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ABSTRACT

The last decade has been a witness to critical advancements in the field of intelligent transportation
systems (ITS), with a great volume of research focusing on connected and automated vehicles
(CAVs). A CAV leverages connected vehicle (CV) and automated vehicle (AV) technologies to
enable automation and cooperation between vehicles and/or infrastructures to improve mobility,
safety, efficiency, and sustainability in transportation systems. Despite these benefits, both
connectivity and automation increase potential attack surfaces on CAVS, thereby introducing
unprecedented cybersecurity challenges. This dissertation addresses these challenges by
developing a comprehensive cybersecurity framework, which consists of two major components.

The first component of the framework focuses on anomaly detection in CAV sensors. A CAV
requires high fidelity data for automated and cooperative driving tasks. However, oftentimes there
exist uncertainties in the CAV sensor measurements, including noise and time delay. Therefore,
the first part of the dissertation proposes a signal filtering-detection framework to estimate the CAV
sensor state in the presence of potential cyberattacks. This dissertation considers sensor anomaly
as a result of either malicious attacks or sensor faults, and proposes a series of data-driven detectors
in conjunction with extended Kalman filter (EKF)-based algorithms for both signal filtering and
anomaly detection. The first part of the dissertation consists of studies under different driving
scenarios, including in car following and platooning modes. The study on the platooning mode
further analyzes platoon stability under cybersecurity uncertainties, where a new class of string
stability measures, namely pseudo string stability, is introduced to analyze the stability of a vehicle
string under various types of attacks and imperfect detectors.

Despite the necessity of anomaly detection, a well-developed security monitor should also
consider the dynamically changing environment faced by a CAV and the strategic behavior of
the adversary to ensure both security and energy efficiency of the CAV. Therefore, the second
component of the framework focuses on a macroscopic perspective to address security monitoring
challenges faced by a CAV. First, the dissertation addresses the attack profile prediction and sensor
selection problem under a security resource constraint. Toward this goal, the dissertation considers
a sequential two-player game involving an attacker and a defender. This dissertation thereby
develops an online learning algorithm for the defender to solve a variant of the multi-armed bandit
(MAB) problem, namely, the multi-armed bandit with variable plays (MAB-VP). The dissertation
provides a sublinear regret bound of the proposed algorithm, and derives the conditions under
which a Nash equilibrium of the strategic game exists. Based on the analysis of the asymptotic
expected reward of the two players, the dissertation assesses the effectiveness of the following

xi



two defense strategies from a game theoretical perspective: (1) increasing security resources for
monitoring, and (2) improving the performance of the detector.

Considering the fact that continuously monitoring all sensors aboard a CAV can be increasingly
energy-intensive and therefore impractical, this dissertation introduces a dynamic security resource
allocation problem to selectively monitor a subset of sensors for potential cyberattacks. This is
accomplished by providing a mathematical framework based on a partially observable Markov
decision process (POMDP), which prescribes a policy to dynamically assign security resource
by balancing the trade-off between detection performance and energy-efficiency. This dynamic
resource allocation problem serves as a complementary supplement to the sensor selection study,
and together they form the last component of the proposed framework.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Our current transportation system is on the cusp of transforming into a highly connected, automated,
and intelligent system (Ran & Boyce, 2012). The past decade has witnessed numerous advances in
connected and automated vehicle (CAV) technology, which is considered to be an integral part of
the future of intelligent transportation systems (ITS) (Shladover, 2018). CAVs have the potential to
transform the ITS field by introducing numerous safety, mobility, and environmental sustainability
benefits (Masoud & Jayakrishnan, 2017; van Wyk et al., 2019; Abdolmaleki et al., 2019, 2021). A
CAV system combines connected vehicle (CV) and automated vehicle (AV) technologies, creating a
synergistic impact that goes well beyond the benefits that each of these technologies can offer in
isolation. It is envisioned that CAVs, with diverse degrees of connectivity and automation, will pave
the path toward the next generation of transportation systems, which is more intelligent, efficient,
and sustainable (Litman, 2017; Meyer & Beiker, 2019).

The synergy between CV and AV technologies originates from the additional data that the CV
technology can provide to AV systems to improve their performance. The CV technology provides
an integrated system of road users (e.g., vehicles, pedestrians, cyclists) and infrastructures whose
performance can be jointly adjusted to satisfy a variety of social goals. Automation can surpass
the human driver limitations, thereby greatly improving the transportation system performance.
For instance, CAV technologies are expected to decrease fatal traffic crashes by as much as 80%,
reducing their corresponding $870 billion cost, while also improving traffic flow and cutting into
the approximate 7 billion hours American motorists spend in congested roads annually (USDOT,
2016). The CV communication links provide information beyond the range of sight of AV sensors,
which is crucial for dampening shock waves in traffic (Van Arem et al., 2006). The CAV technology
also extends and enhances currently available crash avoidance systems that use radars and cameras
to detect collision threats by enabling CAVs to warn their surrounding vehicles of collisions and
potentially hazardous circumstances (Bezzina & Sayer, 2014; Zhang et al., 2022).
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CAVs provide mobility and sustainability benefits by enabling platoon formation, which
can increase road capacity and traffic stability, and reduce fuel consumption (Van Arem et al.,
2006; Ploeg et al., 2011; Liu et al., 2021, 2022). Platooning is enabled by using V2V or V2I
technologies. It is found that the destabilization effect of communication delay is suppressed
by the stabilization effect of multi-anticipations of platoons (Ngoduy, 2015). Platooning can
also reduce fuel consumption, which is significantly influenced by air resistance, through shorter
following gaps. It has been showed that tightly coupled platooning can potentially improve fuel
economy for both large trucks (Alam, 2011; Sun, 2020) and passenger vehicles (Shida & Nemoto,
2009). One application of platooning is cooperative adaptive cruise control (CACC), which is a
further development of adaptive cruise control (ACC) that adds V2V communication, providing the
ACC system with more and higher-quality information about the vehicle(s) it is following. With
information of this type, the ACC controller will be able to better anticipate the challenges ahead,
enabling it to be safer, smoother, and provide a more “natural” response. CACC systems utilizing
V2V communication could allow the mean following time gap to be reduced from about 1.4 s in
manual driving to approximately 0.6 s (Nowakowski et al., 2010).

Although CAVs offer promising benefits, they are prone to various security and privacy risks. In
particular, the security risk escalates with increasing levels of connectivity and automation. CAVs
use a variety of sensors to build a virtual map of their surrounding environment in order to drive
in the correct lane within the speed limit, avoid collisions, and detect obstacles in their immediate
physical environment. Meanwhile, the interconnection between the infrastructures and vehicles also
relies on various types of sensors to provide state information and situational awareness. Hence,
anomalous information due to either malicious cyberattacks or faulty vehicle sensors can pose
safety risks to road users, and possibly cause fatal crashes. For instance, recently there have
been demonstrated cyberattacks on vehicle sensors in (Cao et al., 2019a,b), where the authors use
optimization-based approaches to fool the light detection and Ranging (LiDAR) sensors aboard
vehicle. At the system level, the infrastructures and vehicles can be viewed as individual nodes in a
large interconnected network, where a single malicious attack on a subset of sensors of one node
can easily propagate through this network, affecting other network components (e.g., other vehicles,
traffic control devices, etc.). For example, Feng et al. (2018) demonstrated that by sending falsified
data to actuated and adaptive signal control systems, a malicious hacker could increase total system
delay in a real-world corridor. Therefore, there is an increasing need for cyber security solutions,
especially for sensor security solutions, to enhance the safety and reliability of the entire system.

Prevention is normally recognized as one of the best defense strategies against malicious hackers
or attackers. Predicting attack profiles enables the system to deploy better prevention mechanisms,
where behaviors of both the attacker and the defender have to be considered. Although there is a
large body of literature addressing sensor security in ITS (Van Wyk et al., 2019; Wang et al., 2020c;
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Yang & Lv, 2021; Alotibi & Abdelhakim, 2020; Watts et al., 2022), most of the existing work
mainly focuses on sensor intrusion/anomaly detection without attack profile analysis. A security
monitor is therefore needed to predict the attack strategy of the attacker so that it can be quickly
identified and mitigated, before detecting the attack on the subject CAV.

At the same time, there is generally a trade-off between the desired outcomes (e.g., the
accuracy of system state estimation) and the cost or energy associated with cyberattack detection
and prevention (e.g., scanning subsets of sensors, deploying redundant sensor systems, etc.), as
oftentimes there exists limited energy for system operations. For example, previous studies have
reported limited energy availability in CAVs, wireless sensor networks, and Internet of Things
(IoT) networks (Cheng et al., 2005; Arroyo-Valles et al., 2007; Kim & Jung, 2019). There also
exists limited bandwidth constraint in networks such as body sensor networks or IoT sensors and
devices (Nabar et al., 2010; Guegan & Orgerie, 2019; Saghafian et al., 2022). As more sensors are
installed on CAVs, and given the cost, computational burden, and bandwidth and energy constraints
associated with security monitoring, a dynamic security resource allocation scheme is needed
to ensure both security and energy efficiency in CAVs. Such a decision-making problem needs
to consider various information including the system states, potential security threats, and the
surrounding environment. Moreover, in practice not all the aforementioned information can be
directly and completely quantified, and can only be estimated through partial observations.

In the next section, we introduce several characteristics of CAV systems that pose a challenge in
developing cybersecurity solutions.

1.2 Challenges

• State Estimation under Cybersecurity Uncertainties: To ensure that a CAV can safely
and effectively navigate the network, it needs access to robust and accurate data streams. As
a result, any anomalous sensor data if undetected, can greatly imperil the decision making
process of CAVs. The presence of an anomaly in the data collected from CAV sensors
can imply (i) a subset of sensors are faulty, or (ii) there has been a malicious cyberattack.
Moreover, with the presence of measurement noise, it is crucial to detect any anomalous
sensor readings in real-time and accurately recover the true state of the CAV to ensure its
safety.

• Time Delay: Connectivity enables a CAV to receive information from its surrounding vehicles
and infrastructures. However, wireless communications and some forms of cyberattacks (e.g.,
the jamming attack) can introduce time delays to the receiver, which can significantly impact
the state estimation accuracy and traffic stability, causing delay and chaos and even fatal
crashes. Therefore, it is imperative to take time delay into consideration during state estimation
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and anomaly detection processes, and investigate the potential impacts of time delay on traffic
stability.

• Unknown Behavior of the Adversary: In order to deploy better prevention mechanisms,
behaviors of both the attacker and the defender have to be considered so that the attack profile
can be predicted. However, in practice the attacker’s behaviour is unknown most of the time.
A prediction of the adversary’s behavior is needed, while this prediction needs to account for
the strategic decision making by and interactions between the attacker and the defender.

• Constrained Security Resources: As more sensors are mounted aboard CAVs or installed on
the transportation infrastructure, it becomes more difficult to monitor the sensors continuously
for potential cyberattack detection, mainly due to the limited resources available to the CAV.
Thus, it is utterly important to consider dynamic allocation of security resources for threat
monitoring.

1.3 Dissertation Outline

This dissertation aims to investigate the cybersecurity challenges faced by CAVs and to provide a
holistic defense framework. In what follows, we provide a brief overview of the chapters, which
collectively reveal the contributions of this dissertation.

In Chapters 2-4, we develop a novel observer-based method to improve the safety and security
of CAV transportation. The proposed method combines model-based signal filtering and anomaly
detection methods. Specifically, in Chapter 2, we develop an adaptive extended Kalman filter
(AEKF) to smooth sensor readings of a CAV based on a nonlinear car-following model. Using the
car-following model the subject vehicle (i.e., the following vehicle) utilizes the leading vehicle’s
information to detect sensor anomalies by employing previously-trained One Class Support Vector
Machine (OCSVM) models. This approach allows the AEKF to estimate the state of a vehicle
not only based on the vehicle’s location and speed, but also by taking into account the state of
the surrounding traffic. A communication time delay factor is considered in the car-following
model to make it more suitable for real-world applications. In Chapter 3, we devise an augmented
state formulation of extended Kalman filter, namely the augmented state extended Kalman filter
(ASEKF). The augmented state formulation enables the Kalman filter to compensate for potential
biases caused by model inaccuracy and time delay, thereby improving the detection performance.
To make the proposed model more suitable for real-world applications, we consider a stochastic
communication time delay in the car-following model. In Chapters 2 and 3 we only utilize one
leading vehicle’s information to detect sensor anomalies. However, a CAV can receive and utilize
information from multiple sources for planning purposes. In Chapter 4, we extend the car following
setting in the previous chapters to a more general platooning setting, where a CAV can receive
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information from multiple vehicles in the platoon. We develop a comprehensive framework to model
the impact of cyberattacks on safety, security, and head-to-tail stability of connected and automated
vehicular platoons. First, we propose a general platoon dynamics model with heterogeneous time
delays that may originate from the communication channel and/or vehicle onboard sensors. Based
on the proposed dynamics model, we adopt ASEKF to smooth the sensor reading, and use it in
conjunction with an anomaly detector to detect sensor anomalies. Furthermore, we introduce a novel
concept in string stability, namely, pseudo string stability, to measure a platoon’s string stability
under cyberattacks and model uncertainties. We demonstrate the relationship between pseudo string
stability of a platoon and its detection recall/sensitivity, which enables us to identify the critical
detection sensitivity/recall that the platoon’s members should meet for the platoon to remain pseudo
string stable.

In Chapters 2-4, we model a CAV’s motion and detect sensor anomaly at the microscopic level,
where we investigate the aforementioned challenges including state estimation under cybersecurity
uncertainties and time delay. However, we have not yet tackled the challenges associated with the
unknown behavior attacker and constrained security resources. In Chapter 5, we focus on these
challenges by modelling the attacker and defender behavior as a multi-armed bandit (MAB) problem.
Specifically, we extend the adversarial/non-stochastic multi-play multi-armed bandit (MPMAB)
to the case where the number of arms to play is variable. The work is motivated by the fact that
the resources allocated to scan different critical nodes in an interconnected transportation network
change dynamically over time and depending on the environment. By modeling the malicious
hacker and the intrusion monitoring system as the attacker and the defender, respectively, we
formulate the problem for the two players as a sequential pursuit-evasion game. We derive the
condition under which a Nash equilibrium of the strategic game exists. For the defender side, we
provide an exponential-weighted based algorithm with sublinear pseudo-regret. We further extend
our model to heterogeneous rewards for both players, and obtain lower and upper bounds on the
average reward for the attacker. We provide numerical experiments to demonstrate the effectiveness
of a variable-arm play.

Although we have considered constrained security resources in Chapter 5, the MPMAB problem
does not dynamically determine the amount of security resource for monitoring. Therefore, in
Chapter 6, we aims to fully address this last challenge, i.e., dynamic security resource allocation
for a CAV. We consider an imperfect detector that allows us to only partially observe whether the
CAV is under attack, and formulate the problem as a partially observable Markov decision process
(POMDP) model, which prescribes a dynamic security resource allocation policy to minimize the
total expected discounted cost of a trip to ensure both security and energy efficiency of the CAV. We
demonstrate the effectiveness of our proposed model in the numerical experiments. Finally, Chapter
7 concludes this dissertation and further discusses possible directions for future work.
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Figure 1.1: The hierarchical defense framework of CAV system.

Figure 1.1 illustrates the hierarchical defense framework proposed in this dissertation. The
framework consists of two parts: First, Chapters 2-4 provides solutions for CAV sensor anomaly
detection; Secondly, Chapters 5-6 address the security monitoring task, including dynamic security
resource allocation and sensor selection. The two parts work together to offer a comprehensive
framework, where the security monitor determines the allocation of security resources and the
subset of sensors to be scanned, and the detection results provide feedback to the security monitor
for future decision-making.

The main chapters of this dissertation, Chapters 2 through 6, have appeared in the following five
publications, respectively:

• Wang, Y., Masoud, N., & Khojandi, A. (2020c). Real-time sensor anomaly detection
and recovery in connected automated vehicle sensors. IEEE transactions on intelligent

transportation systems, 22(3), 1411–1421
• Wang, Y., Masoud, N., & Khojandi, A. (2020b). Anomaly detection in connected and

automated vehicles using an augmented state formulation. 2020 Forum on Integrated and

Sustainable Transportation Systems (FISTS), 156–161
• Wang, Y., Zhang, R., Masoud, N., & Liu, H. X. (N.D.). Anomaly detection and string stability

analysis in connected automated vehicular platoons. Under first round of review

• Wang, Y. & Masoud, N. (2021). Adversarial online learning with variable plays in the
pursuit-evasion game: Theoretical foundations and application in connected and automated
vehicle cybersecurity. IEEE Access, 9, 142475–142488
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• Wang, Y. & Masoud, N. (N.D.). Dynamic security resource allocation for connected and
automated vehicles. To be submitted

1.4 Contribution

This dissertation provides a comprehensive defense framework to address the cybersecurity
challenges faced by CAVs. To this point, the contributions of this dissertation can be summarized as
follows:

• There exists a gap in the literature of state estimation in CAVs in the presence of potential
cyberattacks. This dissertation is the first to propose a filtering-detection framework to fill this
gap. Specifically, information from multiple vehicles (the leading vehicle in the car following
mode and multiple vehicles in the platooning mode) are utilized for both filtering and attack
detection while accounting for potential time delays introduced by the communication channel
and/or sensor data collection/processing.

• This dissertation is the first to conduct stability analysis on CAV platoons under cybersecurity
uncertainties. Specifically, this dissertation puts forward a new class of string stability
measures, namely, pseudo string stability, to analyze the stability of a vehicle string under
cyberattacks. Pseudo string stability analysis enables us to obtain a critical detection
recall/sensitivity that ensures a pseudo stable string, under different attack settings.

• This dissertation is the first to model the pursuit-evasion game played between an attacker and
a defender (i.e., the security monitor in a CAV) using the bandit problem with variable plays.
The defender’s decisions is modeled as a multi-armed bandit problem with variable plays. The
current literature of bandit problem does not consider a variable-plays setting, and therefore
cannot be directly applied in scenarios with dynamically changing resource constraints. This
dissertation develops a no-regret algorithm to adaptively learn the attacker’s behaviour and
subsequently select a subset of sensors to scan under limited and time-dependent security
resources. Theoretical guarantees are provided on the performance of the proposed algorithm.
This is also the first study addressing the variable-plays setting from a game theoretic
perspective in the online learning literature. The developed algorithms and theoretical results
can be applied beyond the specific application of cybersecurity in CAVs.

• As it is not practical to continuously monitor all sensors on a CAV, the security resources
need to be dynamically allocated throughout a trip. However, the dynamic security resource
allocation it not yet widely studied in the literature. This dissertation addresses this gap
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by developing a POMDP model to dynamically assign security resources to ensure energy
efficiency.
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CHAPTER 2

Real-time Sensor Anomaly Detection and Recovery in Connected
Automated Vehicle Sensors

2.1 Introduction

Anomaly detection in CAV sensors is an important but also challenging task. A traveling CAV
could use the most recent history of data to detect anomalies. Presence of an anomaly in the pattern
of data collected from a CAV sensor system can imply (i) a subset of sensors are faulty, or (ii)
there has been a malicious attack. In both cases, it is vital to detect the anomalies and exclude the
anomalous data from the decision making process.

An anomaly detection scheme introduces two types of errors – false negatives and false positives.
It is easy to see that a false negative error can allow falsified data to affect trajectory planning,
which could lead to fatal consequences. Although less apparent, a false positive error can have
consequences that are just as severe. Consider a situation where an actual event in the network
(e.g., an unexpected braking from a downstream vehicle) has led to an abrupt change in the pattern
of observed data. If the vehicle falsely detects such an unexpected change as a fault/attack and
discards the information, it may lead to the CAV not reacting to such abrupt changes in the network
appropriately and in a timely manner, creating dangerous, and potentially fatal, scenarios. In order
to prevent this type of false positive error, it is necessary for vehicles to incorporate network-level
information in their anomaly detection scheme.

In addition to distinguishing between real changes in network conditions and anomalies, the
anomaly detection methods should be able to identify the noise introduced by sensors and the
communication channel, exacerbated by potential communication delay, as well as the missing
values in the collected data. Moreover, due to resource constraints for each vehicle, the anomaly
detection techniques in CAVs need to be lightweight, and implementable in real-time.

Anomalous sensor behavior could manifest itself in various forms and representations. Several
faulty sensor behaviors are discussed in (Sharma et al., 2010). Petit & Shladover (2015) summarize
the taxonomy of intrusions or attacks on automated vehicles, among which the false injection attack
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is considered to be the most dangerous attack. In this paper, we consider five types of the anomalous
sensor behavior resulting from both sensor faults and false injection attacks. We base this paper
on the sensor failure and/or attack taxonomy provided by Sharma et al. (2010) and Van Wyk et al.
(2019):

1. Short: A single, sharp and abrupt change in the observed data between two successive sensor
readings.

2. Noise: An increase in the variance of the sensor readings. Different from Short, the Noise
anomaly type occurs across multiple successive sensor readings.

3. Bias: A temporarily constant offset from the sensor readings.
4. Gradual drift: A small and gradual drift in observed data during a time period. Over time, a

gradual drift can result in a large discrepancy between the observed and the true state of the
system.

5. Miss: Lack of available data during a time period.
We do not explicitly account for ‘miss,’ which can result from DoS attacks preventing the

exchange of information. However, note that ‘miss,’ depending on its duration, can be viewed as
‘short’ or ‘bias’, where the sensor reading is non-existent instead of showing a wrong value. Hence,
it can partially be addressed using the same methods for detecting ‘short’ or ‘bias’. For examples of
specific scenarios that could lead to these anomalies, refer to (Ni et al., 2009).

In order to successfully detect different types of anomalies, avoid falsely identifying unexpected
changes in the network as anomalies, and mitigate the impact of random noise/missing values,
we develop a novel and comprehensive framework that combines the adaptive extended Kalman
Filter (AEKF) with a car following motion model, and employs a data-driven fault detector. Our
framework is capable of accounting for delay in observing the environment, introduced by a
congested communication channel and/or delayed sensor observation. Specifically, we use a car-
following model to govern the motion of the vehicle in order to capture the interaction between the
subject vehicle and its immediate leading vehicle. We demonstrate that the time delay incorporated
in the motion model renders the traditional χ2 fault detector (Brumback & Srinath, 1987) not
appropriate for anomaly detection, and propose and implement a One Class Support Vector Machine
(OCSVM) model for anomaly detection (Schölkopf et al., 2001) together with AEKF instead. We
demonstrate the power of the proposed framework in detecting various types of anomalies.

Our main objective in this study is to detect sensor anomalies and to recover the corrupt signals
by utilizing the surrounding vehicles’ information. To this end, the following assumptions are made:

1. Vehicles move according to a car-following model (i.e., under adaptive cruise control mode),
have access to location and velocity of their leader (either through BSMs or using their
on-board sensors), and are able to control over their own acceleration rates.

2. A known time delay (e.g., communication, sensing, and/or reaction delay) is applied to the
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input vector of the car-following model.
The rest of the chapter is organized as follows: Section 2.2 provides a brief review of the existing

related work in the field of anomaly detection in CAVs. Section 2.3 introduces the formulation
of the problem and our method. In Section 2.4 we conduct a case study based on a well-known
car-following model. Finally, in Section 2.5, we conclude this paper.

2.2 Literature Review

Anomaly detection research has generated a substantial volume of literature over the past few
years, as it is an important and challenging problem in many disciplines including but not limited
to automotive systems (Müter & Asaj, 2011; Müter et al., 2010), wireless networks (Rajasegarar
et al., 2008), and environmental engineering (Hill et al., 2007; Hill & Minsker, 2010). Anomaly
detection methods are used in a variety of applications including fault diagnosis, intrusion detection,
and monitoring applications. In some cases if the source of an anomaly can be quickly identified,
appropriate reconfiguration control actions can be made in order to avoid or minimize potential loss.

In the past few years, a variety of methods have been developed to detect anomalous behavior,
and/or identify the source of anomaly (Isermann, 1984; Hwang et al., 2010). Examples of anomaly
detection methods include observer-based methods (Clark et al., 1975; Wünnenberg & Frank, 1987),
parity relation methods (Deckert et al., 1977; Gertler, 1997), and parameter estimation methods
(Baskiotis et al., 1979), etc. Among them, observer-based (quantitative model-based) fault detection
is a common fault detection approach, as discussed in (Hwang et al., 2010). Observer-based fault
detection is based on the residual (or innovation) sequence obtained from using a mathematical
model and (adaptive) thresholding. In this chapter we study anomaly detection in CAVs using
observer-based anomaly detection.

Anomalous sensor behavior in CAVs could result from both sensor failures or malicious
cyberattacks. Sensor readings may be influenced by a variety of factors, leading to collection
of faulty information (Checkoway et al., 2011; Realpe et al., 2015; Pous et al., 2017). For example,
environmental perturbations and sensor age may result in higher probabilities of failure. A short
circuit, loose wire connection, or low battery supply are among other reasons that may cause
inaccurate data reporting, including an unexpectedly high variation of sensor reading, or noise (Ni
et al., 2009).

Additionally, malicious attacks may cause anomaly in sensor readings. CAVs have several
internal and external cyberattack surfaces through which they can be accessed and compromised
by ill-intended actors (Petit & Shladover, 2015; Checkoway et al., 2011; Koscher et al., 2010;
Weimerskirch & Gaynier, 2015; Yan et al., 2016). Petit & Shladover (2015) showed that false
injection of information and map database poisoning are two of the most dangerous potential attacks
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on CAVs. For example, the infrastructure (i.e., RSU) or a neighboring vehicles can transmit fake
messages (e.g., WAVE Service Advertisement, BSM), which may in turn generate wrong, and
potentially harmful, reactions (e.g., spurious braking), placing CAV occupants and other road users
in life-threatening situations. There are several existing studies that illustrate the vulnerability of
CAV sensors, e.g., speed, acceleration and location sensors, to cyberattacks or sensor faults. For
in-vehicle speed and acceleration sensors, a false injection attack mentioned in (Petit & Shladover,
2015) through the CAN bus or the on-board diagnostics (OBD) system could induce any of the four
types of anomalies considered in this paper. As another example, Trippel et al. (2017) demonstrated
that an acoustic injection attack could lead to anomalous sensor values for the in-vehicle acceleration
sensor. Lastly, for the location measurement from the GPS, both the operating environment of the
vehicle and GPS spoofing/jamming attacks may result in anomalous sensor values (Faughnan et al.,
2013). Note that in this chapter we only consider false injection attacks whose manifestations can
be described by four types of anomaly defined in Section I. As such, the chapter leaves out any
types of attacks that do not impact sensor readings.

Despite the severe consequences of failing to detect sensor anomalies in CAVs, there is a scarcity
of anomaly detection techniques in the ITS literature. Only a limited number of studies have focused
on cyber security in CAVs, or more generally in ITS. In (Park et al., 2015), the authors used graph
theory based on a transient fault model to detect transient faults in CAVs. Christiansen et al. (2016)
combined background subtraction and convolutional neural networks to detect anomalies/obstacles.
Müter & Asaj (2011) and Marchetti et al. (2016) used entropy-based methods to detect anomalies
(attacks) in in-vehicle networks. Faughnan et al. (2013) measured the discrepancy between redundant
sensor readings to detect hijacking in unmanned aerial vehicles. Van Wyk et al. (2019) used a CNN
- Kalman Filter - χ2-detector hybrid method to detect and identify sensor anomaly in a CAV system.

In this chapter, we focus on detection of anomalous sensor readings and recovery of the corrupt
signals. We propose an observer-based anomaly detection method, which combines a well-known
filtering technique, namely, AEKF, to smooth the CAV sensor values, and a machine learning method,
i.e., OCSVM, to learn the normal vehicle behavior, with the objective of detecting anomalous
behavior. Specifically, we utilize a car following model to take into account the information
from the leading vehicle, so as to better detect anomalies by reducing the false positive error rate.
Additionally, to make our methodology robust to practical network conditions and improve its
anomaly detection performance, we account for time delay in perceiving the environment, which
could arise from communication delay or sensor observation delay.

One of the major differences of this chapter with our past work is that in (Van Wyk et al., 2019)
we examine multiple sensor readings for each type of sensor at the same time by feeding multiple
sensor readings into a CNN network. However, in this chapter, for each type of sensor we rely on
readings from a single sensor only and propose a novel anomaly filtering and detection technique
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accordingly. Another major difference is that this work takes into account the state of the leading
vehicle when conducting anomaly detection for the subject vehicle. These two major differences
make the two frameworks fundamentally different, and applicable to different scenarios. Finally, in
this chapter we have replaced the traditional χ2-detector, which was used in (Van Wyk et al., 2019),
with a OCSVM model. Our experiments show that by cooperating leading vehicle’s information and
using OCSVM, we achieve a better detection performance compared to the traditional χ2-detector.
To the best of our knowledge, this is the first study that detects CAV sensor anomaly by utilizing
leading vehicle’s information, i.e., by incorporating a car-following model into a continuous state-
space model with time delay. Additionally, given the fact (demonstrated in the paper) that the model
noise does not follow a Gaussian distribution, rendering the traditional χ2 test inapplicable, we
propose an OCSVM model in order to deal with the bias and abnormal distribution of innovation
caused by time delay.

2.3 Solution Methodology

In this section, we first discuss how a car-following model with time delay can be used to describe
the motion (also known as state-transition) model in AEKF. Next, we formulate a new continuous
nonlinear state-space model with discrete measurement based on a car-following motion model.
The continuous state-transition model represents the intrinsic nature of a vehicle’s response to the
actions of its immediate downstream traffic, and the discrete measurement model represents the
mechanics of sensor sampling, as is the case in practice. Based on the proposed state-space model,
we propose an anomaly detection method, which combines AEKF and OCSVM. Also a traditional
χ2-detector is discussed and its performance is compared with that of OCSVM.

2.3.1 Car-Following Model with Time Delay

Consider the car-following model in (Treiber & Kesting, 2012):

dn(t) = xn−1(t)− xn(t)

ḋn(t) = vn−1(t)− vn(t)

v̇n(t) = f(vn(t− τ), dn(t− τ), ḋn(t− τ))

(2.1)

where v̇n(t), vn(t), xn(t) are respectively the acceleration, speed, and location of the nth vehicle,
to which we refer as the ‘subject vehicle’, and dn(t) and ḋn(t) are the distance gap and the speed
difference between the subject vehicle and its leading vehicle, the (n− 1)th vehicle, respectively.
Parameter τ denotes time delay, also known as the ‘perception-reaction time’, i.e., the period of
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time lapsed from the moment the leading vehicle performs an action, to the moment the subject
vehicle executes an action in response. Function f is the stimulus function.

v̇n(t) in Equation (2.1) can be recast in the following form:

v̇n(t) = q (xn(t− τ), vn(t− τ), xn−1(t− τ), vn−1(t− τ)) (2.2)

where q produces the same output as f , given a different set of inputs.
We define a state vector in continuous time as:

sn(t) = [xn(t), vn(t)]
⊺ ∈ R2 (2.3)

where xn(k) ∈ R and vn(k) ∈ R. Note that, without loss of generality, x and v can be extended to
vector form to allow for incorporating historical location and speed observations, respectively, into
the state-space model, when desired.

Recasting equation (2.2) as a function of sn(t) produces a car following model that maps the
state into an actionable decision for the subject vehicle:

v̇n(t) :=fv (sn(t− τ), un(t− τ)) (2.4)

where un(t) = [xn−1(t), vn−1(t)]
⊺ is the input vector containing information received from the

leading vehicle, and fv denotes the stimulus function describing velocity in a continuous state space.

2.3.2 Continuous State-Discrete Measurement State-Space Model

We now define a state-space model with a continuous state-transition model and discrete
measurements. Using previous definition of the state vector sn(t), the state-transition model
satisfies the following differential equation:

ṡn(t) =

[
ẋn(t)

v̇n(t)

]

=

[
e⊺2sn(t)

fv(sn(t− τ), un(t− τ))

] (2.5)

where e2 = [0, 1]⊺.
When τ = 0, the state-space model in equation (2.5) satisfies the Markovian property, allowing

for applying AEKF. However, in practice, a variety of factors including time required for data
processing and computations as well as delays in the communication network can cause τ to be
non-zero. As such, in practice AEKF cannot be applied to equation (2.5), since the derivative of the
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state vector is determined by multiple previous state vectors.
In order to apply AEKF, we approximate equation (2.5) in the following way: We assume

the acceleration of each vehicle is bounded within the interval [amin, amax], where amin ≤ 0 and
amax > 0 indicate the magnitude of the maximum deceleration and acceleration rates, respectively.
Based on the assumption of bounded acceleration, we can obtain lower and upper bounds on the
approximation of vn(t):

e⊺2sn(t− τ) + aminτ ≤ vn(t) ≤ e⊺2sn(t− τ) + amaxτ

Then a delay differential equation (DDE), describing the delayed state-transition model, can be
used to approximate equation (2.5):

ṡn(t) =

[
ẋn(t)

v̇n(t)

]

=

[
e⊺2sn(t− τ) +

∫ t

t−τ
an(r)dr

fv(sn(t− τ), un(t− τ))

]

≈

[
e⊺2sn(t− τ)

fv(sn(t− τ), un(t− τ))

]
= T (sn(t− τ), un(t− τ))

(2.6)

where an(t) is the acceleration of the nth vehicle at time t, and T denotes the state-transition model.
Finally, we obtain a continuous-time state-transition model with discrete-time measurement as the
following:

ṡn(t) = T (sn(t− τ), un(t− τ)) + θ(t)

zn(tk) =M(sn(tk)) + η(tk), k ∈ {0 ∪ Z+}
(2.7)

whereM(·) is the measurement model, zn(tk) denotes sensor reading of the nth vehicle, θ(t)
and η(tk) are the process noise and the observation noise, respectively, which are assumed to be
mutually independent, tk+1 = tk + ∆t, k ∈ {0 ∪ Z+}, and ∆t is the sampling time interval for
sensors. Note that θ(t) accounts for the error introduced by the approximation steps in equation
(2.6).

2.3.3 Adaptive Extended Kalman Filter with Fault Detector

Extended Kalman Filter (EKF) is a well-established method used for timely and accurate estimation
of the dynamic state of a non-linear system (Wan, 2006). One important issue that needs to be
addressed in EKF is how to properly set up the covariance matrices of process noise (i.e., Q) and
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measurement noise (i.e., R). The performance of EKF is highly affected by proper tuning of Q and
R (Mohamed & Schwarz, 1999), while in practice these parameters are usually unknown a priori.
Therefore, we apply an adaptive extended Kalman filter (AEKF) to approximate these matrices.

An EKF is used to estimate state vector sn(tk) from sensor reading zn(tk). Let ŝ(k|k − 1) and
P (tk|tk−1) denote the state prediction and state covariance prediction at time tk, given the estimate
at time tk−1, respectively. Note that for ease of notation, we omit subscript n. Hence, considering
the state-space model in equation (2.7), the EKF consists of the following 3 steps:

Step 0 - Initialize state mean and covariance:

ŝk−1|k−1 = E[s(t0)]

Pk−1|k−1 = Var[s(t0)]
(2.8)

Step 1 - Predict state and state covariance:

Solve

 ˙̂s(t) = T (ŝ(t− τ), u(t− τ)),

Ṗ (t) = F (t− τ)P (t− τ) + P (t− τ)F (t− τ)⊺ +Q(t)

with


ŝ(tk−1) = ŝk−1|k−1

P (tk−1) = Pk−1|k−1

tk−1 ≥ τ + t0

⇒

ŝk|k−1 = ŝ(tk)

Pk|k−1 = P (tk)

(2.9)

where F (t − τ) = ∂T
∂s
|ŝ(t−τ),u(t−τ) is the first-order approximation of the Jacobian matrix of the

state-transition model T (·).
Step 2 - Update state and state covariance:

νk = z(tk)−M(ŝk|k−1)

Sk = H(tk)Pk|k−1H(tk)
⊺ +Rk

Kk = Pk|k−1H(tk)
⊺S−1

k

ŝk|k = ŝk|k−1 +Kkνk

Pk|k = Pk|k−1 −KkH(tk)Pk|k−1

(2.10)

where H(tk) =
∂M
∂s
|ŝk|k−1

, Q(t) is the covariance matrix of the process noise at time t, Rk = R(tk)

is the covariance matrix of the measurement noise at time tk, and νk is innovation, which is the
difference between the measurement and the prediction at time tk.
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Since in practice Q and R are usually unknown, based on the work in (Akhlaghi et al., 2017)
with slight modifications, we apply an AEKF to estimate these two matrices by using a moving
estimation window of size M , as follows:

µk = z(tk)−M(ŝk|k)

R̂k =
M∑
i=1

λi

(
µk−i+1 µ

⊺
k−i+1 +H(tk−i+1)Pk−i+1|k−i+1H(tk−i+1)

⊺
)

Q̂k =
M∑
i=1

λiKk−i+1νk−i+1ν
⊺
k−i+1Kk−i+1

(2.11)

where µk is the residual at time tk, which is the difference between actual measurement and its
estimated value using the information available at time tk, {λi, i = 1, 2, ...,M} are forgetting
factors, and

∑M
i=1 λi = 1. Note that using a moving window, as we place more weight on previous

estimates, less fluctuation of R̂k and Q̂k will incur, and it takes longer for the model to capture
changes in the system. Additionally, note that we replace Q(t) in Step 1 with Q̂k during the time
interval [tk−1, tk].

One of the traditional fault detectors used in conjunction with Kalman filter is the χ2-detector
(Brumback & Srinath, 1987; Bar-Shalom & Li, 1995; Geng & Wang, 2008). Since AEKF is a special
type of Kalman filter, the χ2-detector can be seamlessly applied to AEKF as well. Specifically, it
constructs χ2 test statistics to determine whether the new measurement falls into the gate region
with the probability determined by the gate threshold σ, as shown in the following:

Vγ(k) = {z :(z − ẑk|k−1)
⊺S−1

k (z − ẑk|k−1) ≤ σ} (2.12)

where ẑk|k−1 is the predicted value of measurement at time tk. The χ2 test statistics for the fault
detector is defined as

χ2(tk) = ν⊺
kS

−1
k νk. (2.13)

For the χ2 test to provide meaningful results, the innovation νk should be zero mean Gaussian
distributed with covariance Sk. However, in reality, the innovation can follow a non-zero mean
Gaussian distribution if there is bias in the background (e.g., due to non-zero mean process noise
or imperfect model), as shown in Figure 2.1. This figure displays a scatter plot of normalized
innovation generated from the training dataset in our experiments, when there exits a time delay
and

∫ t

t−τ
an(r)dr in equation (2.6) is not zero. Moreover, in practice the variance of the normalized

innovation is not normally distributed when the noise does not follow a Gaussian distribution. In the
2-dimensional case, the χ2-detector defines a circular boundary with its center located at (0, 0), i.e.,
the blue lines in Figure 2.1, which corresponds to the thresholding boundary of the χ2-detector with
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Figure 2.1: An example where the normalized innovation sequence is not zero mean due to time delay and
imperfect model, where τ = 0.5 second. The threshold σ of χ2-detector is 2.5.

σ = 2.5. Therefore, in order to correctly detect anomalies, the χ2-detector requires the data to be
zero mean and normally distributed. In such a scenario, the χ2-detector would not be a good detector
since it will generate higher rates of false positives and false negatives. As such, the boundary
should be shifted toward the true mean in order to achieve a “fair” boundary on both sides.

In the context of our problem, the approximation introduced in equation (2.6) can generate
such a bias. This approximation assumes the value

∫ t

t−τ
an(r)dr to be zero. As such, unless the

acceleration and deceleration rates during the period [t , t+ τ ] sum to zero, or the time delay τ is
equal to zero, the resulting bias would degrade the performance of the χ2-detector. Consequently,
we propose a novel approach to use one-class support vector machines (OCSVMs) (Schölkopf et al.,
2001) to adaptively learn the normal boundary of the innovation sequence. Specifically, we train
several OCSVM models using normal (i.e., non-anomalous) sensor data with different parameter
values (i.e., anomaly percentages). We use the trained OCSVM models for detecting anomalies in
real-time.

2.3.4 One Class Support Vector Machine

Let us define normalized innovation ν̄ at time tk as:

ν̄(tk) = S
− 1

2
k · νk (2.14)

Assume we have a training set N , with l data points, {ν̄(t1), ..., ν̄(tL)} ∈ L , sampled from a
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Figure 2.2: Distribution (PDF) of normal |ν̄(tk)| and the absolute value of unknown abnormal data. The
shaded area indicates false positive beyond the threshold γ.

normal (i.e., non-anomalous) set. Let us define K as a kernel mapping function L → F , where F
represents the feature space. OCSVM solves the following quadratic program:

min
ω∈F ,ξ∈Rl,ρ∈R

1

2
||ω||2 + 1

pl

∑
j

ξj − ρ

subject to ω · Φ (ν̄(tj)) ≥ ρ− ξj

ξj ≤ 0

(2.15)

where p is a constant parameter in the range of (0, 1), denoting the false positive rate of the decision
boundary that classifies normal and anomalous sensor readings. Decision variables ω in model
(2.15) define the most generalizable linear decision boundary in an infinite-dimensional space
(created by the Gaussian kernel) to determine a region in the input space that encompasses at least
1− p percentage of data points. Decision variables ξj are slack variables introduced to penalize the
degree of violation of the constraint (ω · Φ (ν̄(tj))) ≥ ρ.

According to Proposition 3 in (Schölkopf et al., 2001), parameter p provides an upper bound
on the fraction of outliers in the training dataset, and asymptotically equals the fraction of outliers
out-of-sample, with probability 1, under certain conditions. We train M different OCSVM models,
each model with a parameter p selected from the set {p1, p2, ..., pM} with pi < pj,∀i < j. For a
measurement sequence with dimension m, we compute the average of the normalized innovation
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sequence over a window of N time intervals, up to time tk,

ν̄avr(tk) = |
1

N

k∑
i=k−N+1

ν̄(ti)|1 (2.16)

where | · |1 is the L1-norm. For small values of ν̄avr(tk), i.e., when the average of normalized
innovation within the current time window is small, suggesting that AEKF performs well, we
choose a trained OCSVM model with large value of p to ensure that we would detect even small
variations and mark them as outliers. Following the same line of logic, when ν̄avr(tk) is large,
we choose an OCSVM model with small p to avoid unnecessary dismissal of data points where
we are not certain enough that a point is truly an outlier. To that end, in order to determine the
parameter p properly, we use the histogram of innovation values constructed from normal data to
approximate the distribution of the innovation. Without loss of generality, we assume ν(tk) is zero
mean Gaussian distributed. For the case when it is not zero mean, we first subtract the mean value,
and add it back after determining the value of p.

The tail of the probability density function (PDF) in Figure 2.2 represents drastic changes in data,
and the center of the PDF represents smooth changes. The histogram of |ν̄| is an approximation
of the PDF of the normal training data. As shown in Figure 2.2, parameter γ controls the area of
the shadow, and the PDF of the normal data is approximated by the histogram. We assume the
absolute value of normal data as a random variable denoted as X with a certain distribution and
domain D(X). Then, given the number of training samples Ntrain, the number of outliers Nol can
be computed from

Nol = p ·Ntrain

=
|{x : 1− F (x) = p}|mode

|{x : x ∈ D(x)}|mode

×Ntrain

≈ |{ν̄ : |ν̄|1 ≥ γ}|mode

Ntrain

×Ntrain

(2.17)

where F (·) is the CDF of X . As such, we have:

|{ν̄ : |ν̄|1 ≥ γ}|mode ≈ p ·Ntrain (2.18)

Finally, for M OCSVM models with parameters {p1, p2, ..., pM}, when testing on a new data
point, we have:

ν̄avr(tk) ∈ [0, γ1)⇒ p1

ν̄avr(tk) ∈ [γ1, γ2)⇒ p2

...

ν̄avr(tk) ∈ [γM−1,∞)⇒ pM

(2.19)
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Figure 2.3: Implementation flowchart of the proposed algorithm.

In summary, assuming we have n measurements, Figure 2.3 summaries an implementation
flowchart of the proposed algorithm, which combines AEKF and OCSVM to detect anomalies
and recover the corrupt sensor readings. Specifically, at each time epoch, the following vehicle
receives the measurements from both the leading vehicle and its own onboard sensors. The AEKF
smooths the following vehicle’s speed and location signal based on the motion model. Meanwhile
the AEKF generates the innovation, which measures the discrepancy between the measurements and
the prediction, and sends the innovation to the fault detector model for anomaly detection. The fault
detector model consists of several OCSVM models and it can dynamically choose which one to
use based on the average innovation. If there is no sensor anomaly detected, the innovation will be
combined with the measurement at current time in order to generate an estimation. Otherwise, we
do not trust the current sensor measurement and replace the estimation with the prediction, which
will be used in the next time epoch.
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2.3.5 Anomaly Model

The dataset for this chapter is generated by randomly adding anomalies to normal trajectory data,
since there is no publicly available dataset on CAV trajectories that includes anomalies in sensor
measurements. Specifically, we account for the four major anomaly types including short, noise,
bias, and gradual drift. The detailed construction of the anomalies are as follows:

1. Short: The short anomaly type is simulated as a random Gaussian variable with mean and
variance of 0 and c1, respectively.

2. Noise: The noise anomaly type is simulated as a sequence of i.i.d. random Gaussian variables
with length of l, mean of 0, and variance of c2.

3. Bias: The bias anomaly type is simulated as adding a temporarily offset to the observation.
We simulate the magnitude of the anomaly as Gaussian distributed with mean of 0 and
variance of c3. The duration of the sequence of bias anomaly is l.

4. Gradual drift: The gradual drift anomaly type is simulated by adding a linearly
increasing/decreasing set of values to the base values of the sensors. Specifically, first
we use a vector of linearly increasing values from 0 to m, where m is a uniformly distributed
random variable in range of [0, c4]. The duration of the sequence is l. We then use a Bernoulli
random variable with probability 0.5 to generate one of the two outcomes of 1 and -1, by
which we scale the sequence to generate increasing or decreasing drift, respectively.

Here ci, i ∈ {1, 2, 3, 4} is the parameter of distribution for each type of anomaly.
We inject all four types of anomalies into each sensor reading. We assume the onset of anomalous

values in sensors occur independently. That is, we do not explicitly train OCSVM on a dataset
containing interdependent sensor failures or systemic cyberattacks on vehicle sensors. However,
this assumption does not preclude scenarios under which multiple sensors are under simultaneous
attack.

Similar to the previous work (Van Wyk et al., 2019), we generate various datasets for our
experiments with anomaly rate of α. In addition, we simulate anomalies to start at randomly
selected times, lasting for random durations (if it applies to the anomaly type), affecting randomly
selected sensors. These anomalies are then used to adjust the corresponding sensors’ normal
readings in the original dataset, which indicate the traveling location and speed of the CAV, making
them anomalous. The pseudo code describing random generation of anomalies is presented in
Algorithm 2.1. In the algorithm, randi(L) denotes a discrete uniform distribution among integer
numbers from 1 to L. Note that each anomaly type is equally likely to get selected when an anomaly
is generated.
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Algorithm 2.1: Anomaly Generation Process
1: α← anomaly rate; n← number of sensors; ζ = [ζ1, ζ2, ..., ζn]← U(0, 1);

L← maximum duration of anomaly
2: for time epoch t ∈ T do
3: for i ∈ {1, 2, . . . , n} do
4: if no anomaly exists at t for the ith sensor then
5: if ζi ≤ α then
6: l← randi(L)
7: switch (Anomaly type selected according to probability distribution fω)
8: case Short:
9: Add ‘short’ type of anomaly with parameter c1

10: case Noise:
11: Add ‘noise’ type of anomaly with duration l with parameter c2
12: case Bias:
13: Add ‘bias’ type of anomaly with duration l with parameter c3
14: case Gradual Drift:
15: Add ‘gradual drift’ type of anomaly with duration l with parameter c4
16: end switch
17: end if
18: end if
19: end for
20: end for

2.4 Numerical Experiment

In this section we adopt a well-known car-following model, namely the Intelligent Driver Model
(IDM), proposed by Treiber et al. (2000), to compare the anomaly detection performance of the
traditional χ2-detector and the OCSVM model. As mentioned in (Treiber & Kesting, 2012), since
the IDM has no explicit reaction time and its driving behavior is given in terms of a continuously
differentiable acceleration function, it describes more closely the characteristics of semi-automated
driving by adaptive cruise control (ACC) than that of a human driver. However, it can easily be
extended to capture the communication delay as described in the previous section. We also evaluate
the impact of using the IDM motion model on anomaly detection performance. In order to evaluate
system performance, we assume that the input vector containing the leading vehicle’s information is
not anomalous. When both the subject vehicle sensors and the leading vehicle’s information present
anomalous data, as long as the deviation of the state prediction and the measurement exceeds the
threshold of the fault detector, the system still is able to detect sensor anomalies. However, when the
deviation is not evident enough, e.g. under the rare circumstance when the attacker manipulates both
the input vector and the measurement such that they remain consistent according to the car-following
model, the fault detector will fail to detect those anomalies. However, such circumstance is not easy
to occur since it requires knowledge from the part of the attacker on both the exact motion model as
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well as how the fault detector threshold is dynamically updated.
Using the definition of state sn(t) and input un(t) in the previous section, the IDM model with

time delay τ can be described as the following:

ẋn(t) = vn(t)

v̇n(t) = fv(sn(t− τ), un(t− τ))

= a

(
1−

(
vn(t− τ)

v0

)δ

−
(
s∗(vn(t− τ), vn(t− τ)− vn−1(t− τ))

xn−1(t− τ)− xn(t− τ)− ln

)2
) (2.20)

with
s∗(vn,∆vn) = s0 + vnT +

vn∆vn

2
√
ab

where a, b, δ, v0, s0, T and ln are model parameters. The state vector sn and the input vector un both
have dimension of 2. For detailed information on IDM refer to (Treiber et al., 2000). Following
the typical parameter values of city traffic used in (Treiber & Kesting, 2012), we set the parameter
values in our study as follows: a = 1.0, b = 1.5, δ = 4, v0 = 33.75, s0 = 2, T = 1.0, ln = 5, and
define the measurement functionM(·) as:

M(s) = H · s =

[
1, 0

0, 1

]
· s (2.21)

The data for this chapter is obtained from the research data exchange (RDE) database constructed
as part of the Safety Pilot Model Deployment (SPMD) program (Bezzina & Sayer, 2014) funded by
the US department of Transportation, and collected in Michigan. This program was conducted with
the primary objective of demonstrating CAVs, with the emphasis on implementing and testing V2V
and V2I communications technologies in real-world conditions. The program recorded detailed
and high-frequency (10 Hz) data for more than 2,500 vehicles over a period of two years. The data
features extracted from the SPMD dataset used in this study include the in-vehicle speed for one of
the test vehicles with a trip length of 400 seconds (4000 samples) for training data, and 200 seconds
(2000 samples) for testing data. As mentioned in Section 2.1, we assume that the vehicles are in
ACC mode according to a car-following model, i.e. the IDM model. Therefore, as shown in Figure
2.4, we use the extracted speed data as the leading vehicle’s speed vn−1, and generate its location
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Figure 2.4: The synthetic car-following data using SPDP data under IDM model. The first and second plot
are the speed and location of two vehicles respectively.

xn−1 and the following vehicle’s state (xn and vn) as the baseline based on the following rules:

xn−1(k + 1) = xn−1(k) + vn−1(k) · τ

xn(k + 1) = xn(k) + vn(k) · τ

vn(k + 1) = ∆t · f (xn(k − τ), vn(k − τ), xn−1(k − τ), vn−1(k − τ)) + vn(k − τ) + ϵ · τ
(2.22)

where ϵ is a random term that describes the uncertainty of the following vehicle’s state. In our
study we generate ϵ based on a uniformly distributed random variable within the range [−0.1, 0.1].
Furthermore, we add Gaussian white noise with variance 0.02 to the leading vehicle’s baseline
data. Since we want to test the detection performance, the noise variance should be smaller than the
anomaly variance so that it would not be overpowered by the white noise. Note that adding white
noise to the leading vehicle’s baseline data is equivalent to using a Gaussian distributed random
time delay factor of τ̃ with mean τ .

To demonstrate the importance of incorporating the leading vehicle’s information into the
following vehicle’s anomaly detection procedure, we implement our framework once using the IDM
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car following model, and once without it, using the state-space model expressed in the following:

ṡn(t) =

[
e⊺2 · sn(t− τ)

0

]
+ θ(t)

zn(tk) = Hsn(tk) + η(tk), k ∈ {0 ∪ Z+}

(2.23)

where the process noise θ(t) accounts for the introduced error.
To measure the effectiveness of our two main contributions, i.e., incorporating a car following

model into the AEKF motion model and using a OCSVM fault detector, we conduct sensitivity
analysis over the motion model (i.e., with and without the IDM motion model), the anomaly
detection methodology (i.e., the χ2-detector and OCSVM), and the time delay (i.e., τ =

{0, 0.5, 1.5}). To evaluate the impact of changing models/parameters, we compute the Area Under
the Curve (AUC) for each receiver operating characteristic (ROC) curve. The ROC curve is a
graphical plot tool to illustrate the diagnostic ability of a binary classifier as its discrimination
threshold is varied, and is created by plotting the true positive rate (sensitivity) against the false
positive rate (1− specificity) at various threshold settings. More specifically, we change the values of
σ in our χ2-detector, and the γ vector for the OCSVM. Note that the vector γ is a three-dimensional
vector as we train and utilize four different OCSVM models.

The experiments are separately implemented into three scenarios, where scenario 1 contains a
χ2-detector without the IDM motion model, scenario 2 contains the χ2-detector with the IDM model,
and scenario 3 contains OCSVM with the IDM model. Each scenario is implemented under three
experimental settings generated by varying the value of the anomaly parameter ci, i = {1, 2, 3, 4}.
More specifically, values of ci = 1, ci = 0.1, and ci = 0.05 are used for settings 1, 2 and 3,
respectively. This suggests anomalous readings become more subtle, and generally more difficult to
detect, from setting 1 to setting 3. Lastly, the maximum duration of anomaly, L, is set to 20 for each
setting.

Tables 2.1-2.3 present the AUC values of the three scenarios in our three experiment settings,
with time delays of τ = 0, 0.5, and 1.5 seconds, respectively. The experiments indicate that the IDM
observer-based fault detection method provides significant improvement (up to 23%) compared
with the performance of AEKF without the IDM model, regardless of the value of time delay.
Additionally, we can see that OCSVM consistently achieves a better fault detection performance
than the χ2 detector. Results also indicate that there is a degeneracy of performance for each method
as the parameter ci becomes smaller. This observation is in line with intuition, since smaller ci
makes the anomaly more subtle and therefore harder to detect. Additionally, the trends of AUC
values indicate that as we increase the time delay, the overall detection performance systemically
deteriorates. This suggests that the time delay of the car-following model may have a negative
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impact on the detection performance.

Table 2.1: AUC of three scenarios with τ = 0 seconds.

χ2 without IDM χ2 with IDM OCSVM with IDM
ci = 1 0.9059 0.9723 0.9806
ci = 0.1 0.7764 0.9453 0.9470
ci = 0.05 0.7294 0.9228 0.9357

Table 2.2: AUC of three scenarios with τ = 0.5 seconds.

χ2 without IDM χ2 with IDM OCSVM with IDM

ci = 1 0.9024 0.9703 0.9793

ci = 0.1 0.7637 0.9402 0.9452

ci = 0.05 0.7258 0.9118 0.9260

Table 2.3: AUC of three scenarios with τ = 1.5 seconds.

χ2 without IDM χ2 with IDM OCSVM with IDM

ci = 1 0.8939 0.9701 0.9782

ci = 0.1 0.7681 0.9201 0.9294

ci = 0.05 0.7208 0.8875 0.8940

2.5 Conclusion

This chapter proposes an anomaly detection method to protect CAVs against anomalous sensor
readings and/or malicious cyberattacks. We use an adaptive extended Kalman filter, informed by
not only the vehicle’s onboard sensors but also the leading vehicle’s trajectory, in order to detect
anomalous information. The well-known IDM car following model is used to incorporate the leading
vehicle’s information into AEKF. Lastly, to improve the anomaly detection performance, and given
the fact that using AEKF the innovation is not normally-distributed, we replace the traditionally
used χ2-detector with an OCSVM model. We quantify the effect of these contributions in isolation,
as well as in a combined model, by conducting experiments under three scenarios: (i) χ2-detector
without the IDM model, (ii) χ2-detector with the IDM model, and (iii), OCSVM with the IDM
model. Results show that the AEKF enhanced with OCSVM and the IDM model outperforms the
traditional χ2-detector-based anomaly detection used in conjunction with AEKF. Furthermore, our
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results indicate that a model-based anomaly detection method that can incorporate the status of
the lead vehicle can further improve the detection performance. More specifically, by utilizing the
leading vehicle’s information to inform the AEKF and using OCSVM for anomaly detection, the
proposed method can not only effectively filter out the sensor noise in CAVs, but also detect the
anomalous sensor values in real-time with better performance than that without utilizing leading
vehicle’s information. This high performance is showcased by high AUC values in our experiments.
Moreover, we study the general relationship between the delay in receiving information and the
performance of anomaly detection. We show that as the time delay of signal transmission (i.e.,
communication channel delay or sensor delay) becomes larger, the overall detection performance
deteriorates.

The current study can be improved/expanded in multiple ways. First, the following vehicle’s
state and anomalous sensor values used in Section 2.4 are simulated, due to the paucity of ACC
datasets with anomalies for CAVs. There exist multiple car-following datasets, but most of them
were collected from human drivers. Although our study mainly focuses on the detection performance
of our proposed method, it may be beneficial to directly collect ACC data from CAVs and calibrate
the car-following model based on a real dataset, since the potential discrepancy between the car
following model and the true traveling behaviour of the vehicle may introduce new challenges.
Second, in Section 2.4, we assume the input vector containing leading vehicle’s information is not
anomalous. However, our proposed method can still detect anomalies without such an assumption,
i.e., as long as the discrepancy between input vector and measurement are large enough. Note that
we also assume that anomalous input vector are caused either by sensor failures or false injection
attacks that can be described by four types of anomaly. Third, in this study for each vehicle we
only utilize a single leading vehicle’s information, whereas a connected vehicle can benefit from
information shared by any number of connected vehicles within its communication range as well
as the infrastructure. In Chapter 4, we study the impact of incorporating multiple sources of
information (e.g., multiple vehicle) on the overall anomaly detection performance. Finally, a further
direction can be the source identification of anomaly after detection.
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CHAPTER 3

Anomaly Detection in Connected and Automated Vehicles Using
an Augmented State Formulation

3.1 Introduction

A robust anomaly detection scheme designed for CAVs should satisfy three characteristics. First, any
anomaly detection scheme should be able to effectively identify false negatives and false positives,
both of which may result in severe negative outcomes as discussed in Chapter 2. To avoid false
positives, the anomaly detection methods should be able to distinguish between anomalies and
true unexpected changes in network conditions that may trigger unexpected responses from road
users. Therefore, to reduce the number of false positives the anomaly detection scheme should
be able to incorporate network-level information. To avoid false negatives, anomaly detection
methods should be able to identify the noise, introduced by the vehicles’ onboard sensor systems
or the communication channel, to make sure decisions are not affected by it. Secondly, anomaly
detection methods should not pose additional computational burden on a CAV’s already constrained
computational and energy resource. Finally, the anomaly detection techniques should be fast enough
to be implementable in highly-dynamic traffic streams.

Anomalous sensor readings could be caused by different form of anomalies. In this chapter we
adopt the same anomaly taxonomy from Chapter 2: (i) Short, which is a short-lived and sudden
change in the observed data; (ii) Noise, which is a longer-term change (multiple successive readings)
in variance of the observed data; (iii) Bias, which is an offset from the true sensor readings; (iv)
Gradual drift, which is a gradual drift in the observed data and (v) Miss, which refers to missing
data observations that could result from Denial of Service (DoS) attacks or sensor failures. In this
chapter, we do not explicitly account for the anomaly type ‘miss’; however, in practice, depending
on its duration, the ‘miss’ anomaly type can be viewed as either ‘instant’ or ‘bias’ anomalies, where
for a short or long period of time, respectively, the sensor readings are changed to zero.

The objective of this chapter is to develop an anomaly detection scheme that can incorporate
network level information, does not require large computational resources, and can detect anomalies
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in real-time. In Chapter 2, we developed a framework that combined an adaptive extended Kalman
Filter, enhanced using a car-following motion model, and a data-driven fault detector to detect
CAV anomalies in the presence of communication time delay. This chapter is an extension of
Chapter 2, where we reformulate the problem using an augmented state in order to capture the
bias caused by the time delay, and thereby improve the detection performance of the traditional
χ2-detector. Moreover, the new method proposed in this chapter can be seamlessly coupled with
the CNN-KF framework proposed in (Van Wyk et al., 2019); experiments indicate improvements
in performance by implementing the new method. We use the same assumptions as in Chapter 2
throughout this chapter: (i) vehicles follow their immediate upstream vehicle (referred to as the
leader), according to a car-following model; and (ii) there is a time-delay associated with obtaining
the leader’s information (e.g., location and velocity).

The rest of the chapter is organized as follows: In Section 3.2 we provide a brief review of the
existing literature in CAV anomaly detection. In Section 3.3 we introduce the problem formulation
and our solution method. In Section 3.4 we conduct a case study based on a well-known car-
following model and compare the performance with our previous method. Finally, in Section 3.5
we conclude the chapter.

3.2 Literature Review

Sensor failures and cyberattacks make two of the main contributors to anomalous sensor readings
in CAVs. Sensor failure may result from environmental conditions (e.g. dense vegetation and
tall buildings that block GPS satellite signals), sensor age, low battery supply, etc. (Ni et al.,
2009). There has been a number of studies focusing on cyberattacks on CAVs (Petit & Shladover,
2015; Trippel et al., 2017; Faughnan et al., 2013). Experimental studies have demonstrated the
vulnerability of a wide array of CAV sensors, e.g., speed, acceleration and location sensors, to
cyberattacks or faults. For example, a false injection attack through the CAN bus or the on-board
diagnostics (OBD) system of a CAV (Petit & Shladover, 2015) can result in any of the five anomaly
types introduced in this chapter. As another example, Trippel et al. demonstrate how the in-
vehicle acceleration sensor could be vulnerable to acoustic injection attacks (Trippel et al., 2017).
Spoofing/jamming attacks on a CAV’s GPS unit is another example of attackers inducing anomalies
into sensor values (Faughnan et al., 2013).

Because of the potentially severe consequences of failing to detect anomalous sensor readings
and/or anomalous data received through commutation channels, an increasing number of studies
have focused on cyber security in CAVs. A wide range of frameworks founded on graph theory
(Park et al., 2015), deep learning (Van Wyk et al., 2019), and game theory (Brahmi et al., 2019),
among others, have been proposed for this purpose. In this chapter we propose a new anomaly
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detection framework based on extended Kalman filter (EKF) with a car-following motion model
and an augmented state space. This framework offers an anomaly detection method that (i) directly
targets reducing the number of false positive errors in anomaly detection; (ii) does not require
significant computational resources; and (iii) can be executed in real-time, making it suitable for
dynamic traffic environments. This framework is an extension of Chapter 2, where we focused on
detection of anomalous sensor readings and recovery of the corrupt signals. Similar to Chapter
2, we use a car-following model as the motion model of an EKF in order to use the trajectory
of the subject vehicle’s leading vehicle, thereby capturing some network-level information. The
leading vehicle’s information is received through basic safety messages (BSM) enabled by V2V
communications. When using the leading vehicle’s information to inform the motion of the subject
vehicle, the time-delay in the communication channel could create theoretical challenges that would
exclude the use of traditional fault-detectors, such as the χ2 detector. In Chapter 2, we addressed
this issue by introducing a data-driven fault detector. In this chapter we adopt an augmented state
for EKF, i.e. augmented state extended Kalman filter (ASEKF), which makes it possible to use
a traditional χ2 detector. Additionally, in this chapter we analyze the impact of stochastic time
delay in receiving the leading vehicle’s information. Our experiments show a boost of detection
performance of χ2-detector with augmented state formulation. Additionally, they show a lower
mean squared error (MSE) compared with our previous formulation under time delay.

3.3 Solution Methodology

In this section, we first discuss how to reformulate a car-following model into a continuous motion
model with time delay using an augmented state. Augmenting the state allows us to compensate for
the potential bias caused by the approximation process and model inaccuracy. Based on that, we
then formulate a new continuous nonlinear state-space model with discrete measurements based on
a car-following model, where the continuous state-transition model represents the intrinsic nature
of a vehicle’s response to the actions of its immediate leader, and the discrete measurement model
represents the discrete nature of sensor sampling. Next, we analyze the impact of stochastic time
delay on the system. Finally, we apply the augmented state extended Kalman filter (ASEKF) to the
state-space model, and use the resulting ASEKF model in conjunction with a χ2-detector to find
anomalies.
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3.3.1 Car-Following Model with Time Delay

We use a typical car-following model as described in (Treiber & Kesting, 2012):

dn(t) = xn−1(t)− xn(t)

ḋn(t) = vn−1(t)− vn(t)

v̇n(t) = f(vn(t− τ), dn(t− τ), ḋn(t− τ))

(3.1)

where v̇n(t), vn(t), xn(t) are the acceleration, speed, and location of the nth vehicle, to which
we refer as the subject vehicle or the following vehicle, respectively. In equation (3.1), dn(t) and
ḋn(t) are the headway and the speed difference between the subject vehicle and its leading vehicle
(also referred to as the leader), i.e. the (n− 1)th vehicle, respectively. Parameter τ denotes time
delay, intended to capture the time lapsed between the moment the leader performs an action, to the
moment the subject vehicle acts in response. For now we consider a constant time delay τ ; however,
later we relax the constant assumption by considering a stochastic time delay. Function f is the
stimulus function.

Following the steps in Section 2.3, we define the state vector of the nth vehicle in continuous
time as sn(t) = [xn(t), vn(t)]

⊺ ∈ R2, and the input vector containing information received from
the leading vehicle as un(t) = [xn−1(t), vn−1(t)]

⊺. Consequently, we can recast equation (3.1) as a
function of sn(t), producing a car-following model that maps the state into an actionable decision
for the subject vehicle:

v̇n(t) :=fv (sn(t− τ), un(t− τ)) (3.2)

where fv denotes the stimulus function describing velocity in a continuous sate space.

3.3.2 State-Space Model with Continuous State and Discrete Measurement

In this section we define a state-space model with a continuous state-transition model and discrete
measurements, which will be used for ASEKF. Based on previous definition of the state vector
sn(t), the state-transition model satisfies the following differential equation:

ṡn(t) =

[
ẋn(t)

v̇n(t)

]
=

[
e⊺2sn(t)

fv(sn(t− τ), un(t− τ))

]
(3.3)

where e2 = [0, 1]⊺ is the standard basis vector.
Ideally when τ = 0, the state-space model in equation (3.3) satisfies the Markovian property,

allowing for applying ASEKF. However, in practice, τ is usually a nonzero value affected by various
factors, e.g., communication network or data processing delay, etc.. As such, in practice ASEKF
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cannot be applied to equation (3.3), since the derivative of the state vector is determined by multiple
previous state vectors.

In order to apply ASEKF, we approximate equation (3.3) in the following way: Based on the
bounded acceleration assumption, we can obtain a delay differential equation (DDE), describing the
delayed state-transition model:

ṡn(t) =

[
ẋn(t)

v̇n(t)

]

=

[
e⊺2sn(t− τ) +

∫ t

t−τ
an(r)dr

fv(sn(t− τ), un(t− τ))

]

=

[
1, 0, 1

0, 1, 0

]
×

 ẽ⊺2sn(t− τ)

fv(sn(t− τ), un(t− τ))∫ t

t−τ
an(r)dr



=

[
1, 0, 1

0, 1, 0

]
×

 ẽ⊺2s̃n(t− τ)

fv(ẽ
⊺
12s̃n(t− τ), un(t− τ))

ẽ⊺3s̃n(t− τ)



(3.4)

where an(t) is the acceleration of the nth vehicle at time t, and s̃n(t) = [xn(t), vn(t), δn(t)]
⊺ denotes

the augmented state vector of sn(t) with augmented state δn(t) =
∫ t

t−τ
an(r)dr, ẽ12 = [ẽ1, ẽ2, 0]

⊺,
and ẽi ∈ R3 is the standard basis vector with i-th element equal to 1 and 0 otherwise. Since δn(t)

is unknown, we assume it is a constant or a random variable with small variance. Thus we have
δ̇n(t) ≈ 0.

The state-transition model with respect to the augmented state vector s̃n(t) can be presented as
follows:

˙̃sn(t) =

ẋn(t)

v̇n(t)

δ̇n(t)



=

 ẽ⊺2s̃n(t− τ) + ẽ⊺3s̃n(t− τ)

fv(ẽ
⊺
12s̃n(t− τ), un(t− τ))

0

+ θ(t)

= T (s̃n(t− τ), un(t− τ)) + θ(t)

(3.5)

where T (·) is the state-transition model and θ(t) is the process noise, which accounts for the error
introduced by the approximation and model inaccuracy.

Finally, using the new augmented state vector s̃n(t), we obtain a continuous-time state-transition
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model with discrete-time measurement as the following:

˙̃sn(t) = T (s̃n(t− τ), un(t− τ)) + θ(t)

zn(tk) =M(s̃n(tk)) + η(tk), k ∈ {0 ∪ Z+}
(3.6)

whereM(·) is the measurement function, zn(·) denotes sensor reading of the leading vehicle, η(tk)
is the observation noise, which is assumed to be mutually independent with the process noise,
tk+1 = tk +∆t, k ∈ {0 ∪ Z+}, and ∆t is the sampling time interval for sensors.

3.3.3 Stochastic Time Delay

Now we consider a more general case where the time delay τs is not a known constant. We assume
that τs is a linear model:

τs = τ + κ (3.7)

where κ is zero mean truncated Gaussian distributed with variance σ2
1 , and within the intervals

(bl, bu). Therefore we have E(τs) = τ . We also assume the leading vehicle’s trajectory obeys a
linear model, i.e., ẋn−1(t) = vn−1(t)

v̇n−1(t) = an−1(t).
(3.8)

Since the leading vehicle’s motion model is unknown, we assume that the acceleration of the leading
vehicle, an−1, is a Gaussian process with zero mean and variance σ2

2 .

Proposition 3.1. A random time delay τs is equivalent to adding noise into the input vector un(t−τ)
with fixed time delay τ .

Proof. By integrating ẋn−1(t− τs), we have

xn−1(t− τs) =

∫ t−τs

0

vn−1(ξ)dξ

=

∫ t−τ−κ

0

vn−1(ξ)dξ

=

∫ t−τ

0

vn−1(ξ)dξ −
∫ t−τ

t−τ−κ

vn−1(ξ)dξ

= xn−1(t− τ) + ϵ1(t− τ ;κ)

(3.9)

where ϵ1(t − τ ;κ) = −
∫ t−τ

t−τ−κ
vn−1(ξ)dξ. Therefore using random time delay is equivalent to

adding noises ϵ1(t− τ ;κ) into state xn−1(t− τ). Note that ϵ1(t− τ ;κ) does not necessarily have
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zero mean:

Eκ[ϵ1(t− τ ;κ)] =

∫ bu

bl

ϕ̃(ι; 0, σ1, bl, bu)

∫ −ι

0

vn−1(ξ + t− τ)dξdι (3.10)

where where ϕ̃(ι;µ, σ1, bl, bu) represents the probability density function of truncated normal
distribution,

ϕ̃(ι;µ, σ1, bl, bu) =
1

σ1

ϕ( ι−µ
σ1

)

Φ( bu−µ
σ1

)− Φ( bl−µ
σ1

)
(3.11)

where ϕ(·) and Φ(·) are the probability density function and cumulative density function of the
standard normal distribution, respectively.

Similarly, for vn−1, using random time delay is equivalent to adding noise ϵ2(t − τ ;κ) into
vn−1(t− τ):

vn−1(t− τs) = vn−1(t− τ) + ϵ2(t− τ ;κ) (3.12)

where ϵ2(t− τ ;κ) does not necessarily have zero mean.
Therefore, the input vector can be expressed as a linear model:

un(t− τs) = un(t− τ) + ϵ(t− τ ;κ) (3.13)

where ϵ(t− τ ;κ) = [ϵ1(t− τ ;κ), ϵ2(t− τ ;κ)]⊺.

When the time delay of the input vector is stochastic, the continuous-time state-transition model
with discrete-time measurement is as follows:

˙̃sn(t) = T (s̃n(t− τ), un(t− τs)) + θ(t)

zn(tk) =M(s̃n(tk)) + η(tk), k ∈ {0 ∪ Z+}
(3.14)

Because of the term ϵ(t− τ ;κ), plugging equation (3.13) into (3.14) could cause a non-zero mean
for θ(t), depending on the specific formulation of the car-following model. As mentioned in the
next section, the existence of bias in the process noise θ(t) could deteriorate the performance of the
traditional χ2 fault detector, whereas using ASEKF can mitigate this issue.

3.3.4 Augmented State Extended Kalman Filter with Fault Detector

In order to smooth the CAV sensor noise, we apply ASEKF to the state-space model (3.6). The
ASEKF contains the same predict and update routine as EKF in (2.8)-(2.10).
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One of the classic fault detectors used in conjunction with Kalman filter is the χ2-detector (Bar-
Shalom & Li, 1995). Since ASEKF is essentially a special type of Kalman filter, the χ2-detector can
be seamlessly applied to ASEKF as well. Specifically, it constructs χ2 test statistics to determine
whether the new measurement falls into the gate region with the probability determined by the gate
threshold γ in equation (3.15),

Vγ(k) = {z : (z − ẑk|k−1)
⊺S−1

k (z − ẑk|k−1) ≤ γ} (3.15)

where ẑk|k−1 is the predicted value of measurement at time tk. The χ2 test statistics for the fault
detector is defined as χ2(tk) = ν⊺

kS
−1
k νk. In order to make the χ2 test provide meaningful results,

the innovation νk should be zero mean Gaussian distributed with covariance Sk; therefore, we
combine it with ASEKF, which could compensate the potential bias caused by time delay.

In summary, we combine ASEKF and χ2 fault detector to detect anomalies and recover
the corrupt sensor readings. Specifically, at each time epoch, the subject vehicle receives the
measurements from both the leading vehicle and its own onboard sensors. ASEKF uses the car-
following motion model to smooth the following vehicle’s speed and location signals. During the
smoothing process, the ASEKF generates the innovation, which is the the discrepancy between
the measurements and the prediction, and sends the innovation to the fault detector model for
anomaly detection. If there is no sensor anomaly detected, the innovation will be combined with the
measurement at the current time epoch in order to generate an estimation. Otherwise, the prediction
would replace the estimation, which will be used in the next time epoch.

3.4 Numerical Experiment

In this section, we again use the Intelligent Driver Model (IDM) proposed by Treiber et al. (2000) as
our car-following model of choice, and implement our framework to compare the anomaly detection
performance of the χ2-detector in conjunction with EKF and ASEKF. Since the IDM has no explicit
reaction time and its driving behavior is given in terms of a continuously differentiable acceleration
function (Treiber & Kesting, 2012), it is suitable for modeling semi-automated (compared to human)
driving. However, it can be easily extended to capture the communication delay, as described in the
previous section. Note that in order to evaluate system performance, we assume that the input vector
containing the leading vehicle’s information is not anomalous. We also use a truncated Gaussian
distribution with mean τ and variance 1 to generate stochastic time delay.

Using the same model in (2.20) Following the typical parameter values of city traffic used
in (Treiber & Kesting, 2012), we set the parameter values in our study as follows: a = 1.0, b =

1.5, δ = 4, v0 = 33.75, s0 = 2, T = 1.0, ln = 5, and define the measurement functionM(·) of
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(a) Scatter plot of EKF. (b) Scatter plot of ASEKF.

Figure 3.1: Example of a normalized innovation sequence being non-zero mean, where τ = 1.5 seconds. The
threshold σ of χ2-detector is 0.8.

ASEKF in equation (3.14) as:

M(s̃) = H · s̃ =

[
1, 0, 1

0, 1, 0

]
· s̃ (3.16)

We use the same dataset as in Chapter 2, which is based on Safety Pilot Model Deployment
(SPMD) program (Bezzina & Sayer, 2014) funded by the US department of Transportation, and
collected in Michigan. The anomalies are randomly generated with 5% anomaly rate and injected
into the raw dataset using Algorithm 2.1 in Chapter 2.

We implement two sets of models, where model 1 is composed of the traditional EKF with an
IDM motion model and a χ2-detector, and model 2 is composed of the ASEKF with the IDM model
and the χ2-detector. Each model is implemented under three experimental settings generated by
varying the value of the anomaly parameter ci, i = {1, 2, 3, 4} of Algorithm 2.1, which depending
on the anomaly type describes the variance or magnitude of different types of anomalies. More
specifically, values of ci = 1, ci = 0.5, and ci = 0.1 are used for settings 1, 2 and 3, respectively.
This suggests anomalous readings become more subtle, and generally more difficult to detect, from
setting 1 to setting 3. We also conduct the each experimental setting under 3 different time delays of
τ = {0, 0.5, 1.5} (seconds). Lastly, the maximum duration of an anomaly, L, is set to 20 for each
setting. In order to evaluate the impact of changing models/parameters, we compute the Area Under
the Curve (AUC) for each receiver operating characteristic (ROC) curve.

Table 3.1 presents the AUC values, averaged over 20 random instances, of all nine scenarios
that are generated by changing the intensity of anomalies (ci = {1, 0.5, 0.1}) and time delay
(τ = {0, 0.5, 1, 5}). For each scenario, we use a paired t-tests with a 5% significant level to
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Table 3.1: AUC of detection performance and its standard deviation across 20 different executions for two
models, at the anomaly rate of 5% and in the presence of all anomaly types. P-values indicate statistical
significance at 5% level using paired t-test between the detection performance of each pair of models except
between for the scenarios with ci = 1 and τ = 0.5.

Model 1 Model 2
τ 0.0 0.5 1.5 0.0 0.5 1.5

ci = 1
0.984 0.931 0.855 0.983 0.945 0.902
±0.015 ±0.028 ±0.034 ±0.022 ±0.030 ±0.038

ci = 0.5
0.972 0.917 0.799 0.969 0.928 0.844
±0.020 ±0.033 ±0.391 ±0.024 ±0.034 ±0.046

ci = 0.1
0.871 0.718 0.576 0.867 0.759 0.731
±0.029 ±0.031 ±0.034 ±0.035 ±0.039 ±0.058

determine whether there is a statically significant difference in the AUC values of Models 1 and
2. Results indicate that when there is no time delay, EKF with χ2-detector (model 1) consistently
achieves a better anomaly detection performance than the ASEKF with χ2-detector (model 2). This
is because when time delay is zero, there is no need to compensate for potential bias. Under such
circumstances, the augmented state variable behaves similarly to additional noise added to the
first element of the state variable (i.e., geo-location) as shown in equation (3.5), causing a lower
detection performance. Results indicate that model 2 outperforms model 1 in all scenarios where
τ > 0, by capturing the the bias that is generated due to time-delay. It should be noted that in
practice, a zero time delay may rarely occur, indicating that the augmented state formulation would
perform better in practice. Results also indicate that there is a degeneracy of performance for each
method as the parameter ci becomes smaller. This observation is in line with intuition, since smaller
ci makes the anomaly more subtle and therefore harder to detect. Additionally, the trends of AUC
values indicate that as we increase the time delay, the overall detection performance systemically
deteriorates. This suggests that the time delay in general may have a negative impact on detection
performance.

In order to investigate the effect of using the augmented state formulation, we find the mean
innovation value for the two state variables (i.e., location and speed) for each model under the
three time delay settings with zero percentage of anomaly, as presented in Table 3.2. As shown in
the TABLE 3.2, ASEKF can significantly decrease the background bias in the first state variable,
i.e. location of the subject vehicle, when there is a time delay. Similar to previous results, when
the time delay is zero, the performance of ASEKF deteriorates, since no potential bias need to be
compensated for, and the augmented state variable only introduces more randomness in the system.
As time delay becomes larger, the effect of bias correction becomes more prominent. Table 3.2 also
shows the mean squared error (MSE) in the innovation of the two models, where MSE is calculated
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Table 3.2: Mean innovation for each state variable and the MSE for the two models at zero anomaly rate.
MSE is calculated as the squared root of sum of the MSEs for the two state variables.

τ 0.0 0.5 1.5
Model 1

Mean innovation value of location -0.003 -0.146 -0.436
Mean innovation value of speed 0.022 0.028 0.062

MSE 7.12E-04 0.033 0.098
Model 2

Mean innovation value of location -0.002 -0.033 -0.097
Mean innovation value of Speed 0.024 0.036 0.095

MSE 8.43E-04 0.032 0.095

as the squared root of sum of the MSEs for the two state variables. further confirming our previous
observations–as we increase the time delay, the reduction in MSE under model 2 (ASEKF) becomes
larger compared with that under model 1 (EKF). Figures 3.1(a) and 3.1(b) display the scatter plots
of normalized innovation for both EKF and ASEKF, generated from the training dataset in our
experiments, when there exits a time delay and

∫ t

t−τ
an(r)dr in equation (3.4) is not zero mean. In

the 2-dimensional case, the χ2-detector defines a circular boundary with its center located at (0, 0),
i.e., the blue lines in Figure 3.1, which corresponds to the thresholding boundary of the χ2-detector
with σ = 0.8. We can see a significant reduction in the mean and variance of the normalized
innovation of the first state variable in ASEKF. This figure also shows that the innovation sequence
of ASEKF resembles a normal distribution more closely, indicating the suitability of the χ2-detector.

3.5 Conclusion

The goal of this chapter is to develop a framework to detect anomalous sensor readings and/or
data received through V2V or V2I communications in CAVs. The proposed framework introduces
a computationally light-weight anomaly detection tool that attempts to minimize false positives
and negatives by incorporating context from the driving environment, obtained through V2V
communications. The delay in the communication channel can introduce theoretical challenges
that preclude using existing anomaly detection tools. As such, we introduce an augmented state
extended Kalman filer (ASEKF) that is informed by not only the vehicle’s onboard sensors but
also the leading vehicle’s trajectory. In our case study, we use the well-known intelligent driver
car following model to incorporate the leading vehicle’s information. In conjunction with ASEKF,
we use the classic χ2-detector to detect five types of anomalies, which encapsulate general sensor
faults and/or cyberattacks in CAVs. We also analyze the effect of stochastic time delay on the
detection performance. We quantify the effect of these contributions by conducting experiments
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under two scenarios: χ2-detector with an IDM motion model and EKF, and χ2-detector with an IDM
motion model and ASEKF. Results indicate that in the presence of time delay, the second model
outperforms the first. Furthermore, results show that in the presence of time delay, ASEKF can
decrease the overall innovation MSE by compensating for the background bias. Potential extension
includes exploration of different types of attack/anomaly and learning-based detector/classifier.
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CHAPTER 4

Anomaly Detection and String Stability Analysis in Connected
Automated Vehicular Platoons

4.1 Introduction

In order to ensure that a CAV can safely and effectively navigate the network, it needs access to
robust and accurate data streams. As a result, any anomalous sensor data, if undetected, can greatly
imperil the decision making process of CAVs. Either a malicious cyberattack or a sensor fault can
result in an anomaly in CAV sensors. Moreover, with the presence of measurement noise, it is
crucial to detect any anomalous sensor readings in real-time and accurately estimate the true state
of the CAV meanwhile to ensure the safety of the CAV driving.

Anomalous sensor readings can be caused by a variety of reasons and manifest in different
ways. In this chapter, we adopt the taxonomy of sensor failure/attack in Chapters 2 - 3 which is also
provided by Van Wyk et al. (2019) and Watts et al. (2022) including ‘bias’, ‘gradual drift’, ‘noise’,
‘short’, and ‘miss’. Specifically, ‘bias’ and ‘gradual drift’ impose a constant offset and a gradual
drift from the actual sensor readings, respectively. The anomaly type ‘noise’ represents a duration
of change of variance in the observed readings. The anomaly type ‘short’ refers to a abrupt and
short-lived change, and ‘miss’ is a short- or long-term missed observation in the sensor readings.
The ‘miss’ anomaly type can be viewed as a special case of either ‘short’ or ‘bias’ anomaly types,
depending on its duration, with the sensor reading being zero.

Meanwhile, connectivity enables a CAV to receive information from its surrounding vehicles
and infrastructures. However, wireless communications and some forms of cyberattacks (e.g., the
jamming attack) can introduce time delays to the receiver, which can significantly impact the state
estimation accuracy and traffic stability, causing delay and chaos, and even leading to fatal crashes.
Therefore, it is imperative to take time delay into consideration during state estimation and anomaly
detection processes, and investigate the potential impacts of cyberattacks on traffic stability.

Figure 4.1 shows an illustrative scenario of platoon with 3-predecessor following information
flow topology. Other topologies discussed in (Feng et al., 2019) such as predecessor following,
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Figure 4.1: An example of platoon with 3-predecessor following information flow topology and with cloud
information.

predecessor leader following, etc. can also be addressed in our framework. A malicious attacker
can conduct cyberattacks to one or multiple vehicles in the platoon by manipulating the sensor
reading of the compromised vehicle. We assume each vehicle is equipped with an anomaly detector
and is capable of recovering the true sensor reading from the cloud once it successfully detects
an abnormal sensor reading. The information from the cloud used for the recovery of anomalous
sensor readings can be obtained from a road side unit (RSU), when possible, which monitors the
vehicle trajectory and is assumed to be free from attacks.

In this chapter, we develop a holistic detection framework to improve the safety and security
of CAV systems. Our framework combines sensor signal filtering and observer-based anomaly
detection methods. Specifically, we consider anomaly detection in a platoon, where the ego vehicle
can receive information from multiple sources, including other platoon members. We develop a
general platooning framework for modeling a CAV’s longitudinal dynamics under different types
of cyberattacks. We use an augmented state extended Kalman filter (ASEKF) to estimate vehicle
states from observed sensor readings of a CAV based on a nonlinear platooning model. In using
the platooning model, the ego vehicle (i.e., the following CAV) leverages information from its
leading vehicles to detect sensor anomalies by utilizing a set of offline-trained One Class Support
Vector Machine (OCSVM) models. Stochastic and heterogeneous communication time delay factors
are considered in the platoon dynamics to make it more congruent with real-world applications.
Furthermore, we propose a novel definition of string stability, namely pseudo string stability, which
represents the degree of string stability under model uncertainty. We establish the relationship
between cyberattack detection rate and pseudo string stability, and identify the critical detection
rate for maintaining pseudo string stability.

The contributions of this chapter can be summarized as threefold:
1. We extend the longitudinal platoon dynamics from Wang et al. (2020a), by considering a
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more realistic setting that accounts for heterogeneous time delay instead of a homogeneous
time delay in previous literature. With heterogeneous time delay, we assume that the onboard
sensor readings, i.e., the state vector, and the communication channel, i.e., the input vector,
may experience different time delays. More specifically, we propose a modelling framework
that supports a comprehensive analysis of CAV platoon performance under cyberattacks,
including the false injection attack, the jamming attack, etc. We further consider the stochastic
time delay setting and investigate its impact.

2. We convert the platoon dynamics into a state-space model, and apply an ASEKF combined
with a detector to smooth the sensor measurement as well as to detect sensor anomalies.
For the detector side, we consider both the χ2-detector and OCSVM. An augmented state
formulation is considered in order to compensate for the bias in the state-transition model,
which can be caused by stochastic time delay or model inaccuracy. We show using numerical
experiments that OCSVM outperforms the χ2-detector both with and without the augmented
state formulation. As we demonstrate in the experiments, however, OCSVM does not
necessarily benefit from the augmented state formulation. Experiments also demonstrate that
we obtain a significant improvement in detection performance by combining the ASEKF
model with a χ2-detector compared with χ2-detector without augmented state formulation.

3. One of main advantages of forming platoons is their capability to maintain string stability.
Therefore, we conduct a comprehensive stability analysis of platoons under various types of
cyberattacks. We define the concept of pseudo string stability to capture the degree of string
stability in expectation given an imperfect fault detector. To the best of our knowledge, this is
the first string stability analysis of platoons under cyberattacks and model uncertainty. We
demonstrate the relationship between the detection sensitivity of the detector and the platoon
pseudo string stability, and identify the critical detection sensitivity for maintaining a pseudo
stable string.

The remaining of this chapter is organized as follows: In Section 4.2, we review the literature
on platooning technology and its cybersecurity concerns. In Section 4.3, we provide the details of
ASEKF and detection models, and conduct stability analysis of the platoon with and without attacks.
In Section 4.4, we perform extensive numerical experiments. Lastly, we conclude the chapter in
Section 4.5.

4.2 Literature Review

CAVs can provide safety, mobility, and sustainability benefits by enabling the formation of platoon.
Platoons can increase road capacity, improve traffic stability, and curb fuel consumption (Van Arem
et al., 2006; Ploeg et al., 2011; Liu et al., 2021, 2022). A CAV platoon is enabled by using V2V
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and/or V2I technologies. It has been demonstrated that the destabilization effect of communication
delay is suppressed by the stabilization effect of multi-anticipations (i.e. more cooperative vehicles)
of platoon (Ngoduy, 2015). Platooning can also reduce fuel consumption, which is significantly
influenced by air resistance, through shorter following gaps. It has been shown that tightly
coupled platooning can improve fuel economy for both passenger cars (Liu et al., 2021; Shida &
Nemoto, 2009) and trucks (Alam, 2011; Sun, 2020). One application of platooning is cooperative
adaptive cruise control (CACC). CACC extends the adaptive cruise control (ACC) by utilizing the
V2V communication technology, which provides the ACC system with more and higher-quality
information about its immediate following vehicle. With information of this type, the CACC
controller will be able to better anticipate challenges ahead, and maneuver in a safer way while
at the same time making the ride more comfortable for vehicle occupants. CACC systems with
V2V communications enable a reduction in the mean following time gap/headway from about 1.4
seconds in manual driving to approximately 0.6 seconds (Nowakowski et al., 2010).

There has been a considerable amount of literature over the past few years on network-aware
modeling of a platoons and improving the string stability of platoon-based vehicular systems. For
instance, the effects of communication delays on string stability of a longitudinal dynamic model
is addressed in (Zhang & Orosz, 2016; Sykora et al., 2020). Longitudinal platoon control via
communication channels with packet loss is studied in (Guo & Wen, 2015; Molnár et al., 2015).
In (Molnár et al., 2017), Molnár et al. further investigated the impact of network delay integrated
with packet loss on the platoon stability. Although there has been a variety of literature considering
network-induced phenomena in the vehicular platoon, there exits much fewer studies considering
the detection of cyberattack and their impact on platoon stability. Since the platoon control model
heavily relies on the external dynamical information, such as location, velocity, and headway, of
other vehicles, when the vehicle communication network is under attack, transmitted messages will
be contaminated or lost, rendering the platoon incapable of achieving the expected performance.

Previous literature have considered the impact of cyberattacks on vehicular platoons via
simulation (Cui et al., 2018; Khattak et al., 2021), but they did not rigorously investigate the effect
of cyberattacks on platoon stability. In (Ngoduy, 2015), a car-following model was designed to
receive the velocity and location of a fixed number of cooperative vehicles with constant information
transmission time delays. Following this direction, Wang et al. (2020a) extended the framework
by incorporating a communication range to dynamically adjust the number of cooperative vesicles.
Alipour-Fanid et al. (2017) exemplified a CACC model where an UAV imposed jamming attacks on
the wireless channel. Based on the CACC framework, other types of cyberattacks have been studied
recently. Mousavinejad et al. (2019) considered the attacks on not only the inter-vehicle signals,
but also the onboard sensor measurement outputs. Biron et al. (2018) focused on detecting the
Denial of Service (DoS) attack using CACC model and estimating the effect on the CAV system if
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attacks occurred. While these studies provided valuable insights on vehicular platoon performance
under cyberattacks, the traditional CACC model, which mostly only utilizes one leading vehicle’s
information for each ego vehicle, cannot fully leverage the Vehicle-to-Everything (V2X) capability,
which is key in addressing future challenges in dynamics control and fuel consumption reduction.
Therefore, an advanced platoon vehicle dynamics model should be deployed.

To mitigate the risk of being attacked, both detection and recovery techniques are necessary to
safeguard platoon operations. Little attention has been paid to cyberattack detection. Mousavinejad
et al. (2018) proposed a cyberattack detection algorithm that is capable of detecting attacks
that violate both measurements and control command data in platoon-based vehicular systems.
Biroon et al. (2021) developed a partial differential equation model for detection and isolation
of cyberattacks. They considered a specific type of attack, which is modeled as a ghost vehicle
being injected into the connected vehicles network to disrupt the performance of the entire system.
In (Ju et al., 2020), the authors proposed a distributed Kalman filter with a modified generalized
likelihood ratio algorithm to detect deception attacks. However, all of aforementioned studies only
considered a specific platoon dynamic model and a rather specific attack model, which may limit
the generalizability of their conclusions in practice. Moreover, none of them considered the time
delay effect. This chapter aims to bridge this gap by proposing a general framework describing
platoon dynamic, which considers the heterogeneous time delay effect as well as multiple types of
sensor anomalies resulted from either sensor faults or cyberattacks.

4.3 Solution Methodology

In this section, we first propose a general model to describe the longitudinal dynamics of CAVs in a
platoon. Then, we discuss how to reconfigure the platooning model to a state-space model, which
includes a continuous state-transition model with heterogeneous time delays in an augmented state
formulation, and a discrete measurement model. The continuous state-transition model represents
the intrinsic nature of vehicle motion, and the discrete measurement model represents the discrete
nature of sensor sampling. Based on the derived state-space model, we propose a filtering and
anomaly detection method, which combines ASEKF with an anomaly detector. For the anomaly
detector, we adopt a semi-supervised learning model, namely, OCSVM. We also introduce a χ2-
detector and later compare its performance with OCSVM in Section 4.4. Finally, we conduct
string stability analysis of the proposed platooning model under cyberattacks, and propose a novel
definition of string stability under cyberattacks and model uncertainty.
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4.3.1 Platooning Vehicle Dynamics with Heterogeneous Time Delay

We consider an extended version of the platoon dynamics model proposed by Wang et al. (Wang
et al., 2020a). Specifically, the CAV platoon dynamics in the absence of cyberattacks can be modeled
as follows:

v̇n(t) = f

(
vn(t− τ1), αn1wn1(t− τ1)gn(t− τ1) +

M∑
j=2

αnjwnj(t− τ2)gn−j+1(t− τ2),

βn1wn1(t− τ1)∆vn(t− τ1) +
M∑
j=2

βnjwnj(t− τ2)∆vn−j+1(t− τ2)

) (4.1)

where vn(t) represents the velocity of n-th vehicle; xn(t) is the location of the n-th vehicle; gn(t)
represents the clearance gap between the n-th vehicle and (n− 1)-th vehicle, which is defined as
gn(t) := xn−1(t) − xn(t) − ln−1; ln−1 represents the length of (n − 1)-th vehicle; ∆vn(t) is the
relative velocity between n-th vehicle and (n− 1)-th vehicle defined as ∆vn(t) := vn(t)− vn−1(t);
αnj and βnj represent the weighting coefficients associated with the clearance gap and relative
velocity between vehicle pair n− j and n− j + 1; M represents the number of cooperative leading
vehicles; τ1 and τ2 represents the time delay of onboard measurement and communication channel,
respectively; wnj(t) is the row-n-column-(n− j + 1) element of the adjacency matrix W(t), and
wnj(t) = 1 if vehicle n receives information from vehicle n − j + 1 at time t and wnj(t) = 0

otherwise. For example, considering a platoon of N vehicles indexed from 0 to N − 1, when
assuming each vehicle in the platoon only receives information from its leading/preceding vehicles,
the adjacency matrix W(t) will be a lower triangular matrix and can be represented as:

W(t) =



0 0 · · · 0 · · · 0 0

w11(t) 0 · · · 0 · · · 0 0

w21(t) w22(t) 0
. . . 0 0 0

...
... . . . . . . . . . ...

...
wn1(t) wn2(t) · · · wnn(t) 0 0 0

...
...

...
... . . . . . . ...

w(N−1)1(t) w(N−1)2(t) · · · w(N−1)j(t) · · · w(N−1)(N−1)(t) 0


(4.2)

By defining the n-th vehicle as the ego vehicle, the platooning model in equation (4.1) takes
three inputs, namely, velocity of the ego vehicle, weighted average of clearance gaps, and weighted
average of relative velocities between each pair of its cooperative vehicles. The platooning model
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determines the acceleration of the ego vehicle. Note that we consider two heterogeneous time delay
factors, one for onboard measurements and one for the communication channel. To be specific, a
time delay factor τ1 incurs on all onboard measurements of the ego vehicle, including its velocity,
the clearance gap and the relative velocity between the ego vehicle and its immediate leading vehicle.
Meanwhile, another time delay factor τ2 is imposed to the rest of the inputs of model (4.1), which
are obtained via the communication channel. For a complete list of notations, see Table 4.1.

Table 4.1: Table of Notation

f(·) ≜ general platooning model
N ≜ number of vehicles in platoon

W(t) ≜ adjacency matrix at time t

τ1 ≜ time delay of onboard measurements
τ2 ≜ time delay of the communication channel
ln ≜ length of vehicle n

vn(t) ≜ velocity of vehicle n in the platoon at time t

xn(t) ≜ position of vehicle n in the platoon at time t

gn(t) ≜ clearance gap between the preceding vehicle n − 1 and
vehicle n at time t

∆vn(t) ≜ relative velocity between vehicle n and its preceding vehicle
n− 1 at time t

αnj/βnj ≜ weighting coefficients associated with the clearance
gap/relative velocity from vehicle n− j to vehicle n− j +1

4.3.2 State-Space Model

We define a state-space model which includes a continuous state-transition model and a discrete
measurement model. Define the state vector sn(t) as the location and the velocity of the ego vehicle,
i.e.,

sn(t) = [xn(t), vn(t)]
⊺ (4.3)

where ⊺ represents transpose. Also define the input vector as un(t; τ1, τ2), which associates with
two time delay factors τ1 and τ2 and includes the clearance gap and the relative velocity,

un(t; τ1, τ2) =

[
αn1wn1gn(t− τ1) +

∑M
j=2 αnjwnj(t− τ2)gn−j+1(t− τ2)

βn1wn1(t− τ1)∆vn(t− τ1) +
∑M

j=2 βnjwnj(t− τ2)∆vn−j+1(t− τ2)

]
(4.4)
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The platoon dynamics (4.1) can be therefore recast into a state-transition model as follows,

ṡn(t) =

[
ẋn(t)

v̇n(t)

]

=

[
e⊺2sn(t)

f (e⊺2sn(t− τ1), e
⊺
1un(t|τ1, τ2), e⊺2un(t|τ1, τ2))

] (4.5)

where ei represents a base vector with its i-th element being 1, and other elements set to 0.
When τ1 = 0, the state-transition model (4.5) satisfies the Markovian property, allowing

for applying an extended Kalman filter (EKF). However, because of the time required for data
processing and computations, in practice τ1 can be non-zero. Similarly, communication delay may
cause τ2 to be non-zero. Under such circumstances, the Kalman filer cannot be directly applied to
equation (4.5). Instead, we approximate the state-transition model by using an augmented state
formulation. Specifically, assuming each vehicle has a bounded acceleration range, we can obtain a
delay differential equation (DDE), describing the delayed state-transition model:

ṡn(t) =

[
ẋn(t)

v̇n(t)

]

=

[
e⊺2sn(t− τ1) +

∫ t

t−τ1
an(r)dr

f(e⊺2sn(t− τ1), e
⊺
1un(t|τ1, τ2), e⊺2un(t|τ1, τ2))

]

=

[
1, 0, 1

0, 1, 0

]
×

 e⊺2sn(t− τ1)

f(e⊺2sn(t− τ1), e
⊺
1un(t|τ1, τ2), e⊺2un(t|τ1, τ2))∫ t

t−τ1
an(r)dr



=

[
1, 0, 1

0, 1, 0

]
×

 e⊺2s̃n(t− τ1)

f(e⊺2s̃n(t− τ1), e
⊺
1un(t|τ1, τ2), e⊺2un(t|τ1, τ2))
e⊺3s̃n(t− τ1)



(4.6)

where we define the augmented state vector as

s̃n(t) = [xn(t), vn(t), δn(t)]
⊺ (4.7)

with augmented state

δn(t− τ) =


∫ t

t−τ
an(r)dr if τ > 0

0 otherwise
(4.8)

The augmented state δn(t) is used to compensate potential bias caused by the time delay. Since
δn(t) is unknown, we assume that at each time it is sampled from a random process with a small
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variance. Thus we have δ̇n(t) ≈ 0.
Then we can obtain the state-transition model with the augmented state vector s̃n(t) as follows:

˙̃sn(t) =

ẋn(t)

v̇n(t)

δ̇n(t)



≈

 e⊺2s̃n(t− τ1)

f(e⊺2s̃n(t− τ1), e
⊺
1un(t; τ1, τ2), e

⊺
2un(t; τ1, τ2))

0

+ θ(t)

= T (s̃n(t− τ1), un(t; τ1, τ2)) + θ(t)

(4.9)

where T (·) is the state-transition model, and θ(t) is the process noise which accounts for the
approximation error and model inaccuracy.

At each time epoch, the ego vehicle obtains its trajectory information from measurements by its
onboard sensors. As such, using the new augmented state vector s̃n(t), we can obtain the state-space
model with an augmented state vector as follows:

˙̃sn(t) = T (s̃n(t− τ1), un(t; τ1, τ2)) + θ(t)

zn(tk) =M(s̃n(tk)) + η(tk), k ∈ {0 ∪ Z+}
(4.10)

whereM(·) represents the measurement model, zn(·) is sensor readings of the ego vehicle, η(tk)
denotes the observation noise, which is assumed to be mutually independent from the process noise,
tk+1 = tk +∆t, k ∈ {0 ∪ Z+}, and ∆t is the sampling time interval for sensors.

4.3.3 Stochastic Time Delay of Input

We further consider a more general setting where the time delay factors τ1 and τ2 are not known
constants, i.e., the input vector suffers from stochastic time delay. We assume the stochastic time
delay obeys a linear model,

τ̃1 = τ1 + κ1

τ̃2 = τ2 + κ2

(4.11)

where κ1 and κ2 follow truncated normal distributions with mean 0 and variance σ2
1 and σ2

2 , and
within the intervals (a1, b1) and (a2, b2), respectively. That is, time delays τ̃1 and τ̃2 are within the
range (τ1 + a1, τ1 + b1) and (τ2 + a2, τ2 + b2), respectively. The dynamics of the ego vehicle’s most
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immediate leader can be simplified as a linear model,ẋn−1(t) = vn−1(t)

v̇n−1(t) = an−1(t)
(4.12)

where an−1(t) is the acceleration of the n−1-th vehicle at time t. Then, we can obtain the following
proposition:

Proposition 4.1. Having stochastic time delays τ̃1 and τ̃2 is equivalent to adding noises into the

input vector un(t; τ1, τ2) with fixed time delays τ1 and τ2, i.e.,

un(t; τ̃1, τ̃2) = un(t; τ1, τ2) + C(t) (4.13)

where C(t) represents the noises caused by stochastic time delay.

Proof. Let us start by considering the communication delay, τ2. For an arbitrary cooperative leader
of the ego vehicle, i.e. (n − j)-th vehicle where 1 ≤ j ≤ M , its clearance gap gn−j(t − τ̃2) is
defined as gn−j(t− τ̃2) = xn−j−1(t− τ̃2)− xn−j(t− τ̃2)− ln−j−1. By integrating ẋn−j−1(t− τ̃2),
we have

xn−j−1(t− τ̃2) =

∫ t−τ̃2

0

vn−j−1(ξ)dξ

=

∫ t−τ2−κ2

0

vn−j−1(ξ)dξ

=

∫ t−τ2

0

vn−j−1(ξ)dξ −
∫ t−τ2

t−τ2−κ2

vn−j−1(ξ)dξ

= xn−j−1(t− τ2) + ϵ1(t− τ2;κ2)

(4.14)

where ϵ1(t − τ2;κ2) = −
∫ t−τ2
t−τ2−κ2

vn−j−1(ξ)dξ. Similarly, by integrating xn−j(t − τ̃2), we can
obtain,

xn−j(t− τ̃2) = xn−j(t− τ2) + ϵ2(t− τ2;κ2) (4.15)

where ϵ2(t− τ2;κ2) = −
∫ t−τ2
t−τ2−κ2

vn−j(ξ)dξ.
Therefore, by combing (4.14) and (4.15), we obtain

gn−j(t− τ̃2) = xn−j−1(t− τ2)− xn−j(t− τ2)− ln−j−1 + ϵ1(t− τ2;κ2)− ϵ2(t− τ2;κ2)

= gn−j(t− τ2) + ϵ1(t− τ2;κ2)− ϵ2(t− τ2;κ2)
(4.16)

Equation (4.16) shows that having stochastic time delay on the clearance gap is equivalent to
adding a noise term ϵ1(t− τ2;κ2)− ϵ2(t− τ2;κ2) into the clearance gap with a constant time delay.
Note that we only consider the communication delay τ2. However, similar results can be easily
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obtained for onboard measurement delay τ1. Also note that the noise term is not necessarily zero
mean with respect to κ2, since it also depends on the vehicle velocity:

Eκ2 [ϵ1(t− τ2;κ2)− ϵ2(t− τ2;κ2)] = Eκ2 [ϵ1(t− τ2;κ2)]− Eκ2 [ϵ2(t− τ2;κ2)]

=

∫ b2

a2

ϕ̃(ι; 0, σ2, a2, b2)

∫ −ι

0

vn−j−1(ξ + t− τ2)dξdι

−
∫ b2

a2

ϕ̃(ι; 0, σ2, a2, b2)

∫ −ι

0

vn−j(ξ + t− τ2)dξdι

=

∫ b2

a2

ϕ̃(ι; 0, σ2, a2, b2)

∫ −ι

0

∆vn−j(ξ + t− τ2)dξdι (4.17)

where ϕ̃(ι;µ, σ, a, b) represents the probability density function of truncated normal distribution,

ϕ̃(ι;µ, σ, a, b) =
1

σ

ϕ( ι−µ
σ
)

Φ( b−µ
σ
)− Φ(a−µ

σ
)

(4.18)

where ϕ(·) and Φ(·) are the probability density function and cumulative density function of the
standard normal distribution, respectively.

Similarly, by integrating vn−j−1(t− τ̃2) and vn−j(t− τ̃2), we obtain

vn−j−1(t− τ̃2) = vn−j−1(t− τ2) + ϵ3(t− τ2;κ2)

vn−j(t− τ̃2) = vn−j(t− τ2) + ϵ4(t− τ2;κ2)
(4.19)

where ϵ3(t − τ2;κ2) = −
∫ t−τ2
t−τ2−κ2

an−j−1(ξ)dξ and ϵ3(t − τ2;κ2) = −
∫ t−τ2
t−τ2−κ2

an−j(ξ)dξ. Then
we have

∆vn−j(t− τ̃2) = ∆vn−j(t− τ2) + ϵ3(t− τ2;κ2)− ϵ4(t− τ2;κ2) (4.20)

Therefore according to (4.16) and (4.20), having stochastic time delays is equivalent to adding
noises into the input vector with the fixed time delays.

When the time delays of the input vector are stochastic, according to Proposition 4.1, substituting
equation (4.13) into (4.10) could induce a non-zero mean for the process noise θ(t), depending on
the specific formulation of the platooning model. As mentioned in the next section, such a bias in
θ(t) could negatively affect the performance of the classic χ2-detector, whereas using ASEKF and
OCSVM can mitigate this issue.
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4.3.4 Augmented State Extended Kalman Filter with Anomaly Detector

Extended Kalman filter (EKF) is a well-known algorithm that takes a series of observed
measurements and estimates the unknown state of a non-linear system in a timely and accurate
manner (Ribeiro, 2004). However, similar to other types of Kalman filter-based algorithms, it
poses an assumption on both the process noise and the observation noise to be zero-mean Gaussian
distributed. It has been shown that regardless of the Gaussian assumption, if the process covariance
and measurement covariance are known, the Kalman filter is still the best possible linear estimator
in the sense of minimum mean-squared-error (Humpherys et al., 2012). However, its performance
can deteriorate significantly when there exits a background bias that is not incorporated in the
model, as it violates the zero-mean assumption. In order to denoise CAV sensor measurements
while compensating potential but unknown biases, we apply an augmented state extended Kalman
filter (ASEKF) to the state-space model in (4.10) with three objectives: (i) to smooth the CAV
sensor noise and estimate vehicle state in real time, (ii) to compensate potential but unknown bias
caused by stochastic time delays or model inaccuracy, and (iii) to detect anomalous sensor readings
by incorporating surrounding vehicles’ information.

ASEKF includes two major stages to obtain the state estimation of s̃n(tk) from the sensor input
zn(tk), namely, predict and update. Let ŝ(k|k − 1) and P (tk|tk−1) denote the state prediction and
state covariance prediction at time tk given the estimate at time tk−1, respectively. Note that for ease
of notation, we use state vector notation s instead of the augmented state vector s̃, and we also omit
subscript n for simplicity. Hence, given the state-space model in equation (4.10), we can adopt the
EKF algorithm introduced in Chapter 2.3.

One advantage of using ASEKF to estimate sensor data is that it can detect anomalies during the
filtering procedure. One of the traditional anomaly detectors used in conjunction with Kalman filter
is the χ2-detector (Brumback & Srinath, 1987; Bar-Shalom & Li, 1995). Since ASEKF belongs to
the family of Kalman filters, the χ2-detector can be seamlessly applied. Specifically, it constructs a
gate region by computing the χ2 test statistics, and determines whether the new measurement falls
into the gate region. The gate region is defined by the gate threshold γ, as shown in the following:

Vγ(k) = {z :(z − ẑk|k−1)
⊺S−1

k (z − ẑk|k−1) ≤ γ} (4.21)

where ẑk|k−1 is the predicted value of measurement at time tk. The χ2 test statistics for the anomaly
detector is defined as

χ2(tk) = ν⊺
kS

−1
k νk (4.22)

The χ2-detector relies on the Gaussian assumption and zero-mean assumption of the ASEKF, as
it essentially constructs a “spherical” decision boundary with the centroid of the origin point in the
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space of normalized innovation, which is defined as

ν̄(tk) = S
− 1

2
k · νk (4.23)

The normalized innovation instances falling outside this spherical decision boundary will be
classified as anomalies. However, as we showed earlier in section 4.3.3, the process noise θ(t) may
not be zero-mean under stochastic time delay, and the additive noise caused by the stochastic time
delay does not follow a zero-mean Gaussian distribution. Moreover, the approximation step in (4.9)
may also introduce such a bias. Therefore, we also consider a learning-based method, namely, one
class Support Vector Machine (OCSVM), to actively learn the decision boundary in the normalized
innovation space. To see the details of OCSVM, refer to model (2.15) in Chapter 2.

Unlike the χ2-detector which uses a decision boundary predefined by the threshold parameter
γ, OCSVM learns the decision boundary from only non-anomalous training data, which can
be collected easily without the need to enumerate all possible types of anomalies. It can also
directly learn the potential bias from the training data, and is more robust. Furthermore, unlike the
χ2-detector, it does not impose distributional assumptions on the data.

4.3.5 String Stability Analysis

String stability reflects how platoons respond to imposed perturbations in longitudinal dynamics
and stabilize back to the equilibrium state. String stability can be mathematically defined in both
time-domain and frequency domain. String stability conditions are easy to verify, but hard to derive,
in time-domain. Therefore, we conduct analysis in the frequency-domain. Note that in the presence
of time delay, deploying power-series and the decay rate of perturbations to approximate the vehicle
dynamics response and derive string stability conditions is not mathematically guaranteed for a
non-linear dynamics model at high angular frequency. To ensure the validity of the analysis, we
pursue the transfer function approach instead. Obtaining inter-vehicle transfer functions under
the standard definition of string stability is not trivial when their inputs and outputs are heavily
correlated, i.e., one vehicle receiving information from multiple preceding vehicles as its control
input. In this chapter, we adopt an extension of the standard string stability, namely, the head-to-tail
string stability, originally proposed in (Jin & Orosz, 2014) to address this problem:

Definition 4.1. A platoon is called head-to-tail string stable if any perturbations that cause the first

vehicle in the platoon (i.e., the platoon head) to deviate from its equilibrium state can be attenuated

at the very last vehicle (i.e. the platoon tail).

Head-to-tail string stability views a platoon of any size as a system with input (perturbation
at the platoon head) and output (perturbation at the platoon tail). This input-output relationship

53



between the platoon head and any vehicle following it can be established by truncating the platoon at
the corresponding number of vehicles. This facilitates describing vehicle responses in complicated
longitudinal dynamics, i.e., the vehicle takes outputs of multiple preceding vehicles, and its output
serves as an input for other vehicles. Specifically, a transfer function that connects the input of the
platoon head and the output of the platoon tail is called a head-to-tail transfer function, as described
in (Jin & Orosz, 2014). For a subject vehicle in the platoon, its correlated inputs can be neatly
decoupled and represented in the form of head-to-tail transfer functions, using multiple transfer
functions of any two vehicles between the platoon head and the subject vehicle itself. A detailed
description will be provided later in this subsection. To better understand head-to-tail string stability
and how it works with control dynamics, an example of vehicular communication topology is shown
in Figure 4.2.

Figure 4.2: The topology in the above figure is called M-predecessor following (MPF), where here M=3
denotes the number of predecessors of vehicle n with communication capabilities. Vehicles n to n− 3 are
called a cooperative vehicle group. State information of position and velocity are transmitted via the vehicular
network.

With the state space model defined earlier, the state of vehicle n at time t under flow equilibrium
conditions is denoted as s∗n(t) = [x∗

n(t), v
∗
n(t)]

⊺, where x∗
n(t) = xn(0) + t · v∗n(t) is the expected

position of vehicle n at time t without perturbations. The actual position of vehicle n at time t is
denoted as xn(t), and the vehicle length is l. One can easily obtain g∗ = x∗

n−1(t) − x∗
n(t) − l =

x∗
n−1(0)− x∗

n(0)− l, which is a constant determined by the initial condition of vehicle n. When
perturbations are imposed at time t, the relationship between the perceived position and velocity,
the actual position and velocity, and perturbations can be formulated as follows:

x̃n(t) = x∗
n(t)− xn(t)

ṽn(t) = v∗n(t)− vn(t)
(4.24)

where x̃n(t) and ṽn(t) are the perturbations imposed on location and velocity, respectively. For
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vehicle n which utilizes information received from its cooperative leading vehicles, its longitudinal
dynamics model can be linearized as follows:

˙̃vn(t) = f v
n ṽn(t− τ1) + f g

n

(
αn1wn1(t− τ1)g̃n(t− τ1) +

M∑
j=2

αnjwnj(t− τ2)g̃n−j+1(t− τ2)
)

+ f∆v
n

(
βn1wn1(t− τ1)∆ṽn(t− τ1) +

M∑
j=2

βnjwnj(t− τ2)∆ṽn−j+1(t− τ2)
)

(4.25)
where

f v
n =

∂f

∂ṽn

∣∣∣∣
s=s∗n

, f g
n =

∂f

∂g̃n

∣∣∣∣
s=s∗n

, f∆v
n =

∂f

∂∆ṽn

∣∣∣∣
s=s∗n

(4.26)

The adjacency matrix W is omitted since the communication topology is fixed for M leading
vehicles. We also denote αnj and βnj as αj and βj , respectively, for simplicity. The corresponding
state space model can be formulated as:

˙̃sn(t) =

[
˙̃xn(t)

˙̃vn(t)

]

=

[
0 1

0 0

]
·

[
x̃n(t)

ṽn(t)

]
+

[
0 0

−α1f
g
n f v

n + β1f
∆v
n

]
·

[
x̃n(t− τ1)

ṽn(t− τ1)

]

+
M−1∑
j=1

[
0 0

(αj − αj+1)f
g
n (βj+1 − βj)f

∆v
n

]
·

[
x̃n−j(t− τ2)

ṽn−j(t− τ2)

]

+

[
0 0

αMf g
n −βMf∆v

n

]
·

[
x̃n−M(t− τ2)

ṽn−M(t− τ2)

]

yn(t) =
[
0 1

]
·

[
x̃n(t)

ṽn(t)

]

(4.27)

After Laplace transformation of equation (4.27), the relationship between the output of vehicle n

and its cooperative leading vehicles is shown as follows:

Yn(s) =
[
0 1

]
·
(
sI −

[
0 1

0 0

]
− Aτ1

n · e−sτ1
)−1

·

[( M∑
j=1

Bτ2
n−jYn−j(s)

)
· e−sτ2

[
1
s

1

]]

=
M∑
j=1

Tn−j(s)Yn−j(s)

(4.28)
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where

Aτ1
n =

[
0 0

−α1f
g
n f v

n + β1f
∆v
n

]

Bτ2
n−j =

[
0 0

(αj − αj+1)f
g
n (βj+1 − βj)f

∆v
n

]
, 1 ≤ j ≤M − 1

Bτ2
n−M =

[
0 0

αMf g
n −βMf∆v

n

] (4.29)

Here Tn−j(s) represents the transfer function between vehicle n− j and vehicle n. According to
the definition, the head-to-tail transfer function is in the form of:

Yn(s) = Gn,0(s)Y0(s) (4.30)

However, in this case, the head-to-tail transfer function is difficult to derive directly as the outputs
of the leading vehicles are highly coupled within one vehicle group (vehicle n and its M cooperative
leading vehicles). Inspired by the method proposed in (Zhang & Orosz, 2016), we can derive the
head-to-tail transfer function by iteration. By substituting equation (4.30) into equation (4.28), we
can get:

Gn,0(s) =
M∑
j=1

Tn−j(s)Gn−j,0(s) (4.31)

Rearrange the equation (4.31) to a transition model. It can be shown that:

Gn,0(s)

Gn−1,0(s)

Gn−2,0(s)

Gn−3,0(s)
...

Gn−M,0(s)


=



Tn−1(s) Tn−2(s) Tn−3(s) · · · Tn−M(s) 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


·



Gn−1,0(s)

Gn−2,0(s)

Gn−3,0(s)

Gn−4,0(s)
...

Gn−M−1,0(s)


(4.32)

From (4.32), for any two sequential vehicle groups, one with starting and ending vehicles n−M

and n, respectively, and the other with starting and ending vehicles n−M−1 and n−1, respectively,
the relationship between the two groups of vehicles’ head-to-tail transfer functions can be clearly
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established. Denote

P̂n(s) =



Tn−1(s) Tn−2(s) Tn−3(s) · · · Tn−M(s) 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0



Gn(s) =



Gn,0(s)

Gn−1,0(s)

Gn−2,0(s)

Gn−3,0(s)
...

Gn−M,0(s)



(4.33)

where P̂n(s) is the transfer matrix and Gn(s) is the vector containing head-to-tail transfer functions
of vehicles from n to n −M . According to Theorem 2 in (Zhang & Orosz, 2016), if ∥Gn(s)∥ <
∥Gn−1(s)∥ for any two consecutive vehicle groups with leading vehicle n and n− 1 respectively,
then perturbations can be mitigated iteratively from the platoon head to the platoon tail, reaching
head-to-tail string stability. We adopt this theorem to a platoon model with identical longitudinal
vehicle dynamics. As a result, from equations (4.31)-(4.33), it requires that

sup
∀ω>0
|λk(P̂n(iω))| < 1, k = 1, 2, ...,M (4.34)

where λk(P̂n(iω)) is the k-th eigenvalue of the transfer matrix P̂n(iω) with frequency ω.

4.3.6 Pseudo String Stability Analysis under Cybersecurity Uncertainties

In section 4.3.5, we conduct string stability analysis of the platooning model (4.1) in the attack-free
scenario. In this section, we further extend the stability analysis under cyberattacks while taking
the detection and recovery into account. Specifically, we aim to model the system with the ability
to detect anomalies and fully recover the true measurements once the anomalies are detected. We
assume the recovery can be achieved by utilizing other sources of information, e.g., road side
units (RSUs). The detection sensitivity/recall may not always be 100%, meaning that there exists
uncertainty in the platooning model where it switches between the compromised model and the
normal model. Note that current tools for stability analysis do not consider such probabilistic
models. Therefore, in this chapter, we define the concept of pseudo string stability for the case
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where the model is probabilistic.
We assume all platoon members will be affected by the attack. This can be achieved by a drone

or a wireless device conducting false injection attacks or jamming attacks to affect either onboard
measurements or the input vector. We also assume each platoon member is equipped with the
same detector with detection sensitivity p, which is defined as the number of true positive anomaly
detections, divided by the total number of anomalous instances. Then, the platoon model (4.1)
becomes a probabilistic model,

v̇n(t) = ηtf
(
vn(t− τ1), ḡn(t; τ1, τ2), d̄n(t; τ1, τ2)

)
+ (1− ηt) · f

(
vn(t− τ̃1) + Ã, ḡn(t; τ̃1, τ̃2) + B̃, d̄n(t; τ̃1, τ̃2) + C̃

) (4.35)

where

ḡn(t; τ1, τ2) := α1gn(t− τ1) +
M∑
j=2

αjgn−j+1(t− τ2)

d̄n(t; τ1, τ2) := β1∆vn(t− τ1) +
M∑
j=2

βj∆vn−j+1(t− τ2)

and ηt is a Bernoulli random variable at time t with P(ηt = 1) = p̃ = pN and P(ηt = 0) = 1− p̃

given N vehicles in the platoon. Note that for the ease of stability analysis and for security concerns,
we adopt the most conservative setting where if any platoon member fails to detect the attack, the
whole platooning model becomes compromised with η = 0. The attack parameters are τ̃1, τ̃2, Ã,
B̃, and C̃, where τ̃1, τ̃2 can be affected by jamming attacks and the rest of three parameters can be
affected by false injection attacks. Note that without abuse of notation we denote τ̃1 and τ̃2 as any
time delays different from the single values τ1 and τ2, which can also account for stochastic time
delays.

Since the platoon model in (4.35) is a probabilistic model, we define pseudo string stability
under model uncertainty as follows:

Definition 4.2. Consider a vehicle string with semi-infinite length in equilibrium state. Impose

a transient perturbation on the head vehicle. The vehicle string is pseudo string stable if the

perturbation eventually vanishes when reaching the tail vehicle in the string.

Note that by Definition 4.2 the perturbation could be amplified for some time periods and a
subset of vehicles. However, if the vehicle string is sufficiently long, the perturbation will vanish at
the tail vehicle. Note that this is different from Definition 4.1, which requires perturbation attenuates
at the end of the vehicle string even for a finite-length vehicle string.
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Denote the transfer matrix of the compromised dynamic model as

P̂n(s; Λ) =



Tn−1(s; Λ) Tn−2(s; Λ) . . . Tn−M(s; Λ) 0

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


(4.36)

where Λ represents the set of attack parameters τ̃1, τ̃2, Ã, B̃, and C̃. Denote the transfer matrix of
the probabilistic platooning model (4.35) as P̂n(s; Λ, p̃). Then, given a detection sensitivity p, we
can obtain the mean transfer matrix of the probabilistic platooning model (4.35),

¯̂
Pn(s; Λ) := Ep̃

[
P̂n(s; Λ, p̃)

]
= p̃ · P̂n(s) + (1− p̃) · P̂n(s; Λ)

=



T̄n−1(s; Λ) T̄n−2(s; Λ) . . . T̄n−M(s; Λ) 0

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


(4.37)

where T̄i(s; Λ) = p̃ · Ti(s) + (1− p̃) · Ti(s; Λ).
Given a stochastic model F(p̃, ξ̂), it is pseudo string stable if it satisfies

sup
∀ω>0

∣∣∣λk(
¯̂
Pn(iω; Λ))

∣∣∣ < 1, k = 1, 2, ...,M (4.38)

By formulas (4.37) and (4.38), we can validate whether a detection sensitivity can ensure a
pseudo stable string given a set of attack parameters Λ.

After showing that the head-to-tail string stability is a function of detection sensitivity, as
illustrated later in Section 4.4, it is worthwhile and possible to find the critical detection sensitivity
under a set of specific cyberattack parameters, such that if all detectors can successfully detect and
recover from the attacks with a probability higher than the critical detection sensitivity, then the
pseudo head-to-tail string stability can be maintained.
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4.4 Numerical Experiment

In this section, we perform extensive numerical experiments to investigate the anomaly detection
performance of our proposed methods in Section 4.3. First, we investigate the performance of the
χ2-detector and OCSVM under a mixed set of anomaly types introduced in Section 4.1, namely,
‘short’, ‘noise’, ‘bias’, ‘gradual drift’, and ‘miss’, with random attack magnitude and duration. This
experiment explores the potential of using OCSVM and an augmented state formulation in the
presence of sensor measurement and communication time delays. Next, we conduct sensitivity
analysis on the attack parameters and investigate their impact on platoon string stability. This
experiment demonstrates the stability of the platoon under different combinations of attack scenarios.
Lastly, we analyze the relationship between the detection sensitivity/recall and the pseudo string
stability of a platoon under cyberattacks. We further find the the critical detection sensitivity under
which one can maintain a pseudo stable string.

We adopt a variant of the well-known intelligent driver model (IDM), originally proposed by
Treiber & Kesting (2012), namely the cooperative intelligent driver model (CIDM) from (Wang
et al., 2020a) as our platooning model of choice, and implement our framework to compare the
anomaly detection performance of the χ2-detector and OCSVM in conjunction with EKF and
AEKF. According to Treiber & Kesting (2012), IDM is suitable for describing the characteristics
of automated driving, e.g. ACC. Although IDM has no explicit reaction time, it can also be easily
extended to capture the communication delay, as described in the literature (Wang et al., 2020c,a).
Note that compared with the CIDM model in (Wang et al., 2020a), in this chapter we further extend
the IDM model to the setting of heterogeneous time delay. The CIDM with heterogeneous time
delay can be described as follows,

v̇n(t) = a∗

(
1−

(
vn(t)

v0

)4

−
(
S∗(vn(t), d̄n(t; τ1, τ2))

ḡn(t; τ1, τ2)

))
with

S∗(vn(t), d̄n(t; τ1, τ2)) = s0 + T · vn(t) +
vn(t) · d̄n(t; τ1, τ2)

2
√
a∗b∗

(4.39)

where d̄n(t; τ1, τ2) and ḡn(t; τ1, τ2) are defined in (4.35), a∗, b∗ represent the maximum acceleration
and the maximum comfortable deceleration respectively, v0 represents the desired free-flow velocity,
S∗(·) is the desired clearance gap, s0 denotes the minimum clearance gap in jammed traffic, and T
is the desired time headway to follow the immediate leading vehicle.
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v0 33.33 m/s Desired free-flow velocity
l 5 m Vehicle length
T 1.1 s Safety time headway
s0 2 Minimum clearance gap
a∗ 1 m/s2 Maximum acceleration
b∗ 2 m/s2 Maximum comfortable deceleration

Table 4.2: CIDM parameters

4.4.1 Detection Performance under a Single Vehicle Attack

To measure the effectiveness of our proposed detection methodologies, we conduct sensitivity
analysis over the Kalman filter configuration (i.e., with and without augmented state formulation),
the anomaly detection methodology (i.e., the χ2-detector and OCSVM), and time delays τ1 and τ2.
We calculate the area under the curve (AUC) of each receiver operating characteristic (ROC) curve
which summarizes the trade-off between the true positive rate and false positive rate (1− specificity)
for a predictive model at various threshold settings, by changing the values of γ of the χ2-detector
in (4.21), and parameter of OCSVM in (2.15). Since we are using an imbalanced dataset in which
the number of non-anomalous cases is substantially higher than the number of anomalous cases,
we further calculate the AUC score of the precision-recall curve, which summarizes the trade-off
between the true positive rate and the positive predictive value (PPV, or precision) for a predictive
model at various threshold settings, and is more suitable for imbalanced dataset.

Our experiments are based on the Safety Pilot dataset from the Safety Pilot Model Deployment
(SPMD) program (Bezzina & Sayer, 2014) funded by the US department of Transportation, and
collected in Michigan. The sampling frequency is 10 HZ (i.e. ∆t = 0.1s). We sample the in-vehicle
speed from the SPMD dataset with 4000 samples (400 seconds) for training set and 2000 samples
(200 seconds) for testing set.

The testing scenario contains a vehicle platoon with 10 vehicles and each vehicle except for the
platoon leader adopts the CIDM model in (4.39), and each vehicle except for the first two vehicles
receive two cooperative leading vehicles’ information. For simplicity, we set α1 = β1 = 0.8 and
α2 = β2 = 0.2. The measurement vector zn includes the location and velocity of the n-th vehicle.
The platoon leader’s trajectory is extracted from SPMD dataset, and the trajectory of the rest of the
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platoon members are generated as the baseline based on the following rule:

xn(k + 1) = xn(k) + vn(k) ·∆t

vn(k + 1) = ∆t · f
(
vn(k − ⌊τ̃1/∆t⌋), ḡn(k; ⌊τ̃1/∆t⌋), ⌊τ̃2/∆t⌋)), d̄n(k; ⌊τ̃ /∆t⌋), ⌊τ̃ /∆t⌋)

)
+ vn(k) + ϵk

(4.40)
where ϵk is sampled from a random variable to represent the inaccuracy caused by the flooring

operation, and ϵk is sampled from a uniform distribution within range [−0.1, 0.1]. After obtaining
the baseline data, we add Gaussian white noise with a variance of 0.3 to the baseline data to represent
the measurement noise. Random anomalies are generated with 10% anomaly rate and injected into
the trajectory data of the 5-th vehicle in the platoon using Algorithm 2.1 in Chapter 2. The anomaly
magnitude for each type of anomaly is uniformly distributed within range (0, 1], and the anomaly
durations are also uniformly distributed from 1 to 20 time epochs.

Table 4.3: Detection performance of three models measuring on AUC scores of ROC curve and PR curve.

Time Delay Scen 1: τ1 = τ2 = 0 s Scen 2: E[τ̃1] = E[τ̃2] = 0.5 s Scen 3: E[τ̃1] = E[τ̃2] = 1.5 s
Metric ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

χ2 EKF
0.968 0.922 0.946 0.895 0.866 0.820
± 0.018 ± 0.054 ± 0.018 ± 0.054 ± 0.016 ± 0.049

χ2 ASEKF
0.968 0.920 0.953 0.902 0.938 0.866
± 0.021 ± 0.056 ± 0.024 ± 0.060 ± 0.030 ± 0.068

OCSVM EKF
0.977 0.959 0.974 0.956 0.964 0.933
± 0.011 ± 0.020 ± 0.010 ± 0.019 ± 0.012 ± 0.019

OCSVM ASEKF
0.970 0.933 0.966 0.936 0.959 0.931
± 0.017 ± 0.019 ± 0.014 ± 0.026 ± 0.014 ± 0.024

The experiments are separately implemented into four models for ablation study, where model 1
is composed of a χ2-detector in conjunction with EKF, model 2 is composed of a χ2-detector in
conjunction with ASEKF, model 3 is composed of OCSVM in conjunction with EKF, and model 4 is
composed of OCSVM in conjunction with ASEKF. The CIDM parameters are set according to Table
4.2. Table 4.3 shows the performance of three models under three testing scenarios with different
time delay settings, i.e. 0 seconds, 0.5 seconds, and 1.5 seconds, where τ1 = τ2 = 0 for scenario
1. For scenario 2 and scenario 3, we consider stochastic time delay with E[τ̃1] = E[τ̃2] = 0.5 and
E[τ̃1] = E[τ̃2] = 1.5, respectively, with bounds of stochastic time delays a1 = a2 = −0.1, and
b1 = b2 = 0.1. The measurement functionM(·) of ASEKF in equation (4.10) is defined as:

M(s̃) =

[
1, 0, 1

0, 1, 0

]
· s̃
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and the measurement functionM(·) of EKF is defined as:

M(s) =

[
1, 0

0, 1

]
· s

The experiments indicate that the OCSVM with EKF fault detection method provides a
significant improvement (up to 13.8% in PR AUC and 11.3% in ROC AUC) compared with
the performance of the two χ2-detector models, regardless of the value of time delay. Also, we
observe that using augmented state formulation can significantly improve the performance of χ2-
detector under stochastic time delay (scenario 2 and scenario 3). However, when there is no time
delay (scenario 1), using ASEKF does not lead to a better performance because there is no need to
use the augmented state to compensate for potential bias caused by the time delay factors, and it
introduces more uncertainties to the actual state which decreases the detection performance. Unlike
the χ2-detector, we observe a slight decrease of performance in OCSVM when it is combined with
ASEKF. The reason is that OCSVM itself can learn the potential background bias in state-transition
model and therefore the marginal benefit of using ASEKF is not prominent compared with the case
for the χ2-detector. Moreover, we observe that when using an augmented state formulation, the
value of the augmented state is affected by the existence of anomalies and therefore the innovation
distribution of the testing data is changed compared with that in the training data, which makes it
more difficult for the trained OCSVM classifier to detect anomalies. Additionally, we observe a
systematic deterioration of the detection performance as we increase the time delays, due to the fact
that the time delays decrease the estimation accuracy of both EKF and ASEKF and therefore affect
the detection performance.

4.4.2 Detection Performance under Multiple Vehicle Attacks

Next, we investigate the impact of cyberattacks on multiple vehicles in the platoon, and the effect of
the detection and recovery. We assume each individual platoon member is equipped with a detector
and is able to recover the true state only if it successfully detects an anomaly. All platoon vehicles
are initialized at the steady state, i.e. with equilibrium clearance gap of g∗ and equilibrium velocity
of v∗, which can be obtained by having all vehicles in the platoon travel with the same constant
velocity v∗,

g∗ = v∗(s0 + Tv∗)

(
1−

(
v∗

v0

)4
)−0.5

− g0 (4.41)

where g0 is the initial clearance gap between each pair of adjacent vehicles.
We consider a ten-vehicle platoon in a road-ring configuration (starting from ID 0 to ID 9).

Each vehicle receives information from its immediate three leading vehicles, with α1 = β1 = 0.7,

63



Figure 4.3: Vehicle velocity in platoon. Top: without detection and recovery. Bottom: with detection and
recovery.

α2 = β2 = 0.2, and α3 = β3 = 0.1. Again, we use the same parameters in CIDM as presented
in Table 4.2. The time delay is set to a fixed value of 0.5 seconds for both τ1 and τ2. A mixed set
of anomaly types with anomaly rate of 10% were applied to five vehicles in the platoon, starting
from the second vehicle to the sixth vehicle. The left and right subfigures in Figure 4.3 show the
vehicle velocity with and without anomaly detection and recovery, respectively. We can observe
a significant fluctuation of velocity under the attack scenario without detection and recovery, and
conversely much smoother trajectories after detection and recovery.

Figure 4.4 shows the spacing error between each pair of adjacent vehicles in the platoon in the
span of 200 seconds. The top subfigure shows the spacing error without anomaly detection, and the
bottom subfigure shows the spacing error with anomaly detection and recovery. The spacing error
∆gn(t) for the n-th vehicle at time t is defined as

∆gn(t) = gn(t)− g∗ (4.42)

and becomes zero when all vehicles in the platoon are in the equilibrium state. We can observe that
when the platoon is under attack, there exist a lot of perturbations in terms of spacing error if no
detector is deployed. Such perturbations are greatly reduced when using a detector, followed with a
recovery step.

Figure 4.5 further shows the maximum spacing error with and without anomaly detection and
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Figure 4.4: Spacing error over time under cyberattacks.Top: without anomaly detection and recovery. Bottom:
with anomaly detection and recovery.

recovery. The maximum spacing error is defined as maxt |∆gn(t)|. According to Definition 4.1, the
head-to-tail string stability can also be described in time domain:

max
t
|∆gN−1(t)| < ... < max

t
|∆gn(t)| < ... < max

t
|∆g0(t)| (4.43)

In Figure 4.5 we can observe an unstable vehicle string when there is no detector. However, the
platoon stabilizes with detection and recovery.

4.4.3 Sensitivity Analysis on the Attack Parameters

We further conduct sensitivity analysis to study the effect of attack parameters on the platoon’s
string stability. Specifically, we analyze the effects of attack parameters Ã, B̃, C̃, τ̃1, and τ̃2 on the
platooning model without anomaly detection:

v̇n(t) = f
(
vn(t− τ̃1) + Ã, ḡn(t; τ̃1, τ̃2) + B̃, d̄n(t; τ̃1, τ̃2) + C̃

)
(4.44)

In our simulations so far, the three attack parameters (noise terms) Ã, B̃, C̃ have been fixed. To
further investigate the influence of attack intensity on platoon string stability, we experiment with
multiple sets of attack parameters and keep the rest of parameters fixed, as in Table 4.2. We keep
the same topology, where each vehicle will receive information from three predecessors, as shown
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Figure 4.5: Maximum absolute spacing error under cyberattacks. Top: without anomaly detection. Bottom:
with anomaly detection and recovery.

in Figure 4.2, and α1 = β1 = 0.7, α2 = β2 = 0.2, and α3 = β3 = 0.1. The attack parameters tested
for sensitivity analysis are listed in Table 4.4.

Parameter Lower Bound Upper Bound Step Size
Ã -15 m/s 15 m/s 0.2 m/s
B̃ -15 m 15 m 0.2 m
C̃ -15 m/s 15 m/s 0.2 m/s

Table 4.4: Sensitivity Analysis Parameters

Figure 4.6 shows the heat map of the largest eigenvalue of the transfer matrix given the
combination of attack parameters Ã, B̃, and C̃. The color white indicates that the platoon will remain
head-to-tail string stable for the given parameter combinations, while the colored region indicates
loss of head-to-tail string stability. The color intensity indicates the magnitude of perturbation
amplifications when the platoon is string unstable.

It can be observed that as Ã increases from negative values to positive values, the unstable region
shifts to the left. In an unstable platoon, when fixing the distance-targeted attack parameter B̃, to
achieve the same level of peak amplification of perturbations in the platoon, the other two velocity-
targeted attack parameters, Ã and C̃, should be adjusted in opposite directions, i.e., increasing
(decreasing) Ã, but decreasing (increasing) C̃. One explanation is that by increasing Ã, the ego
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Figure 4.6: The white area in each subplot represents that given the set of attack parameters, the platoon can
remain string stable. The color bar indicates the value of the largest eigenvalue of the transfer matrix.

vehicle falsely perceives its velocity higher than its actual velocity. Meanwhile if we do not change
(or increase) C̃, which affects the relative velocity between the ego vehicle and its cooperative
leaders, this indicates that the cooperative leaders are moving in higher velocities. Therefore within
the current range of attack parameters, an attack that erroneously leads to a perceived higher velocity
of leaders in the platoon compensates the damage done by an attack that erroneously leads to a
perceived higher velocity of the ego vehicle, and could make the platoon more stable for some
ranges of these attack parameters.

The relationship between the distance-targeted attack parameter and the two velocity-targeted
attack parameters is even more complicated. However, we notice that when Ã > −3, there is
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Figure 4.7: The left plot indicates the influence of the manipulated onboard time delay, τ̃1, and the manipulated
communication time delay τ̃2 on platoon string stability when Ã = B̃ = C̃ = 0. The right plot shows
the influence of τ̃1 and τ̃2 when the platoon is string unstable even in the absence of any attacks, and with
Ã = −3 m/s, B̃ = −5 m, C̃ = −11 m/s. As a reference, the initial largest magnitude of eigenvalues of the
transfer matrix when τ̃1 = τ̃2 = 0 is 5.2835. The maximum magnitude of eigenvalues with time delays is
5.3288. The white color represents the string stable region.

a trend that when fixing C̃, to make the platoon achieve the same level of peak amplification of
perturbations requires Ã and B̃ to change in the same direction, i.e., increasing (decreasing) Ã
and B̃ together. One possible explanation is that, under the current range of attack parameters, by
increasing Ã, the ego vehicle perceives its velocity higher than its actual velocity. Increasing B̃,
which affects the perceived clearance gap between the ego vehicle and its cooperative leaders, could
illude the ego vehicle to actually drive faster, thereby making the platoon more unstable.

The influence of two time delay terms, τ̃1 and τ̃2, are also studied after fixing attack parameters
Ã, B̃, and C̃. We use the same communication topology as shown in Figure 4.2 with α1 = β1 = 0.7,
α2 = β2 = 0.2, and α3 = β3 = 0.1. The time delays and attack parameters are set as follows: we
first set τ̃1 = 0 and τ̃2 = 0, where no time delays exist in the system. For the first set of parameters,
which create stable conditions, we set Ã = B̃ = C̃ = 0 such that the platoon becomes string stable
without any time delay. In the second set of attack parameters, which provide unstable conditions,
we set Ã = −3 m/s, B̃ = −5 m, and C̃ = −11 m/s to make the platoon string unstable even without
any time delays. All combinations of (τ̃1, τ̃2) are then tested in the range of [0, 5] seconds with a
step size of 0.1 seconds. The results are shown in Figure 4.7.

From Figure 4.7, we observe that when the dynamics model is attack-free, onboard time delay
τ̃1 has more power in affecting platoon stability compared to the communication time delay τ̃2, as
we can always find an unstable region by fixing τ2 and adjusting τ̃1, but not vice versa. Furthermore,
it appears that there is a threshold value τ̃ ∗1 (τ̃ ∗1 = 2 seconds in this case) such that the platoon will
remain string stable as long as τ̃1 < τ̃ ∗1 , when τ̃2 is smaller than 5 seconds. An extreme case is
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when τ̃2 =∞, where the platoon is under a pure car-following model. In this case, τ̃1 represents
the delay from the ego vehicle’s onboard measurements, which in addition to the status of the ego
vehicle provides information about its immediate leading vehicle. On the right subplot, we observe
a more complex pattern. When fixing τ̃2, the peak amplification of perturbations can be altered
greatly by changing τ̃1. However, except for the stable region in the upper part of figure, τ̃2 seems
to have a more subtle impact on the peak amplification of perturbations. One interesting finding
is that if the platoon is originally string unstable, increasing τ̃1 from 0 to 2.5 seconds can achieve
a lower peak amplification of perturbations. This suggests that, when the platoon is unstable to
begin with, the peak amplification of perturbations can be reduced by a slight increase of latency
in onboard measurement. However, there may exist different trends for a broader range of attack
parameters, because of the complex nature of the mutual impact of different attack parameters
on the characteristics of stability region, which is characterized by the eigenvalues of the transfer
matrix. Moreover, introducing larger time delays can eventually cause a crash, which is not reflected
in stability analysis.

4.4.4 Pseudo String Stability Analysis

In this section, we conduct pseudo string stability analysis on model (4.35). One major contribution
of this work is to bridge the gap between anomaly detection and platoon string stability. Since
in practice the detection sensitivity/recall is not always 100%, as discussed in Section 4.3.6, the
platoon model becomes a probabilistic model under detection uncertainties. Therefore, it is critical
to find a minimum required detection sensitivity/recall such that any detector with a higher detection
sensitivity can make the platoon maintain pseudo string stability. Here we present several case
studies to find the desired detection rate that determines the pseudo string stability of the platoon.

First, in order to investigate the existence and characteristics of such critical detection sensitivity,
we conduct sensitivity analysis on the pseudo string stability of a platoon with 10 vehicles under
different detection sensitivities. We use the same communication topology as shown in Figure
4.2 with α1 = β1 = 0.7, α2 = β2 = 0.2, and α3 = β3 = 0.1. According to inequality (4.38), to
maintain pseudo string stability, one needs to make sure that the largest magnitude of eigenvalues of
the transfer matrix is always smaller or equal to 1 across all frequency values. In this experiment,
the parameters selected for CIDM remain the same as shown in Table 4.2. Time delays take values
of τ̃1 = 0 and τ̃2 = 0.5. The attack parameters use Ã = −5 m/s, B̃ = 15 m, and C̃ = −6 m/s.
From Figure 4.8, we can see that given the existing topology of three predecessors in a ten-vehicle
platoon, as the anomaly detection sensitivity increases from 0 to 1, the platoon will incrementally
reach pseudo string stability with the critical detection sensitivity p∗ = 10

√
p̃∗ ≈ 0.985.

In order to further investigate how attack parameters affect the critical detection sensitivity
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Figure 4.8: The blue curve represents the largest magnitude of all eigenvalues of the mean transfer matrix
under detection uncertainties, i.e., p̃. The red dashed line indicates the critical point p̃∗ = (p∗)10 = 0.86,
when the largest magnitude becomes exactly 1, denoting a pseudo string stable platoon of 10 vehicles.

(a) τ̃1 = 0 s, τ̃2 = 0 s (b) τ̃1 = 0 s, τ̃2 = 1 s (c) τ̃1 = 0 s, τ̃2 = 2 s

(d) τ̃1 = 1 s, τ̃2 = 0 s (e) τ̃1 = 1 s, τ̃2 = 1 s (f) τ̃1 = 1 s, τ̃2 = 2 s

(g) τ̃1 = 2 s, τ̃2 = 0 s (h) τ̃1 = 2 s, τ̃2 = 1 s (i) τ̃1 = 2 s, τ̃2 = 2 s

Figure 4.9: Critical detection sensitivity p̃∗ under different attack parameters Ã ∈ [−15, 15] m/s and
B̃ ∈ [−15, 15] m by fixing C̃ = −1 m/s. Each subfigure contains a hyperplane which represents the critical
detection sensitivity p̃∗ under different time delay factors τ̃1 and τ̃2 in range {0, 1, 2} seconds.
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Figure 4.10: Critical detection sensitivity p̃∗ under different attack parameters τ̃1 and τ̃2 by fixing the values
of Ã, B̃, and C̃ to be 0.

value, we conduct sensitivity analysis by varying the different attack parameters, including Ã, B̃,
τ̃1, and τ̃2, and calculating the corresponding critical p̃∗. Specifically, we consider a platoon with
10 vehicles and with 3 predecessors, where α1 = β1 = 0.7, α2 = β2 = 0.2, and α3 = β3 = 0.1,
following the CIDM parameters in Table 4.2. Figure 4.9 shows the critical detection sensitivity p̃∗

that maintains pseudo string stability of the platoon. In each subfigure, the hyperplane represents p̃∗

in z-axis for a range of Ã ∈ [−15, 15] in x-axis and B̃ ∈ [−15, 15] in y-axis by fixing C̃ = −1. We
generate 9 subfigures by considering all combinations of τ̃1 ∈ {0, 1, 2} seconds and τ̃2 ∈ {0, 1, 2}
seconds. We first observe that in the given range of parameters, both attack parameters Ã and B̃

determine the value of p̃∗, whereas the effect of destabilization is more prominent for the attack
parameter Ã when τ̃1 = 0. From subfigures 4.9(d)-4.9(i), when Ã > −3 m/s, we observe the
same trend as in Figure 4.6, i.e., when Ã > −3 m/s, in order to maintain the same level of peak
amplification of perturbations, one needs to increase (decrease) Ã and B̃ together. Each column of
the subfigures in Figure 4.9 indicates that as we increase the value of τ̃1, we obtain a larger pseudo
unstable region where we have non-zero critical detection sensitivity p̃∗. The destabilization effect
of τ̃2 is less prominent than τ̃1, as we only observe a minimal change of hyperplane distribution in
each row of Figure 4.9, which works in concert with our observation in Figure 4.7.

In Figure 4.10, we investigate the standalone impact of manipulated delay factors τ̃1 and τ̃2 on
the critical detection sensitivity. Figure 4.10 represents the critical detection sensitivity p̃∗ (z-axis)
that maintains the pseudo string stability under different time delay factors τ̃1 ∈ [0, 5] seconds
(x-axis) and τ̃2 ∈ [0, 5] seconds (y-axis), where we fix the values of Ã, B̃, and C̃ to 0. Note that the
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projection of the hyperplane on the x-y plane is equivalent to the left figure in Figure 4.7 when τ̃1

and τ̃2 are within [0, 3] seconds, which indicates the pseudo unstable region of the platoon when we
do not use any anomaly detector.

4.5 Conclusion

CAVs can receive and utilize information from multiple sources to form vehicular platoons. However,
literature has demonstrated that a CAV is more vulnerable to cyberattacks, as it has more attack
surfaces. Existing literature either only investigates the impact of cyberattacks on platoons or
defense methodologies, such as detection and protocol design. Instead, in this chapter, we develop a
comprehensive framework to model the impact of cyberattacks on platoons and to detect sensor
measurement anomalies caused by either malicious attacks or sensor faults. Specifically, we propose
a general platoon dynamics model under heterogeneous time delays, and design a state-space model
for filtering and anomaly detection by utilizing cooperative vehicles’ information. We further extend
this model to consider stochastic time delays and show its impact on the state-space model. In order
to investigate the impact of cyberattacks on platoons, we first conduct string stability analysis of the
proposed platoon dynamics model. To the best of our knowledge, this is the first head-to-tail string
stability analysis under heterogeneous time delay. Next, we propose a new definition for string
stability under cyberattacks and model uncertainties, which we call pseudo string stability.

For vehicle state estimation, we show that under stochastic time delay, there may exist potential
bias in the process noise of our proposed state-space model. To compensate for this, we propose
an augmented state extended Kalman filter (ASEKF) for vehicle state estimation. For anomaly
detection in the vehicle sensor measurements, we adopt two anomaly detectors, namely the χ2-
detector and the one class support vector machine (OCSVM), in conjunction with ASEKF. We
conduct extensive experiments to demonstrate the effectiveness of our proposed detection framework.
Specifically, we conduct an ablation study showing that an extended Kalman filter with an OCSVM
detector achieves the best performance, whereas an augmented state formulation can significantly
boost the performance of the χ2-detector under time delay. Our experiments also show a negative
impact of the time delay on the overall anomaly detection performance.

To study the impact of cyberattacks on the platoon’s string stability, we conduct sensitivity
analysis on the attack parameters. We observe certain relationships between the distance- and
velocity-targeted attack parameters in affecting the peak amplification of perturbations in the
platoon. In our experiments, we further investigate the pseudo string stability of platoons under
different detection sensitivities and obtain the critical detection sensitivity to ensure a pseudo stable
vehicle string.

The chapter is subject to certain limitations. In our experiments, similar to previous studies in
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the literature, due to the paucity of real-world anomalous CAV data, the anomalous instances in
the sensor data are simulated with a mix of five types of anomalies. This implicitly imposes an
assumption on the characteristics of the anomalous data. To partially address this limitation, we
adopt a OCSVM model to learn the detection threshold by merely learning from normal data. It may
be beneficial to test for novel anomaly types using real-world anomalous data to more accurately
measure the effectiveness of our proposed detection methods.
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CHAPTER 5

Adversarial Online Learning with Variable Plays in the
Pursuit-Evasion Game: Theoretical Foundations and

Application in Connected and Automated Vehicle Cybersecurity

5.1 Introduction

Currently, the world is experiencing an evolution from the traditional transportation system to
the next generation of intelligent transportation systems (ITS). ITS aims to satisfy the ever-
increasing need for mobility in major cities, which has caused growing traffic congestion, air
pollution, poor user experience and crashes. Developing a sustainable intelligent transportation
system requires better usage of the existing infrastructures and their seamless integration with
information and communication technologies (ICT). Enabled by the recent findings in the areas
of telecommunications, electronics, and computing capabilities in recent decades, the subsystems
(infrastructures and vehicles) in ITS are expected to interoperate and communicate with each other,
in order to provide a better and safer traveling experience (Ibanez et al., 2015).

The interconnection between the infrastructures and the vehicles relies on various types of
sensors to provide state information and situational awareness. However, this has also increased
the vulnerability of these advanced systems to cyber attacks. For instance, recently there have
been demonstrated cyber attacks on vehicle sensors in (Cao et al., 2019a,b), where the authors
used optimization-based approaches to fool the light detection and ranging (LiDAR) sensors on the
vehicle. At the system level, the infrastructures and the vehicles can be viewed as individual nodes
in a large interconnected network, where a single malicious attack on a subset of sensors of one
node can easily propagate through this network, affecting other network components (e.g., other
vehicles, traffic control devices, etc.). For instance, Feng et al. (2018) demonstrated that by sending
falsified data to actuated and adaptive signal control systems, a malicious hacker could increase the
total system delay in a real-world corridor. Therefore, there is an increasing need for cyber security
solutions, especially for sensor security solutions, to enhance the safety and reliability of the entire
system.
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Cyber security is an extremely broad topic. However, previous work on cyber security in the
realm of ITS mainly focuses on either attack or the defense strategies. For instance, there exists a
large body of research illustrating the potential risks of connected and automated vehicle (CAV)
technologies that result in anomalous/false information (Petit & Shladover, 2014; Checkoway et al.,
2011; Weimerskirch & Gaynier, 2015; Yan et al., 2016). In the case of CAV sensor security, several
critical sensors are illustrated in (Parkinson et al., 2017), including differential global positioning
systems (GPS), inertial measurement units, engine control sensors, tyre-pressure monitoring systems
(TPMS), LiDAR, and camera. Meanwhile, CAVs require more engine control units (ECUs) and
many features of CAVs require complex interactions between multiple ECUs, which may potentially
expose more vulnerabilities compared to non-CAVs. There also exist several studies assessing the
potential threats on the transportation infrastructure (Feng et al., 2018; Fok, 2013; Kelarestaghi
et al., 2018). For example, field devices such as traffic signals and roadside units are susceptible
to tampering. The aforementioned literature illustrates the potential threats of sensor attacks to
connected transportation systems.

Besides threat detection, prevention is normally recognized as one of the best defense strategies
against malicious hackers or attackers. In order to deploy better prevention mechanisms, behaviors
of both the attacker and the defender have to be considered so that the attack profile can be predicted.
There is a gap in the literature in considering both the attacker and the defender and the adaptive
interactions between them when devising defense strategies, which this chapter aims to bridge.

Moreover, as more sensors are mounted aboard CAVs or installed on the transportation
infrastructure, it becomes more difficult to monitor the sensors continuously, mainly due to limited
resources. Although there is a large body of literature addressing sensor security in ITS (Van Wyk
et al., 2019; Marchetti et al., 2016; Müter & Asaj, 2011) including the first three chapters of the
thesis, most of them mainly focus on sensor intrusion/anomaly detection without attack profile
analysis, which considers which sensor is more vulnerable and should be protected. In this chapter,
we address this by modeling attacker and defender behaviors in a game theoretical framework.
Specifically, instead of considering intrusion/anomaly detection for all sensors in the system, we
model attack and defense behaviors in order to predict which subset of sensors are more likely to be
compromised. To be more practical, we consider a dynamic resource constraint for the defender.
We model this problem as a sequential evasion-and-pursuit game between two players. Consider
the intrusion monitoring system of a sensor network as the defender. At each time, the defender
selects a subset of sensors to scan, while the number of selected sensors changes based on the
environment and scanning history, among other factors. Meanwhile, a hacker, considered as the
attacker, attempts to select a sensor to compromise without being scanned by the defender. We
assume that both the attacker and the defender are able to learn their opponent’s behavior adaptively
and with only partial information over time, and investigate the the resulting decision problem.
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The main contributions of this work are as follows: First, in order to predict the attack profile,
we model the behaviors of the attacker and the defender as the adversarial (or non-stochastic) multi-
armed bandit (MAB) problem and the multi-armed bandit problem with variable plays (MAB-VP),
where the two players are playing a constant-sum game against each other. To the best of our
knowledge, this is the first study of MAB-VP in the non-stochastic setting. Second, we derive
conditions under which a Nash equilibrium of the strategic game exists. For the defender, we provide
an exponential-weighted algorithm, which is shown to have sublinear pseudo-regret. Finally, we
consider a more realistic setting where the rewards are heterogeneous among different sensors, and
derive lower and upper bounds on the attacker’s average reward.

5.2 Literature Review

In this chapter, we explore online learning algorithms in the class of adversarial or non-stochastic
multi-armed bandit (MAB) problems. The adversarial MAB problem was first addressed by Auer
et al. (1995), where they also proposed the well-known exponential-weight algorithm for exploration
and exploitation (Exp3). Exp3 runs the Hedge algorithm, which was originally proposed by Freund
& Schapire (1997) as a subroutine. Since then, there have been several extensions to this class
including the online shortest path problem (György et al., 2007), routing games (Nisan et al., 2007),
bandit online linear optimization (Abernethy et al., 2008), and combinatorial bandits (Cesa-Bianchi
& Lugosi, 2012).

The multi-play multi-armed bandit (MPMAB) problem is another research direction for MAB.
In this extension, a fixed number of resources (i.e., arms) are allocated at each time step. The
MPMAB has attracted a lot of interest and several studies have been conducted along this direction
(Anantharam et al., 1987; Agrawal et al., 1990; Komiyama et al., 2015; Xia et al., 2016). However,
most of these studies only focus on a stochastic setting. There is much less concentration on the
adversarial MPMAB problem: Cesa-Bianchi & Lugosi (2012) considered combinatorial bandits
in the adversarial setting, where they proposed the ComBand algorithm. This algorithm has a
sublinear regret in O

(
M

3
2N
√
TN lnN

)
, with time and space complexities of O (MN3) and

O (K3), respectively, where M is the number of resources (or arms selected) at each time, T is
the number of iterations, and N is the number of possible actions. Following this work, Uchiya
et al. (2010) proposed an extension of Exp3, Exp3.M, which runs in O (N(logM + 1)) time and
O(N) space, and suffers at most O

(√
MTN log (N/M)

)
regret. However, the aforementioned

algorithms only consider a fixed number of arms to be played at each time.
Another branch of literature closely related to this chapter is on the topic of discrete search. For

instance, Song & Teneketzis (2004) considered the discrete search problem with multiple sensors,
and derived the optimal search strategies that maximize the total probability of successful search in
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a finite horizon. They further discussed the relationship to MPMAB, where it can be viewed as a
finite-horizon deterministic MPMAB with a discount factor equal to one. However, they did not
consider the adversarial setting and variable plays.

Only a limited number of studies have considered variable plays. Fouché et al. (2019) proposed
a scaling algorithm combined with a MAB algorithm , which they call the S-MAB algorithm. In this
algorithm, the number of arms played at each time changes in order to satisfy an efficiency constraint.
However, although the authors considered a dynamic environment, the S-MAB algorithm uses a
stochastic setting, where they assume an unknown distribution of reward for each arm. Another
work addressing the variable plays problem was done by Lesage-Landry & Taylor (2017), where
they extended the stochastic MAB to stochastic plays setting, i.e. the number of arms to play evolves
as a stationary process. Both these studies only considered a stochastic setting, and did not conduct
any game strategy analysis.

Although there is a wealth of research on using game theory in the transportation literature, very
few studies applied game theory in ITS cybersecurity. Sedjelmaci et al. (2019) conducted a survey
on recent studies utilizing game theory to protect ITS from attacks, which is to the best of our
knowledge the only survey paper on this topic. However, without considering the adaptive behavior
of opponents, the current literature mostly models the cybersecurity problem as a non-repeated
game, such as the Stackelberg security games (SSG) (Kiekintveld et al., 2009; Sinha et al., 2015),
zero-sum games (Alpcan & Buchegger, 2010; Mejri et al., 2016), or Bayesian games (Bahamou
et al., 2016; Sedjelmaci et al., 2016). The solutions from these types of models are typically in the
form of equilibria with an implied assumption that the players have knowledge of their opponent’s
actions/beliefs. Instead, we formulate this cybersecurity problem as a sequential pursuit-evasion
game, which is also in the realm of algorithmic learning theory. There have been several studies of
the pursuit-evasion problem (Vidal et al., 2002; Navda et al., 2007; Wang & Liu, 2015). However,
they either lack robustness against adaptive changes in the adversarial behavior, or do not consider
multiple plays, variable plays, dynamic resource allocation, or heterogeneous rewards.

Since the behavior of the adversarial opponent usually cannot be described in a stochastic
way, in this chapter we study the MAB-VP problem in a non-stochastic setting, where we propose
the Exp3.M with variable plays (Exp3.M-VP) algorithm. Next, we consider a game setting for
two players, and show that a Nash equilibrium of the strategic game exists. Finally, we consider
heterogeneous rewards for both players and derive lower and upper bounds for the attacker’s average
reward. Numerical analyses are conducted in order to further demonstrate our results.
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Table 5.1: Table of Notation

αk(t)/βk(t) ≜ marginal probability that the attacker compromises/the
defender scans location k at time t

xk(t)/yk(t) ≜ indicator variable of whether the defender/attacker selects
the location k at time t

It/Jt ≜ index of the locations where the attacker compromises/the
defender scans at time t

Mt ≜ number of locations scanned by the defender at time t

a/b ≜ lower/upper bound of Mt

r(t)/s(t) ≜ single step reward of the attacker/defender
ω(t)/θ(t) ≜ private randomization device of the attacker/defender

πt/γt ≜ control policy of the attacker/defender
T ≜ finite time horizon
N ≜ total number of locations
N ≜ index set of N locations
C ≜ index set of arbitrary locations

5.3 System Model and Problem Formulation

5.3.1 System Model

Consider the repeated pursuit-evasion game between an attacker and a defender in discrete time. At
each time step t, the attacker selects one of the N locations, indexed by the set N = {1, 2, ..., N},
to hide in (e.g., compromise a sensor), while the defender searches Mt locations simultaneously,
where 1 ≤ a ≤Mt ≤ b < N . The behaviors of the attacker and the defender are described by their
respective set of marginal probabilities α(t) = (αk(t))k∈N and β(t) = (βk(t))k∈N , where αk(t)

and βk(t) are the respective probabilities that the k-th location is chosen by the attacker and the
defender at time t. Note that α(t) and β(t) represent the adversarial behavior with respect to one’s
opponent at time t, where they can describe randomized strategies of the players, or a probabilistic
belief held by one side about the likelihood of an action by the other side.

Define two sets of binary variables xk(t) and yk(t) such that xk(t) = 1 if the defender does
not search location k at time t, and xk(t) = 0 otherwise. Similarly, yk(t) = 1 if the attacker
compromises the location k at time t, and yk(t) = 0 otherwise. When the attacker (defender) does
not know the type of algorithm/strategy the opponent uses, it may regard the xk(t) (yk(t)) as a
predetermined but unknown number. When the attacker (defender) does have this information, it may
regard the xk(t) (yk(t)) as a random variable, where P (xk(t) = 0) = βk(t) (resp. P (yk(t) = 1) =
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αk(t)). The game is played in a sequence of trials t = 1, 2, ..., T . In this work we consider the case
that neither the attacker nor the defender knows the strategy adopted by the other player. As will be
discussed later, they have to choose the location based on the their historical rewards.

5.3.2 Problem Formulation: Partial Information Game

In this chapter we consider the scenario where both players have limited information on the adaptive
behavior of their opponent. Define π = (πt, t = 1, 2, ...) as the control policy of the attacker, and let
Π denote the policy space. Denote the location selection (action) sequence as I = (It, t = 1, 2, ...)

under policy π and |It| = 1. At each time and under policy πt, the attacker chooses one location
It ∈ N to attack, i.e.,

It = πt

(
x
[t−1]
I , I [t−1], ω(t)

)
(5.1)

where x[t−1]
I := (xI1(1), ..., xIt−1(t− 1)), and I [t−1] is similarly defined. (ω(t), t = 1, 2, ...) denotes

the randomized strategy of the attacker. Let xk(t) be the state of location k for the attacker at time t.
Then the attacker scores the corresponding reward rI(t) = xIt(t). The attacker observes only the
reward rI(t) for the chosen action It.

The attacker receives an expected reward E[rI(t)] = 1 − βIt(t) at time t, which is the mean
number of successful attacks at the chosen location. Note that in this section we consider a
homogeneous reward across all locations; however, heterogeneous location-dependent rewards are
considered in Section 5.7. In this chapter, we assume a 100% success rate for both attacks and
detection attempts. Then, within the time window {t, t = 1, 2, ..., T}, the attacker considers the
following maximization problem,

maximize
π∈Π,It∈N

E

{
T∑
t=1

xIt(t)

}
(5.2)

where the expectation is with respect to the randomness of the system state and the mixed-strategy
of the attacker.

We assume that the defender can scan Mt locations at time t. Define γ = (γt, t = 1, 2, ...) as
the control policy of the defender, and let Γ denote the defender’s policy space. Denote the location
selection (action) sequence as J = (Jt, t = 1, 2, ...) under policy γ. At each time and under policy
γt, the defender scans Mt locations, denoted as set Jt ⊂ N and |Jt| = Mt, based on their historical
search and rewards, i.e.,

Jt = γt

(
y
[t−1]
J , J [t−1],Mt, θ(t)

)
(5.3)

where y
[t−1]
J := (yJ1(1), ..., yJt−1(t − 1)) with J [t−1] similarly defined, and (θ(t), t = 1, 2, ...)

denotes the randomized strategy of the defender. Let yk(t) be the state of location k for the

79



defender at time t. The defender also observes only the rewards
∑

j∈Jt yj(t) of the selected action
Jt. Denote the total rewards at time t of the defender given the location selection sequence J as
sJ(t) =

∑
j∈Jt yj(t). The defender therefore receives the expected reward E[sJ(t)] =

∑
j∈Jt αj(t)

at time t. This expected reward represents the mean number of detected attacks among Mt number
of scanned locations.

We assume that the number of arms Mt the defender plays at each time is determined by a
scaling function, i.e. f : RN+1 −→ {a, a+ 1, ..., b}, of the d-moving average of the rewards of each
arm, where a and b are integers, and 1 ≤ a ≤ b < N . We also assume that Mt is a function of the
environment constraint Lt, since in reality checking a location (e.g., scanning a specific sensor/unit
in a CAV) may consume resources. Then, given the time horizon T , the defender is trying to solve
the following constrained optimization problem:

maximize
γ∈Γ,Jt⊂N

E

{
T∑
t=1

∑
j∈Jt

yj(t)

}
(5.4a)

s.t. Mt = f(ŷd(t), Lt) (5.4b)

|Jt| = Mt (5.4c)

where ŷd(t) := (ŷd1(t), ŷ
d
2(t), ..., ŷ

d
N(t)), and ŷdi is the d-moving average of the rewards of each arm

i. Using a moving average of reward can allow us to capture the historical reward while at the mean
time capturing the dynamic change of the reward for each location, allowing the scaling function to
adjust the number of arms to play each time. The expectation is with respect to the randomness of
the system state and the mixed strategy of the defender. Note that there is no requirement for the
scaling function f , other than it needs to be bounded by integers a and b. Furthermore, Lt can be an
arbitrary integer between a and b, thereby capturing any set of environmental conditions.

When the defender knows the type of strategy the attacker uses, it may regard yJj (t) as stochastic,
i.e. assuming the attacker chooses location j with probability P (yJj = 1) = αj(t). Note that this is
different from the stochastic MAB setting where a fixed (time-invariant) distribution of rewards
for each arm is assumed. However, here we do not assume neither the defender nor the attacker
have information about their opponent’s strategy. Hence, the difficulty is that the defender can
only estimate αj(t) by imposing an arbitrary belief on the adversarial behavior based on previous
observations and rewards. Furthermore, here, we do not make any assumptions about the distribution
of αj(t).
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Algorithm 5.1: Exp3.M-VP
1: Parameter: η ∈ (0, 1]
2: Initialization: wi(1) = 1 for i = 1, 2, ..., N
3: for t = 1, 2, ..., T do
4: Receive the number of arms to play at each round Mt.
5: if maxj∈N wj(t) ≥

(
1
Mt
− η

N

)∑N
i=1wi(t)/(1− η) then

6: Decide κt such that

κt∑
wi(t)≥κt

κt +
∑

wi(t)<κt
wi(t)

=

(
1

Mt
− η

N

)
/(1− η).

Set S0(t) = {i : wi(t) ≥ κt}.
Set w′

i(t) = κt, ∀i ∈ S0(t).
7: else
8: Set S0(t) = ∅.
9: end if

10: Set w′
i(t) = wi(t), ∀i ∈ Sc

0(t).

11: Set α̂i(t) = Mt

(
(1− η)

w′
i(t)∑N

j=1 w
′
J (t)

+ η
N

)
.

12: Set Jt = DepRound(Mt, (α̂1, α̂2, ..., α̂N )).
13: Observe rewards yi(t) ∈ [0, 1] for i ∈ Jt.
14: for i = 1, 2, ..., N do
15:

ŷi(t) =

{
yi(t)/α̂i(t) if i ∈ Jt,

0 otherwise.

wi(t+ 1) =

{
wi(t) exp(Mt η ŷi(t)/N) if i ∈ Sc

0(t),

wi(t) otherwise.

16: end for
17: end for
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5.4 Algorithms for the Attacker and the Defender

We assume the attacker adopts Exp3 proposed by Auer et al. (Auer et al., 1995). (However, as we are
going to show later in Section 5.6, the equilibrium of the two-player game does not depend on any
proprieties of the algorithm other than a no-regret guarantee.) The Exp3 algorithm uses an efficient
and randomized policy to select only one arm at each time t. The adversarial single play bandit
problem is closely related to the problem of learning to play an unknown repeated matrix game. In
this setting, a player without prior knowledge of the game matrix is to play the game repeatedly
against an adversary with complete knowledge of the game and unbounded computational power.
The basic idea of Exp3 is that at each time the player uses a randomized policy such that the
adversarial player cannot know the exact choice of the player before she/he plays. For the details of
Exp3, refer to the Appendix A.1.

Unlike the attacker who selects a single location to attack, we assume the defender can search
multiple number of locations, which may vary at each time. Both sides seek to maximize their
respective total rewards. At the beginning of a time step, each side needs to decide which location(s)
to target, and cannot change their selection until the next time step. We develop a variable-play
extension of the Exp3.M algorithm for the defender, which we call Exp3.M-VP, as detailed in
Algorithm 5.1. In the Exp3.M-VP algorithm, let S denote the set of selected locations, and let
Sc define its complement set. Under the non-stochastic assumption and at each time step, the
Exp3.M-VP algorithm consists of the following two procedures:

1. Receive Mt, which is determined by the scaling function f and could be based on the
environment constraint Lt as well as the historical rewards ŷd(t) at time t, among other
factors. Note that function f can take any form, and defining its exact form is outside the
scope of this chapter. Here, we assume Mt is provided.

2. Apply an adversarial MPMAB algorithm which selects Mt arms (locations) to play.
For the second procedure, we use the Exp3.M algorithm as a subroutine of the Exp3.M-VP

algorithm. The Exp3.M is proposed by Uchiya et al. (Uchiya et al., 2010) and is an extension of
the algorithm Exp3 for the adversarial MPMAB setting. In contrast to the Exp3 algorithm which
selects one arm at each time, Exp3.M randomly selects a fixed number of M arms at each time.
Note that both Exp3 and Exp3.M suffer from sublinear (weak) regret, or no-regret. In order to make
sure that the probability of selecting location i by DepRound at step 12, i.e. α̂i(t), does not exceed
1, the Exp3.M-VP algorithm checks whether all wj(t)’s are less than

(
1
Mt
− η

N

)∑N
i=1

wi(t)
(1−η)

at step
5. If that is the case, α̂i(t) calculated at step 11 will be less than 1 for all i = 1, 2, ..., N without
any weight modification, and the set S0(t) is set to ∅ at step 8. Otherwise, all the actions i with
wi(t) ≥ κt are classified into S0(t) and set to κt at step 6. Doing this, we have α̂i(t) = 1 for all
i ∈ S0(t). The subroutine DepRound (Gandhi et al., 2006) at step 12 draws Mt out of N items
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with the specified marginal distribution (α̂1, α̂2, ..., α̂N), and is included in Appendix A.2.

5.5 Adaptive Learning of the Defender

In this section, we address the adaptive learning of the defender. Based on Algorithm 5.1 for
the defender, the problem (5.4) can be recast by removing the constraint set, since will divide
the problem to a scaling procedure and the MAB-VP. Formally, let y(t) := (yk(t), ∀k ∈ N ) for
t = 1, ..., T over a finite horizon T . For any search sequence of the defender J = (Jt, t = 1, 2, ...)

and a fixed sequence of attacks by the attacker (y(1),y(2), ...), the total reward of the defender at
T , denoted by GJ(T ), is given by

GJ(T ) =
T∑
t=1

∑
j∈Jt

yj(t) (5.5)

Here, we obtain the maximum reward by consistently searching the subset AMt , which is the
most attacker-active location set at each time step t with cardinality Mt:

Gmax(T ) = max
AMt

T∑
t=1

∑
k∈AMt

yk(t) (5.6)

Let us define A = ∪MtAMt , where A ⊂ N . Note that if Mt ∈ {a, a+ 1, ..., b}, the location index
subset AMt is defined such that Aa ⊂ Aa+1 ⊂ ... ⊂ Ab = A.

The regret is then defined as

R(T ) = Gmax(T )−GJ(T ) (5.7)

When a = b, i.e. Mt is time-invariant, the above regret reduces to the standard regret of MPMAB
problem.

Since we care more about the competition against the optimal action in expectation, we define
the pseudo-regret for our MAB-VP problem following the definition of pseudo-regret in (Bubeck
et al., 2012) as:

R̄(T ) = Gmax(T )− E[GJ(T )] (5.8)

where the expectation is with respect to the randomness of the system state and the mixed-strategy
of the defender.

We now give the first main theorem of this chapter, which bounds the expected weak regret of
algorithm Exp3.M-VP.
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Theorem 5.1. For any N > 0 and for any η ∈ (0, 1], if Mt is lower bounded and upper bounded by

two positive integers a and b respectively, then

R̄Exp3.M-VP(T ) = Gmax(T ) − E[GJ
Exp3.M-VP(T )] ≤

(
1 +

(e− 2)b

a

)
ηGmax(T ) +

N

η
ln

N

b
(5.9)

holds for any assignment of rewards and for any T > 0.

We present the proof of Theorem 5.1 as follows.

Proof. Let Wt :=
∑N

k=1wk(t) and W ′
t :=

∑N
k=1w

′
k(t). Then, at each time step t,

Wt+1

Wt

=
∑

i∈Sc
0(t)

wi(t+ 1)

Wt

+
∑

i∈S0(t)

wi(t+ 1)

Wt

(5.10a)

=
∑

i∈Sc
0(t)

wi(t)

Wt

exp

(
ηMt

N
ŷi(t)

)
+
∑

i∈S0(t)

wi(t)

Wt

(5.10b)

≤
∑

i∈Sc
0(t)

wi(t)

Wt

[
1 +

ηMt

N
ŷi(t) + (e− 2)

(
ηMt

N
ŷi(t)

)2
]
+
∑

i∈S0(t)

wi(t)

Wt

(5.10c)

=1 +
W ′

t

Wt

∑
i∈Sc

0(t)

wi(t)

W ′
t

[
ηMt

N
ŷi(t) + (e− 2)

(
ηMt

N
ŷi(t)

)2
]

(5.10d)

=1 +
W ′

t

Wt

∑
i∈Sc

0(t)

α̂i(t)
Mt
− η

N

1− η

[
ηMt

N
ŷi(t) + (e− 2)

(
ηMt

N
ŷi(t)

)2
]

(5.10e)

≤1 + η

(1− η)N

∑
i∈Sc

0(t)

α̂i(t)ŷi(t) +
(e− 2)Mtη

2

(1− η)N2

∑
i∈Sc

0(t)

α̂i(t)ŷ
2
i (t) (5.10f)

≤1 + η

(1− η)N

∑
i∈Jt∩Sc

0(t)

yi(t) +
(e− 2)Mtη

2

(1− η)N2

∑
i∈N

ŷi(t) (5.10g)

Inequality (5.10c) uses ea ≤ 1 + a + a2, ∀a ∈ [0, 1], equality (5.10e) holds because of step
11 in Algorithm 5.1, inequality (5.10f) uses the fact that W ′

t

Wt
≤ 1, and the last inequality (5.10g)

holds because α̂i(t)ŷi(t) = yi(t) ≤ 1 for i ∈ Jt and α̂i(t)ŷi(t) = 0 for i /∈ Jt. Then, according to
inequality (5.10g) and by summing over t, we have

ln
WT+1

W1

=
T∑
t=1

ln
Wt+1

Wt

(5.11a)

≤
T∑
t=1

ln

[
1 +

η

(1− η)N

∑
i∈Jt∩Sc

0(t)

yi(t) +
(e− 2)Mtη

2

(1− η)N2

∑
i∈N

ŷi(t)

]
(5.11b)

84



≤ η

(1− η)N

T∑
t=1

∑
i∈Jt∩Sc

0(t)

yi(t) +
(e− 2)bη2

(1− η)N2

T∑
t=1

∑
i∈N

ŷi(t) (5.11c)

where inequality (5.11c) holds because 1 + y ≤ ey and Mt ≤ b.
On the other hand, define A∗

b as the best location index subset with b elements.
Then,

ln
WT+1

W1

≥ ln

∑
j∈A∗

b
wj(T + 1)

W1

(5.12a)

≥
∑

j∈A∗
b
lnwj(T + 1)

b
− ln

N

b
(5.12b)

≥ η

N

∑
j∈A∗

b

∑
t:j∈Sc

0(t)

ŷj(t)− ln
N

b
(5.12c)

where inequality (5.12a) holds because A∗
b ⊆ N , inequality (5.12b) comes from the inequality of

arithmetic and geometric means, i.e. 1
b

∑b
j=1 yj ≥

(∏b
j=1 yj

) 1
b
, and inequality (5.12c) is obtained

by recursively applying step 15 of Algorithm 1, which results in equality (5.13):

wj(T + 1) = exp

(bη/N)
∑

t:j∈Sc
0(t)

ŷj(t)

 (5.13)

Note that we also have

∑
j∈A∗

b

∑
t:j∈S0(t)

ŷj(t) ≤
T∑
t=1

∑
i∈S0(t)

yj(t) ≤
1

1− η

T∑
t=1

∑
i∈S0(t)

yj(t) (5.14)

where the first equality is due to the fact that ŷj(t) = yj(t), ∀j ∈ S0(t), and the last inequality holds
because η ∈ (0, 1].

Combining (5.11c), (5.12c), and (5.14), we have:

∑
j∈A∗

b

∑
t:j∈Sc

0(t)

ŷj(t) +
∑
j∈A∗

b

∑
t:j∈S0(t)

ŷj(t)−
N

η
ln

N

b
(5.15a)

≤ 1

(1− η)
GJ

Exp3.M-VP(T ) +
(e− 2)ηb

(1− η)N

T∑
t=1

∑
i∈N

ŷi(t) (5.15b)

Taking expectations of both sides of inequality (5.15), we obtain

∑
j∈A∗

b

∑
t:j∈Sc

0(t)

ŷj(t) +
∑
j∈A∗

b

∑
t:j∈S0(t)

ŷj(t)−
N

η
ln

N

b
(5.16a)
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≤ 1

(1− η)
E
[
GJ

Exp3.M-VP(T )
]
+

(e− 2)ηb

(1− η)N

T∑
t=1

∑
i∈N

yi(t) (5.16b)

≤ 1

(1− η)
E
[
GJ

Exp3.M-VP(T )
]
+

(e− 2)ηb

(1− η)a
Gmax(T ) (5.16c)

where inequality (5.16b) uses the fact that E[ŷi(t)|S(1), ..., S(t− 1)] = yi(t), and

T∑
t=1

∑
i∈N

yi(t) ≤
N

a
Gmax(T ) (5.17)

Since A∗
b = ∪MtA∗

Mt
trivially holds, we have

Gmax(T )−
N

η
ln

N

b
≤
∑
j∈A∗

b

∑
t:j∈Sc

0(t)

ŷj(t) +
∑
j∈A∗

b

∑
t:j∈S0(t)

ŷj(t)−
N

η
ln

N

b
(5.18)

Therefore, by combining (5.16) and (5.18), we obtain the inequality stated in the Theorem
5.1.

By appropriately choosing the parameter η, we can obtain the following corollary:

Corollary 5.1. Set η = min
{
1,
√

Na ln(N/b)
(a+(e−2)b)bT

}
. Then

R̄Exp3.M-VP(T ) ≤ 2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b

holds for any T > 0 and for any assignment of rewards.

The proof of Corollary 5.1 follows the steps of the proof of Corollary 3.2 in (Auer et al., 2002b).

Proof. For any T > 0, we have Gmax(T ) ≤ bT . If bT ≤
√

Na ln(N/b)
a+(e−2)b

, then the bound is trivial
since the expected regret cannot be more than bT . Otherwise, by Theorem 5.1, the expected regret
is at most

2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b

by plugging in η =
√

Na ln(N/b)
(a+(e−2)b)bT

.

Note that when a = b, the upper bound in Corollary 5.1 is the same as the upper bound of
Exp3.M in (Uchiya et al., 2010), and when a = b = 1 the upper bound becomes the same upper
bound obtained for Exp3 in (Auer et al., 2002b).
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Corollary 5.2. Define s̄∞ := lim inf
T→∞

E
[
1
T

∑T
t=1 s

J(t)
]

as the average reward of the defender over

infinite time horizon. Using the same parameter η as in Corollary 5.1, when the defender uses the

Exp3.M-VP algorithm against the attacker who adopts a no-regret algorithm, we have s̄∞ = ν
N

if

Mt is a wide sense stationary process with mean ν.

In order to prove Corollary 5.2, we need the following lemma, which was originally derived in
(Wang & Liu, 2015).

Lemma 5.1. When the defender (pursuer) is adopting Exp3.M and the attacker (evader) does not

know the type of algorithm used by the adversarial opponent, then v = 1
N

, where v is the game

value of the repeated constant-sum game for the defender.

Then the proof of Corollary 5.2 is as follows.

Proof. The above problem is equivalent to the problem of two players playing an unknown repeated
bimatrix game, where the game value vi,t (i = 1, 2 for the row and column player respectively) is
changing over time. Define the game matrices as two N×N matrices B and C, where Bij+Cij = 1

for any (i, j) ∈ N ×N . At each time t, the defender (i.e., the row player) chooses Jt rows of the
matrix, and at the same time, the attacker (i.e., the column player) chooses exactly one column
It = k. The defender then receives the payoff

∑
j∈Jt Bjk =

∑
j∈Jt yj(t). The defender uses a mixed

strategy pt at each time t, where pt ∈ [0, 1]N , and the attacker chooses according to a probability
vector qt ∈ [0, 1]N . Note that the sum of pt equals Mt and the sum of qt equals 1. Let v1,t be the
game value of the game matrix B at time t. Then by Corollary 5.1, we have

E

[
T∑
t=1

∑
j∈Jt

Bjk

]
=E

[
T∑
t=1

∑
j∈Jt

yj(t)

]
(5.19a)

≥Gmax(T )− 2

√(
1 + (e− 2)

b

a

)
×
√
bTN ln

N

b
(5.19b)

Let pt be such that

v1,t = max
pt

min
qt

p⊺
tBqt = min

qt

max
pt

p⊺
tBqt.

Then we have

Gmax(T ) ≥
T∑
t=1

N∑
i=1

pt,iyi(t) (5.20a)

=
T∑
t=1

p⊺
ty(t) (5.20b)
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=
T∑
t=1

p⊺
tBqt ≥

T∑
t=1

v1,t (5.20c)

where qt is a distribution vector whose It-th component is 1.
Combining (5.19) and (5.20), we have

E

[
1

T

T∑
t=1

sJ(t)

]
≥ 1

T

T∑
t=1

v1,t − 2

√(
1 + (e− 2)

b

a

)
×
√

bN ln
N

b
/T (5.21)

Note that at each time t, v1,t = Mtv1, where v1 is the game value when the defender only
chooses one location. Hence, by taking the limit of (5.21) and according to the law of large numbers
we have

s̄∞ = lim inf
T→∞

1

T

T∑
t=1

v1,t = νv1, (5.22)

where the first equality comes from the fact that the attacker is also adopting a no-regret algorithm
(e.g. Exp3). Finally, according to Lemma 5.1, we obtain the result.

Corollary 5.3. Under the setting that the defender adopts Exp3.M-VP and the attacker adopts a

no-regret algorithm, assuming that Mt is a wide sense stationary process with mean ν, each player

adopts the best response for the infinite-horizon problem.

The proof can be obtained by extending the proof of the defender side in Corollary 5.2 to both
sides, and is omitted for brevity. Note that in Corollary 5.2 and Corollary 5.3 we do not specify
which type of learning algorithm the attacker is using, and the only assumption is that the attacker
adopts a no-regret algorithm.

5.6 Adaptive Learning of the Attacker

We assume that the attacker adopts the Exp3 algorithm to randomly attack one location at each time
step. The Exp3 algorithm runs the algorithm Hedge as a subroutine. Unlike the Hedge algorithm
which directly takes advantage of the full information of the reward vector x(t) := (xi(t),∀i ∈ N ),
Exp3 observes partial information and feeds the simulated reward vector x̂(t) := (x̂i(t),∀i ∈ N ) to
the Hedge. The Hedge will then update β̂i(t), which is the prediction of probability βi(t) for i ∈ N .
For more details about the Exp3 and Hedge algorithms, see Appendix A.1.

The defender adopts the Exp3.M-VP algorithm, which has a sublinear regret, as shown in
Theorem 5.1. As a result, if the attacker favors one location, intuitively the defender will eventually
identify this most attractive location, and fails to scan it only at a rate no more than sublinear in T .
When Mt is a time-invariant constant, it follows immediately that the best strategy for the attacker
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over an infinite time horizon is to treat each location equally, either in a stochastic or deterministic
way. However, when Mt is a variable, the same argument cannot be trivially made.

Theorem 5.2. Define r̄∞ := lim inf
T→∞

E
[
1
T

∑T
t=1 r

I(t)
]
, and let the location sequence g be the

sequence of the greedy policy πgreedy, where g(t) = argmini∈N β̂i(t) for all t. If Mt is bounded by

two positive integers a, b such that Mt ∈ {a, a+ 1, ..., b}, then under any policy π we have:

r̄∞ ≤
N − a

N

and under the greedy policy πgreedy,

r̄∞ ≥
N − b

N

Proof. See Appendix A.3.

Note that by Corollary 5.2, we can directly obtain the following result,

Corollary 5.4. Under the setting that the defender adopts Exp3.M-VP, the attacker adopts Exp3,

and Mt is a wide sense stationary process with mean ν, we have r̄∞ = N−ν
N

.

Moreover, when Mt is a wide sense stationary process, following the proof of Theorem 5.2, it is
not hard to show that even the greedy policy can obtain r̄∞ = N−ν

N
. Note that the above argument

does not require Exp3.M-VP to have any property other than a no-regret guarantee, and therefore
the greedy policy for the attacker can be a countermeasure against the entire family of no-regret
algorithms. For the defender part, according to Corollary 5.2 and Corollary 5.4, a straightforward
path to increase the average reward in an infinite time horizon is to increase the value of ν, i.e.,
assign more resources to the intrusion monitoring system.

5.7 Adaptive Adversarial Learning with Heterogeneous
Rewards

In this section we consider heterogeneous rewards that are location-dependent. This corresponds to
a more general setting, since in reality some locations (e.g., sensors) are more critical to the system
than others. Let µk be the location-dependent reward corresponding to the k-th location. That
is, the rewards of the attacker and the defender are rI(t) = µItxIt(t) and sJ(t) =

∑
j∈Jt µjyj(t),

respectively. Without loss of generality, we assume that µ1 ≥ µ2 ≥ ... ≥ µN . We denote the
frequency of location k being selected given the selection sequence I as dIk(T ) over a time horizon
T , i.e.,

1

T

T∑
t=1

µIt =
1

T

N∑
k=1

cIk(T )µk =
N∑
k=1

dIk(T )µk (5.23)
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where cIk(T ) = | {t ≤ T : It = k} | and dIk(T ) = cIk(T )/T . Note that cIk(T ) is the total number of
times location k is selected by the attacker over horizon T given the selection sequence I .

Since the problem is no longer a constant-sum game under the setting of heterogeneous rewards,
Corollary 5.3 and Corollary 5.4 cannot be directly applied. However, we can still show that when
the reward for each location is heterogeneous, the average reward r̄∞ in an infinite time horizon is
bounded within an interval determined by a, b, and µk, k = 1, 2, ..., N .

Theorem 5.3. Given heterogeneous rewards, the average reward of the attacker r̄∞ over an infinite

time horizon is bounded within the interval
[

K∗−b∑K∗
k=1 µk

, K∗−a∑K∗
k=1 µk

]
, where K∗ is a constant determined

by µk values such that b ≤ K∗ ≤ N .

In order to prove Theorem 5.3, we need Lemmas 5.2 and 5.3, as follows. Let supp(d) = {k ∈
N : dk > 0} for any feasible solution d, and let K∗ be the cardinality of supp(d). Then we have
the following lemmas:

Lemma 5.2. For any optimal solution d∗ of problem (5.27), (i) µkd
∗
k = µjd

∗
j for any k, j ∈ supp(d∗),

and (ii), supp(d∗) consists of the indices of locations with the K∗ highest µ.

Lemma 5.3. Problem (5.32) is lower bounded by K∗−b∑K∗
k=1 µk

.

The proofs of Lemmas 5.2 and 5.3 can be found in the Appendices A.4 and A.5, respectively.
Now we shall give the proof of Theorem 5.3 as follows.

Proof. The average reward of the defender when using Exp3.M-VP is given by

E[GJ
Exp3.M-VP(T )] = E

[
T∑
t=1

∑
j∈Jt

µjyj(t)

]
(5.24a)

=
T∑
t=1

N∑
k=1

µkyk(t)βk(t) (5.24b)

=
T∑
t=1

µItβIt(t) (5.24c)

=
T∑
t=1

µIt − E

[
T∑
t=1

rI(t)

]
(5.24d)

for any realization I .
Then we have

1

T
E

[
T∑
t=1

rI(t)

]
=
1

T

T∑
t=1

µIt −
1

T
E[GJ

Exp3.M-VP(T )] (5.25a)
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≤
N∑
k=1

µkd
I
k(T )−
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T

(
Gmax(T )− 2

√(
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b
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) √
bTN ln
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b

)
(5.25b)

≤
N∑
k=1

µkd
I
k(T )− max

J∈C(N ,a)

∑
j∈J

µjd
I
j (T ) + 2

√(
1 + (e− 2)

b

a

)√
bN ln

N

b
/T

(5.25c)

where C(N , a) = {S ⊆ N : |S| = a}, namely, the set of all subsets of size a in N . The second
inequality uses the fact that

Gmax(T ) ≥ max
J∈C(N ,a)

T∑
t=1

∑
j∈J

µjyj(t)

= max
J∈C(N ,a)

∑
j∈J

µjc
I
j (T )

Therefore, by having T approach infinity, we have

r̄∞ ≤ lim inf
T→∞

E

[
N∑
k=1

µkd
I
k(T )− max

J∈C(N ,a)

∑
j∈J

µjd
I
j (T )

]
(5.26)

for any policy π.
Consider the following optimization problem

maximize
d∈∆N

N∑
k=1

µkdk − max
J∈C(N ,a)

∑
j∈J

µjdj (5.27)

where ∆N is the set of distributions over N and d = (dk, k ∈ N ). Let the optimal solution and its
objective function value be d∗ and rmax, respectively. Then we have

r̄∞ ≤ rmax =
N∑
k=1

µkd
∗
k − max

J∈C(N ,a)

∑
j∈J

µjd
∗
j (5.28)

Without loss of generality, we assume that supp(d∗) = {1, 2, ..., K∗}. Therefore, according to
Lemma 5.2, we have d∗k = 1/µk∑K∗

j=1 1/µj
for all k ≤ K∗. Then the optimal value of problem (5.27) is

given by (K∗ − a)/
∑K∗

j=1 1/µj , which is increasing with respect to the value of K∗ = 1, 2, ..., N .
This gives the upper bound of r̄∞.
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When the defender adopts Exp3M-VP, we have

E[GI
Exp3(T )] ≥ G′

max(T ) − o(T ) (5.29)

where GI
Exp3(T ) is the total reward of the attacker when adopting Exp3, and G′

max(T ) =

max
k∈N

∑T
t=1 xk(t) is the maximum total reward the attacker can gain when selecting a fixed location

to attack.
Similarly, define hJ

k (T ) = |{t ≤ T : k ∈ Jt}| and lJk (T ) = hJ
k (T )/T . Then, we have

G′
max(T ) = max

k∈N
µk(T − hJ

k (T )) (5.30)

Thus, the average reward r̄∞ of the attacker over an infinite time horizon is lower bounded by

r̄∞ ≥ lim inf
T→∞

E

{
max
k∈N

µk(1− lJk (T ))

}
(5.31)

Consider the following optimization problem

minimize
c∈∆N

max
k∈N

µk(1− lk) (5.32)

and denote the optimal value of problem (5.32) as rmin. Then according to Lemma 5.3, rmin =
K∗−b∑K∗
k=1 µk

, which gives us the lower bound of r̄∞.

Theorem 5.3 when the attack success rate of the attacker is not 100 percent for all locations,
where µk represents the success rate of attacks on location k for the attacker. Note that although
Theorem 5.3 assumes heterogeneous rewards, it can be simply applied to homogeneous rewards as
well. Figure 5.1 shows the range for the attacker’s average reward in an infinite time horizon under
different attack success rates, where we assume the same attack success rate for all locations for
simpler visualization. Note that we do not even assume that Mt is a wide sense stationary process;
the only assumption here is that it is confined within a range with lower and upper bounds a and
b, respectively. The shaded blue region in Figure 5.1 indicates the potential reward the attacker
can obtain in infinite time, and the red and blue lines indicate the lower and upper bounds on the
attacker’s average reward in infinite time, according to Theorem 5.3. When the attack success rate is
1, the lower and upper bounds become equivalent to the bounds in Theorem 5.2. It is straightforward
to see that the lower the success rate of the attack, the safer the system will be.
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Figure 5.1: Range of the average reward of the attacker in an infinite time horizon under different attack
success rates.

5.8 Numerical Experiment

We conducted extensive simulations illustrating the performance of the proposed algorithm and
policy. Our numerical analysis consists of three parts. In section 5.8.1, we conduct simulations
to test the Exp3.M-VP performance under a single-player setting. In section 5.8.2, we compare
the performance of Exp3.M-VP with several bandit learning algorithms, i.e., the Exp3, Exp3.M,
upper-confidence Bound (UCB) (Auer et al., 2002a), and ϵ-greedy algorithms (Sutton et al., 1998),
on real in-vehicle network datasets from the Car-Hacking datasets (Seo et al., 2018). In section
5.8.3, we run simulations on the proposed game model and algorithmic solutions.

5.8.1 Simulations on a Single Player

In this section we consider the single-player setting, where the Exp3.M-VP algorithm was evaluated
on a ten-armed bandit problem with rewards for arms drawn independently from Bernoulli
distributions with means {0.75, ..., 3

4k
, ..., 0.075}, with k = 1, 2, ..., 10. This scenario was simulated

over a fixed time horizon T = 20, 000 time steps. The number of arms played at each time step is
drawn independently from a discrete uniform distribution over {1, 2, 3}. Parameter η is set to 0.1.

Figure 5.2(a) shows the regret of Exp3.M-VP versus the expected upper bound of the regret
from Theorem 5.1. We can see that the actual regret of Exp3.M-VP has a smaller rate than its
expected upper bound and the discrepancy becomes larger as time increases. Figure 5.2(b) shows
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(a) Exp3.M-VP regret (blue curve) and expected upper
bound of regret (orange curve). (b) Normalized weights of 10 arms over 20,000 time steps.

Figure 5.2: Simulation of Exp3.M-VP on a ten-armed bandit problem.

the change of the normalized weight for each location over the entire time horizon. As shown in
this figure, Exp3.M-VP chooses the top three locations (i.e. the blue, orange, and green curves)
with the highest average reward only after a short period of time, and the rest of weights vanish to
nearly 0. The reason why only three locations pop up is that Mt, i.e. the number of the arms played
at each time, is within the set {1, 2, 3}. The fluctuations of the weights are partly due to the fact
that the Exp3.M-VP algorithm needs to explore different locations in order to update the choice
prediction and estimation, and partly due to the fact that the sum of the weights must always equal
to Mt, which is changing over time.

5.8.2 Evaluations on Car-Hacking Dataset for the Defender

In this section we compare Exp3.M-VP with Exp3, Exp3.M, UCB, and the ϵ-greedy algorithms by
implementing these algorithms over two in-vehicle network datasets from the Car-Hacking datasets.
The Car-Hacking datasets are generated by logging the Controller Area Network (CAN) traffic via
the OBD-II port from a real vehicle while message injection attacks were made. The Datasets each
contain 300 intrusions of message injections over 26 unique CAN IDs. Each intrusion is performed
for 3 to 5 seconds, and each dataset has a total of 30 to 40 minutes of the CAN traffic. Specifically,
we test the performance on the spoofing attack datasets, which were conducted on the RPM gauze
and the driving gear. That is, among 26 arms representing CAN IDs, two of them (RPM gauze and
driving gear) contained spoofing attacks.

Figure 5.3 shows the cumulative average rewards for each bandit learning algorithm used by the
defender. The experiments were conducted over T = 7, 000 time steps, and the number of arms
played by Exp3.M-VP was sampled from a truncated Gaussian distribution within the interval [1,3],
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Figure 5.3: Cumulative average rewards for ϵ-greedy, UCB, Exp3, Exp3.M, and Exp3.M-VP.

with mean 2 and standard deviation 0.8. The number of arms played by Exp3.M was set to 3. We
can see that both Exp3.M and Exp3.M-VP obtain higher cumulative average rewards than other
single-play setting algorithms, due to the benefits from multiple or variable plays. Exp3.M-VP
in this setting is a constrained version of Exp3.M, since the number of arms in Exp3.M (i.e., 3)
is an upper bound on the number of arms available to Exp3.M-VP (i.e., [1, 3]). This indicates
that Exp3.M-VP may have access to a smaller number of arms due to resource constraints. To
make it more challenging, Exp3.M-VP does not know in advance the number of number of arms
it may have access to in the future. Therefore, not surprisingly, Exp3.M obtains a slightly higher
cumulative average reward than Exp3.M-VP. However, interestingly, eventually the cumulative
average rewards of Exp3.M and Exp3.M-VP approach the same value. This demonstrates the power
of the Exp3.M-VP algorithm: despite the fact that in average Exp3.M-VP plays fewer arms than
Exp3.M, it can match the performance of Exp3.M. The reason is that only 2 out of of 26 CAN-IDs
contained spoofing attacks, and after a period of time (i.e., around 3500 iterations), both Exp3.M
and Exp3.M-VP are able to identify the top two most rewarded CAN-IDs.

We further conduct sensitivity analysis on the number of arms played by Exp3.M and Exp3.M-
VP. Specifically, we test the performance of the two algorithms with M = ν ∈ {4, 5, 6, 7}, where
M is the number of arms played by Exp3.M. For each ν, we sample Mt from a truncated Gaussian
distribution within the interval [ν − 1, ν + 1], with mean ν and standard deviation 0.8. As such, in
this set of experiments the number of arms played by Exp3.M is the mean value of the number of
arms played by Exp3.M-VP. Figure 5.4 shows the results. This figure demonstrates the average
reward of the two algorithms under four values for M and ν. We can see that the performance
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Figure 5.4: Average reward of Exp3.M and Exp3.M-VP under different Mt and ν.

of the two algorithms are very close, mainly due to the fact that M = ν. Note that here, in some
instances Exp.M-VP will have access to less resources/arms, and in some instances more. As
a result, throughout the iterations, sometimes Exp3.M outperforms Exp3.M-VP, and sometimes
it underperforms. However, eventually both algorithms reach the same reward and successfully
identify the attacked arms. This again demonstrates the strength of Exp3.M-VP, because the number
of arms are determined exogenously and therefore Exp3.M-VP is able to match the reward obtained
by Exp3.M under uncertainly on the number of available arms at each time.

5.8.3 Simulations on Two Players

We now consider a game setting where two players, i.e., an attacker and a defender, are playing
the pursuit-evasion game against each other. This corresponds to the realistic scenario where a
malicious hacker is trying to compromise either the sensor/ECU in an in-vehicle sensor network, or
the entire vehicle/infrastructure in an interconnected transportation system without being identified
by the intrusion monitoring system. At the same time, the intrusion monitoring system is trying to
identify as many compromised locations as possible to minimize the potential loss. We consider a
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ten-armed bandit problem for the two players, where the attacker adopts Exp3 and the defender
adopts Exp3.M-VP. The scenario was simulated over T = 100, 000 time steps, and the number of
arms played by the defender was sampled from a truncated Gaussian distribution within the interval
[1, 3], with mean 2 and standard deviation 0.8. The parameter η for both Exp3 and Exp3.M-VP was
set according to Corollary 5.1.

Figure 5.5 illustrates the average reward and the equilibrium reward for the two players. Since
we have N = 10 and ν = 2, according to Corollary 5.2 and Corollary 5.4, the equilibrium rewards
for the attacker and the defender are 0.8 and 0.2, respectively. We can see that the average rewards
of both players converge to the equilibrium rewards after a relatively short period, and after that the
average rewards stay around the equilibrium reward with small fluctuations. The fluctuations are
due to the fact the Exp3 and Exp3.M-VP use randomized policies and need to occasionally explore
different locations in order to update the choice predictions and estimations.

Figure 5.5: Average reward of the attacker and the defender over 100,000 time steps.

5.9 Conclusion

In this chapter, we extend the adversarial/non-stochastic MPMAB to the case where the number of
plays can change in time, and propose the Exp3.M-VP algorithm for obtaining the variable-play
property. This extension is motivated by the uncertainty of resources allocated to the intrusion
monitoring system to scan at each time in resource-constrained systems, such as an interconnected
transportation system. We derive a sublinear regret bound for Exp3.M-VP, which simplifies to the
existing bounds in the literature when the number of arms played at each time is constant. We
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introduce a game setting where an attacker and a defender play a pursuit-evasion game against each
other. The defender, who represents the intrusion monitoring system, adopts Exp3.M-VP and the
attacker, who represents the malicious hacker, adopts Exp3. We derive the condition under which
a Nash equilibrium of the strategic game exists. Finally, we consider heterogeneous rewards for
arms, and obtain lower and upper bounds on the average rewards for the attacker in an infinite time
horizon. We provide several numerical experiments that demonstrate our results.

This work provides insights on deploying an intrusion monitoring system either in an in-vehicle
network or a transportation network: In order to minimize the potential loss of the system from
cyber threats, one can either increase the average resources allocated to intrusion monitoring, or
change the potential reward vector for each location to reduce the reward bound in Theorem 5.3.
One of the potential extensions of this work is to consider the connectivity or correlations between
different arms, which can take into account the spread of the cyber attacks, and use such information
to facilitate the decision making of the intrusion monitoring system.
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CHAPTER 6

Dynamic Security Resource Allocation for Connected and
Automated Vehicles

6.1 Introduction

Recent developments in connected and automated vehicle (CAV) technology bring with them the
promise of increased safety and reduced vehicles crashes by as much as 80%, while reducing by 6.9
billion hours the time Americans spend in traffic annually (USDOT, 2016).

CAVs require full and reliable coverage of their surrounding environment, which necessitates
sophisticated onboard hardware and software for communications and autonomous driving than
a human-driven vehicle. For example, perception in CAVs may be achieved using several sensor
systems, including cameras, LiDAR, and radar. Once a CAV collects disparate sources of sensor
measurements, it typically fuses sensor data to create more coherent, reliable, and precise pieces of
information than would be possible to obtain from each of these sources individually (Kocić et al.,
2018).

On the other hand, the extensive sensor systems and the communication channel serve as attack
surfaces in CAVs, giving rise to cybersecurity concerns (Petit & Shladover, 2014). As mentioned
in Chapter 5, it is imperative to allocate security monitoring resources to CAVs in order to detect
potential cyberattacks. However, all the aforementioned operations, including sensing, information
fusion, and security monitoring tasks require energy from the limited energy supply aboard of a
CAV. These energy requirements are in addition to the energy used for vehicle propulsion and
computational resources for decision making. As the energy required for driving changes under
different traffic conditions and based on the sophistication of the driving environment, the amount
of energy that can be dedicated to threat monitoring may not be deterministic. Furthermore, it
may not be realistic to continuously monitor all sensors, mainly due to limited supply of energy at
the disposal of the vehicle. In general, there exists a trade-off between the desired outcomes (e.g.,
attack detection sensitivity) and the computational ability and/or energy resources. Thus, security
resources should be dynamically allocated depending not only on the security state of the CAV
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but also the energy required for other driving tasks. Moreover, the actual security state of a CAV
in practice may not be fully observable as there is a chance of not detecting an attack even when
security resources are allocated for sensor monitoring.

In this chapter, we address the dynamic security resource allocation for a CAV through sequential
decision making under uncertainty and partial information. Specifically, in this chapter we consider a
CAV driving on a planned route and subject to potential cyberattacks. The true status of cyberattacks
can only be observed via an attack detection monitor deployed on the CAV or on the cloud. The
amount of security resources that can be allocated for monitoring depends on the energy supply
of the CAV. At each time epoch, the CAV decides the amount of security resource to be allocated
for attack detection. We assume that the detection recall/sensitivity is a function of the amount
of allocated security resource. We further associate costs to undetected attacks and an unfinished
trip due to energy depletion. As such, there is a trade-off between monitoring the CAV system
to improve the detection sensitivity, and the risk of being unable to finish the trip. We develop
a partially observable Markov decision process (POMDP) model that captures this trade-off by
prescribing a security resource allocation policy to minimize the total discounted cost of a CAV trip
over a finite horizon. To the best of our knowledge, it is the first study addressing the aforementioned
trade-off and devising a dynamic security resource allocation policy for CAVs. The work in this
chapter can be regarded as a complementary supplement to Chapter 5, where the proposed POMDP
determines the number of sensors to be scanned for the Exp3.M-VP algorithm (denoted by Mt in
that chapter), and the Exp3.M-VP returns the real-time detection results to POMDP. Using this
feedback, POMDP can decide the number of security resources to allocate to the threat monitoring
system in the next time epoch.

The remainder of the chapter is organized as follows. We first review the related work in
dynamic resource allocation (DRA) in section 6.2. Then, in section 6.3 we provide the mathematical
model of our POMDP. In section 6.4 we present the results of numerical experiments for a CAV
with three candidate sensors. Finally, we conclude the chapter in section 6.5.

6.2 Literature Review

The dynamic resource allocation (DRA) problem is one of the most challenging problems in the
family of resource management problems. In general, DRA is widely used in applications where
a pool of resources can be accessed in wired or wireless networks. DRA seeks to dynamically
assign the resources needed for different types of services. In the past decades, DRA has attracted
extensive attention in the field of cloud computing (Chandra et al., 2003; Xiao et al., 2013), wireless
communications (Gunduz & Erkip, 2007; Zhang et al., 2010), and computer systems (Singh et al.,
2017). Resource allocation becomes critical when there are limited resources available in the
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presence of high demand. At the same time, DRA should be able to handle less critical scenarios
with low demand and high resource availability.

The solution methodologies proposed for the DRA problem vary depending on the application.
For instance, Zhang et al. (2010) formulated and solved DRA in cognitive radio networks as a
convex optimization problem. Vengerov (2007) proposed a reinforcement learning in conjunction
with a fuzzy rulebases framework to solve the DRA problem in distributed computing systems.
Among solution methodologies developed for the DRA problem, the Markov decision process
(MDP) has attracted high interest. For example, Tang et al. (2018) addressed the adaptive virtual
resource allocation in 5G networks by formulating a constrained MDP model. In (Oddi et al., 2013),
the authors proposed a multi-cloud resource allocation algorithm based on MDP to dynamically
assign the resources to a set of IT requests.

Although a moderate volume of research has been conducted in the filed of DRA, it is not yet
widely explored in the field of cybersecurity. One of the most related studies is (Njilla et al., 2017),
which considered the setting where the cybersecurity resources are divided into two layers, namely,
agility and recovery. This study developed an MDP framework for cybersecurity resource allocation.
There is still a gap in the literature for security resource allocation in CAVs. Nayak et al. (2022)
conducted a survey on resource allocation, security, and data privacy of autonomous vehicles, but
they did not explicitly consider security resource allocation.

Besides the aforementioned studies using MDP models, Bayesian frameworks, including both
MDP and POMDP, have been used in the context of CAV decision-making (van Wyk et al., 2020;
Liu et al., 2022) and cybersecurity (Tipireddy et al., 2017). For instance, van Wyk et al. (2020)
studied the control switching problem between the human driver and the automated control entity in
semi-autonomous vehicles, by developing an MDP model and a POMDP model to prescribe the
optimal switching policy. Liu et al. (2022) developed a locally-optimal motion planner with an MDP
model that captures network-level information. Tipireddy et al. (2017) proposed an agent-centric
approach for a general cybersecurity decision-support problem using POMDP models, which is one
of few studies using POMDP in the context of cybersecurity.

6.3 Model Formulation

Consider a CAV driving on a planned route. At each time epoch, the CAV needs to determine the
number of security resource to allocate for attack detection, while at the same time ensuring that it
can complete its trip. The more security resource allocated, the less likely it would be for an attacker
to successfully comprise the system. Denote by t ∈ T ≜ {0, 1, 2, ..., T} the time epoch, where T is
the number of time epochs in the planning horizon. Denote by xt ∈ X ≜ {0, 1} the attack state of
the CAV at time epoch t, representing whether the CAV is under attack (xt = 1) or not (xt = 0). We
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follow the same setting from Chapter 5 where at each time epoch the attacker selects one sensor to
attack. As long as an attack occurs at time epoch t, we have xt = 1. At each time epoch t, we denote
by et ∈ E ≜ {1, ..., E} the number of units of energy required for driving/propulsion, where E is
the initial number of energy units available to the CAV, and by rt ∈ E the CAV’s remaining energy.
The state vector of the CAV is then defined as a three dimensional tuple st ≜ (xt, et, rt) ∈ S , where
S ≜ X × E × E represents the state space.

Note that we assume that at each time epoch t the system state xt, i.e., whether the CAV is
under attack or not, is not outwardly observable and can only be partially observed from the attack
detection monitor (e.g., Exp3.M-VP in Algorithm 5.1). Instead, the observation vector ot is obtained
by the CAV at time t, which is defined as ot ≜ (yt, et, rt) ∈ O ≜ Y × E × E . At each time epoch t,
the attack detection monitor returns the detection result yt ∈ Y ≜ {0, 1} on the CAV system, where
yt = 1 indicates a detected attack at the current time epoch t, and 0 otherwise. Then, the system
belief state, i.e., the probability that the system is under the state x ∈ X at time epoch t, is updated
based on this observation. Let πt ≜ [πt(0), πt(1)] denote the vector of belief state at time epoch t,
where πt(x) is the probability that the system is in core state x at the beginning of time epoch t. We
have

∑
x∈X πt(x) = 1. Note that we omit the states of e ∈ E and r ∈ E as they are fully observable.

Assume there are N individual candidate sensors in the CAV, all eligible for security monitoring.
Denote at ∈ A as the action representing the units of security resources allocated at time t, where
A ≜ {1, ..., N} is the action set. We assume that monitoring each sensor consumes one unit of
energy. Once the CAV allocates the security resources to the security monitor, we assume that it
adopts a separate algorithm to determine which subset of sensors to be scanned at time epoch t, and
returns detection results to POMDP.

Let Ψa denote the information matrix associated with action a ∈ A. Specifically, Ψa (y|x)
denotes the probability that the observed system state is anomalous/non-anomalous (i.e., y = 1 or
y = 0, respectively), given the core state x ∈ X and action a. Note that again we omit the states
components e ∈ E and r ∈ E as they are fully observable.

Let Pt denote the one-step transition probability matrix (TPM) of the system at time epoch t,
where Pt(x

′, e′|x, e) denotes the state-transition probability at time epoch t from state x and e to
state x′ and e′. When the state variable e is independent from x, the state transition probability
Pt(x

′, e′|x, e) can be decomposed as Pt(x
′, e′|x, e) = Pt(x

′|x) · Pt(e
′|e). Note that the state-

transition probability can be obtained from historical data. As discussed, the core state x can be only
observed partially. Therefore, at each decision epoch, depending on the action taken, the system
belief state can be updated by Bayes’ rule using the observation vector ot. Let πt+1 = β[πt, at,ot]

denote the vector of belief state at time t + 1 starting from the system belief πt at time t, under
action at, and the observed system state ot = (yt, et, rt), where β[·] is the hidden Markov model
(HMM) filter for estimating the underlying state of a Markov chain given noisy observations. In the
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Figure 6.1: POMDP diagram for the security resource allocation problem.

next time epoch, the state belief is updated to obtain πt+1(x). Specifically, the belief about the core
state x′ ∈ X at time t+ 1 is updated as follows:

πt+1(x
′) = β[πt, at,ot](x

′) ≜

Ψat (yt|x′)
∑
x∈X

Pt(x
′|x) · πt(x)∑

x′∈X
Ψat (yt|x′)

∑
x∈X

Pt(x′|x) · πt(x)
(6.1)

Figure 6.1 presents the flow diagram of the proposed POMDP model for the security resource
allocation problem. For this problem, the state vector st evolves according to the TPM. At each
time epoch t, the system obtains the observation vector ot. Based on the observation vector and the
belief vector πt at the current time, POMDP chooses the action at based under a specific policy.
After taking the action, an immediate cost occurs. Then the action at and the observation vector ot

are used to update the belief vector πt+1 for the next time epoch using equation (6.1). Note that
the action at at time t will also affect the observation vector obtained at time epoch t + 1 as the
information matrix is action-dependent.

The objective of the POMDP model is to minimize the total expected discounted cost over a
finite horizon. Denote λ as the discount factor and Vt(πt, et, rt) as the value function representing
the total discounted cost-to-go starting at time t with the belief πt of attack state x, with the required
energy et and the remaining energy rt. Also, denote V ∗

t (πt, et, rt) as the minimum total expected
discounted cost-to-go starting at time t with the belief πt of attack state x, with the required energy
et and the remaining energy rt. As we have a finite horizon, the boundary condition of the value
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function is defined as follows:V ∗
T (πT , eT , rT ) = −cR · rT ∀eT ∈ E , if rT ≥ 0

V ∗
t (πt, et, rt) = cU ∀et ∈ E , ∀t ∈ T , if rt < 0

(6.2)

where cR represents the unit reward for the remaining energy when finishing the trip, and cU

represents the termination cost induced by an unfinished trip. The boundary conditions (6.2) include
two stopping criteria: (i) if at the end of the horizon T , the remaining energy r of the CAV is
non-negative, the CAV receives a reward of cR for every unit of remaining energy; Or (ii) if the CAV
runs out of energy before time T , then it incurs a one time cost of cU for not completing the trip.

Then, we can obtain the Bellman equation of V ∗
t (πt, et, rt) as follows:

V ∗
t (πt, et, rt) =min

a∈A

∑
x∈X

πt(x)

[
C̄(x, a) + γ

∑
y∈Y

o=(y,et,rt)

∑
x′∈X
e′∈E

Ψa (y|x′)

· Pt(x
′, e′|x, et) · V ∗

t+1(β[πt, a,o], e
′, rt − et − a)

] (6.3)

where C̄(x, a) = Et[Ct(x, a)] represents the expected immediate reward function of the attacker
over time, which is also the expected immediate cost function of the CAV. Ct(1, a) = cA if the
security monitor fails to detect an existing attack, and 0 otherwise, where cA is a constant cost for
every undetected attack. Ct(0, a) = 0 for any a as we do not penalize the CAV if there is no attack.
Equation (6.3) calculates the minimum total expected discounted cost-to-go starting at time t with
belief πt, required energy et, and remaining energy rt.

6.4 Numerical Experiments

In this section, we illustrate our proposed POMDP model by solving a small-sized problem. We
consider a CAV with three candidate sensors, subject to cyberattacks. We adopt the setting from
Chapter 5 where the security monitor uses Exp3.M-VP algorithm. Specifically, we consider the
scenario in Figure 6.2, where at each time t, POMDP determines at units of security resources for
Exp3.M-VP. The Exp3.M-VP algorithm then select at sensors among three sensors and detects
potential cyberattacks. We consider an imperfect detector where false positives and false negatives
may occur. The Exp3.M-VP algorithm then return its detection results yt as a part of the observation
ot vector, and POMDP updates its belief vector using equation (6.1) based on this observation.

The CAV system is initialized with a total of 12 units of energy, i.e., E = 12, and the trip
horizon T = 4. The discount factor is set to λ = 0.95. In this small-sized problem we assume
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Figure 6.2: Collaboration of POMDP and Exp3.M-VP.

the required energy for driving at each time is given as a prior, specified as [1, 3, 1, 3] in this case.
Attacks occur according to the TPM as follows,

Pt =

[
0.6 0.4

0.2 0.8

]
, ∀t ∈ T (6.4)

Note that we decrease the dimension of the TPM to a two-by-two matrix, as only the attack state
is stochastic. At each time epoch t, the observation y of the core state x is obtained from the
attack detection result. Since we assume the monitor adopts the Exp3.M-VP algorithm, given that
the attacker may also adopt a learning-based algorithm to avoid being detected and according to
Corollary 5.2, we estimate the information matrix Ψa under action a as follows,

Ψa (1|1) =
a

N
· γ +

N − a

N
· β (6.5a)

Ψa (0|1) =
N − a

N
· (1− β) +

a

N
· (1− γ) (6.5b)

Ψa (1|0) = β (6.5c)

Ψa (0|0) = 1− β (6.5d)

where γ represents detection recall/sensitivity, (1− γ) represents false negative rate, β represents
false positive rate, and (1− β) represents true negative rate. Equation (6.5a) denotes the probability
that the security monitor observes an attack, given the CAV is under attack. The returned positive
detection can be either: (i) a true positive with probability γ if it scans the compromised sensor
with probability a/N ; or (ii) a false positive with probability β if it misses the compromised sensor
with probability (N − a)/N . The probability a/N is estimated from the equilibrium state between
the attacker and the monitor, where in the equilibrium state the best strategy for the attacker is to
randomly choose each sensor with the same probability. Equation (6.5b) denotes the probability that
the security monitor does not observe any attack, given the CAV is under attack. In this case, the
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Figure 6.3: Sample path of the system states and the corresponding belief under PBVI policy.

returned negative detection can be either: (i) a false negative with probability (1− γ) if it scans the
compromised sensor with probability a/N ; or (ii) a true positive with probability (1−β) if it misses
the compromised sensor with probability (N − a)/N . Equation (6.5c) denotes the probability that
the security monitor observes an attack, given the CAV is not under attack. Lastly, equation (6.5d)
denotes the probability that the security monitor does not observe an attack, given the CAV is not
under attack. For this small-sized problem we set γ = 0.95 and β = 0.05.

At each time epoch, given a units of allocated security resources, the expected cost function of
CAV is defined as

C̄(1, a) = cA ·
(

a

N
· (1− γ) +

N − a

N

)
(6.6a)

C̄(0, a) = 0 (6.6b)

where equation (6.6a) represents the expected cost the CAV incurs for being unable to detect an
existing attack. In our simulations, we set cA = 20, cU = 5, and cR = 0.1.

To solve the small-sized POMDP problem, we implement the point based value iteration (PBVI)
algorithm (Pineau et al., 2003). PBVI is an approximated value iteration algorithm. It selects a small
set of representative belief points and then tracks the value and its derivative for the representative
points only. PBVI provides a (near-) optimal policy. We then compare the results with those under
two heuristic policies. For the first heuristic policy (denoted as H1), we always allocate only 1 unit
of security energy, and for the second heuristic policy (denoted as H2), we always allocate 3 units
of security energy, i.e. the security monitor always scans all sensors at each time epoch.
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Figure 6.4: Sample path of the system states and the corresponding belief under H1 policy.

Figure 6.3 provides the sample paths under PBVI policy for the small example. This figure
shows the attack state x, the belief of being attacked, the energy cost, and the remaining energy at
each time epoch. We initialize the belief as π0(0) = 0.9 and π0(1) = 0.1. The attack occurs at epoch
1 and continues until the end of horizon. The belief of attack therefore jumps from π0(1) = 0.1 at
t = 0 to π1(1) = 0.9194 at t = 1. Since higher number of security energy (i.e., a) increases both
the observation accuracy and the cost function, and the fact that we set a relatively small reward
(i.e., cR) for the remaining energy at the end of the horizon compared with the penalties for the
miss detection (i.e., cA) and the unfinished trip (i.e., cU ), the PBVI policy uses the last unit of the
remaining energy at the end of horizon to obtain a lower cost, which translates into strengthen its
belief.

Figures 6.4 and 6.5 show the example sample paths under the H1 policy and the H2 policy,
respectively. We see that under the H2 policy, the belief of the attack state is overall more accurate
than the PBVI policy and the H1 policy, as we always allocate 3 units of security resources, which
provides higher observation accuracy. However, under the H2 policy, the CAV runs out of the
energy at t = 3 and receives an immediate penalty for the unfinished trip.

Figure 6.6 displays the cumulative cost under the PBVI, H1, and H2 policies. We can observe
that PBVI achieves the lowest cost. Under the H1 policy, POMDP overall incurs the highest cost due
to its inability to detect attacks, as the allocation of security resources is limited to only a single unit.
Nonetheless, H1 receives a reward associated with more energy saving at the end of the horizon,
evidenced by a reduction in cost at t = 3. However, since we set a relative small weights of cR, it is
not enough to compensate the overall cost caused by missed detection. The H2 policy achieve the
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Figure 6.5: Sample path of the system states and the corresponding belief under H2 policy.

same level of cost as PBVI before t = 3. However, since the CAV runs out of the energy at t = 3,
an immediate cost of cU is added to the cost of the H2 policy.

6.5 Conclusion and Future Work

In this chapter, we develop a framework for dynamic security resource allocation for connected and
automated vehicles. The work in this chapter can be a complementary supplement of Chapter 5,
where the Exp3.M-VP algorithm can be used as the attack detection algorithm. We consider the
fact that the security monitor may not be able to perfectly observe the attack state but only partially
observes it using the attack detection algorithm. The goal of this chapter is to dynamically allocate
security resources, in the form of energy units, to maintain the safety of the CAV while ensuring
that the trip can be completed, based on the observed system state.

Specifically, we formulate a partially observable Markov decision process (POMDP) model
to prescribe a security resource allocation policy that minimizes the total discounted cost. In a
small example, we consider a CAV with 3 candidate sensors subject to potential attacks. We solve
the problem to near-optimality using the PBVI algorithm. By comparing the obtained policy with
two heuristic polices of scanning only 1 or all sensors in each time epoch, we demonstrate the
efficacy of the proposed approach. Several potential directions can be identified for this work: First,
a more diverse set of problems, including larger-sized problems, should be explored by considering
more candidate sensors and a longer time horizon. Also it is worthwhile to consider a time-variant
TPM, as in practice the state-transition probability can be time-dependent. Since PBVI is not
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Figure 6.6: Cumulative cost under PBVI, H1, and H2.

suitable for solving large-scale POMDP models with high-dimensional action spaces, reinforcement
learning algorithms such as asynchronous advantage actor critic (A3C) should be explored for
solving large-scale POMDP models. Secondly, an extension may consider additional features for
security resource allocation. Examples include modeling traffic conditions and location information.
Lastly, it would be beneficial to use real-world data for a more accurate estimation of TPM and the
information matrix.
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CHAPTER 7

Conclusion and Discussions

7.1 Research Summary and Findings

Due the the recent advance in information and communication technologies (ICT) and autonomous
driving research, CAVs are recognized as an integral part of the next generation of transportation
systems, prompting many academic institutions, research centers, and the private sector to conduct
research and contribute to this field in exceedingly high levels. Compared with traditional vehicles,
CAVs are expected to cooperate by leveraging V2V communications between vehicles, and V2I/I2V
connections between vehicles and infrastructures. As the cooperative exchange of data will provide
vital inputs to improve the performance and safety of the automation systems, it becomes important
to ensure the cybersecurity of the connected and automated transportation systems. This dissertation
aims to address some of the most prominent challenges in CAV cybersecurity by developing
solutions that leverage advancements in machine learning, reinforcement learning, and algorithmic
game theory. The cybersecurity challenges faced by CAVs can be roughly divided into two major
components.

7.1.1 Anomaly Detection in CAV Sensors

The first part of the dissertation addresses the set of challenges a CAV may face in collecting
data used to perceive the environment. These challenges include potential sensor faults, malicious
cyberattacks, and time delays introduced through the communication chanel and/or delays in sensor
perception and/or input processing. In Chapters 2-4, we address these challenges by developing a
model-based filtering framework to securely estimate a CAV’s sensor state by utilizing surrounding
vehicles’ information in different scenarios. Specifically, Chapters 2 and 3 consider a car-following
scenario and Chapter 4 consider a platooning scenario. Chapter 3 extends Chapter 2 by improving the
filtering and detection performance and considering a stochastic time delay factor. More specifically,
in the first part of the dissertation, we devise a filtering-detection framework by combining an
extended Kalman filter (EKF)-based algorithm with a semi-supervised learning algorithm to smooth
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sensor readings as well as detect sensor anomalies. Our experiments show that the proposed method
can significantly improve the detection performance compared with classic detection methods.

As we consider a platooning scenario in Chapter 4, we further analyze platoon stability
under cybersecurity uncertainties. We first analyze the head-to-tail stability with different attack
parameters, which provides insights on how a platoon performs under various attack scenarios.
We further propose a new class measures for string stability, which we call pseudo string stability.
Pseudo string stability takes into account the detection recall/sensitivity, and allows for establishing
a relationship between attack parameters and detection sensitivity. We obtain the critical detection
sensitivities that guarantee pseudo string stability under various attack parameters. Such information
could be used to configure the detector under different attack scenarios.

7.1.2 Security Monitoring in Connected and Automated Transportation
Systems

The second part of this dissertation aims to address the challenges regarding the unknown behavior
of the adversary and constrained security resource. Prevention is considered to be one of the best
defense strategies against malicious hackers, and predicting a strategic adversary’s attack profile is
an important stepping stone to deploy better prevention mechanisms. Moreover, due to the limited
computational ability, battery supply, and communication bandwidth at the disposal of a CAV, the
security monitoring systems can be subject to constrained resources. As such, CAVs need to be
equipped with a dynamic security resource allocation scheme to ensure both security and energy
efficiency in a non-deterministic environment.

In Chapter 5, we devise a adversarial/non-stochastic multi-play multi-armed bandit (MPMAB)
algorithm to predict the adversary’s behavior under time-variant security resources. We provide
a sublinear regret bound of the proposed algorithm. We model both the attacker and the defender
(security monitor) in a game theoretical setting and derive the condition under which a Nash
equilibrium of the strategic game exists. Chapter 5 validates two directions from a game theoretical
perspective in order to improve security in connected and automated transportation systems: (i)
allocating more security monitoring resource; or (ii) improving the robustness of cybersecurity
solutions, e.g., increasing detection recall/sensitivity.

Chapter 6 address the last challenge, namely, constrained security resource. To address this
challenge, we formulate a dynamic resource allocation problem to allocate security resources to
a CAV in real-time based on the observed system state. Specifically, we consider an imperfect
security monitor that provides partial observation of the system state, i.e., whether the CAV is under
attack, and formulate the problem as a partially observable Markov decision process (POMDP)
with the objective of minimizing the total discounted travel cost. Our experiments demonstrate the
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effectiveness of the proposed model. This dynamic resource allocation problem can be considered
as a complementary supplement to the resource-constrained bandit problem in Chapter 5.

7.2 Directions for Future Work

At the end of Chapters 2-6, we provide the future directions to further extend the
methodologies/experiments presented therein. In what follows, we provide additional topics related
to the content of this dissertation that are worth exploring in further detail.

Real-World Implementation of Detection Algorithms: In Chapters 2-4, we consider anomaly
detection in CAV sensors under different scenarios, where we only consider longitudinal models to
represent vehicles’ dynamics. The longitudinal dynamics may be suitable for theoretical analysis of
vehicle strings, but it cannot fully represent the complex nature of a vehicle’s motion in practice. In
order to implement the proposed framework in the real world, we need to adopt motion models that
more accurately represent actual vehicle dynamics.

Anomaly Detection Using Multi-Modal Data: Throughout Chapters 2-4, we focus on sensor anomaly
detection in CAVs, where we assume data from different sensors are synchronized, collected at
the same rate, and converted to time-series data. However, in practice, what we receive can be
multi-model data including images from cameras, point cloud data from LiDAR systems, and time
series from other onboard sensors, where various sources of data can be asynchronous. Current
literature in the field of autonomous driving has considered multi-modal sensor fusion for end-to-
end autonomous driving (Huang et al., 2020; Xiao et al., 2020; Prakash et al., 2021) and object
detection (Feng et al., 2020; Chiu et al., 2021). However, there is still a paucity of anomaly
detection/cybersecurity research leveraging multi-modal data. Exploration of multi-modal data
collected from CAVs and other sources (e.g., RSUs) for anomaly detection and signal recovery
could make cybersecurity solutions more practical for real world implementation.

Holistic Framework for Dynamic Security Resource Allocation and Sensor Selection: In Chapters
5-6, we consider macroscopic decision-making problems that focus on cybersecurity of connected
and automated transportation systems, where we divide the dynamic sensor selection and dynamic
security resource allocation into two different tasks, i.e., MPMAB and POMDP, respectively. One
advantage of using MPMAB is that it provides theoretical guarantee of asymptotic performance.
Meanwhile, POMDP provides us the flexibility to consider imperfect observations. Although there
exist numerous reinforcement learning based algorithms for solving large-scale POMDP models,
in the context of our problem, it is hard to obtain the real-world data for training, and to obtain a
theoretical performance guarantee of the learned policy. It would be worthwhile to explore online
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learning approaches, which are able to provide a theoretical guarantee on asymptotic performance,
to create a holistic framework for both dynamic security resource allocation and sensor selection.
For example, the contextual bandit (Li et al., 2010) is a variant of the multi-armed bandit problem
that associates side information/context with each arm. Based on this side information, which is in
the form of features, the algorithm needs to learn a policy that maps the feature space to arms. It is
of interest to explore whether we can regard the states of the dynamic security resource allocation
task as the side information, and devise a variable-played version of the contextual bandit.
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APPENDIX A

Supporting Materials of Chapter 5

A.1 Hedge and Exp3 Algorithms

Algorithm A.1: Hedge
1: Parameters: ι ∈ R+.
2: Initialization: Set rk(1) := 0 for all k ∈ N .
3: for t = 1,2,...,T do
4: Choose action It according to the distribution

βk =
(1 + ι)rk(t)∑N
j=1(1 + ι)rj(t)

.

5: Receive the reward vector x(t) and score gain xIt(t).
6: Set rk(t+ 1) := rk(t) + xk(t) for all k ∈ N .
7: end for
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Algorithm A.2: Exp3
1: Parameters: ι ∈ R+ and η ∈ [0, 1].
2: Initialization: Initialize Hedge.
3: for t = 1,2,...,T do
4: Obtain the distribution vector β(t) = (βk(t), k ∈ N ) from Hedge.
5: Select action It to be k with probability

β̂k(t) = (1− η)βk(t) + η/N.

6: Receive the reward xIt(t) ∈ [0, 1].
7: Return the simulated reward vector x̂(t) = (x̂k(t), k ∈ N ) to Hedge with

x̂k(t) =


η
N
× xIt (t)

β̂It (t)
if k = It

0 otherwise.

8: end for
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A.2 DepRound Algorithm

Algorithm A.3: DepRound: The Dependent Rounding Algorithm

1: Inputs: Natural number M < N , marginal distribution (pk, k ∈ N ) with
∑N

k=1 pk = M

2: Output: Subset N1 of N such that |N1| = M

3: while {k ∈ N : 0 < pk < 1} ≠ ∅ do
4: Choose distinct i and j such that 0 < pi < 1 and 0 < pj < 1

5: Set ρ = min{1− pi, pj} and ζ = min{pi, 1− pj}
6: Update pi and pj as

(pi, pj) =

(pi + ρ, pj − ρ) with probability ζ
ρ+ζ

(pi − ζ, pj + ζ) with probability ρ
ρ+ζ

7: end while
8: return {k : pk = 1, 1 ≤ k ≤ N}
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A.3 Proof of Theorem 5.2

Proof. Note that

r̄∞ =1− lim inf
T→∞

E

[
1

T
GJ

Exp3.M-VP(T )

]
(A.1a)

≤1− lim inf
T→∞

1

T

(
Gmax(T )− 2

√(
1 + (e− 2)

b

a

)√
bTN ln

N

b

)
(A.1b)

=1− lim inf
T→∞

1

T
Gmax(T ) (A.1c)

≤N − a

N
(A.1d)

for any policy π of the attacker, where the last inequality (A.1d) comes from the fact that Gmax(T ) ≥
Ta
N

for any defender’s policy γ.
Under the greedy policy we have β̂g(t)(t) ≤ b

N
, which implies r(t) ≥ N−b

N
for any t. Therefore

by using the greedy policy πgreedy, we have r̄∞ ≥ N−b
N

.
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A.4 Proof of Lemma 5.2

The proof of Lemma 5.2 is an extension of the proof of Lemma 4 in (Wang & Liu, 2015). The main
difference is that the matrix H is now an N × |C(N , a)| matrix compared to the one in the original
proof which is N ×N .

Proof. 1) The problem (5.27) is equivalent to

max
d∈∆N

min
u∈∆N

|C(N ,a)|∑
n=1

N∑
k=1

(
µkdk −

∑
j∈Jn

µjdj

)
un (A.2)

which can be rewritten in matrix form:

max
d∈∆N

min
u∈∆N

d⊺Hu (A.3)

where ⊺ denotes the transpose, and

H =



0 µ1 · · · µ1

...
... . . . ...

0 0 · · · µa

µa+1 0 · · · µa+1

...
... . . . ...

µN−a+1 µN−a+1 · · · 0
...

... . . . ...
µN µN · · · 0


where each column j represents one set S ⊆ C(N , a) such that for all i ∈ S, Hij = 0 and for all
i ∈ N \ S, Hij = µi. The remaining proof is the same as the original proof.

Now consider a zero-sum game with the payoff matrices for the row and the column players
being H and −H, whose mixed strategy vectors are d and u, respectively. Any optimal solution
d∗ to the problem (5.27) is a Nash equilibrium strategy for the row player, and by the indifference
condition, we obtain for any j ∈ supp(d∗),∑

k ̸=j

k ∈ supp(d∗) = Const. (A.4)

which implies µkd
∗
k = µjd

∗
j for any k, j ∈ supp(d∗).

2) The second part of the Lemma is proved by contradiction. Assume that there exist
i ∈ supp(d∗) and j ∈ N \ supp(d∗) such that µj > µi. Let o be a constant such that
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o = µkd
∗
k for any k ∈ supp(d∗). Then consider a feasible solution d, where dk = 0 for all

k ∈ ((N \ supp(d∗)) \ {j}) ∪ {i}, and dk = d∗k + ϵ for all k ∈ (supp(d∗) \ {i}) ∪ {j}, with
ϵ = d∗i (1− µi/µj)/K

∗, which yields a higher objective value.
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A.5 Proof of Lemma 5.3

Proof. Consider the following linear program:

minimize
l,p

p (A.5a)

s.t. p+ µklk ≤ µk (A.5b)∑
k

lk ≤ b (A.5c)

0 ≤ lk ≤ 1 (A.5d)

It is easy to see that problem (5.32) is lower bounded by the problem (A.5).
Then the dual of the program (A.5) can be written as

maximize
d,q

N∑
k=1

µkdk − q (A.6a)

s.t.
N∑
k=1

µkdk ≤
Nq

b
(A.6b)

N∑
k=1

dk = 1 (A.6c)

dk ≥ 0 (A.6d)

Note that program (A.6) is equivalent to the following problem

maximize
d∈∆N

N∑
k=1

µkdk − max
J∈C(N ,b)

∑
j∈J

µjdj (A.7)

which is essentially problem (5.27), except for changing the set C(N , a) to C(N , b). Therefore
problem (A.7) has the optimal value K∗−b∑K∗

k=1 µk
, which provides us with the lower bound.
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