
Efficient Utilization of Heterogeneous Compute and
Memory Systems

by

Hiwot Tadese Kassa

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Associate Professor Ronald G. Dreslinski, Chair
Assistant Professor Baris Kasikci
Professor Wei Lu
Professor Trevor N. Mudge

Hiwot Tadese Kassa

hiwot@umich.edu

ORCID iD: 0000-0002-8005-9189

© Hiwot Tadese Kassa 2022

Acknowledgments

Several people contributed to the completion of my thesis. I am incredibly grateful to

my advisor Ronald Dreslinski for his mentorship and guidance during my Ph.D. He gave

me a chance to explore my research interests and was always available to help me shape

my ideas. I would also like to thank Valeria Bertacco and Todd Austin for their help in the

earlier times of my Ph.D. work.

Over the years, I was able to meet and work with graduate students and lab mates, who

made it somewhat easier for me to navigate my time at umich. I want to thank Salessawi

Ferede and Abraham Addisie for helping me discover research areas through the multi-

ple brainstorming sessions we had in the lab. I want to recognize Yichen Yang, Vaibhav

Gogte, and Tarunesh Verma for the time and effort they put into various experiments for

my projects. I also want to acknowledge my friends Vidushi Goyal, Leul Wuletaw, Nishil

Talati, and all my lab mates for easing some difficult times during this challenging process.

In this thesis, I was afforded the chance to work at Meta in my internships. While there,

I had the privilege of meeting my mentors, Jason Akers and Mrinmoy Ghosh, who were

important figures in helping me gain and maneuver the industry experience that broadened

my research area. I would also like to thank Ehsan K. Ardestani, Paul Johnson, Zhichao

Cao, and many more people at Meta for their endless contributions to my research work.

The infinite love, encouragement, and support bestowed upon me by my friends and

family is the ultimate reason for me to have reached this achievement. First, I would like

to express my deepest gratitude to my devoted parents, Netsanet Abera and Tadesse Kassa,

for their unconditional love and unwavering support. They nurtured my intrinsic quality of

ii

curiosity and created a world where I could always be myself, and allowed me to pursue my

interests and realize my potential. I am eternally appreciative for my sister, Tarik Tadese

Kassa, who is my motivation for everything I do. Thank you for never getting tired of

listening to my countless problems in completing my thesis. I thank my sister Zenebwork

Mario for always uplifting and believing in me. My little brother Zelalem Tadese Kassa, for

being there to bring wisdom and humor into my life. I want to thank Yemsrach Greenly and

Ben Greenly for all the holidays and vacations we spent together and for making me feel

at home here in the US. I thank my friends Blen Tshaye, Rebecca Yilima, Winta Kefyalew,

and Bethel Kebede for all the ups and downs we went through together and for the lengthy

"therapy" phone calls whenever I needed them. I want to thank Helen Hagos for being my

Ann Arbor family and for all the paper editing. Ann Arbor wouldn’t have been fun without

you. I also like to thank my friends Hayat Sultan, Nebiyou Elias, and Blen Ali for their

continuous motivation and support.

iii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vii

List of Tables . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Compute and memory scaling . 1
1.2 Efficient utilization of heterogeneous systems 3

1.2.1 System types . 3
1.2.2 Workloads . 3

1.3 Dissertation approaches and contributions 4
1.4 Dissertation organization . 5

2 Mapping Applications to Heterogeneous Compute Platforms 7

2.1 Introduction . 7
2.2 Background and related works . 9
2.3 ChipAdvisor design . 11

2.3.1 Identifying inefficiencies in applications 11
2.3.2 Intrinsic application properties 12
2.3.3 Prediction model design . 15

2.4 Experimental evaluation . 18
2.4.1 Evaluation setups . 18
2.4.2 Performance analysis for training kernels 20
2.4.3 Accuracy of the machine learning models 20
2.4.4 Results for the testing kernels 21

2.5 Conclusion . 25

3 Optimized Deployment of Key-Value Stores Using Heterogeneous Memories . 26

3.1 Introduction . 27
3.2 Background . 30

3.2.1 RocksDB architecture . 30
3.2.2 Intel® Optane™ DC Persistent Memory 31

iv

3.2.3 Meta RocksDB workloads . 32
3.3 Hybrid cache design choices . 33

3.3.1 Storage and memory characteristics 33
3.3.2 The challenges of SCM deployment 34
3.3.3 Metrics for identifying workloads 36

3.4 DRAM-SCM hybrid cache module . 39
3.4.1 Block cache lists . 39
3.4.2 Cache admission policies . 41
3.4.3 Hybrid cache configs . 42
3.4.4 Block cache operation management 42

3.5 Systems setup and implementation . 42
3.5.1 DRAM-SCM cache implementation 42
3.5.2 Evaluation hardware description 43
3.5.3 Meta server designs . 43
3.5.4 Cache and memory configurations 45
3.5.5 Workload generation . 45

3.6 Evaluation . 47
3.6.1 Throughput and latency comparison for admission policies 47
3.6.2 Performance comparison of DRAM first policy for all workloads 48
3.6.3 IO bandwidth, cache and CPU utilization 50
3.6.4 Cost, performance and power 51
3.6.5 General takeaway . 53

3.7 Discussion and future work . 54
3.8 Related work . 55
3.9 Conclusion . 56

4 Improving DLRM Training Efficiency Using Heterogeneous Compute and
Memory Systems . 57

4.1 Introduction . 57
4.2 Background . 61

4.2.1 Deep learning recommendation model 61
4.2.2 FBGEMM_GPU kernel library 63
4.2.3 Storage and memory types . 63

4.3 Workload characterization . 64
4.3.1 Bandwidth and size distribution 65
4.3.2 Locality in embedding table lookups 65

4.4 System design challenges and considerations 67
4.4.1 Memory Performance evaluation 67
4.4.2 IOPS vs BW . 68
4.4.3 Endurance . 69
4.4.4 Workload scaling . 69
4.4.5 Software design choices . 70

4.5 MTrainS design . 71
4.5.1 Overview . 71
4.5.2 Embedding table storage . 71

v

4.5.3 Hierarchical cache module . 72
4.5.4 Embedding table management 73
4.5.5 Cache management . 74
4.5.6 Memory and GPU assignment 75
4.5.7 Pipelining . 77
4.5.8 MTrainS configurations and metadata 77
4.5.9 End-to-end trainer . 78

4.6 Systems setup and implementations . 79
4.6.1 Software design and implementation 79
4.6.2 Workloads description and setup 80
4.6.3 Evaluation hardware description 80
4.6.4 Server design . 81

4.7 Evaluation . 81
4.7.1 Baseline . 81
4.7.2 Training efficiency . 83
4.7.3 Power and energy analysis . 85
4.7.4 Storage endurance and wear out 88
4.7.5 Cache hit and IO utilization . 89
4.7.6 Embedding table assignment efficiency 90

4.8 Discussion and future work . 91
4.9 Related work . 91
4.10 Conclusion . 92

5 Resource Management in Integrated CPU-GPU for Collaborative Workloads 93

5.1 Introduction . 93
5.2 Background and Motivation . 95

5.2.1 Integrated architecture . 95
5.2.2 Collaborative workloads . 96
5.2.3 Shared resources in integrated systems 97

5.3 CoACT Design . 99
5.3.1 Hardware design . 99
5.3.2 Policy selection . 102

5.4 Experimental Setup . 105
5.4.1 Simulation setup . 105
5.4.2 Workloads . 106
5.4.3 Baselines . 106

5.5 Evaluations . 107
5.5.1 Workload characteristic measurement 107
5.5.2 Performance analysis for all workloads 108
5.5.3 Application and hardware characteristic analysis 109

5.6 Related Works . 112
5.7 Conclusion . 112

6 Conclusion . 114

Bibliography . 115

vi

LIST OF FIGURES

2.1 (a) CNN’s execution time with two data sizes. (b) FFT’s execution time with
different FPGA optimizations. (c) BFS’s execution time with two different
algorithms (code structure). The best target platform selections are shown on
top of the graph. 8

(a) . 8
(b) . 8
(c) . 8

2.2 Given a set of applications and computation platforms, our proposed solution
considers the key characteristics of each application and maps it to the best
fitting compute device/accelerator to attain the best possible performance. . . 10

2.3 TMAM [1] based execution time breakdown for the benchmarks reported in
Table 2.4. 11

2.4 On left is a simplified decision-tree based model used for mapping applications
to CPU/GPU/FPGA. On the right is overall ChipAdvisor framework (training
process done offline and the online process for using it). 17

2.5 Training kernels’ speedup over CPU. Y-axis is in log10 scale. 21
2.6 Values of intrinsic properties for decision-tree training. 21
2.7 Testing kernels’ speedup over CPU for GPU, FPGA, oracle (hand optimized

best selection) and ChipAdvisor. 22
2.8 Measured values of intrinsic properties for decision-tree testing. 22
2.9 Comparison of measured and predicted performance using ChipAdvisor. Com-

parison is based on the best target platform per application. 24
2.10 Testing kernels’ energy efficiency over CPU for GPU, FPGA, oracle (hand

optimized best selection) and ChipAdvisor. 25

3.1 Server configurations with different DRAM sizes: (a) Server with 256GB
memory, high hit rate to DRAM and low IO utilization (b) Server with reduced
(64GB) memory, lower DRAM hit rate and increased in IO utilization and (c)
Server with reduced memory and SCM added to the memory controller, high
hit rate to DRAM & SCM due to optimized data placement, which decreases
IO utilization. 28

3.2 Intel® Optane™ memory operation modes overview. 31
3.3 DRAM, SCM, and SSD latency and BW characteristics. x-axis in log scale. . 33
3.4 Throughput and latency comparison for memory mode and our optimized

hybrid-cache in app-direct mode for ChatApp. 35

vii

3.5 Throughput of ChatApp for DRAM vs SCM block cache (a) and for Naive
SCM vs optimized hybrid-cache (b). 35

3.6 DB read and writes and throughput/cost comparison of read dominated and
write dominated workloads. 36

3.7 Characteristics of ChatApp, BLOB Metadata, and Hive Cache. (a) Key-value
access locality shows power-law distribution. (b) Workloads have high cache
hit rate and are performing more read that write to the cache. (c) Workloads
have more cache access than memtable. 38

3.8 RocksDB components and memory allocation. 39
3.9 DRAM-SCM cache configuration with libmemkind. 43
3.10 Throughput and application read latency comparison using only DRAM for

block cache, using only SCM for block cache, and hybrid DRAM-SCM ad-
mission policies (DRAM first, SCM first, and Bidirectional) for ChatApp us-
ing all server configurations in Table 3.4. (a) Throughput comparisons (db
operations/sec) for admission policies. Here the baseline is 64 - 0 configs.
(b) P50, P95, and P99 latencies for all admission policies and server configs
compared to 64 - 0 server. 47

3.11 Throughput and application read latency comparison for ChatApp, BLOB
Metadata and Hive Cache for DRAM first admission policy using all server
configurations shown in Table 3.4. (a,b, and c) Throughput comparisons (db
operations/sec). Here the baseline is 64 - 0 configs. (d, e and f) absolute P50,
P95, and P99 latencies for all workloads and server configs. 49

3.12 P50 write latency for all workloads. 50
3.13 Cache utilization, IO read bandwidth, IO read latency, IO wait and CPU uti-

lization of ChatApp for DRAM 1st admission policy. 51
3.14 Throughput/cost and throughput/watt of ChatApp, BLOB Metadata and Hive

Cache normalized to 64 - 0 1P servers throughput/cost. 52
3.15 Throughput of 1P and its variants compared to 2P servers. 53

4.1 Cumulative bandwidth and Memory size for one of the real world models we
evaluate. 58

4.2 DLRM architecture and where MTrainS fits in DLRM. 61
4.3 BW vs Size distribution of Model 1 and Model 2 and locality analysis of vari-

ous embedding tables. 66
4.4 System memory and storage characterization. 67
4.5 Caching efficiently comparison for model 1. 70
4.6 MTrainS component and architecture. 72
4.7 Memory allocation of MTrainS. 76
4.8 Impact of sharding RocksDB database on QPS. 78
4.9 Impact of Database compaction on QPS. 78
4.10 {MTrainS trainer overview. 79
4.11 MTrainS software design. 81
4.12 Training QPS and number of host Comparison of CDLRM+ and MTrainS with

SLA QPS target as the baseline for model 1 and model 1+ 83

viii

4.13 Training QPS and number of host Comparison of CDLRM+ and MTrainS with
SLA QPS target as the baseline for model 2. 83

4.14 QPS comparison of different configuration of MTrainS with configNandas the
baseline for model 1and model 1+. 84

4.15 QPS comparison of different configuration of MTrainS with configNandas the
baseline for model 2. 84

4.16 Average power and total energy consumption. 86
4.17 Average power and total energy consumption. 86
4.18 Power and energy comparison of MTrainS to baseline system running CLDRM+

for model 1 and model 1+. 87
4.19 Power and energy comparison of MTrainS to baseline system running CLDRM+

for model 2 using 1 and 2 nodes eith MTrainS. 87
4.20 Wear out comparison for model 1 and model 1+. 88
4.21 Cache hit rates for model 1(a) and model 1+(b) for different MTrainS config-

urations. 89
4.22 IOPS and effective SSD BW for model 1 and model 1+. 89
4.23 QPS increase for different types of embedding table placement for model 1 and

model 1+ . 90

5.1 Ideal speedup and cache interference. 96
5.2 Importance of selecting policies. 97
5.3 CoACT architecture overview. 98
5.4 Cache partitioning overview. 100
5.5 Interconnect and memory prioritization architecture overview. 101
5.6 Performance analysis and improvement for all workloads. 108
5.7 Speedup of representative applications. 108
5.8 LLC cache hit for representative applications. 109
5.9 Benefit of individual features. 110
5.10 Memory read reduction compared to baseline 50-50%. 111
5.11 Effect of changing baseline partition. 111

ix

LIST OF TABLES

2.1 TMAM’s inefficiencies breakdown based on hardware counter 13
2.2 Resources available in compute platforms. 14
2.3 Compute platforms - hardware specification. 18
2.4 Decision-tree training kernels. 19
2.5 Decision-tree testing kernels. 19
2.6 ML algorithms accuracy for training based on intrinsic properties as features

and compute platforms (CPU/GPU/FPGA) as targets. 22
2.7 Comparison of kernels’ best target platform (performance analysis) vs. pre-

dictions (ChipAdvisor), incorrect predictions highlighted. 23

3.1 Example of memory characteristics of DRAM, SCM and flash per module
taken from product specifications. 28

3.2 System setup: hardware specs and software configs. 44
3.3 OCP Tioga Pass (2P server) and OCP Twin Lakes Platforms (1P server) details. 44
3.4 DRAM and SCM cache in server configuration and memory sizes used block

cache in our experiments. 45
3.5 Performance equivalent TCO relative to 2P. 53

4.1 Characteristics of NAND SSD, Optane SSD, DRAM, Optane memory and
HBM per module taken from product specifications. For SSDs, the numbers
are for Gen3 PCIe. 62

4.2 Workload specifications. 64
4.3 System setup: hardware specs. 82
4.4 System Configurations (all sizes in GB). 82

5.1 Simulation setup. 106
5.2 Collaborative workloads characterization. 107

x

ABSTRACT

Conventional compute and memory systems scaling to achieve higher performance and

lower cost and power have diminished. Concurrently, we have diverse compute and memory-

demanding workloads that continue to grow and stress traditional systems with only CPUs

and DRAM. Heterogeneous compute and memory systems establish the opportunity to

boost performance for these demanding workloads by providing hardware units with spe-

cialized characteristics. Specialized compute platforms such as GPUs, FPGAs, and acceler-

ators execute specific tasks faster than CPUs, increasing performance and energy efficiency

for the particular task. Heterogeneity in the memory systems, such as incorporating var-

ious memory technologies like storage class memories (SCMs) alongside DRAM, allows

for denser, low-power, and low-cost memories to accommodate data-intensive applications.

However, heterogeneous systems have unique characteristics compared to traditional sys-

tems. We must carefully design how workloads utilize these units to harness their full

benefits. This dissertation presents software and hardware techniques that maximize the

performance, energy, and cost-efficiency of heterogeneous systems based on the compute

and memory access patterns of various application domains.

First, this thesis proposes ChipAdvisor, a machine learning-based framework, to iden-

tify the best platform for an application in the early steps of systems design. ChipAdvisor

considers the intrinsic characteristics of applications such as parallelism, locality, and syn-

chronization patterns and archives 98% and 94% accuracy in predicting the best performant

and energy-efficient platform, respectively, for diverse workloads when considering a sys-

tem with CPU, GPU, and FPGA. Second, we propose a heterogeneous memory-enabled

xi

system design with DRAM and storage class memory (SCM) for key-value stores, one of

the largest workloads in data centers. We characterize an extensive deployment of key-

value stores in a commercial data center and design optimal server configurations with het-

erogeneous memories. We achieve 80% performance increase compared to a single socket

platform while reducing the total cost of ownership (TCO) by 43-48% compared to a two

socket platform. Third, this dissertation designs MTrainS, an end-to-end recommendation

system trainer that utilizes heterogeneous compute and memory systems. MTrainSeffi-

ciently divides recommendation model training tasks between CPUs and GPUs based on

the compute patterns. It then hierarchically utilizes various memory types, such as HBM,

DRAM, and SCMs, by studying the temporal locality and bandwidth requirements of rec-

ommendation system models in data centers. MTrainS reduces the number of hosts used

for training by up to 8×, decreasing the power and cost of training. Lastly, this dissertation

proposes CoACT, which designs fine-grain cache and memory sharing for collaborative

workloads running in integrated CPU-GPU systems. CoACT uses the collaborative pat-

tern of applications to fine-tune cache partitioning and interconnect and memory controller

utilization for CPU and GPU, improving performance by 25%.

xii

CHAPTER 1

Introduction

The slowing down of Moore’s law and Dennard’s scaling have led to diminished performance,
cost, and power improvement of general-purpose processors by transistor scaling only.
Hence, we require heterogeneous systems with specialized processors, such as GPUs, to
increase performance and power efficiency. Similarly, the difficulty of scaling the cost,
power, and density of DRAM led to the evolution of new memory technologies, such as
storage class memories (SCMs), to operate alongside DRAM. While heterogeneous systems
complement the traditional CPUs and DRAM, they have distinct characteristics. These
characteristics include differences in processor designs, differences in memory hierarchies,
and differences in memory access latencies and bandwidth. Thus, workloads that run
on traditional systems might not run or gain performance when ported to heterogeneous
platforms. To fully utilize heterogeneous platforms, we first need to understand the design
and characteristics of these new devices and how they fit with standard system components.
Second, it is critical to study the characteristics of applications that make them suitable
for a particular compute or memory platform. This dissertation studies the computation,
communication, and memory characteristics of emerging compute and memory components
and workloads to effectively design and utilize heterogeneous systems.

1.1 Compute and memory scaling

Moore’s law observed that the number of transistors packed per area doubles every two
years, providing continuous processor performance improvement. Dennard scaling remarks
that as transistors become smaller, the operation voltage and current reduce; hence, we can
increase processor frequency and still maintain the same power consumption per area. These
scalings have served chip manufacturers to deliver faster and cheaper processors at constant
power consumption for decades. However, starting in the 2000s, Dennard scaling ended,
and Moore’s law is slowing down, leading to dormant single-core processor performance

1

improvement. Multi-core processors were the next best solution to maintain the continuous
performance improvement of processors, but power consumption and their difficulties in
programming limit their performance enhancement. Currently, the most renowned solutions
are specialized architectures or accelerators that are tailored to specific applications.

Scaling for semiconductor memory (DRAM) also closely followed Moore’s law for
a long time, providing denser and faster memory at a lower cost per bit. However, it
is becoming expensive and challenging to scale down DRAM cells because of capacitor
reliability and interference, leading to a surge in DRAM cost. These difficulties drove ample
research focusing on new memory technologies, such as storage class memory (SCM),
phase-change memory (PCM), magnetic random-access memory (MRAM), and resistive-
RAM (RRAM). These technologies provide dense memory at low cost and power compared
to DRAM, with higher latency and lower bandwidth than DRAM.

The trends of introducing specialized hardware units in the compute and memory
systems present heterogeneity in system designs. Heterogeneous compute units provide
significant performance and energy consumption improvement for a specific task by utilizing
specialized units. Similarly, new memory technologies in the memory system hierarchy
deliver very dense and cheap memory, which is impossible with DRAM alone. Nevertheless,
such designs come at a cost for hardware and software designers. Specialized compute units
(accelerators) tailored to individual applications are challenging to design, manufacture,
and test. Especially with the emergence of compute and data-intensive applications such
as machine learning, graph analytics, and genomics, we can not continue designing new
accelerators for every application. The practical solution, in this case, is to have specialized
units that can be repurposed for multiple application domains such as GPUs and FPGAs.
Yet, this also comes with its own issues for software and system designers because it requires
extensive expertise in every hardware unit to understand the system configurations that best
fit each application. Heterogenous memory creates a similar problem because these new
technologies have different memory latency and bandwidth characteristics than DRAM. For
example, commercially available new memory technology, Intel optane persistent memory,
provides 128-512GB of memory per DIMM module in contrast to DRAM, which is usually
4-32GB. However, it has 100-400ns latency and 5× less bandwidth than DRAM. Given
these characteristics, we need to understand if we can replace DRAM with new memory
technologies, if we should utilize these memories hierarchically or at the same level as
DRAM, and what type of workloads can benefit from them.

2

1.2 Efficient utilization of heterogeneous systems

This thesis identifies the challenges in effectively implementing heterogeneous compute
and memory platforms in different system types, such as integrated and discrete systems. It
then studies the characteristics of diverse workloads running in various system types and
presents software, system, and hardware mechanisms for efficient heterogeneous compute
and memory utilization.

1.2.1 System types

The system type determines the classifications of heterogenous compute and memory units
present in the system and how these units interact with one another. We consider two classes
of systems; discrete server-grade systems and integrated heterogeneous architecture, primar-
ily present in mobile and embedding systems. In server-grade systems, we have various
compute and memory-intensive workloads that demand heterogeneity in both compute and
memory. In integrated systems, we have compute units such as CPUs and GPUs sharing
memory and cache in the future. In these systems, frequent and fine-grain communication
between compute units is possible. Integrated systems are cost-constrained and hence have
lower core counts in both CPUs and GPUs and have limited memory availability that does
not demand different memory technologies.

1.2.2 Workloads

We took two approaches to characterize and evaluate workloads for heterogeneous systems
based on the above system classes. First, we studied various stand-alone and collaborative
algorithmic patterns that can represent repeatedly existing patterns in most applications.
We use these studies to explore effective heterogeneous system utilization in server and
integrated architecture. We use this approach to enable efficiency in general-purpose
system configurations with one system running diverse applications. Second, we studied
heterogeneity in server-grade systems in data centers. Our studies revealed that database
and AI workloads in data centers consume significant resources. In this case, focusing on a
single workload and optimizing its performance with heterogeneous systems provides high
performance and cost and power improvements.

3

1.3 Dissertation approaches and contributions

This thesis proposes a series of techniques that improve the performance and utilization
of heterogeneous compute and memory systems while still considering energy and cost
efficiency for the above systems and workload configurations. We study the compute and
memory access characteristics of applications to efficiently map applications to heteroge-
neous systems. Our solutions and contributions are summarized below.

• In the first work, ChipAdvisor, we build a framework that identifies the best compute
platform for an application in early system design steps for discrete and integrated
architecture. To perform this study, we first characterize the computation, communi-
cation, and data access pattern of a wide range of applications and identify intrinsic
properties of applications (properties that are not influenced by how applications run
on a particular platform). Based on these properties, we build an ensemble learning
algorithm that comprehends representative applications’ properties and predicts the
best platform for applications when considering CPU, GPU, and FPGA. ChipAdvisor
achieves an accuracy of up to 98% in predicting the best performing platform and
94% in predicting the most energy-efficient one, compared to an oracle analysis, that
is, one which always selects the best platform for all applications.

• In the second work, we study how to utilize heterogeneous memory systems com-
posed of DRAM and storage-class memory (SCM) for server-grade systems in data
centers. In this work, we first analyzed one of the most significant memory-consuming
applications in data centers: RocksDB, a key-value store designed for fast storage
technologies. We then characterized the memory-consuming components and tem-
poral locality of RocksDB, and we implemented a hybrid DRAM and SCM server
configuration that efficiently utilizes these memories hierarchically. We analyzed the
benefit of hierarchical heterogeneous memory in a small DRAM single-socket plat-
form with SCM addition and compared it with a large DRAM dual-socket platform.
Our results demonstrate that we can achieve up to 80% improvement in throughput and
20% improvement in P95 latency over a small DRAM single-socket platform while
maintaining a 43-48% cost improvement over a large DRAM dual-socket platform.

• Further, this dissertation explores the efficient utilization of heterogeneous compute
and memory systems for recommendation systems training. Recommendation systems
are one of the fastest-growing workloads in data centers recently. These workloads
require multiple GPUs and TBs of memory for training. This large memory con-
sumption makes recommendation systems power-hungry, and scaling memory with

4

DRAM only is expensive. To solve this problem, we design MTrainS, an end-to-end
deep learning recommendation model (DLRM) trainer that hierarchically uses HBM,
DRAM, and byte and block-addressable SCMs. In our design, we first characterize
the locality and the bandwidth requirements of data center deployed DLRM models
to achieve a desired query per second (QPS). Based on this study, we implement
memory assignment and caching strategies to map the model in these different kinds
of memories to take advantage of the large sizes in SCMs without compromising
performance. By optimizing the platform memory hierarchy, we are able to reduce
the number of nodes for training by up to 8×, saving power and cost of training while
meeting our target training performance.

• We then propose lightweight software and hardware co-design, CoACT that manages
cache, interconnect, and memory utilization for CPU and GPU integrated on the same
die running collaborative workloads. Collaborative workloads have tasks divided be-
tween different compute units. CoACT studies the collaborative pattern of application
such as workload partitioning types, percentage of data shared between CPU and GPU,
and locality, then designs cache partitioning, interconnect, and memory controller
sharing mechanisms in the hardware. It then implements an analytical model that
chooses the best mechanism for a particular application based on its collaborative
pattern. CoACT achieves 25% performance improvements on average across diverse
application domains.

1.4 Dissertation organization

The rest of this dissertation is organized as follows. In Chapter 2 we present the vital
intrinsic properties across a diverse set of applications and how we can use these properties
to build ChipAdvisor [2] and predict the best platform for application in different domains.
In Chapter 3 we discuss various server configurations in commercial data centers and
how we can build new server variants with heterogeneous memories to improve server
deployment efficiency for key-value store workloads [3, 4]. Chapter 4 presents locality
and bandwidth-aware heterogenous memory organization for recommendation systems
training to reduce the number of hosts used for training. Chapter 5 presents the design
of a collaborative pattern-based cache, memory, and interconnect sharing strategies for
an integrated heterogeneous system with CPU and GPU. In Chapter 6 we conclude the
dissertation.

All the work proposed in the dissertation is done in collaboration with Prof. Valeria

5

Bertacco, Prof. Todd Austin, Tarunesh Verma, Yichen Yang, Vaibhav Gogte from the
University of Michigan, and Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Paul Johnson, and
Ehsan K. Ardestani from Meta, inc.

6

CHAPTER 2

Mapping Applications to Heterogeneous Compute
Platforms

While hardware accelerators provide significant performance and energy improvements
over general-purpose processors, their limited reusability incurs high design costs. It is
thus impractical to have a unique accelerator for each application. Hence, it is critical to
develop solutions that can leverage the accelerators available to the best of their capabilities
for a wide range of applications. In this paper, we note the common computation, data
access, and communication patterns of applications, and based on these patterns, we identify
significant intrinsic properties across applications. We then correlate these properties with
the unique microarchitectural properties of the compute platforms available and develop a
framework, ChipAdvisor, to predict the platform that provides the best performance and
energy efficiency for an application. We evaluate ChipAdvisor for applications from several
domains, targeting CPUs, GPUs, and FPGAs as example compute platforms. ChipAdvisor
achieves an accuracy of up to 98% in predicting the best performing platform, and 94% in
predicting the most energy-efficient one, compared to an oracle analysis, that is, one which
always selects the best platform for all applications.

2.1 Introduction

Moore’s Law and Dennard Scaling have served chip designers well in the past to achieve
faster and lower energy general-purpose computing. The slowdown of these trends has led
to the search for alternative solutions to continue the performance and energy improvement
in new computing systems. Currently, the most promising solutions are application-specific
architectures (accelerators), which target narrow application domains to achieve performance
gains and energy efficiencies through specializations based on applications’ characteristics.
These explorations have been very successful, delivering high performance over a diverse set

7

0

2

4

6

32 512

Sp
ee

d
u

p
 o

ve
r

C
P

U

CNN data size

GPU FPGA

FPGA

GPU

(a)

0

1

2

3

Opt 1 Opt 2

Sp
ee

d
u

p
 o

ve
r

C
P

U

FFT optimizations

GPU FPGA

FPGA

GPU

(b)

0

0.5

1

1.5

2

Algo_1 Algo_2

Sp
ee

d
u

p
 o

ve
r

C
P

U

CPU GPU

GPU

CPU

BFS algorithm types

(c)
Figure 2.1: (a) CNN’s execution time with two data sizes. (b) FFT’s execution time with different
FPGA optimizations. (c) BFS’s execution time with two different algorithms (code structure). The
best target platform selections are shown on top of the graph.

of applications. Nevertheless, because these solutions are tailored to specific applications,
they cannot be deployed in accelerating other applications, necessitating high design costs.
Hence, it is impractical to have a one-to-one mapping of applications to accelerators.

On the other hand, applications, while they seem distinct from each other, share common
computation, communication, and data access patterns [5, 6]. A practical approach to
accelerator design is to build a small set of accelerators, where each accelerator is optimized
for a specific pattern, and together they cover wide application domains. The feasibility
of this approach has led accelerator design efforts to shift to programmable/reconfigurable
architectures based on the common patterns in applications. Going forward, systems are
going to embrace existing compute platforms, such as CPUs and GPUs, and programmable
accelerators. In such systems, the benefit of custom architectures cannot be unlocked
unless we design solutions that can leverage the compute platforms/accelerators available
to the best of their capabilities for multiple applications. This is achieved by providing
techniques that can correctly choose where an application should be mapped given a set
of platforms/accelerators. This choice is profoundly influenced not just by the type of
application but also by the nature of the input, choice of algorithm for a particular application,
detailed micro-architecture of the platforms, and implementation of the applications onto
the platforms. Figure 2.1 demonstrates how best target selection changes with different
parameters. As a result, the process of mapping becomes intricate and time consuming
for end users. Hence, it is crucial to design frameworks that can quickly identify the best
platform for a given application.

In this work, we undertake the challenge of automatically mapping applications to
reusable compute platforms. We first characterize the computation, communication, and
data access patterns of common application kernels [5, 7] to discover which computation

8

components can best serve efficient application kernel execution. We then identify key traits
that differentiate the execution characteristics of these kernels, and we define quantitative
metrics that are intrinsic, platform-independent properties of applications to evaluate each
trait. We next map each kernel to three distinct compute units: CPU, GPU, and FPGA.
Using the correlation between the kernel’s performance and energy usage on each target and
our application metrics, we develop a novel tool, ChipAdvisor, to predict where applications
should be mapped based on machine learning approaches. Figure 2.2 presents an outline of
the mapping process, highlighting our contributions to it, including the analytical predictive
model and the optimized mapping to existing platforms. ChipAdvisor aids with design
space exploration of an application’s performance and energy usage on multiple compute
platforms easily and quickly by just measuring its intrinsic properties. It guides users in
understanding which platform to use for an application, to examine the benefit we get from
a platform, and to check if our performance requirements are met by these platforms.

In summary, we make the following contributions:

• We characterize the intrinsic, platform-independent properties of a range of applica-
tions by analyzing the execution of several diverse kernels on CPU, GPU, and FPGA
targets.

• We develop a novel predictive model using decision-tree algorithms with AdaBoost.
Given a set of compute units and the measured intrinsic properties of an application,
the model predicts which platform provides the best performance and energy efficiency,
and estimates performance for an application.

• To evaluate ChipAdvisor, we deployed it on several applications, predicted their best
target platform, and estimated performance and found the accuracy to be 98% and
94% when targeting performance and energy, respectively (compared to an expert
programmer), while remaining agnostic to the domain of applications.

2.2 Background and related works

Mapping applications to heterogeneous systems involves running target applications on all
available platforms to find the best fitting one. When doing so, the burden of exploiting
efficient mapping techniques and optimizations for an application per compute platform [8,9]
falls on the software/hardware developers. This process is time-consuming, even for expert
developers, because it requires extensive analysis on all platforms to find the optimal one.
For example, as shown in Figure 2.1 (b) for the FFT algorithm, designs with different

9

analytical

predictive

model

application

B
application

Z
…

CPU GPU FPGA
H/W

unit 1

H/W

unit 2

H/W

unit N
…

application

A

O
U

R
 C

O
N

TR
IB

U
TI

O
N

application intrinsic metrics

h/w unit characteristics

Figure 2.2: Given a set of applications and computation platforms, our proposed solution considers
the key characteristics of each application and maps it to the best fitting compute device/accelerator
to attain the best possible performance.

optimizations give different speedup on the FPGA. The number of optimizations we can
perform per platform to find the best speedup is abundant; accordingly finding the best
platform becomes difficult. To help with implementations and optimizations processes,
previous works have shown the benefits of specific platform targeted optimizations tools
[10, 11], and architectural differences of platforms, such as GPU and FPGA [12, 13].
However, these works are limited to comparing the platforms either for a small set of
applications, or targeting only a specific platform. In contrast, we study multiple platforms
with different micro-architectural properties and use a diverse set of applications.

Previous works use parallel patterns to efficiently map applications to re-configurable
fabrics [14], but focus on efficiently utilizing a single platform. Our model alternatively
predicts where to map applications by comparing the benefits of multiple platforms. [15]
map applications to a system that is comprised of GPU and FPGA, but their methods rely on
the correct annotation of parallel patterns in the code by a programmer, which is error-prone.
In contrast, our method measures intrinsic properties from profiling an application and
decides what compute unit to use without requiring the programmer to correctly annotate
the code. Recent work has shown [16] how to choose components for SOC in early design
but focuses more on the accelerators’ maximum computation capacity rather than how the
properties of applications will influence their performance on the accelerators. Alternatively,
ChipAdvisor helps to minimize the effort of deciding the best component for an application
in early design space exploration based on the characteristics of the applications.

Intrinsic properties of applications have been studied as important features to design
application-specific architectures [7, 17]. [5] shows applications that we use today, even if
they are from diverse domains, share common computation, compunction, and data access
patterns that can be generalized by a set of unique kernels. In this work, we build on these
works and identify the key intrinsic properties that give us an accurate mapping; we then
characterize the well-studied common patterns [5] using the intrinsic proprieties and build a

10

0.0
0.2
0.4
0.6
0.8
1.0

E
x
e

c
u

ti
o

n
 t
im

e

b
re

a
k
d

o
w

n

Front-End Bad Speculation Compute Memory Retring

Figure 2.3: TMAM [1] based execution time breakdown for the benchmarks reported in Table 2.4.

model that can cover most application patterns.
Previous work [18, 19] uses predictive models to find inefficiencies within the CPU,

to decide where to run applications (CPU or GPU) using hardware-specific properties. In
contrast, we use application intrinsic properties that do not depend on how applications run
on particular hardware. This enables us to map to more computational targets. Based on
this approach we build a general pattern-based design space exploration tool that works for
multiple platforms and applications, providing the best target in terms of execution time,
energy, and expected speedup/slowdown over CPU, without needing to run the application
on all platforms.

2.3 ChipAdvisor design

ChipAdvisor has two main components, intrinsic properties measurements and machine
learning-based prediction model. To develop these two components, we first studied
inefficiencies in a CPU-bound code, using representative applications, to identify significant
intrinsic properties and strategies of how to quantify them. Later, using these properties
and performance analysis on all compute platforms in our system, we build the machine
learning-based prediction model. The design process is described below.

2.3.1 Identifying inefficiencies in applications

In developing our framework, we assume a heterogeneous system where CPUs are host
units with multiple compute devices/accelerators attached to them. We consider the main
kernel of the application where the core part of the computation takes place, and evaluate
whether the CPU is the best fit for its execution, or if other platforms can outperform
the CPU. As a result, an analysis of inefficiencies based on the CPU-bound execution of
an application offers direction for choosing the best device. To this end, we deployed a
TMAM analysis [1], using the Intel VTune tool [20], of several applications with different
characteristics [7], listed in Table 2.4. A TMAM analysis utilizes micro-architectural

11

performance counters to correlate performance bottlenecks with application code. As seen
in Figure 2.3, the bottlenecks for many of the applications evaluated are due to computation
and/or memory access inefficiencies (minimal inefficiencies in the front-end parts, such
as fetching instructions and branch speculations). Using the TMAM analysis’s hardware
counter values, the most significant inefficiencies within the compute and/or memory-bound
code are shown in Table 2.1. From Table 2.1 we see that compute bound applications
suffer from insufficient computation capabilities, or they have control/data dependencies
that hinder compute unit utilization. Whereas, memory bound applications are limited
by insufficient memory bandwidth or excessive memory-access latency. These results
demonstrate that, while some applications (GEMM, STENCIL, and MD) are dominated
by compute inefficiencies, others (BFS and HMM) incline more to memory inefficiencies.
The rest of the applications manifest both compute and memory inefficiencies to a varying
degree.

Once the critical bottlenecks are identified, to determine the best platform, we consid-
ered which architectural properties of the compute platforms support optimizations such
as Parallelization, exploiting spatial and temporal data locality, to overcome the above
inefficiencies. We then studied the characteristics of applications that make them amenable
to the specific optimizations. Here note that the bottlenecks reported above are with respect
to the shortcomings of the underlying hardware, as analysis results are based on the perfor-
mance counters of a specific architecture. In other words, these are architecture-specific
manifestations of intrinsic characteristics of an application. To gather measures that help
us identify the best fitting compute unit for an application, we took the critical bottlenecks
identified above and studied what inherent characteristics of applications would create the
opportunity to overcome the bottlenecks. To illustrate with an example, when an application
runs in CPU, if the bottleneck is high memory latency due to a low cache hit rate, and if the
application has locality, then mapping the application with a platform with a larger cache
will solve the issue, whereas if the application does not have locality, then mapping it to
a platform that can better handle irregularity will give better performance. Similarly, for
the significant inefficiencies identified by TMAM analysis (in Table 2.1) we studied which
properties of applications provide an opportunity for acceleration so that we can use it as a
guide in selecting the best platform. From these, we derived a set of core properties of both
compute platforms and applications, which are responsible for efficient execution.

2.3.2 Intrinsic application properties

We identify a set of intrinsic properties to map an application to compute platforms:

12

Table 2.1: TMAM’s inefficiencies breakdown based on hardware counter

A
E

S

B
P

B
FS

FF
T

G
E

M
M

H
M

M

K
M

P

M
D

N
W

SP
M

V

SO
R

T

ST
E

N
C

IL

Comp bound* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Insufficient comp-units* ✓ ✓ ✓ ✓ ✓ ✓ ✓
deps* ✓ ✓ ✓ ✓ ✓
Mem bound+ ✓ ✓ ✓ ✓ ✓ ✓ ✓
High mem latency+ ✓ ✓ ✓ ✓ ✓
Insufficient mem bw+ ✓ ✓ ✓

’*’ shows compute related inefficiencies and ’+’ show memory inefficiencies.

2.3.2.1 Parallelism

To quantify parallelism we considered properties of both regular and irregular applications
and measured it based on the number of active elements that can be execute concurrently
given unlimited resources (the theoretical maximum parallelism). If we, for example, take
an application running a "for" loop, parallelism denotes the maximum amount of time the
loop can be unrolled. For an irregular application or nested loops with different unroll
factors, we took the average of the unroll factor. This number is collected by running the
application on CPU and counting the number of possible independent works.

parallelism =
∑

i=N
i=0 unroll_ f actori

N
(2.1)

Where N is the number of loops in the application and unroll_ f actori is the maximum times
loop i can be unrolled.

2.3.2.2 Synchronization/data dependencies

Applications that require synchronization should favor platforms that resolve these tasks
quickly. We measured these by counting the number of synchronization instructions an
application requires, given its theoretical maximum parallelism. For example, for an
application running a for loop, synchronization determines the number of times the threads
communicate after the loop is unrolled.

sync = #synchronization_insts (2.2)

13

Table 2.2: Resources available in compute platforms.

Hardware Props CPU GPU FPGA
Parallelism 48 3584 1518
locality 2 MB 0.144 MB 6.62 MB
Sync/data dep. Atomic insts, Barrier, Fences, Interconnects

fences,barriers, multi-kernel
Control dep. Branch Both branch Longest branch

prediction directions direction

2.3.2.3 Control dependencies

Control dependencies are a source of inefficiency if a significant portion of the single-thread
execution is delayed by them. Applications that present a lot of control dependencies are
more efficient when running on platforms that resolve dependencies faster. We quantified
this metric as the percentage of control instructions in the application’s execution. Here we
did not consider loop carried dependency instructions because these instructions are not the
algorithmic properties of the application:

cd =
#control_insts

#control_insts+#memory_insts+#compute_insts
(2.3)

2.3.2.4 Temporal locality

Temporal locality [6] can be quantified by the number of memory accesses between two
accesses to the same address, which is called reuse distance. When an application has
a short reuse distance, memory latency can be hidden by leveraging even small on-chip
storage. As the reuse distance gets longer, the size of the on-chip storage required increases.
For applications with large reuse distance, mapping to a platform with large local storage
provides better performance because it can fully exploit the application’s temporal locality.
We quantified temporal locality as:

tl =
i=log2(N)−1

∑
i=0

(reuse2(i+1)− reuse2i)∗ (log2N−1)
log2N

(2.4)

Where N is the size of the local storage in bytes and reuse2i is the number of memory
access with reuse distance 2i. The larger the value of N, the larger the temporal locality
because large local storage can extract high temporal locality. The temporal locality value tl

ranges between 0 and 1. tl gets closer to 1 when the temporal locality is high, and it is 0
when memory accesses follow a streaming pattern or are very irregular. In our analysis, we
set N to 2MB, an amount we deemed realistic for modern accelerating hardware.

14

2.3.2.5 Spatial locality

This determines the predictability of memory accesses, a trait that benefits from prefetching
and bringing larger data blocks near compute units. For applications with low spatial locality,
an ideal platform would provide a specialized memory system that accommodates irregular
memory accesses, so as to best leverage the application’s memory bandwidth. Spatial
locality depends on the application’s data types and its data accesses predictability. To
quantify it, we adopted the metric proposed in [6]:

sl =
i=∞

∑
i=0

stridei

i
(2.5)

In this equation, we measure strides in the same units as the granularity of data access
in the application. The equation generates values ranging from 0 to 1: 1 corresponds to
applications presenting contiguous memory accesses and 0 when the memory accesses in
the application do not follow any discernible stride pattern.
Resources available in the target platforms. As we see in Table 2.2, the platforms we
use exhibit specific hardware characteristics in terms of our mapping metrics. The intrinsic
properties values of the applications would prefer one hardware over another based on what
the platform can provide, which we incorporate in our model.
Completeness of the intrinsic properties identified. The properties discussed characterize
the compute and memory characteristics of most applications. Individual property values and
their combination allow us to fully differentiate applications among each other. In a sense,
the properties are a set of eigenvalues for the application’s traits: in combination, they inform
a rich set of characteristics for any application. For example, different combinations of tem-
poral and spatial locality provide varied memory accesses characteristics, such as continuous,
stride, streaming, and irregular; they even inform the degree of irregularity. Parallelism,
combined with memory characteristic, reveals if an application is more computation- or
memory-heavy. Parallelism with synchronization can characterize applications ranging from
serial to embarrassingly parallel. In conclusion, the set of properties we identified is capable
of distinguishing all the applications we considered from each other. If an application were
to arise that we could not distinguish from an existing one, based on the properties described,
we would have to identify an additional property to add to our pool.

2.3.3 Prediction model design

When working with a specific CPU’s microarchitecture, it is possible to identify performance
bottlenecks with straightforward analysis to help increase performance [21]. However, in

15

the context of heterogeneous systems, where there are multiple microarchitectures available,
grasping all the relevant traits of hardware units and matching them with the properties of
the application to be executed entails a complex relationship among many variables. Each
of the above given intrinsic parameters can take a large range of values. The combination of
the five intrinsic parameters creates a large space within which to differentiate applications.
To identify the best platform for applications in this large space, we deployed a machine
learning solution. Machine learning also facilitates the addition of new intrinsic parameters
or new compute platforms.

2.3.3.1 Training phase

The training phase of the prediction model is illustrated on the top right of Figure 2.4. We
first measured the intrinsic properties (discussed above) of the training kernels (see Table
2.4). We then measured the execution time and energy usage of the kernels on CPU, GPU,
and FPGA. Based on these measurements per application, we generated the training data.
Using these data, we trained several machine learning models as discussed in Section 2.4.3,
with our intrinsic properties’ measurements as features; the execution time and energy usage
analysis on the three platforms as output prediction targets of the model. We used the scikit-

learn machine learning library [22] to evaluate several existing machine learning algorithms
and chose the one with the best accuracy, as discussed in Section 2.4.3. This effort clearly
indicated that the regression decision-tree delivers the best results hence we adopted it to
create the prediction model. We then added ensemble learning AdaBoost with decision-tree
to increase the accuracy of prediction. The output model from the training process is a
decision-tree like the one on the left of Figure 2.4. The output from training includes all
the nodes, edges, and thresholds of the decision-tree algorithm. The decision-tree presented
in Figure 2.4 is a simplified representation of the overall relationship between the intrinsic
properties of applications and the characteristics of our target platforms. In a decision-tree
algorithm, selections are made by traversing a tree data structure from root to a leaf. The
path is selected based on thresholds at each internal node. In the context of our model design,
the internal nodes correspond to the intrinsic properties of the application and the leaves
provide the best-fitting platform.

To generate a well representative dataset of the unique application patterns and the
architecture specifications of the platforms, we analyzed the performance and energy usage
of the kernels on CPU, GPU, and FPGA using target-specific optimizations [8, 9] and varied
dataset types and sizes for each application. The target-specific optimization revealed the
maximum capacity of the platforms per application. We chose to vary the input datasets
to limit their impact on our intrinsic properties’ measurements. For example, the input

16

Parallelism

Control Sync

Temporal Spatial

GPU/
FPGA

CPU FPGAControl

CPU

CPU FPGA

GPU

>p1<p1

<c1 >c1 >s1<s1

<c2>c2

<sl2 >sl2

<sl1 >sl1

<tl1 >tl1

<tl3<tl2 >tl3

Spatial

Temporal Temporal

FPGA

>tl2

FPGA GPU/
FPGA

Performance &
energy analysis

Intrinsic prop.
measurement

Train model

Training kernels

Features Target

<par, sync,
cd, sl, tl>

<exe, energy> for
(CPU,GPU,FPGA)

Intrinsic prop.
measurement

Target
application

Run
model

1. Best platform for
performance, energy
2. Expected performance

Tr
a

in
in

g

D
ep

lo
ym

en
t

Figure 2.4: On left is a simplified decision-tree based model used for mapping applications to
CPU/GPU/FPGA. On the right is overall ChipAdvisor framework (training process done offline and
the online process for using it).

datasets of highly parallel applications, such as matrix multiplication (GEMM), have a
strong influence on the parallelism that can be attained, while the memory’s temporal and
spatial locality traits of irregular applications, such as SPMV and BFS, are directly impacted
by the input data’s sparsity.

From Figure 2.4 it can be noted that the ideal platform is selected based on different
combinations of the intrinsic properties of an application. For instance, breadth-first search
(BFS) presents a high level of parallelism and requires frequent synchronization; thus,
it provides the best performance when running on FPGA. In contrast, the low level of
parallelism and high control dependency level of applications like Knuth-Morris-Pratt
(KMP) map best to CPU. Note that the tree shown in Figure 2.4 is trained on a relatively
small set of data points (applications). As we included more applications, the tree has
become richer and more complex to accommodate the intricate relationships among the
properties. We do not show it here for reasons of readability.

2.3.3.2 Deployment phase

After the model is trained, applications are mapped onto the platforms using the process
shown on the bottom right of Figure 2.4. The mapping is completed by taking applications
as input and then measuring their intrinsic properties using the formulas described in Section
2.3.2; the intrinsic properties are then run in the model as input, traversing the tree until a
leaf node is reached. If the leaf node provides one target platform, that platform will be the
one that provides the best performance for that application. If more than one platform is

17

Table 2.3: Compute platforms - hardware specification.

CPU GPU FPGA
Model Intel Xeon Gold 6126 NVIDIA GTX 1080 TI Arria 10 GX 1150
Frequency 2.6 GHz 1.582 GHz 0.8 GHz
#cores 24 3584 1518
Memory size 256GB 11GB 8GB
Memory bandwidth 17GB/s 484GB/s 17GB/s

recommended, both are suitable candidates for optimal performance.
In this work we target CPU, GPU, and FPGA; however, we note that it is straightforward

to add other current or future application-specific platforms, by using the same methodology
we presented. To add a new platform/accelerator, one needs only to carry out the correspond-
ing performance analysis on representative kernels and conduct training to build the new
model.

2.4 Experimental evaluation

2.4.1 Evaluation setups

Compute platforms: To evaluate ChipAdvisor, we studied three compute platforms: CPU,
GPU, and FPGA, spec details listed in Table 2.3. Our baseline for evaluating ChipAdvisor
is a manual best platform selection (oracle analysis) based on extensive optimizations on
each platform, which is equivalent to an expert programmer. The oracle analysis always
selects the best platform.

Training and testing kernels: For training, we used micro-benchmarks that enabled
us to sweep one of the intrinsic properties while keeping others constant; this allowed us
to study the impact of varying an intrinsic property. In addition, we trained the model
with MachSuite [7] kernels for their varied pattern implementations presented in [5]. For
testing the validity of our model, we chose applications from different emerging application
domains. Note that the testing applications are never used for training the model. From
machine learning, we looked at kernels in recommendation systems [23] and reinforcement
learning [24], and we implemented a simplified C++ inference algorithm. For genome
sequencing, we analyzed the Smith-Waterman algorithm [25]; for n-body simulation, we
used the Barnes-Hut algorithm [26]. Finally, we also examined k-means from the Rodinia
benchmarks [27]. All these applications are summarized in Tables 2.4 and 2.5. We used two
different implementations of BFS for training and testing to evaluate our model’s dependence
on kernel implementation. For all kernels, we measured the intrinsic properties with varying

18

Table 2.4: Decision-tree training kernels.

Dwarf name Kernel footprint
(MB)

Combinational logic AES encryption (AES) 256KB-0.64
Graph traversal Breadth first search (BFS) 0.24-100
Unstructured grid Backprop (BP) 0.64-135
Spectral method Fast fourier transform (FFT) 0.06-0.4
Dense linear algebra Matrix multiplication (GEMM) 0.06-0.4
Graphical model Hidden markov model (HMM) 0.68-1
Finite state machine Knuth-Morris-Pratt (KMP) 192KB-25
N-body method Molecular dynamics (MD) 0.18-43
Map reduce Merge sort (MergeSort) 256KB-0.13
Dynamic programming Needleman-Wunsch (NW) 0.18-13
Sparse linear algebra Sparse matrix/vector mult (SPMV) 0.02-23
Structured grid STENCIL2D 0.04-20
Micro-benchmarks
Dense linear algebra DotProduct/Reducer/Irregular adder 0.09-1
Structured grid Stencil1D (STENCIL1D) 0.8-1
Finite state machine Insertion sort (InsertSort) 4KB-0.4

Table 2.5: Decision-tree testing kernels.

Domain Kernel Memory FP
Graph traversal Breadth-first search queue (BFS_q) 0.24-100
Simulation Barnes-Hut tree (BHtree)/force (BHforce) 0.02-100
Machine learning Convolutional neural network (CNN) 0.01-100
Linear algebra General matrix factorization (GMF) 0.16-30
Data mining Kmeans (KMEANS) 0.16 - 100
Machine learning Monte-carlo tree search (MCTS) 0.012-2
Machine learning Multi-layer preceptron (MLP) 0.16-100
Genomics Smith-Waterman (SW) 0.1-0.16

dataset types and sizes (see Tables 2.4 and 2.5), since these properties influence the values
of the intrinsic properties and target mappings.

We implemented kernels in C++ for CPU using OpenMP, and OpenCL for GPU and
FPGA. We followed optimisations provided in [9] for FPGA, and those in [8] for GPU to
perform target specific optimizations for the kernels.

Measuring intrinsic properties: We measured a variety of intrinsic properties to
identify the most relevant ones. To measure these properties we added counters in our
CPU-bound code for the flexibility of measuring any intrinsic property. The same metrics
could also be collected from instrumentation and profiling tools, such as pin.

19

2.4.2 Performance analysis for training kernels

We implemented the training kernels for various data types and sizes to train ChipAdvisor.
We show a snapshot of the data with comparable Memory Footprint that are representative of
application properties’ influence on mappings. Figures 2.5 and 2.6 provide the speedups for
GPU/FPGA over CPU and measured intrinsic properties of the training kernels, respectively.
For applications like dot product, reducer, and GEMM, that have high parallelism and low
temporal locality, as seen in Figure 2.6, which results in higher bandwidth requirements,
the GPU has a better speedup because it is best suited to provide these properties. But
for STENCIL and MD (applications which also require high bandwidth), because of their
high temporal locality, the FPGA can provide the bandwidth using better on-chip storage;
these applications have speed-ups close to those of GPU. Applications like merge sort,
FFT, HMM, and NW, which have irregular memory accesses, require synchronization, and
have control-flow dependencies, the FPGA provides a better speedup. Kernels like KMP

and insertion sort have low inherent parallelism; thus the single-threaded optimized CPU
performs best. From these relationships, we observe that there is a correlation between
intrinsic properties and the capabilities of the platforms.

2.4.3 Accuracy of the machine learning models

The above analysis shows that different combinations of intrinsic properties indicate differ-
ent patterns, which influence the best platform selection for kernels. To study the correlation
between applications’ intrinsic properties and platforms’ microarchitectural properties, we
used various machine learning models from the scikit-learn library [22]. We divided the
collected training data, which includes the intrinsic properties measurements and perfor-
mance analysis of all of the training kernels (see Table 2.4) in CPU, GPU, and FPGA, into
training and testing sets. To measure the accuracy of prediction, we then train the model on
the training set, which is 50%-70% of the dataset, and tested the model on how accurately it
predicts the best platform for the remaining testing set. Despite limiting the training kernels,
we used multiple datasets per application. The median results after running with randomly
selected training and testing datasets 50 times are shown in Table 2.6. Our analysis shows the
algorithms that capture the relationship best is decision-tree. This outcome is likely because
the data are nonlinear and have correlation within the training features (intrinsic properties),
creating a subtle relationship that makes SVM, KNN, and Naive Bayes less accurate. For
decision-tree, using an ensemble learning algorithm Adaboost further increased the accuracy.
We did not implement any neural nets because we have a satisfactory 98% accuracy with
the decision-tree.

20

0.1

1

10

100

Sp
ee

d
u

p
 o

ve
r

C
P

U GPU FPGA

Figure 2.5: Training kernels’ speedup over CPU. Y-axis is in log10 scale.

Parallelism Sync Control Temporal Spatial

AES 512 0 0.004 0.720 0.800

BFS 8192 10 0.282 0.304 0.329

BP 16417 1 0.000 0.619 0.672

FFT 4096 13 0.045 0.752 1.000

GEMM 16384 0 0.000 0.496 0.508

HMM 192 422 0.143 0.632 0.332

KMP 1 1 0.500 0.500 1.000

MD 4096 0 0.000 0.662 0.984

MergeSort 630 13 0.350 0.396 1.000

NW 85 3 0.150 0.418 0.999

SPMV 16384 0 0.000 0.112 0.667

STENCIL2D 32004 0 0.000 0.771 0.834

DotProduct 102400 0 0.000 0.000 1.000

Reducer 256000 0 0.000 0.000 1.000

IrregularAdd 8500 0 0.000 0.571 0.500

STENCIL1D 10000 0 0.000 0.665 0.997

InsertSort 1 1 0.250 0.294 1.000

High

Low

Figure 2.6: Values of intrinsic properties for decision-tree training.

2.4.4 Results for the testing kernels

2.4.4.1 Performance analysis on testing kernels

Figure 2.7 shows a comparison between performance gained of ChipAdvisor and oracle
analysis for the testing applications shown in Table 2.5. Note that these workloads are not
used for training the model. This figure demonstrates that ChipAdvisor selects the best
target platform with accuracy that is close to the oracle best target. These show that using
ChipAdvisor will give a higher performance (7x over CPU, oracle is 7.3x) than running
all applications on a single target (CPU, GPU, or FPGA), as a result of accurate target
platform selection, hence increasing efficient resource utilization in heterogeneous systems.

21

Table 2.6: ML algorithms accuracy for training based on intrinsic properties as features and compute
platforms (CPU/GPU/FPGA) as targets.

Algorithm NB SVM KNN Decision-t Random-f ada(DT)
Accuracy 80 88 92 95 96 98

0

2

4

6

8

10
Sp

e
ed

u
p

 o
ve

r
C

P
U

GPU FPGA Oracle ChipAdvisor

34x

Figure 2.7: Testing kernels’ speedup over CPU for GPU, FPGA, oracle (hand optimized best
selection) and ChipAdvisor.

High

Low

Parallelism Sync Control Temporal Spatial

BFS_q 10 255 0.2293 0.3663 0.4120

BHtree 25 9998 0.4482 0.6343 0.9650

BHforce 10000 0 0.0625 0.0000 0.5000

CNN 229376 0 0.0000 0.7975 0.7824

GMF 512000 0 0.0000 0.0000 1.0000

KMEANS 204800 0 0.0058 0.5524 0.9783

MCTS 5000 200 0.1250 0.0000 0.1718

MLP 16384 0 0.0000 0.4955 0.9961

SW 526 19 0.0260 0.8333 0.5010

Figure 2.8: Measured values of intrinsic properties for decision-tree testing.

Figure 2.7 also provides the speedup over CPU for GPU/FPGA and Figure 2.8 shows the
measured intrinsic properties. Similar to the analysis for the training kernel, we observe
a correlation between the best performance achieved on the compute platforms and the
intrinsic properties of the kernels. For example, applications like MCTS and SW have high
parallelism, high synchronization, and irregular memory accesses, making FPGA the best
platform because it provides high compute capabilities, fast synchronization, and because
it allows flexible implementation of local storage that handles irregularities better than the
CPU and GPU. Another example is CNN, which perform best on GPU because of its high
parallelism, regular memory accesses, and high bandwidth requirements, which are satisfied

22

Table 2.7: Comparison of kernels’ best target platform (performance analysis) vs. predictions
(ChipAdvisor), incorrect predictions highlighted.

Apps
Oracle best ChipAdvisor best Oracle ChipAdvisor

performance performance best energy best energy
BFS_q cpu cpu cpu fpga
BHtree cpu cpu cpu cpu
BHforce gpu gpu/cpu fpga fpga
CNN gpu gpu gpu gpu
GMF gpu gpu gpu gpu
KMEANS gpu gpu gpu gpu
MCTS fpga fpga fpga fpga
MLP gpu gpu fpga fpga
SW fpga fpga fpga fpga

by GPU’s architecture. Note that the results shown in Figure 2.7 and 2.8 are not the only data
points for the kernels; depending on the dataset, kernels’ intrinsic property measurements
might change which influence the best platform for it. For example, for CNN, when the
data size is medium, the bandwidth requirements of the application can be alleviated by the
application’s high temporal locality; hence the FPGA can perform as good as the GPU.

2.4.4.2 Best performing target prediction

Table 2.7 shows that ChipAdvisor accurately predicts the best target for kernels that are not
part of training. This is because each kernel we used for training belongs to unique classes
of application defined by similarities in computation, communication, and data access
patterns. ChipAdvisor predicts BFS_q and BHtree, with low parallelism and high control
flow dependency, run best on the CPU. This pattern is captured by irregular applications like
KMP and insertion sort. MCTS is predicted accurately to perform best on the FPGA because
of the high parallelism, high synchronization, and irregular accesses. This kernel’s property
correlates to the training kernels like HMM and BFS. BHforce is predicted inaccurately to
run efficiently on the CPU and GPU for medium dataset because it has moderate parallelism
that can be satisfied by both CPU and GPU. But because BHforce also has small irregularity,
it is incorrectly classified to fit best on CPU and GPU, but BHforce requires more compute
resources than a platform that handles irregularity; hence GPU is the best platform. This
error can be prevented by adding more training data, which we will explore in the future.
Prediction is done by first running the applications once on CPU to measure intrinsic
properties, followed by running the model. Prediction takes an average of 0.3 ms, therefore
this process incurs minimal overhead, making ChipAdvisor a sound tool for early design

23

BFS_q BHtree

BHforce

CNN

GMF

KMEANS

MCTS

MLP

SW

-10

0

10

20

30

40

Sp
ee

d
u

p
 o

ve
r

C
P

U

Predicted Measured

Figure 2.9: Comparison of measured and predicted performance using ChipAdvisor. Comparison is
based on the best target platform per application.

space exploration.

2.4.4.3 Approximate performance prediction

From our analysis, we learned that, although we cannot predict the exact speedup/slowdown
over CPU, we can estimate the performance with some error margin. Figure 2.9 shows a
comparison of the best measured and predicted performance; the circle’s area represents
error margin. The smaller the circle’s area, the smaller the error margin. In the figure, we
see that for most of the applications, the measured and the predicted performance overlap,
which suggests that our model can estimate expected approximate performance. This result
is promising because in early design space exploration, when trying to find the best platform
for an application, we are eager to estimate if the performance of a platform lies within a
window of speedup over CPU. For example, can we get 2x, 5x speed up and so on? The plot
shows that all except KMEANS overlap; KMEANS follows a dense linear algebra pattern,
but it also has control flow irregularity. Nevertheless, because decision-tree decides which
edge to traverse from a node based on threshold and because the control flow irregularity
is not high enough to change the decision, the accuracy is estimated with applications like
CNN. Note that the best platform is still predicted accurately because the small irregularity
is not high enough to change the prediction.

2.4.4.4 Energy analysis

To get the energy-efficient platform, we trained our model using intrinsic property measure-
ments and energy analysis of the kernels listed in Table 2.4 in CPU, GPU, and FPGA. For
energy, we achieve 94% accuracy in predicting the best platform. This accuracy is measured
by randomly selecting training and testing datasets using the training data and then by

24

0

5

10

15

20
GPU FPGA Oracle ChipAdvisor

En
er

gy
 e

ff
ic

ie
n

cy
o

ve
r

C
P

U

Figure 2.10: Testing kernels’ energy efficiency over CPU for GPU, FPGA, oracle (hand optimized
best selection) and ChipAdvisor.

performing multiple training (50 runs) and selecting the median accuracy, similar to Section
2.4.3. Prediction for applications that are not part of training is shown in Table 2.7. From the
table, we can see that ChipAdvisor predicts the most energy-efficient platform even when
the energy-efficient target is different from the best target for execution time. Figure 2.10
plots the energy efficiency of GPU and FPGA over CPU. The figure shows that ChipAdvisor
selects the most energy-efficient platform for a specific application with accuracy close to
the oracle analysis. This shows that ChipAdvisor provides higher energy efficiency than
running all applications on a single target (CPU, GPU, or FPGA). The approximation energy
number follows the same trend as the approximate performance prediction.

2.5 Conclusion

In this paper, we analyze the computation, communication, and data access characteristics in
diverse applications to identify the important intrinsic properties that make these applications
suitable for hardware acceleration. Then, based on these measured properties, we built the
framework ChipAdvisor that predicts where the application will perform best among the
available compute platforms when targeting best execution time and energy efficiency. Our
framework captures the correlation between the intrinsic properties of applications and the
microarchitecture of the compute platforms (CPU, GPU, and FPGA). By identifying the most
potent application-intrinsic properties, we can predict the best platform and approximate
performance benefit achievable from all available platforms. Our framework achieves an
accuracy of up to 98% in performance improvements and 94% in energy efficiency compared
to an oracle analysis.

25

CHAPTER 3

Optimized Deployment of Key-Value Stores Using
Heterogeneous Memories

High-performance flash-based key-value stores in data-centers utilize large amounts of
DRAM to cache hot data. However, motivated by the high cost and power consumption of
DRAM, server designs with lower DRAM per compute ratio are becoming popular. These
low-cost servers enable scale-out services by reducing server workload densities. This
results in improvements to overall service reliability, leading to a decrease in the total cost
of ownership (TCO) for scalable workloads. Nevertheless, for key-value stores with large
memory footprints, these reduced DRAM servers degrade performance due to an increase in
both IO utilization and data access latency. In this scenario, a standard practice to improve
performance for sharded databases is to reduce the number of shards per machine, which
degrades the TCO benefits of reduced DRAM low-cost servers. In this work, we explore a
practical solution to improve performance and reduce the costs and power consumption of
key-value stores running on DRAM-constrained servers by using Storage Class Memories
(SCM).

SCMs in a DIMM form factor, although slower than DRAM, are sufficiently faster than
flash when serving as a large extension to DRAM. With new technologies like Compute
Express Link (CXL) we can expand the memory capacity of servers with high bandwidth
and low latency connectivity with SCM. In this paper, we use Intel® Optane™ PMem
100 Series SCMs (DCPMM) in AppDirect mode to extend the available memory of our
existing single-socket platform deployment of RocksDB (one of the largest key-value stores
at Meta). We first designed a hybrid cache in RocksDB to harness both DRAM and SCM
hierarchically. We then characterized the performance of the hybrid cache for 3 of the
largest RocksDB use cases at Meta (ChatApp, BLOB Metadata, and Hive Cache). Our
results demonstrate that we can achieve up to 80% improvement in throughput and 20%
improvement in P95 latency over the existing small DRAM single-socket platform, while
maintaining a 43-48% cost improvement over our large DRAM dual-socket platform. To

26

the best of our knowledge, this is the first study of the DCPMM platform in a commercial
data center.

3.1 Introduction

High-performance storage servers at Meta come in two flavors. The first, 2P server, has
two sockets of compute and a large DRAM capacity, as shown in Figure 3.1a, and provides
excellent performance at the expense of high power and cost. In contrast, 1P server (Figure
3.1b), has one socket of compute and the DRAM-to-compute ratio is half of the 2P server.
The advantages of 1P server are reduced cost, power, and increased rack density [28]. For
services with a small DRAM footprint, 1P server is the obvious choice. A large number of
services at Meta fit in this category.

However, a class of workloads that may not perform adequately on a reduced DRAM
server and may not take advantage of the cost and power benefits of 1P server at Meta
are flash-based key-value stores. Many of these workloads use RocksDB [29] as their
underlying storage engine. RocksDB utilizes DRAM for caching frequently referenced
data for faster access. A low DRAM to storage capacity ratio for these workloads will
lead to high DRAM cache misses, resulting in increased flash IO pressure, longer data
access latency, and reduced overall application throughput. Flash-based key-value stores
in Meta are organized into shards. An approach to improve the performance of each shard
on DRAM constrained servers is to reduce the number of shards per server. However, this
approach can lead to an increase in the total number of servers required, lower storage
utilization per server, and dilutes the TCO benefits of the 1P server. This leaves us with the
difficult decision between 1P server, which is cost-effective while sacrificing performance,
or 2P server with outstanding performance at high cost and power. An alternative solution
that we explore in this paper is using recent Intel® Optane™ PMem 100 Series SCMs
(DCPMM) [30] to efficiently expand the volatile memory capacity for 1P server platforms.
We use SCM to build new variants of the 1P server platforms as shown in Figure 3.1c. In
1P server variants, the memory capacity of 1P server is extended by providing large SCM
DIMMs alongside DRAM on the same DDR bus attached to the CPU memory controller.

Storage Class Memory (SCM) is a technology with the properties of both DRAM and
storage. SCMs in DIMM form factor have been studied extensively in the past because of
their attractive benefits including byte-addressability, data persistence, cheaper cost/GB than
DRAM, high density, and their relatively low power consumption. This led to abundant
research focusing on the use cases of SCM as memory and persistent storage. The works
range from optimizations with varying memory hierarchy configurations [31–35], novel

27

High
DRAM hits

Less IO
utilizations

CPU

Memory
controller

IO
controller

DRAM

SSD

CPU

(a) 2P server.

Low
DRAM hits

High IO
utilizations

CPU

Memory
controller

IO
controller

DRAM SSD

(b) 1P server.

Less IO
utilizations

CPU

Memory
controller

IO
controller

DRAM
SSD

High DRAM hits
to hot data

High SCM hits
to large cold

data

SCM

(c) 1P server variant.

Figure 3.1: Server configurations with different DRAM sizes: (a) Server with 256GB memory, high
hit rate to DRAM and low IO utilization (b) Server with reduced (64GB) memory, lower DRAM
hit rate and increased in IO utilization and (c) Server with reduced memory and SCM added to the
memory controller, high hit rate to DRAM & SCM due to optimized data placement, which decreases
IO utilization.

Table 3.1: Example of memory characteristics of DRAM, SCM and flash per module taken from
product specifications.

Characteristics DRAM SCM Flash
Idle read latency (ns) 75 170 85,000
Read bandwidth (GB/s) 15 2.4 1.6
Power (mW / GB) 375 98 5.7
DRAM Relative Cost per GB 1 0.38 0.017
Granularity byte addressable byte addressable blockbased
Device Capacity (GB) 32 128 2048

programming models and libraries [36–38], and file system designs [39–41] to adopt this
emerging technology. Past research was focused primarily on theoretical or simulated
systems, but the recent release of DCPMM-enabled platforms from Intel motivates studies
based on production-ready platforms [42–51]. The memory characteristics of DRAM,
DCPMM, and flash are shown in Table 3.1. Even though DCPMM has higher access latency
and lower bandwidth than DRAM, it has a much larger density, lower cost, lower power
consumption, and its access latency is two orders of magnitude lower than flash. Currently,
DCPMM modules come in 128GB, 256GB, and 512GB capacities, much larger than DRAM
that typically ranges from 4GB to 32GB in a data-center environment. Hence, we can
get a tremendously larger density with DCPMM. In addition to using DDR bus for SCM,
with recent high bandwidth and low latency IO interconnect like Compute Express Link
(CXL) [52, 53], we can expand the memory capacity of our servers with SCM without the
limitations of DDR bus. If we efficiently (cost, power, and performance) use this memory
as an extension to DRAM, this would enable us to build dense, flexible, servers with large
memory and storage, while using fewer DIMMs and lowering the total cost of ownership
(TCO).

28

Although recent works demonstrated the characteristics of SCM [42,45], the performance
gain achieved in large commercial data-centers by utilizing SCM remains unanswered. There
are open questions on how to efficiently configure DRAM and SCM to benefit large scale
service deployments in terms of cost, power and performance. Discovering the use cases
within a large scale deployment that profit from SCM has also been challenging. To address
these challenges for RocksDB, we first profiled all flashed-based KV store deployments
at Meta to identify where SCM fits in our environment. These studies revealed that we
have abundant read-dominated workloads, which focused our design efforts on better read
performance. This has also been established in previous work [54–56] where faster reads
improved overall performance for workloads serving billions of reads every second. Then,
we identified the largest memory consuming component of RocksDB, the block cache used
for serving read requests, and redesigned it to implement a hybrid tiered cache that leverages
the latency difference of DRAM and SCM. In the hybrid cache, DRAM serves as the first tier
cache accommodating frequently accessed data for fastest read access, while SCM serves
as a large second tier cache to store less frequently accessed data. Then, we implemented
cache admission and memory allocation policies that manage the data transfer between
DRAM and SCM. To evaluate the tiered cache implementations we characterize three large
production RocksDB use cases at Meta using the methods described in [57] and distilled the
data into new benchmark profiles for db_bench [58]. Our results show that we can achieve
80% improvement to throughput, 20% improvement in P95 latency, and 43-48% reduction
in cost for these workloads when we add SCM to existing server configurations. In summary,
we make the following contributions:

• We characterized real production workloads, identified the most benefiting SCM
use case in our environment, and developed new db_bench profiles for accurately
benchmarking RocksDB performance improvement.

• We designed and implemented a new hybrid tiered cache module in RocksDB that can
manage DRAM and SCM based caches hierarchically, based on the characteristics
of these memories. We implemented three admission policies for handling data
transfer between DRAM and SCM cache to efficiently utilize both memories. This
implementation enables any application that uses RocksDB as its KV Store back-end
to be able to easily use DCPMM.

• We evaluated our cache implementations on a newly released DCPMM platform, using
commercial data center workloads. We compared different DRAM/SCM size server
configurations and determined the cost, power and performance of each configuration
compared to existing production platforms.

29

• We were able to match the performance of large DRAM footprint servers using small
DRAM and additional SCM while decreasing the TCO of read dominated services in
a production environment.

The rest of the paper proceeds as follows. In Section 3.2 we provide a background of
RocksDB, the DCPMM hardware platforms, and brief description of our workloads. Sections
3.3 and 3.4 explain the designs and implementation of the hybrid cache we developed. In
Section 4.6 we explain the configurations of our systems and the experimental setup. Our
experimental evaluations and results are provided in Section 3.6. We then discuss future
directions and related works in Section 4.8 and Section 4.9 respectively, and conclude in
Section 4.10.

3.2 Background

3.2.1 RocksDB architecture

A Key-value database is a storage mechanism that uses key-value pairs to store data where the
key uniquely identifies values stored in the database. The high performance and scalability
of key-value databases promote their widespread use in large data centers [29, 59–61].
RocksDB is a log-structured-merge [62] key-value store engine developed based on the
implementation of LevelDB [59]. RocksDB is an industry standard for high performance
key-value stores [63]. At Meta RocksDB is used as the storage engine for several data
storage services.

3.2.1.1 RocksDB components and memory usage

RocksDB stores key-value pairs in a Sorted String Table (SST) format. Adjacent key-value
data in SST files are partitioned into data blocks. Other than the data block, each SST files
contains Index and Filter blocks that help to facilitate efficient lookups in the database. SST
files are organized in levels, for example, Level0 - LevelN, where each level comprises
multiple SST files. Write operations in RocksDB first go to an in-memory write buffer
residing in DRAM called the memtable. When the buffered data size in the memtable
reaches a preset size limit RocksDB flushes recent writes to SST files in the lowest level
(Level0). Similarly, when Level0 exhausts its size limit, its SST files are merged with
SST files with overlapping key-values in the next level and so on. This process is called
compaction. Data blocks, and optionally, index and filter blocks are cached (typically
uncompressed) in an in-memory component called the Block Cache that serves read requests

30

MEMORY MODE APP DIRECT MODE

APPLICATIONAPPLICATION

DRAM AS CACHE

OPTANE MEMORY

DRAM
OPTANE MEMORY

Figure 3.2: Intel® Optane™ memory operation modes overview.

from RocksDB. The size of the Block Cache is managed by global RocksDB parameters.
Reads from the database are attempted to be serviced first from the memtable, then next
from the Block Cache(s) in DRAM, and finally from the SST files if the key is not found in
memory. Further details about RocksDB are found in [29]. The largest use of memory in
RocksDB comes from the Block Cache, used for reads. Therefore, in this work we optimize
the RocksDB using SCM as volatile memory for the Block Cache.

3.2.1.2 Benchmarking RocksDB

One of the main tools to benchmark RocksDB is db_bench [58]. Db_bench allows us to
mock production RocksDB runs by providing features such as multiple databases, multiple
readers, and different key-value distributions. Recent work [57] has shown how we can
create realistic db_bench workloads from production workloads. To create evaluation
benchmarks for SCM we followed the procedures given in [57, 64].

3.2.2 Intel® Optane™ DC Persistent Memory

Intel® Optane™ DC Persistent Memory based on 3D XPoint technology [65, 66], is the
first commercially available non-volatile memory in the DIMM form factor and resides on
the same DDR bus as DRAM [30]. DCPMM provides byte-addressable access granularity
which differentiates it from similar technologies which were limited to larger block-based
accesses. This creates new opportunities for low latency SCM usage in data centers as either
a volatile memory extension to DRAM or as a low latency persistent storage media.

3.2.2.1 Operation mode overview

DCPMM can be configured to operate in one of two different modes: Memory Mode and
App Direct Mode [67]. Illustrations of the modes are shown in Figure 3.2.

In Memory Mode, as shown in Figure 3.2, the DRAM capacity is hidden from appli-
cations and serves as a cache for the most frequently accessed addresses, while DCPMM

31

capacity is exposed as a single large volatile memory region. Management of the DRAM
cache and access to the DCPMM is handled exclusively by the CPU’s memory controller.
In this mode applications have no control of where their memory allocations are physically
placed (DRAM cache or DCPMM).

In App Direct Mode, DRAM and DCPMM will be configured as two distinct memories
in the system and are exposed separately to the application and operating system. In this
case, the application and OS have full control of read and write accesses to each media. In
this mode, DCPMM can be configured as block-based storage with legacy file systems or
can be directly accessed (via DAX) by applications using memory-mapped files [68].

3.2.3 Meta RocksDB workloads

For our experiments and evaluation we chose the largest RocksDB use cases at Meta,
which demonstrate typical uses of key-value storage ranging from messaging services to
large storage for processing realtime data and metadata. Note than these are not the only
workloads that benefit from our designs. The descriptions of the services are as follows:

3.2.3.1 ChatApp

With over a billion active users, ChatApp is one of the most popular messaging applications
in the world [69]. ChatApp utilizes ZippyDB as its remote data store. ZippyDB [70] is a
distributed KV-store that implements Paxos on top of RocksDB to achieve data reliability
and persistence.

3.2.3.2 BLOB Metadata

The BLOB Metadata databases are also stored in ZippyDB and are an integral part of the
large blob storage service of Meta that serves billions of photos, videos, documents, traces,
heap dumps, and source code [71–73]. BLOB Metadata maintains the mappings between
file names, data blocks and parity blocks, and the storage nodes that hold the actual blocks.
These databases are distributed and fault-tolerant.

3.2.3.3 Hive Cache

Hive Cache is a high query throughput, low (millisecond) latency, peta-byte scale key-value
storage service built on top of RocksDB [74]. Hive Cache reads from any category of Meta’s
real-time data aggregation services [75] in real-time or from a Hadoop Distributed File
System [76] table daily.

32

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

0.1 1 10 100 1000

SS
D

la
te

nc
y

(u
s)

DR
AM

 a
nd

 S
CM

 la
te

nc
y

(n
s)

BW (MB/S/GB)

DRAM SCM SSD

(a) Sequential read

0
100

200
300
400

500
600
700

800

0
200

400
600
800

1000
1200
1400

1600

0.1 1 10 100 1000

SS
D

la
te

nc
y

(u
s)

DR
AM

 a
nd

 S
CM

 la
te

nc
y

(n
s)

BW (MB/S/GB)

DRAM SCM SSD

(b) Random read

0

200

400

600

800

1000

1200

1400

1600

0

1000

2000

3000

4000

5000

6000

0.01 1 100 10000

SS
D

la
te

nc
y

(u
s)

DR
AM

 a
nd

 S
CM

 la
te

nc
y

(n
s)

BW (MB/S/GB)

DRAM SCM SSD

(c) Sequential read-write (1:1)

0
200
400
600
800
1000
1200
1400
1600

0

1000

2000

3000

4000

5000

6000

7000

0 0 1 10 100 1000

SS
D

la
te

nc
y

(u
s)

DR
AM

 a
nd

 S
CM

 la
te

nc
y

(n
s)

BW (MB/S/GB)

DRAM SCM SSD

(d) Random read-write (1:1)

Figure 3.3: DRAM, SCM, and SSD latency and BW characteristics. x-axis in log scale.

3.2.3.4 Inventory Cache

Inventory Cache contains a diverse collection of objects that might be displayed on a content
feed [77]. It is updated rapidly and exhibits more writes than reads.

3.3 Hybrid cache design choices

3.3.1 Storage and memory characteristics

Our 1p and 2p servers are composed of DRAM memory with SSDs for storage. Our goal
is to include SCM in our server designs and evaluate its performance benefits. Before
introducing SCM into our systems, we studied the latency and bandwidth characteristics of
the three components (DRAM, SCM, and SSD). We used Intel Memory Latency Checker

33

(MLC [78]) to study DRAM and SCM characteristics and Flexible IO tester (FIO [79]) to
study SSD characteristics. For all units, we measured the latency vs BW for a single core
machine with 32 GB DRAM, 128 GB SCM, and 2TB SSD. We evaluated sequential read,
random read, sequential read-write, and random read-write with 1:1 ratio access patterns. To
study DRAM and SCM latency we used a 500MB workload and characterized latency and
bandwidth using different memory access delays to increase the BW and for SSD we used
a 500MB workload with 4KB access granularity using different queue depths to increase
the bandwidth. We observe that DRAM latency scales approximately linearly with BW and
has similar absolute latencies (75-120ns) across both sequential (Figure 3.3a) and random
(Figure 3.3b) read access patterns. Likewise, SSDs, although the latency scales are different
(100-750 µs), the latency vs BW characteristics follow the same trend for the sequential
and random read. However, for SSDs as the BW utilization increases latency increases
exponentially. Hence, optimizing the BW usage of SSDs to decrease latency will improve
overall performance for latency-sensitive applications such as RocksDB. For SCMs, we
have 190-500 ns latency for sequential access and 350-1400 ns for random access. SCMs
BW vs latency curve is also exponential, with the latency increasing exponentially, as we
utilize higher BW. SCM shows unique characteristics in that the granularity of access is a
critical factor to bandwidth. So 256B sequential access is significantly more performant
than 64B random accesses. For mixed read and write (Figure 3.3c and 3.3d), SSDs and
SCMs have much lower BW and higher latency than all read workloads. In general, each
media has a "knee of the curve" bandwidth target where it can be accessed with reasonable
latency. We want to target our usage to this ideal bandwidth for each media to maximize
system performance. It will also be beneficial to use SCMs for read-dominated workloads
because of the asymmetric read and write latencies/BW.

3.3.2 The challenges of SCM deployment

The first challenge of introducing SCM in RocksDB is identifying which of its components
to map to SCM. We chose the uncompressed block cache because it has the largest memory
usage in our RocksDB workloads and because our studies reveal that a number of our
production workloads, which are read-dominated, benefit from optimizing read operations
by block cache extension. We also focused on the uncompressed block cache instead of
the compressed ones, so that we can minimize CPU utilization increase when performing
compression/decompression. This allowed us to increase the size of SCM (block cache)
without requiring additional CPU resources. We also chose block cache over memtable
because SCM provides better read bandwidth than writes, hence helping our read-demanding

34

0

0.5

1

1.5

2

32 - 64 32 - 128 32 - 256

O
p

ti
m

iz
ed

 A
p

p
-d

ir
ec

t
th

ro
u

gh
p

u
t

 r
el

at
iv

e
to

M

em
o

ry
 m

o
d

e

DRAM (GB) - SCM(GB)

(a)

0

0.5

1

32 - 64 32 - 128 32 - 256

A
p

p
-d

ir
ec

t
 P

9
5

 la
te

n
cy

re

la
ti

ve
 t

o
 M

em
o

ry
 m

o
d

e

DRAM (GB) - SCM(GB)

(b)

Figure 3.4: Throughput and latency comparison for memory mode and our optimized hybrid-cache
in app-direct mode for ChatApp.

0

0.5

1

1.5

2

64 128 256

D
R

A
M

 b
lo

ck
 c

ac
h

e
th

ro
u

gh
p

u
t

re
la

ti
ve

 t
o

 S
C

M

b
lo

ck
 c

ac
h

e

Block cache size

(a)

0

0.5

1

1.5

2

32 - 64 32 - 128 32 - 256

O
p

ti
m

iz
ed

 A
p

p
-d

ir
ec

t
th

ro
u

gh
p

u
t

re
la

ti
ve

 t
o

 n
ai

ve

SC
M

 b
lo

ck
 c

ac
h

e

DRAM (GB) - SCM(GB)

(b)

Figure 3.5: Throughput of ChatApp for DRAM vs SCM block cache (a) and for Naive SCM vs
optimized hybrid-cache (b).

workloads. We then expanded the block cache size by utilizing SCM as volatile memory.
We chose this approach because extending the memory capacity while reducing the size
of DRAM and the cost of our servers is the primary goal. Although we can benefit from
persisting block cache and memtable in SCM for fast cache warmup and fast write access,
we left this for future work.

The next challenge is, how we should configure SCM to get the best performance.
We have the options of using memory mode, that does not require software architecture
changes or app-direct mode that necessitates modification in RocksDB but provides control
of DRAM and SCM usage. Figure 3.4 demonstrates how memory-mode compares to our
optimized app-direct mode. Optimized app-direct mode with various DRAM and SCM
sizes, renders 20-60% throughput improvement and 14-49% lower latency compared with
memory mode. This insight supports that our optimized implementation has a better caching
mechanism than memory mode, hence we focused our analysis on app-direct mode.

With app-direct we can manage the allocation of RocksDB’s components (memtable,
data, filter, and index blocks) to DRAM or SCM. But since we know the data access latency

35

0

0.5

1

1.5

2

Chatapp BLOB
Metadata

Hive
Cache

Inventory
Cache

DB
 re

ad
/w

rit
e

ra
tio

(a) Read to write ratio to DB.

0

0.5

1

1.5

2

Chatapp BLOB
Metadata

Hive
Cache

Inventory
Cache

DB
 re

ad
/w

rit
e

ra
tio

0.5

1

1.5

2

WhatsApp Tectonic
Metadata

Laser Feed

Th
ro

ug
hp

ut
/c

os
t o

f 3
2-

25
6

re
la

tiv
e

to
 6

4
-0

(b) Key-value throughput/cost compare for large block
cache friendly workloads and Inventory Cache with
higher writes than reads.

Figure 3.6: DB read and writes and throughput/cost comparison of read dominated and write
dominated workloads.

of SCM is slower than DRAM (see Table 4.1), we have to consider its effect. We compared
the throughput of allocating the block cache to DRAM or SCM in app-direct mode in vanilla
RocksDB to understand the impact of the higher SCM access latency. As seen in Figure
3.5a, the slower SCM latency creates 13%-57% difference in throughput when we compare
DRAM based block cache to a naive SCM block cache using app-direct mode. This result
guided us to carefully utilize DRAM and SCM in our designs. In single-socket machines
such as 1P servers, we have one CPU and 32GB - 64GB DRAM capacity. Out of this
DRAM, memtable, index, and filter blocks consume 10-15 GBs. The rest of DRAM and
the additional SCM can be allocated for block cache. We compared the naive SCM block
cache implementation (all block cache allocated to SCM using app-direct) to a smarter and
optimized hybrid cache, where highly accessed data is allocated in DRAM and the least
frequently access in SCM. The results in Figure 3.5b show with optimized app-direct we
achieve up to 45% better throughput compared to a naive SCM block cache. From this, we
can determine that implementing a hybrid cache compensates for the performance loss due
to the higher SCM access latency. These results together with the high temporal locality of
our workloads (as discussed below) motivated us to investigate a hybrid cache.

3.3.3 Metrics for identifying workloads

Below we scrutinize the characteristics of our largest RocksDB workloads that guided our
hybrid cache design.
Reads and writes to DB: As we discussed earlier, prior work showed that optimizing reads
provides large impact in commercial data center workloads [54–56]. Our studies also show
that we have a large number of read-dominated workloads, therefore optimizing the block

36

cache, used for storing data for fast read access, will benefit a number of our workloads. In
RocksDB, when a key is updated in memtable it will be invalid in the block cache. Hence,
if the workload has more write queries than reads, then the data in the cache will become
stale. Note that write-dominated workloads will not be affected by our hybrid cache designs
because we did not reduce any DRAM buffer (memtable) in the write path. In our studies,
we profiled deployed RocksDB workloads for 24 hours using an internal metrics collection
tool to comprehend the read and write characteristics. Figure 3.6a shows the workloads
described in Section 3.3.1 reads more bytes from the DB than it writes. To contrast, we
evaluated one of our write-dominated workloads, Inventory Cache, also seen in Figure 3.6a.
In Figure 3.6b, we calculated the throughput per cost of 1P server variants with 32 GB
DRAM and 256 GB SCM capacity normalized to throughput/cost of 1P server with 64
GB DRAM capacity. The throughput/cost improvement of Inventory Cache for our largest
DRAM-SCM system cannot offset the additional cost due of SCM. Hence, we focus on
exporting read-dominated workloads to our hybrid systems.
Key-value temporal locality: Locality determines the cacheability of block data given a
limited cache size. A hybrid cache with a small DRAM size will only benefit us if we have
a high temporal locality in the workloads. In this case, significant access to the block cache
will come from the DRAM cache, and SCM will hold the bulk of less frequently accessed
blocks. We used RocksDB trace analyzer [64] to investigate up to 24 hours query statistics
of workloads running on production 2P server and evaluate locality as the distribution of
the total database access counts to the total keys accessed per database. Figure 3.7a shows
that our workloads possess a power-law relationship [80] between the number of key-value
pair access counts and the number of keys accessed. We can observe in the figure that 10%
of the key-value pairs carry ~50% of the key-value accesses. This makes a hybrid cache
design with small DRAM practical for deployment.
Workload cache utilization: For workloads even with high key-value access locality per
database, factors such as reuse distance (number of data access between accessing similar
keys) and cache pollution from sharing block cache among multiple shards within a workload
can hinder usage of block cache. While improving workloads for better cache utilization is
outside of the scope of our project, we studied the current cache utilization of our workloads
to understand if a large SCM block cache will give us performance benefits. High block
cache hit rate and high read to write ratio in the block cache show the workload is effectively
using the caching mechanism. Another circumstance to consider is, despite high key-value
locality, if frequently accessed blocks are written to repeatedly then the data will live in the
memtable. Here, the workload will not benefit from optimizing the block cache. To study
this factor, we looked at the percentage of database accesses that are served from block

37

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

%
 a

cc
es

s c
ou

nt

% of accessed keys

ChatApp BLOB Metadata Hive Cache

(a) Key-value locality.

0

25

50

75

100

0

0.5

1

ChatApp BLOB Metadata Hive Cache

Ca
ch

e
re

ad
/w

rit
e

Ca
ch

e
hi

t r
at

e

Cache hit rate Cache read/write
180

(b) Cache hit and read/write ratio.

0

0.25

0.5

0.75

1

Chatapp BLOB
Metadata

Hive Cache

To
ta

l r
ea

d
ac

ce
ss

es

Cache access Memtable access

(c) Cache and memtable accesses.

Figure 3.7: Characteristics of ChatApp, BLOB Metadata, and Hive Cache. (a) Key-value access
locality shows power-law distribution. (b) Workloads have high cache hit rate and are performing
more read that write to the cache. (c) Workloads have more cache access than memtable.

cache and memtable and chose workloads with dominating block cache accesses. Figure
3.7b shows the cache hit rate and read/write ratio of the cache. We can observe from the
figure that all workloads have a cache hit rate >90% and have more reads to the cache than
writes. Figure 3.7c shows that all workloads have more access to cache than memtable.
DB and cache sizes: The desirable DRAM and SCM cache sizes required to capture
workload’s locality is proportional to the size of the DB. Workloads with high key-value
locality and large DB sizes can achieve a high cache hit rate with limited cache sizes. But as
the locality decreases for large DB sizes, the required cache sizes will grow. In the extreme
case of random key-value accesses, all blocks will have similar heat, diluting the value of the
DRAM cache and reducing overall hybrid cache performance asymptotically toward that of
the SCM-only block cache. For small DBs, locality might not play a significant role because
the majority of the DB accesses fit in a small cache. Such types of workloads will not be
severely affected by DRAM size reduction, and choosing the 1P server variants with large
SCM capacity will be a waste of resources. In our studies, after looking at various workloads
in production, we choose our hybrid DRAM-SCM cache configuration to accommodate

38

DRAM SCM

Block cache

Memtables

Index, filter
blocks

Block cache

Log

Flash

SST files

(a) Memory allocation of
RocksDB components.

KV pair 1 KV pair 2 KV pair N

(b) Data block structure.

Key1 Block Meta Refs

Key2 Block Meta Refs

LRU lists

Hashtable

Helper

functions

Key1 Block Meta Refs

Key2 Block Meta Refs

LRU lists

Hashtable

Hybrid cache
configs

Cache admission
policies

Block cache operations
management

Helper

functions

Configs Configs

Block cache lists

SCM cacheDRAM cache

(c) Hybrid tier cache component and architecture.

Figure 3.8: RocksDB components and memory allocation.

several workloads with larger DB sizes (∼2TB total KVstorage per server).

3.4 DRAM-SCM hybrid cache module

In our RocksDB deployment, we placed the memtables, index blocks, and filter blocks in
DRAM. We then designed a new hybrid cache module that allocates the block cache in
DRAM and SCM. The database SST files and logs are located in Flash. The overview of
RocksDB components allocation in the memory system is shown in Figure 3.8a. Our goal in
designing the new hybrid cache module is to utilize DRAM and SCM hierarchically based
on their read access latency and bandwidth characteristics. In our design, we aim to place hot
blocks in DRAM for the lowest latency data access, and colder blocks in SCM as a second
tier. The dense SCM based hybrid block cache provides a larger effective capacity than
practical with DRAM alone leading to higher cache hit rates. This dramatically decreases
IO bandwidth requirements to the SST files on slower underlying flash media.

The block cache is an integral data structure that is completely managed by RocksDB.
Similarly, in our implementations, the new hybrid cache module is fully managed by
RocksDB. This module then is an interface between RocksDB and the DRAM and SCM
block caches, and fully manages the caches’ operations. The overall architecture of the
hybrid cache is shown in Figure 3.8c. The details of its internal components are as follows:

3.4.1 Block cache lists

The hybrid cache is a new top-level module in RocksDB that maintains a list of underlying
block caches in different tiers. The list of caches are extended from the existing RocksDB

39

block cache with LRU replacement policy. Note that in our implementations we have
DRAM and SCM cache, but the module can manage more than these two caches such as
multiple DRAM and SCM caches in a complex hierarchy.

3.4.1.1 Block cache architecture and components

The internal structures of DRAM and SCM caches, which are both derived from the block
cache, are shown in Figure 3.8c. The block cache storage is divided into cache entries and
tracked in a hashtable. Each cache entry holds a key, data block, metadata such as key size,
hash, current cache usage, and a reference count of the cache entry outside of the block
cache. The data block is composed of multiple key-value pairs as shown in Figure 3.8b.
Binary searches are performed to find a key-value pair in a data block. The data block size
is configurable in RocksDB. In our case, the optimal size was 16KB. As the number of
index blocks decreases we can increase the data block size. As a result, with 16KB we were
able to reduce the number of index blocks making room for data blocks within our limited
DRAM capacity. Every block cache has configs that are configured externally. This includes
size, a threshold for moving data, a pointer to all other caches for data movement, and the
memory allocator for the cache. The cache maintains an LRU list that tracks cache entries
in order from most to least recently used. The helper functions are used for incrementing
references, checking against the reference threshold, transferring blocks from one cache
to another, checking size limits, and so on. For the components listed above we extended
and modified RocksDB to support tiered structure, different kinds of admission policies and
we designed new methodologies to enable data movement between different caches and to
support memory allocation to different memory types.

3.4.1.2 Data access in the block cache

A block is accessed by a number of external components to the block cache, such as multiple
reader clients of the RocksDB database. The number of external referencers is tracked by
the reference count. Mapping to a block is created when it is referenced externally, this
will increment the reference count. Whereas when the referencer no longer needs a block,
mapping is released, and the reference count is decremented. If a block has zero external
references, it will be in the hashtable and tracked by the LRU list. If a block gets referenced
again, then it will be removed from the LRU list. Note that in the LRU list, newly released
blocks with no external references are on the top of the LRU list as the most recently used
blocks, and when blocks are evicted, the bottom least recently used blocks are evicted
first. The block cache is used for read-only data, hence it doesn’t deal with any dirty data

40

management. Therefore, when transferring data between DRAM and SCM we do not have
to deal with dirty data.

3.4.2 Cache admission policies

Identifying and retaining blocks in DRAM/SCM based on their access frequencies requires
proactive management of data transfer between DRAM, SCM, and flash. Hence, we
developed the following block cache admission policies.

3.4.2.1 DRAM first admission policy

In this admission policy, new blocks read from flash are first inserted into the hashtable
of the DRAM cache. The block cache data structures are size limited. Hence when the
size of the blocks allocated in the DRAM cache exceeds the size limits, the oldest entries
tracked by the DRAM LRU list are moved to the next tier cache (SCM cache) by the data
mover function of the DRAM cache, using the SCM cache’s memory allocator. On lookups,
both the DRAM and SCM caches are searched until the cache block is found. If it is not
found, it will initiate a flash read. Similar to the DRAM cache when the capacity of the
SCM cache exceeds the limit, the oldest entries in the LRU list of the SCM cache are freed
to accommodate new cache blocks evicted from the DRAM cache.

3.4.2.2 SCM first admission policy

In this admission policy, new blocks read from flash are first inserted in the hashtable of
the SCM cache. Unlike the DRAM first admission policy, this policy has a configurable
threshold for moving data from the SCM cache to the DRAM cache. When the external
references of cache entries in the SCM cache surpasses the reference threshold, blocks are
considered to be hot and will be migrated to the DRAM cache for faster access. The data
movement, in this case, is handled by the data mover function of the SCM cache. When the
capacity of both the DRAM and SCM caches are full, the oldest LRU blocks are evicted
from both caches. In the DRAM cache, LRU entries are moved back to the SCM cache,
whereas in the SCM cache, the LRU entries are freed to accommodate new block insertions.
On lookup, both the DRAM and SCM caches are searched until the cache block is found.

3.4.2.3 Bidirectional admission policy

In Bidirectional admission policy, similar to the DRAM first admission policy, new data
blocks are inserted into the DRAM cache. As the capacity of DRAM and SCM cache reach

41

the limit, the oldest LRU entries are evicted to SCM cache from the DRAM cache and are
freed for the case of SCM cache. The difference between DRAM-first and Bidirectional
cache is, after the oldest LRU entries are evicted from DRAM to SCM cache, if the external
reference to an entry surpasses a preset threshold it is transferred back to the DRAM cache.
This property allows us to re-capture fast access performance for blocks with inconsistent
temporal access patterns.

In the hybrid cache, we can set the three of the admission policies or we can easily
extend a new policy by configuring how to insert, lookup, and move data in the list of block
caches. These configs are global parameters in the top-level hybrid cache and are used by
the block cache operations manager and list of block caches. Optionally the thresholds for
moving data in SCM first and Bidirectional policies can be set to change values based on
the current usage of the caches. But in our experiments, we didn’t see benefit with changing
values. We also performed an analysis with different sizes of cache thresholds and we show
the optimal threshold for SCM first and Bidirectional in our evaluations.

3.4.3 Hybrid cache configs

The hybrid cache configurations are set outside of the module by RocksDB, and include
pointers to configs of all block caches, the number of block caches, ids, tier numbers of the
caches, and admission policy to use. Configs are used during instantiation and at run time to
manage database operations.

3.4.4 Block cache operation management

This unit redirects external RocksDB operations such as insert, lookup, update, and so on to
the target block cache based on the admission policy. For example, it decides if an incoming
insert request should go to the DRAM or SCM cache.

3.5 Systems setup and implementation

3.5.1 DRAM-SCM cache implementation

We configured Intel DCPMMs in App Direct mode using the IPMCTL [81] tool in our
experiments. We used Linux Kernel 5.2 that brings support for a volatile use of DCPMM by
configuring a hot-pluggable memory region called KMEM DAX. We then used NDCTL
6.7 [82], a utility for managing SCM in the Linux Kernel, to create namespaces in DCPMM

42

in devdax mode. This mode provides direct access to DCPMM and is faster than filesystem-
based access. We then used DAXCTL [82] utility for configuring DCPMM in system-ram
mode so that DCPMM will be available in its own volatile memory NUMA node. To
implement a hybrid DRAM-SCM cache we used memkind library [83], which enables
partitioning of the heap between multiple kinds of memories such as DRAM and SCM in
the application space. After the system is configured with DRAM and DCPMM memory
types, we modified RocksDB block cache to take two types of memory allocators using
memkind. We use MEM_KIND_DAX_KMEM kind for SCM cache and a regular memory
allocator for DRAM. The overview of our implementation is shown in Figure 3.9.

3.5.2 Evaluation hardware description

In our evaluations we used a Intel Wolf Pass [84] based system, utilizing 2 CPU sockets
populated with Intel Cascade Lake processors [85]. Each CPU has 2 memory controllers
with 3 channels each, and 2 DIMM slots per channel, for a total of 24 DIMM slots. DIMM
slots were populated by default in a 2-2-2 configuration, with 12 total 16GB PC4-23400 ECC

Registered DDR4 DRAM DIMMs and 12 total 128GB Intel® Optane™ PMem 100 DIMMs.
This makes up a total of 192GB DRAM and 1.5TB of SCM per system. Backing storage
for the RocksDB database was a Samsung 983 DCT M.2 SSD. The detailed specification is
listed in Table 5.1.

3.5.3 Meta server designs

The Meta platforms used for TCO analysis are the 2P server platform based on the OCP
Tioga Pass specification [86], and the 1P server platform based on the OCP Twin Lakes
specification [87]. In addition, we propose several 1P server variants utilizing differing
capacities of DRAM and SCM. The detailed specifications and relative costs of these
platforms compared to the baseline 2P server platform are listed in Table 3.3 and 3.4.

A
p

p
lic

at
io

n

Libmemkind MEMKIND_DAX_KMEMMEMKIND_DEFAULT

RocksDB DRAM cache SCM cache
MEM allocator MEM allocator

DCPMM

H
ar

d
w

ar
e

DRAMCPU

Figure 3.9: DRAM-SCM cache configuration with libmemkind.

43

Table 3.2: System setup: hardware specs and software configs.

Specification System config

Application version RocksDB 6.10
OS CentOS-8

Linux kernel version 5.2.9
CPU model Intel(R) Xeon(R) Gold 6252 @ 2.10GHz

Socket/Cores per socket 2/24
Threads total 96

L1I/L1D cache 32 KB
L2/L3 cache 1 MB/35.75 MB

Memory controllers total 4
Channels per controller 3

Slots per channel 2
DRAM size DDR4 192 GB (16 GB X 12 DIMM slots)
SCM size DDR-T 1.5 TB (128 GB X 12 DIMM slots)

SSD model Samsung 983 DCT M.2 NVMe SSD
SSD size/filesystem 2 TB / xfs

Table 3.3: OCP Tioga Pass (2P server) and OCP Twin Lakes Platforms (1P server) details.

Specification OCP Tioga Pass Config OCP Twin Lakes Config

CPU model Xeon(R) Gold 6138 Xeon(R) D-2191
Sockets/cores per socket 2/20 1/18

Threads total 80 36
Memory controllers total 4 2
Channels per controller 3 4

DRAM size DDR4 256 GB DDR4 64 GB
SSD size 2 TB 2 TB

Platform costs are calculated based on current OCP solution provider data [88, 89] and
DCPMM cost relative to DRAM provided in [90, 91]. The relative cost of DRAM and
DCPMM are predicted to maintain similar trends over time [90]. We calculated the cost by
adding the cost of individual modules. For DRAM and SCM, we used 16GB and 128GB
modules, respectively. In the TCO calculations although introducing SCM adds additional
power cost, when we consider the overall power of the system including CPU, NIC, and
SSD, the increase of power even for our largest 1P server becomes minimal. We have a
power budget for a rack of servers with some power slack and the slight rise in power for
SCM is sufficiently below our rack power budget.

44

Table 3.4: DRAM and SCM cache in server configuration and memory sizes used block cache in our
experiments.

Configuration 2P serv. 1P serv. 64-128 32-128 32-256

DRAM size 256 64 64 32 32
SCM size 0 0 128 128 256

DRAM Block cache size 150 40 40 12 12
SCM Block cache size 0 0 100 100 200

Other Rocksdb components 10-15 10 -15 10 - 15 10 -15 10 -15
Codebase 5 5 5 5 5

2P rel. cost 1 0.43 0.5 0.46 0.53

3.5.4 Cache and memory configurations

To experiment with SCM benefits when added to existing configurations we examined server
configurations with different sizes of DRAM and SCM. The configurations we used are
shown in Table 3.4. Our experiments verified that 1P server has significant performance loss
compared to 2P server. The prominent questions here are how much benefit can we achieve
by adding SCM to 1P servers, and can we still maintain the TCO benefits of 1P server

platform. Hence we used the 1P server with 64 DRAM and no SCM as the baseline for our
evaluations. We then evaluated how much performance we can gain by adding 128 GB SCM
to the baseline. Since we are interested in DRAM constrained server configurations, we
also evaluate the performance gain when we further reduce DRAM to 32 GB while adding
128 or 256 GB SCM. This gives us the four server configurations provided in Table 3.4.
Although we experimented with 64GB of SCM, as seen in Section 3.3, to understand the
performance of different SCM sizes, DCPMM is not available as a 64GB module, so we
didn’t consider it in the evaluation below. To run all of the server configurations, we limited
the memory usage of the DRAM and SCM for the workloads to the sizes given in Table 3.4.
We also use 1 CPU in our experiments because 1P servers are single-socket machines. We
aimed to maximize block cache allocation to evaluate our DRAM-SCM hybrid cache. To
do this we studied the memory usage of other components in RocksDB when it runs in our
production servers. We then subtracted these usages from total memory and assigned the
rest of the memory for the Block cache. The block cache sizes we used in our evaluations
are illustrated in Table 3.4.

3.5.5 Workload generation

To generate workloads, we first selected random sample hosts running ChatApp, BLOB
Metadata, and Hive Cache in production deployments to collect query statistics traces, being

45

careful to select leaders for use cases relying on Paxos. Note that hosts running the same
services manifest similar statistics. Then we followed the methodology in [57, 64] to model
the workloads. We also extended these methodologies [57, 64] to scale workloads to match
the production deployments. The db_bench workloads we developed mirror the following
characteristics of production RocksDB workloads.

3.5.5.1 KV-pair locality

This is characterized by fitting real workload trace profiles to a probability cumulative
function using power distributions in MATLAB [92] based on the power-law characteristics
of the workloads (see Figure 3.7a).

3.5.5.2 Value distribution

The granularity of value accessed is modeled using Pareto distribution from workload
statistics in MATLAB [93].

3.5.5.3 Query composition

The percentage of get, put, and seek quires are incorporated in the db_bench profiles.

3.5.5.4 DB, key, and value sizes

We added the average values of the number of keys per database, key, and value size from
collecting data from our production servers to create a realistic DB sizes in the db_bench
profile.

3.5.5.5 QPS

The QPS in db_bench is modeled using sine distributions [94] based on trace collected in
the production host.

3.5.5.6 Scaled db_bench profiles

After generating the workloads db_bench profile for a singe database we scaled the work-
loads by running multiple RocksDB instances, simulating the number of production shards
per workload on a single host. These shards share the same block cache. In RocksDB there
exists multiple readers and writers to the database. To imitate this property we run multiple
threads reading and writing to the set of shards in the db_bench process.

46

0

0.5

1

1.5

2

64-128 32-128 32-256

Th
ro

u
gh

p
u

t
re

la
ti

ve
 t

o
 6

4
 -

0

DRAM (GB) - SCM(GB)

DRAM only SCM only DRAM 1st SCM 1st 1 SCM 1st 2 Bidirectional

(a) Throughput comparison of admission policies.

MEMORY MODE APP DIRECT MODE

APPLICATIONAPPLICATION

DRAM AS CACHE

OPTANE MEMORY

DRAM
OPTANE MEMORY

0.5

1

1.5

2

2.5

P50 P95 P99 P50 P95 P99 P50 P95 P99

64-128 32-128 32-256

La
te

n
cy

 r
el

at
iv

e
to

 6
4

 -
0

DRAM (GB) - SCM(GB)

DRAM only SCM only DRAM 1st SCM 1st 1 SCM 1st 2 Bidirectional

4.12 4
3.21

3.19

(b) Latency comparison of admission policies.

Figure 3.10: Throughput and application read latency comparison using only DRAM for block cache,
using only SCM for block cache, and hybrid DRAM-SCM admission policies (DRAM first, SCM
first, and Bidirectional) for ChatApp using all server configurations in Table 3.4. (a) Throughput
comparisons (db operations/sec) for admission policies. Here the baseline is 64 - 0 configs. (b) P50,
P95, and P99 latencies for all admission policies and server configs compared to 64 - 0 server.

3.6 Evaluation

3.6.1 Throughput and latency comparison for admission policies

In Figure 3.10 we compare the throughput achieved for 5 different categories: DRAM
Only: The Block Cache is only allocated in DRAM. SCM Only: The Block Cache is only
allocated in SCM using app-direct mode. DRAM First: The DRAM first policy discussed
in Section 3.4. SCM First 1 and 2: The SCM first policy discussed in Section 3.4 with two
threshold values. SCM 1st 1, with threshold value of 2 and SCM 1st 2 with the optimal
threshold which is 6. Bidirectional: The Bidirectional policy discussed in Section 3.4 with
the optimal threshold value which is 4.

In Figure 3.10a, we demonstrate the throughput differences of all admission policies for
ChatApp. The results show that using only SCM for block cache provides 15% throughput

47

improvement for the 128 GB SCM configurations and 25% improvement for the 256GB
SCM compared to the baseline (a server configuration with 64GB DRAM and no SCM). If
we look at Figure 3.10b, because of latency differences between SCM and DRAM, getting
data only from SCM worsens the P50 application read latencies. Therefore we conclude
that while the default RocksDB SCM implementation may decrease flash IO utilization, it
will have a net negative impact on Meta application performance due to the 2× - 4× worse
P50 latency observed. We can also see in the figure for all the server configurations DRAM
first policy achieves the best performance. For 64 - 128 and 32 - 128 configurations, SCM
first and Bidirectional get close in throughput benefit to DRAM first, but when there is a
large block cache, like in the 32 - 256 configuration DRAM first attains the best result. This
is because, in DRAM-first, data transfer between DRAM and SCM cache only occurs once,
when DRAM cache evicts data to SCM. But in the case of SCM and Bidirectional policies,
data transfer occurs when DRAM evicts data to SCM and when hot blocks are transferred
from SCM to DRAM. This creates more bandwidth consumption across the DDR bus
resulting in performance degradation, especially for configurations with large block cache
sizes. For larger DRAM capacities, SCM first 1, SCM first 2, and Bidirectional policies have
comparable throughput because the large DRAM size reduces data evictions to SCM. But
as DRAM is reduced (in 32 -128), SCM 1st throughput falls quickly because it will move
data from SCM to DRAM with a low activation threshold. When we increase DCPMM
capacity in the 32 - 256 case, data transfer increases even for SCM 2 and Bidirectional
policies, hence the DRAM first policy is the overall performance winner. If we look at read
latencies shown in Figure 3.10b, the P50 latency remains similar for DRAM first compared
to 64 - 0 configurations. The reason for this is that P50 latencies are primarily governed by
DRAM accesses. The effect of data transfer from flash instead of SCM can be observed in
the P95 and P99 latencies, where the DRAM First policy does significantly better than other
policies and the default configuration with no SCM. BLOB Metadata and Hive Cache (not
shown here) also attain the best performance with DRAM first policy.

3.6.2 Performance comparison of DRAM first policy for all workloads

Figure 3.11 shows the throughput and latency comparison of ChatApp, BLOB Metadata,
and Hive Cache for DRAM first admission policy (the best admission policy for all
workloads) for all server configurations. As seen in the figure, our hybrid block cache
implementation provides throughput improvement for all the workloads. As seen in Figure
3.11a, 3.11b, and 3.11c throughput is increased up to 50 - 80% compared to the baseline
1P server’s 64 - 0 due to the addition of SCM. The throughput increase is correlated to

48

0

0.5

1

1.5

2

64 -128 32 -128 32 - 256

Th
ro

u
gh

p
u

t
re

la
ti

ve
 t

o
 6

4
 -

0

DRAM (GB) - SCM(GB)

(a) ChatApp: throughput com-
parison.

0

0.5

1

1.5

2

64 -128 32 -128 32 - 256

Th
ro

u
gh

p
u

t
re

la
ti

ve
 t

o
 6

4
 -

0

DRAM (GB) - SCM(GB)

(b) BLOB Metadata: throughput
comparison.

0

0.5

1

1.5

2

64 -128 32 -128 32 - 256

Th
ro

u
gh

p
u

t
re

la
ti

ve
 t

o
 6

4
 -

0

DRAM (GB) - SCM(GB)

(c) Hive Cache: throughput com-
parison.

500

600

700

800

900

0

5

10

15

20

64-0 64-128 32-128 32-256

P
9

5
, P

9
9

 L
at

en
cy

 (
u

s)

P
5

0
 L

at
en

cy
 (

u
s)

DRAM (GB) - SCM(GB)

P50 P95 P99

(d) ChatApp: latency compari-
son.

500

600

700

800

900

0

5

10

15

20

64-0 64-128 32-128 32-256

P
9

5
, P

9
9

 L
at

en
cy

 (
u

s)

P
5

0
 L

at
en

cy
 (

u
s)

DRAM (GB) - SCM(GB)

P50 P95 P99

(e) BLOB Metadata: latency com-
parison.

500

600

700

800

900

0

5

10

15

20

64-0 64-128 32-128 32-256

P
9

5
, P

9
9

 L
at

en
cy

 (
u

s)

P
5

0
 L

at
en

cy
 (

u
s)

DRAM (GB) - SCM(GB)

P50 P95 P99

(f) Hive Cache: latency compar-
ison.

Figure 3.11: Throughput and application read latency comparison for ChatApp, BLOB Metadata
and Hive Cache for DRAM first admission policy using all server configurations shown in Table 3.4.
(a,b, and c) Throughput comparisons (db operations/sec). Here the baseline is 64 - 0 configs. (d, e
and f) absolute P50, P95, and P99 latencies for all workloads and server configs.

the total size of the block cache. Note that increasing the SCM or DRAM capacity further
than 256GB will require either more DIMM slots or higher density DIMMs, with different
price/performance/reliability considerations. The size of the database also impacts locality
and the maximum throughput benefit, as discussed in Section 3.3. Because BLOB Metadata
has a larger DB size than ChatApp or Hive Cache the throughput benefit is expected to be
smaller for each configuration. Looking at application level read latency in Figure 3.11d,
3.11e, and 3.11f, we observe that P50 latency is relatively stable for ChatApp and BLOB
Metadata. While P50 latency does improve for Hive Cache, the absolute magnitude of the
improvement is less significant than the improvements to tail latency. P95 and P99 show
an overall improvement of 20% and 10% respectively for all services. The P50 latencies
primarily reflect situations where the data is obtained from DRAM. The benefit of SCM is
reflected in P95 and P99 scenarios where in one case the data is in SCM, while the default
case the data is in flash storage.

P50 Write latencies for all workloads is shown in Figure 3.12. In all cases, P50 write
latency stays similar since we are only optimizing the block cache used for reads, while
writes always go to the memtables, residing in DRAM. We see a slight increase in 64-128
configuration because, in this size of DRAM, we have an extra copy of blocks between
DRAM and SCM that increases bandwidth utilization and hence slightly increases the

49

0

2

4

6

8

10

12

ChatApp BLOB Metadata Hive Cache

P5
0

La
te

nc
y

(u
s

DRAM (GB) -SCM(GB)

64 - 0 64 - 128 32 - 128 32 - 256

Figure 3.12: P50 write latency for all workloads.

latency. P95 and P99 latency also stay similar for all configurations.

3.6.3 IO bandwidth, cache and CPU utilization

Figure 3.13 illustrates the cache hit rate, IO bandwidth, and latency improvement of DRAM
first policy for ChatApp. As seen in Figure 3.13a, the higher capacity of the block cache
(sum of DRAM and SCM cache) leads to a higher cache hit rate. We show in Figure 3.13a,
that for ChatApp the hit rate increases up to 30% and the increase is correlated to the cache
size. BLOB Metadata and Hive Cache (not shown here) also follow a similar pattern of
increasing hit rates.

Another important indicator explaining throughput gain is SSD bandwidth utilization.
As the cache hit rate increases for the server configurations with SCM it translates to less
demand for read access from the SSD, and therefore decreased IO read bandwidth. Figure
3.13b shows for ChatApp adding SCM reduces SSD read bandwidth by up to 0.8 GB/s, or
roughly 25% of the SSD’s datasheet max read bandwidth. Figure 3.13c shows the file read
latency improvement for all server configurations relative to 64 - 0. Decreased demand for
read IO bandwidth improves the P50 latency by up to 20%. Latencies at higher percentiles
stay the same because there are still scenarios where the IO queue will be saturated with
reads, which drives worst-case latency. But for the majority of the requests, latencies are
improved because of the decrease in IO bandwidth. The other workloads also show similar
patterns. Figure 3.13d shows the CPU utilization for all server configurations. We observe
that the CPU utilization increases as the block cache size increases. This is due to the
increase in CPU activity as we increase amount of data accessed with low IO wait latency
from the cache. One thing to note is, even though CPU utilization increase for our new 1P

server variants, we can still safely service the workloads with 1 CPU even in the largest 256
SCM configuration.

50

0.5

0.6

0.7

0.8

0.9

1

64 - 0 64 - 128 32 - 128 32 - 256

C
ac

h
e

h
it

 r
at

e

DRAM (GB) - SCM(GB)

(a) Cache hit rate.

0.5

1.0

1.5

2.0

64 - 0 64 - 128 32 - 128 32 - 256

SS
D

 r
ea

d
 b

an
d

w
id

th
 (

G
B

/S
)

DRAM (GB) - SCM(GB)

(b) SSD read bandwidth.

0.5

0.6

0.7

0.8

0.9

1

64 - 0 64 - 128 32 - 128 32 - 256

P
5

0
 f

ile
 r

ea
d

 la
te

n
cy

re

la
ti

ve
 t

o
 6

4
 -

0

DRAM (GB) - SCM(GB)

(c) File read latency.

20

35

50

65

64 - 0 64 - 128 32 - 128 32 - 256
IO

 w
ai

t
an

d
 C

P
U

 u
ti

liz
at

io
n

 %
DRAM (GB) - SCM(GB)

IO wait CPU utilization

(d) IO wait and CPU utilization.

Figure 3.13: Cache utilization, IO read bandwidth, IO read latency, IO wait and CPU utilization of
ChatApp for DRAM 1st admission policy.

3.6.4 Cost, performance and power

In the above sections, we aim to understand the performance achieved for different DRAM
and SCM variations of the 1P server configuration. The large capacity of SCM per DIMM
slot enables us to dramatically increase the memory capacity of the platform without
impacting the server motherboard design. As seen in Table 3.4 adding SCM increases the
cost of a server. Figure 3.14a estimates the performance per cost compared to baseline 1P

server (64 - 0) configuration. We observe in the figure that the 32 - 256 configuration gives
the best cost relative to performance across all workloads. In this configuration the 23%
cost increase over the 64 - 0 baseline produces a 50% - 80% performance improvement. To
a smaller degree the 64-128 and 32-128 configurations also provide performance-relative
cost benefits over the standard 1P server. Notable is the fact that the benefit across these
two configurations is nearly identical due to the proportional difference in DRAM cost vs.
performance increase. If future DRAM/SCM hardware designs provide additional flexibility
across capacity & pricing then we may discover new configurations which achieve even
larger TCO benefits. We show performance per watt for 1P server variants relative to 1P

server (64 - 0) in Figure 3.14b. Similarly to the performance per cost, the performance

51

0

0.5

1

1.5

64 -128 32 -128 32 - 256

Th
ro

ug
hp

ut
 /c

os
t

co
m

pa
re

d
to

 6
4

-0

DRAM (GB) - SCM(GB)

Chatapp BLOB Metadata Hive Cache

(a)

0

0.5

1

1.5

2

64 -128 32 -128 32 - 256

Th
ro

ug
hp

ut
 /w

at
t

co
m

pa
re

d
to

 6
4

-0

DRAM (GB) - SCM(GB)

Chatapp BLOB Metadata Hive Cache

(b)
Figure 3.14: Throughput/cost and throughput/watt of ChatApp, BLOB Metadata and Hive Cache
normalized to 64 - 0 1P servers throughput/cost.

benefit of adding SCM still offsets the increase in power per platform compared to 1P server

(64 - 0). We achieve 30% to 55% more performance/watt with 1P server variants, making
SCM a power optimized solutions.

In Figure 3.15, we present a throughput comparison between the 2P server and the
various 1P server configurations. The figure shows that increasing the amount of SCM
brings throughput closer to parity with the 2P server for a minimal increase in relative
cost. While the baseline 1P server (64 - 0) configuration only achieves 50 - 60% of the
performance of a 2P server, the 32 - 256 1P variant raises relative performance to 93 -
102%. By dividing the relative cost of the platforms (Table 3.4) by their relative performance
(Figure 3.15) for each workload we derive the performance-equivalent TCOs in Table 3.5.
In the case of the 32 - 256 configuration, improving 1P performance with SCM improves
the relative TCO to 0.52 - 0.57 of the 2P server. Therefore, we demonstrate that deploying
SCM configurations of 1P servers instead of 2P servers results in an overall cost savings of
43% - 48% across some of the largest RocksDB workloads at Meta.

The relative power of 1P and variants relative to 2P is shown in Figure 3.15. Adding
SCM increases power by up to 13% for the 32 - 256 1P variant compared to 1P. But because
we can improve performance by 50-80% the overall number of servers required per service
will be much less than 1P hence reducing total power consumption. To examine the power
benefits of SCM, we compared the maximum power for 2P, 1P, and 32 - 256 1P variant.
Table 3.5 shows relative power reduction of 1P and variants relative to 2P. From the table,
we can see that with SCM we can reduce the overall power requirement of services by
54%-60%. Even when we compare it with the 64-0 server, the performance gain allows us
to deploy fewer racks, hence it’s an overall power benefit. Note that the additional SCM
increases power per server, this increase in power enforces us to reduce the number of
servers per rack since we have fixed power budges per rack.

52

0

0.25

0.5

0.75

1

64 - 0 64 - 128 32 - 128 32 - 256

Th
ro

ug
hp

ut
, c

os
t a

nd
 p

ow
er

re

la
tiv

e
to

 2
P

se
rv

er

DRAM (GB) - SCM(GB)

ChatApp BLOB Metadata Hive Cache Cost Power

Figure 3.15: Throughput of 1P and its variants compared to 2P servers.

Table 3.5: Performance equivalent TCO relative to 2P.

Server types 2P server 1P server 1P (32 - 256)

Relative TCO 1.0 0.72 - 0.86 0.52 - 0.57
Relative power 1.0 0.6 - 0.82 0.4 - 0.46

Even though the performance and cost of using SCMs are impressive for the chosen
workloads, and the performance gain can be translated to other read-dominated workloads
in our environment, a discussion on whether we should have a deployment of SCMs in Meta
at scale is outside the scope of this paper. We briefly discuss some additional challenges of
mass-scale deployment:
Workloads: Section 3.3 talks about the class of applications that would benefit from SCM.
We have also identified a number of write-heavy workloads at Meta that would not benefit
from SCMs.
Reliability: Since SCMs are not widely available in the market, the reliability of SCMs is a
concern until they have been proven in mass deployments.
SKU diversification: Adding a new hardware configuration into the fleet requires consider-
ation of other costs like maintaining a separate code path and creating a new validation and
sustainability workflow. This complexity and cost will be added to the practical TCO of any
new platform deployment.

3.6.5 General takeaway

From this project, we learned three key design factors to consider for SCM deployment in
data centers.

53

1. Performance: SCMs have significantly higher accesses latency and lower bandwidth
than DRAM. We can not replace DRAM with SCM without understanding the work-
loads that are going to run on SCM. It is beneficial to understand the locality of the
workload to map highly accessed data in DRAM and low accessed data in SCM to
efficiently hide the performance differences between DRAM and SCM.

2. Cost: The cost of SCM drives the deployment of SCM. The cost of SCM should scale
with the cost of DRAM to be an alternative solution to DRAM. We should always
evaluate the performance of our workload for DRAM and SCM and compare how
the cost difference gives us TCO benefits. For example, as shown in Figure 3.6b, for
inventory Cache workload, though we get added performance with SCM when we
compare the performance per cost, the advantage of adding SCM becomes minimum.

3. SKU: In general, it’s favorable for deployment at scale to limit the number of different
hardware platforms. While it would be possible to design a new platform with SCM
specifically tailored to one workload and fine-tune performance per workload to get
higher performance, it would not likely be practical due to constraints on placement,
disaster recovery, and breaking fungibility with previous hardware generations. Hence,
it is important to consider SCM benefits across the sum of all workloads and impact
to global hardware deployment.

This is a work of a particular Systems research group within Meta. Even though it shows
benefits in performance and cost for SCMs, the hardware roadmap of Meta is determined by
a large number of complex factors. Therefore the results and use cases illustrated in this
paper may not necessarily lead to vast deployment of SCM within the Meta infrastructure.

3.7 Discussion and future work

In the previous section, we demonstrated KV Stores based on RocksDB are examples of the
potential advantages of SCM in a large data center. In the future, we want to experiment
with extending the memory capacity of other large memory footprint workloads using
SCM. Some candidate large-scale workloads that will profit from large memory capacity
are Memcached [95, 96] and graph cache [56]. Memcached is a distributed in-memory
key-value store deployed in large data centers. Optimizing Memcached to utilize SCM will
enable an extension of memory beyond the capacity of DRAM. Graph cache is a distributed
read optimized storage for social graphs that exploits memory for graph structure-aware
caching. These workloads are read-dominated and have random memory accesses that

54

can benefit from the high density and byte-addressable features of SCM. Although in this
paper we did not leverage the persistent capability of SCM for RocksDB uncompressed
block cache, in the future we want to study the benefits of fast persistent SCM for the
memtable and SST files. We also want to explore with SCM is its performance via emerging
connectivity technology such as Compute Express Link (CXL) [52]. The workloads we
analyzed in this paper are more latency-bound than memory bandwidth-bound, but for
high memory bandwidth-demanding services, sharing DRAM and SCM on the same bus
will create interference. In such cases having dedicated SCM access via CXL will avoid
contention, but at the same time will potentially increase data access latency, requiring
careful design consideration.

3.8 Related work

Performance analysis and characterization in DCPMM: Recent studies proved the
potential of commercially available Intel® Optane™ memory for various application do-
mains. [46, 97] has determined the performance improvement of DCPMM in memory and
app-Direct modes for graph applications. [47, 48] evaluated the performance of DCPMM
platform as volatile memory compared to DRAM for HPC applications. DCPMM perfor-
mance for database systems were shown in [43,98–101] both as a memory extension and for
persisting data. Works such as [42,45,51,102] also shows the characteristics and evaluations
of DCPMM when working alone or alongside of DRAM. Specifically, [45] has identified
the deviation of DCPMM characteristics from earlier simulation assumptions. While these
works shed light on the usage of DCPMM for data-intensive applications, in our work,
based on the memory characteristic findings of these work, we analyzed the performance of
DCPMM for large data data-center production workloads. Our work focus on utilizing the
DCPMM platform to the best of its capability and study its possible usage as a cost-effective
memory extension for future data-center system designs.
Hybrid DRAM-SCM systems: Previous works studied hybrid DRAM-SCM systems to
understand how we can utilize these memories with different characteristics together, and
how they influence the existing system and software designs. [103–106] have shown the
need for a redesign of existing key-value stores and database systems to take into account
the access latency differences between DRAM and SCM. Similarly, by noting the latency
differences in these memories, we carefully place hot blocks in DRAM and colder blocks
in SCM in our implementations. When deploying hybrid memory, another question that
arises is, how to manage data placement between DRAM and SCM. In these aspects, [107]
demonstrated efficient page migration between DRAM and SCM based on the memory

55

access pattern observed in the memory controller. In addition, [108–116] perform data/page
transfer by profiling and tracking information such as memory access patterns, read/write
intensity to a page/data, resource utilization by workloads, and memory features of DRAM
and SCM, in hardware, OS, and application level. These works aim to generalize usage of
DRAM and SCM to various workloads without involving the application developer, hence
requiring hardware and software monitoring that is transparent to the application developers.
But in our case, the RocksDB application-level structure exposes separate reads and writes
paths and frequency of access of data block. These motivated us to implement our designs
in software without requiring any additional overhead in the OS and hardware.
RocksDB performance improvements: [117] demonstrated how to decrease the memory
footprint of MyRocks, which is built on top of RocksDB, using block access based non
volatile memory (NVM) by implementing secondary block cache. While their methods also
decrease DRAM size required in the system, the block-based nature of NVM increases read
amplification. This is because, the key-value size in RocksDB is significantly less than the
size of the block, whereas in our methods, using byte addressable SCM avoids such issues.

3.9 Conclusion

The increasing cost of DRAM has influenced data centers to design servers with lower
DRAM per compute ratio. These servers have shown to decrease the TCO for scalable
workloads. Nevertheless, this type of system design diminishes the performance of large
memory footprint workloads that relies on DRAM to cache hot data. Key Value stores based
on RocksDB is one such class of workloads that is affected by the reduction of DRAM size.
In this paper, we propose using Intel® Optane™ PMem 100 Series SCMs (DCPMM) in
AppDirect mode to extend the available memory for RocksDB to mitigate performance
loss in smaller DRAM designs while still maintaining the desired lower TCO of smaller
DRAM systems. We carefully studied and redesigned the block cache to utilize DRAM for
the placement of hot blocks and SCM for colder blocks. Our evaluations show up to 80%
improvement to throughput and 20% improvement in P95 latency over the existing small
DRAM platform when we utilize SCM alongside DRAM, while still reducing the cost by
43-48% compared to large DRAM designs. To our knowledge, this is the first paper that
demonstrates practical cost-performance trade-offs for potential deployment of DCPMM in
commercial datacenters.

56

CHAPTER 4

Improving DLRM Training Efficiency Using
Heterogeneous Compute and Memory Systems

Recommendation models are very large and require Terabytes (TB) of memory during
training. In pursuit of better quality, the model size and complexity grow over time,
which requires additional training data to avoid overfitting. This model growth demands
a large number of resources in data centers. Hence, the efficiency of training is becoming
considerably more important to keep the data center power demand manageable. In Deep
Learning Recommendation Models (DLRM), sparse features capturing categorical inputs
through embedding tables are the major contributors to model size and require high memory
bandwidth. In this paper, we study the bandwidth requirement and locality of embedding
tables in real-world deployed models at Meta, and observe that the bandwidth requirement
is not uniform across different tables, and that embedding tables show high temporal locality.
We then design MTrainS, which leverages hierarchical memory, including byte and block
addressable Storage Class Memory for DLRM. This allows for higher memory capacity per
node and increases training efficiency by lowering the need to scale out to multiple hosts in
memory capacity-bound models. By optimizing the platform memory hierarchy, we are able
to reduce the number of nodes for training by up to 8×, saving power and cost of training
while meeting our target training performance.

4.1 Introduction

Recommendation models are broadly deployed in big technology companies to personalize
the experience of their audience. For example, Google uses such models for personalized
advertisements [118], Amazon and Alibaba for recommending items in their catalogs
[119, 120], Microsoft for recommending news to users [121], and Meta for ranking and
click-through prediction [122].

57

0

0.2

0.4

0.6

0.8

1

0% 20% 40% 60% 80% 100%

Cu
m

m
ul

at
iv

e
 m

od
el

 si
ze

 a
nd

Ba

nd
w

ith
no

rm
al

ize
d

to
 to

ta
l

Embedding tables percentage

Size Bw

Figure 4.1: Cumulative bandwidth and Memory size for one of the real world models we evaluate.

Recommendation models are very large, requiring Terabytes (TB) of memory during
training [123], and 100s of Gigabytes (GB) during inference [124]. Accelerator-enabled
platforms such as GPU-enabled systems [125], with 10s to 100s of accelerators, are com-
monly used to train such models [123, 126]. These models take a significant amount of
resources in data centers. For example, recommendation model training consumes over 50%
of AI training resources at Meta [127]. In pursuit of better recommendation quality, both
model size and complexity are increasing by more than 1.5× year over year [128], which
requires additional training data to avoid overfitting. Training models with n times more
parameters, requiring m times more data, at the same speed, increase the resource and power
demand at O(n×m). Hence, improving the efficiency of recommendation model training to
manage the resource and power demand is becoming increasingly important in data centers.

Deep Learning Recommendation Models (DLRM) are neural network-based personal-
ization and recommendation models [122]. In DLRM, sparse features capturing categorical
inputs through embedding tables are the major contributor to the TB scale model size, while
dense features composed of Multi-Layer Perceptron (MLP) contribute to the model compute
complexity. In addition to significant memory capacity requirements, sparse features may
require high memory bandwidth. Due to DLRM’s considerable resource requirements and
growth rate, the typical solution to accommodate these models in data centers is to scale out
the model to multiple hosts. We can categorize reasons for scaling out a DLRM deployment
beyond a single host at Meta’s data center as follows:

• Memory capacity-bound: The training model size (model parameters, optimizer
states, and activations) dictates the minimum number of hosts (HBM and DRAM)
allocated to serve the memory size demand.

• Compute-bound/bandwidth bound: Given the compute intensity (e.g., in terms of

58

Petaflops/s-day) and/or memory bandwidth requirements of the model, a number of
GPUs (hosts) are used to scale the training speed (e.g., Query Per Second) to the
desired target.

Diverse configurations of DLRM workloads falling into the above two categories are
developed and deployed in production. Models in each category utilize the underlying
hardware differently, exhibiting unique challenges to improve performance and efficiency.
One such class of configurations is those that are memory capacity bound. In this case, the
degree of scale-out is guided primarily by the maximum number of model parameters each
host can contain. Figure 4.1 shows the cumulative memory size and bandwidth requirement
normalized to the total capacity for one of the most significant capacity-bound model use
cases at Meta’s data center. In Figure 4.1, each embedding table has a size calculated from the
number of rows and embedding dimension. In addition, by multiplying the table’s pooling
factor (per-table average number of rows read per sample) by the embedding dimension
size and target query per second (QPS), we can calculate the bandwidth requirement for
each table. Interestingly, in the figure, the majority of the larger capacity embedding tables
have a relatively low bandwidth requirement, and the tables that contribute to the most
bandwidth have small sizes. By taking advantage of a hierarchy of heterogeneous memories
such as high bandwidth memory (HBM), DRAM, and Storage Class Memory (SCM), it
is possible to address both capacity and bandwidth requirements using fewer hosts. This
increases training efficiency by limiting the need to scale out to multiple hosts only when
the computation/bandwidth requirements warrant it.

Storage Class Memories (SCMs) are technologies with the properties of both memory
and storage. SCM complements HBM and DRAM by providing memory at a unique
capacity, bandwidth, power, and cost target. SCM can be utilized as byte-addressable (using
DIMM, or Compute Express Link (CXL) [52] in the future), which provides ∼5× increase
in capacity at latency and bandwidth close to that of DRAM [30], or as block addressable
(using NVMe) with ∼20× higher capacity but at lower latency and bandwidth [129]. This
flexibility allows the various memory technologies to cover a wide range of training system
solutions by balancing bandwidth and capacity per host. However, such a design is not
without challenges. The higher latency and lower bandwidth of the denser memory types
must be accounted for when developing any scheme that distributes model parameters across
different memory types.

Previous works have shown the benefit of SCMs to complement DRAM [42,44,51,130].
But little is known about the challenges and benefits of these technologies in commercial data
centers for recommendation systems. Recent works [131,132] studied how we can use block-
addressable storage for embedding tables but focused on inference, which has a different size

59

and memory bandwidth demand than training, and as a result, imposes distinct challenges
on the hardware. Previous studies also focus on using block-addressable storage with CPU.
GPU-based accelerators are becoming commonplace for training recommendation systems.
Hence, it is crucial to study how SCMs with lower bandwidth can be used with GPUs that
have high memory bandwidth demand.

In this paper, we characterize diverse DLRM deployments at Meta and find that we have
mainly capacity-bound and bandwidth-bound models. We then study these models’ band-
width, size, and locality and determine nonuniform size and bandwidth requirements across
the embedding tables within a model. Our studies also show that embedding tables have
low spatial locality, but high temporal locality with power-law [80] distribution. These char-
acteristics make our DLRM models suitable for hierarchical memory with HBM, DRAM,
and byte and block addressable SCM. We then design MTrainS, an end-to-end trainer that
efficiently leverages a heterogeneous memory hierarchy along with GPUs. MTrainShas
a key-value [29] storage system residing in SSDs for large (TB scale) embedding tables
management. Then, to hide the low bandwidth and high latency of SSDs, MTrainSimple-
ments a GPU-managed, software-based configurable hierarchical cache that uses DRAM
and SCM for hot and cold embedding rows, respectively. We use two of our extensive
resource-consuming models representing both capacity- and bandwidth-bound workloads
for our experiments. Our results demonstrate that for capacity-bound models, by using
MTrainS, we can reduce the number of hosts used for training by 4× for current models and
by 8× for future scaled models while meeting our service level agreement (SLA) QPS target.
To the best of our knowledge, this is the first work that studies SCM usage in GPU-enabled
systems in a commercial data center for recommendation system training. In summary, we
make the following contributions:

• Extend the memory hierarchy of DLRM training beyond HBM and DRAM to SCM
in byte and block addressable forms.

• Characterize and experiment on large scale production-based real workloads, and
discuss the real world scenarios where such hierarchical memory can win efficiency.

• Discuss the system-level performance trade-offs of byte and block addressable SCMs
for the DLRM training usecase.

• Extend the open source DLRM with different memory support to facilitate hardware/-
software research on larger AI models.

60

Bottom
MLP

Top MLP

Feature Interaction

Inputs

Dense
Features

Sparse
Features

Sparse
Features

…

Embedding
lookup … Embedding

lookup

MTrainS

Figure 4.2: DLRM architecture and where MTrainS fits in DLRM.

4.2 Background

This section discusses the architecture of deep learning recommendation models (DLRM),
FBGEMM_GPU (an optimized open-source GPU kernel library we used in our designs),
and the various memory and storage components in our systems.

4.2.1 Deep learning recommendation model

Recommendation systems are widely deployed to rank content such as news feeds, videos,
and products based on user preferences and interactions. To accurately rank user preferences,
recommendation systems such as DLRM [122] use deep neural networks. However, DLRM
is unique from DNNs because it has dense and sparse features to capture user and item
attributes, leading to different characterizations as far as the underlying system is concerned.

4.2.1.1 DLRM architecture and components

Figure 4.2 shows the internal components of DLRM, the details are described below:
Input features: Users’ data and products are represented by dense and sparse input features.
Sparse features represent categorical inputs, such as a page a user likes in a list of pages.
As the name suggests, this data is sparse, i.e., a user has likely interacted with a small subset
of billions of pages available. Dense features include continuous inputs, such as user age.
Embedding tables: A naïve representation of categorical inputs would be to use binary
vectors. For example, if we have 4 pages with IDs from 0 to 3 and if a user likes ID 0
and 2, the embedding vector for the user will be (1,0,1,0). But we have billions of pages,

61

Table 4.1: Characteristics of NAND SSD, Optane SSD, DRAM, Optane memory and HBM per
module taken from product specifications. For SSDs, the numbers are for Gen3 PCIe.

Characteristics Nand Flash SSD Optane SSD DRAM Optane memory HBM
Power (mW / GB) 5.7 35 375 98 5000
(mW / GB/ s for HBM)
Cost per GB relative 1 10.4 68.8 26.5 -
to Nand Flash SSD
Granularity of access block block byte byte byte
Total capacity per host (GB) 8192 2048 384 2048 320
Total BW per host (GB/s) 6 6 200 84 12800
Endurance (DWPD) 0.8 100 - - -

hence such representation will be very large and sparse. Furthermore, binary vectors do
not represent the relationship between similar pages. To avoid these problems, DLRM uses
embedding tables that map categorical features into a dense representation. In this case,
categorical inputs such as a page will be represented by a short vector, and similar pages
will be located closer in Euclidian space. In the embedding tables, the column represents the
embedding vector, and the rows are items in a category. Within a model, there are multiple
categorical features, and the number of rows varies across tables. Embedding table operators
look up a subset of rows in an embedding table, and pool the result using sum, mean or
max [133].
Bottom MLP layer: The continuous inputs are transformed and projected into a dense space
by a bottom multi-layer preceptron (MLP) that is composed of a series of fully connected
(FC) layers and activation functions.
Feature interaction and top MLP: The dense projections of categorical and continuous
features are aggregated (e.g. through concatenation), and then a set of MLP layers capture
the interaction between different features.

4.2.1.2 Embedding tables and operators

Embedding tables impose unique challenges in systems designed for recommendation
systems. Real-world use cases of embedding tables require a large memory capacity, up to
10s of TB. Equation 4.1 formulates the memory capacity requirements for a model with T

embedding tables, H average number of rows per table (also known as embedding table
hash size), D elements per row (embedding vector dimension), and element precision of p

bytes.
Memory(SparseParameters) = T ×H×D× p (4.1)

Given the massive size of the embedding tables, typical optimizers with a small number
of states per row, such as Adagrad [134], is commonly used for sparse features. We can

62

rewrite Equation 4.1 to include both model parameters and optimizer states (o).

MemoryCapacity = T ×H× (D+o)× p (4.2)

Embedding tables are also memory BW intensive, as each training sample accesses
multiple rows per embedding lookup. Assuming L rows are accessed per table for each
training sample, Equation 4.3 formulates the BW requirement for embedding tables training
to achieve a given QPS. Since both the forward and backward passes consume all the rows
accessed, the equation is multiplied by 2.

MemoryBW = QPS×T ×D× p×L×2 (4.3)

4.2.2 FBGEMM_GPU kernel library

All software development contributions of this paper are on top of the FBGEMM_GPU
(FBGEMM GPU kernel library) [135, 136], which is a high-performance GPU CUDA
operator library for deep neural network training and inference. FBGEMM_GPU provides
an efficient embedding table operator, data layout transformations, and other optimizations.
It supports efficient embedding table access by providing HBM-based caching and DRAM
utilization using unified virtual memory. We extended FBGEMM_GPU to add operators
for SSD/SCM-based training and for various caching mechanisms to hide the high access
latency of SSD.

4.2.3 Storage and memory types

We examined different storage and memory technologies to accommodate larger models per
node. Each unit has its benefits and drawbacks. Table 4.1 shows the characteristics of each
technology. The detailed descriptions are as follows:
Nand Flash SSD: It is the densest and cheapest memory technology we leverage, as seen
in Table 4.1. However, these SSDs have low input/output Operations Per Second (IOPS)
and significant latency compared with other memory types we evaluate. Moreover, they
have limited write endurance, defined as Drive Writes Per Day (DWPD). NAND flash-based
solution’s limited IOPs make it best suited for a limited range of sparse features with high
memory capacity and low bandwidth.
Optane SSD: It is based on Intel’s 3D XPoint technology. It has higher IOPS, especially for
lower access granularity requests and lower latency compared to NAND flash SSD. These
SSDs have balanced read and write latency as well as 100× better write endurance (DWPD)

63

(see Table 4.1). However, these SSDs come at a 10× higher price per GB than NAND SSDs.
We refer to this memory as BLA-SCM for BLock-Addressable SCM.
Optane Memory (PMEM): Intel Optane memory sits between DRAM and SSDs in the
memory hierarchy. It is a cheaper alternative memory to DRAM with a 4-8× higher density
but has lower bandwidth and higher latency than DRAM. We refer to this memory as BYA-

SCM for BYte-Addressable SCM. BYA-SCM operates in Memory Mode and App Direct
Mode. In Memory Mode DRAM serves as a direct map cache, while BYA-SCM is exposed
as a single volatile memory region. The DRAM cache and BYA-SCM accesses are handled
exclusively by the CPU’s memory controller, and applications have no control of where
their memory allocations are placed (DRAM cache or BYA-SCM). In App Direct Mode,
DRAM and BYA-SCM are configured as two distinct memories. Here, the applications fully
control read and write access to each memory. Note that the persistence characteristics of
these memories are not relevant for our use case of training DLRM.
DRAM: DRAM has high bandwidth, and low read/write latencies. However, as seen
in Table 4.1. it is more expensive per GB, has a lower density, and has higher power
consumption per GB compared to BYA-SCM and SSDs. Additionally, the maximum DRAM
capacity is limited by the number of DIMMs available on a host.
HBM: Many modern GPUs designed for HPC/AI Training utilize a memory technology
even faster than DRAM. High Bandwidth Memory(HBM) has higher memory bandwidth
than conventional DRAM. These memory modules are soldered onto the GPU, so the
capacity is fixed. Therefore, the size available for embedding table storage is limited per
GPU.

Table 4.2: Workload specifications.

model 1 model 1+ model 2
Features ∼ 10s ∼ 10s ∼ 100s
Total bw (GB/s) 1300 2600 7136
Embedding dimension 128 256 128
Data type 4 byte 4 byte 4 byte
Average pooling factor 33 33 18
Num MLP layers 7 7 20

4.3 Workload characterization

The large size and bandwidth requirements of DLRM workloads impose challenges in
systems design. We studied the size, bandwidth, and locality of embedding tables in various
deployed DLRM models in production to understand how we can improve their performance

64

and power efficiency with heterogeneous memories. We select two of the most prominent
representative models at Meta’s data center with distinct characteristics and show the details
here. The models are model 1, which is used for ranking content in various services, and
model 2, which is used for click-through rate (CTR) prediction for user content and item
recommendations. model 1+is a future scaling of model 1 with similar BW and locality
characteristics as model 1. These models have TB scale sizes. The characteristics are shown
in Table 5.2.

4.3.1 Bandwidth and size distribution

Figure 4.3a and 4.3b show a sample of the bandwidth and size distributions of embedding
tables found in model 1 and model 2. We use Equation 4.1 and 4.3 to study size and
bandwidth. We use the tables’ row numbers, dimensions, and precision from production
configurations to calculate the size of embedding tables. We then use the acceptable
QPS (SLA) for training each model in our data center and the pooling factor to calculate
bandwidth. Pooling factor is determined from a large historical data of how many times
each embedding table is accessed per lookup. As seen in the figures, the bandwidth vs.
size distributions for the two models are distinctive. In model 1, we have smaller size
embedding tables with high bandwidth requirements and large size embedding tables with
lower bandwidth requirements. These types of tables fit intrinsically to a hybrid memory
system with both large size/low bandwidth and small size/large bandwidth components.
The cumulative bandwidth for our target QPS for model 1 can be satisfied by a single
HBM+DRAM system. Here, we scale out the model to multiple hosts to fit the model
parameters with more memory capacity. On the contrary, in model 2, there are considerably
more embedding tables that vary significantly in size and bandwidth. In this case, we scale
models to multiple hosts to increase both the memory capacity and bandwidth. Due to this
wide variance in size/bandwidth requirements, bandwidth and size distribution of models
are key factors in DLRM memory hierarchy designs.

4.3.2 Locality in embedding table lookups

As discussed in [124], the spatial locality in embedding tables is very low because embedding
tables represent sparse categorical features, and the embedding row access is very irregular.
However, we have a considerable temporal locality that makes caching effective in our
trainer design. To investigate temporal locality, we examine the frequency of access of
embedding table Indices for several embedding tables of model 1 and model 2 running in
production for 24 hours. We show the results for the representative embedding tables in

65

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

BW
 (~

GB
\S

)

Embedding table size (GB)

(a) Model 1

0

10

20

30

40

50

60

0 2 4 6 8 10

BW
 (~

GB
/S

)

Embedding table size (GB)

(b) Model 2

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Ac
ce

ss
 c

ou
nt

 %

Number of Indices accessed %

Table 1 Table 2 Table 3 Table 4
Table 5 Table 6 Table 7 Table 8

(c) Temporal locality analysis of embedding tables.
Figure 4.3: BW vs Size distribution of Model 1 and Model 2 and locality analysis of various
embedding tables.

Figure 4.3c. The figure shows that access to most tables follows a power-law distribution.
As also shown in [124], we observe 80% of the indices accessed come from 10%-40% of
the total Indices for most tables. Hence, we can take advantage of heterogenous memories
and storage by placing colder embedding tables and embedding rows in large but slower
memories like BYA-SCM, BLA-SCM, or Nand Flash SSD, while hot embedding tables and
embedding rows can still enjoy faster but smaller size memories like HBM and DRAM
through caching because of the high temporal locality in DLRM workloads. In our design
in Section 4.5, we emphasize how we can maximize caching to hide latency and provide
higher BW by using hierarchical caching.

66

4.4 System design challenges and considerations

This section discusses the challenges of adopting heterogeneous memories and storage for
DLRM training and our considerations in the workloads and hardware characteristics for
our designs.

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6

La
te

nc
y

(u
s)

BW (GB/s)

Nand Flash SSD P50 Nand Flash SSD P99 BLA-SCM P50 BLA-SCM P99

(a) P50, P99 latency and BW of BLA-SCMand NAND
SSD.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 20 40 60 80 100 120 140 160

La
te

nc
y

(n
s)

BW (GB/s)

Seq BYA-SCM Rand BYA-SCM Rand DRAM Seq DRAM

(b) Latency and BW of DRAM and BYA-SCM.

0

500

1000

1500

2000

HBM DRAM BYA-SCM

Ba
nd

w
id

th
 (G

B/
S)

(c) BW comparison of HBM, DRAM and BYA-SCM.
Figure 4.4: System memory and storage characterization.

4.4.1 Memory Performance evaluation

We compare the latency and BW of the memories and storage to understand how they fit
with our workload characteristics. We measure the BLA-SCM and Nand Flash SSD latency
and BW with FIO [137] for random read workload with different queue depths to increase
BW utilization. In Figure 4.4a, BLA-SCM has a latency in ∼10µs range for both P50 and
P99 at similar BW, whereas Nand Flash SSD has a latency of 100µs, and P99 latency
is significantly higher than P50. Also, note that increasing BW utilization in Nand Flash
SSD increases the access latency. This shows that for Nand Flash SSDwe have to be careful
with the BW utilization to prevent significant latency. Given the high temporal locality in
our models, it is advantageous to implement caching to reduce SSD traffic, especially with
the performance limitations of Nand Flash SSD.

67

We use Intel’s Memory Latency Checker (MLC) [78] to measure DRAM and BYA-

SCM latency and BW. We use sequential and random read workloads with different memory
traffic rates. In Figure 4.4b, BYA-SCM achieves ∼15 GB/s and DRAM 170 GB/s BW.
Further, BYA-SCM’s latency increases with increased memory traffic (∼200ns - 800ns for a
sequential and ∼350ns - 1500ns for a random read), and the BW saturates at high traffic.
Then the latency increases with no BW change. However, DRAM has a much lower latency
and higher BW than BYA-SCM, and it maintains the same latency for sequential and random
access. While spatial locality in our workloads is low in the 4KB block access granularity of
SSDs, for BYA-SCM, the sequential access granularity is 256 bytes. The access granularity
of an embedding lookup in our workloads is 512-1024B. Hence, we can still achieve BYA-

SCM sequential access performance. However, because of the BW and latency differences
between DRAM and BYA-SCM, the most practical design is a hierarchical configuration,
where DRAM is used for hot embedding rows and BYA-SCM for colder ones. We should
also consider the traffic to BYA-SCM to avoid large latency and BW saturation.

We use gpumembench [138] for HBM and MLC for DRAM and BYA-SCMto compare
BW differences. In Figure 4.4c, we see that HBM has significantly higher BW than DRAM
and BYA-SCM. These BW and size differences (as seen in Table 4.1) show that we need to
optimize the placement of embedding tables and rows to these memories to maximize BW
utilization.

4.4.2 IOPS vs BW

Although we have temporal locality in the embedding tables, adjacent rows are accessed in
a non-sequential manner and lack spatial locality. Additionally, the embedding dimensions
typically range from 64 to 256 (i.e., 256-1024 bytes with single precision). When considering
block addressable technologies such as BLA-SCM and Nand Flash SSD, each access to
an embedding row could consume less than the block size (e.g., 4KB), resulting in a waste
of BW (referred to as read amplification). To account for the impact of read amplification,
we track IOPS instead of BW for the block addressable units and study how we should
use these memories to satisfy IOPS demand. Equation 4.4 formulates the required IOPS,
assuming TB tables are placed on SSD, with an average pooling factor of LB. α is used to
factor in the locality of accessing embedding tables, which reduces access to the lower level
block addressable memory.

IOPS = QPS×TB×LB×α (4.4)

The IOPS requirement for model 1 and model 2 to accommodate the entire model in

68

one node while placing TB tables on SSD for our target QPS is 6.25M and 75M, respectively,
without considering the locality. Typically, SSDs have IOPS in a range of 500K-1M IOPS
limit. For example, if we have a cache hit rate of 70% for model 1, the IOPS will be 1.875M.
Whereas for model 2 with 70% locality, we still require 22.5M IOPS. Hence, the locality is
not only important for optimizing the high latency of SCM, but it will help us to operate
within the IOPS limit of the hardware. Therefore, we focus on maximizing the locality of
the models in our designs.

4.4.3 Endurance

Nand Flash SSD and BLA-SCM 1 have a limited number of program/erase cycles that can
be performed before a memory cell wears out. This is measured as how many times the
entire drive can be written to each day of its lifetime (typically 3-5 years) which is called
Drive Writes Per Day (DWPD). Equation 4.5 formulates the amount of data written per
day during training for a given QPS, where TB tables are placed on SSD, with LB average
pooling factor, D elements per row, α locality, and element precision of p bytes.

write/day = 24×3600×QPS×TB×LB×D× p×α (4.5)

For example we write ∼10TB per day to SSDs for model 1 and ∼100TB for model

2 while placing TB tables in SSDs. DLRM workloads are write-intensive. When using
SSDs for embedding table storage, we want to limit our writes per day below the stated
DWPD limit to avoid premature drive failure.

4.4.4 Workload scaling

Deep learning models, including DLRM, are scaling rapidly in complexity and size. A
number of sparse features are used in the model, and hence the number of embedding tables,
along with the embedding dimensions per table, are among the main contributors to the
increase in the memory capacity of DLRM workloads. Any system solution needs to be able
to consider such scaling during the lifetime of the system. In this paper, we design systems
for current models and test whether our design holds in future scaling.

1Optane in DIMM form factor, referred to as BYA-SCM in this paper, is claimed to not be bounded by
endurance

69

0

0.2

0.4

0.6

0.8

1

DRAM (384) -
BYA-SCM (384)

DRAM (384) -
BYA-SCM (768)

DRAM (384) -
BYA-SCM (384)

DRAM (384) -
BYA-SCM (768)

Block cache Memory mode

Bl
oc

k
ca

ch
e

an
d

M
em

or
y

m
od

e
Q

PS
 c

om
pa

re
d

to
 R

aw

ca
ch

e

Figure 4.5: Caching efficiently comparison for model 1.

4.4.5 Software design choices

The first consideration of our software design is the efficient utilization of block-based
storage. Block devices must always write a minimum of one block, even if only a single
byte has changed. In order to efficiently utilize the drive, we use RocksDB [29]. RocksDB
is a key-value storage engine that provides low latency database operations. RocksDB’s
structure, such as efficient database sharding, allows for fast storage access. In addition,
RocksDB uses an in-memory data structure for faster write operations. Since new writes go
to memory (DRAM) first, RocksDB can compact many writes into a single large contiguous
drive write. This significantly reduces SSD writes and increases SSD lifetime.

Second, due to the high temporal locality in embedding tables, caching effectively hides
the latency of SSDs. However, to adequately utilize DRAM and BYA-SCM, we must consider
how we organize the cache. We first examine re-using the existing RocksDB block cache,
which uses memory to cache data for fast read access, and store it in DRAM/pmem as
shown in [3]. Another alternative is using the hardware-managed DRAM cache that comes
with Intel Optane memory (memory-mode). In this mode, the hardware transparently uses
DRAM as a direct-map cache of BYA-SCM. We compared these two methods to a raw
cache with access granularity equal to the embedding table row dimension. The raw cache
hierarchically uses DRAM and BYA-SCMin app-direct mode, where DRAM is the first level
of cache, and BYA-SCMis the second-level cache. Figure 4.5 compares the QPS of the
raw cache versus both block cache and memory mode in two configurations for model 1.
Since the block cache is designed for best performance in read-only cases, we did not find
it performant in both hardware configurations (0.35-0.38× of the performance of the raw
cache) for training DLRM models where the read/write mix is 50/50. This is because once
an embedding row is updated, its location changes on disk due to write compaction and thus
isn’t accessible from the original block cache line. In addition, the block cache results in

70

double-caching values, wasting capacity. Similarly, from Figure 4.5, we can also see that
memory mode is not helpful because of double caching. Hence, it is essential to design
caching that exposes the unified capacity of DRAM and BYA-SCM. For these reasons, we
design an exclusive hierarchical cache using the app-direct mode to fully control access
granularity and embedding table and row placement.

4.5 MTrainS design

4.5.1 Overview

Adding heterogenous memories in DLRM system design requires considering the memory
technologies’ latency, size, and bandwidth differences and a closer look at our models, as
discussed above. We design MTrainS, an end-to-end training pipeline to leverage HBM,
DRAM, BYA-SCM, and BLA-SCM or Nand Flash SSD in DLRM. MTrainSextends the
embedding table storage to BLA-SCM and/or Nand Flash SSDusing RocksDB-based em-
bedding table storage, giving us the flexibility to accommodate large TB scale models
with varying sizes and BW embedding. Based on the temporal locality of our models (see
Section 4.3.2), MTrainSimplements a hierarchical cache module using the least recently
used (LRU) policy for embedding tables stored in SSDs to hide the large SSD latencies.
It uses DRAM and BYA-SCMfor caching and places hot embedding rows in DRAM for
fast accesses and colder ones in BYA-SCM, providing slower but ample cache space. Given
the wide ranges of size and bandwidth requirements (see Section 4.3.1) in embedding
tables, to maximize the size and BW availability in the memories and storage, MTrainSuses
embedding table placement based on a mixed-integer programming solver, with table size
and data volume per access (pooling factor) as inputs, and memory size and bandwidth as
constraints, with the goal of increasing the bandwidth of embedding tables and minimizing
tables’ access time. Figure 4.2 shows the overview of where MTrainS fits in DLRM, and
Figure 4.6 shows the architecture of MTrainS.

4.5.2 Embedding table storage

MTrainSuses RocksDB-based storage to place embedding tables in block-addressable
storage (BLA-SCM and Nand Flash SSD). Storing tables in SSDs allows for extensive
storage per node for the big-size embedding tables. RocksDB [29] is a key-value store
optimized for high-speed storage. In the context of embedding tables, the key is the
embedding table row index, and the value stored is the embedding row containing the weights.
RocksDB organizes the key-value database into blocks (4KB in our implementation) in a

71

1

Memtables

Block cache

Embedding table storage

RocksDB embedding storage

Embedding
table to

memory and
GPU

assignment

Hierarchical cache module
DRAM cache

Ca
ch

e
ro

w
s

Embedding dim

…
BYA-SCM cache

SET

MTrainS
metadata

GET

Cache
state

Cache
tag

SS
T

fil
es Embedding table 1

Embedding table 2…
Byte addressable embedding storage

Mem allocator

Ca
ch

e
ro

w
s

Embedding dim

…

Cache
state

Cache
tag

Mem allocator

GPUs

CPUS

SSD
Embedding

table
management

Embedding
table

management

compute
kernels

Cache
config

RocksDB
config

MTrainS config

Cache
management

kernels

Figure 4.6: MTrainS component and architecture.

Sorted String Table (SST) format. We sharded these databases (SST files) of embedding
tables to load balance and for fast key lookup. Our RocksDB implementation uses memtable,
located in DRAM, to optimize writes. However, as discussed above, we turn off the block
cache because it does not benefit our DLRM workloads. For faster read, we use the
MultiGet() [139] API in RocksDB, optimized for batched lookups.

MTrainSalso allows embedding table placement in the byte-addressable memories
(HBM, DRAM, BYA-SCM) using a two dimensional tensor. These tensors have the same
structure in all memory types with different memory allocator parameters.

4.5.3 Hierarchical cache module

We leverage DRAM and BYA-SCMas software-managed caches on top of the RocksDB
embedding storage to hide the SSD’s low bandwidth and high latency. The hierarchical
cache module has a list of caches derived from a cache class and a configurable cache
hierarchy that organizes the list of caches to multiple levels. Figure 4.6 shows the cache
overview.

4.5.3.1 Cache class

This class stores the hot rows of the embedding tables placed in SSDs. It has a cache
memory that keeps raw embedding rows (as opposed to a block of multiple rows) as shown
in Figure 4.6 because of the lack of spatial locality in the embedding tables. To allocate

72

cache memory, the class has a memory allocator parameter that can be set to different
memory types. The class also has tags and states. The cache tags track which Indices of
the embedding rows reside in the cache and which cache entries are occupied/free. The
cache states track each cache entry based on timestamp. DRAM and BYA-SCMcaches are
an instance of the cache class with different cache memory allocators.

4.5.3.2 Cache hierarchy

We use DRAM and BYA-SCMas a configurable multi-level cache. The cache is configured
as a one-level in the presence of only DRAM in the system. When we have DRAM and
BYA-SCMin the system, we organize the two memories as a two-level exclusive cache, with
DRAM cache as the first level and BYA-SCMcache as the second level. We use exclusive
cache settings for more efficient use of the memory space. Note that we can use BYA-

SCMonly as a one-level cache, but we didn’t find this configuration performant because
of its high latency. We identify cache location-specific operations, such as data movement
between caches and which cache to access first, based on the cache hierarchy structure. Note
that, we only have DRAM and BYA-SCMcache here, but the cache structure can handle more
than these two caches, such as multiple DRAM and SCM caches in a complex hierarchy.

4.5.4 Embedding table management

This module accepts and responds to embedding table requests stored in all memory types.
Embedding table lookups and updates are managed by the GPU for tables placed in the
byte-addressable memories and by the CPU for tables placed in SSDs. While embedding
lookups are initiated by the GPUs, they will be handed off to the CPU to get data from
RocksDB embedding storage when Indices miss from the cache modules. Note that we can
directly access the SSDs from the GPUs using GPU Direct Storage (GDS) [140], but we
do not use it in our design to leverage the host side memory (DRAM and BYA-SCM) as
SSD caches. Using GDS limits the cache to HBM. This module exposes two APIs, GET
and SET, from the SSD embedding storage to the rest of the trainer, as shown in Figure 4.6.
GET and SET APIs must synchronize the CPU and GPU to maintain data consistency. For
efficiency, we designed a multithreaded management unit for RocksDB embedding storage
in the CPU that looks up the RocksDB shards in parallel. The module is also responsible for
initializing the embedding table weights before training starts. We provide two options for
initialization:

73

4.5.4.1 Pre-initialization

Initialize all the weights of the embedding tables stored in all memory types with random
values following the desired distribution before training starts.

4.5.4.2 Deferred initialization on read

Embedding tables stored in SSDs have very large sizes. Pre-initializing all these weights
takes a long time. We designed a deferred initialization technique to prevent this long
initialization process at the start of training and to preserve SSD write endurance. In this
technique, we initialize embedding values on-demand upon the first read if a key is not found
inside the database Indices. During deferred initialization, to reduce initialization latency,
we have a separate background thread that generates a queue of randomly initialized values
following the desired distribution. This separate thread optimization is especially helpful
in reducing latency when a single request tries to read many uninitialized rows. When we
attempt to read an embedding row that has never been accessed, we consume values from
the queue to randomly initialize the desired embedding row. This technique reduces writes
by ∼15% for model 1.

4.5.5 Cache management

In our design, the cache is managed by the GPU, similar to the caching proposed in [141].
We extend their work and design GPU kernels in FBGEMM_GPU that support caches in
multiple memories, such as DRAM and BYA-SCM, in a hierarchy. GPU-managed cache
gives us the advantage of using the higher GPU compute and BW capability to accelerate
cache management operations. We discussed the cache management kernels below.

4.5.5.1 Tag/state lookup

This GPU kernel looks up the cache tags and states to check if the embedding rows are
in the caches or the SSD storage for incoming embedding row requests. In a two-level
cache, the kernel looks up the tags and states for both caches in parallel for efficiency. After
determining hits and misses in all the caches, the kernel groups the Indices of incoming
lookup requests based on the memory destination, i.e., DRAM, BYA-SCM, or SSD.

4.5.5.2 Cache algorithm

The caching algorithm kernel uses the LRU policy. It looks up the grouped indices of each
memory from the tag and state lookup kernel. Then based on this, 1) it updates the time of
access (LRU status) of the cache hit indices in each cache state (DRAM and BYA-SCM), 2)

74

it determines the cache slots to insert the missed indices for the indices that are a miss, 3) it
resolves the cache slots to evict if there are no free cache slots available. We explored the
least recently (LRU) and least frequently (LFU) used caching algorithm. Our experiments
on show that LRU provides ∼8-10% better performance than LFU. This is because, while
both LRU and LFU capture the temporal locality of embedding tables, with LRU after
inserting embedding rows to the cache during the forward pass, the rows are still going to be
the recently used row in the backward pass. This increases the chances of the rows being in
the cache in the backward pass even when it is not the frequently accessed row, increasing
cache hit rates in the backward pass compared to LFU.

4.5.5.3 Data lookup/update

It takes the grouped cache Indices from the tag lookup kernel and returns the rows. It also
accepts new data or updates to Indices in the caches and returns evicted rows.

4.5.5.4 Data movement between DRAM, BYA-SCM, and SSD

In the one-level cache, if incoming embedding lookup requests are hits, the requested
embeddings rows will be fetched by the requesting GPU. In case of misses, the control is
passed to the CPU to access SSDs. The CPU then fetches the requested rows from the SSD
storage. Newly fetched rows will be inserted into the first-level cache from SSD for fast
access. If the cache is full, LRU rows will be evicted back to SSD to make room for the new
rows.

For a two-level cache, we access both DRAM and BYA-SCMcaches in parallel during
lookup. Hits from both caches are returned to GPU. DRAM cache misses that are hits in
BYA-SCMcache and BYA-SCMcache misses fetched from SSD are promoted to DRAM
cache for fast access. When DRAM capacity is full, DRAM LRU rows are evicted to
BYA-SCMcache. Similarly, when BYA-SCMcache is full, LRU rows are evicted back to SSD
storage.

4.5.6 Memory and GPU assignment

4.5.6.1 Embedding table assignment

A single DLRM model has various embedding tables having different sizes and BW. We
have multiple memory types in our systems with varying sizes and bandwidths. While we
use DRAM and BYA-SCM for caching lower BW embedding tables stored in SSD, we can
use HBM and some part of DRAM to place the high and medium BW embedding tables and
still satisfy the latency and BW requirement of embedding tables stored in SSDs through

75

1

HBM

Embedding tables

Cache tags/ states

Embedding tables

DRAM

Cache

Cache

BY
A-
SC
M

Embedding tablesSS
D

Optimizer parameters

Figure 4.7: Memory allocation of MTrainS.

caching. Figure 4.7 shows memory allocation of MTrainS components. HBMs are used to
store high bandwidth embedding tables, optimizer parameters, and the tags and states of the
caches. DRAM is used to store medium BW embedding tables for caching hot embedding
rows, and BYA-SCM, for storing colder embedding rows of tables stored in SSDs. Our
experiments show that using BYA-SCM only for caching instead of an explicit assignment
is better. The search space for embedding tables assignment is vast because we can assign
any tables in any of the memories. We use a simple linear solver to optimize the assignment.
Table assignment is a complex problem, and it is possible that with a more sophisticated
heuristic, we can achieve better table assignments than our current solution by considering
other factors, such as locality. We leave such complex designs to future work.
Input variables: The input variables for assignment are the sizes and BW of each embedding
table in a model and the size and BW of the memory types.
Constraints: The constraints for table assignment are:

1. Each table can only be assigned to one memory type, but each memory type can hold
multiple tables.

2. The cumulative size of tables assigned to each memory type can not be larger than the
memory size.

Objective function: Minimize the total embedding lookup time, approximated according to
Equation 4.6.

lookup_time = Max(time(g)),g ε GPUCount

time(g) = ∑
M

∑
Tgm

(D×L× p)/BWgm
(4.6)

76

M in Equation 4.6 stands for memory type (e.g. HBM or DRAM). Tgm represents
embedding tables assigned to a specific memory type for a given GPU, and BWgm represents
BW for memory type m for shard g. For example, for HBM, BWgm represents HBM BW.
For the shared DRAM, it would represent DRAM_BW/numgpus. We show the effect of
placements in section 4.7.6.

4.5.6.2 GPU assignment

Based on the table assignment, for N GPUs, embedding tables assigned to the HBM of the
GPUi will be handled by GPUi. In addition, the embedding tables assigned to DRAM and
SSD will be distributed to be managed by the N GPUs by the table placement algorithm by
minimizing lookup time in Equation 4.6.

4.5.7 Pipelining

To hide some of the latency of accessing SSD for cache misses, we can pipeline access to the
caches several batches in advance. Instead of sequentially 1) Fetch, 2) Preprocess, 3) Load
on GPU, 4) Train, we split each step into its own stage and execute them simultaneously
for different batches. In our case, we added a step: 4a) Prefetch Sparse Indices into cache
before training. As long as we can maintain an invariant that embedding rows prefetched
into the cache are not evicted until that batch has been trained, we can have an arbitrary
number of batches in the pipeline. By adding additional stages between 4a) Prefetch and
4) Train, we can increase the latency hiding capability of the pipeline until it exceeds the
typical SSD latency for a GET call. If the demanded bandwidth required to meet the QPS
goals exceeds the capabilities of the SSD, no amount of extra stages will help.

4.5.8 MTrainS configurations and metadata

4.5.8.1 MTrainS metadata

The metadata keeps the memory and GPU assignment of all embedding tables and is used
in every embedding table lookup to direct requests to the responsible memory.

4.5.8.2 Cache config

This includes cache configurations to expose DRAM and BYA-SCMmemories hierarchically
or to be used alone as the first layer of cache, cache row, and column sizes to fit the
embedding dimensions of the target DLRM model.

77

0
0.2
0.4
0.6
0.8

1

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

N
or

m
al

ize
d

Q
PS

Number of iterations

Shards_8 Shards_16 Shards_32

Figure 4.8: Impact of sharding RocksDB database on QPS.

0.4
0.5
0.6
0.7
0.8
0.9
1

0

0.2

0.4

0.6

0.8

1

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 N
or

m
al

ize
d

Q
PS

 c
um

ul
at

iv
e

N
or

m
al

ize
d

Q
PS

 c
ur

re
nt

Number of iterations

Compaction_trigger_4_current Compaction_trigger_8_current
Compaction_trigger_4_cumulative Compaction_trigger_8_cumulative

Figure 4.9: Impact of Database compaction on QPS.

4.5.8.3 RocksDB configs

The RocksDB embedding storage exposes knobs to tune performance. The knobs include
the number of CPU threads used for embedding table lookup, DB shards, compaction
time, memtable sizes, and turning the block cache on/off. Sharding is one of the most
important knobs, which increases key lookup efficiency and decreases compaction time. As
seen in Figure 4.8, sharding DB increases QPS by up to 40%. Another knob is database
compaction, which is necessary for RocksDB to maintain a manageable database size during
training. Synchronized database compaction from all RocksDB shards and trainers causes
a major thundering herd problem that results in large memory and IO spikes. We observe
considerable drops in QPS (over 50% in some cases) during database compaction (seen
in Figure 4.9). Tuning compaction knobs, such as compaction trigger time as shown in
Figure 4.9, improves the cumulative QPS by 5-8%. In our experiments, we show the results
for the best RocksDB configuration we found for each model.

4.5.9 End-to-end trainer
Figure 4.10 shows the end-to-end trainer. We first run the embedding table assignment and
distribute embedding tables to HBM, DRAM, and SSD according to the optimal placement.
Note that we don’t need to run the placement for every training unless the model changes
significantly. For the training data, the dense features are distributed across the batch

78

In
pu

t

0 2 3 1 2 3 4 0 5

Table 1 Table 2 Table 3

0
1
2
3

…Embedding dim
Table 1

HBM
Table 2 1
Table 3 0

…
DRAM cache

Table 3 4
Table 3 5

…
BYA-SCM cache

0
1
2
3

…Embedding dim
Table 2

SSD

0
1
2
3
4
5

…Embedding dim
Table 3

Fo
rw

ar
d

+

Table 3 4
Table 3 5

…

Pooling operator

Ba
ck

w
ar

d
an

d
op

tim
ize

r

▽0 ▽2 ▽3 ▽1 ▽2 ▽3 ▽4 ▽0 ▽5

Gradient
Sparse

Optimizer

Update indices

Prefetch

Figure 4.10: {MTrainS trainer overview.

dimension among multiple GPUs. The model embedding tables are distributed among the
GPUs table-wise, and every GPU will handle the lookup for the embedding table assigned to
it. For our current workloads, table-wise partitioning provides sufficient model parallelism
across GPUs. Then, during embedding lookups, MTrainS will distribute the incoming input
indices to the GPUs and memories. In Figure 4.10, for example, Table 1 is placed in HBM
and Table 2 and 3 in SSD. The GPU initiates embedding table lookup for the indices using
MTrainSin the forward pass. MTrainS for example, gets index 1 of Table 2 from DRAM
in the figure. Once the GPU gets the embedding rows from the memories, it performs
aggregations and optimizers, then updates the weights in the respective memories in the
backward pass.

4.6 Systems setup and implementations

4.6.1 Software design and implementation

We use the PyTorch version of DLRM and implement a new EmbeddingBag that uses
heterogeneous memories and storage for embedding table operations instead of using the
default EmbeddingBag [142] implemented with PyTorch in DLRM. Our new EmbeddingBag
is integrated with the FBGEMM_GPU kernels we developed to manage cache and memory.
Figure 4.11 shows the software overview.

In our experiments, we set up Intel DCPMMs in App Direct mode using IPMCTL [81].

79

We use Linux Kernel 5.4, which enables a volatile use of DCPMM. We then use NDCTL
6.7 [82] utilities to configure SCM in the devdax mode. This mode gives direct access to
DCPMM, which is faster than filesystem-based access. We use DAXCTL [82] to set up
DCPMM in the system-ram mode so that DCPMM will be available in its own volatile
memory NUMA node. To implement SCM in DLRM, we use the Memkind library [83].
Memkind partitions the heap into multiple kinds of memories, such as DRAM and SCM, in
the application space. We use MEM_KIND_DAX_KMEM for SCM accesses.

We use CUDA 11 for our GPU kernel implementations. As shown in the Figure, we
utilize cudaMallocManaged [143] that uses a unified memory system to access HBM and
DRAM from the GPU transparently. For BYA-SCM, since the GPU can’t access these
types of memories directly with unified memory, we use cudaHostRegister [143], which
registers an existing host memory range already allocated by the Memkind library to
CUDA. We have multiple cache management and computation kernels. Using PyTorch’s
torch.cuda.Stream [144], we launch kernels that can run in parallel, such as looking up
tags or getting data from DRAM and BYA-SCMcaches, in different streams. We then use
torch.cuda.synchronize [145] to synchronize the kernels getting data from the cache before
computation kernels start. While performing calculations for a batch, in parallel, we update
tags/states and manage insertion, update, and eviction in all caches and SSD storage. Then
these kernels are synchronized with the subsequent batch data lookups to have updated
cache/data for the next batch.

4.6.2 Workloads description and setup

In our experiments, we use two of the most significant DLRM models derived from real
use cases (model 1 and model 2). These models show distinct features (capacity- and
memory-bound) present in most of our models. We also use a model with 2x the size of
model 1 (model 1+), representing how the model will grow in the next two years. We show
the characteristics of the models in Table 5.2.

4.6.3 Evaluation hardware description

In our evaluations, we used an Intel Barlow Pass-based system, with 2 CPU sockets populated
with Intel Ice Lake processors and 8 Nvidia A100 GPUs. This platform is designed for
AI/ML, Deep Learning, and HPC applications, and has 8 NVidia A100 GPUs behind a fully
connected NVLink / NVSwitch [146] fabric. The hardware specification is shown in Table
5.1.

80

1

Bottom
MLP

Top MLP

Feature Interaction

EMB Lookups

HBM DRAM

SSD

DCPMMFB
G
EM

M
_G

PU

Libmemkind

MEMKIND_DAX_KMEM

CUDA cudaMallocManaged CudaHostRegister

Figure 4.11: MTrainS software design.

4.6.4 Server design

We consider diverse server designs by varying the memory and storage types and sizes.
Table 4.4 summarizes the configurations we used in our experiments. In all of our system
configurations, we limited the DRAM size to 384GB. We use two sizes of BYA-SCM, 384GB
and 768GB. We chose these sizes because we want to determine the ratio of DRAM and
BYA-SCM required in the system. We also experiment with other configurations, such as
increasing the BYA-SCM size. However, increasing BYA-SCM beyond 768GB does not
show additional benefit for our existing workloads because we will be compute-bound at
this config. Similarly, with BLA-SCM with 768GB configuration.

We use half of the DRAM in our system (192 GB) for caching and the rest to store
smaller size embedding tables and for other system requirements of DLRM. We use all
of BYA-SCM for caching, i.e., 360GB in 384GB configurations and 720GB in 768GB
configurations. The remaining BYA-SCM is used for optane metadata.

4.7 Evaluation

4.7.1 Baseline

We compare MTrainS to the baseline system configuration shown in Table 4.4. Our imple-
mentation in the baseline also uses an integration of DLRM and FBGEMM_GPU. We use
HBM and DRAM in the baseline for embedding storage and caching. This implementation

81

Table 4.3: System setup: hardware specs.

Specification System config
OS CentOS-8
Linux kernel version 5.4.135
CPU model Intel(R) Xeon(R)

Gold 6348 CPU @ 2.60GHz
Sockets 28
Core per socket 28
Threads total 112
L1I/L1D cache 32 KB/48 KB
L2/L3 cache 1.25 MB/42 MB
GPU model/GPUs A100-SXM4-40GB/8
GPU Driver 450.142.00
CUDA Version 450.142.00
HBM size HBM2e 320 GB (40 X 8)
DRAM size DDR4 384 GB (32 GB X 12 DIMM slots)
SCM size DDR-T 2 TB (128 GB X 16 DIMM slots)

Table 4.4: System Configurations (all sizes in GB).

Config. HBM DRAM BYA-SCM BLA-SCM Nand
SSD

Baseline 320 384
configNand 320 384 8192
configBLA 320 384 2048
configBYA-1 320 384 384 8192
configBYA-2 320 384 768 8192
configSCM 320 384 384 2048

uses the same techniques as CDLRM [147]. While CDLRM uses the CPU to manage the
cache, for a fair comparison with MTrainS, which uses GPU for fast cache management, we
move the cache management in CDLRM to GPU. We call this CDLRM+. We also added the
efficient embedding table placement in CDLRM+. Our experiments compare the number
of nodes required to train a model running CDLRM+ with the performance we get with a
single node running MTrainS. To compare performance, we use target QPS, an acceptable
QPS in our data center, to train a specific model based on how often we need to train models
and the rate at which new training data becomes available. QPS in our experiment represents
the number of input data we can use to train a model per second, including the forward and
backward pass. It is inversely proportional to the training time.

82

0
1
2
3
4
5
6
7
8

Ba
se

lin
e

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

Ba
se

lin
e

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

Model 1 Model 1+

Q
PS

 c
om

pa
re

d
to

 T
ar

ge
t

#hosts QPS

Target QPS

Figure 4.12: Training QPS and number of host Comparison of CDLRM+ and MTrainS with SLA
QPS target as the baseline for model 1 and model 1+

0

1

2

3

4

Ba
se

lin
e

Co
nf

ig
Na

nd

Co
nf

ig
BL

A

Co
nf

ig
BY

A-
1

Co
nf

ig
BY

A-
2

Co
nf

ig
SC

M

Ba
se

lin
e

Co
nf

ig
Na

nd

Co
nf

ig
BL

A

Co
nf

ig
BY

A-
1

Co
nf

ig
BY

A-
2

Co
nf

ig
SC

M

1 node MTrainS 2 node MTrainS

Q
PS

 c
om

pa
re

d
to

 T
ar

ge
t

#hosts QPS

Target QPS

Figure 4.13: Training QPS and number of host Comparison of CDLRM+ and MTrainS with SLA
QPS target as the baseline for model 2.

4.7.2 Training efficiency

One of the principal arguments for adopting denser memory technologies is to use fewer
nodes for specific model training and improve power and cost-efficiency. Hence, we first
compare the overall deployment efficiency of MTrainS and CDLRM+ for model 1 and
model 2 based on the target QPS.

Figure 4.12 shows the efficiency comparison of model 1 and model 1+, which are
memory capacity bound. Note that model 1+ is the future scaling of model 1 with a larger
size (2×). These models require 4-8 hosts to load and train with the baseline CDLRM+.
With MTrainS, one host can provide sufficient extended memory capacity to load and train
the model. We can also reach the target QPS (SLA) in such a setting, as seen in Figure 4.12.
While the baseline without MTrainS achieves higher QPS, it requires 4-8× more hosts, so
this performance is stranded and does not contribute additional efficiency to the deployment

83

0

1

2

3

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

Q
PS

 c
om

pa
re

d
to

Co

nf
ig

N
an

d

(a) model 1

0

1

2

3

4

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

Q
PS

 c
om

pa
re

d
to

Co

nf
ig

N
an

d

(b) model 1+
Figure 4.14: QPS comparison of different configuration of MTrainS with configNandas the baseline
for model 1and model 1+.

0

1

2

3

4

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

Q
PS

 c
om

pa
re

d
to

Co

nf
ig

N
an

d

(a) 1 Node MTrainS

0

1

2

3

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

Q
PS

 c
om

pa
re

d
to

Co

nf
ig

N
an

d

(b) 2 Nodes MTrainS
Figure 4.15: QPS comparison of different configuration of MTrainS with configNandas the baseline
for model 2.

because we already met our training QPS requirement. As a result, MTrainS can improve
power and cost efficiency for model 1 and model 1+ while providing SLA performance.
Our experiments show that models scaled beyond model 1+require multi-node training,
each node leveraging MTrainS. Nevertheless, MTrainS still provides a lower host count
because it can store a larger model per host compared to the baseline.

Figure 4.13 shows a comparison of MTrainS vs CDLRM+ for model 2 (BW bound
workload). This model requires 3 hosts to load and train with the baseline configuration
using CDLRM+. While MTrainS allows the model to be loaded and trained on one host, it
does not meet the QPS requirements because of the higher memory bandwidth required by
the model. Also shown in the figure, using 2 nodes, each running MTrainS, significantly
improves the performance of model 2 compared to the single node. Regardless, the 2 nodes
still fail to meet the QPS target because the additional BW with SCMs in the system, even
with 2 nodes, is not enough to accommodate the high BW demand of model 2. However, such
capability extends the efficiency of research and development without high QPS production
requirements.

Next, we evaluate the performance of the various system configurations compared to con-

84

figNand to understand the performance implication of BYA-SCM and BLA-SCM compared
to Nand Flash SSD. In Figure 4.14a and 4.14b, we compare QPS achieved for model 1 and
model 1+ for different configurations of MTrainS. As shown in Figure 4.14a, for model 1,
using BLA-SCM (configBLA) instead of Nand Flash SSD (configNand) increases QPS by
2×. Using BYA-SCM with Nand Flash SSD (configBYA-1 and configBYA-2) increases
cache size. Hence lowers traffic to Nand Flash SSD and therefore provides 2.4× QPS.
Our results indicate no further improvement in QPS for the setup with both BYA-SCM and
BLA-SCM for configSCMbecause once we increase the cache size per host using BYA-SCM,
the access to SSDs is out of the critical path.

For model 1+, shown in Figure 4.14b, Nand Flash SSD with 384GB of BYA-SCM (configBYA-
1) increases QPS by 1.73×whereas, 768GB of BYA-SCM (configBYA-2) increases by 2.76×
due to the increased cache hit rate. When we use both BYA-SCM with BLA-SCM (con-
figSCM), we achieve 3× QPS. model 1+ has higher BW requirement due to increased
embedding dimension. With Nand Flash SSD we already read 4KB blocks per IO, which
is larger than the embedding dimension. Nevertheless, increased embedding dimension
results in fewer embedding rows maintained in the cache (DRAM or BYA-SCM), given
fixed cache size. This increases the miss rate and hence results in increased IO to the SSDs.
BLA-SCM with higher IOPS can support such an increase in IO, hence showing higher QPS.

In Figure 4.15a, for model 2with 1 node MTrainS, because of BLA-SCM’s higher
bandwidth and lower latency compared to Nand Flash SSDin configNand, performance
increases by 2.2×. By adding BYA-SCMwe get 2× and 3.2×more performance because the
cache hit increases. Similar to model 1, the combination of BYA-SCMand BLA-SCMachieves
the best performance. In figure 4.15b, the model is sharded between 2 nodes, and the model
size per node is half of 1 node MTrainS. The performance improvement for 2 nodes follows
the same pattern as 1 node MTrainS, but the speedup drops compared to 1 node because SSD
traffic decreases when the model size per node is reduced, hence caching has less impact
compared to 1 node. Although compared to configNand, the various configurations show
performance improvement for model 2, using SCMs does not provide adequate performance
(QPS target) for memory bandwidth-bound workloads, as seen in Figure 4.13.

4.7.3 Power and energy analysis

In Figure 4.16a and Figure 4.16b we show the power and energy of the various MTrainS con-
figurations for model 1 and model 1+ to study the increase in power and the total energy
usage when introducing BYA-SCM and BLA-SCMto our system. The power consumption of
adding BYA-SCM and BLA-SCM only increases the overall platform power consumption by

85

0

0.2

0.4

0.6

0.8

1

0.96

0.98

1.00

1.02

1.04

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

En
er

gy
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Po
w

er
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Power Energy

(a) model 1

0

0.2

0.4

0.6

0.8

1

0.96

0.98

1.00

1.02

1.04

1.06

1.08

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

En
er

gy
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Po
w

er
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Power Energy

(b) model 1+
Figure 4.16: Average power and total energy consumption.

0

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1

1.2

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM En

er
gy

 c
om

pa
re

d
to

 C
on

fig
N

an
d

Po
w

er
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Power Energy

(a) 1 node MTrainS

0

0.2

0.4

0.6

0.8

1

0.70

0.80

0.90

1.00

1.10

1.20

Config- BLA Config-
BYA-1

Config-
BYA-2

Config-
SCM

En
er

gy
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Po
w

er
 c

om
pa

re
d

to
 C

on
fig

N
an

d

Power Energy

(b) 2 nodes MTrainS

Figure 4.17: Average power and total energy consumption.

1-3.2%. This is because of the low power consumption of these individual units and because
major power consumption contributors are the GPU, CPU, and DRAM. This extra power
consumption per node is justified when considering reduced execution time and overall
Energy consumption (Energy = Power×Time). We observe a 60% to 70% reduction in the
energy consumption across the two models compared to configNand. Figure 4.17a and 4.17b
show the power and energy of MTrainS for model 2. In this case, adding SCMs increases
the power by 3-18%. The higher power in model 2 is because there are more caching and
embedding storage operations in model 2due to the larger data access volume compared to
model 1that increases the power of BYA-SCM and BLA-SCM. Figure 4.18 shows the power
and energy of model 1 and model 1+ using MTrainScompared to the baseline configuration
with only HBM and DRAM. Compared to training using the baseline, which requires 4-8
nodes to accommodate the models, we see ∼ 1/4 - 1/8 power reduction with MTrainS. This
reduction is mainly driven by the decrease in the number of nodes required for training
with MTrainS. This leads to up to 50% energy reduction. However, as seen in the figure,
configNandhas higher energy than the baseline system for model 1+because of the low QPS
(longer training time). Note that this high reduction is because we have a QPS target for

86

0

0.5

1

1.5

Ba
se

lin
e

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

Ba
se

lin
e

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

Model 1 Model1+

Po
w

er
 a

nd
 e

ne
rg

y
co

m
pa

re
d

to
 B

as
el

in
e

Power Energy

Figure 4.18: Power and energy comparison of MTrainS to baseline system running CLDRM+ for
model 1 and model 1+.

0
5
10
15
20
25

0

0.5

1

1.5

Ba
se

lin
e

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

Ba
se

lin
e

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

1 node MTrainS 2 node MTrainS

En
er

gy
 c

om
pa

re
d

to
 B

as
el

in
e

Po
w

er
 c

om
pa

re
d

to
 B

as
el

in
e

Power Energy

Figure 4.19: Power and energy comparison of MTrainS to baseline system running CLDRM+ for
model 2 using 1 and 2 nodes eith MTrainS.

87

0

5

10

15

20

25

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

co
nf

ig
Na

nd

co
nf

ig
BL

A

co
nf

ig
BY

A-
1

co
nf

ig
BY

A-
2

co
nf

ig
SC

M

Model 1 Model 1+

TB
 w

rit
es

 p
er

 d
ay

Figure 4.20: Wear out comparison for model 1 and model 1+.

training. If we were to compare absolute performance achieved by the baseline system and
MTrainS, the number of nodes running MTrainSrequired would be higher, lowering power
and energy reduction. Figure 4.19 shows model 2’s average power consumption is reduced
by up to 60% in 1 node and 30% in 2 node MTrainSconfigurations. Nonetheless, because
MTrainS’s QPS for model 2is considerably lower than the baseline config (longer training
time), even when using 2 nodes running MTrainS, energy consumption is higher compared
to the baseline in all configurations, as seen in Figure 4.19.

4.7.4 Storage endurance and wear out

In this and the following sections, we show detailed hardware characteristic analysis for the
models that benefit from MTrainS, i.e., model 1 and model 1+. Figure 4.20 measures the TB
written per day for model 1 and model 1+ to study if we meet our endurance requirements
with the diverse configurations of MTrainS. Based on the sizes of BLA-SCM and Nand
Flash SSD, the endurances to avoid storage wear out are 200TB and 8TB data writes per
day (DWPD), respectively. As seen in the figure, while we satisfy our QPS target with
configNand for model 1, the write per day exceeds the endurance of Nand Flash SSD (8TB).
configBYA-1 and configBYA-2satisfy the endurance because of the increase in cache
size that decreases writes to storage. All configurations with BLA-SCM(configBLAand
configSCM) meet the endurance because of its higher DWPD (200TB). For model 1+, all
configurations backed by Nand Flash SSDdo not meet the endurance. Therefore, for future
models BLA-SCM is the best option to prevent storage wear out.

88

0%

20%

40%

60%

80%

100%

Config-
Nand

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

Ca
ch

e
hi

t%

DRAM BYA-SCM

(a) model 1

0%

20%

40%

60%

80%

100%

Config-
Nand

Config-
BLA

Config-
BYA-1

Config-
BYA-2

Config-
SCM

Ca
ch

e
hi

t%

DRAM BYA-SCM

(b) model 1+
Figure 4.21: Cache hit rates for model 1(a) and model 1+(b) for different MTrainS configurations.

0

1

2

3

ConfigBLA ConfigBYA-1 ConfigBYA-2 ConfigSCM

IO
PS

 a
nd

 B
W

 re
la

tiv
e

to
 C

on
fig

N
an

d

IOPS BW

(a) model 1

0

1

2

3

4

ConfigBLA ConfigBYA-1 ConfigBYA-2 ConfigSCM

IO
PS

 a
nd

 B
W

 re
la

tiv
e

to
 C

on
fig

N
an

d

IOPS BW

(b) model 1+
Figure 4.22: IOPS and effective SSD BW for model 1 and model 1+.

4.7.5 Cache hit and IO utilization

Figure 4.21 shows the cache hit rates for model 1 and model 1+. For model 1 in Figure
4.21a, we observe 50% cache hit rate with configNandand configBLAthat use only DRAM
for cache, and addition of BYA-SCM (configBYA-1) increases the cache hit to 75%. The
768GB BYA-SCM configuration (configBYA-2) does not increase the cache hit further
because the 384GB BYA-SCMis enough to capture the temporal locality. As a result, both
configurations of BYA-SCM reach similar QPS, as shown in Figure 4.14a. For model 1+,
as shown in Figure 4.21b, we measure 40% cache hit rate with configNand. The addition
of BYA-SCM increases the cache hit to 60% and 70% for configBYA-1 and configBYA-2,
respectively. In this case, as shown in Figure 4.14b, higher BYA-SCM translates to higher
QPS. The reason for the different behavior by model 1 and model 1+ is that the bigger
embedding dimension in the latter model manifests higher pressure on the caches. As a
result, a larger cache size can capture more locality, resulting in less IO traffic and improved
QPS.

As shown in Figure 4.22, the trainer achieves higher IOPS and bandwidth with BLA-SCM.
In Figure 4.22a for model 1 with BLA-SCM 1.5× more IOPS and 2.3× more effective BW

89

0

1

2

3

4

5

Model 1 Model 1+
Ta

bl
e

pl
ac

em
en

t Q
PS

co

m
pa

re
d

to
 u

no
pt

im
ize

d

Balanced

LP solver (Size)

LP solver (Size + BW)

Figure 4.23: QPS increase for different types of embedding table placement for model 1 and model
1+

(IOPS× embedding_dim) is measured, and consecutively more than 2× QPS compared to
Nand Flash SSD, as shown in Figure 4.14a. Adding BYA-SCMdecreases IOPS by up to
80% and BW by up to 60%. Here, the IO traffic is substantially reduced to the point that
SSD traffic is not on the critical performance path. Figure 4.22b shows similar trends for
model 1+ with the main difference that the higher BYA-SCM continues to improve QPS,
and hence IOPS and effective BW. In summary, the MTrainSconfigurations in Table 4.4
improve QPS 1) by reducing IO traffic using BYA-SCMand/or 2) by providing more IOPS
using BLA-SCM.

4.7.6 Embedding table assignment efficiency

In this section, we compare the benefit of four embedding table placements for model

1and model 1+. The first is placing all embedding tables in RocksDB storage (Nand Flash
SSDand BLA-SCM) and using the available size of DRAM and BYA-SCM memories for
caching. We use this as the baseline in Figure 4.23 and call it unoptimized because table
placement is only optimized for maximizing the utilization of the sizes of SSDs instead of
BW; hence, the data access volume is not balanced among the GPUs. When we compare
the unoptimized with using BW to balance the data access of the GPUs, we increase QPS
by 15%. Note that using just SSD with DRAM and BYA-SCM caching has lower HBM
utilization. We then compare this to applying a linear programming solver with only the
size of embedding tables and memory types as input. We get 2.5-3.5× more QPS with
this placement. Using both size and bandwidth aware placement further increases the QPS
to 3.2-4.2×. Hence, table placement is critical when training DLRM with heterogeneous
memories, and considering both the size and BW provides the best performance.

90

4.8 Discussion and future work

In this paper, we demonstrate that using different storage class memories helps us reduce
the number of nodes used for training by 4-8× for capacity-bound DLRM models. We
learned that for models that are both capacity and bandwidth bound, the additional memory
bandwidth with storage class memories is not enough to accommodate the models. Our
results show that while we can use BYA-SCM with Nand Flash SSD to meet our QPS target,
server configuration with just BLA-SCM can meet our target QPS for current models. For
future scaling using BYA-SCM and BLA-SCM can help us meet our target QPS. Although
these memories are slower than DRAM, they provide enough performance for our memory
capacity-bound workloads. Hence we can harness the cost and power benefit of SCMs. In
the future, we plan to extend our systems with Compute Express Link (CXL) to access
BYA-SCM, which will provide us with better memory bandwidth because we don’t have to
share the memory bus with DRAM and we wont be limited by the system’s available DIMM
slots. This will help our design to suit bandwidth-bound workloads too.

4.9 Related work

Memory capacity extension for recommendation systems: The high memory capacity
and BW demand of embedding operation in recommendation systems impose a challenge on
the memory system. Training and Inference use cases present their own unique challenges.
For example, in Inference, the latency of each query is important. Ardestani et al. [124]
present an end-to-end system to leverage SSDs while keeping the latency manageable, and
Wilkening et al. [132] use the controller in SSD to offload some of the compute closer to
the data. Eisenman et al. [131] uses SCM to increase memory capacity per host. However,
it requires offline preprocessing of embedding tables, which is not applicable for training.

Training is less sensitive to latency but requires higher BW and frequent parameter
updates, and hence read and write traffic to the SSDs. Zhao et al. [126] present a training
system that leverages HBM, DRAM, and SSD. They leverage pipelining to hide SSD latency
and use caching to hide lower SSD BW. They follow a parameter server scheme for training
large models, as opposed to our distributed, synchronized scheme. Also, in contrast, to
sustain high throughput, we leverage the GPU for cache management. Additionally, we show
different SCM technologies’ performance and power impact on training. Balasubramanian
et al. [147] implements a CPU-managed cache to leverage HBM and DRAM to expand
the memory capacity of embedding tables but only extends to DRAM. Yang et al. [141]
propose and implement a software caching scheme in GPU backed by CPU memory for

91

embeddings. We build on a similar scheme as [141] and enable multi-level caching with
DRAM and BYA-SCM, backed by SSDs. However, while they also use caching with DLRM,
they focus on using different precisions to reduce embedding storage sizes. In contrast, we
extend the memory hierarchy to BYA-SCMand flash to expand memory per host and remain
neutral to the accuracy of training.
SCM usage for AI workloads: Hildebrand et al. [148] developed an integer linear
programming-based system that moves tensors between DRAM and SCM. They show
that optimized data placement achieves higher performance than a naive approach. Similarly,
in our designs, based on the characteristics of applications, we carefully place data on
different memories.

4.10 Conclusion

In the pursuit of better model quality, recommendation model complexity, size and amount
of training data is increasing over time. This imposes considerable pressure on the compute,
bandwidth, IO, and memory capacity provided by the underlying platforms. In this paper
we tackle the pressure on memory capacity, and present a hierarchical memory based
training to increase memory capacity per host. We quantitatively compare the performance
and system level implications of Byte and Block addressable SCMs. Given the temporal
locality observed in embedding table access across large scale production workloads, we
apply a multi-level cache, utilizing Storage Class Memory (SCM) to reduce the number of
nodes required to load and train the memory bound models by 1/4-1/8th. Adding SCM to a
platform results in minimal increase in platform cost and power, given that other components
such as GPU dominate the power. As a result, we observe overall efficiency benefits due to
lower number of nodes required to train a given model. Considering nodes/Per f ormance,
we observe 2.3× improvement while meeting usecase performance requirement. There are
limits to this approach for bandwidth bound models. In these cases the multi-level cache
fails to deliver enough bandwidth to satisfy the model performance requirements under the
hardware configurations evaluated. By contributing the MTrainS multi-level cache to the
open source DLRM software community, we plan to enable these efficiency optimizations
across many diverse applications, and enable hardware designers to further optimize future
training platforms for SCM.

92

CHAPTER 5

Resource Management in Integrated CPU-GPU
for Collaborative Workloads

Computing systems are evolving towards CPUs, GPUs, and other specialized compute
units tightly integrated with shared last-level cache and memory. These integrations enable
systems to run applications in fine-grain collaborations between different compute units,
which were previously based on offloading the entire application to a specialized unit such
as GPU. These collaborations increase performance and resource utilization by partitioning
applications among different compute units. While collaboration provides attractive benefits,
if we do not manage and monitor the shared resources such as cache, interconnect, and
memory rigorously, interference and unfair resource usage inevitably degrade performance.
The degradations result from different compute units generating varying demands and
pressures on the shared resources. In this paper, for an integrated CPU-GPU architecture,
we design shared resource management strategies based on the collaboration patterns of
applications. We design cache partitioning and memory transaction prioritization in the
interconnect and the memory controller to facilitate collaboration and resource usage to
increase the system’s overall performance. We achieve, on average, 25% performance
improvement and 30% memory read reduction by designing collaboration pattern-based
resource management.

5.1 Introduction

The increasing demand for high computing capability to process today’s computation and
data-intensive workloads drove emerging heterogeneous systems incorporating compute
units such as GPUs, FPGAs, and other specialized devices along with CPUs. As a result,
heterogeneous systems are abundant in modern systems ranging from mobile to data center
architectures [149–153]. The effort to constantly increase performance and reduce energy

93

usage and cost of these specialized architectures led to tightly integrated architectures, such
as CPU and GPU, on the same die sharing the same memory and address space.

Sharing memory and address space in heterogeneous systems manifests flexible pro-
grammability and efficient collaboration among computing devices via fast and fine-grain
data sharing and synchronization. These create new opportunities to design various so-
phisticated collaborative workloads by utilizing heterogeneous systems together, leading to
performance and resource utilization increase. Especially in embedded and desktop systems,
where we are limited by lower compute resources availability, energy, and cost, collaborat-
ing workloads between compute units improves the efficiency of workloads. Partitioning
workloads between different specialized compute units increases the performance of running
applications by dividing different tasks of an application into the compute unit that can
better perform a specific task or by partitioning the data points of an application among
compute units. Previous studies [154–157] have confirmed the substantial performance gain
when we partition workloads between different units in heterogeneous systems for diverse
applications.

The benefits of collaborative workloads motivate the study of the impact of shared cache,
interconnect, and memory controller in integrated architecture to facilitate data sharing
between different compute units [158, 159]. Although shared resources management in
multicore architecture has been studied for a long time, the distinct architectural properties
of computing devices in heterogeneous systems require unique resource usage. For example,
the CPU would be more sensitive to cache sharing in integrated CPU-GPU systems because
of its latency sensitivity. At the same time, the GPU will be less affected by cache misses. We
also have disproportionate memory request because of the architectural differences between
CPU and GPU, resulting in interference. Recognizing these differences, previous works
have shown the benefits of shared resource management in the cache and memory controller
based on both the demand of the compute devices and the applications running on it [160,
161]. But these works focus on disparate applications running on different compute units.
However, in collaborative workloads, the collaboration pattern of applications aids in better
managing shared resources to increase performance. Recent works have shown the trend
towards collaborative workloads and the benefits of shared cache in fine-grain collaborative
workloads running in integrated architectures. But this work only considered a shared cache,
and a shared cache is not always helpful even in collaborative workloads, depending on the
data sharing patterns in the applications. Furthermore, managing other shared resources,
such as the interconnect and the memory controller, also improves performance. Hence,
exploring efficient resource management in the memory controller and interconnect is
essential to increase efficiency and serve the continuous growth of the compute requirements

94

in applications.
In this paper, considering the interference created by shared resources in integrated

systems, we designed CoACT (Collaborative Applications Cache and memory Transaction
management) to manage shared resources in integrated CPU-GPU architecture efficiently.
We first study the interference created in the cache, interconnect, and memory controller
when shared by CPU and GPU. We find that, even though collaboration improves perfor-
mance, we can potentially lose 50% performance by this interference. We then characterize
compute and memory properties of collaborative workloads and learn that the collaborative
patterns in applications can help us better manage shared resources. In our solution, we
design cache partitioning based on the collaboration pattern of the application to decrease
interference and increase data sharing between CPU and GPU. Then again, based on the
collaboration pattern of application and characteristics of GPU and CPU, we design memory
transaction prioritization in the interconnect and memory controller. Our design provides
multiple cache partition and memory transaction prioritization configurations to select from
based on what the application requires. Finally, to select the best configuration for an appli-
cation, we design a simple analytical model that aids in selecting the best configuration for
an application. Our experimentation shows that we achieve in average 25% improvement in
performance and 30% reduction in memory read with minimal hardware modification. In
summary, we contribute the following:

• We designed an efficient resource management unit for heterogeneous integrated
CPU-GPU architecture with minimal hardware modifications. Our designs expose
multiple policies to orchestrate the shared cache, interconnect, and memory controller.

• We characterize collaborative workloads and analyze parameters that help better
manage shared resources in heterogeneous systems. We build a simple analytical
model that selects efficient shared resource policies from this.

• We implemented our design in a cycle-accurate CPU and GPU simulator and achieved
an average of 25% performance improvement for diverse collaborative applications.

5.2 Background and Motivation

5.2.1 Integrated architecture

Integrated architecture compromises CPU and other accelerators, such as GPUs, together
on the same die. This integration enables fast and fine-grain computation and data sharing
between CPU and GPU at relatively lower power and cost than discrete systems. These

95

0

0.5

1

1.5

2

2.5

App 1 App 2

Sp
ee

du
p

of
 id

ea
l

co
m

pa
re

d
to

 m
ea

su
re

d

(a) Ideal vs real system.

-20

0

20

40

60

80

-0.4

0

0.4

0.8

1.2

1.6

App 1 App 2

Ca
ch

e
hi

t %
 in

cr
ea

se

co
m

pa
re

d
to

 p
riv

at
e

ca
ch

e
co

nf
ig

Sp
pe

d
up

 c
om

pa
re

d
to

pr

iv
at

e
ca

ch
e

co
nf

ig

Speedup CPU cache hit GPU cache hit

(b) Interference in the cache.
Figure 5.1: Ideal speedup and cache interference.

benefits foster multiple commercially available integrated architecture units [149,150]. With
heterogeneous system architecture (HSA) features [162], such as coherent and unified shared
memory, it has become easier to utilize integrated architectures in the hardware and software
layers. These also led to considerable research focusing on even a much tighter integration
sharing cache [158, 159, 161] and software tools to facilitate application development such
as OpenCL [163, 164].

5.2.2 Collaborative workloads

In discrete heterogeneous systems, accelerators and compute units are usually attached
to the host (CPU) via IO ports, and data and computation are offloaded to accelerators
before applications run. In contrast, in integrated systems, we can run the application
by dividing it among the host and other accelerators, such as GPUs, in parallel because
of the fast communication and synchronization between the compute units. These types
of workloads are called collaborative workloads [165]. Collaborative applications help
to improve workload performance, energy, and power efficiency by leveraging multiple
compute units in parallel. This is helpful when there are tightly communicating tasks
within a workload with different computation patterns that can benefit from using compute
units/accelerators specialized for different types of computation patterns. We also benefit
from collaborative workloads by dividing applications between different units when a
workload performs the same task on a large dataset giving us an immense computing
resource. We focus on the following two main collaborative patterns discussed in [165].
Task partitioning: In these collaborative workloads, multiple sub-tasks run in parallel
within an application, and these different tasks run on different compute units.
Data partitioning: In data partitioning, the application performs the same task for different
data points. In this case, the different compute units run the task divided into data points.

96

0

0.5

1

1.5

Private Private CPUpri Private GPUpri Shared Shared CPUpri Shared GPUpri

Sp
ee

du
p

co
m

pa
re

d
to

 p
riv

at
e

co
nf

ig

Figure 5.2: Importance of selecting policies.

5.2.3 Shared resources in integrated systems

While guaranteeing fair resources is not a problem in homogeneous computing such as
multicore CPU, in a system with CPU and GPU, it can create interference. This interference
is because of the architectural structure differences in how computations and memory
accesses are organized and performed in the different units. When CPU and GPU work
independently, we want to provide fair resource assignments. However, with collaborative
workloads, we want to increase resource utilization based on how CPU and GPU perform
tasks in the application. In collaborative workloads, the collaborative pattern also guides us
on how to share resources—leading to a better resource management.

5.2.3.1 Shared resource in collaborative CPU-GPU workloads

In discrete heterogeneous systems, CPUs and GPUs have their own dedicated resources.
However, for integrated heterogeneous systems, one of the primary shared resources is
memory. When memory is shared between CPU and GPU, because CPUs are optimized
to lower memory latency and GPU for high memory bandwidth, the GPU will have much
more requests in the memory controller than the CPU. In tightly integrated architecture, the
cache is also another resource that is beneficial to share, as shown in [159]. When a cache is
shared between CPU and GPU, the GPU will have much more requests, and at the same
time, the performance is not sensitive to cache misses. Another resource that will be shared
when we have a shared cache is the interconnect. Similar to the memory controller, we must
be careful about sharing and issuing requests in the interconnect.

5.2.3.2 Performance degradation in shared resource

As discussed above, shared resources between various compute units create unfair resource
sharing between CPU and GPU, leading to performance degradation. Even though dividing
applications between CPU and GPU increases performance, because of the interferences,
we might not achieve the maximum performance we can get. In collaborative workloads,
the interactions between CPU and GPU are also tailored to the collaborative pattern of the

97

CPU GPU

Interconnect

L1/L2 Cache L1/L2 Cache

Last level cache

Memory controller

Interconnect
Pri unit

Cache
partitioning unit

Memory
Pri unit

Figure 5.3: CoACT architecture overview.

application. Hence, data access and sharing are specific to the applications and require a
unique solution for each application. We performed the following studies to understand the
impact of sharing resources in integrated systems and application-specific shared resource
management.

To understand the performance benefits we could get from collaborative workloads,
we compared the measured performance of collaborative workloads divided between CPU
and GPU, to an ideal scenario, where CPU and GPU are not affected by running parts
of the workloads in parallel while sharing cache, interconnect and memory. To estimate
an ideal scenario, we calculated the rate at which CPU and GPU perform computation
if we dedicated the entire resource to them. While this is an ideal scenario, it shows us
how far we are from the maximum performance we can achieve. Figure 5.1a shows these
results for two applications. Here, the performance gap between the ideal and the measured
speedup indicates that if we reduce interference by managing the shared resources, we will
have the potential to increase performance. While the ideal scenario is unattainable, this
paper explores how we can drive performance improvement towards the ideal speedup by
efficiently developing resource management.

In Figure 5.1b, we show cache interference created by CPU and GPU sharing cache and
how we can use collaborative patterns to combat these problems. For App 1 and App 2, we
compare a private cache configuration where equal cache space is dedicated to CPU and
GPU to a configuration where the cache is shared. In the figure, we see that, for App 1,
which has private data sharing between CPU and GPU, when we compare private and shared
configs, because of the interference between requests of CPU and GPU in the cache in the

98

shared config, we lose performance. When we see the cache hit, in shared configuration,
we lose 10% cache hit compared to private for CPU, whereas, for GPU, we gain 9% cache
hit in shared config. But we can see that even when we get more GPU cache hits, we still
have lower performance than private because cache misses do not hurt GPU’s performance.
However, a private config is not always the best configuration, as we see the opposite
behavior for App 2 because it shares data between CPU and GPU. Hence, depending on the
collaborative patterns, the cache should be configured differently.

Figure 5.2 we show the performance of App 1 for multiple management policies. We
examined private and shared policies and CPU and GPU memory transaction prioritization
in the interconnect and memory controller. In the figure, we see that prioritizing memory
transactions affects the performance of applications because managing interconnect and
memory controller potentially decreases data access latency. We can also observe that
different policies influence the performance we achieve. Hence, it is crucial to select the best
policy that boosts the performance of an application. Note that the best policy is different
for each application and is tailored to the collaborative pattern of the application.

5.3 CoACT Design

In our designs, we focus on managing three critical shared resources in integrated CPU-GPU
architecture that contribute to interference and, as a result, performance degradation. These
resources are the last level cache, the interconnect, and the memory controller. We carefully
designed configurable strategies to partition and use these resources among cores in CPU
and GPU based on the characteristic of workloads to improve overall performance. We
then implemented a simple analytical model that considers the collaboration strategies
of a particular application and its computation and memory characteristics to determine
resource management configurations for the shared resources before the application runs.
Our design focuses on two parts. The first part is shared resource management design
in the hardware to enable configurable resource utilization strategies. The second part is
understanding applications’ computation and memory access and deciding the configuration
for selecting the best configuration per application based on its characteristics.

5.3.1 Hardware design

Figure 5.3 shows the overview of where our design fits in integrated CPU-GPU architecture.
In our designs, to enable configurable resource sharing, we added a configurable cache
partitioning unit to assign cache resources for CPU and GPU based on the application’s

99

Cache

Config registers

CPU start CPU end

GPU start GPU end

Partition type

Cache request

Control
unit

Address

Check
sender

Cache response

Figure 5.4: Cache partitioning overview.

characteristics. This helps to minimize interference between CPU and GPU and eases fast
communication, depending on the application. We then added prioritization units in the
queues of the interconnect and the memory controller to optimize the data access latency.
The details of the designs are shown below.

5.3.1.1 Memory request packets

Our design depends on identifying packets coming from the CPU and GPU. This identifica-
tion enables us to treat CPU and GPU memory access differently, helping us perform cache
sharing/partitioning and packet prioritization. We do this by reusing the core id bits in the
packets. As seen in Figure 5.4 and 5.5, both cache partition and prioritization units have a
sender checker that compares the id and resolves if the packet is coming from the CPU or
GPU.

5.3.1.2 Cache partitioning

The last level cache (LLC) partitioning provides dedicated cache resources for CPU and
GPU in an integrated architecture. In our design, for all the cache lines in LLC, we configure
what percentage of the lines we should dedicate to CPU and what percentage to GPU. As
shown in Figure 5.4, designated config registers are used to hold the cache line address range
used for CPU and GPU. The control unit in the cache is then used to translate the incoming
address to the target space (CPU or GPU) based on the register values and the packet’s
origin. This will give us the address to access the correct partition space. We implemented
three Cache partitioning policies. The cache partitioning options are as follows:
Private partitioning: In this policy, both CPU and GPU will have cache address range
dedicated to their memory access. In this scenario, Write/read to the cache are private to
CPU and GPU cache space. Depending on the application, we can configure the percentage

100

Check
sender

Config registers

PRI value PRI target

Counter

Priority
unit

Queue

Pri address

Request packet from CPU/GPU

Issue request

Figure 5.5: Interconnect and memory prioritization architecture overview.

of the cache we want to provide to the CPU and GPU. This policy will be beneficial when
the CPU and GPU collaborate by partitioning the input or/and output data, and each unit
operates on private data. If the rate at which CPU and GPU access data is different, then
there will be cache interference. This type of policy will help in this case.
Shared partition: In this policy, the entire cache space is used by both CPU and GPU.
The partition type configuration register is used to indicate shared policy. When both CPU
and GPU try to read/write to the cache, it can access the entire LLC space. This will be an
optimal policy when data is shared between CPU and GPU in the collaboration pattern of
the applications. Depending on the percentage of data shared, we can reduce compulsory
misses because the CPU can use data brought by GPU and vice versa.
Private write, shared read partitioning In this case, both CPU and GPU will have
dedicated cache space for writing, but the devices can read from the whole cache. This will
help when we have some portion of the input/output data shared between CPU and GPU.
By carefully partitioning the private writing space, we can achieve better performance with
this policy depending on the application’s collaboration pattern.

Supporting cache partitioning requires modifying the design of the coherence protocol
and caching algorithm. We changed the coherence protocol in the LLC to handle CPU and
GPU transactions separately based on the partition type. Similarly, in the caching algorithm,
such as the replacement policy, we must consider the partitioning types. For example, in
private partitioning, during replacement, if a transaction is from the CPU, only CPU address
ranges should be considered. We configure cache partitioning before the application starts
running. The configurations include partition type and percentage of CPU and GPU space.

101

5.3.1.3 Interconnect and memory prioritization

The CPU and GPU have different memory access characteristics. Since the GPU runs much
larger threads than the CPU, it will require much more memory bandwidth than the CPU.
But this will lead to the CPU’s memory request taking longer. However, we know the CPU
is more sensitive to memory access latency. Hence, we designed strategies to prioritize
transactions based on the criticality of incoming memory requests. The overall design
is shown in Figure 5.5. A packet is critical when the memory request coming from the
particular compute unit is small or if we surpass a preset threshold of prioritizing a particular
unit. In our implementations, we designed prioritization in the interconnect buffer queues
and the read queue of the memory controller. Based on the criticality of each transaction,
we decide which transaction to prioritize. In the memory controller, we use registers to set
the target device to prioritize and the threshold of prioritization. The prioritization target
tells which incoming transactions to the memory controller have priority (CPU or GPU).
On the other hand, the threshold prevents starving the non-prioritization compute unit. For
example, if the target is CPU and the threshold is 5, we will prioritize 5 CPU transactions
before prioritizing the GPU. The prioritization in the interconnect buffers also follows the
same strategy. The policies in the memory controller and interconnect are as shown below.
Prioritize CPU or GPU: In this case, we first specify which compute unit’s memory
request to prioritize. Then, based on the specified target, we perform prioritization in the
interconnect buffers and the memory controller until we hit a threshold that is specified
before the execution of the application starts. If no threshold is specified, we will prioritize
memory requests coming from the target in the complete execution of an application.
Adaptive prioritization: In this case, we prioritize based on the current state of the queues

in the interconnect and the memory controller. If we have fewer memory requests from the
CPU, we prioritize the CPU, whereas if we have fewer GPU requests, we prioritize that. In
adaptive prioritization, besides the target and threshold registers, we will also monitor the
total number of CPU and GPU requests in the queues.

5.3.2 Policy selection

The cache partition and memory prioritization policies above give us numerous policies
to choose from for an application. To determine the best policy for an application, we
designed a simple analytical model based on the collaboration patterns of applications. The
analytical model takes input parameters from offline profiling and the static characteristics
of the applications. Note that the above config register values can be a vast space to choose
from, and we can use a sophisticated heuristic to select a better policy. We left such intricate

102

solutions for future work.

5.3.2.1 Policy selection parameters

We use parameters from offline profiling and the static characteristics of the applications
to select the best policy. From the static properties of applications, we get the type of
partitioning (task or data), input or output data partitioning, and the proportion of data shared
between the CPU and GPU. From offline profiling applications, we get the best partition
proportion for an application and locality. The details of the parameters are shown below.
Type of collaborations: These tell us if the application partitions data or tasks between
CPU and GPU. This is static information that is decided at the design time of the application.
These help us understand the data access characteristics of the applications. While in data
partitioning, there are possibilities where the applications might not share data, in task
partitioning, the most common type of collaboration is a producer-consumer pattern that
usually requires data sharing between CPU and GPU.
Data partition proportion: For applications that are data partitioned, the proportion of
data processing performed by GPU and CPU will tell us about the cache space we should
provide for CPU or GPU. If we were dealing with just homogeneous cores, then all cores
would perform an equal amount of work, but in heterogeneous systems, we will have a
disproportion of work done between CPU and GPU, depending on the tasks in the application.
Hence, this property will tell us about the desired cache partition. This parameter also tells
us the criticality of the memory transactions. Data partitioned proportion is collected from
offline processing because we can only find the best partition by profiling the application.
Shared and private data percentage: This property is decided on the design time of the
application. The shared and private data parentage is a critical parameter because it will
inform us whether we want to share the cache or dedicate private space to the CPU and
GPU.
Locality: Locality helps us understand the partitioning strategy. It helps us understand if we
should provide more cache space to the CPU than GPU or vice versa despite the partition
percentage. Sometimes, depending on the locality, we can adjust the cache space for each
compute unit to maximize the cache hits. We measured locality based on offline profiling
and quantified it as the cache hit rates for both CPU and GPU.

5.3.2.2 Analytical model for policy selection

We use the metrics above to decide the best configuration for a collaborative application.
Based on the characterization of a handful of applications, we use the following rules to

103

Algorithm 1 Best policy selection algorithm
Input: Coll_type, partition, shared_p, cache_hit.
Output: partition_type, pri_type, cpu_cache_space.

1: if coll_type is task then
2: partition_type← shared
3: pri_type← adaptive
4: else if coll_type is data then
5: if shared_p≥ 50% then
6: partition_type← shared
7: if partition < 0.5 then
8: pri_type← cpu
9: else if partition > 0.5 then

10: pri_type← gpu
11: else
12: pri_type← adaptive
13: else
14: partition_type← private
15: if cache_hit < 50% then
16: cpu_cache_space← 100%
17: pri_type← gpu
18: else
19: cpu_cache_space← 50%
20: if partition < 0.5 then
21: pri_type← cpu
22: else if partition > 0.5 then
23: pri_type← gpu
24: else
25: pri_type← adaptive

build our simple analytical model. The algorithm for the analytical model is shown in
Algorithm 1.

1. The type of collaboration, task, or data partition helps us determine if we need a
private or shared cache. In task partitioning, the most common type of collaboration
is a producer-consumer scheme. All of the tasks partitioned workloads we evaluate
show these characteristics. Here, one of the compute units (CPU or GPU) produces
data to be used by the other. Hence, most of the data is shared. As a result, for task
partition, we use a shared cache configuration. For data partitioning, we need to
further understand how data is partitioned between CPU and GPU.

2. For data partitioned workloads, the first factor to investigate is the percentage of
data shared between GPU and CPU. From our characterizations, we saw that most

104

applications are partitioned in the input or output data, also discussed in [165]. If
the compute units are sharing either input or output data and the percentage of data
shared is greater than 50% then the cache should be shared. Otherwise, a private
configuration provides better performance because it minimizes interference between
CPU and GPU.

3. The proportion of input or output data partitioned between CPU and GPU in a private
setting can help us understand how to partition the cache. Here, the locality is also a
valuable parameter. In our experiments, we saw that utilizing the CPU cache hit rate
in the LLC provides more information for selecting the best policy. If we have locality
(high CPU cache hit) in the application when we run it on the baseline, we keep
the cache partition in the baseline to maintain the cache hit. When the application’s
locality is low (low CPU cache hit), we can dedicate the whole cache space to the
CPU to extract more cache hits. Here, we focus more on increasing cache hits for the
CPU because of its sensitivity to a cache miss.

4. We considered prioritizing in both the interconnect and memory controller together.
For example, if we prioritize the CPU in the interconnect, we also prioritize it in
the memory controller. Our strategy in prioritizing is that, when we consider task
partitioning since it follows a producer-consumer pattern, an adaptive configuration
fits the best because both CPU and GPU contribute a comparable number of memory
accesses.

5. For data partitioning, if we have a shared cache or a private configuration with 50-50
cache space to GPU and CPU, then depending on the CPU-GPU partition proportion,
we prioritize the one that has a smaller partition as seen in Algorithm 1. In a private
configuration, if we dedicate the entire cache space to the CPU, we prioritize the GPU,
assuming the cache will improve the performance of the CPU.

5.4 Experimental Setup

5.4.1 Simulation setup

We design CoACT using the gem5-gpgpu simulator [166], a cycle-accurate environment that
integrates the gem5 [167] and gpgpu-sim [168] simulators. We run all of our simulations
using the full system mode of gem5 to model the interaction between CPU and GPU
accurately. We modeled our cache and coherence using gem5 ruby, which is a detailed
memory subsystem simulator. We use MOESI_hammer cache coherence protocol that uses

105

Table 5.1: Simulation setup.

Specification Simulation config
CPU cores 8
CPU clock 3GHz
GPU cores 16 (Fermi cores)
GPU clock 700MHz
CPU L1I/L1D cache 32KB assoc = 8
GPU L1I/L1D cache 32KB assoc = 8
CPU L2 cache 512KB assoc= 16 (private to the cores)
GPU L2 cache 4MB assoc= 16 (shared by the cores)
L3 cache 8MB assoc= 16
Coherence protocol MOESI_hammer
Memory DDR4_2400
Interconnect crossbar with 128 bits bus width

MOESI protocol for CPU caches and LLC and hammer for GPU. We use a crossbar for the
interconnect. We use cacti [169] to model the latencies of the private and shared caches of
both CPU and GPU and the LLC. Table 5.1 shows the simulation hardware configurations.

5.4.2 Workloads

We use collaborative workloads from CHAI benchmarks [165] for our detail analysis
and Rodinia benchmarks for a much broader analysis. Chai benchmarks follow data and
task parallel collaborative patterns. Chai provides workloads from diverse application
domains with very distinct collaboration patterns and fine-grain data sharing. For Rodinia
benchmarks [27], we modified the benchmarks to divide the work between CPU and GPU.
We use openmp for the CPU and cuda for GPU in our Rodinia implementations. In the
Rodinia benchmarks, our modification uses data partitioning. In our evaluation, for all of
the applications, we used data set sizes larger than the total cache sizes of the CPU, GPU,
and LLC to evaluate memory access of collaborative workloads. We show the details of the
workloads in Table 5.2.

5.4.3 Baselines

For our baseline, we use a private L3 cache configuration with the cache size divided equally
among CPU and GPU and without transaction management in the interconnect and the
memory controller. We compared this baseline with CoACT and the following related
works. (1) Private_cache [161], this works evaluates different cache partitioning proportions
for CPU and GPU. To compare CoACT to this work, we took the different cache partitioning

106

Table 5.2: Collaborative workloads characterization.

Apps Coll type Partition Shared % Cache hit %
HSTO Data 0.3 98 9
HSTI Data 0.2 3 11.8
SC Data 0.4 ∼0 17
PAD Data 0.6 ∼0 33
RSCD Data 0.2 96 32
RSCT Task - ∼100 45
BS Data 0.2 ∼0 35
SSSP Task - ∼100 67
BFS Task - ∼100 74
KMEANS Data 0.1 ∼0 71
TQ Task - ∼100 30
TQH Task - ∼100 2.5
CEDT Task - ∼100 11
NN Data 0.5 ∼0 23.8
PF Data 0.6 ∼0 74

they use and chose the best performing partition. (2) Shared_cache [159], uses a shared
cache configuration for all workloads. (3) SMS [160], that manages CPU and GPU memory
transactions in the memory controller. Since SMS does not deal with cache partitioning, we
use basic cache partitioning (50-50% private and shared) on top of SMS’s implementation
and choose the best one. We also compare CoACT with different cache partition baselines,
namely private cache with 25%, 75% dedicated for CPU to evaluate how the baseline cache
configuration affects our performance improvement. We implemented all of our baselines
and previous work comparison in gem5-gpgpu with the configuration in Table 5.1.

5.5 Evaluations

5.5.1 Workload characteristic measurement

For all the workloads we use in our experimentation, we first measure the policy selection
parameters described in Section 5.3. We show the result of the measurements in Table 5.2.
We can see in the table that the applications have diverse collaboration types (both task and
data). This property is decided during algorithm design time. Next, we have the partition
proportion between CPU and GPU. To get the best partition, we run the applications by
partitioning CPU and GPU data points from 0 to 100% by increasing the partition by 10%
and chose the best performing partition in our baseline configuration, which has 50-50%
cache space dedicated to both CPU and GPU. Here we use offline profiling because we

107

0

0.5

1

1.5

2

HST
O

HST
I

SC PAD
RSC

D
RSC

T BS
SS

SP BFS

KMEANS
TQH TQ

CED
T NN PF

geo
mean

Sp
ee

du
p

co
m

pa
re

d
to

 p
riv

at
e

50
 -

50
 c

ac
he

Baseline_part Baseline_SMS Shared_LLC CoACT

Figure 5.6: Performance analysis and improvement for all workloads.

0

0.5

1

1.5

2

HSTO PAD CEDT RSCT

Sp
ee

du
p

co
m

ap
re

d
to

 p
riv

at
e

50
 -

50

Figure 5.7: Speedup of representative applications.

perform profiling and choose the best policy once, and we can use that policy afterward
when we require running the application multiple times. We see that the best partition for
most of the applications has a smaller CPU partition, as expected, because of the more
significant computing capability of the GPU. We measured the data shared percentage by
counting the size of input and output data shared between CPU and GPU divided by the
total data. To quantify CPU locality, we measure the LLC CPU cache hit rate in the baseline
system shown in the table.

5.5.2 Performance analysis for all workloads

Figure 5.6 show the speedup of CoACT, Private_cache that uses just cache partitioning,
Shared_cache that always uses shared cache and SMS that manages CPU and GPU memory
request in the memory controller and compared to the baseline system with 50-50% cache
partition. From the figure, we can see that CoACT, because it uses both cache management
and interconnects and memory controller prioritization, it provides up to 90% performance

108

0%
10%
20%
30%
40%
50%
60%
70%
80%

HSTO PAD CEDT RSCT

LL
C

hi
t %

Private 50 - 50 CoACT

Figure 5.8: LLC cache hit for representative applications.

increase and 25% improvement on average. When we compare these to the other configura-
tions, we see that in most of the applications, using a collaborative pattern in conjunction
with both cache and memory management achieves better performance. When we compare
private_shared cache with CoACT, we see that in workloads with minimal shared data
like HSTI and SC, it has better performance than the baseline. Still, because we include
an additional management step (prioritization) in our design, even in private configured
workloads, CoACT performs better. The shared cache configuration has a closer perfor-
mance to CoACT in applications with a large percentage of shared data, such as HSTO,
TQ, and RSCD. However, because it is only optimized for applications with shared cache, it
loses significant performance in workloads such as SC and PAD with less shared data. In
SMS, which mainly optimizes the memory controller for fair CPU and GPU memory access
management, CoACT outperforms it because of the additional cache partitioning in our
design and because we use collaborative patterns for resource management.

5.5.3 Application and hardware characteristic analysis

5.5.3.1 Speedup and LLC cache hit

In Figure 5.7 and 5.8 we show the speedup and LLC cache hit rate for four applications
that are representative of the unique characteristics of collaborative workloads. We use
these applications for deeper analysis and compare CoACT to the baseline configuration.
For HSTO, which shares a large percentage of the data and with CPU-GPU partitioning
less than 0.5, we use a shared cache with CPU prioritization. From the figure, we see that
with this config, we attain 21% improvements. When we see the cache hit in Figure 5.8,

109

0.5

1

1.5

2

HSTO PAD CEDT RSCTSp
ee

du
p

co
m

ap
re

d
to

 p
riv

at
e

50
 -

50

Cache_partition Cache_partition+INTER+MEM

Figure 5.9: Benefit of individual features.

because of the large shared data, the LLC cache hit rate increases. PAD, as seen in Table
5.2 has no shared data and low locality. Based on Algorithm 1, the best policy is all of the
LLC reserved for the CPU with GPU prioritization. As seen in Figure 5.7, we achieve 25%
speedup and LLC cache hit increase (Figure 5.8). For RSCT and CEDT, which are both
task partitioned, the best policy is shared cache with adaptive prioritization config. These
configs provide performance improvement, and LLC cache hit increases, as shown in the
figures.

5.5.3.2 Benefits of each feature

In Figure 5.9, we show the benefit of each feature (cache partitioning and interconnect +
memory prioritization) for the four representative applications. The figure shows that in all
cases, cache partition alone does not provide the best performance. In HSTO, we see that
we get an additional 5% performance increase with prioritization. For CEDT and RSCT,
the shared configuration combined with the prioritization provides the best performance.
In general, we can conclude that shared cache alone provides 10% improvement, and the
addition of the prioritization feature delivers an additional 50% benefit on average across all
workloads.

5.5.3.3 Memory read reduction

Figure 5.10 shows the memory read reduction when we use CoACT compared to the
baseline with 50-50% cache partition. From the figure we can see that the memory read is
reduced proportionally to the LLC cache hit rate. HSTO and RSCT, which gain the largest
LLC hit rate with our design, achieve 55% memory read reduction. In general, we attain on

110

0

0.2

0.4

0.6

0.8

1

HSTO PAD CEDT RSCT

M
em

or
y

re
ad

 c
om

ap
re

d
to

pr

iv
at

e
50

 -
50

Figure 5.10: Memory read reduction compared to baseline 50-50%.

0

0.5

1

1.5

2

HSTO PAD CEDT RSCT

Co
AC

T
sp

ee
du

p
co

m
pa

re
d

to

P5
0,

 P
75

. P
25

 p
ar

tit
io

n

P50 P75 P25

Figure 5.11: Effect of changing baseline partition.

average 30% memory read deduction with CoACT. This reduction improves memory access
latency.

5.5.3.4 Changing baseline partition

In Figure 5.11 we show the speed of CoACT compared to different partitions, P50 (baseline
in all above studies), P75 (cache partition with 75% assigned to CPU), and P25 (25% of
the cache assigned to CPU). From the figure, we see that in all cases CoACT achieves
performance improvement compared to all of the baselines. In the figure, we see that when
the cache partition percentage for the CPU is larger (P75), the speedup is reduced because
having a large cache space for the CPU improves the performance of the P75 baseline. In
contrast, we have a higher speedup for the P25 baseline because it has lower performance
due to the small CPU cache space. In general, we can observe that CoACT achieves better
performance for various baselines.

111

5.6 Related Works

Collaborative workloads are shown to improve performance and energy efficiency. [154–157]
show the performance improvement we achieve by strategically partitioning workloads
between CPU and GPU. [154] shows the partitioning of workloads to CPU and GPU on the
fly, and [155] shows the partitioning strategy for irregular workloads. While these works
show the benefits of performing meticulous partitioning of workloads to different compute
units, in contrast, we focus on the hardware characteristics of collaboration workloads in
our work.

Previous works have shown the importance of managing the shared resource in hetero-
geneous systems. [159] shows the benefits of shared last level cache in CPU-GPU system.
They show that a shared cache is advantageous for providing fast data sharing. In our
work, we extend their studies and show that while the shared cache is helpful in some
types of collaborative workloads that are sharing data between CPU and GPU, in some
workload configurations, it increases interference between CPU and GPU and degrades
performance. [161], shows in integrated architecture, when we have independent applica-
tions running in CPU and GPU, private cache configuration can aid in performance. In
this work, we show that private cache settings can also be used when CPU and GPU are
working together, and we can use collaborative characteristics of applications to share the
cache between CPU and GPU efficiently. [160] uses a staged memory controller design
for integrated CPU-GPU that shares memory. They focus on when the CPU and GPU are
running a separate application. In contrast, we use the collaboration pattern of applications
to manage the memory controller better.

5.7 Conclusion

Heterogeneous systems are abundant in modern computing systems because they support
the performance demand of today’s high compute and data-demanding applications. The
continuous growth and workload diversification lead computing systems towards CPUs,
GPUs, and other specialized compute units tightly integrated into the same die sharing
last-level cache and memory. This integrated architecture creates the opportunity to run
applications by dividing them among various compute units using fine-grain data sharing,
boosting performance and energy efficiency. However, if we do not carefully manage
and monitor the shared resources in the compute units, we will not reap the performance
improvement benefits of integrated architecture. In this paper, we design shared resource
management CoACT for collaborative workloads. In our design, we manage shared cache

112

in integrated architecture by carefully partitioning available resources between CPU and
GPU. We also manage memory transactions by implementing prioritization units in the
shared interconnect and the memory controller using collaborative patterns that are unique
for each application. We achieve, on average, 25% performance improvement across a
diverse set of applications from different domains.

113

CHAPTER 6

Conclusion

This dissertation studies software, systems, and hardware mechanisms to efficiently utilize
heterogeneous compute and memory units in different system configurations for diverse
workloads. We analyze the challenges of heterogeneous systems designs and utilization for
server-grade and integrated systems and provide workload characteristics-aware solutions.
We first study how to map applications in integrated and discrete systems with various
compute units using intrinsic properties of applications and design a framework that achieves
98% accuracy in selecting the best performant and energy efficient platform. We then study
how to design heterogeneous memory-based servers for large resource-consuming workloads
in data centers based on applications’ locality and bandwidth characteristics and how these
new memory technologies fit with CPUs and GPUs. Our studies show that by introducing
heterogeneous memories, we achieve 80% performance and 43-48% cost reduction for key-
value stores and up to 8× training host and power reduction for recommendation systems.
For integrated CPU-GPU, we build lightweight software and hardware mechanisms to
manage the shared cache, interconnect, and memory controller using collaborative patterns
of applications and achieve 25% performance improvements on average.

114

BIBLIOGRAPHY

[1] Yasin, A., “A Top-Down method for performance analysis and counters architecture,”
Proc. ISPASS, 2014.

[2] Kassa, H. T., Verma, T., Austin, T., and Bertacco, V., “ChipAdvisor: A Machine
Learning Approach for Mapping Applications to Heterogeneous Systems,” 2021 22nd
International Symposium on Quality Electronic Design (ISQED), 2021, pp. 292–299.

[3] Kassa, H. T., Akers, J., Ghosh, M., Cao, Z., Gogte, V., and Dreslinski, R., “Improving
Performance of Flash Based Key-Value Stores Using Storage Class Memory as a
Volatile Memory Extension,” 2021 USENIX Annual Technical Conference (USENIX
ATC 21), USENIX Association, July 2021, pp. 821–837.

[4] Kassa, H. T., Akers, J., Ghosh, M., Cao, Z., Gogte, V., and Dreslinski, R., “Power-
Optimized Deployment of Key-Value Stores Using Storage Class Memory,” ACM
Trans. Storage, Vol. 18, No. 2, mar 2022.

[5] Asanovic, K., Bodik, R., et al., “The Landscape of Parallel Computing Research:
A View from Berkeley,” Tech. rep., EECS Department, University of California,
Berkeley, Dec 2006.

[6] Weinberg, J., McCracken, M., Strohmaier, E., and Snavely, A., “Quantifying Locality
In The Memory Access Patterns of HPC Applications,” Proc. SC, 2005.

[7] Reagen, B., Adolf, R., Shao, Y., Wei, G., and Brooks, D., “MachSuite: Benchmarks
for accelerator design and customized architectures,” Proc. IISWC, 2014.

[8] OpenCL Best Practices Guide, https://hpc.oit.uci.edu/nvidia-doc/
sdk-cuda-doc/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf.

[9] Intel FPGA SDK for OpenCL, https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/opencl-sdk/
aocl_getting_started.pdf.

[10] Jiang, J. et al., “Boyi: A Systematic Framework for Automatically Deciding the Right
Execution Model of OpenCL Applications on FPGAs,” FPGA, 2020.

[11] Farooqui, N. et al., “Leo: A Profile-Driven Dynamic Optimization Framework for
GPU Applications,” Proc. TRIOS, 2014.

115

https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf

[12] Cong, J., Fang, Z., et al., “Understanding Performance Differences of FPGAs and
GPUs,” Proc. FPGA, 2018.

[13] Che, S., Li, J., et al., “Accelerating Compute-Intensive Applications with GPUs and
FPGAs,” Proc. SASP, 2008.

[14] Prabhakar, R., Koeplinger, D., Brown, K., et al., “Generating Configurable Hardware
from Parallel Patterns,” Proc. ASPLOS, 2016.

[15] Wang, S., Liang, Y., and Zhang, W., “Poly: Efficient Heterogeneous System and
Application Management for Interactive Applications,” Proc. HPCA, 2019.

[16] Hill, M. and Janapa Reddi, V., “Gables: A Roofline Model for Mobile SoCs,” Proc.
HPCA, 2019.

[17] Shao, Y. and Brooks, D., “ISA-independent workload characterization and its impli-
cations for specialized architectures,” Proc. ISPASS, 2013.

[18] Ould-Ahmed-Vall, E., Woodlee, J., et al., “Using Model Trees for Computer Archi-
tecture Performance Analysis of Software Applications,” Proc. ISPASS, 2007.

[19] Wang, Z., Grewe, D., and O’boyle, M., “Automatic and Portable Mapping of Data
Parallel Programs to OpenCL for GPU-based Heterogeneous Systems,” ACM Trans.
Archit. Code Optim. 2014.

[20] Intel VTune Amplifiers, https://software.intel.com/en-us/vtune.

[21] Williams, S., Waterman, A., and Patterson, D., “Roofline: An Insightful Visual
Performance Model for Multicore Architectures,” Commun. ACM, 2009.

[22] Pedregosa, F., Varoquaux, G., and others., “Scikit-learn: Machine Learning in Python,”
J. Mach. Learn. Res., Nov. 2011.

[23] He, X., Liao, L., et al., “Neural Collaborative Filtering,” Proc. WWW, 2017.

[24] Silver, D., Huang, A., Maddison, C., et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, 2016.

[25] Rucci, E. et al., “SWIFOLD: Smith-Waterman implementation on FPGA with
OpenCL for long DNA sequences.” BMC Syst Biol, 2018.

[26] Barnes, J. and Hut, P., “A hierarchical O(N log N) force-calculation algorithm,”
Nature, 1986.

[27] Che, S., Boyer, M., Meng, J., et al., “Rodinia: A benchmark suite for heterogeneous
computing,” Proc. IISWC, 2009.

[28] Facebook, “Introducing “Yosemite”: the first open source modular chassis
for high-powered microserver,” 2015, https://engineering.fb.com/
core-data/introducing-yosemite-the-first-open-source-
modular-chassis-for-high-powered-microservers/.

116

https://software.intel.com/en-us/vtune
https://engineering.fb.com/core-data/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers/
https://engineering.fb.com/core-data/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers/
https://engineering.fb.com/core-data/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers/

[29] Facebook, “Rocksdb,” 2020, https://rocksdb.org/.

[30] Intel, “Intel® Optane™ Persistent Memory,” 2019, https://www.intel.com/
content/www/us/en/architecture-and-technology/optane-dc-
persistent-memory.html.

[31] Qureshi, M. K., Srinivasan, V., and Rivers, J. A., “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09, Association
for Computing Machinery, New York, NY, USA, 2009, p. 24–33.

[32] Zhao, J., Li, S., Yoon, D. H., Xie, Y., and Jouppi, N. P., “Kiln: Closing the per-
formance gap between systems with and without persistence support,” 2013 46th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2013,
pp. 421–432.

[33] Jung, J.-Y. and Cho, S., “Memorage: Emerging Persistent RAM Based Malleable
Main Memory and Storage Architecture,” Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS ’13, Association
for Computing Machinery, New York, NY, USA, 2013, p. 115–126.

[34] Gottesman, Y., Nider, J., Kat, R., Weinsberg, Y., and Factor, M., “Using Storage
Class Memory Efficiently for an In-Memory Database,” Proceedings of the 9th ACM
International on Systems and Storage Conference, SYSTOR ’16, Association for
Computing Machinery, New York, NY, USA, 2016.

[35] Jeong, J., Hong, J., Maeng, S., Jung, C., and Kwon, Y., “Unbounded Hardware
Transactional Memory for a Hybrid DRAM/NVM Memory System,” 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020,
pp. 525–538.

[36] Volos, H., Tack, A. J., and Swift, M. M., “Mnemosyne: Lightweight Persistent
Memory,” SIGARCH Comput. Archit. News, Vol. 39, No. 1, March 2011, pp. 91–104.

[37] Coburn, J., Caulfield, A. M., Akel, A., Grupp, L. M., Gupta, R. K., Jhala, R.,
and Swanson, S., “NV-Heaps: Making Persistent Objects Fast and Safe with next-
Generation, Non-Volatile Memories,” Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, Association for Computing Machinery, New York, NY, USA,
2011, p. 105–118.

[38] Zhang, L. and Swanson, S., “Pangolin: A Fault-Tolerant Persistent Memory Pro-
gramming Library,” 2019 USENIX Annual Technical Conference (USENIX ATC 19),
USENIX Association, Renton, WA, July 2019, pp. 897–912.

[39] Condit, J., Nightingale, E. B., Frost, C., Ipek, E., Lee, B., Burger, D., and Coetzee, D.,
“Better I/O through Byte-Addressable, Persistent Memory,” Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, Association
for Computing Machinery, New York, NY, USA, 2009, p. 133–146.

117

https://rocksdb.org/
 https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
 https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
 https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

[40] Ou, J., Shu, J., and Lu, Y., “A High Performance File System for Non-Volatile Main
Memory,” Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys ’16, Association for Computing Machinery, New York, NY, USA, 2016.

[41] Dulloor, S. R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D., Sankaran, R.,
and Jackson, J., “System Software for Persistent Memory,” Proceedings of the Ninth
European Conference on Computer Systems, EuroSys ’14, Association for Computing
Machinery, New York, NY, USA, 2014.

[42] Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour, A., Soh, Y. J.,
Wang, Z., Xu, Y., Dulloor, S. R., Zhao, J., and Swanson, S., “Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module,” 2019.

[43] Zarubin, M., Damme, P., Habich, D., and Lehner, W., “Polymorphic Compressed
Replication of Columnar Data in Scale-Up Hybrid Memory Systems,” Proceedings
of the 13th ACM International Systems and Storage Conference, SYSTOR ’20,
Association for Computing Machinery, New York, NY, USA, 2020, p. 98–110.

[44] Wu, K., Ober, F., Hamlin, S., and Li, D., “Early Evaluation of Intel Optane Non-
Volatile Memory with HPC I/O Workloads,” 2017.

[45] Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., and Swanson, S., “An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory,” 18th USENIX Con-
ference on File and Storage Technologies (FAST 20), USENIX Association, Santa
Clara, CA, Feb. 2020, pp. 169–182.

[46] Gill, G., Dathathri, R., Hoang, L., Peri, R., and Pingali, K., “Single machine graph
analytics on massive datasets using Intel optane DC persistent memory,” Proceedings
of the VLDB Endowment, Vol. 13, No. 10, Jun 2020, pp. 1304–1318.

[47] Patil, O., Ionkov, L., Lee, J., Mueller, F., and Lang, M., “Performance Characteriza-
tion of a DRAM-NVM Hybrid Memory Architecture for HPC Applications Using
Intel Optane DC Persistent Memory Modules,” Proceedings of the International Sym-
posium on Memory Systems, MEMSYS ’19, Association for Computing Machinery,
New York, NY, USA, 2019, p. 288–303.

[48] Peng, I., Wu, K., Ren, J., Li, D., and Gokhale, M., “Demystifying the Performance of
HPC Scientific Applications on NVM-based Memory Systems,” 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), May 2020.

[49] Ma, T., Zhang, M., Chen, K., Song, Z., Wu, Y., and Qian, X., “AsymNVM: An
Efficient Framework for Implementing Persistent Data Structures on Asymmetric
NVM Architecture,” Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’20, Association for Computing Machinery, New York, NY, USA, 2020, p. 757–773.

[50] Anderson, T. E., Canini, M., Kim, J., Kostić, D., Kwon, Y., Peter, S., Reda, W., Schuh,
H. N., and Witchel, E., “Assise: Performance and Availability via Client-local NVM

118

in a Distributed File System,” 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), USENIX Association, Nov. 2020, pp. 1011–1027.

[51] Wang, Z., Liu, X., Yang, J., Michailidis, T., Swanson, S., and Zhao, J., “Characteriz-
ing and Modeling Non-Volatile Memory Systems,” 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp. 496–508.

[52] “Compute Express Link™: The Breakthrough CPU-to-Device Interconnect,” 2020,
https://www.computeexpresslink.org/.

[53] Knowlton, S., “Introduction to Compute Express Link (CXL): The CPU-To-Device In-
terconnect Breakthrough.” 2019, https://www.computeexpresslink.org/
post/introduction-to-compute-express-link-cxl-the-cpu-
to-device-interconnect-breakthrough.

[54] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and Paleczny, M., “Workload
Analysis of a Large-Scale Key-Value Store,” Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’12, Association for Computing
Machinery, New York, NY, USA, 2012, p. 53–64.

[55] Shi, X., Pruett, S., Doherty, K., Han, J., Petrov, D., Carrig, J., Hugg, J., and Bronson,
N., “FlightTracker: Consistency across Read-Optimized Online Stores at Facebook,”
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), USENIX Association, Nov. 2020, pp. 407–423.

[56] Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J.,
Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L., Song,
Y. J., and Venkataramani, V., “TAO: Facebook’s Distributed Data Store for the Social
Graph,” 2013 USENIX Annual Technical Conference (USENIX ATC 13), USENIX
Association, San Jose, CA, June 2013, pp. 49–60.

[57] Cao, Z., Dong, S., Vemuri, S., and Du, D. H., “Characterizing, Modeling, and Bench-
marking RocksDB Key-Value Workloads at Facebook,” 18th USENIX Conference on
File and Storage Technologies (FAST 20), USENIX Association, Santa Clara, CA,
Feb. 2020, pp. 209–223.

[58] Facebook, “db_bench,” 2020, https://github.com/facebook/rocksdb/
wiki/Benchmarking-tools#db_bench.

[59] Google, “LevelDB,” 2011, https://dbdb.io/db/leveldb.

[60] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., and Vogels, W., “Dynamo: Amazon’s Highly
Available Key-Value Store,” Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, Association for Computing Machinery,
New York, NY, USA, 2007, p. 205–220.

119

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/post/introduction-to-compute-express-link-cxl-the-cpu-to-device-interconnect-breakthrough
https://www.computeexpresslink.org/post/introduction-to-compute-express-link-cxl-the-cpu-to-device-interconnect-breakthrough
https://www.computeexpresslink.org/post/introduction-to-compute-express-link-cxl-the-cpu-to-device-interconnect-breakthrough
 https://github.com/facebook/rocksdb/wiki/Benchmarking-tools#db_bench
 https://github.com/facebook/rocksdb/wiki/Benchmarking-tools#db_bench
https://dbdb.io/db/leveldb

[61] Redis, “Redis,” 2020, https://redis.io/.

[62] O’Neil, P., Cheng, E., Gawlick, D., and O’Neil, E., “The Log-Structured Merge-Tree
(LSM-Tree),” Acta Inf., Vol. 33, No. 4, June 1996, pp. 351–385.

[63] Facebook, “RocksDB Users and Use Cases,” 2020, https://github.com/
facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases.

[64] Facebook, “RocksDB Trace, Replay, Analyzer, and Workload Generation,” 2020,
https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%
2C-Replay%2C-Analyzer%2C-and-Workload-Generation.

[65] Micron, “3D XPoint Technology,” 2020, https://www.micron.com/
products/advanced-solutions/3d-xpoint-technology.

[66] Intel, “3D XPoint™: A Breakthrough in Non-Volatile Memory Technology,”
2020, https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-micron-3d-xpoint-webcast.html.

[67] Intel, “Intel Optane DC Persistent Memory,” 2020, https://www.intel.com/
content/dam/support/us/en/documents/memory-and-storage/
data-center-persistent-mem/Intel-Optane-DC-Persistent-
Memory-Quick-Start-Guide.pdf.

[68] “NDCTL user guide: Managing Namespaces,” 2020, https://docs.pmem.io/
ndctl-user-guide/managing-namespaces.

[69] IgorsIstocniks, “How WhatsApp Moved 1.5B Users Across Datacenters,” 2019,
https://docplayer.net/161220289-How-whatsapp-moved-1-5b-
users-across-data-senters-igors-istocniks-code-beam-sf-
2019.html.

[70] Annamalai, M., “ZippyDB: a modern, distributed keyvalue data store.” 2015, https:
//www.youtube.com/watch?v=DfiN7pG0D0k.

[71] Pan, S., Stavrinos, T., Zhang, Y., Sikaria, A., Zakharov, P., Sharma, A., P, S. S., Shuey,
M., Wareing, R., Gangapuram, M., Cao, G., Preseau, C., Singh, P., Patiejunas, K.,
Tipton, J., Katz-Bassett, E., and Lloyd, W., “Facebook’s Tectonic Filesystem: Effi-
ciency from Exascale,” 19th USENIX Conference on File and Storage Technologies
(FAST 21), USENIX Association, Feb. 2021, pp. 217–231.

[72] Muralidhar, S., Lloyd, W., Roy, S., Hill, C., Lin, E., Liu, W., Pan, S., Shankar,
S., Sivakumar, V., Tang, L., and Kumar, S., “f4: Facebook’s Warm BLOB Storage
System,” 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), USENIX Association, Broomfield, CO, Oct. 2014, pp. 383–398.

[73] Muralidhar, Lloyd, R. H. L. L. P. S. S. T. K., “f4: Facebook’s Warm BLOB Storage
System,” USENIX, 2014.

120

https://redis.io/
https://github.com/facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases
https://github.com/facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases
https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-Analyzer%2C-and-Workload-Generation
https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-Analyzer%2C-and-Workload-Generation
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
 https://docs.pmem.io/ndctl-user-guide/managing-namespaces
 https://docs.pmem.io/ndctl-user-guide/managing-namespaces
https://docplayer.net/161220289-How-whatsapp-moved-1-5b-users-across-data-senters-igors-istocniks-code-beam-sf-2019.html
https://docplayer.net/161220289-How-whatsapp-moved-1-5b-users-across-data-senters-igors-istocniks-code-beam-sf-2019.html
https://docplayer.net/161220289-How-whatsapp-moved-1-5b-users-across-data-senters-igors-istocniks-code-beam-sf-2019.html
https://www.youtube.com/watch?v=DfiN7pG0D0k
https://www.youtube.com/watch?v=DfiN7pG0D0k

[74] Chen, G. J., Wiener, J. L., Iyer, S., Jaiswal, A., Lei, R., Simha, N., Wang, W.,
Wilfong, K., Williamson, T., and Yilmaz, S., “Realtime data processing at Facebook,”
Proceedings of the 2016 International Conference on Management of Data, 2016, pp.
1087–1098.

[75] Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy, R.,
and Liu, H., “Data warehousing and analytics infrastructure at facebook,” Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, 2010,
pp. 1013–1020.

[76] Facebook, “Hive - A Petabyte Scale Data Warehouse using Hadoop,” 2009, https:
//www.facebook.com/notes/facebook-engineering/hive-a-
petabyte-scale-data-warehouse-using-hadoop/89508453919/.

[77] Kumar, S., “Social Networking at Scale.” 2012, pp. 40–
49, https://www.ece.lsu.edu/hpca-18/files/
HPCA2012_Facebook_Keynote.pdf.

[78] Intel, “Intel Memory Latency Checker v3.9a,” 2021, https://www.intel.com/
content/www/us/en/developer/articles/tool/intelr-memory-
latency-checker.html.

[79] “fio,” 2021, https://github.com/axboe/fio.

[80] Chow, C., “On optimization of storage hierarchies,” IBM Journal of Research and
Development, Vol. 18, No. 3, 1974, pp. 194–203.

[81] Intel, “IPMCTL,” 2020, https://github.com/intel/ipmctl.

[82] “NDCTL and DAXCTL,” 2020, https://github.com/pmem/ndctl.

[83] “memkind library,” 2020, https://github.com/memkind/memkind.

[84] Intel, “Intel Server Board S2600WFTR Specification,” 2019, https:
//ark.intel.com/content/www/us/en/ark/products/192581/
intel-server-board-s2600wftr.html.

[85] Intel, “Intel Xeon Gold 6252 Processor Specification,” 2019, https:
//ark.intel.com/content/www/us/en/ark/products/192447/
intel-xeon-gold-6252-processor-35-75m-cache-2-10-
ghz.html.

[86] OCP, “OCP Tioga Pass 2S Server Design Specification V1.1,” 2018,
https://www.opencompute.org/documents/open-compute-
project-fb-2s-server-tioga-pass-v1p1-1-pdf.

[87] OCP, “OCP Twin Lakes 1S Server Design Specification V1,” 2018,
https://www.opencompute.org/documents/facebook-twin-
lakes-1s-server-design-specification.

121

https://www.facebook.com/notes/facebook-engineering/hive-a-petabyte-scale-data-warehouse-using-hadoop/89508453919/
https://www.facebook.com/notes/facebook-engineering/hive-a-petabyte-scale-data-warehouse-using-hadoop/89508453919/
https://www.facebook.com/notes/facebook-engineering/hive-a-petabyte-scale-data-warehouse-using-hadoop/89508453919/
https://www.ece.lsu.edu/hpca-18/files/HPCA2012_Facebook_Keynote.pdf
https://www.ece.lsu.edu/hpca-18/files/HPCA2012_Facebook_Keynote.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
 https://github.com/axboe/fio
https://github.com/intel/ipmctl
 https://github.com/pmem/ndctl
https://github.com/memkind/memkind
 https://ark.intel.com/content/www/us/en/ark/products/192581/intel-server-board-s2600wftr.html
 https://ark.intel.com/content/www/us/en/ark/products/192581/intel-server-board-s2600wftr.html
 https://ark.intel.com/content/www/us/en/ark/products/192581/intel-server-board-s2600wftr.html
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://www.opencompute.org/documents/open-compute-project-fb-2s-server-tioga-pass-v1p1-1-pdf
https://www.opencompute.org/documents/open-compute-project-fb-2s-server-tioga-pass-v1p1-1-pdf
https://www.opencompute.org/documents/facebook-twin-lakes-1s-server-design-specification
https://www.opencompute.org/documents/facebook-twin-lakes-1s-server-design-specification

[88] Hyperscalers, “RACKGO X YOSEMITE VALLEY,” 2019, https:
//www.hyperscalers.com/Rackgo-X-Yosemite-Valley.

[89] Hyperscalers, “RACKGO X LEOPARD CAVE,” 2019, https://
www.hyperscalers.com/OCP-Hyperscale-Systems?product_id=
194.

[90] Handy, J., “Intel’s Optane DIMM Price Model,” 2019, https://
thememoryguy.com/intels-optane-dimm-price-model/#more-
2291.

[91] Alcorn, J., “Intel Optane DIMM Pricing,” 2019, https://
www.tomshardware.com/news/intel-optane-dimm-pricing-
performance,39007.html.

[92] MATLAB, “Fit Power Series Models Using the fit Function,” 2020, https://
www.mathworks.com/help/curvefit/power.html.

[93] MATLAB, “gpfit: Generalized Pareto parameter estimates,” 2020, https://
www.mathworks.com/help/stats/gpfit.htmll.

[94] MATLAB, “Fit sine Models Using the fit Function,” 2020, https://
www.mathworks.com/help/curvefit/sum-of-sine.html.

[95] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., and Venkataramani, V.,
“Scaling Memcache at Facebook,” 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), USENIX Association, Lombard, IL, April
2013, pp. 385–398.

[96] Fitzpatrick, B., “Distributed Caching with Memcached,” Linux Journal, Vol. 30,
No. 10, 2004, pp. 2223–2236.

[97] Peng, I. B., Gokhale, M. B., and Green, E. W., “System evaluation of the Intel optane
byte-addressable NVM,” Proceedings of the International Symposium on Memory
Systems, Sep 2019.

[98] van Renen, A., Vogel, L., Leis, V., Neumann, T., and Kemper, A., “Persistent
Memory I/O Primitives,” Proceedings of the 15th International Workshop on Data
Management on New Hardware - DaMoN’19, 2019.

[99] Psaropoulos, G., Oukid, I., Legler, T., May, N., and Ailamaki, A., “Bridging the
Latency Gap between NVM and DRAM for Latency-Bound Operations,” Proceed-
ings of the 15th International Workshop on Data Management on New Hardware,
DaMoN’19, Association for Computing Machinery, New York, NY, USA, 2019.

[100] Shanbhag, A., Tatbul, N., Cohen, D., and Madden, S., “Large-Scale in-Memory
Analytics on Intel® Optane™ DC Persistent Memory,” Proceedings of the 16th Inter-
national Workshop on Data Management on New Hardware, DaMoN ’20, Association
for Computing Machinery, New York, NY, USA, 2020.

122

https://www.hyperscalers.com/Rackgo-X-Yosemite-Valley
https://www.hyperscalers.com/Rackgo-X-Yosemite-Valley
https://www.hyperscalers.com/OCP-Hyperscale-Systems?product_id=194
https://www.hyperscalers.com/OCP-Hyperscale-Systems?product_id=194
https://www.hyperscalers.com/OCP-Hyperscale-Systems?product_id=194
https://thememoryguy.com/intels-optane-dimm-price-model/#more-2291
https://thememoryguy.com/intels-optane-dimm-price-model/#more-2291
https://thememoryguy.com/intels-optane-dimm-price-model/#more-2291
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
 https://www.mathworks.com/help/curvefit/power.html
 https://www.mathworks.com/help/curvefit/power.html
 https://www.mathworks.com/help/stats/gpfit.htmll
 https://www.mathworks.com/help/stats/gpfit.htmll
https://www.mathworks.com/help/curvefit/sum-of-sine.html
https://www.mathworks.com/help/curvefit/sum-of-sine.html

[101] Wu, Y., Park, K., Sen, R., Kroth, B., and Do, J., “Lessons learned from the early per-
formance evaluation of Intel optane DC persistent memory in DBMS,” Proceedings
of the 16th International Workshop on Data Management on New Hardware, Jun
2020.

[102] Imamura, S. and Yoshida, E., “FairHym: Improving Inter-Process Fairness on Hy-
brid Memory Systems,” 2020 9th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), 2020, pp. 1–6.

[103] Xia, F., Jiang, D., Xiong, J., and Sun, N., “HiKV: A Hybrid Index Key-Value Store
for DRAM-NVM Memory Systems,” 2017 USENIX Annual Technical Conference
(USENIX ATC 17), USENIX Association, Santa Clara, CA, July 2017, pp. 349–362.

[104] Huang, Y., Pavlovic, M., Marathe, V., Seltzer, M., Harris, T., and Byan, S., “Closing
the Performance Gap Between Volatile and Persistent Key-Value Stores Using Cross-
Referencing Logs,” 2018 USENIX Annual Technical Conference (USENIX ATC 18),
USENIX Association, Boston, MA, July 2018, pp. 967–979.

[105] Bailey, K. A., Hornyack, P., Ceze, L., Gribble, S. D., and Levy, H. M., “Exploring
Storage Class Memory with Key Value Stores,” Proceedings of the 1st Workshop on
Interactions of NVM/FLASH with Operating Systems and Workloads, INFLOW ’13,
Association for Computing Machinery, New York, NY, USA, 2013.

[106] Oukid, I., Lasperas, J., Nica, A., Willhalm, T., and Lehner, W., “FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory,” Proceed-
ings of the 2016 International Conference on Management of Data, SIGMOD ’16,
Association for Computing Machinery, New York, NY, USA, 2016, p. 371–386.

[107] Ramos, L. E., Gorbatov, E., and Bianchini, R., “Page Placement in Hybrid Memory
Systems,” Proceedings of the International Conference on Supercomputing, ICS ’11,
Association for Computing Machinery, New York, NY, USA, 2011, p. 85–95.

[108] Zhang, Z., Fu, Y., and Hu, G., “DualStack: A High Efficient Dynamic Page Schedul-
ing Scheme in Hybrid Main Memory,” 2017 International Conference on Networking,
Architecture, and Storage (NAS), 2017, pp. 1–6.

[109] Bock, S., Childers, B. R., Melhem, R., and Mossé, D., “Concurrent Migration
of Multiple Pages in software-managed hybrid main memory,” 2016 IEEE 34th
International Conference on Computer Design (ICCD), 2016, pp. 420–423.

[110] Liu, H., Chen, Y., Liao, X., Jin, H., He, B., Zheng, L., and Guo, R., “Hardware/-
Software Cooperative Caching for Hybrid DRAM/NVM Memory Architectures,”
Proceedings of the International Conference on Supercomputing, ICS ’17, Associa-
tion for Computing Machinery, New York, NY, USA, 2017.

[111] Liu, L., Yang, S., Peng, L., and Li, X., “Hierarchical Hybrid Memory Management
in OS for Tiered Memory Systems,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 30, No. 10, 2019, pp. 2223–2236.

123

[112] Wu, K., Ren, J., and Li, D., “Runtime Data Management on Non-Volatile Memory-
based Heterogeneous Memory for Task-Parallel Programs,” SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis,
2018, pp. 401–413.

[113] Hassan, A., Vandierendonck, H., and Nikolopoulos, D. S., “Software-Managed
Energy-Efficient Hybrid DRAM/NVM Main Memory,” Proceedings of the 12th
ACM International Conference on Computing Frontiers, CF ’15, Association for
Computing Machinery, New York, NY, USA, 2015.

[114] Chang, H., Chang, Y., Kuo, T., and Li, H., “A light-weighted software-controlled
cache for PCM-based main memory systems,” 2015 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2015, pp. 22–29.

[115] Li, Y., Ghose, S., Choi, J., Sun, J., Wang, H., and Mutlu, O., “Utility-Based Hybrid
Memory Management,” 2017 IEEE International Conference on Cluster Computing
(CLUSTER), 2017, pp. 152–165.

[116] Dhiman, G., Ayoub, R., and Rosing, T., “PDRAM: A hybrid PRAM and DRAM
main memory system,” 2009 46th ACM/IEEE Design Automation Conference, 2009,
pp. 664–669.

[117] Eisenman, A., Gardner, D., AbdelRahman, I., Axboe, J., Dong, S., Hazelwood,
K., Petersen, C., Cidon, A., and Katti, S., “Reducing DRAM Footprint with NVM
in Facebook,” Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18,
Association for Computing Machinery, New York, NY, USA, 2018.

[118] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., An-
derson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain,
V., Liu, X., and Shah, H., “Wide and Deep Learning for Recommender Systems,”
arXiv:1606.07792, 2016.

[119] Smith, B. and Linden, G., “Two Decades of Recommender Systems at Amazon.Com,”
IEEE Internet Computing, Vol. 21, No. 3, May 2017, pp. 12–18.

[120] Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., Zhu, X., and Gai, K., “Deep
Interest Evolution Network for Click-Through Rate Prediction,” 2018.

[121] Elkahky, A. M., Song, Y., and He, X., “A Multi-View Deep Learning Approach for
Cross Domain User Modeling in Recommendation Systems,” Proceedings of the 24th
International Conference on World Wide Web, WWW ’15, International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2015,
p. 278–288.

[122] Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sundaraman, N., Park, J.,
Wang, X., Gupta, U., Wu, C.-J., Azzolini, A. G., Dzhulgakov, D., Mallevich, A.,
Cherniavskii, I., Lu, Y., Krishnamoorthi, R., Yu, A., Kondratenko, V., Pereira, S.,
Chen, X., Chen, W., Rao, V., Jia, B., Xiong, L., and Smelyanskiy, M., “Deep Learning
Recommendation Model for Personalization and Recommendation Systems,” 2019.

124

[123] Mudigere, D., Hao, Y., Huang, J., Jia, Z., Tulloch, A., Sridharan, S., Liu, X., Ozdal,
M., Nie, J., Park, J., Luo, L., Yang, J. A., Gao, L., Ivchenko, D., Basant, A., Hu, Y.,
Yang, J., Ardestani, E. K., Wang, X., Komuravelli, R., Chu, C.-H., Yilmaz, S., Li,
H., Qian, J., Feng, Z., Ma, Y., Yang, J., Wen, E., Li, H., Yang, L., Sun, C., Zhao, W.,
Melts, D., Dhulipala, K., Kishore, K., Graf, T., Eisenman, A., Matam, K. K., Gangidi,
A., Chen, G. J., Krishnan, M., Nayak, A., Nair, K., Muthiah, B., khorashadi, M.,
Bhattacharya, P., Lapukhov, P., Naumov, M., Mathews, A., Qiao, L., Smelyanskiy, M.,
Jia, B., and Rao, V., “Software-Hardware Co-design for Fast and Scalable Training of
Deep Learning Recommendation Models,” 2021.

[124] Ardestani, E. K., Kim, C., Lee, S. J., Pan, L., Rampersad, V., Axboe, J., Agrawal,
B., Yu, F., Yu, A., Le, T., Yuen, H., Juluri, S., Nanda, A., Wodekar, M., Mudigere,
D., Nair, K., Naumov, M., Peterson, C., Smelyanskiy, M., and Rao, V., “Supporting
Massive DLRM Inference Through Software Defined Memory,” 2021.

[125] NVIDIA, “NVIDIA DGX SYSTEMS Purpose-Built for the Unique Demands
of AI,” 2021, https://www.nvidia.com/en-us/data-center/dgx-
systems/.

[126] Zhao, W., Xie, D., Jia, R., Qian, Y., Ding, R., Sun, M., and Li, P., “Distributed
Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems,”
2020.

[127] Naumov, M., Kim, J., Mudigere, D., Sridharan, S., Wang, X., Zhao, W., Yilmaz, S.,
Kim, C., Yuen, H., Ozdal, M., et al., “Deep learning training in facebook data centers:
Design of scale-up and scale-out systems,” arXiv preprint arXiv:2003.09518, 2020.

[128] Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G.,
Laudon, J., Li, S., Ma, P., Ma, X., et al., “Ten lessons from three generations shaped
google’s tpuv4i: Industrial product,” 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), IEEE, 2021, pp. 1–14.

[129] Intel, “Intel® Optane™ SSD 905P Series for Demanding Storage Workloads,”
2022, https://www.intel.com/content/www/us/en/products/
docs/memory-storage/solid-state-drives/enthusiast-ssds/
optane-ssd-905p-brief.html.

[130] Wu, K., Arpaci-Dusseau, A., and Arpaci-Dusseau, R., “Towards an Unwritten Con-
tract of Intel Optane SSD,” 11th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 19), USENIX Association, Renton, WA, July 2019.

[131] Eisenman, A., Naumov, M., Gardner, D., Smelyanskiy, M., Pupyrev, S., Hazelwood,
K., Cidon, A., and Katti, S., “Bandana: Using non-volatile memory for storing
deep learning models,” Proceedings of Machine Learning and Systems, Vol. 1, 2019,
pp. 40–52.

[132] Wilkening, M., Gupta, U., Hsia, S., Trippel, C., Wu, C.-J., Brooks, D., and Wei,
G.-Y., “RecSSD: Near Data Processing for Solid State Drive Based Recommendation

125

https://www.nvidia.com/en-us/data-center/dgx-systems/
https://www.nvidia.com/en-us/data-center/dgx-systems/
 https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/enthusiast-ssds/optane-ssd-905p-brief.html
 https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/enthusiast-ssds/optane-ssd-905p-brief.html
 https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/enthusiast-ssds/optane-ssd-905p-brief.html

Inference,” Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS 2021,
Association for Computing Machinery, New York, NY, USA, 2021, p. 717–729.

[133] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.,
“PyTorch: An Imperative Style, High-Performance Deep Learning Library,” Advances
in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Curran Associates, Inc.,
2019, pp. 8024–8035.

[134] Lydia, A. and Francis, S., “Adagrad—an optimizer for stochastic gradient descent,”
Int. J. Inf. Comput. Sci, Vol. 6, No. 5, 2019.

[135] Khudia, D., Huang, J., Basu, P., Deng, S., Liu, H., Park, J., and Smelyanskiy, M.,
“FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference,”
arXiv preprint arXiv:2101.05615, 2021.

[136] “FBGEMM_GPU,” 2021, ://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu.

[137] Axboe, J., “FIO benchmark,” 2013.

[138] Konstantinidis, E. and Cotronis, Y., “A Quantitative Performance Evaluation of Fast
on-Chip Memories of GPUs,” 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), 2016, pp. 448–455.

[139] Facebook, “MultiGet Performance,” 2021, https://github.com/facebook/
rocksdb/wiki/MultiGet-Performance.

[140] NVIDIA, “NVIDIA Magnum IO GPUDirect Storage Overview Guide,”
2021, https://docs.nvidia.com/gpudirect-storage/overview-
guide/index.html.

[141] Yang, J. A., Huang, J., Park, J., Tang, P. T. P., and Tulloch, A., “Mixed-Precision
Embedding Using a Cache,” 2020.

[142] “EmbeddingBag,” 2022, https://pytorch.org/docs/stable/
generated/torch.nn.EmbeddingBag.html.

[143] “CUDA C++ Programming Guide,” 2022, https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[144] PyTorch, “torch.cuda.Stream,” 2022, https://pytorch.org/docs/stable/
generated/torch.cuda.Stream.html.

[145] PyTorch, “torch.cuda.synchronize,” 2022, https://pytorch.org/docs/
stable/generated/torch.cuda.synchronize.html?highlight=
torch%20cuda%20synchronize#torch.cuda.synchronize.

126

https://github.com/facebook/rocksdb/wiki/MultiGet-Performance
https://github.com/facebook/rocksdb/wiki/MultiGet-Performance
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html
https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html
https://pytorch.org/docs/stable/generated/torch.cuda.synchronize.html?highlight=torch%20cuda%20synchronize#torch.cuda.synchronize
https://pytorch.org/docs/stable/generated/torch.cuda.synchronize.html?highlight=torch%20cuda%20synchronize#torch.cuda.synchronize
https://pytorch.org/docs/stable/generated/torch.cuda.synchronize.html?highlight=torch%20cuda%20synchronize#torch.cuda.synchronize

[146] Ishii, A. and Foley, D., “Switching Fabrics and FPGA Architec-
tures,” Hot Chips: A Symposium on High Performance Chips
(HC30, 2018), 2018, https://old.hotchips.org/hc30/2conf/
2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf.

[147] Balasubramanian, K., Alshabanah, A., Choe, J. D., and Annavaram, M., “cDLRM:
Look Ahead Caching for Scalable Training of Recommendation Models,” Fifteenth
ACM Conference on Recommender Systems, 2021, pp. 263–272.

[148] Hildebrand, M., Khan, J., Trika, S., Lowe-Power, J., and Akella, V., “AutoTM:
Automatic Tensor Movement in Heterogeneous Memory Systems Using Integer
Linear Programming,” Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’20, Association for Computing Machinery, New York, NY, USA, 2020, p. 875–890.

[149] Nvidia, “Tegra X1: The Powerful Processor Behind SHIELD,” 2017,
https://blogs.nvidia.com/blog/2017/07/20/shield-tegra-
x1-processor/.

[150] AMD, “AMD accelerator proccessing unit (APU),” 2022, https:
//www.amd.com/en/products/embedded-r-series-2nd-gen-apu.

[151] Intel, “Iris® Xe Graphics,” 2022, https://www.intel.com/content/www/
us/en/architecture-and-technology/visual-technology/
graphics-overview.html.

[152] Intel, “Intel® Agilex™ FPGA and SoC,” 2022, https://www.intel.com/
content/www/us/en/products/details/fpga/agilex.html.

[153] Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill,
T., Liu, M., Lo, D., Alkalay, S., Haselman, M., Abeydeera, M., Adams, L., Angepat,
H., Boehn, C., Chiou, D., Firestein, O., Forin, A., Gatlin, K. S., Ghandi, M., Heil, S.,
Holohan, K., El Husseini, A., Juhasz, T., Kagi, K., Kovvuri, R. K., Lanka, S., van
Megen, F., Mukhortov, D., Patel, P., Perez, B., Rapsang, A., Reinhardt, S., Rouhani,
B., Sapek, A., Seera, R., Shekar, S., Sridharan, B., Weisz, G., Woods, L., Yi Xiao,
P., Zhang, D., Zhao, R., and Burger, D., “Serving DNNs in Real Time at Datacenter
Scale with Project Brainwave,” IEEE Micro, Vol. 38, No. 2, 2018, pp. 8–20.

[154] Kaleem, R., Barik, R., Shpeisman, T., Lewis, B. T., Hu, C., and Pingali, K., “Adaptive
Heterogeneous Scheduling for Integrated GPUs,” Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation, PACT ’14, Association
for Computing Machinery, New York, NY, USA, 2014, p. 151–162.

[155] Zhang, F., Wu, B., Zhai, J., He, B., and Chen, W., “FinePar: Irregularity-aware
fine-grained workload partitioning on integrated architectures,” 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2017, pp.
27–38.

127

https://old.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://old.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://blogs.nvidia.com/blog/2017/07/20/shield-tegra-x1-processor/
https://blogs.nvidia.com/blog/2017/07/20/shield-tegra-x1-processor/
 https://www.amd.com/en/products/embedded-r-series-2nd-gen-apu
 https://www.amd.com/en/products/embedded-r-series-2nd-gen-apu
https://www.intel.com/content/www/us/en/architecture-and-technology/visual-technology/graphics-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/visual-technology/graphics-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/visual-technology/graphics-overview.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html

[156] Zhang, F., Zhai, J., He, B., Zhang, S., and Chen, W., “Understanding Co-Running
Behaviors on Integrated CPU/GPU Architectures,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 28, No. 3, 2017, pp. 905–918.

[157] Pérez, B., Bosque, J. L., and Beivide, R., “Simplifying Programming and Load
Balancing of Data Parallel Applications on Heterogeneous Systems,” Proceedings of
the 9th Annual Workshop on General Purpose Processing Using Graphics Processing
Unit, GPGPU ’16, Association for Computing Machinery, New York, NY, USA,
2016, p. 42–51.

[158] Alsop, J., Sinclair, M. D., and Adve, S. V., “Spandex: A Flexible Interface for
Efficient Heterogeneous Coherence,” Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, IEEE Press, 2018, p. 261–274.

[159] Garcıa, V., Gomez-Luna, J., Grass, T., Rico, A., Ayguade, E., and Pena, A. J.,
“Evaluating the effect of last-level cache sharing on integrated GPU-CPU systems
with heterogeneous applications,” 2016 IEEE International Symposium on Workload
Characterization (IISWC), 2016, pp. 1–10.

[160] Ausavarungnirun, R., Chang, K. K.-W., Subramanian, L., Loh, G. H., and Mutlu,
O., “Staged memory scheduling: Achieving high performance and scalability in
heterogeneous systems,” 2012 39th Annual International Symposium on Computer
Architecture (ISCA), 2012, pp. 416–427.

[161] Fang, J., Liu, S., and Zhang, X., “Research on Cache Partitioning and Adaptive Re-
placement Policy for CPU-GPU Heterogeneous Processors,” 2017 16th International
Symposium on Distributed Computing and Applications to Business, Engineering
and Science (DCABES), 2017, pp. 19–22.

[162] “Heterogeneous System Architecture Foundation,” 2022, http://
hsafoundation.com/.

[163] “AMD Fusion: How It Started, Where It’s Going, And What It Means,” 2022,
https://www.tomshardware.com/reviews/fusion-hsa-opencl-
history,3262-8.html.

[164] “The OpenCL Specification,” 2022, https://www.khronos.org/registry/
OpenCL/.

[165] Gómez-Luna, J., Hajj, I. E., Chang, L.-W., García-Floreszx, V., de Gonzalo, S. G.,
Jablin, T. B., Peña, A. J., and Hwu, W.-m., “Chai: Collaborative heterogeneous
applications for integrated-architectures,” 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2017, pp. 43–54.

[166] Power, J., Hestness, J., Orr, M. S., Hill, M. D., and Wood, D. A., “gem5-gpu: A
Heterogeneous CPU-GPU Simulator,” IEEE Computer Architecture Letters, Vol. 14,
No. 1, 2015, pp. 34–36.

128

http://hsafoundation.com/
http://hsafoundation.com/
https://www.tomshardware.com/reviews/fusion-hsa-opencl-history,3262-8.html
https://www.tomshardware.com/reviews/fusion-hsa-opencl-history,3262-8.html
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/

[167] Power, J., Hestness, J., Orr, M. S., Hill, M. D., and Wood, D. A., “gem5-gpu: A
Heterogeneous CPU-GPU Simulator,” IEEE Computer Architecture Letters, Vol. 14,
No. 1, 2015, pp. 34–36.

[168] gpgpu sim, 2022, https://github.com/gpgpu-sim/gpgpu-
sim_distribution.

[169] Shivakumar, P. and Jouppi, N. P., “Cacti 3.0: An integrated cache timing, power, and
area model,” 2001.

129

https://github.com/gpgpu-sim/gpgpu-sim_distribution
https://github.com/gpgpu-sim/gpgpu-sim_distribution

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Compute and memory scaling
	Efficient utilization of heterogeneous systems
	System types
	Workloads

	Dissertation approaches and contributions
	Dissertation organization

	Mapping Applications to Heterogeneous Compute Platforms
	Introduction
	Background and related works
	ChipAdvisor design
	Identifying inefficiencies in applications
	Intrinsic application properties
	Parallelism
	 Synchronization/data dependencies
	Control dependencies
	Temporal locality
	Spatial locality

	Prediction model design
	Training phase
	Deployment phase

	Experimental evaluation
	Evaluation setups
	Performance analysis for training kernels
	Accuracy of the machine learning models
	Results for the testing kernels
	Performance analysis on testing kernels
	Best performing target prediction
	Approximate performance prediction
	Energy analysis

	Conclusion

	Optimized Deployment of Key-Value Stores Using Heterogeneous Memories
	Introduction
	Background
	RocksDB architecture
	RocksDB components and memory usage
	Benchmarking RocksDB

	Intel® Optane™ DC Persistent Memory
	Operation mode overview

	Meta RocksDB workloads
	ChatApp
	BLOB Metadata
	Hive Cache
	Inventory Cache

	Hybrid cache design choices
	Storage and memory characteristics
	The challenges of SCM deployment
	Metrics for identifying workloads

	DRAM-SCM hybrid cache module
	Block cache lists
	Block cache architecture and components
	Data access in the block cache

	Cache admission policies
	DRAM first admission policy
	SCM first admission policy
	Bidirectional admission policy

	Hybrid cache configs
	Block cache operation management

	Systems setup and implementation
	DRAM-SCM cache implementation
	Evaluation hardware description
	Meta server designs
	Cache and memory configurations
	Workload generation
	KV-pair locality
	Value distribution
	Query composition
	DB, key, and value sizes
	QPS
	Scaled db_bench profiles

	Evaluation
	Throughput and latency comparison for admission policies
	Performance comparison of DRAM first policy for all workloads
	IO bandwidth, cache and CPU utilization
	Cost, performance and power
	General takeaway

	Discussion and future work
	Related work
	Conclusion

	Improving DLRM Training Efficiency Using Heterogeneous Compute and Memory Systems
	Introduction
	Background
	Deep learning recommendation model
	DLRM architecture and components
	Embedding tables and operators

	FBGEMM_GPU kernel library
	Storage and memory types

	Workload characterization
	Bandwidth and size distribution
	Locality in embedding table lookups

	System design challenges and considerations
	Memory Performance evaluation
	IOPS vs BW
	Endurance
	Workload scaling
	Software design choices

	MTrainS design
	Overview
	Embedding table storage
	Hierarchical cache module
	Cache class
	Cache hierarchy

	Embedding table management
	Pre-initialization
	Deferred initialization on read

	Cache management
	Tag/state lookup
	Cache algorithm
	Data lookup/update
	Data movement between DRAM, BYA-SCM, and SSD

	Memory and GPU assignment
	Embedding table assignment
	GPU assignment

	Pipelining
	MTrainS configurations and metadata
	MTrainS metadata
	Cache config
	RocksDB configs

	End-to-end trainer

	Systems setup and implementations
	Software design and implementation
	Workloads description and setup
	Evaluation hardware description
	Server design

	Evaluation
	Baseline
	Training efficiency
	Power and energy analysis
	Storage endurance and wear out
	Cache hit and IO utilization
	Embedding table assignment efficiency

	Discussion and future work
	Related work
	Conclusion

	Resource Management in Integrated CPU-GPU for Collaborative Workloads
	Introduction
	Background and Motivation
	Integrated architecture
	Collaborative workloads
	Shared resources in integrated systems
	Shared resource in collaborative CPU-GPU workloads
	Performance degradation in shared resource

	CoACT Design
	Hardware design
	Memory request packets
	Cache partitioning
	Interconnect and memory prioritization

	Policy selection
	Policy selection parameters
	Analytical model for policy selection

	Experimental Setup
	Simulation setup
	Workloads
	Baselines

	Evaluations
	Workload characteristic measurement
	Performance analysis for all workloads
	Application and hardware characteristic analysis
	Speedup and LLC cache hit
	Benefits of each feature
	Memory read reduction
	Changing baseline partition

	Related Works
	Conclusion

	Conclusion
	Bibliography

