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Hahn et al., 2021), we chose to group the patients into three clusters with the aid of two 

unsupervised ML methods. For k-means clustering, the algorithm randomly chose three patients 

as cluster centroids and grouped all other patients relative to their L1-distance from each centroid. 

For hierarchical clustering, we partitioned our patients into three clusters by cutting the 

dendrogram halfway between the third-from-last, second-from-last and last linkages.  

In both clustering methods, all the HFrEF patients fell into one cluster, which we designate 

as cluster A. We found that for both clustering methods, a subgroup of HFpEF patients always 

belonged to cluster A. Hence, this HFpEF subgroup was considered as ‘HFrEF-like HFpEF’ and 

was labeled as SD HFpEF. Our next HFpEF group consistently belonged to cluster C in both 

clustering methods and sat in the outermost region of the parameter space where only other HFpEF 

were present, thus we considered it as ‘classical’ HFpEF, and was labeled as DD HFpEF. For both 

clustering methods, we found a HFpEF group that always belonged to cluster B and is between 

the SD and DD HFpEF groups. Thus, we considered it had characteristics of both systolic and 

diastolic dysfunction and was labeled as MD HFpEF. We marked patients with HFpEF who were 

not consistently clustered in clusters A, B, and C in k-means and hierarchical clustering as NCC. 

Supervised ML: Support Vector Machine Algorithm 

 

A supervised ML algorithm trains data observation models to predict categories (i.e., 

classifications) (Cristianini & Ricci, 2008). In this study, the ‘observations’ in the data set are our 

HF patients, the features informing the supervised ML model are the first two PCs of the optimized 

parameter PCA and the predicted classes are the three types of HF dysfunction derived from our 

unsupervised ML approach (SD, MD, DD).  The support vector machine (SVM) algorithm 

identifies “hyperplanes” that best separate the three classes of HF. Support vectors are the data 

points that lie closest to the hyperplane, and thus determine where the hyperplane lies. One of the 
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key features of SVM is that it often uses a ‘kernel-trick’ to map linear space to a non-linear space 

specified by the kernel. This ‘kernel-trick’ allows the hyperplane to take a non-linear shape 

(Cristianini & Ricci, 2008). For our study, we used the radial basis function as our kernel.  In 

summary, to do this in MATLAB, we trained an SVM algorithm model for each of the three classes 

of HF to distinguish whether a given patient was or was not a member of that class of HF. 

Specifically, each model predicted a score corresponding to the probability that a given patient 

was a member of its class of HF. To predict the type of dysfunction NCC HFpEF patients might 

have, we superimposed their first two optimized parameter PCs on the created SVM plot. 

3.2.4 Results 

We first used RHC and TTE pressure and volume measurements as input to the phenotypic 

model. We then applied unsupervised ML to the resulting optimized parameters, creating HF 

groups. Our model simulations show that the combined Jones et al.  and Hahn et al. HFpEF cohort 

(n=62) has a much wider distribution of the parameter values than the HFrEF cohort (n=8). The 

first two PCs of our optimized parameter PCA describe 64% of the total variance. For visualization 

purposes, we prescribed a convex hull for the HFpEF and HFrEF groups when plotting our PCA 

results, but we did not to include this criterion in HFpEF subgroup designation. However, we 

observed that a subset of combined HFpEF fell in PCA overlap region (Figure 3.1A). We then 

conducted k-means (Figure 3.1B) and hierarchical clustering (Figure 3.1C) on the optimized 

patient parameters. Table 3.1 shows that this independent analysis with 𝑘-means and hierarchical 

clustering on the optimized parameter values reveals that the 70 patients fall into distinct groups 

as:  

● HFrEF (𝑛 = 8) - patients diagnosed as HFrEF. 
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● SD (𝑛 = 16) - HFpEF patients that fall in, 𝑘-means and hierarchical cluster A. 

● MD (𝑛 = 11) - HFpEF patients that fall in, 𝑘-means and hierarchical cluster B. 

● DD (𝑛 = 9) - HFpEF patients that fall in 𝑘-means cluster and hierarchical cluster C. 

● NCC (𝑛 = 26) - HFpEF patients that do not consistently cluster.  

In our unsupervised ML, HFrEF and SD HFpEF always belong to cluster A, so we decided 

to combine HFrEF and SD HFpEF patients in the same ‘SD’ class, (n=24) for our supervised ML 

analysis. We used the first two PCs describing 64% of the total variance of the patients in the 

defined HF groups, as input for supervised ML (support vector machine, SVM). With the SVM 

algorithm, we defined regions of a similar phenotype for patients for systolic, mixed, and diastolic 

dysfunction (SD, MD, and DD HFpEF, respectively (Figure 3.2A)). We excluded HFpEF patients 

without consistent clustering (NCC, n=26) from the supervised ML SVM algorithm (Figure 3.2B). 

To predict the NCC dysfunctional phenotype, we overlaid the first two PCs of the NCC HFpEF 

optimized parameters on the SVM plot (Figure 3.2D). 
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Figure 3.1 Clustering analysis of optimized model parameter values from Jones and Hahn combined HF datasets. 

This analysis determines three distinct groups of HFpEF patients. A. Principal component analysis (PCA) of the 

optimized model parameters. Reference convex hulls for the HFrEF (orange) and combined HFpEF (blue) patients 

are determined by individual patient diagnosis. HFpEF patients denoted by dark blue come from Jones et al. and 

HFpEF patients denoted in light blue come from Hahn et al. B. 𝑘-means clustering of optimized parameter values 

superimposed on the PCA hulls where cluster A (purple) is more HFrEF-like, cluster B is considered to have mixed 

dysfunction (yellow) and cluster C (blue) is more HFpEF-like. C. Hierarchical clustering of optimized parameter 

values superimposed on the PCA hulls where cluster A (purple) is more HFrEF-like, cluster cluster B (yellow) is 

considered to have mixed dysfunction and cluster C (blue) is more HFpEF-like. 
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Table 3.1 Jones and Hahn HF patient classification from combined clustering results based on optimized parameters. 

HFrEF SD MD DD NCC 

2 11 12 16 13 

3 17 14 20 15 

4 23 24 35 18 

5 29 25 38 19 

7 32 28 46 21 

8 37 31 49 22 

9 41 36 65 26 

10 44 50 67 27 
 

48 54 69 30 
 

51 63 
 

33 
 

53 68 
 

34 
 

55 
  

39 
 

56 
  

40 
 

57 
  

42 
 

60 
  

43 
 

61 
  

45 
    

47 
    

52 
    

58 
    

59 
    

62 
    

64 
    

66 
    

70 
    

71 
    

72 

HFrEF – heart failure with reduced ejection fraction. SD-systolic dysfunction. MD-mixed dysfunction. DD-diastolic 

dysfunction. NCC – not consistently clustered.  
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Figure 3.2 Defining regions of similar phenotype for HF patients based on systolic, mixed, and diastolic 

dysfunction. A. HF groups created by unsupervised ML on model parameters: systolic (purple), mixed (yellow), and 

diastolic (blue) dysfunction (SD, MD, and DD, respectively). HFpEF patients that did not consistently cluster (NCC, 

green). For reference HFrEF patients can be identified by triangles and HFpEF patients can be identified by circles. 

B. Identification of support vectors: NCC patients were removed, and a Support Vector Machine (SVM) classifier 

was trained with the patients in the SD, MD and DD groups. Support vectors (SV) are observations that occur on or 

beyond their estimated class boundaries (identified SVs withing groups are circled). C. HF dysfunction regions 

defined by SVM. D. NCC HFpEF patients were superimposed on the SVM plot to predict their HFpEF dysfunction 

phenotype. Dark thick border = Hahn patients. 

Our results show that with our approach we classified 55% of Hahn-I patients as SD 

HFpEF, 50% of Hahn-II patients as DD HFpEF and 41% of Hahn-III patients overlapped with our 

MD HFpEF groups. Using a non-parametric permutation test (Dwivedi et al., 2017) the random 

chance of this overlap between the two methods is extremely low (p-value= 0.006).  
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Consistent with Jones et al., the SD HFpEF group shares similar mechanistic parameter 

trends as HFrEF (Figure 3.3A-F). Both HFrEF and SD HFpEF show higher LV volumes when 

compared to DD and MD HFpEF (Figure 3.3E, F and Figure 3.4B). Hence, HFpEF patients with 

high LV volumes will cluster with HFrEF. We show that the DD HFpEF patients have an increased 

LV active contractility (𝐸𝐿𝑉) coupled with a high LV passive stiffness (𝜆𝐿𝑉)  in the baseline state, 

(Figure 3.3 A, B). These patients also have reduced LV filling during diastole, which leads to low 

systolic and diastolic volumes (Figure 3.3E, F and Figure 3.4 D). The combination of increased 

𝜆𝐿𝑉, systemic (𝑅𝑠𝑦𝑠) and pulmonary resistances (𝑅𝑝𝑢𝑙) observed in this, (Figure 3.3,A-D) may 

account for the high pressures (not shown) also observed in this patient cohort. Strikingly, the DD 

HFpEF group we identified was 90% female, suggesting that there may be sex-driven mechanisms 

developing this phenotype requiring further analysis. MD HFpEF is a distinct group among the 

systolic and diastolic defined groups. Individuals from the MD HFpEF do not behave like 

individuals from SD HFpEF, as they show high 𝜆𝐿𝑉 coupled with elevated 𝐸𝐿𝑉 at baseline (Figure 

3.3 A, B and Figure 3.4C). Despite this, MD HFpEF patients display a phenotype that is closer to 

normal cardiovascular function than that of the DD HFpEF group (Figure 3.3, C, D and Figure 

3.4C). 

3.2.5 Conclusions 

The overlap of functional phenotypic identification of SD-HFpEF and transcriptomic 

Hahn-I suggests that a subset of HFpEF has HFrEF-like systolic dysfunction and transcriptional 

remodeling. Overall, we interpreted the degree of overlap in each of the three distinct HFpEF 

groups to provide complementary information for transcriptomic and hemodynamic approaches. 

In conclusion, functional phenotyping identifies HF patients with systolic or diastolic dysfunction 



94 

 

 

and exposes the inadequacies of categorizing HF patients primarily by EF (Beard et al., 2021), 

likewise, it informs us about the constellation of mechanisms in the pathophysiology of HFpEF, 

some of which may be targeted therapeutically. 

 

 

Figure 3.3 Box plots of the optimized parameter values with heart failure groups. Analysis of the optimized parameters 

gives us an understanding of the mechanistic differences between the three HFpEF groups that cannot be seen by 

analyzing the clinical data alone. A. LV active contractility (mmHg mL-1). B. LV passive stiffness (mL-1). D. 

Pulmonary resistance (mmHg s mL-1) D. Arterial elastance (mmHg mL-1). All parameter values are plotted relative to 

the normal model values (blue dashed lines). The light gray dashed line denotes the average, and the gray box contains 

one standard deviation above and below the mean of each parameter value.  E. Systolic F. Diastolic LV volume (mL) 

(*𝑝-value <0.05, **𝑝-value <0.01, ***𝑝-value <0.001).  
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Figure 3.4 A-D Model predicted LV pressure-volume loops for representative HF patients. Black: Normal healthy 

patient LV PV loop. 

 

3.1 Retrospective Analysis of IASD HFpEF Patient Selection for Clinical Trial 

3.1.1 Acknowledgements  

We would like to thank, Kiley Hassevoort, our 2020 FCVC Summer Undergraduate 

Research Fellow for generating preliminary data for this work.  

3.1.2 Introduction  

Pulmonary vasocongestion due to high pressures in the LA at rest and/or exercise is a 

common feature observed in HFpEF patients. An abnormally high PCW pressure measured 

through an invasive RHC, is one of the diagnostic indicators of this phenomenon. It has been 

hypothesized that treatments reducing PCW, particularly during exercise, will improve the quality 

of life in the heterogeneous HFpEF population. A suggested treatment for reducing elevated LA 



96 

 

 

pressure in patients with HFpEF unresponsive to standard therapy is an atrial shunt device 

(IASD®). This device is placed by a cardiologist invasively during a one-time procedure: through 

catheterization the shunt creates a passage between the high-pressure LA and lower pressure RA, 

allowing blood flow between the two. This passage aims at reducing pressure in the lungs and left 

side of the heart. Preliminary results indicate that IASD reduction of PCW, results in about a 25% 

increase in pulmonary blood flow and it is hypothesized these effects are responsible for the 

symptom reduction in HFpEF patients benefiting after IASD treatment (Obokata et al., 2019). Yet, 

in the REDUCE LAP-HF II clinical trial, implantation of the IASD in patients with HFpEF had 

no effect on cardiovascular death or stroke events, HF symptoms, or quality of life status (Shah et 

al., 2022). Dissecting, which HFpEF patients in this heterogeneous population would benefit from 

IASD treatment is a current challenge. To determine if we could find distinct cohorts of HFpEF 

subjects showing different degrees of cardiovascular dysfunction as well as different responses to 

the IASD, we applied the functional phenotyping model from Jones et al. (Jones et al., 2021) in 

the context of this study. 

3.1.3 Methodology 

We analyzed the RHC and TTE data from a combined group of patients from Jones et al. 

(8 HFrEF, 20 HFpEF), Hahn et al. (41 HFpEF) and patients selected for a 6-month IASD trial (38 

HFpEF)(Feldman et al., 2018), prior to treatment at rest. The IASD HFpEF records had the 

minimum amount of clinical data by which we were able to parameterize our cardiovascular 

system computational model. From the IASD HFpEF cohort, RHC records we had access to 

contain the following pressures (mmHg): mean PA and PCW as well as systolic SA pressure. RHC 

records likewise had available CO (L/min) by thermodilution/Fick.  From TTE recordings, only 
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the diastolic left ventricular 4-chamber volume (mL) was available. Likewise, only one HR was 

reported for both TTE and RHC (we thus assumed HR to be the same for both procedures). In 

general, patient height and weight data were available, but patient sex was missing. We therefore 

assumed that the sex of all patients was male (preliminary work showed that changing sex did not 

result in a significant change in nominal parameter calculations). For the IASD HFpEF cohort, 

these clinical data were sufficient to run our patient-specific patient simulations informing the 

following five mechanistic parameters: LV active contractility, LV passive stiffness, pulmonary 

vein stiffness as well as pulmonary and systemic resistance. We calculated the remaining 

parameters nominally for each patient, and we fixed the LV and RV diastolic reference pressure 

as in Jones et al. (Jones et al., 2021). To compare all patient optimizations, HF patients from the 

Jones et al. (Jones et al., 2021) and Hahn et al. (Hahn et al., 2021)data sets where re-run with the 

same data as was available to us from the IASD HFpEF patients. Thus, all patients had optimized 

parameter simulations for the same 5 parameters as IASD HFpEF. See Table 3.2 for an overview 

of parameter calculations. 

We performed a PCA for the visualization of the spread in the parameter space. To test if 

three distinct subgroups of HFpEF patients with similar cardiovascular etiologies could be 

discerned from our model simulations, we clustered patients into three groups using two 

unsupervised clustering methods (k-means and hierarchical clustering) on our optimized model 

parameters. In both clustering methods, all the HFrEF patients fell into one cluster, which we 

designate as cluster A, thus all ‘HFrEF-like’ HFpEF patients falling into cluster A for both methods 

were labeled as SD HFpEF. Our next HFpEF group sat in the outermost region of the parameter 

space where only other HFpEF were present, consistently belonged to cluster C in both methods, 

and was considered to have the ‘classical’ HFpEF characteristics, thus it was labeled as DD 
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HFpEF.  We observed a HFpEF group sitting between the SD and DD patients, consistently 

belonging to cluster B in both methods, thus we labeled it as MD HFpEF as it likely had 

characteristics of both systolic and diastolic dysfunction. We labeled HFpEF patients that did not 

consistently cluster among groups A, B and C in k-means and hierarchical clustering as NCC. 

A HF patient from the Jones et al. group, was so dramatically distanced from all the other 

patients in the unsupervised ML (k-means and hierarchical clustering) that it became a cluster by 

itself. Because of this, we were faced with two choices: 1) increase the number of clusters used, 2) 

remove this patient and re-cluster. We decided to pursue the latter option, removing this outlier 

patient and re-clustering with unsupervised ML. When we do this, the Hanh et al. and Jones et al. 

HF patients fall in similar groupings as when they were analyzed by themselves (section 3.2), as 

well as when analyzed in combination with another HFpEF population selected for a clinical trial 

(section 3.3). Succeeding this, we performed SVM to predict the areas of HF dysfunction that NCC 

patients might belong to. 

Table 3.2 Model parameters for patients at rest in IASD HFpEF data analysis. 

Symbol Units Description Fixed Adjustable Nominal 

𝐸𝐿𝑉 mmHg mL-1 LV active contractility   X  

𝑃0,𝐿𝑉 mmHg LV diastolic reference pressure X  X 

𝜆𝐿𝑉 mL-1 LV passive stiffness  X  

𝐸𝑅𝑉 mmHg mL-1 RV active contractility   X 

𝑃0,𝑅𝑉 mmHg RV diastolic reference pressure X   

𝜆𝑅𝑉 mL-1 RV passive stiffness   X 

𝐸𝑃𝐴 mmHg mL-1 PA stiffness   X 

𝐸𝑃𝑉 mmHg mL-1 PV stiffness  X  

𝑅𝑝𝑢𝑙 
mmHg s mL-1 Pulmonary resistance  X  

𝐸𝑆𝐴 mmHg mL-1 SA stiffness   X 

𝐸𝑆𝑉 mmHg mL-1 SV stiffness   X 

𝑅𝑠𝑦𝑠 
mmHg s mL-1 Systemic resistance  X  

𝑅𝑚𝑣𝑎𝑙 
mmHg s mL-1 Mitral valve    X 

𝑅𝑎𝑣𝑎𝑙 
mmHg s mL-1 Aortic valve    X 

𝑅𝑡𝑣𝑎𝑙 
mmHg s mL-1 Tricuspid valve   X 

𝑅𝑝𝑣𝑎𝑙 
mmHg s mL-1 Pulmonary valve    X 
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3.1.4 Results 

 

Figure 3.5 shows a representative IASD patient. As in our previous work, our model 

simulations predicted that the combined HFpEF population (n = 99) had a wider distribution of 

parameter values than the HFrEF population. The first two principal components of our optimized 

parametric PCA describe 68% of the total variance in Figure 3.6. After performing unsupervised 

ML to create HF patient groupings and supervised ML (SVM) to generate HF dysfunctional 

regions, we found that IASD HFpEF patients were either SD HFpEF or MD HFpEF, Figure 3.6. 

 

Figure 3.5 Model predictions for pressures and volumes of representative IASD patient. A. Pressure (mmHg) time 

courses for the left ventricle (𝑃𝐿𝑉, black), systemic arteries (𝑃𝑆𝐴, red), and systemic veins (𝑃𝑆𝑉, cyan). Data for the 

systolic systemic arterial pressure is plotted as horizontal dashed red lines. B. Pressure time courses for the right 

ventricle (𝑃𝑅𝑉, magenta), pulmonary arteries (𝑃𝑃𝐴, blue), and pulmonary veins (𝑃𝑃𝑉, green).  Data for the pulmonary 

mean arterial pressure is plotted as horizontal dashed blue line. C. Volume (mL) time courses for the left (𝑉𝐿𝑉, black) 

and right (𝑉𝑅𝑉, magenta) ventricles.  Data for the diastolic left ventricular volume is plotted as a horizontal dashed 

black line. D. Pressure-volume loops for the left (black) and right (magenta) ventricles. Data for the diastolic left 

ventricular volume is plotted as vertical dashed black lines. 
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Figure 3.6 IASD HFpEF fall into regions of systolic and mixed dysfunction in optimized parameter space. HF groups 

created by unsupervised ML on model parameters: systolic (purple), mixed (yellow) and diastolic (blue) and 

dysfunction (SD, MD, and DD, respectively). HFpEF patients that did not consistently cluster (NCC). For reference 

HFrEF patients can be identified by triangles and HFpEF patients can be identified by circles. Circles with dark outline 

represent IASD HFpEF.  

 

3.1.5 Conclusions  

Differences in response to IASD treatment have been retrospectively identified in HFpEF 

subgroups during exercise, defined by systolic PA pressure, RA volume, and sex (Borlaug et al., 

2022). An exclusion criterion for the REDUCE LAP-HF II (Shah et al., 2022) was pulmonary 

vascular disease (PVD), diagnosed by a resting pulmonary vascular resistance (PVR) greater than 

3.5 Wood units. Recent studies have shown that many HFpEF patients display a latent PVD, only 

apparent during exercise. While reduction of LA pressure is one of the benefits expected after 

shunt implantation, one of its secondary effects is increased pulmonary blood flow.  Increased 

pulmonary blood flow may lead to congestion and pulmonary edema in patients already struggling 

with PVD.  Interestingly, the presence of latent PVD was associated with an adverse response to 
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the shunt, whereas patients without it displayed some benefits after shunt treatment (Borlaug et 

al., 2022). The 38 IASD HFpEF patients we analyzed at least during rest fell into the SD and MD 

HFpEF categories. Total distance walked in 6 minutes and peak exercise 6 months after shunt 

treatment was not statistically different between groups, although the SD group had a better 

Minnesota Living with HF Questionnaire (MLHFQ) score 6-month post shunt compared to the 

MD group (data not shown). Interestingly increased pulmonary resistance, which may be an 

indicator of latent PVD, is a hallmark of our MD HFpEF as shown in the previous section Figure 

3.3C.  

Our model currently characterizes the cardiovascular physiology of patients at rest, yet as 

previously mentioned some of the pathophysiology characterizing HFpEF is mostly visible during 

exercise.  Follow-up work may include adapting our model to be able to simulate exercise using 

the framework developed by Jesek et al. (Jezek et al., 2022).We hope that our tools will help 

HFpEF diagnosis as well as patient selection for clinical trials such as the IASD.  

3.2 Retrospective Analysis of TMZ HFpEF Patient Selection for Clinical Trial 

3.2.1 Acknowledgements  

We would like to thank, Abigail Liebetreu, our 2021 FCVC Summer Undergraduate 

Research Fellow for generating preliminary data for this work.  

3.2.2 Introduction 

Finally, we retrospectively analyzed clinical data with our model-based analysis and 

physiology-informed precision phenotyping tool from a randomized trimetazidine (TMZ) trial 

consisting of 25 patients with stable HFpEF. In this cross-over study subjects were administered 
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TMZ (fatty acid β-oxidation inhibitor) or placebo “for two periods of 3 months separated by a 2-

week washout period” (van de Bovenkamp et al., 2020). The classical understanding of HFpEF is 

that this patient population struggles with stiff ventricles, that can’t relax optimally during diastole. 

Diastolic relaxation is a very energy-demanding process, and it was hypothesized that TMZ by 

altering cardiac mitochondrial substrate selection would improve the cardiac bioenergetic status 

present in diastolic dysfunction. Subjects were assessed following placebo and TMZ treatment at 

rest and during exercise via RHC and phosphorus-31 magnetic resonance spectroscopy to assess 

myocardial energetics. Overall, this trial resulted in no significant differences in primary (PCW 

pressures) or secondary (myocardial energetic status) endpoints. To determine if we could find 

distinct cohorts of HFpEF subjects showing different degrees of cardiovascular dysfunction as 

well as different responses to TMZ treatment, we applied the functional phenotyping model from 

Jones et al. (Jones et al., 2021) in the context of this study. 

3.2.3 Methodology 

We analyzed the RHC/TTE data from a combined group of patients from Jones et al. (8 

HFrEF, 21 HFpEF), Hahn et al. (41 HFpEF), and the RHC/CMRI data from the TMZ trial patients 

prior to treatment at rest (25 HFpEF). As our previous work, our model simulations predicted that 

the combined HFpEF population (n=87) had a much wider distribution of the parameter values 

than the HFrEF cohort. After obtaining our patient specific optimizations, we then performed a 

PCA for the visualization of the spread in the parameter space. Using two unsupervised clustering 

methods (k-means and hierarchical clustering) on our optimized model parameters, we determined 

if like our previous work, three distinct subgroups of HFpEF patients with similar cardiovascular 
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etiologies could be discerned from our model simulations. Succeeding this, we performed SVM to 

predict the areas of HF dysfunction that NCC patients might belong to. 

3.2.4 Results 

By plotting the first two PCs of our optimized parameter PCA, we describe 59% of the 

total variance in the patient population (Figure 3.7A). Surprisingly, we found that the majority of 

HFpEF patients selected for TMZ clinical trials fell within the convex hull defined by HFrEF 

patients, or just outside it. All patients with HFpEF in the TMZ trial were divided into two 

categories: SD HFpEF (n=18) and NCC (n=7). Thus, in the context of this study, none of the 

HFpEF patients selected for the TMZ clinical trial showed the classic diastolic dysfunction 

phenotype with about 70% of the patients showing some form of systolic dysfunction and only 

30% having some form of mixed dysfunction (at least during rest). Figure 3.7A also illustrates the 

singular value decomposition of patient parameters, and the subgroup clusters (labeled SD, MD, 

and DD) identified by our method. 

70% of HFpEF patients selected for the TMZ trial belonged to the SD HFpEF group, and 

consistent with Jones et al.,(Jones et al., 2021) with trends in mechanistic parameters similar to 

HFrEF (Figure 3.8A-F). Both HFrEF and SD HFpEF show higher LV volumes when compared 

to DD and MD HFpEF (Figure 3.8 E, F). Thus, high LV volumes suggest that patients with 

HFpEF will aggregate with HFrEF. The DD HFpEF patients are shown to have an increased LV 

active contractility (𝐸𝐿𝑉)  coupled with a high LV passive stiffness (𝜆𝐿𝑉)  in the baseline state, 

(Figure 3.8 A, B).These patients also have reduced LV filling during diastole, which leads to low 

systolic and diastolic volumes (Figure 3.8 E,F). Thus, the DD group has the classic characteristics 
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associated with diastolic dysfunction in HFpEF, strikingly none of the HFpEF patients selected for 

the TMZ study are a part of the DD group. 

3.2.5 Conclusions 

Thus, although the numbers of subjects for this preliminary study are relatively low, these 

results suggest one of the reasons why patients selected for the TMZ study did not benefit from 

the treatment may have been due to a biased selection for patients with systolic dysfunction rather 

the classical diastolic dysfunction associated with HFpEF.  

 

 

Figure 3.7 TMZ HFpEF fall into regions of systolic and mixed dysfunction in optimized parameter space. HF groups 

created by unsupervised ML on model parameters: systolic (purple), mixed (yellow) and diastolic (blue) and 

dysfunction (SD, MD, and DD, respectively). HFpEF patients that did not consistently cluster (NCC). For reference 

HFrEF patients can be identified by triangles and HFpEF patients can be identified by circles. Circles with dark outline 

represent TMZ HFpEF.  
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Figure 3.8 Box plots of the optimized parameter values of heart failure groups. Analysis of the optimized parameters 

gives us an understanding of the mechanistic differences between the three HFpEF groups that cannot be seen by 

analyzing the clinical data alone. A. LV active contractility (mmHg mL-1). B. LV passive stiffness (mL-1). D. 

Pulmonary resistance (mmHg s mL-1) D. Arterial elastance (mmHg mL-1). All parameter values are plotted relative to 

the normal model values (blue dashed lines). The light gray dashed line denotes the average, and the gray box contains 

one standard deviation above and below the mean of each parameter value.  E. Systolic F. Diastolic LV volume (mL) 

(*𝑝-value <0.05, **𝑝-value <0.01, ***𝑝-value <0.001). Dark border = TMZ HFpEF patients. 
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3.3 Conclusions for Application of our Methodology to Different HFpEF Data Sets 

Taken together, these studies demonstrate that (i) computational models embedded with 

mechanistic knowledge of cardiovascular system dynamics yield key insights unavailable from 

ML-based analysis of raw data alone, identifying clusters of HF patients that display distinct 

patterns of pathophysiological function that are not apparent with EF alone. (ii) This functional 

phenotyping approach was validated based on RNA transcript analysis of myocardial biopsies 

from patients with HFpEF. (iii) This approach has the potential to identify HFpEF groups that 

respond differently to atrial shunt and TMZ therapy. 
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Chapter 4 Control of Mitochondria Fuel Selection by Calcium 

 

4.1 Acknowledgments  

This chapter is being prepared for re-submission to be published as an academic journal 

article. 

Jones, E.; Kandel, S.; Dasika, S.; Nourabadi, N.; Dash, R.; Beard, D. “Control of Cardiac 

Mitochondrial Fuel Selection by Calcium” Preparing for re-submission The Journal of Physiology  

4.2 Abstract 

Calcium ion concentration modulates the function of several mitochondrial enzymes. 

Specifically, the kinetic operations of the decarboxylating dehydrogenases, pyruvate 

dehydrogenase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase are all affected by 

[Ca2+]. Previous studies have shown that despite its ability to affect the function of these 

dehydrogenases, [Ca2+] does not substantially alter mitochondrial ATP synthesis in vitro under 

physiological substrate conditions. We hypothesize that, rather than contributing to respiratory 

control, [Ca2+] plays a role in fuel selection. Specifically, cardiac mitochondria can use different 

primary carbon substrates (carbohydrates, fatty acids, and ketones) to synthesize ATP aerobically 

in the living cells. To determine if and how [Ca2+] affects the relative use of carbohydrates versus 

fatty acids in vitro, we measured oxygen consumption and tricarboxylic acid (TCA) cycle 

intermediate concentrations in suspensions of cardiac mitochondria with different combinations of 
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pyruvate and palmitoyl-L-carnitine in the media at various [Ca2+] and ADP infusion rates. 

Stoichiometric analysis of the data reveals that when both fatty acid and carbohydrate substrates 

are available, fuel selection is sensitive to both [Ca2+] and ATP synthesis rate. When no Ca2+ is 

added under low ATP-demand conditions, β-oxidation provides roughly half of acetyl-CoA for 

the citrate synthase reaction with the rest coming from the pyruvate dehydrogenase reaction. Under 

low demand conditions with increasing [Ca2+], the fuel utilization ratio shifts to increased 

fractional consumption of pyruvate with 83±10% of acetyl-CoA derived from pyruvate at the 

highest [Ca2+] evaluated. Under high ATP demand conditions, approximately 80% of acetyl-CoA 

is derived from pyruvate, regardless of the Ca2+ level. Our results suggest that changes in work 

rate alone are enough to affect a switch to carbohydrate use, whereas in vivo the rate at which this 

switch happens may depend on mitochondrial calcium. 

4.3 Introduction 

The kinetic function of several key enzymes involved in energy metabolism is affected by 

calcium-dependent processes. These include cytosolic enzymes, such as phosphofructokinase 

(PFK), for which calcium-calmodulin dependent oligomerization of the enzyme affects catalytic 

activity (Marinho-Carvalho et al., 2006, 2009) , as well as several dehydrogenases present in the 

mitochondrial matrix (Denton, 2009; Griffiths & Rutter, 2009; Williams et al., 2015). Potentially 

important sites of Ca2+-mediated stimulation of matrix dehydrogenases are illustrated in Figure 

4.1.  



109 

 

 

 

Figure 4.1 Quasi-steady-state TCA cycle fluxes. Definitions of steady-state fluxes used in the quasi-steady analysis 

of Eqs.(4.5-4.24) are illustrated. The major assumptions are that rates of change bulk concentrations of citrate, 

isocitrate, succinyl-CoA, succinate, fumarate, and oxaloacetate are much smaller in magnitude than rates of change of 

pyruvate, fatty acid, -ketoglutarate, and malate. 

 

It has been proposed that in the myocardium in vivo ATP, ADP, and inorganic phosphate 

(Pi) levels are maintained at essentially constant levels across different cardiac work rates because 

changes in ATP consumption rates are balanced by calcium-dependent changes in ATP production 

rate (Balaban, 2002; Williams et al., 2015). This hypothesis that ATP supply is matched to ATP 

demand based on an open-loop control system (mediated via mitochondrial Ca2+) lacking a closed-

loop feedback control mechanism is broadly invoked(Balaban, 2002; Griffiths & Rutter, 2009). 

But this open-loop Ca2+ activation hypothesis has some critical shortcomings. The first concern is 

that open-loop control systems are inherently unstable to environmental changes/external 

perturbations. For open-loop stimulation (such as via Ca2+) to be the sole mechanism controlling 

myocardial ATP production, the relationship between ATP utilization rate and the stimulatory 

signal (i.e., mitochondrial Ca2+) would have to re-main exactly invariant under all physiological 
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conditions. Otherwise, since the heart turns over its total ATP pool several times per minute, even 

a slight mismatch between supply and demand would be disastrous. 

Thus, some degree of closed-loop feedback control is needed to maintain cellular ATP 

concentration at different levels of ATP hydrolysis. It is impossible for the open-loop Ca2+ 

hypothesis—on its own—to explain respiratory control in vivo. The alternative to the open-loop 

Ca2+ hypothesis is that respiratory control is exerted by feedback of ATP hydrolysis products, 

which was introduced by Chance and Williams concluding that “ADP, and not the inorganic 

phosphate level, controls the respiration rate”(Chance & Williams, 2006). This conclusion was 

later supported by in vivo measurements on skeletal muscle in the 1980’s in the Chance lab 

(Chance et al., 1985, 1986). Numerous experimental and theoretical studies have supported the 

feedback hypothesis in the context of skeletal muscle (e.g., (Kushmerick et al., 1992; Jeneson et 

al., 1996, 2000; Kemp et al., 2007)). Similarly, in the heart the concentrations of ATP hydrolysis 

products increase with ATP demand in the myocardium in vivo (Bache et al., 1999; Gong et al., 

1999, 2003; Ochiai et al., 2001; Zhang et al., 2005; Wu et al., 2008, 2009; Beard, 2011) in 

agreement with the feedback hypothesis and providing additional evidence against the open-loop 

Ca2+ hypothesis. Furthermore, our analyses suggest that a key difference between how oxidative 

ATP synthesis is controlled in skeletal versus cardiac muscle is that in the heart inorganic 

phosphate, and not ADP, controls the respiration rate(Wu et al., 2007, 2008, 2009; Beard & 

Kushmerick, 2009; Wu & Beard, 2009; Beard, 2011).  

The third shortcoming of the open-loop Ca2+ hypothesis is that, while Ca2+ can be shown 

to stimulate respiration in vitro under certain conditions, under physiological substrate conditions 

the effects of Ca2+ on oxidative ATP synthesis in vitro are miniscule to modest. Panov and Scaduto 

(Panov & Scaduto, 1996) showed that with pyruvate and acetyl-carnitine as substrates, Ca2+ 
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stimulates a maximal 3-8% increase in the apparent Vmax and a 10-18% reduction in the apparent 

Km for ADP for ATP synthesis. Wan et al. (Wan et al., 1989) reported a similarly small effect of 

Ca2+ with pyruvate as the substrate. Vinnakota et al.(Vinnakota et al., 2011, 2016) reported 

increases in the apparent Vmax of oxidative phosphorylation of cardiac mitochondria of 

approximately 15-25% when external free [Ca2+] was raised from 0 to 350 nM. These effects are 

small compared to the 400-500% increase in ATP synthesis associated with the transition from 

resting to maximal work in the heart in vivo (Wu et al., 2008). While the open-loop Ca2+ 

mechanism may be at work in vivo, its role in stimulating ATP synthesis in vivo may be minor 

compared to other mechanisms that must be at work (Beard & Kushmerick, 2009) .  

Yet there is growing evidence that normal mitochondrial calcium handling is required for 

normal cardiac mitochondrial metabolic function. Inducible functional knockouts of the cardiac 

mitochondrial calcium uniporter have demonstrated that inhibition of calcium uptake has an 

inhibitory effect on ATP production in acute stress responses (Kwong et al., 2015; Luongo et al., 

2015). Furthermore, similar knockouts in skeletal muscle have been shown to cause a metabolic 

shift towards fatty acid oxidation (Kwong et al., 2018). 

If Ca2+ does not play a major role in matching the steady-state oxidative ATP synthesis 

rate to ATP demand in the heart in vivo, what might be the physiological function of the Ca2+ 

sensitivity of pyruvate dehydrogenase, isocitrate dehydrogenase, and -ketoglutarate 

dehydrogenase? Based on the uniporter knockout studies, we hypothesize that Ca2+-mediated 

effects on these enzymes are involved in substrate selection. Under resting conditions (in the fasted 

state), roughly 60% of acetyl-CoA supply to the tricarboxylic acid cycle (TCA) in the heart is 

derived from -oxidation of fatty acids with the remaining 40% derived from carbohydrate sources 

(Lassers et al., 1971). During exercise (i.e., high ATP demand), the ratio flips with the majority of 
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acetyl-CoA supplied from oxidation of carbohydrates (Lassers et al., 1971; Gertz et al., 1988). 

This phenomenon of increasing the relative contribution from carbohydrate oxidation with 

increasing ATP synthesis rate is recapitulated in vitro in isolated mitochondria from skeletal 

muscle (Kuzmiak-Glancy & Willis, 2014).  

The goals of this study are to: (1.) determine if, similar to what is observed with skeletal 

muscle mitochondria, changes in ATP synthesis rate cause changes in fuel selection in vitro in 

suspensions of mammalian cardiac mitochondria; (2.) determine if changes in Ca2+ concentration 

cause changes in fuel selection in vitro; (3.) determine if and how work load and calcium 

independently and/or dependently influence mitochondrial substrate selection in vitro; and (4.) test 

the hypothesis that increases in mitochondrial Ca2+ contribute to a shift to using relatively more 

carbohydrate and relatively less fatty acid substrate to fuel oxidative ATP synthesis in cardiac 

mitochondria as ATP synthesis rate is increased. To achieve these goals, in suspensions of purified 

rat ventricular mitochondria and in the presence of carbohydrate, fatty acid, and mixed 

(carbohydrate + fatty acid) reducing substrates, we measured oxygen consumption and bulk 

metabolite concentration changes during a non-phosphorylating resting state (state 2, leak), where 

oxygen flux is maintained mainly to compensate for the proton leak at a high chemiosmotic 

potential, when ATP synthase is not active and, during active oxidative phosphorylation (state 3, 

OXPHOS) through ATP synthase stimulation by ADP addition.  Data were analyzed using a quasi-

steady-state mass balance approach to estimate TCA cycle fluxes and fractional fuel utilization 

under different calcium conditions and at different rates of ATP synthesis.  
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4.4 Methods 

Oxygen consumption rate, and concentrations of several TCA cycle metabolites were 

measured in suspensions of purified rat ventricular mitochondria in the leak state (with substrate 

present but with no ADP available as a substrate for oxidative phosphorylation), and under 

conditions of steady ADP infusion to establish a steady rate of ATP production. These data were 

used to estimate steady-state substrate oxidation and TCA cycle fluxes under different substrate 

conditions, different Ca2+ concentrations, and different rates of oxidative ATP synthesis.  

4.4.1 Isolation of Mitochondria 

Cardiac mitochondria were isolated from Male Wistar rats of 300–400 g using protocols 

that were approved by the Animal Care Committee of the University of Michigan. The rats were 

anesthetized with an intraperitoneal injection of appropriate amount of ketamine mixed with 

dexmed followed by heparin. After the rat was in the deep plane of anesthesia, hearts were excised, 

aortas cannulated, and hearts perfused with ice-cold cardioplegia buffer (containing 25 mM KCl, 

100 mM NaCl, 10 mM Dextrose, 25 mM MOPS, 1 mM EGTA) for a 5-minute period. The 

ventricles of the excised heart were then immediately placed in ice-cold isolation buffer containing 

200 mM mannitol, 60 mM sucrose, 5 mM KH2PO4, 5 mM MOPS, 1 mM EGTA, and 0.1% BSA. 

The ventricles were minced with fine scissors for 3 min in a small beaker containing 300 L of 

ice-cold isolation buffer to prevent drying of tissue.  When the ventricle pieces were about 1 mm3, 

10 mL of isolation buffer without BSA containing 3 units mL-1 protease were added to the minced 

tissue. The solution of minced tissue and isolation buffer without BSA and protease was then 

transferred to a Potter Elvehjem tissue grinder to be manually homogenized for a maximum of 3 

min. After 3 min, 30 mL of ice-cold isolation buffer with BSA and 20 L of the protease inhibitor 
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cocktail #3 (VWR cat# 80053-854) were added to the homogenate to a final volume of 40 mL and 

centrifuged twice at 8000 g for 10 min at 4°C to remove the protease. The supernatant was 

discarded, and the pellet was resuspended in the isolation buffer to 25 mL and centrifuged at 700 

g for 10 min. The pellet was then removed, and the supernatant enriched with mitochondria was 

spun at 8000 g for 10 min. The pellet, representing the mitochondrial-enriched fraction, was 

resuspended in 0.2 mL of isolation buffer. To determine the content of intact mitochondria, citrate 

synthase (CS) activity was assessed as a quantitative marker of the mitochondrial matrix. The 

enzymatic activity of citrate synthase was assayed following the protocol of Eigentler et al. 

(Eigentler & et al., 2015). 

4.4.2 Respiratory Control Index 

The functional integrity of the mitochondria was determined by means of the respiratory 

control index defined as the maximum rate of oxygen consumption in state-3 oxidative 

phosphorylation (OXPHOS) divided by the state-2 (leak) state oxygen consumption rate. Both 

maximal OXPHOS and leak states were assessed with 5 mM pyruvate and 1 mM malate as 

substrates at 37° C. The OXPHOS state was assessed with ADP added at initial concentration of 

500 M. Oxygen consumption was determined at 37° C using a high-resolution respirometer 

(Oxygraph-2K, OROBOROS Instruments Gmbh, Innsbruck, Austria). Mitochondria preparations 

with respiratory control index greater than 8 were considered of acceptable quality for our 

experiment. 

4.4.3 Steady ATP Synthesis Experiments 

Purified mitochondria were resuspended in the respiration buffer (90 mM KCl, 1 mM 

EDTA, 5 mM KH2PO4, 50 mM MOPS, 0.1% BSA pH 7.4). The experiments were conducted with 
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three different substrate combinations: pyruvate + malate (PM), palmitoyl carnitine (PC) + malate, 

and pyruvate + PC + malate (MIX) with three different CaCl2 concentrations, and two different 

ADP infusion rates at 37° C and 7.2 pH. The final substrate concentrations were malate (150 uM), 

pyruvate (350 M), and PC (20 M). Total calcium (CaCl2) concentrations were 0, 300, and 400 

M.  

4.4.4 Mitochondrial Extraction and Metabolite Assays 

To measure the accumulation/utilization of several TCA cycle intermediates (pyruvate, α-

ketoglutarate, malate) at various time points, samples were quenched at five different points for 

the PCM and PM substrate conditions and at seven different time points for the MIX substrate 

condition in the steady-state protocols (two during the leak state and three to five during the ADP-

infusion OXPHOS state.) Samples were quenched adding 800 L of the experimental sample to 

560 L of 0.6 M perchloric acid (PCA). The quenched samples were than centrifuged at 15,000 

rpm for 5 min at 4° C. After the centrifugation, 1200 L of the supernatant were collected in a 

different tube and adjusted the pH to between 6.2 and 7.4. The samples were then centrifuged once 

again for 5 min at 15000 rpm at 4° C and 1 mL of the supernatant of the centrifuged samples were 

collected to measure the concentration of the desired metabolites enzymatically. 

For each of the 18 experimental conditions, samples were collected at 70 and 110 s during 

the leak state. For the low workload condition, three samples were collected at 200, 240, and 280 

s for PM and PC substrates with two additional time points at 320 and 360 s for the MIX substrate 

conditions. For the high workload condition, samples were collected at 70 and 110 s during the 

leak state, three samples were collected at 180, 210, and 240 s with two additional time points at 
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270 and 300 s for the MIX substrate conditions. For each sample collection time, at least 4 (6 for 

MIX) replicates were obtained.  

4.4.5 Metabolite Assays 

Metabolite assays were adapted from the methods of Williamson and Corkey (Williamson 

& Corkey, 1979). For all measured metabolites, NADH-linked assays were used, where the 

oxidation/reduction of specific metabolites are linked changes in NADH monitored by changes in 

absorbance at 340 nm. Assays were run using neutralized extract in a final assay volume of 1 mL. 

Standard curves were obtained daily.  

The AKG concentration was measured by coupling glutamate oxaloacetate transaminase 

(GOT, EC: 2.6.1.1) with malate dehydrogenase (MDH, EC: 1.1.1.37) and adding excess of 

aspartate (ASP) to the system and obtaining the difference between NADH concentration before 

and after adding ASP: 

ASP +  AKG +  NADH ⇌  GLU +  MAL +  NAD (4. 1) 

Pyruvate (PYR) concentration was measured by adding lactate dehydrogenase (LDH, 

EC: 1.1.1.27) to catalyze PYR reduction and NADH oxidation and by computing the difference 

in NADH before and after adding LDH:  

PYR +  NADH ⇌  LAC +  NAD (4. 2) 

The enzyme malate dehydrogenase (MDH, EC: 1.1.1.37) catalyzes the conversion of 

malate (MAL) to oxaloacetate (OAA). Coupling the reaction with glutamate oxaloacetate 

transaminase (GOT, EC: 2.6.1.1), Malate concentration was estimated by computing the 

difference between NADH concentration before and after adding GOT and MDH: 
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MAL +  NAD ⇌ OAA +  NADH (4. 3) 

OAA +  Glut ⇌  AKG + ASP (4. 4) 

 

4.4.6 Quasi-steady State Flux Analysis 

In total, oxygen consumption rate and metabolite intermediate concentrations were assayed 

under 27 different experimental conditions: (leak state + 2 OXPHOS states) × (3 Ca2+ conditions) 

× (3 substrate conditions). Under these different conditions, citrate, succinate, fumarate, and 

oxaloacetate remained below the limit of detection (< 15 µM) of the assays employed. Based on 

this observation, we constructed a reduced stoichiometric mass conservation model (Figure 4.1) 

in which the fluxes J1 (rate of acetyl-CoA production from pyruvate dehydrogenase), J2 (rate of α-

ketoglutarate production), J3 (rate of succinate dehydrogenase/complex II flux), and J4 (rate of 

acetyl-CoA production from β-oxidation) are unknowns to be estimated based on the metabolite 

and oxygen flux data at each experimental condition. The flux J3 is assumed to be equal to J1 + J4 

– J2 under steady-state conditions. Thus, under each steady-state condition, there are three 

unknown steady-state fluxes, J1, J2, and J4 to be estimated from data on oxygen consumption rate 

and metabolite concentrations. We use the notation 𝐽1
(2)

, 𝐽2
(2)

, and 𝐽4
(2)

 to represent fluxes in the 

state-2 (leak) state, and 𝐽1
(3)

, 𝐽2
(3)

, and 𝐽4
(3)

 to represent fluxes in the state-3 (OXPHOS) state. In all 

states, the oxygen consumption flux is stoichiometrically equated to half of the rate of generation 

of electron donors (NADH, FADH2, QH2): 

𝐽𝑂2 =
1

2
(5𝐽1 + 6𝐽4 − 2𝐽2) (4. 5) 

For the PM condition, J4 = 0, and we have the following equations for the leak state: 

𝐽𝑂2
(2) =

1

2
(5𝐽1

(2) − 2𝐽2
(2)) (4. 6) 
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𝐶𝑃𝑌𝑅(𝑡) =  𝐶0,𝑃𝑌𝑅 − 𝐽1
(2)𝑡 (4. 7) 

𝐶𝐴𝐾𝐺(𝑡) =  𝐶0,𝐴𝐾𝐺 + 𝐽2
(2)𝑡 (4. 8) 

𝐶𝑀𝐴𝐿(𝑡) =  𝐶0,𝑀𝐴𝐿 − 𝐽2
(2)𝑡,     𝑡 < 𝑇, (4. 9) 

where 𝐶𝑃𝑌𝑅(𝑡), 𝐶𝐴𝐾𝐺(𝑡), and 𝐶𝑀𝐴𝐿(𝑡) are the concentrations of pyruvate and -ketoglutarate, 

𝐶0,𝑃𝑌𝑅 and 𝐶0,𝐴𝐾𝐺  are the initial concentrations, and T is the initial time of ADP infusion. These equations 

assume a linear consumption of pyruvate, linear production of -ketoglutarate, and a constant rate of 

oxygen consumption.  

The equations for the OXPHOS state, which is initiated at 𝑡 = 𝑇, are 

𝐽𝑂2
(3) =

1

2
(5𝐽1

(3) − 2𝐽2
(3)) (4. 10) 

𝐶𝑃𝑌𝑅(𝑡) =  𝐶0,𝑃𝑌𝑅 − 𝐽1
(2)𝑇 − 𝐽1

(3)(𝑡 − 𝑇) (4. 11) 

𝐶𝐴𝐾𝐺(𝑡) =  𝐶0,𝐴𝐾𝐺 + 𝐽2
(2)𝑇 + 𝐽2

(3)(𝑡 − 𝑇) (4. 12) 

𝐶𝑀𝐴𝐿(𝑡) =  𝐶0,𝑀𝐴𝐿 − 𝐽2
(2)𝑇 − 𝐽2

(3)(𝑡 − 𝑇),       𝑡 ≥ 𝑇. (4. 13) 

These equations assume a piecewise linear time course of pyruvate, -ketoglutarate, and malate, 

as illustrated in Figure 4.3A. 

For experiments with PM substrate (at three different [Ca2+] concentrations and two 

different ADP infusion rates for the OXPHOS state), Equations (1) and (2) are fit to experimental 

data on 𝐶𝑃𝑌𝑅(𝑡), 𝐶𝐴𝐾𝐺(𝑡), 𝐽𝑂2
(2)

, and 𝐽𝑂2
(3)

 to obtain estimates of unknowns 𝐽1
(2)

, 𝐽2
(2)

, 𝐽1
(3)

, 𝐽2
(3)

, 𝐶0,𝑃𝑌𝑅, 

𝐶0,𝑀𝐴𝐿, and 𝐶0,𝐴𝐾𝐺. Even though we used initial pyruvate, α-ketoglutarate, and malate 

concentrations of 350, 0, and 150 µM in the experiments, respectively, we allow 𝐶0,𝑃𝑌𝑅, 𝐶0,𝑀𝐴𝐿, 

and 𝐶0,𝐴𝐾𝐺 to be estimated in order to account for experimental variability and contamination in 

sample prep. 
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For PCM substrate, the equations are: 

𝐽𝑂2
(2) =

1

2
(6𝐽4

(2) − 2𝐽2
(2)) (4. 14) 

𝐶𝐴𝐾𝐺(𝑡) =  𝐶0,𝐴𝐾𝐺 + 𝐽2
(2)𝑡 (4. 15) 

𝐶𝑀𝐴𝐿(𝑡) =  𝐶0,𝑀𝐴𝐿 − 𝐽2
(2)𝑡,      𝑡 < 𝑇, (4. 16) 

and 

𝐽𝑂2
(3) =

1

2
(6𝐽4

(3) − 2𝐽2
(3)) (4. 17) 

𝐶𝐴𝐾𝐺(𝑡) =  𝐶0,𝐴𝐾𝐺 + 𝐽2
(2)𝑇 + 𝐽2

(3)(𝑡 − 𝑇) (4. 18)  

𝐶𝑀𝐴𝐿(𝑡) =  𝐶0,𝑀𝐴𝐿 − 𝐽2
(2)𝑇 − 𝐽2

(3)(𝑡 − 𝑇), 𝑡 ≥ 𝑇, (4. 19) 

for unknowns 𝐽2
(2)

, 𝐽4
(2)

, 𝐽2
(3)

, 𝐽4
(3)

, 𝐶0,𝑀𝐴𝐿 , and 𝐶0,𝐴𝐾𝐺.  

With MIX substrate, the governing equations are: 

𝐽𝑂2
(2) =

1

2
(5𝐽1

(2) + 6𝐽4
(2) − 2𝐽2

(2)) (4. 20) 

𝐶𝑃𝑌𝑅(𝑡) =  𝐶0,𝑃𝑌𝑅 − 𝐽1
(2)𝑡 (4. 21)  

𝐶𝐴𝐾𝐺(𝑡) =  𝐶0,𝐴𝐾𝐺 + 𝐽2
(2)𝑡 (4. 22) 

𝐶𝑀𝐴𝐿(𝑡) =  𝐶0,𝑀𝐴𝐿 − 𝐽2
(2)𝑡, 𝑡 < 𝑇, (4. 23) 

and 

𝐽𝑂2
(3) =

1

2
(5𝐽1

(3) + 6𝐽4
(3) − 2𝐽2

(3)) (4. 24) 

𝐶𝑃𝑌𝑅(𝑡) =  𝐶0,𝑃𝑌𝑅 − 𝐽1
(2)𝑇 − 𝐽1

(3)(𝑡 − 𝑇) (4. 25) 

𝐶𝐴𝐾𝐺(𝑡) =  𝐶0,𝐴𝐾𝐺 + 𝐽2
(2)𝑇 + 𝐽2

(3)(𝑡 − 𝑇) (4. 26) 

𝐶𝑀𝐴𝐿(𝑡) =  𝐶0,𝑀𝐴𝐿 − 𝐽2
(2)𝑇 − 𝐽2

(3)(𝑡 − 𝑇),       𝑡 ≥ 𝑇, (4. 27) 
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for unknowns 𝐽1
(2)

, 𝐽2
(2)

, 𝐽4
(2)

, 𝐽1
(3)

, 𝐽2
(3)

, 𝐽4
(3)

, 𝐶0,𝑃𝑌𝑅 , 𝐶0,𝑀𝐴𝐿, and 𝐶0,𝐴𝐾𝐺. 

For each substrate and [Ca2+] condition, the maximal likelihood estimates for the unknowns 

and for the covariances of the unknowns are obtained using the methods of Landaw and DiStefano 

(Landaw & DiStefano, 1984). The goodness of fit to the data and uncertainty in flux estimates are 

evaluated using Monte-Carlo sampling from the distributions associated with the maximally likely 

means and covariances for the estimated unknowns from the governing equations. For a given 

substrate and [Ca2+] condition, an individual estimate of the unknown fluxes and initial conditions 

yields piecewise linear fits to the pyruvate and α-ketoglutarate data and pointwise estimates of JO2 

for the leak state and the two OXPHOS states. By drawing 10,000 samples from the flux and initial 

condition distributions for each substrate and [Ca2+] condition, we estimate the uncertainties in the 

estimates of the unknowns. 

4.4.7 Leak current (JL) Estimation 

The contributions of leak current (JL) to the overall oxidative flux were estimated for the 

various experimental conditions probed based on the flux estimates reported in Table 4.2.  

Using the following equations, we estimated JL as the difference between the total rate of 

charge pumping via the respiratory chain (JR) and the rate of charge consumption for ATP 

synthesis (JS).  

Estimation of the Charge Pumping Rate via the Respiratory Chain (JR) 

To estimate JR, the rate of electron donor generation NADH (JNADH) and FADH2 & QH2 (J 

FADH2 & QH2) associated with the flux estimates of electron donor generating enzymes involved in 

J1 (rate of acetyl-CoA production from pyruvate dehydrogenase), J4 (rate of acetyl-CoA 

production from -oxidation) and J3 (rate of succinate dehydrogenase/complex II flux), were 
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assumed to be equal to J1 + J4 – J2 under steady state conditions and accounted for. Thus, the rate 

of NADH electron donor generation (JNADH) is calculated as: 

𝐽𝑁𝐴𝐷𝐻 = (4)𝐽1 + (4)𝐽4  −  𝐽2 (4. 28) 

From the stoichiometric assumption that each Complex I donor (NADH) generated is associated 

with 10 charges pumped across the inner membrane, JNADH is equal to: 

𝐽𝑁𝐴𝐷𝐻 = (40)𝐽1 + (40)𝐽4 – (10)𝐽2 (4. 29)

Likewise, the rate of FADH2 & QH2 (J FADH2 & QH2) electron donor generation is calculated as: 

𝐽FADH2 & QH2   =  𝐽1 + (2)𝐽4  − 𝐽2 (4. 30)

From the stoichiometric assumption that each Complex II donor (FADH2 and QH2) generated is 

associated with 6 charged pumped, J FADH2 & QH2 is equal to: 

𝐽FADH2 & QH2  =  (6)𝐽1 + (12)𝐽4– (6)𝐽2 (4. 31) 

By adding the rate of electron donor generation of JNADH (4.29) and J FADH2 & QH2 (4.31), the rate 

of charge pumping via the respiratory chain (JR) is:  

𝐽𝑅 = (46)𝐽1 + (52)𝐽4 + (−16)𝐽2 (4. 32) 

 

Estimation of the Charge Consumption Rate for ATP Synthesis (JS) 

To calculate the JS, we must account for the rate of ATP synthesis (I) and the number of 

charges used to synthesize ATP. The rate of ATP synthesis (I) can be calculated by adding the 

ATP produced by 1) substrate level phosphorylation via de succinate dehydrogenase/complex II 

flux (J3 assumed to be equal to J1 + J4 – J2 under steady state conditions) and 2) oxidative 

phosphorylation in which each ATP generation assumes a stoichiometry of 8/3 for rate of charge 

consumption by ATPase (Nicholls et al., 2013). Thus, the rate of ATP synthesis (I) is:  
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𝐼 =  (𝐽1  +  𝐽4 – 𝐽2) + (
8

3
) (𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑏𝑦 𝐴𝑇𝑃𝑎𝑠𝑒) (4. 33) 

Solving for the rate of charge consumption by ATPase gives us: 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑏𝑦 𝐴𝑇𝑃𝑎𝑠𝑒 =  (
8

3
) (𝐼 − 𝐽1  −  𝐽4  +  𝐽2) (4. 34) 

Yet, to account for the total number of charges used to synthesize ATP, we must also 

account for the 1 charge transferred by the adenine nucleotide translocase (ANT). 

Thus, rate of charge consumption for ATP synthesis (JS) is: 

𝐽𝑆  =  (
8

3
) (𝐼 − 𝐽1  −  𝐽4  +  𝐽2) +  𝐼 (4. 35) 

Which solved is: 

𝐽𝑆  =  (
11

3
)  𝐼 − (

8

3
) 𝐽1 − (

8

3
) 𝐽4 + (

8

3
) 𝐽2 (4. 36) 

Leak Current (JL) Calculation 

The leak current (JL) is estimated as the difference between the total rate of charge pumping 

via the respiratory chain (JR) (4.32) and the rate of charge consumption for ATP synthesis (JS) 

(4.36.):  

𝐽𝐿 = (46 −
8

3
) 𝐽1 + (52 −

8

3
) 𝐽4 + (−16 +

8

3
) 𝐽2 − (

11

3
) 𝐼 (4. 37) 

4.5 Results 

4.5.1 Oxygen Consumption Rates 

Figure 4.2A shows representative traces of oxygen consumption flux (JO2) in the leak state 

(t < 120 s), during low-rate ADP infusion (I = 78.9 nmol ADP min-1 mL-1 during 120 s > t < 310 

s) and after stopping ADP infusion (t > 310 s). In this and all other experiments, mitochondria 



123 

 

 

were added at 0.67 units of citrate synthase (U CS) activity to 2 mL of experimental buffer. Thus, 

expressing the ADP infusion rate (equal to ATP synthesis rate) relative to mitochondrial citrate 

synthase activity (I = 234 nmol min-1 (U CS)-1) for the low ADP infusion rate case. Representative 

traces of JO2 are shown for three different substrate conditions: pyruvate and malate (PM) at initial 

concentrations of 350 M and 150 M, respectively; palmitoyl carnitine and malate (PCM) at 

initial concentrations of 20 M and 150 M, respectively; and pyruvate, palmitoyl carnitine, and 

malate (MIX) at initial concentrations of 350 M, 20 M, and 150 M, respectively. Fig. 2B shows 

similar traces obtained in the leak state (t < 120 s) during high rate of ADP infusion (I = 356 nmol 

min-1 (U CS)-1, 120 s > t < 125 s) and after stopping ADP infusion (t > 245 s). These two ADP 

infusion rates correspond to roughly 1/3 and 1/2 of the Vmax of mitochondrial ATP synthesis in 

vitro.  

Observations from N = 4-6 biological replicates of steady-state JO2 during ATP synthesis 

(OXPHOS state) and at three different total calcium (CaCl2) concentrations of 0, 300, and 400 M 

are summarized in Figure 4.2 C, D. As expected, JO2 tends to be higher when fatty the acid 

substrate (PCM) is oxidized compared to carbohydrate (PM). The estimated effective P/O ratios 

under the different calcium and substrate conditions are listed in Table 4.1. Here, the expected 

trend of lower P/O ratio with PCM compared to PM is observed. Estimated P/O ratios for the MIX 

substrate cases tend to fall between the values estimated for PM and for PCM, although this is not 

the case for every combination of ATP-synthesis/ADP-infusion rate and calcium level.  
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Figure 4.2 Oxygen fluxes measured by high-resolution respirometry. For all data mitochondria are suspended in a 2-

ml Oroboros Oxygraph respirometry chamber at 0.337 U CS per ml. A. Time courses of oxygen consumption rate JO2 

are shown for buffer total [Ca2+] = 0, 300 and 400 M (with 1 mM EGTA) and three different substrate conditions. 

Data for t < 0 correspond to the leak state. Infusion of ADP at I = 234 nmol min-1 (UCS)-1 begins at t = 120 and ends 

at t = 310 sec. B. Time courses of JO2 are shown for [Ca2+] = 0, 300 and 400 M and the three different substrate 

conditions with ADP infusion rate I = 356 nmol min-1 (UCS)-1. Infusion begins at t = 120 and ends at t = 245 sec. C. 

Data on OXPHOS state JO2 from N = 3 replicates are shown as Mean ± SEM for three Ca2+ concentrations and three 

different substrate conditions, and for low ATP demand (I = 234 nmol min-1 (UCS)-1 ). D. Data on OXPHOS state JO2 

from N = 3 replicates are shown as Mean ± SEM for three Ca2+ concentrations and three different substrate conditions, 

and for high ATP demand (I = 356 nmol min-1 (UCS)-1 ). Abbreviations are PM: pyruvate + malate; MIX: pyruvate + 

palmitoyl-carnitine + malate; PCM: palmitoyl-carnitine + malate. 

These measurements on their own do does not provide enough information to quantify the 

substrate oxidation and TCA cycle fluxes under the different experimental conditions. Additional 

data on metabolite concentrations were obtained that, combined with the oxygen flux data, allowed 

us to estimate quasi-steady-state fluxes.   
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Table 4.1 Summary of oxygen consumption data 

  Leak state 

JO2 

OXPHOS I = 234 nmol min-1 (UCS)-1 

JO2                          P/O 

OXPHOS I = 356 nmol min-1 (UCS)-1 

JO2                         P/O 

PM [Ca2+] = 0 16.6± 0.28 55.9± 0.85 2.09 ± 0.03 79.1 ± 0.76 2.25 ± 0.02 

 [Ca2+] = 300 M 17.0± 0.71 58.2± 1.2 2.01 ± 0.04 77.7 ± 1.78 2.29 ± 0.05 

 [Ca2+] = 400 M 16.1 ± 0.21 55.2 ± 0.58 2.11 ± 0.02 79.3± 0.45 2.24 ± 0.01 

MIX [Ca2+] = 0 22.1 ± .83 63.9 ± 0.3 1.83 ± 0.01 82.7 ± 1.3 2.15 ± 0.03 

 [Ca2+] = 300 M 20.9 ± .75 61.0 ± 1.08 1.90 ± 0.03 85.3 ± 1.35 2.09 ± 0.03 

 [Ca2+] = 400 M 21.0 ± .006 63.1 ± 1.26 1.85 ± 0.04 83.3 ± 1.99 2.13 ± 0.05 

PCM [Ca2+] = 0 21.0 ± 0.76 60.2 ± 1.17 1.94 ± 0.04 87.1± 1.99 2.04 ± 0.05 

 [Ca2+] = 300 M 20.3 ± .37 62.2 ± .98 1.88 ± 0.03 87.5 ± .69 2.03 ± 0.16 

 [Ca2+] = 400 M 21.1 ± .56 63.3 ± .77 1.84 ± 0.02 86.7 ± 1.14 2.05 ± 0.03 

All fluxes reported in units of nmol min-1 (UCS)-1. 

4.5.2 Metabolite Concentrations 

The purified mitochondria system was quenched and extracted for assay of intermediate 

concentrations at five different time points for the PCM and PM substrate conditions and at seven 

different time points for the MIX substrate condition, as indicated in the protocol detailed in the 

methods section of this chapter. For the low ADP infusion rate experiments (I = 234 nmol min-1 

(U CS)-1) measurements were made at 70 and 110 s following substrate addition (during the leak 

state) and at 200, 240, and 280 s for PM and PCM substrates with two additional time points at 

320 and 360 s for the MIX substrate conditions during the low ADP-infusion OXPHOS state. For 

the high ADP infusion rate experiments (I = 356 nmol min-1 (U CS)-1), measurements were made 

at time points 70 and 110 s following substrate addition for the leak state and at 180, 210, and 240 

s with two additional time points at 270 and 300 s for the MIX substrate conditions during the 
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ADP-infusion OXPHOS state. Data on pyruvate, malate and -ketoglutarate concentrations from 

the PYR, PC, and MIX substrate experiments are shown in Figs. 3, 4, and 5. 

Figure 4.3A shows data obtained using pyruvate + malate (PM) as the substrate, at 0, 300, 

and 400 M added CaCl2, for both ADP infusion rates. In the experimental buffer containing 1 

mM EGTA, theses total calcium concentrations are associated with approximately 0, 100, and 200 

nM external free [Ca2+]. Under these calcium conditions (I = 234 nmol min-1 (U CS)-1), roughly 

40 M of pyruvate is consumed, and 25-50 M of -ketoglutarate is produced over the 200 s ADP 

infusion time period. Thus, the TCA cycle flux from citrate to -ketoglutarate is greater than the 

-ketoglutarate dehydrogenase flux. Much of the carbon entering the TCA cycle as citrate exits as 

-ketoglutarate, rather than continuing to complete the cycle and resynthesize citrate from 

oxaloacetate. Instead, as has been observed previously, the exogenous malate consumed via malate 

dehydrogenase is the primary source of oxaloacetate for the citrate synthase reaction under these 

conditions(LaNoue et al., 1970). A similar phenomenon is observed at the higher ADP infusion 

rate and under all Ca2+ concentrations. 
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Figure 4.3 Time courses of pyruvate, malate and -ketoglutarate during leak and OXPHOS states for PM (pyruvate 

+ malate) substrate conditions. Straight lines are 25 Monte-Carlo samples representing uncertainty of fits of Eqs. (4.6, 

4.7,4.8, 4.9, 4.10, 4.13,4.12, 4.11 ) to the concentration and JO2 data. A. Data and model fits are shown for the [Ca2+] 

= 0, 300 M and 400 M conditions, with low ATP demand (I = 234 nmol min-1 (UCS)-1) and high ATP demand (I = 

356 nmol min-1 (UCS)-1). B. Estimated -ketoglutarate (J2/J1+J4) export for the [Ca2+] = 0, 300 M and 400 M 

conditions, with low ATP demand (I = 234 nmol min-1 (UCS)-1) and high ATP demand (I = 356 nmol min-1 (UCS)-1). 

C. Estimated leak current. The leak current JL is plotted as a function of ATP demand. Estimates are obtained by 

combining data for all substrate conditions. (No substrate-dependent differences in JL were detected.) 

 

 

 

 



128 

 

 

Under the palmitoyl-carnitine + malate (PCM) substrate conditions, no pyruvate 

consumption or production is observed (Figure 4.4A) with -ketoglutarate production in the same 

range as observed under the other substrate conditions.  

 

Figure 4.4 Time courses of malate and -ketoglutarate during leak and OXPHOS states for PCM (palmitoyl-carnitine 

+ malate) substrate conditions. Straight lines are 25 Monte-Carlo samples representing uncertainty of fits of Eqs. 4.14, 

4.15, 4.16, 4.17and  4.18 to the concentration and JO2 data. A. Data and model fits are shown for the [Ca2+] = 0, 300 

M and 400 M conditions, with low ATP demand (I = 234 nmol min-1 (UCS)-1) and high ATP demand (I = 356 nmol 

min-1 (UCS)-1). B. Estimated -ketoglutarate (J2/J1+J4) export for the [Ca2+] = 0, 300 M and 400 M conditions, with 

low ATP demand (I = 234 nmol min-1 (UCS)-1) and high ATP demand (I = 356 nmol min-1 (UCS)-1). C. Estimated 

leak current. The leak current JL is plotted as a function of ATP demand. Estimates are obtained by combining data 

for all substrate conditions. (No substrate-dependent differences in JL were detected.) 
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Under mixed (MIX) substrate conditions (Fig. 5A), the pyruvate consumption rate is much 

lower than observed with PM. Although the pyruvate consumption rates are lower than in the PM 

condition, the -ketoglutarate production rates are similar to those observed under PM, indicating 

that a similarly low fraction of the citrate to -ketoglutarate flux is continuing on to complete the 

cycle through -ketoglutarate dehydrogenase, succinyl-CoA synthetase, succinate dehydrogenase, 

and fumarase reactions.  

 

Figure 4.5 Time courses of pyruvate, malate and -ketoglutarate during leak and OXPHOS states for MIX (pyruvate 

+ palmitoyl-carnitine + malate) substrate conditions. Straight lines are 25 Monte-Carlo samples representing 
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uncertainty of fits of Eqs. 4.20,4.21,4.22, 4.23, 4.24, 4.26, 4.27 to the concentration and JO2 data.  A. Data and model 

fits are shown for the [Ca2+] = 0, 300 M and 400 M conditions, with low ATP demand (I = 234 nmol min-1 (UCS)-

1) and high ATP demand (I = 356 nmol min-1 (UCS)-1). B. Estimated -ketoglutarate (J2/J1+J4) export for the [Ca2+] = 

0, 300 M and 400 M conditions, with low ATP demand (I = 234 nmol min-1 (UCS)-1) and high ATP demand (I = 

356 nmol min-1 (UCS)-1). C. Estimated leak current. The leak current JL is plotted as a function of ATP demand. 

Estimates are obtained by combining data for all substrate conditions. (No substrate-dependent differences in JL were 

detected.) 

4.5.3 Fuel Utilization in Vitro 

Table 4.2 lists the estimated fluxes and uncertainties for each condition. Uncertainties are 

indicated as ± 1 SD confidence range. The estimates for JO2 in Table 4.2, which arise from the fits 

of the appropriate set of governing equations to the data, can be compared directly to the direct 

measurements in Table 4.1. The close correspondence between the measurements in Table 4.1 

and the estimates in Table 4.2 (that are based on fitting both the data in Table 4.1 and the 

concentration data) provides an independent validation of the steady-state analysis.  

Table 4.2 Estimated steady-state fluxes 

 CaCl2 (M) J1 J2 J4 JO2 J1 J2 J4 JO2 J1 J2 J4 JO2 

PM 0 11.2±2.01 11.4±5.02 0 16.6±0.20 33.6±1.48 28.2±3.60 0 55.7±0.84 46.6±2.50 37.5±6.22 0 79.0±0.77 

 300 9.6±1.31 7.1±3.24 0 17.0±0.50 37.8±1.45 36.2±3.43 0 58.3±1.21 50.3±1.57 48.3±3.56 0 77.6±1.80 

 400 9.8±1.30 7.6±3.24 0 17.0±0.15 39.0±1.45 38.8±3.57 0 58.8±0.58 51.7±1.00 50.0±2.45 0 79.3±0.45 

MIX 0 6.8±2.86 11.1±3.82 5.5±2.38 22.3±.59 13.6±1.37 24.3±1.37 18.0±5.76 63.7±0.29 32.5±6.15 28.4±2.44 10.0±5.17 82.7±1.02 

 300 6.0±2.51 8.38±3.05 4.9±2.09 21.3±.42 23.3±5.47 25.5±1.19 9.4±4.56 61.1±1.08 32.6±5.81 27.6±2.15 10.5±4.88 85.3±1.36 

 400 6.6±2.73 9.7±2.73 5.1±2.24 22.0±.45 26.9±3.73 20.43±.53 5.43±3.11 63.1±1.27 36.4±5.15 26.2±3.96 6.14±4.27 83.3±.20 

PCM 0 0 8.2±0.59 8.9±0.27 18.4±0.54 0 31.5±1.09 30.6±.53 60.2±1.18 0 43.0±1.44 42.8±0.80 85.3±1.94 

 300 0 7.1±0.89 8.2±0.31 17.3±0.26 0 30.3±.77 30.1±.41 60.0±.98 0 42.3±1.25 42.0±0.69 83.9±0.69 

 400 0 6.7±1.17 8.1±0.41 17.7±.40 0 31.2±1.49 31.0±.56 61.8±.77 0 42.5±1.47 41.9±0.62 83.2±1.16 

All fluxes reported in units of nmol min-1 (UCS)-1. 

Representative piecewise linear fits to the concentration data are shown in Figure 4.3 (PM 

substrate), Figure 4.4 (PCM substrate), and Figure 4.5  (MIX substrate) for all three [Ca2+] 

conditions. For clarity of presentation only 25 of the 10,000 independent fits are shown. The 

piecewise linear steady-state model effectively matches the data, and the Monte-Carlo sampling 

effectively matches to the uncertainty in the data, illustrated as mean ± SEM. 
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The flux estimates are used to estimate the fractional production of -ketoglutarate under 

different OXPHOS loads and Ca2+ concentrations. Despite the sensitivity of -ketoglutarate to 

[Ca2+] (Qi et al., 2011), for PM substrate the fractional export of -ketoglutarate, 𝐽2 (𝐽1 + 𝐽4)⁄ , 

does not increase with increasing [Ca2+] (Figure 4.3 and Table 4.3). Analysis of the data from 

PCM substrate experiments yields estimates of -ketoglutarate export that are effectively 100% 

of acetyl-CoA production and do not depend on ATP production/demand rate or [Ca2+] (Figure 

4.4B and Table 4.3). With mixed substrate (Figure 4.5B and Table 4.3) the fractional -

ketoglutarate export is in the range of 60- 80% and does not show a clear dependency on demand 

or [Ca2+]. 

Table 4.3 Estimated fluxes ratios 

  Leak state fluxes OXPHOS I = 234 nmol min-1 (UCS)-1 OXPHOS I = 356 nmol min-1 (UCS)-1 

 CaCl2 

(M) 

𝐽2 (𝐽1 + 𝐽4)⁄  

Fractional 

AKG efflux 

𝐽1 (𝐽1 + 𝐽4)⁄  

Fractional 

PM use 

𝐽4 (𝐽1 + 𝐽4)⁄  

Fractional 

FA use 

𝐽2 (𝐽1 + 𝐽4)⁄  

Fractional 

AKG efflux 

𝐽1 (𝐽1 + 𝐽4)⁄  

Fractional 

PM use 

𝐽4 (𝐽1 + 𝐽4)⁄  

Fractional 

FA use 

𝐽2 (𝐽1 + 𝐽4)⁄  

Fractional 

AKG efflux 

𝐽1 (𝐽1 + 𝐽4)⁄  

Fractional 

PM use 

𝐽2 (𝐽1 + 𝐽4)⁄  

Fractional 

AKG efflux 

PM 0  0.91±0.29 -- -- 0.83±0.07 -- -- 0.80±0.09 -- -- 

 300 0.67±0.24 -- -- 0.95±0.06 -- -- 0.96±0.05 -- -- 

 400  0.71±0.24 -- -- 0.99±0.06 -- -- 0.97±0.03 -- -- 

MIX 0 0.85±0.23 0.54±0.20 0.46±0.20 .77±0.04 0.42±0.20 0.58±0.20 0.67±0.05 0.76±0.13 0.24±0.13 

 300 0.72±0.22 0.54±0.20 0.46±0.20 .78±0.04 0.71±0.15 0.29±0.15 0.64±0.04 0.75±0.12 0.25±0.12 

 400 0.78±0.23 0.55±0.20 0.45±0.20 .63±0.02 0.83±0.10 0.17±0.10 0.61±0.07 0.85±0.10 0.15±0.10 

PCM 0 0.92±0.05 -- -- 1.03±0.03  -- -- 1.00±0.03 -- -- 

 300 0.87±0.08 -- -- 1.01±0.02 -- -- 1.01±0.02 -- -- 

 400 0.81±.012 -- -- 1.01±0.03 -- -- 1.01±0.03 -- -- 

 

Estimated fuel utilization (pyruvate versus fatty acid) fractions are reported in Table 4.3 

and plotted in Figure 4.6 at nominally zero [Ca2+], approximately 40% of acetyl-CoA is supplied 

to the TCA cycle from pyruvate oxidation, with the rest supplied via -oxidation for the low ATP 

demand conditions. A significant difference (p = 0.033) in increased fractional pyruvate utilization 
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is observed as calcium concentration increases under the low ATP demand rate condition (Fig. 

Figure 4.6B).  

 

 

Figure 4.6 Mitochondrial fuel selection. Fractional oxidation of pyruvate versus palmitoyl-carnitine is plotted as a 

function of total [Ca2+] under (A) Leak state (I = 0 nmol min-1 (UCS)-1)), (B) low ATP demand (I = 234 nmol min-1 

(UCS)-1) condition and (C) high ATP demand (I = 356 nmol min-1 (UCS)-1) condition. The observed trend of 

increasing fractional utilization of pyruvate with increasing [Ca2+] is statistically significant, with estimated p = 

0.033 in the low ATP demand state when comparing the highest calcium vs. no calcium present (B). D. Work rate 

control of mitochondrial fuel selection. Increasing fractional utilization of pyruvate dependent on work rate alone is 

below statistical significance, with estimated p = 0.077 when comparing low vs high ATP demand. Increased 

fractional utilization of pyruvate independent of calcium concentration is observed to be statistically significant, 

with estimated p = 0.033 when comparing the leak state vs high ATP demand conditions. 
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Under high demand conditions (Figure 4.6C) the fractional utilization of pyruvate is 76% 

at zero Ca2+. Under this condition, addition of calcium causes a small but not significant increase 

in the fractional contribution from pyruvate to 85 ± 10%. These results indicate that nearly all of 

the acetyl-CoA is being produced by pyruvate dehydrogenase in steady-state conditions under 

high-demand and/or high [Ca2+]. The ATP demand dependency is summarized in Figure 4.6D. 

With zero added Ca2+ the difference in fractional fuel utilization between the low (LW) and high 

(HW) demand conditions of 42% versus 76% is below statistical significance, with estimated p = 

0.077. Since the uncertainty on the estimates for the leak states is relatively high, statistically 

significant comparison between leak state and other conditions are possible only by combining all 

of the calcium conditions together. With all calcium conditions combined, the fractional pyruvate 

utilization for the leak state is 54 ± 12% and 79 ± 7% for the HW OXPHOS state (p = 0.033). 

We conclude that both ATP demand and [Ca2+] can independently influence the fractional fuel 

utilization.  

4.5.4 Estimated Leak Current (JL) 

As mentioned in the methods section, the contributions of leak current (JL) to the overall 

oxidative flux were estimated for the various experimental conditions probed based on the flux 

estimates reported in Table 4.2. Equation 4.37 estimates, JL as the difference between the total 

rate of charge pumping via the respiratory chain and the rate of charge consumption for ATP 

synthesis. This expression is based on the following stoichiometric assumptions: (1.) each 

Complex I donor (NADH) generated is associated with 10 charges pumped across the inner 

membrane; (2.) each Complex II donor (FADH2 and QH2) generated is associated with 6 charged 

pumped; (3.) Each ATP generated is associated with a current of 11/3 charges. The 11/3 
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stoichiometric coefficient for ATP generation assumes an 8/3 stoichiometry for the 

ATPase(Nicholls et al., 2013), and 1 charge transferred by the adenine nucleotide translocase.  

Values of JL estimated using these assumptions are plotted for the three different substrate 

conditions in Figure 4.3, Figure 4.4 and Figure 4.5. This current is expected to be primarily 

composed of H+ ions, with secondary contributions associated with calcium cycling and other ionic 

currents. In the leak state (I = 0), the estimated leak currents are approximately 400 nmol min-1 (U 

CS)-1. Since slightly fewer than 20 charges are pumped by the respiratory complexes per O2 

molecule consumed, the leak current in the leak state may be alternatively estimated as slightly 

less than 20 times JO2 under pyruvate substrate conditions. Indeed, 20 times the average leak state 

JO2 (from Table 1) is 391 nmol min-1 (U CS)-1. As demand is increased (I = 234 and 356 nmol min-

1 (U CS)-1), the estimated leak current decreases, presumably due to a decrease in magnitude of 

the mitochondrial membrane potential. Under OXPHOS conditions JL is estimated to be 

approximately 200-300 nmol min-1 (U CS)-1 for all substrate conditions. Since the ATP-producing 

current is 11/3 times I, the ratios of ATP-producing current to leak current are approximately 3:1 

at I = 1/3 of Vmax, and 7:1 at I = 1/2 of Vmax. 

4.6 Discussion 

This study was designed to determine if and how fuel selection in vitro in cardiac 

mitochondria is affected by ATP demand and Ca2+ concentration, and to test the specific 

hypothesis that increases in mitochondrial Ca2+ can cause a shift to using relatively more 

carbohydrate and relatively less fatty acid substrate to fuel oxidative ATP synthesis in cardiac 

mitochondria. 
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Our results demonstrate that increasing calcium concentration does affect a switch in fuel 

utilization under mixed substrate conditions from primarily fatty acid at nominally zero calcium 

to primarily pyruvate with nonzero added calcium. Furthermore, our results demonstrate that this 

calcium-dependent fuel selection switch is also dependent on ATP demand. At the highest added 

calcium employed, the relative contribution of pyruvate to oxidative metabolism in mixed 

substrate conditions increases from 55 ± 20% at the leak state (ADP infusion rate of I = 0 nmol 

min-1 (U CS)-1) to 83 ± 10% at an ADP infusion rate of I = 234 nmol min-1 (U CS)-1 (approximately 

1/3 Vmax) to 85 ± 10% at I = 356 nmol min-1 (U CS)-1 (approximately 1/2 Vmax). These findings 

may be compared to the trend of increasing fraction of pyruvate utilization with increasing demand 

observed by Kuzmiak-Glancy and Willis (Kuzmiak-Glancy & Willis, 2014) in skeletal muscle 

mitochondrial from rat and sparrow.  

The trend of increasing relative contribution of pyruvate with increasing Ca2+ is apparent 

at the moderate ATP demand level. But as the ATP demand level increases from moderate to high, 

fuel selection switches towards pyruvate utilization regardless of the calcium concentration. Thus, 

the effects of Ca2+ and increasing ATP demand on substrate switching appear to be additive. 

Furthermore, our data suggest that, at least under the in vitro conditions probed in this study, the 

primary regulator of Ca2+-dependent fuel selection is pyruvate dehydrogenase. Fluxes through 

downstream dehydrogenases do not show clear dependencies on Ca2+ concentration under any of 

the substrates employed here. 

Based on these observations we speculate that a physiological nonzero calcium 

concentration is necessary for cardiac mitochondria to effectively switch from a low-capacity fuel 

(fats) to a high-capacity fuel (carbohydrates) in response to acute increases in workload. This 

mechanism may help explain observations that deletion of the cardiac mitochondrial calcium 
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uniporter is associated with an impaired ability of the heart to acutely match ATP production to 

demand(Kwong et al., 2015; Luongo et al., 2015).  

The AKG/malate exchange has been reported to be sensitive to calcium levels in brain as 

well as muscle and heart mitochondria from rats(Eigentler & et al., 2015). But in our results, 

regardless of the absence or presence of calcium, the AKG and malate exchange rate remained 

consistent regardless of the substrate and work rate conditions used across our experimental design 

with constant α-ketogluterate efflux from 80%-100%. These results were unexpected as we 

hypothesized that if calcium enhances the substrate affinity of α-ketogluterate dehydrogenase 

(Williamson & Corkey, 1979), α-ketogluterate dehydrogenase flux would be increased as calcium 

concentration increased. The findings that fluxes through downstream dehydrogenases do not 

show strong dependencies on Ca2+ concentration supports a model in which the primary regulator 

of Ca2+-dependent fuel selection is pyruvate dehydrogenase. 

In summary, our results show that a fuel selection switch from fatty acids to greater 

fractional utilization of pyruvate occurs with increasing ATP demand rate and calcium in cardiac 

mitochondria in vitro. These results mirror a previous observation obtained using isolated skeletal 

muscle mitochondria(Kuzmiak-Glancy & Willis, 2014). Finally, these observations are consistent 

with our hypothesis that calcium contributes to modulating the switch from fatty acid to 

carbohydrate oxidation with increasing ATP demand in vivo. This interpretation is consistent with 

the observations that mitochondrial calcium import is important in maintaining ATP production in 

acute stress responses(Kwong et al., 2015; Luongo et al., 2015). Namely, the steady-state results 

indicate that changes in work rate alone are enough to affect a switch to carbohydrate use. In vivo, 

the rate at which this switch happens may depend on mitochondrial calcium.  
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4.7 Conclusions 

1. An open-loop control hypothesis stating that ATP supply is matched to ATP demand via 

mitochondrial Ca2+ acting as a mediator is broadly invoked. 

2. Despite its ability to affect mitochondrial TCA cycle dehydrogenases, [Ca2+] does not 

substantially alter mitochondrial ATP synthesis in vitro under physiological substrate 

conditions. 

3. To determine if [Ca2+] affects the relative use of carbohydrates versus fatty acids in vitro, 

we measured oxygen consumption and TCA cycle intermediate concentrations in 

suspensions of purified rat ventricular mitochondria with carbohydrate, fatty acid, and 

mixed substrates at various [Ca2+] and ATP demand rates. 

4. Our results suggest that changes in work rate alone are enough to affect a switch to 

carbohydrate use in vitro, whereas in vivo the rate at which this switch happens may depend 

on mitochondrial calcium.  
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Chapter 5 Concluding Remarks 

 

5.1 Conclusions 

As stated in this dissertation, HFpEF is increasing in prevalence and is associated with poor 

clinical outcomes and quality of life. Although many therapies exist for the homogenous HFrEF, 

it is more difficult to treat HFpEF. This may be because unlike HFrEF, HFpEF is represented by 

heterogeneous patient phenotypes. Classical, the HFrEF and HFpEF classifications are based on 

EF, a metric of the LV systolic capability. While EF seems to be a good enough marker to identify 

HFrEF patients whose pathology is mostly driven by cardiac dysfunction during systole (Murphy 

et al., 2020), placing all patients with HFpEF in a single category of patients might be over 

simplistic approach. Advancement in our understanding of HFpEF demonstrates that disease 

progression is driven by more than cardiac dysfunction.  Clearly, metabolic, systemic, and 

pulmonary circulation comorbidities play a big role in disease development and progression in 

HFpEF patients (Zile et al., 2004; Tartière-Kesri et al., 2012; Little & Zile, 2012; Lindman et al., 

2014; Kitzman & Lam, 2017).  

Standard clinical measurements such as quantifying hemodynamics through RHC and 

obtaining cardiac volume assessment though TTE does not sufficiently discriminate HFpEF 

phenotypes to inform patient management. Part of this problem is that these measurements are 

taken at rest when many HFpEF are asymptomatic (Borlaug et al., 2022). It has been suggested 

that exercise intolerance, impairment of recruitable oxygen reserve and cardiac power, which 
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consider peripheral factors contributing to the development of HF, may be of considerable 

importance in describing the clinical phenotype of HF patients (Beard et al., 2021). A recent 

NHLBI working group emphasized this unmet need for robust phenotyping in HFpEF and its 

potential to improve care and outcomes for this population. The group specifically recommended 

systems biology-based computer modeling approaches that can incorporate the modeling of 

exercise responses in a patient group that has difficulty exercising (Shah et al., 2020). The 

computational modeling and ML tools that are developed in this dissertation may help in 

classifying HFpEF patients with respect to underlying dysfunction of the entire cardiovascular 

system, rather than merely relying on EF, will result in a more individually targeted treatment 

strategy for this patient population. Using model-based analysis and physiology-informed ML we 

demonstrate an approach to take standard RHC and TTE data from HFrEF and HFpEF patients 

obtained during resting conditions and derive important patient specific cardiovascular functional 

parameters. We then used a ML workflow to identify distinct HFpEF phenotypes and classifies 

patients with HFpEF into three distinct groups: systolic dysfunction (SD), mixed dysfunction 

(MD) and diastolic dysfunction (DD).  SD HFpEF is a ‘HFrEF-like’ HFpEF group, DD HFpEF 

represents the ‘classical’ HFpEF patients, and MD HFpEF is a group that exhibits characteristics 

of both types of dysfunctions. This approach is unique and innovative compared to the standard 

ML approaches that use clinical data alone because it utilizes additional cardiovascular parameters 

derived from the model that are not available as direct clinical measures. After distinguishing these 

subgroups, our data reveals potential biomarkers readily available from routine clinical data for 

identifying SD HFpEF patients are elevated LV systolic and diastolic volumes.  Interestingly, these 

biomarker differences necessary to determine HFpEF subgroups could not be distinguished based 

on the clinical data alone. Ultimately, the combination of mathematical modeling analysis and ML 
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techniques provides immense insight into the classifications of subpopulations of HF. We have 

found using patient specific clinical data to feed the computational model allows us to derive 

explicit physiological data that enhances the HFpEF phenotyping methodology in terms of 

accuracy, performance, and validity. Our hope is that future work and application of our model-

based analysis and physiology-informed ML tool for precision phenotyping in HF would result in 

a more individually targeted treatment strategy for HFpEF patients.  

5.2 Future Work  

5.2.1 University of Michigan and Peking University Third Hospital Collaboration 

For follow-up work we will increase our HF data set pool and have proposed studies in 

collaboration with the University of Michigan and Peking University Third Hospital. Through this 

collaboration, the lab will refine and train this novel approach using a retrospective HF dataset 

drawn from the two institutions. We will then conduct a prospective study obtaining the same 

measures used previously at baseline to validate our approach and expand upon it by gathering 

non-routine clinical measures during exercise. With this prospective dataset we will construct 

parallel model-based analysis and physiology-informed methods to compare the baseline and 

exercise analyses. Finally, additional plasma protein profiles and metabolomic measures will be 

obtained to see if biomarkers for each HFpEF subgroup can be identified.  We will determine if 

and how the functional subgroups identified in these preliminary studies are sufficient to represent 

the broader patient population and are predictive of clinical outcomes, thus providing a powerful 

new diagnostic tool to inform future HFpEF clinical trial design. 
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5.2.2 Follow up Work With the IASD and TMZ Clinical Trials 

Surprisingly our preliminary work retrospectively analyzing HFpEF patients selected for 

two clinical trials showed a bias in HFpEF patient selection that was characterized by systolic 

dysfunction more than diastolic dysfunction. These are interesting findings but more follow up 

work is needed. Our model captures the mechanical characteristics of the cardiovascular system 

during rest and currently is not adapted to capture the hemodynamic response during exercise. At 

least for HFpEF patients, many symptoms only manifest during exercise.  Thus, modifying our 

model to simulate exercise and derive cardiovascular parameters, and then conducting 

unsupervised ML, would be of interest to test whether HFpEF patient subgroups are affected 

differently by exercise.  Whether exercise derived parameters also lead to classification of 

additional subgroups of HFpEF or changes in classification would also be of interest.   

Because we examined only small subset of patients for an IASD clinical trial, we had a 

very limited amount of clinical data available to parameterize our simulations in a patient specific 

manner. For future work, we will plan to share our preliminary work with the clinicians overseeing 

the IASD clinical trials and propose a collaboration to explore the effect of the shunt on 

hemodynamic parameters at rest and during exercise in the expanded data set of their clinical trials.   

For the TMZ study, our preliminary work showed that HFpEF patients selected for this 

study were classed mostly systolic dysfunction (SD) or mixed dysfunction (MD) at rest. We do 

have MRI and RHC data available both at rest and during different exercise stress tests for patients 

in the placebo and pos-TMZ treatment state. We hope to either adapt our current model to capture 

exercise hemodynamics or use a more thorough model to capture patients’ mechanics and 

bioenergetics in response to drug treatment. These patient data could also be very important 
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validation data for our computational modelling where we try to simulate exercise from resting 

patient data.   

5.2.3 Calcium Role in Mitochondrial Fuel Selection 

During HF, the heart undergoes changes in fuel selection, through induction of a neonatal 

gene program leading to the preferential use of carbohydrates over fatty acids like the developing 

heart (Taegtmeyer et al., 2010). Because the failing heart is thought to be in a metabolically 

compromised state, understanding the mechanisms behind cardiac fuel selection is of importance 

in understanding cardiovascular disease as well as possible treatment mechanisms. There is some 

evidence that besides modulating contractility, calcium may play a role in modulating cardiac fuel 

selection. Yet, even during a healthy state our understanding of how cardiac mitochondrial fuel 

selection is modulated is very limited.   In Chapter 4, we showed evidence that the relationship 

between increasing relative contribution of carbohydrates (pyruvate) with increasing cytoplasmic 

Ca2+ is apparent at a moderate ATP demand level. However, as the ATP demand level increases 

from moderate to high, fuel selection switches towards pyruvate utilization regardless of the 

cytoplasmic calcium concentration. Thus, the effects of Ca2+ and increasing ATP demand on 

substrate switching appear to be additive. Furthermore, our data suggest that, at least under the in 

vitro conditions probed in this study, the primary regulator of Ca2+-dependent fuel selection is 

pyruvate dehydrogenase. Fluxes through downstream dehydrogenases do not show clear 

dependencies on Ca2+ concentration under any of the substrates employed here. One important 

piece of missing data raised by reviewers of our manuscript, is to determine whether the different 

bath Ca2+ concentrations tested were indeed sufficient to alter matrix calcium content via uptake 

through MCU or other pathways.  We also will need to measure mitochondrial membrane potential 
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to explain changes in leak current at different work rates and verify the altered mitochondrial Ca2+ 

effect is acting through pyruvate dehydrogenase. Future work will address these concerns and 

hopes to elucidate the role of calcium in regulation of fuel selection of the healthy heart, as well 

as its role in the pathophysiology of the failing heart.  
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