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3.4 Kagome lattice with SSS domain wall under different given strains. The lattice con-
figuration is identical to the one used in Fig. 3.1, Fig. 3.2, and Fig. 3.3. (a): The grav-
itational effect on the lattice with angular springs. The mass of sites are identically
m = 5× 10−6, and the angular spring constants are κθ = 10−4 in unit of force/angle.
The response NN stress is shown in red, and the AS response is shown in blue. The
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max = 5.56 × 10−3 concentrated
at the domain wall, and a maximum AS stress tAS
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stresses of bonds for each column, the peak in the middle represents the large stress
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rated into tension and compression, where tension is shown in red and compression
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is related to the shearing direction, the domain wall focuses tension if the shearing
direction is the +x̂-direction and compression if the shearing direction is the −x̂-
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 A simple diagram of a three-particle subsystem highlighting the angle θ0,xy between
bond vectors r⃗0x and r⃗0y among particles 0, x, and y. . . . . . . . . . . . . . . . . . . 68

3.10 A representation of the AS angle θ (shown in red) between bonds r⃗ij and r⃗ik, and the
approximated NNN bond r⃗jk (shown in dashed blue line). The angle is changed by δθ
when the site j is moved by a small displacement u⃗j . . . . . . . . . . . . . . . . . . . 69

4.1 Schematic of the multistable Maxwell lattice and its topological polarization. (a)
Schematic of a section of a Maxwell lattice having bistable units with 3× 3 unit cells.
Each unit cell (dashed box) consists of triangles A and B that are hinge-connected,
and added springs are indicated by black lines between the triangles. The primitive
vectors are a⃗1 and a⃗2. (b) Topological transitions of a distorted kagome lattice. Three
angles, αa2 , αa1 , and αa2−a1 correspond to cases where the sides of the triangles A
and B align (light green stripes) and represent the critical angles that separate distinct
topologically polarized phases. The angles αb1 = 2.0984 and αb1 = 3.4052 indicate
two equilibria (one in the polarized phase and the other in the non-polarized phase)
of the lattice with bistable units, in which the springs are relaxed. These are the two
equilibria for the configuration in the rest of this paper as well. (c) Two stable equi-
libria with notations of the triangles of a bistable unit with a spring. ar, br, and cr are
side lengths of triangles A, while ab, bb, and cb represent side lengths of triangles B. ls
is the length of the undeformed spring. (d) 3D printed unit cell with a spring showing
bistable equilibria. (e) Numerical surface stiffness versus the twisting angle, α, of a
30 × 30 distorted kagome lattice [as shown in (a)] with bistable units. The surface
stiffness is normalized by bond stiffness k1 (here k1 = 1), and the spring constant is
k2/k1 = 10−4. The stiffness of the hard edge increases significantly as α falls within
αa2 and αa2−a1 , and floppy modes move the opposite edge. . . . . . . . . . . . . . . . 74

xiv



4.2 Parametric study of surface stiffness. Deformed lattice of 30 by 30-unit cells given
displacement at the (a) hard (bottom of the lattice) or (b) soft (top of the lattice) bound-
ary for calculating edge stiffness. The displacement field of the sites are represented
by red arrows with longer arrows corresponding to larger displacements. The ten-
sion/compression on the bonds and springs are shown in blue and green respectively
with higher magnitudes corresponding to more visible colors and thicker lines. The
springs are at their rest length, which is 95% of (ar + bb)/2, and k2/k1 = 0.001 with
k1 = 1. (c) Rest length of springs (2ls/(ab + br)) with respect to the twisting angle
α. The black dot is the configuration where the rest length is 95% of (ar + bb)/2, and
this configuration is also used in Fig. 4.3. (d) Normal (solid) and shear (dashed) stiff-
ness versus the twisting angle α. The normal and shear stiffnesses are calculated for
the force applied perpendicular and parallel to the primitive vector of a1, respectively.
Surface stiffness of (e) hard and (f) soft edges against the rest length of the bistable
unit for different spring stiffness (k1 = 1 for all cases). Blue dots in (e) and (f) are the
configurations of the deformed lattice in (a) and (b). (g) Edge stiffness of hard and
soft edges versus the stiffness, k2, for multiple rest lengths of springs. As k2 increases,
the stiffnesses of the top and bottom edges tend to converge. The stiffness and k2 are
non-dimensionalized by k1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Linearized normalized edge stiffness of kagome lattices transitioning between polar-
ized and nonpolarized phases. The bond stiffness k1 is 1 for all simulations. (a) Edge
stiffness of top and bottom edges from 10× 10, 20× 20 and 30× 30 kagome lattices
with structures and dimensions shown in Fig. 4.1. The rest length of the spring is set
as 95% of (ar + bb)/2, and the lattice is held at different configurations (labelled by
angle ) by three boundaries with the edge stiffness measured at the fourth boundary.
The spring constant k2 is 0.001. (b) Edge stiffness of a 30×30 kagome lattice without
bistable units (k2 = 0). (c-e) Edge stiffness of a 30 × 30 kagome lattice with differ-
ent k2/k1. (c) k2/k1 = 0.001, (d) k2/k1 = 0.01, and (e) k2/k1 = 0.1. Black and
red dots indicate the specific surface stiffness at the equilibrium twisting angles, α0,
where the spring is relaxed, one located in the topologically polarized phase and the
other in the non-polarized phase. An inset in (c) is a linear scale plot of edge stiffness
for k2/k1 = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Continuous theory of topological mechanics in Maxwell lattices in the presence of
bistable spring, k2. (a) Eigenvalues of the elastic moduli matrix (measured in the unit
of k1) as functions of k2/k1. (b) Penetration depths of the two edge modes as functions
of k2/k1. Dashed lines in (b) indicate the penetration depths at the ideal Maxwell limit
k2 = 0. Here the penetration depths are characterized as the parameter b in the zero-
mode solution of the decay rate q′′y = q2x/b, so the physical penetration depth is b/q2x,
depending on the wave vector along the edge. For k2/k1 < 0.1, one of the eigenvalues
is significantly smaller than the other two, and the continuous theory exhibits the same
topological index and penetration depths as the ideal Maxwell limit. Beyond this
point, the smallest eigenvalue becomes comparable with the other two, and the system
undergoes a crossover towards the rigid regime, for which the continuous topological
theory is no longer valid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



4.5 Reconfiguration interfaces of multistable topological kagome lattices. Reconfigura-
tion interface of (a-b) 10 × 8, (c-d) 14 × 8, (e-f) 20 × 8, and (g-h) 30 × 8 kagome
lattices based on minimization of nonlinear elastic energy of the lattice. (a, c, e, g)
Initial configurations of the lattices have non-polarized domains at the top area of the
lattice and polarized domains at the bottom area, respectively (forming a zero-mode
interface). (b, d, f, h) Initial configuration presents that the non-polarized area is at the
bottom while the polarized area is on the top part of the lattice, creating a self-stress-
state interface. (i) Two uniform lattices with different primitive vectors are shown to
illustrate fitting them together while with different widths. Examples of initial con-
figurations are shown in Supplementary Materials, Figure. 4.9. The colormap is used
for the differences of the twisting angles α between unit cells, and αa2−a1—positive
values (in blue) indicate non-polarized unit cells, and negative (in red) represent po-
larized unit cells. α − αa2−a1 = ±0.2 imply the unit cell is at its bistable equilibrium
in which the spring is relaxed (α0 = 2.95 and α0 = 2.55). . . . . . . . . . . . . . . . 83

4.6 Experimental validation on topological transition and surface stiffness. (a) Topologi-
cal transition (swift twist of angles) from non-polarized phase to polarized phase for
a 6 × 6-unit cell lattice. (b) The comparison of forces needed to push the tips of two
opposite edges at given displacements. The hard edge is pushed to 20 mm which
needs over 43 N, while 19 mm is given for the soft edge needing only 0.86 N. (c)
Force and (d) corresponding edge stiffness against displacement for two edges. The
black (blue) line indicates the hard edge undergoes a pushing (pulling) load, while the
red (magenta) represents soft edges applied by a pushing (pulling) force. Solid and
dashed lines are used to distinguish theoretical results and experimental data. . . . . . 85

4.7 Surface stiffness of bistable lattice made by multi-materials and bistable unit design
and test. (a) Experimental setup for surface stiffness testing of multi-material Maxwell
lattice. A zoom-in panel shows the detailed unit cells and the hinges using soft ma-
terials. (b) Force versus displacement for the hard and floppy edges. The solid lines
indicate three trials for the hard edge while the dashed lines represent trials for the soft
edge. The stiffness ratio between the two edges is averaged by the fitting with 3 trials
and is around 16. (c) A bistable hinge, composed of two approximately triangular
shaped prisms attached by a flexural hinge, and connected by a thin spring element.
Experimental setup for force-displacement testing of the bistable hinge. (d) Force ver-
sus displacement for the bistable hinge. The force probe starts from one stable state
of the bistable hinge and pushes the structure snapping to the other stable state with a
displacement rate of 0.2 mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 A unit cell of a homogeneous lattice with a bistable unit where the internal angle
between two triangles is α. Node A, B, A′, and B′ are shared with the adjacent unit
cells, while Node C belongs to the current unit cell corresponding to the α angle. . . . 90

4.9 initial configurations of a 14 × 8 lattice with (a) RT = a2 − a1 at the bottom and
RT = 0 at the top, and (b) RT = a2 − a1 at the top and RT = 0 at the bottom. . . . 92

4.10 (a) 3-dimensional model of a unit cell, (b) 3D modeled and printed spring connectors,
and (c) assembled unit cells connected with springs. . . . . . . . . . . . . . . . . . . 104

4.11 Box plots of force displacement relations for (a) pushing soft edge, (b) pushing hard
edge, (c) pulling soft edge, and (d) pulling hard edge. . . . . . . . . . . . . . . . . . . 105

xvi



4.12 (a) 3-dimensional model of and (b) 3D printed multi-material bistable Maxwell lattice.
(c) 3D modeled and (d) 3D printed bistable hinge. . . . . . . . . . . . . . . . . . . . 106

5.1 Zero energy configuration, polarization diagram, and subsequent nonlinear
wave-like behavior in the zero energy deformation field of a deformed kagome
Maxwell lattice. The analogy between the 2D static deformation fields and a
1D, nonlinear, non-Hermitian wave equation is denoted in the axes labels. (a)
Geometry of the deformed kagome lattice we study here, where θ, α, and γ are in-
ternal angles between the red and blue triangles in the unit cells (with normalized
dimensionless side lengths of (0.4, 0.8, 1) and (0.5, 0.7, 1) for red and blue triangles,
respectively). (b) Topological transitions of the lattice shown in (a) by twisting α. The
black arrows point to configurations at the boundary between polarization domains.
The blue vertical lines denote angles between which det ϵ0 < 0 and the linearized ZM
deformation of the homogeneous lattice obeys hyperbolic Partial Differential Equa-
tion (PDE)s, outside of which det ϵ0 > 0 and the lattice obeys elliptic PDEs. (c) A
zoomed-in view of a calculated section of an initially homogeneous lattice with a2 po-
larization, α0 = 1.3344, and periodic boundary conditions on left and right, perturbed
by a sinusoidal static signal with kx = 0.349 rad/unit cell and ε = 20 mrad. (d) The
full lattice corresponding to the section shown in (c). (e) The 2D Fourier transform
of the deformation field shown in (d), where the nonlinear phenomena of harmonic
generation can be seen. Subscripts x and y denote the “columns” and “rows” axes,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Linear and weakly nonlinear response due to a sinusoidal perturbation applied
to the soft (top) edge of a kagome Maxwell lattice deep in the a2 polarized region.
The lattice has α0 = 1.3144 rad and kx = 0.0524 rad/unit cell. (a-c) Linear response at
ε = 1 µrad. (d-f) Weakly nonlinear response and harmonic generation at ε = 1 mrad.
(a,d) Deformation field. (b,e) 2D Fourier transform of (a,d). White lines denote the
real part of the ZM modes predicted by linear theory. (c,f) Select rows of (a,d). The
pink star in (c,f) denotes the initial homogeneous angle, and the background shading
denotes the topological phase (always a2 polarization in this case). . . . . . . . . . . . 114

5.3 Intrinsic localized topological polarization switching and domain formation due
to a sinusoidal polarization applied to the soft edge (top) of the deformed kagome
Maxwell lattice near the border of the a2 polarized phase. The lattice has α0 =
1.5344 rad, kx = 0.0524 rad/unit cell, and ε = 1 mrad. (a) Deformation field, (b)
2D Fourier transform of (a) with white lines representing the real part of the ZMs
solved from the linear theory, and (c) Select rows of (a). The pink star in (c) denotes
the initial homogeneous angle, and the background shading denotes the topological
phases. The dashed black lines in (a) denote boundaries between regions of different
polarizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvii



5.4 Nonlinear wave amplification and frequency conversion in Maxwell lattices in
response to sinusoidal perturbation. (a-c) Hard edge perturbation (from the bottom)
of an a2 − a1 polarized lattice (α0 = 2.3144 rad), where kx = 0.314 rad/unit cell
and ε = 1 µrad. (d-f) Perturbation (from the top) of an unpolarized lattice with
α0 = 0.7144 rad, with kx = 0.314 rad/unit cell and ε = 1 mrad. (a,d) Deformation
field. The configuration of the lattice in the dashed box is shown below the plot. (b,e)
Phase space of (a,d), where blue to red color gradient denotes a progression from top to
bottom rows, respectively. The insets provide a zoomed-in view near the perturbation.
(c,f) Select rows of (a,d). The pink stars in (c,f) denote the initial homogeneous angles,
and the background shadings denote the polarization regions. . . . . . . . . . . . . . . 115

5.5 Formation of two solitary waves resulting from a point perturbation at the edge
of an a2 polarized Maxwell lattice and their collisions. The lattice has α0 = 1.3144
rad, and the point perturbation is applied to the top row at column 50. (a-c) Perturba-
tion amplitude ε = 0.23 mrad. (a) d2α/dr2 as a function of space. (b) α − α0 and
(c) d2α/dr2 for rows 5000 (blue), 5200 (red), and 5400 (black). Rows 5200 and 5400
are sequentially offset by 1.25 mrad in (b) and 0.2 µrad/(unit cell)2 for visualization
purposes. The black arrows point to the fast moving, spatially wider, solitary wave.
(d) “Speed” dc/dr of the solitary waves as a function of ε. (e) Decay rate of the peak-
to-peak magnitude of d2α/dr2 of the solitary waves σ, defined d2α

dr2 max
− d2α

dr2 min
= Aeσr.116

5.6 Repulsion between two solitary waves, visualized via d2α/dr2, for two point per-
turbations applied to the soft edge (top) of a lattice with the same homogeneous
angle as in Fig. 5.5. Perturbations of ±ε = 0.6 mrad are applied at columns 50 and
350, respectively. The solid and dashed lines demonstrate the predicted behavior of
their perspective perturbations, respectively, based on the speeds calculated in the SI. . 117

5.7 Physical realization of a2 polarized Maxwell lattices with laser cut triangles,
pinned hinges, and three prescribed boundaries, along with comparison to nu-
merical predictions. (a-c) Sinusoidal perturbation for α0 = 1.3144, ε = 0.1 rad,
kx = 0.6283 rad/unit cell. (d-f) Point perturbation for α0 = 1.3144 rad, ε = 45 mrad
applied at column 3. (a,d) Photographs of the deformed lattice, where the left and
right boundaries are prescribed to follow the computed periodic boundary configura-
tion, (b,e) measured angles, and (c,f) simulated angles. . . . . . . . . . . . . . . . . . 119

5.8 Schematic of a deformed kagome lattice with 3×3 unit cells. Each unit cell consists
of a rigid red and blue triangle connected by hinges. The configuration of the lattice
is represented by the angles between the triangles, θ, α, and γ. . . . . . . . . . . . . . 121

5.9 (a) Schematic of a general hexagon in the lattice. The hexagon is generated by sides
from three red triangles and three blue triangles. Site A, B, and F correspond to three
known angles, θi,j , γi,j+1, and αi+1,j , respectively, while site C, D, and E are related
to the other three angles (αi+1,j+1, θi+1,j+1, and γi+1,j+1) to be solved. (b) Dimensions
of a unit cell from (a). (c) Possible given angles that can generate hexagons shown in
(a). Pink dots represent all possible given angles, which can form a hexagon without
constraints (i.e. triangles can overlap indicating not a strain free condition or ZM),
while blue, red, and green dots indicate all feasible angles under a strain free con-
straint. Blue and red dots show the convex (D1) and concave (D2) cases, respectively,
and green dots imply that the given angles can create both convex and concave solutions.124

5.10 Schematic of two unit cells from (a) the bottom edge and (b) the left edge of the lattice. 127

xviii



5.11 “Dispersion relation.” (a) Real component k′y = Re(ky) vs kx in the first Brillouin
Zone for an a2 polarized lattice. (b) Imaginary component k′′y = Im(ky) vs kx for an
a2 polarized lattice. The red branch has a much higher decay rate, and “velocity” at
long wavelength (low kx values). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.12 (a) Perturbation from homogeneous configuration α − α0 for a 600×600 a2 − a1

polarized lattice (α0 = 1.9144) with periodic boundary conditions given a sinusoidal
wave perturbation on the top floppy edge with kx = 0.0523 (rad/unit cell) and ε = 1
µrad. (b) 2D Fourier transform of (a). (c) Wave shapes of select rows (top, middle,
and bottom) from the perturbed lattice for (a). . . . . . . . . . . . . . . . . . . . . . . 134

5.13 (a) Perturbation from homogeneous configuration α − α0 for a 600×600 a2 − a1

polarized lattice (α0 = 1.9144) with periodic boundary conditions given a sinusoidal
wave perturbation on the top floppy edge with kx = 0.0523 (rad/unit cell) and ε = 1
mrad. (b) 2D Fourier transform of (a). (c) Wave shapes of select rows (top, middle,
and bottom) from the perturbed lattice for (a). . . . . . . . . . . . . . . . . . . . . . . 135

5.14 Computational results (α) of wave amplification in 60-column-wide lattices with pe-
riodic boundary conditions due to sinusoidal perturbation (kx = 0.314) for an array
of α0 values. (a,d) α0 originally in a2 polarization, near the boundary with RT = 0.
(b,e) α0 in RT = 0 polarization near the boundary with a2. (c,f) α0 further in RT = 0
than before. (a-c) Perturbation amplitude ε = 1 mrad. (a) Bottom edges after per-
turbing at the top (soft) edges. (b,c) Bottom edges after perturbing at the top edge of
the unpolarized lattices. (d-f) Perturbation amplitude ε = 1 µrad. (d) Top edges after
perturbing at the bottom (hard) edges. (e,f) Top edges after perturbing the bottom of
the unpolarized lattices. In (a), 60 rows is chosen; In (b-f), the displayed row is the
last row before the lattice breaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.15 Computational results of a 10000×600 a2 polarized lattice with periodic left-right
boundary conditions. The lattice has α0 = 1.3144 rad, and the point perturbation is
applied on the top row at column 50. (a) α − α0, (b) dα/dr, and (c) d2α/dr2. Loga-
rithmic scale is used in the colorbars of (b) and (c). Note, (b) [(c)], dα/dr [d2α/dr2]
is saturated at the lower limit of 10−6 rad [10−8 rad]. . . . . . . . . . . . . . . . . . . 137

5.16 Selected computational results for the two solitary waves observed in the lattice in
Fig. 5.15. (a-c) Slower moving solitary wave: (a) α− α0, (b) dα/dr, and (c) d2α/dr2

at column 300 (middle column). Rows 3700 − 4800 are chosen to minimize the in-
teraction with the faster moving solitary wave. (d-f) Faster moving solitary wave: (d)
α−α0, (e) dα/dr, and (f) d2α/dr2 at columns 500 (red) and 600 (blue), respectively.
Rows 70−300 are chosen to avoid the effect of substantial amplitude decay. Note that
we avoid very early rows 1− 70 to give the solitary waves adequate time to separate. . 138

5.17 (a,b) Peak magnitude of d2α/dr2 as a function of rows for (a) slower and (b) faster
moving solitary waves. The fluctuation of magnitude is due to the interaction of two
solitary waves. As a function of point perturbation magnitude ϵ the: (c) rate of change
of αavg with respect to rows, (d) decay rate s based on the amplitude αmax − αmin at
each row of the slower moving solitary wave, (e) decay rate σ based on the peak-to-
peak magnitude of d2α/dr2 at each row for both solitary waves, and (f) wave-speeds
of slower and faster moving solitary waves versus the point perturbation value ϵ. . . . 139

xix



5.18 Additional computational results of a 10000×3000 a2 polarized lattice (α0 = 1.3144
rad) with periodic left-right boundary conditions and the point perturbation applied on
the top row at column 50. As a function of point perturbation magnitude ϵ, the: (a) rate
of change of αavg with respect to rows, and (b) decay rate s based on the amplitude
αmax − αmin at each row of the slower moving solitary wave. . . . . . . . . . . . . . 140

5.19 Dimensions (in the unit of mm) of laser cut acrylic triangles in the unit cell used in
Fig. 5.7(a) of the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.20 Dimensions (in the unit of mm) of laser cut acrylic triangles in the unit cell used in
Fig. 5.7(d) of the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.21 Difference between measured and simulated angles normalized by homogeneous an-
gle α0 = 1.3144 for the two examples shown in Fig. 5.7. (a) Sinusoidal perturbation
for ε = 0.1 rad, kx = 0.6283 rad/unit cell. (b) Point perturbation for ε = 45 mrad
applied at column 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xx



LIST OF ABBREVIATIONS

TMM Topological Mechanical Metamaterials

ZM Zero Modes

FM Floppy Modes

SSS State of Self Stress

VM Vertex Model

ATN Active Tension Network

PBC Periodic Boundary Condition

AS Angular Spring

NN Nearest Neighbor

NNN Next Nearest Neighbor

PBC Periodic Boundary Condition

DOF Degree of Freedom

PDE Partial Differential Equation

xxi



ABSTRACT

In recent years, topological mechanical metamaterials (TMM) have gradually attracted atten-
tion across different disciplines including physics, mechanical engineering, and materials science.
It has achieved great success in analyzing mechanical rigidity and programming mechanical re-
sponses in Maxwell lattices. The engineering of TMMs opened up numerous opportunities for
achieving particular mechanical functionalities in engineering applications such as mechanical im-
pact buffers, waveguides, phonon diodes, etc. Besides the achievements in the theoretical aspect,
there have been also numerous progress made in the manufacturing of TMMs. However, issues
such as finite hinge and material composition takes the realization of TMMs away from the limit of
ideal springs. The focus of this thesis is to examine systems beyond the limit of ideal spring models
and study both the novel physical phenomena and engineering advantage by these considerations.

The first project presented in this dissertation expands on a lattice model in which the elastic
energy is related to rings of springs. This so-called Vertex Model (VM) is presented as an attempt
to understand the geometric effect on epithelial tissues. In a slight variation of the VM, the Active
Tension Network model (ATN), topologically polarized zero modes (ZMs) were discovered. This
work may provide useful insights into tissue morphogenesis.

The second project presents a numerical study on the effect of bending rigidity in Maxwell
lattices. Specifically, the study focuses on the stress-focusing effect on a domain wall that carries
states of self-stress (SSS) formed by connecting two opposite topologically polarized domains.
By including the bending stiffness of the hinges, a masking effect on the stress focusing was
observed as the bending stiffness increased, and by designing the lattice geometry, lowering and
homogenization of the bending stress were achieved. Furthermore, stress focusing was able to be
achieved for shear strain as well. This geometric manipulation could help prevent fracturing at the
hinges in response to different strains.

The third project shows an engineering effort of designing bistable unit cells in Maxwell lat-
tices. Such a design makes the entire lattice to be multi-stable, and the topological transitions more
easily achievable. The multi-stable lattice also shows interesting interface profiles during the tran-
sition due to the incompatibility of the lattice spacing in the two topologically distinguished lattice
regions. Furthermore, structural assembly and 3D-printing techniques were employed to realize
the multi-stable lattices to test the numerically predicted edge stiffness difference between the op-
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posite lattice boundaries. Such an engineering design offers potential application opportunities for
impact mitigation, mechenological computation, and flexible robots.

The fourth project is an analytical and numerical study of the non-linear effect on the Maxwell
lattices. In this study, exact geometric relations were solved to describe the Maxwell lattice with
two boundaries prescribed. Under such a condition, a sinusoidal perturbation was given at one
boundary of the lattice to study the nonlinear effect on the topological polarization of the lattice.
Under such a condition, local regions of topological polarization switching were observed, along
with well-known non-linear effects such as harmonic generations. Furthermore, solitary waves
were observed as the perturbation is localized, which allows us to make an analogy to the time
domain to create an artificial “non-Hermitian” system. The inclusion of non-linearity promotes
further understanding of TMMs beyond the small deformation regime, as well as opens up oppor-
tunities for further applications such as adaptive smart materials.
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CHAPTER 1

Introduction

1.1 Overview

The study of mechanical stability has been a topic of interest since the ancient times when
building architecture and machinery all over the world, and the first systematic study on this matter
has been done by Sir James Clerk Maxwell in 1864 in his publication on the calculation of the

equilibrium and stiffness of frames [6]. In this work, he introduced the mechanical frames as a
composition of points (referred to as sites)connected by rigid struts (referred to as bonds) and
argued that a stiff frame would require that

Nb ≥ dN − d(d+ 1)

2
, (1.1)

where Nb is the number of bonds, N is the number of sites, and d is the dimension of the system.
Eq. (1.1) is known as the Maxwell’s rule, which holds an essential role in understanding mechanical
stability. The term d(d+1)

2
corresponds to the number of rigid translations and rotations under free

boundary, sometimes referred to as “trivial” zero modes. In a special case when equality is satisfied
in Maxwell’s rule, the frame can be isostatic. At this point the mechanical frame becomes isostatic,
it is on the verge of mechanical instability. And it turns out that isostaticity is directly related to
the rigidity criticality of the mechanical frames [7; 8] (more details are provided in 1.2.1).

Furthermore, the study of rigidity has been expanded to other forms of mechanical frames, for
example, the epithelial tissue network, with the hope to explain the role mechanics play in guiding
the epithelial tissue at the developmental stage. The most widely known epithelial tissue model is
the Vertex Model (VM), first introduced by Honda [9]. In this model, the epithelial tissue was mod-
eled as a compact quasi-2D polygonal elastic sheet that tightly tiles the entire space with no gap,
with the elastic energy associated with the perimeter and area of each polygon. Later research has
discovered that the epithelial tissues often are at or near isostaticity [10; 11; 12; 13], which makes
them able to both support and accommodate transformations during various biological processes.
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In a pioneering work by Kane & Lubensky in 2014, mechanical isostaticity was linked to-
gether with topological states of matter. It was discovered that isostaticity provides a particle-hole
symmetry in addition to the time-reversal symmetry of classical Hamiltonian mechanical systems,
which results in a symmetry-protected topological order class called BDI, which is a well-studied
class in electronic systems. This work also provided two examples, namely a 1D mechanical Su-
Schrieffer-Heeger chain model, and a 2D deformed kagome lattice. Starting with this, further stud-
ies on mechanical topological states have shown that they can intervene with topological defects in
crystals [14], buckling of metamaterials [15], and soft strains in isostatic lattices [16]. In addition,
the mechanical counterpart of Weyl points [17] in 2D and Weyl lines [18] in 3D was also studied,
which complements the map between mechanical and electronic topological states. The works on
topological mechanical states have been then expanded to many other different mechanical systems
such as random fiber networks [19], quasi-crystals [20], and origami and kirigami structures [21].
Furthermore, the study of mechanical topological states has led to many potential engineering ap-
plications such as transformable topological mechanical metamaterials [22], phonon diodes [23],
stable geared topological metamaterials [24], protection layers [25], and topological origami meta-
materials [26; 27]. On the other hand, multiple efforts have been made to bring these theoretically
predicted applications to reality with the current additive manufacturing technology [2; 3; 28; 5],
in which it was realized that the non-ideality of the lattice would elevate the energy of the soft
modes to be finite, thus disrupting the theoretically predicted topological mechanical states.

From the common ground of isostaticity, it is natural and important to understand how the non-
ideal springs in the Vertex Model, which are associated with faces instead of edges, affect the
topological states. And from the engineering perspective, it is important to not only understand
how the topological states change when bending stiffness makes the springs non-ideal but also to
minimize the negative effects it has on the topologically protected mechanical properties.

1.2 Linear Elasticity Theory for Discrete Lattices

As a starting point leading to the investigation of mechanical systems with non-ideal springs,
the background discussion of mechanical rigidity and mechanical topological states in ideal spring-
mass mechanical frames is provided here.

1.2.1 Rigidity in Maxwell Lattices

Maxwell’s rule mentioned in section 1.1 offers a criterion to separate systems from rigid to
floppy with the average coordination number z ≡ 2Nb/N as each bond has two sites. And the
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Figure 1.1: Frames of bonds connecting N = 6 sites. (a) has 6 sites, 7 bonds, 5 ZMs, and two
floppy modes indicated by the dotted bonds. (b) has 6 sites, 8 bonds, 4 ZMs, and one floppy mode.
(c) and (d) are constructed from (b) by adding an additional diagonal bond. (c) satisfies Maxwell’s
rule with only the three trivial ZMs. (d) has 4 ZMs and one SSS indicated by the arrows on the
bonds in the left square.

critical coordination number
zNc = 2d− d(d+ 1)

N
(1.2)

marks the threshold between rigid and floppy systems. A system is rigid when z > zNc and becomes
floppy when z < zNc . In the limit of largeN , zNc reduces to z∞c = 2d, and the term Maxwell Lattice

refers to the lattices that have the average coordination number z = zc = 2d, which is on the verge
of mechanical instability.

In the original work by Maxwell, redundant constraints were included, which do not contribute
to the rigidity of the system. Thus, in a later work by Calladine [29], Maxwell’s rule has been
generalized t

dN −Nb = N0 −Ns, (1.3)

where N0 is the number of Zero Modes (ZM), corresponding to site displacements that cause no
change in bond lengths, and Ns is the number of States of Self-Stress (SSS), corresponding to bond
tensions that produce no net force at any site. This generalized counting is called the Maxwell-

Calladine Index Theorem

N0 here also includes the d(d+1)
2

trivial rigid translation and rotations of the system, and the other
non-trivial ZMs that involve internal displacements of the sites are called Floppy Modes (Floppy
Modes (FM)), which has a count

M = N0 −
d(d+ 1)

2
(1.4)

= dN −Nb +Ns −
d(d+ 1)

2
(1.5)

from the Maxwell Calladine index theorem. These floppy modes are also sometimes referred to as
mechanisms in the engineering literature [29]. A rigid system can then be described as a system
that has no floppy modes or a system that can carry loads (SSSs), in which description of the
redundant constraints are taken care of. In the examples shown in Fig. 1.1 [30], all the frames have
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the same number of sites N = 6, but they have different rigidity. Figure 1.1(a) is an example of
a frame obeying the simple Maxwell’s rule, in which there are N = 6 sites, Nb = 7 bonds, and it
has N0 = 2 × 6 − 7 = 5 ZMs and M = 5 − 3 = 2 floppy modes illustrated by the dotted lines
after removing the trivial ZMs since there is no SSSs. Figure 1.1(b) has one more bond compared
to the frame in figure 1.1(a), and there is no SSS in the frame either, therefore, the number of
mechanisms is reduced to M = 1. However, comparing figure 1.1(c) and (d), they both have one
additional bond added compared to figure 1.1(b), but they can be placed either as a diagonal in the
right square or an extra diagonal in the left square. In the first case, there is no mechanism left
after placing this additional bond, which still follows Maxwell’s rule. In the second case, however,
there is still one mechanism that remains in the frame because the additional bond is a redundant
constraint in the frame, and provides an SSS, which is illustrated by the arrows.

The Maxwell Calladine index theorem offered a more rigorous definition on isostaticity, which
is when systems have neither any floppy modes (M = 0) nor any SSSs (Ns = 0). Maxwell frames
(z = 2d) with no SSSs are called isostatic frames. Such isostatic frames necessarily satisfy the
relation z = zc, but for systems with z = zc, SSSs could present to keep the systems away from
isostaticity.

The definition of isostaticity is unambiguous for a finite lattice under free boundary as it takes
the trivial ZMs into account when counting floppy modes. However, in a system under Periodic
Boundary Conditions (PBCs), d(d+1)/2 SSSs are needed to make the lattice elastically stable [31],
thus a new definition of isostatic lattices is proposed to be when N0 = Ns = d [30].

1.2.2 The Dynamical Matrix

In the mechanical frame of N sites modeled as point masses, and Nb bonds modeled as ideal
springs that have a finite stretching stiffness but are free to rotate about the point mass, the elastic
energy can be written simply as

E = E0 +
1

2

∑
i,j∈bonds

kij(ui − uj)
2, (1.6)

where u is the displacement field on the sites, and kij is the stretching stiffness of the spring
connecting sites i and j. In the limit of small displacements, the elastic energy can be expanded in
a quadratic form in u as

E = E0 +
1

2
uiDijuj. (1.7)

And in this form, Dij =
∂2E

∂ui∂uj
is known as the dynamical matrix.
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1.2.3 The Equilibrium and Compatibility Matrices

To capture the linear response, the dynamical matrix can be further separated into the equilib-

rium matrix Q and the compatibility matrix C. The equilibrium matrix satisfies

Q · |t⟩ = |f⟩ , (1.8)

where |t⟩ represents the tensions on bonds, which is an Nb dimensional vector, and |f⟩ are the net
forces on sites, which is an d · N dimensional vector. As a result, the equilibrium matrix Q has
dimension dN ×Nb.

The compatibility matrix C takes a complementing relation

C · |u⟩ = |e⟩ , (1.9)

where |u⟩ represents the displacements on sites, which is a d · N dimensional vector, and |e⟩
represents the extensions of bonds, which is an Nb dimensional vector, thus making C having a
dimension of Nb × dN .

The compatibility matrix C is determined by the first-order bond elongation relation

eij = (ui − uj) · b̂ij, (1.10)

with b̂ij as the unit vector pointing from site j to i. And the equilibrium matrix Q is constructed
from the site force relation

f⃗i = −
j∈N (i)∑

ij

t⃗ij, (1.11)

where t⃗ij is the tension to site i from site j that are the neighbors of site i.
By virtual work theorem, it is proven that C = QT for all ideal spring-mass systems. The

dynamical matrix is related to Q and C by

D = QkQT = CTkC, (1.12)

where k is a Nb ×Nb dimensional diagonal matrix of spring stiffness.
This duality between Q and C matrices provides a particle-hole symmetry for the mechanical

topological states, as we will discuss in Sec. 1.3.1.
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1.2.4 States of Self-Stresses (SSS) and Zero Modes (ZM)

In the special case of state of self-stress(SSS), no net force is produced on the sites, corresponds
to the null space of the equilibrium matrix Q as

Q · |tSSS⟩ = 0. (1.13)

And the zero modes (ZM) corresponds to the null space of the compatibility matrix as it is a set
of displacements that cause no bond extensions:

C · |uZM⟩ = 0. (1.14)

We will see in Sec. 1.3.1 that they can be topologically protected.

1.3 Topological Mechanical Metamaterial (TMM)

For a free 2D lattice of N sites cut from a periodic Maxwell lattice, there are necessary of order√
N zero modes due to the order

√
N bonds being cut, and all sample-spanning state of self-stress

are lost. In the case when there is no bulk ZMs, this ZMs originated from the cut of the boundary
and must be localized at surfaces. It was discovered by Kane & Lubensky in their work in 2014,
that these surface modes are intrinsically linked to the topology of the lattice phonon spectrum.
The formulation of a topological invariant for the spectrum as well as the interpretation of the
invariant in terms of the localization of the ZMs and SSSs are discussed in this section.

1.3.1 Topological Mechanics in Maxwell Lattice

To illustrate the topological nature of the phonon spectrum, we begin by considering a 1D
model whose phonon spectrum is identical to that of the Su-Schrieffer-Heeger (SSH) model for
polyacetylene [32; 33], schematically shown in Fig. 1.2 (a) - (d).

In this model, rigid bars of length r can rotate freely about fixed positions on a 1D periodic
lattice, and the ends of the bars are connected by harmonic springs whose lengths are adjusted so
that the equilibrium configuration is one in which alternate rods make an angle θ̄ with the upward or
downward normals, creating repeated 2-site unit cells of length a. Bars tilt to the right if θ̄ > 0 and
to the left if θ̄ < 0. Expanding in deviations δθi about θ̄, the extension of spring β is δlβ = Cβsδθs,
where Cβs is the compatibility matrix relates the stretch of spring β with rotations of rod s. With
further derivation, we have

Cβs(θ̄) = c1(θ̄)δs,β − c2(θ̄)δβ,s+1 (1.15)

6



Figure 1.2: (a), (b) The SSH model of polyacetylene, with A and B sublattices indicated by blue
circles and red squares, respectively. (c), (d) the mechanical analog of (a) and (b), in which masses,
represented by the larger blue dots, are connected by springs in red and are constrained to rotate
about fixed pivot points, represented by small black dots. (e) A domain wall in polyacetylene
connecting the AB and BA dimerized states. There is a topologically protected zero-energy state
associated with the A sublattice at the defect. (f) A mechanical counterpart of (e) with a topolog-
ically protected ZM at the domain wall connecting a θ̄ = +θc lattice and a θ̄ = −θc lattice. (g) A
domain wall connecting the BA and AB dimerized states, which has a zero-energy state associated
with the B sublattice. (h) The equivalent mechanical SSH chain that has a SSS at the domain wall.
Adapted from [1].
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with

c1(2) =
(a± 2r sin θ̄)r cos θ̄√

a2 + 4r2 cos2 θ̄
. (1.16)

And the Fourier transform of Cβs gives

C(q) = c1 − eiqac2. (1.17)

Under PBC, because each site corresponds to one bond only, we have N = Nb, and the Maxwell
Calladine index theorem tells us that N0 = Ns. As a bond is cut to free the boundary the number
of ZMs becomes N0 = Ns + 1, therefore if there is no SSS in the system, there must be one
ZM, which can either be a mode in the bulk or a surface mode on one of the boundaries. Since the
compatibility matrix has only diagonal elements C11 = c1 and C22 = −c2, then the ratio λ = c1/c2

determines whether the surface state localizes on the left or the right boundary. In another word,
the one zero modes is on the left if |c1| > |c2| and on the right if |c1| < |c2|. Furthermore, the
compatibility matrix C(q) ≡ |C(q)|eiϕ (or more generally its determinant) maps points in the
Brillouin zone (−π/a < q ≤ π/a) to a path in the complex plane, and since it depends on eiqa, the
path will be closed and will return to its starting point as q advances between equivalent points in
the zone (q → q + (2π/a)). These curves are characterized by an integer winding number:

n =
1

2πi

∫ 2π

0

dϕ =
1

2πi

∫ 2π/a

0

dq
d

dq
Im ln detC(q), (1.18)

which for the C(q) in Eq. (1.17) is either +1 or 0, corresponding to the two cases of right or left
boundary localization of the one surface ZM.

This formulation, although only shown in this 1D example, can be easily generalized to higher
dimensions, and the more generic form of the topological winding numbers associated with each
qi is calculated as

ni =
1

2π

∮
Ci

dq · ∇qϕ(q) =
1

2πi

∮
Ci

dq · Tr
[
Q(q)−1∇qQ(q)

]
, (1.19)

where ϕ(q) is the phase of detQ(q) (Q(q) = |Q(q)|eiϕ(q)). Here Ci is a cycle of the Brillouin
zone connecting q and q+Bi, where Bi is a primitive reciprocal vector satisfying ai ·Bj = 2πδij .
These winding numbers, combined with the primitive translation vectors ai, form a topological
polarization vector

RT =
∑
i

niai, (1.20)

which is a generalization of the 1D winding number, indicating the localization of the surface ZMs,
and SSSs.
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Figure 1.3: Examples of 3D-printed TMMs. (a) 3D-printed 3D topologically polarized specimen
from Ref. [2]. (b) 2D kagome lattice TMMs fabricated from Shore 15A durometer silicone rubber
in Ref. [3]. (c) A multi-material 3D-printed kagome lattice TMM using Stratasys Polyjet printer,
also shown in Ref.[4]. (d) A PCLDA-SMP transformable topological metamaterial in its topolog-
ically polarized and unpolarized states from Ref. [5].

1.3.2 Experiments and engineering of TMMs

The investigation on mechanical topological states has started a wave of further research to cre-
ate Topological Mechanical Metamaterials (TMMs), and this opened up opportunities for many
potential applications as mentioned in Sec. 1.1, and an immediate step to take is the fabrica-
tion and engineering of TMMs. There have been multiple efforts made in the manufacturing of
TMMs [3; 2; 28; 34; 5]. Especially, the current 3D printing technology has attracted attention as
a potential candidate for a convenient and controllable manufacturing method [2; 3]. Some of the
manufactured topological TMMs are shown in Fig. 1.3. It was soon realized that there are multiple
factors interfering with the topological properties, such as buckling [15] and bending stiffness at
the hinges [2; 3; 28; 34] that keep the TMMs away from the ideal spring limit. In the theoretical
prediction of topological mechanics, due to the topologically protected polarization of boundary
modes, a contrast in the boundary stiffness between the two boundaries on the opposite sides of the
topological polarization with 3 orders of magnitude has been predicted [22], which has not been
observed in the past experiments due to the non-ideality.
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1.3.3 The Approximations in Ideal Spring-Mass Models

To see why we need to go beyond the limit of ideal springs even in the discrete model, we need
to first see why the discrete model with ideal springs is needed and what limitations are in the
ideal springs model. When modeling continuum elastic materials, the standard theory of elasticity
is usually used [35]. It considers a continuous elastic body composed of infinitesimal points with
positions r⃗. A displacement field u⃗ = r⃗′ − r⃗ is formed when deformation happens and the points
r⃗ are moved to new positions r⃗′. And a strain tensor

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
(1.21)

can be written with the displacement field (to the linear order), representing the deformation be-
tween two neighboring points in the original and the deformed bodies, as the square of length
change between two points before and after the deformation can be written as

dl′2 − dl2 = 2uikdxidxk. (1.22)

Furthermore, with the consideration of elastic energy, one can write a stress tensor σik = ∂E
∂uik

to break down the forces experienced by the infinitesimal elements due to the deformation. By
assuming the elastic body to follow Hooke’s law, which states that the deformation is proportional
to the applied force when it’s small, one can write down the stress tensor as

σik =
∂E

∂uik
= Cijklujl, (1.23)

where Cijkl is the stiffness tensor representing the elastic moduli of the elastic body.
This continuum treatment for elastic solid bodies has been a great success in describing elastic

deformations and their related mechanical properties, as well as the dynamics [36; 37]. How-
ever, the homogenization of the solid body ignores the microscopic structures, which are then
captured by a discrete treatment of lattice formulations described in Sec. 1.2. Comparing between
the continuous and discrete treatments of elastic media, the discrete treatment can only capture de-
formation larger than the scale of the springs connecting the sites, and it only concerns the length
change of the springs. Thus, attention needs to be paid beyond this simplification, and I’ll explore
the physics it leads to. Specifically, the studies presented in this thesis include I). springs that take
a different energy functional form, II). inclusion of rotational energy for the springs, III). a geo-
metric design that makes the unit cells to be bistable, and IV). the regime where the deformation
on the lattice is no longer small.
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1.4 Outline of Chapters

With the introductions listed above on mechanical rigidity, mechanical topological states, and
the current state of the art in the experiments and engineering of TMMs, I’ll give an outline in the
following chapters of this thesis.

In Chapter II, I take a closer look at the Vertex Model (VM), and a modified case of it named the
Active Tension Network (ATN) model, for epithelial tissues. In these models, we discovered the
unlikelihood of topologically polarized surface ZMs in the VM, and demonstrated the possibility
of topological polarization showing up in the ATN model. In this model of “ring” springs, the cel-
lular mechanical network is under an unusual geometry while the surface modes are topologically
polarized. It could shed light on some of the edge phenomena during biological processes. This
chapter is based on the work published in Soft Matter by Liu et. al. [38].

In Chapter III, I take a dive into the issue of bending stiffness, to see to what degree they in-
terfere with the topological modes of the lattice, with a simple approach of using angular springs

(AS), and a first-order approximation of the AS using the next nearest neighbor (NNN) springs.
Furthermore, we relate and utilize the polarization of both the nearest neighbor (NN) lattice, to de-
sign a lattice that both lower the overall magnitude of both NN and NNN stresses, and homogenize
the distribution of the NNN stresses. This reduces the bending stresses focused on the hinges, and
thus is helpful for preventing hinge fracturing. On the other hand, by engineering the geometry, we
demonstrate the ability to focus stress at domain walls against shearing as well, thus showing the
opportunity to create metamaterials that respond to different given strains. This chapter is based
on a manuscript in preparation by Liu et. al.

Chapter IV demonstrates an engineering approach to control the transformation of the Maxwell
lattice between topological regimes by incorporating bi-stability into the unit cells. By making
the unit cells have two energy-minimized configurations, one in the topologically polarized phase,
while another in the topologically unpolarized phase, it is convenient to utilize the bi-stability
to transform the Maxwell lattice between the two topologically distinct states. Furthermore, the
Maxwell lattice formed by bi-stable unit cells has multiple stable configurations, thus it is possible
to study the static interface formed between two topologically distinguished states, which is served
as a first step toward the understanding of the interface that can form dynamically. The work
shown in this chapter is based on the manuscript to PNAS by Xiu et. al. [39]. In which I have
contributed on theoretical calculation, numerical simulation, and the additive manufacturing and
experimental testing of the assembled continuum TMM as a second author. The finalized version
in the publication may appear with more contexts than this Chapter.

In Chapter V, we take the deformation in the Maxwell lattice to a non-linear level and inves-
tigate the quasi-statically effect of non-linearity on the topological states. First, for topologically
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polarized Maxwell lattices, an asymmetric response is observed depending on the boundary in
which a sinusoidal wave is prescribed. When the input wave is at the hard boundary, it does not
travel far before the amplitude exponentially grows to the extent that the lattice breaks, but when
it is at the soft boundary, the well-known effects from non-linearity such as harmonic generation,
and amplification enhanced frequency conversion. Furthermore, we observe that, under a strongly
non-linear situation, a solitary wave appears in the system, thus by mapping one of the spatial
components as a temporal component, we map the system as a non-Hermitian realized using only
spatial elements, which in the future may facilitate the experimental realization of non-Hermitian
systems. This chapter is based on the work submitted to PNAS by Xiu et. al. [4]. In which I have
contributed on the theoretical derivation and numerical simulation as a co-first author.

Finally, in Chapter VI, I give a summary of the works I present in the thesis, and to conclude, I
discuss the future directions that one can do to extend the topics mentioned, as well as other forms
of non-ideality of the springs one that may be important.
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CHAPTER 2

Epithelial Tissue Network Model as a Maxwell
System

This chapter summarizes the published work “Topological Floppy Modes in Models of Epithe-

lial Tissues” Soft Matter, 2021,17, 8624-8641 co-authored by Harry Liu, Di Zhou, Leyou Zhang,
David Lubensky, and Xiaoming Mao.

2.1 Introduction

The mechanics of epithelial tissues, where living cells closely pack a surface and mechani-
cally interact with one another, is crucial for many morphogenetic processes, such as gastrula-
tion, wound healing, embryogenesis, etc. [40; 41; 42; 43; 44; 45]. These processes can require
particular cellular arrangements that are associated with specific mechanical properties, which
have been studied intensely through analyses of the stresses and strains on the epithelial net-
work [46; 47; 48; 49; 50; 51; 52]. The relation between structure and mechanics in epithelial
tissues not only offers a gateway for a deeper understanding of many of these natural processes
but also opens possible paths to engineer potentially beneficial synthetic processes. In particular,
boundaries and interfaces often play crucial roles in the mechanics of epithelial tissues, because
they offer a platform where the dynamics of cells are most rich. A thorough understanding of the
mechanics on the boundaries and interfaces would be very helpful to characterize these phenom-
ena.

Recent advances in theories of topological mechanics provide a fundamental framework for
understanding mechanics on boundaries and interfaces of marginally stable (i.e.,“Maxwell”) net-
works and how these mechanical properties are robustly controlled by topological features in the
bulk [1; 30; 53]. Many designs have been proposed utilizing topologically protected mechanical
properties to produce novel cellular topological mechanical metamaterials with unusual properties
such as reconfigurable surface stiffness, stress distribution, and localized modes [14; 15; 16; 54].
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Interestingly, epithelial tissues often operate at or near the verge of mechanical instabil-
ity [10; 11; 12; 13], as they are then able both to support stress and to accommodate transformations
during various biological processes. Moreover, it has recently been shown that topological floppy
boundary modes can show up in disordered biopolymer networks when excited by active driv-
ing [19]. It is thus interesting to ask whether topological mechanical properties on boundaries and
interfaces can also arise in epithelial tissues.

In this paper, we study topological mechanics in epithelial tissue sheets based on two models,
namely a simple (passive) VM and an active tension network (ATN) model [55; 56]. We adapt
these models so as to put them at the Maxwell condition where the number of degrees of freedom
is equal to the number of constraints. This condition is crucial for topological polarization to
appear. We observe that in the ATN topologically polarized phases exist and that these phases
only arise when cells become concave. This is based on the observation that topological phase
transitions in these models can only occur when edges of cells form straight lines, which leads to
gap closing and only happens at the onset of convexity change. We cannot, though, exclude the
possibility of topological polarization via the creation and annhilation of Weyl points in the convex
configuration.

This topological polarization indicates exponentially localized floppy modes and states of self-
stress on boundaries and interfaces of the system. Mechanically, boundaries and interfaces with
exponentially localized floppy modes are much softer in comparison to other parts of the tissue. In
contrast, if a boundary does not have exponentially localized floppy modes, it would appear as rigid
as the interior of the tissue. On the other hand, interfaces in the tissue with exponentially localized
states of self-stress tend to accumulate both external stress and internal stress from cell activity.
These properties are solely owing to the cell geometry of the bulk of the tissue, instead of to special
cell activities at the boundary or interface. This is a manifestation of the “topological protection”
of these floppy modes and states of self-stress, which endows the aforementioned phenomena with
remarkable robustness: any weak interactions or slight changes in the geometry, as long as they
do not change the topological phase of the bulk of the tissue, will not destroy the boundary and
interface mechanical response.

These topological mechanical properties may lead to interesting behaviors such as robust lo-
calization of dynamics or stress. It would be of interest to study how these topological properties
relate to phenomena involving tissue boundary/interface dynamics, such as dorsal closure [57; 58]
and invasion of larval tissue by histoblast nests [59; 60] in Drosophila, epiboly in teleost fish [61],
and collective migration and wound healing in a variety of in vitro and in vivo systems [62; 63].
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2.2 The Models

In their simplest form, epithelial tissues comprise a monolayer of adjacent cells, which can
often be approximated by polygons. Thus, the mechanics of an epithelial tissue can be analyzed
by studying a two-dimensional sheet of edge-sharing polygons. A variety of variants on the basic
theme of a vertex model, in which the degrees of freedom are the positions of the polygon vertices,
have been proposed and can explain many observations of mechanical phenomena in epithelial
tissues [9; 64; 65; 10; 66; 67; 68; 69; 70]. These include both passive models in which cell shapes
are assumed to be governed by an (effective) energy and extensions that explicitly account for
various active processes in living tissues. Here, we reserve the term vertex model (VM) for a
particular, common choice of a passive energy described below in Sec. 2.2.1. We also consider an
interesting example of an active model, the active tension network (ATN) model, where mechanical
equilibrium is attained when both force balance at each vertex and the ”stall tension” on each edge
are reached, with the result that the tension on each edge can effectively be specified independently
(subject to force balance constraints).

In this section, we first briefly introduce the VM and the ATN to analyze the counting of the
degrees of freedom and constraints in them. We then discuss the conditions under which these
models become “Maxwell networks”, meaning that they have balanced degrees of freedom and
constraints, providing the right condition for topological floppy modes to arise. We also determine
the force-balance conditions for these models, the equilibrium states of which are both stressed.

2.2.1 Models of epithelial cell sheets

In the remainder of this paper, we consider tissue sheets parameterized by a set of vertex coor-
dinates {R⃗i}. We use the term VM specifically to refer to a model where the dynamics of these
coordinates is assumed to be governed by a mechanical energy with the form [9]

E =
1

2

∑
f

[
KP (Pf − P0)

2 +KA(Af − A0)
2], (2.1)

whereKP is the elastic constant of cortical tension that constrains the perimeter of cells, andKA is
an area elastic constant that could arise, for example, from an interplay between cell incompress-
ibility in 3D and resistance to cell height differences across the tissue. The sum is over all cells in
the tissue, which are labeled by f and have perimeter Pf and area Af .

Tissues governed by the energy of Eq. (2.1) have been shown to exhibit a jammed phase, where
any displacements of vertices cost elastic energy and the system develops a shear modulus, when
the ratio P0/

√
A0 drops below a critical value [10]. In this jammed phase, the tissue is stabilized
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by an equilibrium tension, as we discuss below in the constraint counting.
In the ATN, instead of a passive tension that attempts to restore a preferred perimeter in each

cell, the edges are active and try to reach a preferred “stall tension”, determined by the local activity
of the actomyosin bundle along the edge and cadherin clusters between the cells. Mechanical
equilibrium of the tissue is reached when forces balance at each vertex and each edge is at its stall
tension. Ref. [56] introduced a relaxational dynamics that specifies how the myosin concentration
and the tension on each edge evolve towards this equilibrium state. To study topological modes,
however, we are only interested in small displacements from mechanical equilibrium. In this case,
we may treat the edge tensions as constants, corresponding to the long-time, elastic-like behavior
of the tissue. A similar limit was taken in Ref. [56] in the discussion of the “isogonal” soft modes.

Thus, for the purposes of this paper an ATN is simply a model in which each edge is endowed
with a fixed tension Tij (where i and j denote the two vertices joined by the edge) and each cell
has a pressure Πf = 2KA(Af − A0) conjugate to its area. The Tij’s and Πf ’s must be chosen
so that the net force on each vertex vanishes when the vertices are at their equilibrium positions
but are otherwise arbitrary. The model can then be viewed as having an effective energy whose
differential for small vertex displacements from mechanical equilibrium is given by

dE[{ri}] =
∑
⟨i,j⟩

TijdRij +
∑
f

ΠfdAf (2.2)

where Rij = |R⃗i − R⃗j| is the distance between these two vertices.

2.2.2 Mechanical stability and Maxwell’s counting

In order to analyze topological mechanics in the VM and the ATN, we need to first count the
degrees of freedom and constraints in these models and identify the “Maxwell condition” where
the balance of degrees of freedom and constraints is met. This condition puts the system at the
verge of mechanical instability, allowing unusual topologically protected modes to arise [1; 53].

For both models, deviations from a mechanically balanced state can be described by the dis-
placement field of the vertices {u⃗i} = (ux1 , u

y
1, · · · , uxV , uyV ) for all V vertices. Thus, each vertex i

displaces from its mechanical equilibrium state r⃗i to a new position r⃗i → R⃗i = r⃗i + u⃗i.
We now consider what constraints a displacement field in each model must satisfy to be a zero

mode (ZM) that costs no elastic energy (dE = 0). In both the VM and the ATN, the mechanical
equilibrium states we expand around are stressed, which means edges bear nonzero tension. As we
derive in more detail in App. 2.5.1, this results in an “irrotational” constraint from each stressed
edge,

(u⃗i − u⃗j)× l̂ij = 0, (2.3)
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where i, j denote the two vertices connected by this edge, and l̂ij = (r⃗j − r⃗i)/|r⃗j − r⃗i| is the unit
vector pointing from vertex i to j in the equilibrium state.

The area term of each cell contributes a constraint that the cell area needs to be preserved by any
ZM (for details see App. 2.5.1). To set up the notation, we consider a cell with Vf vertices labeled
as i = 1, . . . , Vf , and U⃗i = u⃗i+1− u⃗i being the relative displacement between the neighboring sites.
We use L⃗i = r⃗i+1 − r⃗i to denote the vector connecting the two vertices in the equilibrium state we
expand around. The constraint that the area is preserved can then be written as

Vf−1∑
i=1

Vf−1∑
j>i

(
U⃗i+1 × L⃗i − U⃗i × L⃗i+1

)
= 0. (2.4)

These two constraints [Eqs. (2.3, 2.4)] are the same between the VM and the ATN. The VM
has an additional term which preserves the perimeter of each cell,

Vf∑
i

U⃗i · l̂i,i+1 = 0. (2.5)

Therefore, the number of constraints in the VM isNC = 2F+E, where F is the number of cells
and E is the number of edges in the network. This follows from the fact that each cell provides a
constant perimeter and a constant area constraint, and each edge provides a no-rotation constraint
because it’s stressed. In contrast, in the ATN the number of constraints is NC = F +E, as the cell
perimeter does not need to be conserved for ZMs.

The number of degrees of freedom is NDOF = 2V in both models, because two coordinates
are required to specify the position of each vertex in two dimensions. Assuming that all vertices
have coordination number z = 3 (3 edges meet at each vertex, which is natural for polygonal
tilings), we have E = zV/2 = 3V/2. Using Euler’s characteristics [71] we have F = E −
V = V/2. Therefore, the total number of constraints on the VM including the area constraint is
NC = 5V/2 > NDOF and the model is over-constrained in the presence of stress. The numbers of
constraints and of degrees of freedom become equal when the area constraint is neglected, leading
to NC = 2V = NDOF , making the system a Maxwell network.

On the other hand, the ATN is a Maxwell network with the area constraint included, as in this
case, NC = F + E = 2V = NDOF .

As we mentioned above, our choice of the elastic energy terms for these models is guided by the
requirement of placing the models at the Maxwell point, so that topological modes are permitted.
Thus, for the VM we henceforth consider only the limit that the cortical tension of the cells is the
dominant contribution to the energy, i.e. KA → 0. That is, we drop the area elasticity contribution,
or, equivalently, assume that pressure differences between cells are negligible. This limit has been
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considered in several previous studies on this model [10; 11; 12; 56]. In contrast, for the ATN, we
consider the generic case where pressure differences between cells may be significant and the area
contribution cannot be ignored.

We emphasize that all of these choices are made solely in order to place the two models at
the Maxwell point, where topologically protected zero modes are possible. In particular, we do
not claim that these particular limits have any special biophysical importance a priori; rather,
under these necessary criteria for Maxwell lattices, we are interested in whether or not the VM
and ATN have unusual topological properties that might be of biological interest. Importantly,
Refs. [72; 73; 74] show that small deviations from these ideal limits through the inclusion of weak
additional terms in the energy (e.g., adding back the area term in the VM or introducing deviations
from fixed tensions in the ATN) preserve the topological polarization, and only weakly lift the
energy of the ZMs. Thus, we expect that our qualitative conclusions will continue to hold in the
vicinity of the Maxwell point.

The counting argument we give here for the VM is consistent with that provided by Bi and Yan
[12]. Their count NC = (E−E0)+F , where E0 is the number of edges without tension, includes
contributions from each tensioned edge and from each face. In our case, the energy expansion
is done around a pre-stressed network where every edge carries a tension, so that E0 = 0, our
constraint count NC = E + F then matches that in [12].

The Maxwell-Calladine index theorem asserts that in a mechanical network, the difference
between the number of ZMs and the number of states of self-stress (SSSs, i.e., eigenmodes of the
stress distribution leaving all components of a network in force balance) is given by the difference
between the numbers of degrees of freedom and of constraints [29; 1; 30],

NZM −NSSS = NDOF −NC . (2.6)

Thus, if a network is Maxwell (defined as NDOF = NC in the bulk, i.e. neglecting any boundary
effects), it must have equal numbers of ZMs and SSSs in the bulk. This condition means that an
infinite Maxwell lattice has no ZMs unless there are SSSs. For a finite sized system under open
boundary conditions, however, a subextensive number of ZMs arise due to the removed constraints
on the boundary. Whether these ZMs are localized or extensive, and where they localize, is a topo-
logically protected property, characterized by a topological winding number [1]. The topological
state, in turn, is determined by the architecture of the tissue network, i.e., by the angles and lengths
of the edges.

It is worth emphasizing that these counting arguments are done in a stressed equilibrium state
in both models. This is different from most current models of topological mechanics. If there
were no stress, the no-rotation constraints associated with the edges would be lifted, and the tissue
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Figure 2.1: A schematic of the variables used in the force-balance condition Eq. (2.7,2.10). The
forces on vertex i caused by the tension on the edges are shown as red arrows, and the forces due
to the pressure of the cells are shown as purple arrows.

would be under-constrained, with an extensive number of floppy modes.

2.2.3 Force-balance condition

The fact that the force equilibrium states in both the VM and the ATN are stressed requires that
any choice of the state we choose to expand around, and study topological modes, needs to satisfy
force balance.

The force balance condition can be derived by requiring O(u⃗) terms in the elastic energy to
vanish [Eq. (2.1) for the VM and Eq. (2.2) for the ATN]. As we derive in detail in App. 2.5.1, for
the VM, after dropping area terms, this condition takes the form

Tij l̂ij + Tik l̂ik + Til l̂il = 0, (2.7)
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for each site i, where as we defined above, l̂ij, l̂ik, l̂il are the edge directions from vertex i to vertices
j, k, l, which are the nearest neighbors of i. In addition,

Tij = Ta + Tb, Tik = Ta + Tc, Til = Tb + Tc, (2.8)

are the tensions on the edges ij, ik, il respectively, originating from the cortical tension Ta, Tb, Tc
from the cells a, b, c. The cortical tension of a cell f can be calculated as

Tf =
∂Ef

∂Pf

(2.9)

for the VM.
In the ATN, as we discussed above, the Maxwell condition is satisfied when the area term is

included, so the force balance condition on vertex i is given by

Tij l̂ij + Tik l̂ik + Til l̂il

+
1

2
Πabn̂ablij +

1

2
Πbcn̂bclil +

1

2
Πcan̂calik = 0

(2.10)

where Πab = Πa − Πb, Πbc = Πb − Πc , Πca = Πc − Πa are the differences of pressures Πa,
Πb, Πc of cells a, b, c respectively. The pressure differences exert effective forces on the vertices
because the vertex positions are the only degrees of freedom in the vertex model. Thus, all terms
in the energy, including the terms involving cell area that give rise to the pressures, must translate
into forces on the vertices. Physically, one can think of these forces on the vertices as arising from
a pressure difference that acts at each point along an edge, giving rise to a net force Πabn̂ablij on
edge ij after integration along the edge. This force tries to move the edge perpendicular to itself;
as the position of the edge is completely specified by the positions of the two vertices at its ends,
this is equivalent to exerting the force on each vertex given in Eq. (2.10). n̂ab, n̂ca, n̂bc are the unit
vectors normal to edge ij of length lij pointing from cell a to cell b, edge ik of length lik pointing
from cell c to cell a, and edge il of length lil pointing from cell b to cell c respectively, as shown in
Fig. 2.1. The 3 terms in the second row of Eq. (2.10) represent the force on the vertex that comes
from the pressure difference of the 3 adjacent cells.

It is worth noting that the tensions Tij, Tik, Til in the ATN are independent variables for each
edge, unlike the tensions in the VM which are related to one another via Eq. (2.8).

To summarize, the two main differences between the VM and the ATN, regarding mechanics
around an equilibrium state, are that (i) the perimeter does not need to remain constant for ZMs in
the ATN—the edges adjust to their preferred tensions instead of returning to the preferred perime-
ter, and thus the area term is included in order to bring the model to the Maxwell condition, and
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(ii) tensions on edges in the ATN are independent on each edge, rather than determined by corti-
cal tensions which are variables associated with cells. As we can see in the next section, we find
this condition important in allowing the system to become topologically polarized, in the cases we
studied.

2.3 Topological mechanics

In this section we investigate topological mechanics in the VM and the ATN and discuss a
phase diagram of the ATN showing where topologically polarized phases arise as a function of the
architecture of the cell sheet.

2.3.1 Compatibility and equilibrium matrices

The compatibility (C) and equilibrium (Q) matrices are the starting point to describe topo-
logical mechanics in Maxwell networks. In simple ball-and-spring networks, these matrices map
between degrees of freedom space and constraints space, and their null spaces give ZMs and SSSs,
respectively [1].

For an epithelial cell sheet, the compatibility and equilibrium matrices need to be generalized
to describe the constraints that are more complicated in nature compared to simple ball-and-spring
networks.

For the VM, as we discussed above, the constraints come from the no-rotation condition of each
edge and the perimeter of each cell, so the matrix is given by

C · u =

(
e⊥

∆P

)
(2.11)

whereas the mapping by the Q matrix is such that

Q ·
(
t⊥

TP

)
= f (2.12)

where e⊥ and t⊥ are E-dimensional vectors of transverse motion (i.e., rotation) of and force on
all the edges, ∆P and Tp are F -dimensional vectors of the changes of perimeters and cortical
tensions of all the cells, u and f are 2V -dimensional vectors of the displacements of and forces on
the vertices. Because F + E = 2V , both C and Q are 2V × 2V dimensional square matrices.

It may appear confusing to see transverse forces t⊥ on edges, whereas in the elastic energy
the edges just bear cortical tension. A way to understand it is that we are expanding around a
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stressed state, where the edges already carry an equilibrium stress T . Displacements of vertices
cause rotation of edges e⊥ which leads to a transverse change to the tensions, which is t⊥. This
change of tension is perpendicular to the edge direction in the reference state, making it t⊥, but
the total tension is along the displaced edge direction. Thus, t⊥ is allowed to exist as a state of
self-stress.

In the ATN, the C and Q matrices are similar to that of the VM, except that the cortical tension
is replaced by an area constraint,

C · u =

(
e⊥

∆A

)
, (2.13)

Q ·
(
t⊥

Π

)
= f, (2.14)

where ∆A and Π are F dimensional vectors of changes of area and pressure of all the cells.
In both models, similar to the ball-and-spring network models, we have C = QT . In the VM,

because the elastic energy is conserved, a dynamical matrix can be defined as

D = QKC, (2.15)

which gives the quadratic expansion of energy around the equilibrium state, and K is a diagonal
matrix includes the values of transverse spring constants k⊥ (which comes from tensions on the
edges as we show in App. 2.5.1) and the elastic constant of cortical tensions KP as the diagonal
entries for the VM, but the entries for the ATN would be the transverse spring constants k⊥ and
the area elastic constant KA. As we discuss below, the actual spring constants are not important
for the topological mechanics of these epithelial tissue models (as long as K is positive definite),
as topological mechanics is primarily concerned with topologically protected ZMs and SSSs.

E =
1

2
u ·D · u. (2.16)

This conserved elastic energy is not required for our discussions of topological modes.
The null-space of the C matrix and the Q matrix give ZMs and SSSs, similar to what happens

in regular spring-and-mass networks. In particular, ZMs in the VM are vertex displacements that
cause no rotation for the edges and no change in the perimeter of the cells, whereas ZMs in the
ATN are vertex displacements that cause no rotation for the edges and no change in the area for
the cells. On the other hand, SSSs in the VM are eigenmodes of transverse forces on edges and
cortical tensions on cells that leave no net force on any vertices, whereas SSSs in the ATN in this
model are eigenmodes of transverse forces on edges and pressure on cells that leave no net force
on any vertices.
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It is worth noting that these matrices are determined by the O(u2) terms in the expansion of
the elastic energy, as we discussed in Sec. 2.2.2 and App. 2.5.1. The O(u) terms vanish when we
expand around an equilibrium reference state, and lead to the force-balance condition, as discussed
in Sec. 2.2.3. These O(u) terms do not affect the topological mechanics of the sheet. Instead, they
determine what type of reference states are allowed.

2.3.2 Periodic epithelial sheets and topological polarization

To explore topological mechanics in epithelial sheets, we first start from periodic lattices, for
convenient analysis of topological states in momentum space. Specifically, we consider the net-
work topology of the tissue to be a honeycomb lattice, i.e., each cell has 6 edges and 3 edges meet
at each vertex. Real epithelial tissue can vary both in terms of the number of edges per cell, and
the number of edges meeting at a vertex, but we start from this simple model for our analysis of
topological mechanics. In particular, we allow the shape of the cells to deviate from a regular
hexagon to tune the geometry of the network and introduce topological phases.

Specifically, we focus on the case where each unit cell of the periodic lattice contains two
epithelial cells, because inversion symmetry is always preserved if we only have one epithelial cell
in the unit cell, and the tissue then cannot have a topologically polarized phase [1].

In this 2-cell unit cell, we have 4 vertices at coordinates s1 = (0, 0), s2 = (1.5, 0), s3 = (0,
√
3),

s4 = (1.5,
√
3) for the critical configuration described in the next section and 6 edges in the

basis, and the network is constructed following an oblique Bravais lattice with primitive vectors
a⃗1 = (3

2
,
√
3
2
), a⃗2 = (0, 2

√
3). The number of degree of freedom per unit cell nDOF = 8, and

the number of constraints per unit cell nC = 6 + 2 = nDOF where the 6 represents the 6 no-
rotation constraints from the 6 edges, and 2 represents the constraints associated with the two faces
(perimeter for the VM and area for the ATN).

To construct the compatibility matrix, we start from the ZM conditions discussed in Sec. 2.2.2,
namely, Eqs. (2.3, 2.5) for the VM, and Eqs. (2.3, 2.4) for the ATN. Using these conditions, we can
construct compatibility matrices C(q) in momentum space that satisfy the mapping described in
Eq. (2.11) for the VM and Eq. (2.13) for the ATN. The null space of these compatibility matrices
give the ZMs of these models. The details of the compatibility matrix are given in the App. 2.5.2.

The topological polarization can then be determined from these compatibility matrices, via the
calculation of the winding numbers of detC(q) around the first Brillouin zone [1],

Ni =
1

2π

∮
Ci

dq · ∇q Im ln detC(q), (2.17)

where the two paths C1, C2 wrap the first Brillouin zone along the two reciprocal vectors b⃗1, b⃗2.
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Figure 2.2: An epithelial tissue sheet taking a periodic lattice structure with two cells 1⃝ and 2⃝
per unit cell. The basis contains 4 vertices and 6 edges as labeled in red. The primitive vectors
a⃗i are labeled in blue. The same vertices and edges that are translated according to the primitive
vectors are labeled in green.
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Figure 2.3: A representation of the first Brillouin zone and the contoursC1, C2 taken for the integral
in Eq. (2.17). The black dots are the reciprocal lattice sites, the red arrows are the reciprocal lattice
vectors b⃗1, b⃗2, and the region enclosed by the blue lines is the 1st Brillouin zone. The representation
of paths of direction C1 are labeled with the dashed purple lines and the paths of direction C2 are
labeled with the dashed orange lines. The reason we take multiple contours along each direction is
that we need to identify potential changes of topological winding numbers across different contours
along the same direction to identify the existence of Weyl points.

And a representation of the contour is shown in Fig. 2.3. A topological polarization can then be
defined

R⃗T = −
∑
i

nia⃗i, (2.18)

where a⃗i are the 2 primitive vectors. Here the two integers (n1, n2) are related to the two winding
numbers calculated above by a constant shift, ni = Ni + ∆i, that accounts for the asymmetry
of the choice of the unit cell (the “gauge degree of freedom” as discussed in Ref. [1]), such that
R⃗T provides a symmetric description of the polarization. For the choice of unit cell we use, as
described in Fig. 2.2, (∆1,∆2) = (2,−1). This is chosen such that the unpolarized case has
R⃗T = 0.

2.3.3 Critical configurations

We start our analysis of topological phases in these lattices by identifying critical configurations
where ZMs are bulk modes. These critical configurations are analogous to the regular square and
kagome lattices [53], and the Mikado model with straight fibers [19], where ZMs (other than trivial
translations) arise under periodic boundary conditions (PBC).

These critical configurations are vital points to construct a phase diagram for topological bound-
ary modes in these problems. This can be seen from the Maxwell-Calladine index theorem
[Eq. (2.6)]. Under PBC, Maxwell system have NDOF = NC so in general there are no ZMs
or SSSs except for the trivial translations. When lattices are at geometric singularities (i.e. critical
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configurations), such as bonds forming straight lines, additional SSSs arise under PBC, leading
to additional ZMs, because NZM − NSSS = 0 is always satisfied. These ZMs and SSSs are bulk

modes as opposed to boundary modes, as they satisfy PBC.
Similarly, the VM and the ATN also develop these SSS-ZM pairs under PBC when edges of the

cells form straight lines. There are two such critical configurations in the 2-cell unit cell lattice,
as shown in Fig. 2.4, and they give rise to bulk ZMs. In these critical configurations, edges in
these straight lines can carry equal t⊥ which are balanced on all nodes, giving rise to SSSs. The
corresponding ZMs are shown in Fig. 2.4, where cells in each straight vertical “strip” shift relative
to one another, leaving all edges parallel to their original direction. These ZMs preserve all edge
directions, perimeter, and area, so they are ZMs in both the VM and the ATN. Our lattices yield
these two types of critical configuration because of our choice of the 2-cell unit cells. Other critical
configurations involving wider strips can also arise when one chooses bigger unit cells. Columnar
structures of this type are seen in a variety of epithelial tissues [69; 75; 76; 77; 78; 79; 80; 81].

At these critical configurations, the lowest phonon band has ω = 0 lines due to these bulk
ZMs, and the momentum space ω = 0 lines are perpendicular to these straight lines in the real-
space lattice. The ω = 0 lines of the critical configurations of different straight line directions are
shown in Fig. 2.6 (f) and Fig. 2.10 (d). As a result, the topological winding number [Eq. (2.17)]
is ill-defined at these critical configurations. The system becomes gapped when the geometry is
perturbed, leading to phases with different topological polarizations, as we discuss below.

2.3.4 Polarized Phases

In order to search for topologically polarized phases, we choose to study geometries of cell
sheets perturbed around the critical configuration in Fig. 2.4(a) where straight lines of edges form
along the a⃗2 direction, as it is a simple geometry with high symmetries. In this analysis we find
topologically polarized phases in the ATN, which we discuss below. Due to fewer free parameters
in choosing force-balanced reference states, the VM does not show any topologically polarized
phases. We will comment on this at the end of this section.

To construct a phase diagram for the ATN, we place vertex number 2 (as labeled in Fig. 2.2)
at different positions, which breaks the straight lines and lift the bulk ZM-SSS pairs. At each
given displacement (x1, x2) of vertex number 2 [from the critical state Fig. 2.4(a)], we define a
new lattice (which is a distinct reference state), and calculate winding numbers using Eq. (2.17).
The result is shown in Fig. 2.5. The phase diagram around critical configuration in Fig. 2.4(b) is
included in the App. 2.5.3.

A few interesting features arise in this phase diagram. First, as vertex number 2 moves verti-
cally along the straight lines, the system stays critical, as the bulk modes of shifting cells vertically
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Figure 2.4: Critical configurations with edges of cells forming straight lines along a⃗2 (a) and a⃗1 (b).
Examples of bulk ZMs in these configurations are shown with red arrows (vertex displacements)
and dashed lines (deformed configurations).
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Figure 2.5: Topological phase diagram of the cell sheet lattice as an ATN around critical config-
uration in Fig. 2.4(a). The geometry of the lattice is such that vertices 1, 3, 4 stay fixed, while
vertex 2 is displaced by (x1, x2) which are the axes of the phase diagram. The phase diagram is
overlaid on the real space lattice to make the geometry clear. The thick black line marks critical
configurations, and 5 different topological phases are observed. The yellow region is un-polarized.
The cyan, red, and green regions are topologically polarized with R⃗T along a⃗2,−a⃗2, and a⃗1 respec-
tively, as indicated by the white arrows. In the purple region the lattice displays Weyl points and
thus topologically protected bulk floppy modes. Six representative configurations of these regions
(marked by black dots) along with their phonon dispersions are shown in Fig. 2.6.
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Figure 2.6: Representative examples of cell sheet lattices in different regions of the phase diagram
(Fig.2.5). (a) A polarized lattice with R⃗T = a⃗2. (b) A polarized lattice with R⃗T = −a⃗2. (c) An
unpolarized lattice. (d) A polarized lattice with R⃗T = a⃗1. (e) A lattice with Weyl modes. (f) A
lattice at critical configuration. For each panel, the real space lattice is shown on the left and the
phonon dispersion relations (ω as a function of qx, qy) is shown on the right. The two red arrows
show the reciprocal lattice vectors b⃗1, b⃗2. Note the Weyl points in (e) represented as black dots.
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remain being ZMs. Second, as vertex number 2 moves to the left, all cells become convex, and
the cell sheet is always unpolarized (R⃗T = 0) in this type of geometry. Third, as vertex number
2 moves to the right, all cells become concave, and the sheet can become polarized up or down,
separated by a region where Weyl modes arise. Weyl modes are singularities of the vibrational
modes (ω = 0) in the Brillouin zone that are protected by topological winding numbers. In partic-
ular, when the integral path in Eq. (2.17) shifts across a Weyl point, the winding number jumps by
an integer value, as this contour integral has a nonzero winding number at the Weyl points them-
selves. As a result, they mark the change of topological polarizations for modes with different
wave numbers. These Weyl points appear and annihilate in pairs as the geometry of the system
changes [17].

Some representative configurations of these phases and their phonon dispersion relations are
shown in Fig. 2.6. The phonon dispersion of the corresponding lattice configurations are shown by
calculating

√
detD(qx, qy) where the spring constant matrix K is taken to be an identity matrix.

We also plot some topological boundary ZMs for configurations with R⃗T = ±a⃗2 [(a,b) in Fig. 2.6]
in Fig. 2.7, where the ZMs are localized at the top and bottom edges respectively. To make these
plots, we take fixed wave numbers along the lattice boundary parallel to a⃗1 and have PBC along
this direction. We have open boundary conditions at the top and bottom boundaries and calculate
these ZMs. It is visible from these plots that the modes preserve the edge directions and the cell
areas, and are indeed ZMs of the sheet.

For each column of unit cells, two ZMs emerge due to the open boundary on the top and
the bottom. This can be seen from Fig. 2.2 where cutting an open boundary along a⃗1 removes
two constraints (one edge and one area) per column of unit cells. In the topologically polarized
phases with R⃗T = a⃗2 [Fig. 2.6(a)] both modes are localized on the top boundary [Fig. 2.7(a,b)],
leaving the bottom boundary rigid because it is ZM free. In the topologically polarized phases with
R⃗T = −a⃗2 [Fig. 2.6(b)] both modes are localized on the bottom boundary [Fig. 2.7(c,d)]], leaving
the top boundary rigid.

It is interesting to note that the decay length of the R⃗T = a⃗2 configuration appears to be very
long [Fig. 2.7(a)]. This is due to the fact that the polarized phase with R⃗T = a⃗2 is a very narrow
region on the phase diagram. Note that at the critical phase, the decay length is infinity (the ZMs
are bulk modes). As a result, the geometric perturbation of the unit cells in this phase is not
large enough to significantly decrease the decay length of the ZMs before hitting Weyl modes
configurations.

At critical configurations [Fig. 2.6(f)], as we mentioned above, the ZMs are bulk modes. For
these lattices, one of the two ZMs per column is the same as the ZM computed under PBC
[Fig. 2.4(a)], whereas the other one involves an interesting “breathing” motion of the columns
of unit cells, as shown in Fig. 2.8. One might think of this mode as a boundary mode because of its
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seemingly larger magnitude of displacement on the top and bottom. However, this is a bulk ZM,
since the displacements increases linearly from the center to the boundaries (instead of exponential
growth), resulting in constant strain. The ZMs of the topologically polarized phases can be seen as
the evolution and linear combination of these two bulk ZMs at the critical configuration.

All these configurations can satisfy force balance in the ATN, by properly choosing tension
of the edges and pressure of the cells. This can be seen by considering these configurations as
mechanical networks with central force springs and pressure on cells (as discussed in Sec. 2.2.3).
Given the hexagonal topology of the cells and all vertices at z = 3, the network is Maxwell
regarding pre-stress, so there must be at least two global SSSs that make the system force balance
under PBC at any geometry [53]. It is worth pointing out that, by definition, all models in which
the only degrees of freedom are the vertices ignore the curvature of the cell edges induced by the
pressure difference between the cells, which may be formally justified in the limits that the edges
have a large bending stiffness or that the edge tensions are much larger than the forces exerted by
pressure differences. In addition, as we mentioned above, topological polarization in these cell
sheet lattices requires concave cell shapes. In this situation, force balance at the vertex with the
concave angle might typically be expected to require active compression (i.e. negative Tij) on
at least one edge. In particular, it is clearly the case that some Tij must be negative if pressure
differences between cells are small enough. Although we cannot categorically exclude that some
equilibrium configuration with concave cells and large pressure differences exists where all of the
tensions are positive, we also have never been able to come up with such a counterexample. We
thus hypothesize that topological polarization normally requires negative tensions.

Coming back to the VM, the reason that the VM doesn’t show any topological polarization is
due to the more constraining force-balance condition in the VM. As shown in Eq. (2.8), instead of
freely chosen cell edge tensions as in the ATN, cell edge tensions in the VM come from cortical
tensions of the cells, and must satisfy Eq. (2.8). Consequently, the number of free parameters of
equilibrium states is reduced. In particular, for the 4 sites in the unit cell, according to the force
balance equation in Eq. (2.7) and the cortical tension equation Eq. (2.8), we have

−(T1 + T2)⃗l2 + (2T1)⃗l3 + (T1 + T2)⃗l1 = 0, (2.19)

−(T1 + T2)⃗l2 + (2T2)⃗l6 + (T1 + T2)⃗l1 = 0, (2.20)

−(T1 + T2)⃗l4 + (2T2)⃗l6 + (T1 + T2)⃗l5 = 0, (2.21)

−(T1 + T2)⃗l4 + (2T1)⃗l3 + (T1 + T2)⃗l5 = 0, (2.22)

where T1, T2 are the cortical tensions of the two cells in the unit cell. Eq. (2.20-2.22) impose an
additional constraint of the force equilibrium state (T1)⃗l3 = (T2)⃗l6. This extra constraint means
that l⃗3 is parallel to l⃗6 which makes the 2 cells in the unit cell to have almost the same geometry with
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Figure 2.7: Examples of topological ZMs in polarized ATNs. (a-b) A lattice with R⃗T = a⃗2 [same
as the lattice in Fig. 2.6(a)] shows two ZMs both localized on the top boundary. (c-d) A lattice
with R⃗T = −a⃗2 [same as the lattice in Fig. 2.6(b)] shows two ZMs both localized on the bottom
boundary. The ZMs are calculated with PBC along the a⃗1 direction, taking a wavevector q⃗ such
that q⃗ · a⃗1 = π.
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Figure 2.8: The ”breathing” mode at the critical configuration, where the straight strips get thinner
and broader in an alternating order. The network is under PBC for the left-right boundary, and
open boundary condition for the top-bottom boundary.
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only length difference for edges l⃗3 and l⃗6 (see Fig. 2.2). Thus under inversion around the center
of edge l⃗5, the unit cell overlaps itself up to only the length difference, with all cell-edge angles
preserved. As we discussed above, the only way the unit-cell geometry enters the mechanics of the
cell sheet in the VM is through these edge angles, and the lengths of the edges are irrelevant. As a
result, the mechanics of the VM with two cells per unit cell always has inversion symmetry due to

force balance, and thus cannot topologically polarize. The only way to polarize the VM is to either
allow larger unit cell (3 or more cells in each unit cell and not under columnar arrangement) or
to introduce disorder. Alternatively, force-balance constraints may be lifted by allowing external
forces imposed by the substrate, which offers us a larger parameter space to have topologically
polarized cell configurations.

The discussions in this section are all based on periodic lattices. They could potentially be
extended to generic, disordered cell sheets with the connectivity topology of honeycomb networks.
In App. 2.5.4 we sketch a transfer matrix method [19] that can be applied to disordered cell sheets
to investigate possible topological phases in future studies. Detailed studies of disordered cell
sheets are beyond the scope of this paper.

2.4 Discussion

In this paper, we study topological mechanics in two theoretical models of epithelial tissues,
namely the VM and the ATN. We identify topologically polarized phases in the ATN where ZMs
and SSSs localize on boundaries of the tissue in a topologically polarized way. In contrast, the
VM doesn’t support topologically polarized phases in the periodic lattice structures we studied,
due to the more constraining nature of its force-balance condition. It is in principle possible that
topological polarization could develop in the VM if larger unit cells or disordered configurations
are considered, but such configurations are beyond the scope of the current paper.

In order to study topological mechanics in the ATN, we place the system at the Maxwell point
with balanced degrees of freedom and constraints. To this end, we consider a generic case where
the pressure difference between cells is not ignored so the area constraint needs to be included.
We study these cell sheets in a periodic lattice setting of honeycomb topology, and the unit cell
consists of two cells, for simplicity. Our results show that all lattices of convex cells are topologi-
cally equivalent and do not show any topological polarization. Topologically polarized phases arise
when the cells become concave, which usually implies that some cell edges carry active compres-
sion rather than tension. These topologically polarized phases are characterized by exponentially
localized ZMs and SSSs on boundaries and interfaces pointed to by the topological polarization
vector. This indicates that when non-convex cellular shapes are experimentally observed on ep-
ithelial tissues, one may expect to discover topologically-polarized mechanical phenomena as we
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discuss here. A special note we need to make here is that for the topologically polarized phase to
occur, only infinitesimal concavity is needed. In the critical configuration (Fig. 2.4), contraction
is essentially off at the horizontal edges (in comparison to the contraction on the vertical edges).
Thus, infinitesimal compression is sufficient for the cells to become concave and polarized (see
Fig. 2.6). Although active tensions on cell edges are typically contractile, it is possible in some
circumstances for passive elastic contributions from the crosslinked cytoskeleton to resist compres-
sion, yielding negative effective tensions on timescales relevant for cell motion [82; 83]; similarly,
cell-cell adhesion makes a negative contribution to edge tension [84].

Mechanical topological polarization results in strongly asymmetric mechanical responses, sim-
ilar to what have been observed in spring-and-mass models [14; 15; 16; 53; 19; 20]. In general,
topological ZMs and SSSs localize at opposite sides of a topologically polarized system, where the
topological polarization R⃗T points to the edge/interface with extra ZMs. In particular, if the topo-
logical polarization R⃗T points towards an open edge, it exhibits extra exponentially localized ZMs,
while an open edge on the opposite side loses ZMs and may become rigid if all ZMs are polarized
to the opposite side. Moreover, interfaces connecting domains of tissue of opposite topological
polarizations can host exponentially localized ZMs (SSSs) when there is a net flux of topological
polarization R⃗T towards (away from) this interface.

Topologically protected ZMs induce localized softness at boundaries and interfaces of the tis-
sue. Compared to normal tissues, where boundaries are usually softer than the bulk in an isotropic
way, topologically polarized tissues exhibit softness in a highly anisotropic manner, where some
boundaries (ones opposite to the direction of R⃗T ) appear to be as rigid as the bulk, and some inter-
faces (ones with accumulated ZMs due to different R⃗T from domains around them) may be as soft
as a normal boundary.

Similarly, topologically protected SSSs induce unusual local stiffness. At the level of linear
response, as shown in Refs. [30; 15; 54], when a material is under external load, stress is “attracted”
to interfaces with localized SSSs. At the nonlinear level, stress response may be further controlled
by cellular rearrangements, as discussed in Refs. [69; 70], but the effect of SSSs may still play an
important role in these rearrangements as spots of focused stress. Biologically, this elevated local
stress may cause interesting consequences in cells at these interfaces.

In addition, even in the bulk of a topologically polarized tissue far from boundaries or interfaces,
the mechanical response to local perturbations (from cell activity or from external forces) can show
strong directionality. It has been shown in Ref. [22] that in a topologically polarized mechanical
network stress and displacement propagate in opposite directions.

It is worth pointing out that we made the simplifying assumption that having boundaries and
interfaces does not interfere with the active stresses in the tissue sheet. Rigorously speaking, force
balance may be violated at these boundaries and interfaces. This will lead to local deformations to
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re-balance the stress, causing locally perturbed geometry at the boundaries and interfaces. Alter-
natively, these active stresses can be balanced by external forces from the substrate the cell sheet
attaches on (the extracellular matrix) or other biological components in contact with the sheet, so
that the homogeneous lattice configurations are maintained. We conjecture that the topological
mechanical properties will survive despite these perturbations, given their topological robustness.
It has been recently shown that topological mechanical properties are indeed robust against various
perturbations from disorder to stress [19], and random damage [54] of the networks. Detailed nu-
merical studies of these cell sheets with actual open boundaries and interfaces will be the subject
of future studies.

Biologically, these topologically robust mechanical properties may lead to interesting conse-
quences. When cells are arranged such that ZMs localize at certain boundaries and interfaces, the
greatly decreased local stiffness may allow significant changes of cell shape and trigger special
biological processes. On the other hand, when cells are arranged such that SSSs localize at certain
interfaces, stress significantly increases at these locations, which may trigger processes such as cell
proliferation or the cell sheet to buckle out-of-plane at these controlled locations.

2.5 Appendices

2.5.1 Expansion of Elastic Energy

In this appendix we expand the elastic energy of both the VM and the ATN, as stressed elastic
media, and derive the force balance condition from the first order terms of the expansion and
constraints for ZMs from the second order terms of the expansion.

2.5.1.1 Elastic energy

The change of the elastic energy in both the VM and the ATN can be generically written as

dE =
∑
⟨ij⟩

T̃ijdRij +
∑
f

Π̃fdAf . (2.23)

This expression takes the same form as the differential elastic energy of the ATN [Eq. (2.2)],
but it also applies to the VM when it is considered an expansion of Eq. (2.1) where the T̃ij’s
come from the cortical tensions as we discuss below. We introduce a 2V dimensional vector
u = (ux1 , u

y
1, · · · , uxn, uyn) to denote the displacement of all vertices, and expand the elastic energy

change up to the 2nd order in u. We add a tilde on the tension and pressure, T̃ij, Π̃f to denote that
they may contain O(u) terms.
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Between the VM and the ATN, the major difference is reflected in the edge tension Tij . These
tensions are controlled by the cortical tensions Ta and Tb of the adjacent cells a and b in the VM,
whereas in the ATN they are adjusted by the myosin dynamics on the edge to reach their stall
values. Thus, as discussed in Sec. 2.2.1, we assume here that the edge tensions in the ATN are
constant,

T̃ij = Tij (2.24)

for the ATN but

T̃ij = KP

[
(Pa − P0) + (Pb − P0) +

1

2
dPa +

1

2
dPb

]
= Ta + Tb +

KP

2
(dPa + dPb)

(2.25)

for the VM, where the cell perimeters are to be evaluated at the equilibrium configuration. This
expression comes from an expansion of the cortical tension term of Eq. (2.1) around a stressed
state with “pre-stretch” Pf − P0. The change of perimeter for each cell can be expressed in terms
of the displacement field u. To second order we have

dPf = u · ∇Pf +
1

2

(
u · ∇∇TPf · uT

)
(2.26)

where ∇ = (∂x1 , ∂
y
1 , · · · , ∂xn, ∂yn) and ∇∇T is the Hessian matrix. Here the differential is taken

with respect to u so that ∂x1 = ∂/∂ux1 .

Since the perimeter Pf =
∑

⟨ij⟩Rij , the derivative for the perimeter dPf in Eq. (2.26) can be
rewritten as

dPf =
∑
⟨ij⟩

u · ∇Rij +
1

2

(
u · ∇∇TRij · uT

)
. (2.27)

The area contributions are treated the same in both models including the change in pressure due
to the displacements u,

Π̃f = KA

[
(Af − A0) +

1

2
dAf

]
= Πf +

KA

2
dAf , (2.28)

where Af is to be evaluated at mechanical equilibrium. This expression comes from an expansion
of the area term of Eq. (2.1) around a stressed state with “pre-area-expansion” Af − A0. The
change of cellular area dAf can be expanded as (to second order)

dAf = u · ∇Af +
1

2

(
u · ∇∇TAf · uT

)
(2.29)
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Thus, combining Eq. (2.25) to Eq. (2.29) we obtain the 2nd order expansion of dE with respect
to the displacement field u in the VM as

dEVM =
∑
⟨ij⟩

(Ta + Tb)(u · ∇Rij) +
KP

2
[(u · ∇(Pa + Pb))(u · ∇Rij)] +

(Ta + Tb)

2

(
u · ∇∇TRij · uT

)
+
∑
f

Πf (u · ∇Af ) +
KA

2
(u · ∇Af )

2 +
1

2
Πf

(
u · ∇∇TAf · uT

)
+O

(
u3
)

(2.30)

Similarly, for the ATN, we have the energy expansion

dEATN =
∑
⟨ij⟩

Tij(u · ∇Rij) +
Tij
2

(
u · ∇∇TRij · uT

)
+
∑
f

Πf (u · ∇Af ) +
KA

2
(u · ∇Af )

2 +
1

2
Πf

(
u · ∇∇TAf · uT

)
+O

(
u3
) (2.31)

2.5.1.2 Force-balance condition

The force balance condition comes from the fact that the expansions of Eq. (2.30) and (2.31)
must have vanishing O(u) terms, so that there is no net force on any vertex. This condition takes
the form

dE(1) =
∑
⟨ij⟩

Tij(u · (∇Rij)) +
∑
f

Πf (u · ∇Af ) = 0 (2.32)

for any choice of the displacement field u. This equation is exactly the force balance condition
described in Eq. (2.10) of the main text for the ATN. For the VM, we keep only the first term in
Eq. (2.32), because we drop the area term in order to satisfy Maxwell’s condition. This leads to
Eq.(2.7) of the main text.

2.5.1.3 The Hessian

Now we turn to examine the O(u2) terms in the expansions and identify the constraints. For
the VM, as discussed in the main text, we only treat the cortical tension as dominant contribution
to the elastic energy in order to place the model to the Maxwell condition. The 2nd order terms in
Eq.(2.30) are thus

dE
(2)
VM =

∑
⟨ij⟩

KP

2
[(u · ∇(Pa + Pb))(u · ∇Rij)] + (Ta + Tb)

(
u · ∇∇TRij · uT

)
(2.33)
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The O(u2) terms for the ATN from Eq. (2.31) are

dE
(2)
ATN =

∑
⟨ij⟩

Tij
2

(
u · ∇∇TRij · uT

)
+
∑
f

KA

2
(u · ∇Af )

2 +
1

2
Πf

(
u · ∇∇TAf · uT

)
(2.34)

TheseO(u2) terms lead to an elastic energy that consists of all complete square terms. Because
these complete square terms must all be zero to make the elastic energy vanish, they provide
constraints discussed Sec. 2.2.2 in the main text. We derive these complete square terms below.

For a cell f modeled as an Vf -polygon, the perimeter and area can be written as

Pf =

Vf∑
i=1

li (2.35)

Af =
1

2

Vf−1∑
i=1

Vf−1∑
j>i

(lxj l
y
i − lyj lxi ), (2.36)

where l⃗i = r⃗i+1 − r⃗i + u⃗i+1 − u⃗i is the length of edge i of face f the same way as defined in
Sec. 2.2. Thus the expansion on perimeter and area can be arranged in orders of u as:

li = l
(0)
i + l

(1)
i + l

(2)
i +O

(
l
(3)
i

)
(2.37)

where

l
(0)
i = |r⃗i+1 − r⃗i| (2.38)

l
(1)
i = u · ∇li = (u⃗i+1 − u⃗i) · n̂i (2.39)

l
(2)
i = u · ∇∇T li · uT =

1

2li
|n̂i × (u⃗i+1 − u⃗i)|2 (2.40)

with n̂i being the unit vector of l⃗(0)i , which is the bond direction before displacements. Subjecting
Eq. (2.39) - (2.40) into Eq. (2.30) and (2.31) allows us to find explicit expressions in terms of the
displacements u.

For the VM, the 1st quadratic term in Eq. (2.30) can be rearranged to become a sum over faces

∑
⟨ij⟩

KP

2
[(u · ∇(Pa + Pb))(u · ∇Rij)] =

∑
f

KP

2

[
n∑
i

l
(1)
i

]2
. (2.41)

39



The 2nd term after the edge to face summation rearrangements becomes

∑
⟨ij⟩

(Ta + Tb)
(
u · ∇∇TRij · uT

)
=
∑
f

Tf

n∑
i=1

l
(2)
i (2.42)

where Tf is the cortical tension on cell f .
It is obvious now that all O(u2) terms in the elastic energy of the VM can be arranged into

these complete square terms, the total number of which is equal to F +E. For a ZM which leaves
the elastic energy zero, each of the complete square terms need to vanish. We thus arrive at ZM
conditions for the VM

Vf∑
i

(u⃗i+1 − u⃗i) · n̂i = 0 (2.43)

n̂i × (u⃗i+1 − u⃗i) = 0 (2.44)

which are Eq. (2.5) and (2.3) in the main text. These constraints are generically linearly indepen-
dent unless the geometry is fine-tuned such that a singularity arises.

We can do a similar analysis for the ATN, where we find that the 1st term in Eq. (2.31)

∑
⟨ij⟩

Tij
2

(
u · ∇∇TRij · uT

)
(2.45)

result in exactly the same ZM condition as Eq. (2.44). The 2nd term

∑
f

KA

2
(u · ∇Af )

2 (2.46)

has the completed square on u · ∇Af , which leads to the ZM condition described in Eq. (2.4) of
the main text. Interestingly, the 3rd term in Eq. (2.31)

1

2
Πf

(
u · ∇∇TAf · uT

)
(2.47)

only depends on the boundary displacements, because it becomes the variation of the total area of
the whole sheet after summing over all faces. Explicitly, the Hessian of the area ∇∇TAf can be
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written in a matrix form as

∇∇TAf =



0 −1 0 0 0 1

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 1 0 −1
−1 0 0 0 1 0


(2.48)

using the sites ri of a face as the basis where i ∈ [1, 6]. Thus, this term vanishes automatically
for any internal vertex and does not provide a new constraint. The total number of constraints
in the ATN is also F + E, placing it at the Maxwell point. One way to physically understand
the vanishing of this term is that the total area of the cellular sheet would not change under the
displacement of internal vertices.

2.5.2 Compatibility Matrix

2.5.2.1 Compatibility matrix of the Active Tension Network

The compatibility matrix for the ATN can be constructed according to the ZM conditions in
Eq. (2.3) and Eq. (2.4). For the unit cell construction in Fig. 2.2, the momentum space compatibility
matrix C(k) is an 8 × 8 matrix because we have 4 sites, 2 faces and 6 edges in a unit cell. From
the condition Eq. (2.3), we have 6 constraints for ZMs in the ATN,

n̂1 ×
(
u⃗2 − eik1u⃗1

)
= e⊥1 (2.49)

n̂2 × (u⃗1 − u⃗2) = e⊥2 (2.50)

n̂3 ×
(
e−ik2u⃗4 − u⃗1

)
= e⊥3 (2.51)

n̂4 ×
(
u⃗3 − e−ik2u⃗4

)
= e⊥4 (2.52)

n̂5 × (u⃗4 − u⃗3) = e⊥5 (2.53)

n̂6 ×
(
ei(k1−k2)u⃗2 − u⃗3

)
= e⊥6 (2.54)
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And from the area conditions in Eq. (2.4), we have 2 more constraints for ZMs in the ATN,

(
u⃗2 − eik1u⃗1

)
×
(
l⃗2 + l⃗3

)
+ (u⃗1 − u⃗2)×

(
−l⃗1 + l⃗3

)
−
(
e−ik2u⃗4 − u⃗1

)
×
(
l⃗2 − l⃗1

)
+
(
u⃗3 − e−ik2u⃗4

)
×
(
l⃗5 − l⃗3

)
+ (u⃗4 − u⃗3)×

(
−l⃗3 − l⃗4

)
−
(
eik1u⃗1 − u⃗4

)
×
(
l⃗4 + l⃗5

)
= ∆A1

(2.55)

and (
u⃗4 − eik1u⃗3

)
×
(
l⃗6 − l⃗5

)
+ (u⃗3 − u⃗4)×

(
l⃗6 + l⃗4

)
−
(
ei(k1−k2)u⃗2 − u⃗3

)
×
(
−l⃗4 − l⃗5

)
+
(
eik2u⃗1 − ei(k1−k2)u⃗2

)
×
(
−l⃗2 − l⃗6

)
+
(
eik2u⃗2 − eik2u⃗1

)
×
(
l⃗1 − l⃗6

)
−
(
eik1u⃗3 − eik2u⃗2

)
×
(
−l⃗1 − l⃗2

)
= ∆A2

(2.56)

Putting the 8 equations from Eq. (2.49) - Eq. (2.56) together results in the compatibility matrix
of size 8 × 8 in the basis of {uxi , uyi } where i = 1, 2, · · · , 4 with each constraint in each row, and
each degrees of freedom in each column. The determinant of this matrix is used to compute the
topological polarization. In these equations, we defined the shorthand eik1 ≡ eik⃗·⃗a1 , eik2 ≡ eik⃗·⃗a2 ,
which are the Bloch factors of the lattice.

2.5.2.2 Compatibility matrix of the VM

Similarly, we can construct the compatibility matrix for the VM using Eq. (2.3) and Eq. (2.5).
The bond rotation constraint Eq. (2.3) have the same 6 equations as shown in Eqs. (2.49 - 2.54).
However, the perimeter conservation Eq. (2.5) gives us 2 constraints,(

u⃗2 − eik1u⃗1
)
· l⃗1 + (u⃗1 − u⃗2) · l⃗2 +

(
e−ik2u⃗4 − u⃗3

)
· l⃗3

+
(
u⃗3 − e−ik2u⃗4

)
· l⃗4 + (u⃗4 − u⃗3) · l⃗5 +

(
eik1u⃗1 − u⃗4

)
· l⃗6 = ∆P1

(2.57)

(
u⃗4 − eik1u⃗3

)
· l⃗1 + (u⃗3 − u⃗4) · l⃗2 +

(
ei(k1−k2)u⃗2 − u⃗3

)
· l⃗3

+
(
eik2u⃗1 − ei(k1−k2)u⃗2

)
· l⃗4 +

(
eik2u⃗2 − eik2u⃗1

)
· l⃗5 +

(
eik1u⃗3 − eik2u⃗2

)
· l⃗6 = ∆P2.

(2.58)

The 8×8 compatibility matrix of the VM is constructed using Eqs. (2.49 - 2.54), (2.57), and (2.58)
again in the basis of {uxi , uyi }.
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2.5.3 Topological Phase Diagram of Networks Close to Critical Configura-
tions Along a⃗1

In Fig. 2.4 we show two critical configurations with bonds forming straight lines, allowing bulk
ZMs where cells translate along strips along a⃗2 (a) or a⃗1 (b). In the main text, we discussed the
phase diagram around the critical configuration (a).

We have done similar analysis of configurations around critical configuration (b), and the results
are shown in Fig. 2.9. Similarly, the sheet is unpolarized when all cells are convex. When the cells
become concave, configurations of R⃗T = ±a⃗1, as well as a region with Weyl points show up. We
show some examples of the geometry of these phases in Fig. 2.10.

It is interesting to note here that because 4 constraints per unit cell are removed when a vertical
cut is introduced on the lattice to generate an open boundary along a⃗2 (so as to show the topological
polarization along a⃗1), 4 instead of 2 ZMs are generated per unit cell. Therefore, topological
polarization R⃗T = ±a⃗1 indicates that the ratio of ZMs at the left and right boundary have ratios
of 1 : 3 or 3 : 1 instead of 0 : 4 or 4 : 0. As a result, we do not observe any boundary becoming
completely ZM free in this case, unlike the phase diagram we discussed in the main text, where
the top or the bottom boundaries can be free of ZMs.

2.5.4 Transfer Matrix for Disordered Cell Sheets

In this appendix we develop a transfer matrix method for ZMs in cell sheets, which can be
applied to disordered cell sheets to conveniently derive the ZM at given boundary conditions.
The transfer matrix for the VM and the ATN can be derived in similar ways, thus we show both
derivations in this appendix.

In this transfer matrix construction, we assume that each cell is a hexagon (of arbitrary shape)
and each vertex has three edges meeting at it, so the sheet still has the topology of a honeycomb
lattice, but no periodicity is required for the shapes of the cells. The constructed transfer matrix will
enable us to derive the ZM displacements of the three “outgoing” edges from the ZM displacements
of the three “incoming” edges. Therefore by propagating this transfer matrix through the whole
cell sheet, where each hexagonal cell has three in-flux and three out-flux, we can compute the ZM
of the whole sheet.

To derive this transfer matrix method, we consider one cell and establish the edge conventions
as shown in Fig. 2.11. Same as in Eq. (2.4), we define U⃗i = u⃗i+1 − u⃗i as the relative displacement
between the neighboring vertices. Because the ZM cannot rotate the edges [Eq.(2.3)], these vectors
U⃗i only have components parallel to the original edge direction

U∥
i = U⃗ · l̂i,i+1, (2.59)
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Figure 2.9: Phase diagram for changing site 2 coordinate in Case 1 with the same representation
style as Fig. 2.5. The gray boundary labels the outbound of the unit cell with the 3 stationary sites
besides vertex 2. The thick black line marks critical configurations, and 5 different topological
phases are observed. The yellow region is un-polarized. The cyan, and red regions are topologi-
cally polarized with R⃗T along a⃗1, and −a⃗1 respectively, where the white arrows mark R⃗T . In the
purple region the lattice displays Weyl points and thus topologically protected bulk floppy modes.
Four representative configurations of these regions (marked by black dots) are shown in Fig. 2.10.
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Figure 2.10: Representative examples of cell sheet lattices in different regions of the phase diagram
(Fig. 2.9) with the same style as Fig. 2.6. (a): A polarized lattice with R⃗T = a⃗1. (b): A polarized
lattice with R⃗T = −a⃗1. (c): An unpolarized lattice. (d): A lattice at critical configuration.

Figure 2.11: The convention used in establishing the Transfer Matrix, sites and edges are labeled
as in the figure, and edge directions are chosen to be in the clockwise direction.
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where l̂i,i+1 is the direction of the edge connecting vertices i and i+ 1.
At each cell, we assume there are three known displacements {U∥

1 ,U∥
2 ,U∥

3}, and we will derive
three unknown displacements {U∥

4 ,U∥
5 ,U∥

6}. From the fact that the hexagonal cell has to remain
closed, we have

Vf∑
i=1

U∥
i l̂i,i+1 = 0. (2.60)

This gives us two equations, because it is a vectorial equation. One more equation for ZMs comes
from the perimeter conservation condition in Eq. (2.5) in the VM

Vf∑
i=1

U⃗ · l̂i,i+1 =

Vf∑
i=1

U∥
i = 0 (2.61)

and from the area preservation condition in Eq. (2.4) in the ATN.

Vf−1∑
i=1

Vf−1∑
j>i

(
U⃗j × L⃗i − U⃗i × L⃗j

)
= 0. (2.62)

Equations (2.60) - Eq. (2.62) allow us to write a transfer matrix M for both models such that

M ·

U
∥
1

U∥
2

U∥
3

 =

U
∥
4

U∥
5

U∥
6

 (2.63)

The transfer matrix M takes the form of a square non-symmetric matrix for both models. In the
VM,

MVM = −

 1 1 1

cos θ4 cos θ5 cos θ6

sin θ4 sin θ5 sin θ6


−1

·

 1 1 1

cos θ1 cos θ2 cos θ3

sin θ1 sin θ2 sin θ3

 (2.64)

where θi are the angles of the edges Li,i+1 in the Cartesian coordinate system. The transfer matrix
M for the ATN has a similar form as Eq. (2.64), with the elements in the first row replaced by the
terms given by Eq. (2.62).

MATN = −
(

cos θ4(Ly
5+Ly

6)−sin θ4(Lx
5+Lx

6) cos θ5(Ly
6−Ly

4)−sin θ5(Lx
6−Lx

4) − cos θ6(Ly
4+Ly

5)+sin θ6(Lx
4+Lx

5)
cos θ4 cos θ5 cos θ6
sin θ4 sin θ5 sin θ6

)−1

(2.65)

·
(

cos θ1(Ly
2+Ly

3)−sin θ1(Lx
2+Lx

3) cos θ2(Ly
3−Ly

1)−sin θ2(Lx
3−Lx

1) − cos θ3(Ly
1+Ly

2)+sin θ3(Lx
1+Lx

2)
cos θ1 cos θ2 cos θ3
sin θ1 sin θ2 sin θ3

)
These transfer matrices can be used to propagate the ZM across the whole sheet cell by cell from
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given boundary conditions, as shown in Fig. 2.12.
To study topological mechanics, we again start from the bulk ZM configuration shown in

Fig. 2.4(a), where U⃗1 ∥ U⃗3 ∥ U⃗4 ∥ U⃗6. In this configuration, both MVM and MATN yield one

ZM with eigenvalue λ1 = −1 with a corresponding eigenvector ν⃗1 =

1

0

1

 for the U∥
i . This is

clearly the bulk ZM depicted in Fig. 2.4(a), where edges 2 and 5 shift vertically.
However, the other two eigenmodes of this 3 × 3 transfer matrix do not correspond to simple

decompositions of other edges of this cell. Specifically in ATN, one of these two modes represents
vertical shifts of neighboring columns with an eigenvalue λ2 = 1, whereas the other one represents
a horizontal broadening or narrowing of the network that has a corresponding eigenvalue λ3 =

|L5|
|L2| ,

and this mode captures the ”breathing” mode discussed in the main text. This differs from other
simpler cases of transfer matrices for topological mechanics where modes symmetrically separate,
making it transparent to study ZM decay in different directions in those systems [19; 20].

For the rest of this appendix, we introduce perturbations to the vertex positions and examine
how the eigenvalues of the transfer matrix change. In particular, we focus on the first mode which
has eigenvalue λ1 = −1 at the critical configuration. The sign of its first order correction δλ1
indicates the directions of decay in the ZM.

We use first order perturbation theory to find δλ as a function of the geometric perturbation of
the vertex positions. However, due to the non-symmetric nature of the transfer matrix, the first
order perturbation method needs a slight modification from the usual perturbation theory because
the left and right eigenvectors of the matrix are not identical.

In first order perturbation theory for symmetric matrices, the perturbation to the eigenvalues
take the form E(1) =

〈
ψ(0)

∣∣δE∣∣ψ(0)
〉
. However for non-symmetric matrices, it takes the form

δλi =
µ⃗⊺0

i δMν⃗0i

µ⃗⊺0
i ν⃗

0
i

where µ⃗⊺0
i , ν⃗

0
i are the left and right eigenvectors of the unperturbed matrix M. The derivation of

this form is supplied as the following.
With some small geometric change from the critical configuration, the transfer matrix M can

be written as
M = M0 + δM, (2.66)

the eigenvalues λi can be expanded to the first order as

λi ≈ λ0i + δλ (2.67)
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Figure 2.12: An illustration of how the transfer matrix can use the ”incoming” edges to solve for
the ”outgoing” edges on a sheet of hexagonal cells for ZMs. The red dots label the “incoming”
edges, where U∥

i are given by boundary conditions, and the blue dots represent the “outgoing”
edges where U∥

i are calculated. Across each cell, the transfer matrix allows us to find out the ZM
at the three outgoing edges as functions of the ZM at the three incoming edges, and the direction
of the ZM solution propagation is labeled by the magenta arrows across cell edges. The choice of
the in and out directions is not unique on the sheet, and depends on which boundaries are fixed.
The total number of incoming edges (red dots) is equal to the total number of ZMs of the whole
sheet, so determining U∥

i at these edges determines the ZM of the whole sheet.

48



and the right eigenvectors ν⃗i can be expanded to the first order as

ν⃗i ≈ ν⃗0i + δ⃗ν (2.68)

where M0, λ0i , and ν⃗0i are the transfer matrix and its eigenvalues and eigenvectors when the geom-
etry is at the critical configuration, so that we know M0ν⃗0i = λ0i ν⃗

0
i .

With these expansions, we have

(
M0 + δM

)(
ν⃗0i + δ⃗νi

)
=
(
λ0i + δλi

)(
ν⃗0i + δ⃗νi

)
. (2.69)

Multiplying out the terms and keep to the first order, we get

M0ν⃗0i +M0δ⃗νi + δMν⃗0i = λ0i ν⃗
0
i + λiδ⃗νi + δλiν⃗

0
i . (2.70)

The first terms cancel on both sides, so it becomes

M0δ⃗νi + δMν⃗0i = λiδ⃗νi + δλiν⃗
0
i . (2.71)

Now suppose µ⃗0
i is the left eigenvector of M0 with the eigenvalue λi, such that µ⃗⊺0

iM
0 = µ⃗⊺0

iλi,
or equivalently, M⊺µ⃗0

i = λ0i µ⃗
0
i . Dotting this left eigenvector on both sides of the equation gives us

µ⃗⊺0
iM

0δ⃗νi + µ⃗⊺0
i δMν⃗0i = µ⃗⊺0

iλiδ⃗νi + µ⃗⊺0
i δλiν⃗

0
i (2.72)

Now we can cancel out the first term on both sides again based on the property of the left eigen-
vectors µ⃗0

i , so we are left with
µ⃗⊺0

i δMν⃗0i = µ⃗⊺0
i δλiν⃗

0
i (2.73)

Rearranging the equation, we have

δλi =
µ⃗⊺0

i δMν⃗0i

µ⃗⊺0
i ν⃗

0
i

(2.74)

which is the first order correction to the eigenvalue λi of the transfer matrix.
This perturbation theory can potentially be used to study how ZMs exponentially grow or decay

in disordered cell sheets. We applied this method to the periodic lattices we studied in the main
text, and the results are consistent between the momentum space calculation described in the main
text and the transfer matrix calculation. As we choose lattices in each topological phase in Fig. 2.5,
the sign changes of δλ agrees with the winding number jumps.
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CHAPTER 3

Stress Control in Maxwell Lattices with Non-Ideal
Springs

This chapter summarizes the work written in the manuscript “Stress Control in Non-Ideal
Maxwell Lattices via Geometry” co-authored by Harry Liu, A. Nafis Arafat, Ethan Stanifer, Sid-
dhartha Sarkar, and Xiaoming Mao. under preparation. The finalized version in the future publi-
cation may appear with more contexts than this Chapter.

3.1 Introduction

How materials respond to applied forces has been a crucial question to understand since ancient
times when stable and robust machinery was desired. In the past decades, the role geometry plays
in mechanical responses has begun to grasp the attention, and a set of materials named mechanical
metamaterial, in which the mechanical properties are controlled by geometry, has been developed
[85; 86; 87; 88; 89]. These innovative materials are invariant in composition and scale because of
the consistency in geometry, and they offer many interesting engineering opportunities as they can
possess many interesting features that sometimes do not appear in natural materials such as nega-
tive Poisson’s ratio [90] and negative stiffness [91]. Among different mechanical metamaterials, a
special class named Topological Mechanical Metamaterials (TMMs) in which the mechanical re-
sponses are governed by topology, making them robust and immune to defects [1; 30; 53]. TMMs
can be realized in many different physical systems [86; 16], opening up opportunities to study many
new fascinating physical phenomena and to engineer intriguing new applications [15; 92; 54; 23].
Among these interesting phenomena, one particular feature is the focusing of stress at the do-
main wall when two topologically distinct domains are connected together. The fact that stresses
in the structure are focused at the domain wall provides protection against fracturing sites in the
structure [54].

At the linear level, it was understood that a lattice can have both zero energy modes (ZMs)
which allow the lattice to deform without energy cost, and states of self-stress (SSSs) which allow
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the lattice to carry tensions without causing net force on the sites [1]. The ZMs and SSSs are
related by the Maxwell-Calladine index, which is given by the number of degrees of freedom
and the number of constraints in the lattice [29]. The SSSs supply a backbone for the lattices in
response to external stresses [93] and offers an understanding of the aforementioned stress focusing
and fracture protection phenomena [54].

Besides the theoretical advancement in TMMs and the proposed applications based on them,
efforts have been made toward the engineering and manufacturing of TMMs [86; 28; 94; 34; 39].
One known difficulty in completing these tasks is the energy cost associated with hinge bend-
ing [86; 28; 34; 39], which is not captured in the theory of TMMs as free joints are assumed.
The non-zero bending stiffness of the hinges has diminishing effects on the mechanical proper-
ties predicted by theory. It causes an elevation of the band for the ZMs, thus making them no
longer zero energy, which leads to low contrast between the predicted hard and soft boundaries
of the lattice [54]. It can also intensify the stresses at the joints away from where the SSSs are
localized, which masks the focusing effect of the stress responses, and in the extreme case, causes
fracturing at the sites instead of bonds [95; 5]. Despite the undesired engineering and manufactur-
ing challenges it brings, the bending stiffness at the joints offers a new perspective for controlling
the transformations of the lattices, through which the lattice is able to switch between topological
domains [16].

To further understand the effect of the bending stiffness at the hinges and to design a simple
way to minimize the negative effects it brings while maintaining the overall topological mechanical
properties desired, we use both the Angular Spring Model (AS) and the Next-Nearest-Neighbor
Model (NNN) in this study to numerically study the effect of bending stiffness on the domain wall
stress focusing and to analytically understand the stress response at the hinges. Then by incor-
porating the AS and NNN springs, we manipulate the generalized kagome unit cell to minimize
the excessive stress away from the domain wall, as well as to tune the stress responses according
to the given strains. By minimizing the hinge stresses, site fracturing, which is seen more often
in lattice structures, can be reduced. Whereas the tuning of stress responses with different given
strains provides an opportunity for engineering TMMs that are suitable for different applications.

3.2 The Models and Simulations

When considering the manufacturing of TMMs, a continuum approach is usually required to
study the hinge material effects on the topologically protected mechanical responses of the TMMs.
However, to capture the hinge bending effect to the simplest level, an angular spring model (AS)
and a linear level approximation of AS, the next nearest spring model (NNN) is sufficient and
simple to conduct a numerical study on.
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In this section, we first discuss how the structure’s response caused by external strains can be
projected and understood through the SSSs, which gives us an analytical expectation of the stress
profile of the regular kagome network. Then we subsequently introduce the AS and NNN models,
demonstrate the numerical results on the stress distribution in the network after the angular or the
NNN springs are added, and explain how they reflect the leading order of the continuum descrip-
tion. In the last part of this section, we demonstrate the different stress responses of networks when
different strains are given.

3.2.1 States of Self-stresses and Strain Projection

For a Maxwell lattice ofN sites andNc bonds in d dimensions, the elastic energy can be written
as

H =
∑

⟨ij⟩∈NN

kij
2

(
l⃗ij − l⃗0ij

)2
(3.1)

for springs l⃗ij = r⃗i− r⃗j + u⃗i− u⃗j , where u⃗i and u⃗j are the displacements of the sites r⃗i and r⃗j that
the spring l⃗ij connects, with lengths lij =

∣∣∣⃗lij∣∣∣, springs constant kij , and rest lengths l0ij = |r⃗i − r⃗j|.
The energy is summed over all nearest neighbor (NN) bonds. To the linear level, the elastic energy
is approximated as

H =
1

2
u⃗ ·D · u⃗ (3.2)

where u⃗ is the displacement field of the lattice, D = C⊺ · k · C = Q · k · Q⊺ is the dynamical
matrix, in which k is the diagonal matrix with springs constants as of all bonds as its entries, C
is the compatibility matrix that relates the dN -dimensional site displacement vectors u⃗ to the Nc-
dimensional vector of bond extensions e⃗, and Q = C⊺ is the equilibrium matrix that relates the
Nc-dimensional bond tensions t⃗ to the dN -dimensional vector of forces on sites [1]:

C · u⃗ = e⃗, Q · t⃗ = f⃗ . (3.3)

The entries of the C matrix are determined by the equation for the extension of the springs l⃗ij:

eij = l̂ij · (u⃗i − u⃗j), (3.4)

where l̂ij is the unit vector of the spring l⃗ij . The null space of C gives the ZMs as it represents a set
of site displacements that cause no bond extensions, and the null space of the Q represents SSSs
as it represents a set of bond tensions that cause no net force on the sites.

The stress focusing can be understood through the SSSs of the network, and a projection of the
external strains onto the states of self-stresses [54]. In real space, C and Q can be separated into
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the bulk (denoted by the subscript V ) and boundary (denoted by the subscript ∂V ) contributions.
Separating the contributions from the bulk and the boundary, we have

f⃗V = QV t⃗ (3.5)

e⃗ = CV u⃗V +C∂V u⃗∂V , (3.6)

where boundary displacement u⃗∂V is given. Then we can solve under force balance f⃗V = QV t⃗ = 0

for t⃗, which is a linear combination of the null space of QV (the SSSs of the bulk), i.e. t⃗ =
∑

i ais⃗i,
where s⃗i is a complete orthonormal basis of the SSSs. The tensions can be then further simplified
to [54]

t⃗ =
∑
i,j

[(
s k−1s

)−1
]
ij
(sj ·C∂V u⃗∂V )si, (3.7)

where s is the matrix whose column are the SSSs s⃗i.
For a homogeneous system with translation symmetry, it is easier to work with the compatibility

matrix in Fourier space C(q), which is nc × nd matrix, (where nc is the number of bonds per unit
cell and n is the number of sites per unit cell). AS shown in the seminal paper by Kane and
Lubensky [1], for a system with a domain wall between two different Maxwell lattices, the number
of SSSs localized at a the domain wall can be calculated from the properties of the C(q) matrices of
each Maxwell lattice; below we describe this briefly and discuss the consequences for our specific
system shown in Fig. 3.1(a).

From the compatibility matrix C(q) of a homogeneous lattice at the Maxwell point (i.e., nc =

nd) in Fourier space, the dynamical matrix can be obtained as D(q) = C†(q)C(q) (where we
chose the spring constants and the masses of the particles to be 1 for simplicity). The normal
mode frequencies of the lattice ω2(q) are the eigenvalues of the Dynamical matrix D(q). Kane
and Lubensky [1] defined a ‘square root’ of the dynamical matrix, which in reciprocal space takes
the following form:

H(q) =
(

0 C†(q)

C(q) 0

)
. (3.8)

For every nonzero eigenvalue ω2(q) of D(q), H(q) has two eigenvalues ±ω(q). The zero modes
of H(q) include nullspace of C(q) (zero modes – ZMs) and nullspace of C†(q) (states of self
stress – SSSs), whereas the zero modes ofD(q) include the ZMs. Maxwell Calladine theorem [29]
dictates that the number of ZMs (n0) and number of SSSs (ns) are equal (n0 = ns) for a Maxwell
lattice. The matrixH(q) has the property that SH(q)S = −H(q), where S = Diag{1,−1}. This
property is known as chiral (or sublattice) (anti)symmetry in the literature. Also, it is easy to check
that H(q) has time-reversal symmetry: H(q) = H∗(−q), where ∗ is complex conjugation. These
two symmetries put the matrix H(q) in BDI class of Altland Zirnbauer (AZ) classification [96].
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According to the AZ periodic table [97] BDI (or AIII if we exclude time-reversal symmetry) class
has a Z topological index in 1D. Hence, a topological polarization vector RT of a 2D Maxwell
lattice can be defined as

RT =
∑
i

niai,

ni =
1

2πi

∮
q→q+Gi

dq · ∇q log detC
†(q),

(3.9)

where ai are the lattice vectors, Gi are the reciprocal lattice vectors such that Gi · aj = 2πδij , and
ni ∈ Z. Note that this definition of polarization is only applicable if the C(q) is a square matrix
with nc = nd or in other words the lattice is Maxwell. Also, we assumed that there are no bulk
ZMs (except the uniform translations); hence, the integers ni do not depend on q. It was shown
in [1] that at a domain wall between two Maxwell lattices the total number of ZMs at the domain
wall at every wave number q parallel to the domain wall is given by

ndw =
1

2π
G · (RL

T −RR
T ), (3.10)

where the superscriptsL andR denote systems on the left and right of the domain wall respectively,
G is the smallest reciprocal lattice vector pointing from left to right of the domain wall, and we
assumed that the polarizations for both systems were calculated in the same gauge. Note that if this
number is positive, it counts the number of ZMs, whereas if the number is negative, its absolute
value counts the number of SSSs [1].

For the system shown in Fig. 3.1(a), RL
T = −a1, RR

T = a1 and G = 2G1 − G2 (where
a1 = (1, 0), a2 = (−0.5, 0.7), G1 = 2π(1, 1/1.4), G2 = 2π(0, 1/0.7)); consequently ndw = −4,
which implies that there are 4 SSSs at each wavenumber q parallel to the domain wall. However,
the projection of homogeneous strains on the SSSs are only nonzero for SSSs at wave-number
q = 0 [54]. Moreover, among the 4 SSSs that should be there at q = 0 (see Fig. 3.1(b-e)), two
SSSs (Fig. 3.1(d-e)) get lifted to finite energy when the system is finite in x-direction due to the
fact that they have large penetration depth (i.e., decay length away from the domain wall), whereas
the two which have small penetration depth (Fig. 3.1(b-c)) remain at zero energy [1]. Under the
application of uniaxial stress (as shown in Fig. 3.1(a)), these two SSSs (which are highly localized
near the domain wall) carry most of the load; consequently we see stress focusing in Fig. 3.1(a).
(The fact that there has to be at least two SSSs at q = 0 is protected by translation symmetry,
which implies that there are two zero modes at q = 0, and consequently two SSSs). Moreover,
the localized SSS in Fig. 3.1(c) has both tensions and compressions (red and blue colored bonds,
respectively); hence the projection of an affine uniaxial strain on it is negligible compared to the
projection of the affine uniaxial strain in the SSS in Fig. 3.1(b). This is why the numerical result in
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Figure 3.1: Comparison between simulation and the supercell analysis results. (a): A energy
minimized simulation by fixing the bottom boundary and giving a vertical displacement on all sites
at the top boundary with a magnitude u = 10−3. The left and right boundaries are entirely free,
and sliding is allowed for the top and bottom boundaries. The triangle marks the fixed boundary
and the arrows mark the displaced boundary. The topological polarization vectors R⃗T for the left
and right domains are shown with arrows. The intensity of the red color and the thickness of
the bonds both increase with the magnitude of stress on the bonds. The maximum stress in the
response tmax = 2.6 × 10−4 in units of force. (b), (c), (d), (e): 4 states of Self-stress calculated
from the supercell analysis. each supercell is periodic in ŷ-direction and open in x̂-direction. The
SSSs are all calculated at q = 0. The red and blue represent tension and compression for the SSS
respectively, and the thicknesses are proportional to the magnitudes on the bonds. The SSSs in (b)
and (c) remain at zero energy thus contributing to the stresses at the domain wall as shown in (a),
but the SSSs in (d) and (e) are elevated into the bulk with a large penetration depth due to the open
boundaries.

Fig. 3.1(a) closely resembles the SSS in Fig. 3.1(b).
A numerical simulation is then performed to compare with the super-cell analysis. In the simu-

lation, an axial displacement of 10−3 ≪ 1 in ŷ-direction is applied to all sites at the top boundary,
and sites on the bottom boundary are pinned in the ŷ-direction while the left and right boundaries
are left open. Clear stress focusing on the domain is seen in the simulation, as well as a match with
the SSSs from the super-cell analysis, as shown in Fig. 3.1.
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3.2.2 Angular Spring Model

One model we have used to capture the bending stiffness at the sites is the Angular Spring
Model (AS). The model associates an energy cost to the angular change from the rest angles with
quadratic form.

Hθ =
∑
i,jk

κθi,jk
2

(
θi,jk − θ0i,jk

)2 (3.11)

where κθi,jk and θ0i,jk are the angular spring constant and the rest angle for angle θi,jk formed by
the central site i and it’s neighboring sites j, k. From the AS energy function, the forces on the
particles i, j, k from each angle

Flα = −
∑
{i,jk}

κθi,jk
(
θi,jk − θ0i,jk

)∂θi,jk
∂xlα

. (3.12)

can be calculated by taking the first derivative of 3.11 to reflect the bending stresses in the lattice.
A detailed full expression of the AS force and the angle convention we used can be found in the
appendix 3.5.1. The AS energy and the AS force are then implemented into an energy minimization
method with the minimization of the regular linear springs of the lattice to find the equilibrium state
and then calculate the tensions in the lattice, for both the nearest neighbor (NN) bonds and the AS.

Compared to Fig. 3.1, the inclusion of AS elevates the maximal stress on the domain wall,
as well as the stress at sites away from the domain wall even with an AS constant κθ = 10−4

when the regular bond has a spring constant k = 1, where we have taken for simplicity that
there is no difference among all regular bonds kij = k and all the AS κθi,jk = κθ. The tension
profile also shows an inhomogeneous distribution of the AS stress across the lattice, which signifies
acute points of high-stress bearing, and these sites would be more probable to fracture compared
to others. Furthermore, the total stresses at all sites increase with an increasing AS constant κθ as
shown in Fig. 3.2(b) and (c), and eventually the stress away from the domain rises up to magnitudes
comparable to the stress at the domain wall so the stress focusing effect at the domain wall gets
masked. Such a masking phenomenon happens when κθ ≈ 10−2

The AS model successfully captures the expected masking effect of the focused stress from
bending stiffness at the hinges, but due to its nature of a multi-body interaction for the angles, it
is slightly difficult to design and control the geometric parameters of the lattice to minimize the
inhomogeneous AS stress distribution as well as the masking threshold of the focused stress at the
domain wall. Therefore, to capture the essential information given by the AS model to the simplest
level, a next-nearest-neighbor model (NNN) is used instead of the full AS model.
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Figure 3.2: Vertical pull simulation with the inclusion of angular springs (AS). (a): An energy
minimization simulation as the one described in Fig. 3.1(a), but with the inclusion of angular
spring constantκθ = 10−4. The maximum tension on the NN bonds is tNN

max = 2.59 × 10−4 in the
units of force, and tAS

max = 2.48 × 10−7 on the AS. The NN bonds are labeled in red, while the
AS are represented in blue. The intensity of the color increases with the stress magnitude. (b):
The total stress on bonds across columns in the lattice. The stresses on the vertical axis are shown
on a linear scale, and the horizontal axis labels the column index of the lattice. The spiking of
stress magnitude at the domain wall is shown in this figure. (c): The total stress on bonds across
columns on a log scale, which shows the drastic increase of stress away from the domain wall as
κθ increases.

3.2.3 Next-Nearest-Neighbor Model

In the regime of small angle bending θ ≪ 1, the NNN model and AS model are approximately
the same as each AS is modeled to be a spring that connects the two sites r⃗j and r⃗k at the ends of
the angle centered at site r⃗i. The energy associated with the NNN bonds is written as

HNNN =
∑

⟨j,k⟩∈NNN

κjk
2

(
l⃗jk − l⃗0jk

)2
. (3.13)

It takes the same form as Eq. (3.1), but we now take the site pairs r⃗j and r⃗k that are next-nearest-
neighbors. For simplicity, we again assume the NNN spring constants are homogeneous across the
lattice, i.e. κjk = κNNN . The AS constant κθ and NNN constant κNNN are related by a geometric
parameter which is determined by the geometry of the unit cell, as it shows how much an NNN
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spring changes in length as the corresponding angle changes:

κNNN = − lijlik sin θ√
l2ij + l2ik − 2lijlik cos θ

κθ. (3.14)

The same numerical simulation as for the AS model is done for the NNN model as well, and
the results in Fig. 3.3 show apparent similarity with the AS model. The stress focusing is apparent
at the domain wall, as well as a distribution of NNN stress away from the domain wall is observed
that preserves a similar pattern as the AS stress. The masking effect on the stress focusing is
also observed as κθ increases in magnitude, however, the elevation of the magnitudes of the stress
away from the domain wall in the NNN model is slower than in the AS model because NNN only
captures the lowest order effect of the AS model. Nevertheless, the NNN model enables us an easy
way to understand the effect of bending stiffness at the hinges as well as to design new geometries
to lower the bending stresses while maintaining the stress-focusing effect at the domain wall.

The fact that the total stress at every cell increases with increasing κNNN in Fig. 3.3(b-c) can be
explained as follows. With the addition of the 6 NNN bonds per unit cell, the number of constraints
in each unit cell is 6 more than the number of degrees of freedom. As a consequence, for the
homogeneous system on either side of the domains, the matrix Q(q) ≡ C†(q) is 6 × 12, which
implies that there are 12−6 = 6 SSSs at every q. These extra SSSs can carry some of the load from
external strain. To see this we create a supercell with a domain wall between two homogeneous
systems (as shown in Fig. 3.3(d)) with N0 = 20 domain wall compatible unit cells (note that a
domain wall compatible unit cell has twice as many degrees of freedom as a primitive unit cell) on
each side of the domain wall. In total there are 6×2N0+1 = 241 particles (482 degrees of freedom)
and 954 bonds. We apply an open boundary condition in the x-direction and the Bloch-periodic
boundary condition in the y-direction. Due to the excess of bonds (954−482 = 472), at every wave
number q parallel to the domain wall there are 472 bulk SSSs. At q = 0, the number of SSSs is
474 (the extra two are due to translation symmetry). Among these 474 SSSs, 2 are localized at the
domain wall (these were present in the nearest neighbor model), and 472 are bulk SSSs appearing
due to excess of bonds at every unit cell. In principle, an affine uniaxial strain will be carried by
all of these SSSs. However, when the ratio of the bond stiffness κNNN/kNN ≪ 1, the projection
of bond tensions corresponding to the affine uniaxial strain on the bulk SSSs is much smaller than
on the domain wall SSSs (which are supported by the nearest neighbor bonds since they were
present in the nearest neighbor model), consequently most of the stress would be concentrated at
the domain wall. As we increase κNNN/kNN , the projection of bond tensions corresponding to the
affine uniaxial strain on the bulk SSSs increases, and we see more even distribution everywhere
in the system. To make this argument quantitative, we apply an affine uniaxial strain ϵyy to the
supercell, and calculate the bond tensions at equilibrium for different values of κNNN/kNN . To
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Figure 3.3: Vertical pull simulation with the inclusion of NNN springs. (a): An energy mini-
mization simulation as the one described in Fig. 3.2(a), but with the inclusion of NNN spring
constantκNNN = 10−4. The maximum tension on the NN bonds is tNN

max = 2.55×10−4 in the units
of force, and tNNN

max = 1.56× 10−7 on the NNN bonds. The NN bonds are labeled in red, while the
NNN bonds are represented in blue. The intensity of the color increases with the stress magnitude.
(b): The total stress on bonds across columns in the lattice. The stresses on the vertical axis are
shown on a linear scale, and the horizontal axis labels the column index of the lattice. The spiking
of stress magnitude at the domain wall is shown in this figure. (c): The total stress on bonds across
columns on a log scale, which shows the drastic increase of stress away from the domain wall as
κNNN increases. The similarity with Fig. 3.2 is observed in this figure, validating the proximity
between the AS and NNN spring models. (d): A representation of the SSS calculated by the su-
percell analysis with a periodicity in y after the inclusion of the NNN springs. The NN springs
stress is represented in red and the NNN stress in blue, with the color intensity proportional to the
magnitude of the stress. (e): Stress in unit cells plotted across the columns in a log scale from the
supercell analysis with periodicity in y, which is analogous to (c) from the numerical simulation.

do that, we first note that under strain ϵyy, ith bond gets stretched by amount eaff,i = ϵyy sin
2 θi,

where θi is the angle between ith bond and the x-direction. Defining eaff as the vector of the affine
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elongations eaff,i, one can show that vector of the bond tensions t to be [30]

t =
∑
i

([(
K−1

)
ss

]−1
eaff,s

)
i
si, (3.15)

where si are the SSSs, eaff,s is vector of projections eiaff,s = eaff · si, (K−1)ss = [s]TK−1[s] where
K is the matrix of bond stiffness and [s] is the matrix consisting of column vectors si. Fig. 3.3(e)
shows the resultant bond tensions as a function of position for different value κNNN (we chose
kNN = 1 and eyy = 1 for this calculation). When κNNN = 0, we see that bond tensions decay
exponentially away from the domain wall (the black curve in Fig. 3.3(e)) meaning that the stress
is only carried by the SSSs (see Fig. 3.1(b)) localized at the domain wall. As we turn on κNNN ,
the bond tension becomes constant (Fig. 3.3(e)) away from the domain wall because of nonzero
projection of the affine strain onto the bulk SSSs, and the value of this constant increases with
increasing κNNN .

3.2.4 Responses of Different Strains

Furthermore, we examined the behavior of the lattice under different loaded strains, here we
show the effect of gravity, dipole force, and gravity in a kagome lattice with SSS domain walls in
Fig. 3.4.

To simulate the lattice under gravity, we give an initial force to all the sites in the lattice, while
fixing the bottom boundary of the lattice in ŷ-direction. The energy minimized result shows that
the SSSs focused at the domain wall are excited and a clear stress focusing is seen at the domain
wall. The effect of gravity would give a strain to the lattice in the y⃗-direction, which has projection
to the SSSs at the domain wall, and causes the excitement of the SSSs and the appearance of stress
focusing at the domain wall.

The shear strain is simulated by giving an affine simple shear strain to the lattice by giving a
gradually increasing displacement in x̂-direction from the bottom boundary to the top boundary
up to a maximum distance umax = 10−3 with the bottom boundary and the top boundary then
fixed, then the lattice relaxes to the equilibrium configuration. The resulting stress in the lattice
responding to the shear strain shows no stress focusing on the domain wall as the shear strain does
not project to the SSSs of the lattice. However, as we will show in Sec. 3.3.3, the projection of
the shear strain onto an SSS can happen to demonstrate stress focusing on the domain wall when
the domain wall is designed to be tilted instead of vertical. Furthermore, examining the pattern of
tension and compression, they are mirror symmetric against both the domain wall and the middle
horizontal row. Which is caused by force balance.

The dipole force is simulated by giving tension forces at the opposite sites of a chosen bond
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Figure 3.4: Kagome lattice with SSS domain wall under different given strains. The lattice config-
uration is identical to the one used in Fig. 3.1, Fig. 3.2, and Fig. 3.3. (a): The gravitational effect
on the lattice with angular springs. The mass of sites are identically m = 5×10−6, and the angular
spring constants are κθ = 10−4 in unit of force/angle. The response NN stress is shown in red, and
the AS response is shown in blue. The thickness and the color intensity of the bonds are propor-
tional to the magnitude of the stress. The response shows a maximum NN stress tNN

max = 5.56×10−3

concentrated at the domain wall, and a maximum AS stress tAS
max = 6.85×10−5 concentrated at the

lattice corners. The concentration of stress at the domain wall demonstrates the excitation of SSSs
in the lattice by gravity, which is more clearly seen in (b). (b): The total stresses of bonds for each
column, the peak in the middle represents the large stress bearing by the domain wall. (c): The
kagome lattice under a simple shear with NN bonds only. The lattice is given an affine shear with
the maximum displacement at the top boundary to the right with a magnitude umax = 10−3, which
is roughly 1.5× 10−3 times of the bond lengths, then the top boundary and the bottom boundaries
are both clamped after the simple shear strain is given. The response in the network is separated
into tension and compression, where tension is shown in red and compression is shown in blue.
The thickness and the color intensity of the bonds are proportional to the magnitudes of the tension
and compression. The maximum tension and the maximum compression are equal in magnitude
ttmax = tcmax = 1.36× 10−5 in the lattice. (d): The total stresses of bonds across columns, the ab-
solute magnitudes of the tension and compression are summed for each column. The drop of stress
magnitude at the domain wall indicates there is no excitation of the SSSs at the domain wall, thus
no stress focusing. (e): The response of the lattice with NN bonds only after a dipole force is given
on a bond close to the SSS domain wall. The dipole force is given by setting the rest length of the
chosen bond (colored in cyan) to be 1.05 times the original length in the lattice, thus exerting equal
and opposite forces on the two sites the bond connects, and the top and the bottom boundaries are
fixed in this simulation as sliding boundaries would cause the lattice to relax to a configuration
with only overwhelming stress on the bond exerting dipole force. The stress response of the lattice
is colored in red, with the bond thickness and color intensity proportional to the magnitude of the
stress. The maximum stress in the response tmax = 4.4× 10−4.
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while holding the top and bottom boundaries fixed in the ŷ-direction. Different stress responses
were observed given the location of the dipole force applied relative to the domain walls. How-
ever, a generic profile of concentrated stress appears around where the dipole forces are applied.
Furthermore, a screening effect provided by the domain wall appears, as the stresses reduce in
magnitude after passing through the domain wall (shown in Fig. 3.4(e)). This effect can be under-
stood through an earlier study on the dipole force in kagome lattice, in which a polarized strain
and stress responses are shown [22], and the strain caused by the dipole force, when gets close to
the domain wall, would have components projected to the SSSs, thus having stress concentrated at
the domain wall rather than the domain past it.

The tests involving different strain conditions applied to the lattice show that SSSs would only
be excited by the applied strain if components of the strain can be projected to the SSSs, which
leads to a further design of lattices that focus stresses on the domain wall when responding to
different strains, and the shear strain is of the main consideration in this case.

3.3 Kagome Lattice Design

To design a kagome lattice that lowers the focused stress at the domain wall as well as the
bending stresses at the hinges or a lattice with domain walls that focus stress when responding to
different strains, we examine a generalized kagome lattice unit cell that includes both the regular
bonds and the NNN bonds and adopt the parameters X = (x1, x2, x3; z) that labels the “zigzag-
ging” along three vectors of the unit cell and the dilation of the unit cell illustrated in the work that
first theorized topological mechanics [1]. We then examine the effect of the parameters X on the
kagome lattice formed by the NNN lattice as well to control the stress on the NNN bonds.

3.3.1 Generalized Kagome Lattice

In the generalized kagome lattice (GKL), as the NNN bonds are also included, for the 3 sites in
the unit cell, 2 additional bonds are attached to each site, thus making the total number of bonds 12,
6 for the regular bonds and 6 NNN bonds, as shown in Fig. 3.5. Another observation of the kagome
lattice with NNN inclusion is that the network formed by only NNN bonds is constructed by a
kagome lattice that is different from the kagome lattice formed by the regular bonds. Furthermore,
it is constructed by 3 layers of the same kagome lattice shifted by the primitive vector a⃗1 of the
regular kagome lattice, and its geometry changes according to the kagome lattice formed by the
regular bonds.

For the regular bonds, according to the parameters X = (x1, x2, x3; z), xi “zigzags” the bonds
along vector a⃗i while maintaining the bonds in the other 2 directions straight, while z uniformly
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Figure 3.5: (a): Unit cell of the GKL, the black solid lines represent the regular bonds and the gray
dashed one the NNN bonds. The red sites are the sites in this unit cell and the green and yellow ones
represent the same sites in the neighboring unit cells. a⃗1 and a⃗2 are the 2 primitive unit vectors, and
a⃗3 = −(⃗a1 + a⃗2) completes the 3-fold symmetric basis for the parametersX = (x1, x2, x3; z). The
3 sites of the unit cell labeled in red have positions r⃗1 = a⃗1/2, r⃗2 = −a⃗3/2, and r⃗3 = 0. (b): Unit
cell of the NNN kagome lattice that composes one of the three layers of NNN network. The red
sites are the sites in this unit cell and the green ones represent the same sites in the neighboring unit
cells. The dashed gray lines represent the bonds in the NNN kagome unit cell, α⃗1 and α⃗2 are the
2 primitive unit vectors, and α⃗3 = −(α⃗1 + α⃗2) completes the same 3-fold symmetric basis for the
parametersX = (x1, x2, x3; z) that can introduce symmetric twisting of the NNN kagome unit cell.
The 3 sites of the unit cell labeled in red have positions ρ⃗1 = a⃗1/2, ρ⃗2 = −a⃗3/2+a⃗1, and ρ⃗3 = −a⃗3.
(c): The primitive vectors and their π/2 rotated counterparts. The primitive vectors a⃗i of the NN
lattice with the convention shown in (a) is shown in solid black arrows, and their perpendicular
counterparts p⃗i are shown in solid green arrows. The primitive vectors α⃗i of the NNN lattice unit
cell in (b) are labeled by dashed gray arrows, with their perpendicular counterparts π⃗i labeled in
dashed dark green arrows. The relation of NN and NNN lattice primitive vectors are that a⃗i align
exactly with π⃗i, and p⃗i align with α⃗i but with opposite directions.

dilates the unit cell. The new sites R⃗i from the transformation of the sites r⃗i is given by

R⃗i = r⃗i −
√
3xip⃗i + xi−1a⃗i+1 +

z√
3
p⃗i−1, (3.16)

Where p⃗i are a⃗i rotated by π
2

counterclockwise such that a⃗i · p⃗i = 0 (shown in Fig. 3.5(c)), and the
subscripts i = 1, 2, 3 are cyclic. This parameterization also offers a simple way to calculate the
topological polarization vector as R⃗T = 1

2

∑3
i=1 Sgn(xi)⃗ai [1; 53].

As for the NNN bonds, it can also be reorganized into a symmetric convention similar to the
one for the regular bonds shown in Fig. 3.5(a), and in this convention for defining the NNN bonds
unit cell, the primitive vectors for the NNN kagome lattice align with those of the regular bond
kagome lattice, as shown in Fig. 3.5(b). The sites r⃗NNN

i in this convention are transformed to the
new coordinates R⃗NNN

i as

R⃗NNN
i = r⃗NNN

i + xiα⃗i +
1√
3
xi−1π⃗i+1 −

z

3
α⃗i−1 (3.17)
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by the same parameters X = (x1, x2, x3; z). In the NNN unit cells shown in Fig. 3.5(b), the
X parameter changes the NNN bonds in a way such that xi keep the bonds along α⃗i straight
while making the bonds in the other 2 directions α⃗i−1 and α⃗i+1 ”zigzagged”, and the parameter z
introduces a rotation to the basis triangle around its center.

With the understanding of these rules, we are able to design lattices of different types by desire.
We can not only change the geometry such that the maximum stress in the lattice is reduced, but
also a lattice that focuses the stress for shear strain.

3.3.2 Stress Lowering Lattice

According to the rules elaborated in section 3.3.1, a lattice that lowers the maximum stress as
well as changes the stress distribution can be designed by choosing appropriateX parameters. One
of such configurations is shown below in Fig. 3.6

Figure 3.6: The designed twisted kagome lattice that lowers the stress on both NN and NNN bonds,
as well as homogenizes the NNN stress in the lattice. (a) A 4× 4 twisted kagome lattice is shown
in red solid lines, with the NNN connection shown in dashed gray lines. (b) The kagome lattice
composed by the NNN bonds in this designed lattice is shown in (a). The red bonds can be matched
back to the gray dashed bonds in (a)

By doing so, we successfully lowered the maximum tension in NN bonds from tNN
old = 2.55 ×

10−4 to tNN
new = 1.68× 10−4, as shown in Fig. 3.7, the figure also illustrates the homogenization of

the NN bond tensions in the lattice as the previously observed concentration of NNN stress at the
corners of the old lattice in Fig. 3.3 no longer appears. Furthermore, the maximum tension of the
NNN bonds was reduced from tNNN

old = 1.56× 10−7 to tNNN
new = 1.49× 10−7, as shown in Fig. 3.7.

3.3.3 Shear Focusing Lattice

The results in Sec. 3.2.4 show that the vertical domain wall does not show any signs of stress-
focusing on the domain wall, the affine shear strain is odd parity under reflection about the mirror
along the domain wall, whereas the SSSs (see Fig. 3.1(b-c)) are even under the mirror; hence the
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Figure 3.7: Vertical pull simulation with the inclusion of NNN springs on an engineered kagome
lattice to lower the stress. (a): An energy minimization simulation as the one described in
Fig. 3.2(a) and Fig. 3.3, the NNN spring constant is kept at κNNN = 10−4. The maximum tension
in the result on the NN bonds is tNN = 1.68× 10−4 in the units of force, and tNNN = 1.49× 10−7

on the NNN bonds. The NN bonds are labeled in red, while the NNN bonds are represented in
blue. The intensity of the color increases with the stress magnitude. (b): The total stress on bonds
across columns in the lattice. The stresses on the vertical axis are shown on a linear scale, and
the horizontal axis labels the column index of the lattice. The spiking of stress magnitude at the
domain wall is shown in this figure. (c): The total stress on bonds across columns on a log scale.
The fact of insignificantly small elevation of the stress away from the domain wall when the NNN
springs constant rises from κ = 0 to κ = 10−4 compared to the contrast shown in Fig. 3.3(c)
demonstrates small or no excitation to the extra SSS caused by the NNN springs in this new lat-
tice, thus without the observation of stress plateauing away from the domain wall.

projection of the shear onto the SSSs is negligible (note that the system is almost mirror symmetric
about the domain wall i.e., the mirror symmetry is broken only perturbatively). However, if we
make the domain wall slanted (see Fig. 3.8), the mirror is broken. Now the shear strain will have
nonzero projections on the SSSs localized the domain wall.

The focused stress on the diagonal domain wall is shown in Fig. 3.8. Compared to Fig. 3.4(c),
the response on the two regions is no longer mirror-symmetric, and the large stress is focused on
the diagonal domain wall due to the projection of the strain onto SSSs. The maximum tension
ttmax = 1.6 × 10−5 and the maximum compression tcmax) = 7.6 × 10−6 are no longer the same
in the lattice and are dependent on the shear direction. The tension becomes more prominent if
the shearing direction is the +x̂-direction and compression if the shearing direction is the −x̂-
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direction.

Figure 3.8: A kagome lattice with the same unit cell as in Fig. 3.1, but with a diagonally oriented
domain wall between the oppositely polarized regions. A stress focusing shows up again in the
lattice when the domain wall is tilted compared to Fig. 3.4(c). The lattice is sheared the same way
as described for Fig. 3.4(c) as well. The maximum tension ttmax = 1.6 × 10−5 and the maximum
compression tcmax) = 7.6 × 10−6 are no longer identical, and whether tension or compression is
focused at the diagonal domain wall is related to the shearing direction, the domain wall focuses
tension if the shearing direction is the +x̂-direction and compression if the shearing direction is
the −x̂-direction.

3.4 Discussion

In this manuscript, we explored the effect of bending stiffness on topologically polarized
kagome lattices, especially focusing on the effect on states of self-stress in the lattices by ex-
amining a vertical pulling test for a lattice with a domain wall between oppositely topologically
polarized regions. The inclusion of bending stiffness is done through two approximate models,
namely the angular spring (AS) model and the next nearest neighbor (NNN) spring model addi-
tional to the nearest neighbor (NN) springs in the original lattice. The proximity of these two
models are demonstrated, and on top of that, they both show a masking effect on stress concentra-
tion at the SSS domain wall as the NNN spring constant or angular spring constant increases. This
observation is explained by examining the additional SSS in the lattice caused by the additional
NNN bonds, and the same reason causes the plateauing of stress away from the domain wall. At
the same time, we examined the same lattice under different loading conditions. We observed that
the SSS is excited under gravity, thus the stress in the lattice is focused on the SSS domain wall.
On the other hand, we also observed that the stress focusing at the domain wall disappears when
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a simple shear is given to the lattice, which matches the prediction given by analyzing the projec-
tion of shear strain onto the SSSs. We have also observed a directional response of the lattice as
reported in ref. [22] as well as a stress screening effect by the SSS domain wall.

Moreover, efforts were made in analyzing the NN and NNN lattice construction to design lat-
tices that lower stress or concentrate stress on the domain wall against shear strains. By changing
the twisting parameters of kagome unit cells to make the topological polarization of the kagome
lattices composed by the NN and NNN bonds no longer opposite, a kagome lattice has a lower
stress response against a vertical loading was achieved. And by tilting the SSS domain wall to a
diagonal direction in the lattice to make the projection of pure strain onto the SSSs non-zero, a
domain wall that focuses stress against shearing was achieved.

This study of the effect of bending stiffness and response to different strain loading of the topo-
logical mechanical lattice can contribute greatly to the engineering and designing of topological
mechanical metamaterials (TMMs). The understanding of bending stiffness would help with the
additive manufacturing of TMMs, as they provide insight into selecting the hinge fillet materials
as well as the geometry when the ideal lattice model is translated to a continuum material. The
understanding of shear strain projection onto SSSs and the successful designing of a kagome lat-
tice that focuses stress against shear open up a new direction in designing TMMs, as it shows the
ability of possible fracture projection not only against vertical loading but against shear as well.

3.5 Appendices

3.5.1 Angular Spring Model Energy and Forces

Energy from the angular spring differs from usual springlike interactions because it requires us
to consider multiple particle positions. We represent these triples with {i, jk} where i represents
the central particle and j and k represent the side particles. A diagram of the angle composed by
central particle 0 and particles x and y is shown in Fig. 3.9.

The energy of bending can be written as a springlike interaction on this angle:

U =
∑
{i,jk}

κi,jk
2

(
θi,jk − θ0i,jk

)2 (3.18)

where θi,jk and θ0i,jk are the current and rest angles associated with the triple {i, jk} and κi,jk is the
angular stiffness of this bending bond.

This angle can be measured from the positions of the particles with θi,jk = arccos(r̂ij · r̂ik)
where r̂ij and r̂ik are the unit vectors of the two bond vectors that form the angle θi,jk. As discussed,
this suffers from a limited range of 0 to π. We can investigate reflex angles via utilization of the
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Figure 3.9: A simple diagram of a three-particle subsystem highlighting the angle θ0,xy between
bond vectors r⃗0x and r⃗0y among particles 0, x, and y.

cross product as well as the dot product:

θi,jk = π + sgn (−→r ij ×−→r ik) (arccos(r̂ij · r̂ik)− π) . (3.19)

This measure has a range from 0 to 2π. Therefore,
(
θi,jk − θ0i,jk

)
ranges from−θ0i,jk to

(
2π − θ0i,jk

)
.

It is also important to note that θi,jk = 2π − θi,kj .
The force on each particle of the AS via the first derivative of the energy is:

Flα = −
∑
{i,jk}

κi,jk
(
θi,jk − θ0i,jk

) ∂θi,jk
∂ulα

. (3.20)

This derivative of the angle with respect to particle motion is given by

∂θi,jk
∂ulα

= −sgn (
−→r ij ×−→r ik)√

1− (r̂ij · r̂ik)2
(
δjl − δil
rij

(r̂ik,α − (r̂ij · r̂ik)r̂ij,α) +
δkl − δil
rik

(r̂ij,α − (r̂ij · r̂ik)r̂ik,α)
)
.

(3.21)
The force derivative d

du
is taken with respect to the displacements of the sites u⃗ away from their

equilibrium positions, and α labels the x and y components of the force. We do not need to concern
ourselves with the derivative of the sign function as this only gives a delta function when the angle
is π due to the singularity.

Note that there is no force if the angle is at the rest length. However, if the bond is bent, there is
a force not only on the external particles but also on the central particle, which is only symmetric
if the distances between particles are the same.

We can simplify this equation using orthogonal vectors in 2d. For a given vector
−→
V , the orthog-

onal vector is provided by
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−→
V ⊥ =

(
−Vy
Vx

)
. (3.22)

The force on any particle due to the angular bonds is therefore given by

Flα =
∑
{i,jk}

κi,jk
(
θi,jk − θ0i,jk

)((δjl − δil)r̂⊥ij,α
rij

−
(δkl − δil)r̂⊥ik,α

rik

)
. (3.23)

3.5.2 κθ to κNNN conversion

By examining an angle’s geometric relations, we can build a conversion relation between the AS
spring constant and the NNN spring constant. We do so by examining the conversion between the
small angle change δθ of the angle θ between bonds r⃗ij and r⃗ik and the change of length δl of bond
r⃗jk between sites j and k, which is the NNN springs bond that the AS of angle θ is approximated
as. A diagram of the geometry is shown in Fig. 3.10

Figure 3.10: A representation of the AS angle θ (shown in red) between bonds r⃗ij and r⃗ik, and the
approximated NNN bond r⃗jk (shown in dashed blue line). The angle is changed by δθ when the
site j is moved by a small displacement u⃗j .

As Fig. 3.10 shows, the angle θ is changed by δθ when the site j goes through a small displace-
ment u⃗j , however, as the displacement is small, we approximate the length rij = |r⃗ij| remains
unchanged as the angle is rotated. Then the length change δl for the bond length rjk = |r⃗jk| can be
written as

δl =
√
r2ij + r2ik − 2rijrik cos (θ)−

√
r2ij + r2ik − 2rijrik cos (θ − δθ) (3.24)
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Taking the deformation angle δθ to be small and expand Eq. (3.24) to linear order in δθ, we have

δl ≈ rijrik sin (θ)√
r2ij + r2ik − 2rijrik cos (θ)

δθ, (3.25)

where rij = |r⃗ij| and rik = |r⃗ik| are the lengths of the two bonds which the angle θ is composed
of. And by this geometric relation between the length change of the NNN spring δl and the angle
change δθ, we conclude with the relation Eq. (3.14) between the AS constant κθ and the NNN
spring constant κNNN in Sec. 3.2.3.

3.5.3 Numerical Methods

There are two numerical methods used in the simulations. For the simulations with NN and
NNN springs, a simple gradient descent method was used. This implementation calculates the
force of the nodes in the system and displaces them following the force gradient until an error
tolerance of 10−7 is reached. As for the simulation including AS, a Fast Inertial Relaxation Engine

(FIRE) algorithm is used to handle the non-linear multi-particle interactions and to accelerate the
computation. For the FIRE algorithm, not only the force gradient F⃗ is calculated, but also the
velocity v⃗ and its dot product with the force P = F⃗ · v⃗. Then the direction and the speed of the
descent are controlled by P .
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CHAPTER 4

Multi-stable Topological Mechanical Metamaterials

This chapter summarizes the work “Multistable Topological Mechanical Metamaterials” co-
authored by Haning Xiu, Harry Liu, Andrea Poli, Guangchao Wan, Kai Sun, Ellen M. Arruda, Xi-
aoming Mao, and Zi Chen under submission to PNAS, and posted on arXiv as arXiv:2207.05826.

4.1 Introduction

Synthetic mechanical metamaterials have been demonstrated to exhibit exotic physical and me-
chanical properties such as negative Poisson’s ratio [90], negative compressibility [91], and pro-
grammable nonlinearity [87; 98]. One group of mechanical metamaterials, Maxwell lattices, has
been extensively studied in recent years due to their proximity to mechanical instability and inter-
esting topological edge floppy modes and states of self-stress [16; 1; 30; 53], leading to a wide col-
lection of fascinating phenomena and applications including focused stress and fracture protection,
phonon waveguide, phonon diode, and tunable stability [87; 95; 54; 20; 19; 99; 24; 15]. The dis-
torted kagome lattice, one of the typical Maxwell lattices, has been the focus of extensive research
due to its rich mechanical properties in various topological states [100; 101; 102; 92; 103; 23].
By tuning the geometry of unit cells, a distorted kagome lattice can exhibit peculiar mechani-
cal behaviour protected by the topology of the compatibility matrix in momentum space. Recent
research [16] showed the feasibility of changing the topological phase of a kagome lattice by
varying a single geometric parameter, i.e., the angle between the two triangles in the unit cells;
such transformation is done using a homogeneous soft strain that is intrinsic to the lattice, called
the Guest-Hutchinson Mode [31]. The topological transition induced by this soft strain leads to
dramatic changes in the surface stiffness of the lattice, desirable for many applications from im-
pact mitigation to non-reciprocal wave propagation [23]. However, experimental realization of
this soft strain transformation has been challenging, due to the proximity of these lattices to me-
chanical instability, which leads to inhomogeneities in deformation as well as nonlinear buckling
of the lattice geometry during the transformation. This challenge makes it difficult for Maxwell
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lattices to become practical multi-functional materials and potential innovative reprogrammable
mechanological metamaterials (ReMM) [104; 105; 106].

To address this, here we introduce bistability, for the first time, to topological Maxwell lattices
by adding a spring to each unit cell. This novel design achieves swift and homogeneous transforma-
tion between topologically polarized [1] and non-polarized phases, characterized by dramatically
different mechanical properties, and meanwhile it generates programmable mechanical stiffnesses
including effective normal stiffness and shear stiffness that do not exist in conventional Maxwell
lattices. In the design we present here, the added spring connects the centers of two bonds in
each unit cell, thereby creating two stable states that lie symmetrically on either side of the criti-
cal state that separates the topologically polarized and nonpolarized phases (Fig 1). Compared to
the design in Ref. [16] in which the lattice continuous transforms along the soft strain direction,
the bistability introduced at the unit cell level here offers well-defined stable states (two for each
unit), leading to much better control of the lattice transformation, as well as rich opportunities in
programming multistability and related multifunctionalities in the material. Both theoretically and
experimentally, with good agreement, we show that the surface stiffness in one state is signifi-
cantly different from the other. We then characterize how the spring constant of the added springs
controls the stiffness of the soft surface. We further demonstrate experimentally that the bistabil-
ity of these units greatly improves the controllability of the lattice during the transformation from
one state to the other, realizing swift, drastic, and reversible change of surface stiffness. Beyond
these distinct characteristics, such as maintaining mechanical properties of conventional Maxwell
lattices and generating mechanical stiffnesses, these multistable Maxwell lattices open a suite of
new opportunities for combining topological mechanics with nonlinearity. The multistable lattice
we designed shows intriguing spatial patterns that feature drastically different structures separated
by an interface; each side adopts one of the two stable states whereby the interface depends on
various factors from the width of the strip to the unit cell design, creating a new set of controllable
spatially patterned materials. The proposed multi-stable Maxwell lattice can be further used to de-
sign and innovate ReMM. Our new technique facilitates the development of mechanical computing
systems, neuromorphic metamaterials, controlled morphing systems, flexible robotics, bioinspired
control, and distributed intelligence [104; 105; 106; 107; 108; 109].

4.2 Results

4.2.1 Topological polarization and multistability of Maxwell lattices

Mechanical stability of a frame to linear order can be characterized using zero modes (ZMs)
and states of self-stress (SSSs). A ZM is a set of displacements of the lattice sites that cause no
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change of bond length, and an SSS is a set of tension/compression on bonds that cause no net
force on lattice sites. Maxwell proposed, and Calladine later modified, an index that accounts for
the difference between the degrees of freedom of a network and the number of constraints, which
is equal to the difference between the number of ZMs and SSSs [1; 6; 29]. In the special case
when the number of degrees of freedom exactly equals the number of constraints in the bulk, the
mechanical network is at the verge of instability, and such a network is called a Maxwell network.
For lattices with point-like sites and central-force bonds (“ball-and-spring” structures) this criterion
takes the form that the average coordination number of the network is ⟨z⟩ = 2d, where d is the
dimension of the network, leading to ⟨z⟩ = 4 in two dimensions. One of the typical lattices
that satisfies the Maxwell criterion is the kagome lattice and its various distorted versions, which
contains 3 sites and 6 bonds in its unit cell, satisfying ⟨z⟩ = 4 (each bond connects two sites). In
Fig. 4.1(a), one such unit cell is shown as a combination of triangles A and B, and the specific
side lengths of triangles A and B we use in this paper are (0.4, 0.8, 1), (0.5, 0.7, 1). The geometric
structure of the ML is defined by the chosen lengths of the six sides of the two component triangles
in order to have significant topological polarization properties, and the calculations of topological
polarization in the following are all based on this choice. In the limit that the bonds of the lattices
are rigid, only one internal degree of freedom, the relative rotation between the two triangles (the
twisting angle), α, remains for this unit cell.

The mechanics of boundaries, interfaces, and defects for Maxwell lattices are governed by a
“topological polarization” RT introduced by Kane and Lubensky [1]. This topological polariza-
tion is determined by the geometry of the unit cell and can be computed via winding numbers of
the compatibility matrix of the lattice in the momentum space. Boundaries and interfaces where
RT points towards gain topologically protected, exponentially localized ZMs, and by contrast, in-
terfaces where RT points away gain SSSs. Such topological polarization leads to remarkable me-
chanical effects owing to asymmetric surface stiffness and stress focusing [54; 15]. In Ref. [16], it
is shown that changing the geometry of the unit cell via the Guest-Hutchinson mode (which alters
the angle between triangles A and B homogeneously across the lattice) changes the topological
polarization, thus switching the mechanical properties of the boundaries and interfaces.

In particular, this distorted kagome lattice experiences such topological transitions at three crit-
ical angles, αa2 , αa1 , and αa2−a1 (Fig. 4.1(b), where subscripts of are the lattice directions where
bonds align into straight lines at the transition). When α < αa2 or α > αa2−a1 , the lattice is non-
polarized (RT = 0, where all boundaries are soft), and as changes between αa2 and αa2−a1 , the
lattice exhibits a topological polarization. There are two specific polarized phases where RT = a2

and RT = a2 − a1 (following the same symmetric gauge used in Refs [16; 1]) separated by the
critical angle αa1 .

To achieve multistability of the lattice and convenient operation of topological polarization
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Figure 4.1: Schematic of the multistable Maxwell lattice and its topological polarization. (a)
Schematic of a section of a Maxwell lattice having bistable units with 3 × 3 unit cells. Each unit
cell (dashed box) consists of triangles A and B that are hinge-connected, and added springs are
indicated by black lines between the triangles. The primitive vectors are a⃗1 and a⃗2. (b) Topological
transitions of a distorted kagome lattice. Three angles, αa2 , αa1 , and αa2−a1 correspond to cases
where the sides of the triangles A and B align (light green stripes) and represent the critical angles
that separate distinct topologically polarized phases. The angles αb1 = 2.0984 and αb1 = 3.4052
indicate two equilibria (one in the polarized phase and the other in the non-polarized phase) of
the lattice with bistable units, in which the springs are relaxed. These are the two equilibria for
the configuration in the rest of this paper as well. (c) Two stable equilibria with notations of the
triangles of a bistable unit with a spring. ar, br, and cr are side lengths of triangles A, while ab,
bb, and cb represent side lengths of triangles B. ls is the length of the undeformed spring. (d) 3D
printed unit cell with a spring showing bistable equilibria. (e) Numerical surface stiffness versus
the twisting angle, α, of a 30 × 30 distorted kagome lattice [as shown in (a)] with bistable units.
The surface stiffness is normalized by bond stiffness k1 (here k1 = 1), and the spring constant
is k2/k1 = 10−4. The stiffness of the hard edge increases significantly as α falls within αa2 and
αa2−a1 , and floppy modes move the opposite edge.
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transformation, bistable units are created in which auxiliary springs (with low stiffness shown by
black lines in Fig. 4.1(a) and (c)) are added to connect the centers of two bonds in each unit cell.
Fig. 4.1(c) indicates the two stable equilibria of a unit cell: one is located in the polarized phase,
and the other in the non-polarized phase (3D printed bistable unit cell is shown in Fig. 4.1(d)).
The added bistability of each unit facilitates the lattice transition between the two equilibria via
the Guest-Hutchinsin modes. As the rest length of the springs, which is lower than the half length
of (ab + br), changes, the angle of the homogeneous zero-energy configuration of the lattice, α,
is tuned. When the bistable lattice goes through a transition to the polarized phases, there is a
dramatic increase of the edge stiffness at the edge opposite to the polarization direction (Fig. 4.1e),
preserving the topological effect observed in lattices without bistable units [16]. The procedures
to measure the edge stiffness will be discussed in the Results section and in Fig. 4.3. Moreover,
these bistable units dramatically decrease the number of ZMs of the lattice with n ×m unit cells
from 2n + 2m − 3 to 2 (rigid rotations of the dangling triangles in the top-left and bottom-right
unit cells). Although this change effectively rigidifies the lattice, we show below that because
these springs are much softer than the triangles, the lattice is still close to the Maxwell point and
the topological properties are well-preserved [73]. Theoretical analysis, numerical computations,
and experimental validation of this bistable design will be discussed in the following section to
characterize how mechanical properties of the lattice are affected by the springs.

4.2.2 Surface mechanical properties of multistable Maxwell lattices

In this section we discuss the effects of the springs, which are added to induce bistability, on
the surface mechanical properties of the lattice and on the generated mechanical stiffnesses for
the lattice. We show that, interestingly, the stiffness of the soft edge increases linearly with the
stiffness of the spring, whereas the stiffness of the rigid edge is insensitive to the spring constant.
Additionally, the springs generate mechanical stiffness when transforming the lattice from one
state to another.

A Maxwell lattice of n × munit cells is created to quantify the surface stiffness of the lattice
during the topological polarization transitions. To investigate how the bistable units affect the
mechanics of the lattice, linearized surface stiffnesses are calculated and compared with the results
of the same lattice without bistable units (Fig. 4.3(b)). First, we start from the nonlinear elastic
energy of the lattice by fixing the rest length of the spring ls (for a given angle α). It is written as

E =
∑
i

6∑
j=1

k1
2
(lij − lij0)2 +

∑
k

k2
2
(lk − ls)2 (4.1)

where i and k label the unit cells and j labels the 6 bonds (edges of triangles) in each unit cell,
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Figure 4.2: Parametric study of surface stiffness. Deformed lattice of 30 by 30-unit cells given
displacement at the (a) hard (bottom of the lattice) or (b) soft (top of the lattice) boundary for
calculating edge stiffness. The displacement field of the sites are represented by red arrows with
longer arrows corresponding to larger displacements. The tension/compression on the bonds and
springs are shown in blue and green respectively with higher magnitudes corresponding to more
visible colors and thicker lines. The springs are at their rest length, which is 95% of (ar + bb)/2,
and k2/k1 = 0.001 with k1 = 1. (c) Rest length of springs (2ls/(ab + br)) with respect to the
twisting angle α. The black dot is the configuration where the rest length is 95% of (ar + bb)/2,
and this configuration is also used in Fig. 4.3. (d) Normal (solid) and shear (dashed) stiffness
versus the twisting angle α. The normal and shear stiffnesses are calculated for the force applied
perpendicular and parallel to the primitive vector of a1, respectively. Surface stiffness of (e) hard
and (f) soft edges against the rest length of the bistable unit for different spring stiffness (k1 = 1 for
all cases). Blue dots in (e) and (f) are the configurations of the deformed lattice in (a) and (b). (g)
Edge stiffness of hard and soft edges versus the stiffness, k2, for multiple rest lengths of springs.
As k2 increases, the stiffnesses of the top and bottom edges tend to converge. The stiffness and k2
are non-dimensionalized by k1.
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lij0 and lij are the rest and current lengths of each bond, respectively, lk represents the length of
the spring in its current state. The stiffnesses of the bonds and the added springs are taken to
be k1 and k2 respectively. In the limit of small strain, we work with a linearized theory, i.e., we
keep terms to the quadratic order in site displacements in the elastic energy. More details about
the elastic energy and the linearization in a unit cell can be found in the Supplementary Note. To
perform the test, three out of four boundaries of the lattice are fixed, and the remaining boundary
is free to be given a small displacement U⃗i at the center site i (Fig. 4.3 (a)-(b)), the direction of
which is perpendicular to the bottom edge (a1 vector direction). The linear conjugate gradient
method is used to solve the minimal energy of the lattice and the surface stiffness is calculated
as the ratio between force and displacement

∣∣∣F⃗i

∣∣∣/∣∣∣U⃗i

∣∣∣ for the site being pressed. All the surface
stiffnesses are non-dimensionalized by the stiffness of the bond k1, and k1 is 1 for all simulations.
It is worth noting that the topological effect of the stiffness is robust and the detail of the probe is
not important. The displacement U⃗i in response to a force F⃗i at site i can be formally written in
terms of a sum over normal modes u⃗i,j as

U⃗i =
∑
j

u⃗i,j

(
u⃗i,j · F⃗i

)
Λj

(4.2)

where Λj is the dynamical matrix (K) eigenvalue of the normal mode j. Topological floppy modes
are characterized by Λj → 0 and u⃗i,j exponentially localized at selected edges, giving rise to
dramatically different responses to local probes at opposite edges, regardless of the details of the
probe (see SI for numerical tests using different types of probes).

The springs not only introduce bistability, but also result in significant mechanical stiffnesses
for the lattice, such as effective normal stiffness and effective shear stiffness of a 2D lattice; here
the effective normal stiffness, kn, is defined as the ratio between the force and the displacement in
the direction perpendicular to the primitive vector of a1, as the lattice undergoes uniform twisting,
and the effective shear stiffness, ksh, is defined as the ratio between the force and the displacement
in the direction parallel to a1:

kn = k2
b2r sin

2 (α + ψar)

8l2s cos
2 (π − ψbb)|cosϕ|

(4.3)

ksh = k2
b2r sin

2 (α + ψar)

8l2s cos
2 (π − ψbb)|sinϕ|

(4.4)

where br is a side length of triangle A, ψar and ψbb are inner angles of the triangles, and ϕ is the
angle between the vector of a1 and the side of cb . More information on the mechanical stiffness is
shown in the Supplementary Note. Here, the elastic and shear stiffnesses have linear relationships
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to the spring constant k2 and are also dependent on the initial twisting angle α, shown in Fig. 4.2(d).
When k2 = 0, both kn and ksh are zero and the lattice transformation between topological states is
a purely soft one as discussed in Ref [16].

The surface stiffness of the lattice depends on the rest length and spring constant of the added
springs, as well as the configuration of the lattice. We first study the effect of the spring’s rest
length on the surface stiffness. By varying the rest length of the springs between 80% − 99% of
(ab + br)/2, we tune the two equilibria between far from the topological transition to close to the
transition (Fig. 4.2(c)). We use the linearized method described above to measure the edge stiffness
of a 30 × 30 multistable lattice at different rest lengths and different k2 values (Fig. 4.2(e)-(f)),
starting from the topologically polarized equilibrium state. Our results show that the stiffnesses of
the hard edges are not sensitive to the rest length of the springs, as long as the lattice is placed at
its equilibrium in the polarized phase, whereas the soft-edge stiffness has a monotonic decrease of
an order of magnitude when the rest length of the spring increases by 20% of (ab + br)/2.

We then study the effect of changing spring constant k2 on the edge stiffness (Fig. 4.2(g)).
We found that the stiffnesses for both hard and soft edges monotonically increase as k2 increases,
but the soft edge is more sensitive to k2. The magnitude of k2 ranges from 10−4 to 100 and the
stiffness of bonds stays at k1 = 1. Although the edge stiffnesses for different rest lengths show
moderate variations, the stiffness for the hard edge increases very slowly when k2 increases up to
10−1, and then it steeply increases as k2 continues to increase. The stiffness of the soft edge shows
the opposite trend—it increases exponentially when k2 is raised from 10−4 to slightly less than 1
and then increases less sharply afterwards. Because of the different increase of stiffnesses between
hard and soft edges, Fig. 4.2(g) shows the stiffness convergence of both edges at large k2 values
(up to 100) for each case. This trend can be understood via the nature of the topological edge
modes. In the Maxwell limit (k2 = 0), the edge modes are purely rotations of the triangles. At
the soft edge, these are the modes that accommodate the local deformations. As a result, the edge
stiffnesses are extremely sensitive to the spring constant k2, because the topological edge modes
distort these springs. At the hard edge, in contrast, there are no topological edge modes, and the
local deformation is composed of bulk modes, which distorts both the bonds and the springs in
the kagome lattice. When the bonds k1 are much stiffer than the springs, the hard-edge stiffness is
not sensitive to k2. As k2 increases to close to or even greater than k1, the added springs become
comparable to the bonds in the unit cells, which will take the lattice away from Maxwell points,
and lead to the disappearance of topological polarization of the lattice and the lattice will transition
to a conventional stable elastic medium.

We further study the edge stiffness of a Maxwell lattice as it deforms along its Guest mode
(labelled by the twisting angle α), which reconfigures the lattice between topological phases
(Fig. 4.3). The general shape of these curves is similar to the case of lattices without bistable units
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Figure 4.3: Linearized normalized edge stiffness of kagome lattices transitioning between polar-
ized and nonpolarized phases. The bond stiffness k1 is 1 for all simulations. (a) Edge stiffness of
top and bottom edges from 10×10, 20×20 and 30×30 kagome lattices with structures and dimen-
sions shown in Fig. 4.1. The rest length of the spring is set as 95% of (ar + bb)/2, and the lattice
is held at different configurations (labelled by angle ) by three boundaries with the edge stiffness
measured at the fourth boundary. The spring constant k2 is 0.001. (b) Edge stiffness of a 30 × 30
kagome lattice without bistable units (k2 = 0). (c-e) Edge stiffness of a 30 × 30 kagome lattice
with different k2/k1. (c) k2/k1 = 0.001, (d) k2/k1 = 0.01, and (e) k2/k1 = 0.1. Black and red
dots indicate the specific surface stiffness at the equilibrium twisting angles, α0, where the spring is
relaxed, one located in the topologically polarized phase and the other in the non-polarized phase.
An inset in (c) is a linear scale plot of edge stiffness for k2/k1 = 0.001.
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(Fig. 4.3(b)). However, the lattice is only in force balance at the two equilibria (red and black dots
in Fig 4.3), due to these bistable units. In all other configurations, the lattice is held at the bound-
ary, and then relaxed to adopt an inhomogeneous and stressed reference state (via a minimization
of the nonlinear elastic energy). We then expand the elastic energy around these inhomogeneous
stressed states and use the linearized theory to calculate the edge stiffness. The hard-edge stiff-
ness increases prominently when k2/k1 is large for the polarized Maxwell lattice resulting from
the initial non-zero energy state of the lattice, except for the state in which the auxiliary springs
are undeformed. The analysis of the boundary stiffness shows that the topological polarization
of Maxwell lattices is well-preserved upon the incorporation of the springs. Furthermore, both
the surface stiffness and the lattice elasticity can be programmed by tuning the properties of these
added springs.

We support this computational observation by theoretical analysis. It was shown in Refs. [73;
74] that topological polarization can emerge in continuum elasticity theories with strain gradient
terms. Here we apply the formulation of Ref. [73] which provides a treatment of additional weak
interactions (the added springs for bistability in this case) beyond Maxwell connectivity. We take
the linearized theory at the configuration where the lattice is polarized without the added springs
(the Maxwell limit), and examine the topological polarization with the added springs at varying
spring constant ratio k2/k1. In particular, we take the 7 × 6 dimensional compatibility matrix in
momentum space Clattice

k⃗
(from the 6 nearest-neighbor springs and 1 added spring), reduce it to a

7× 2 dimensional renormalized compatibility matrix Ãlattice
k⃗

by integrating out the 5 high energy
bands and keeping only the lowest 2 bands (acoustic branches), and convert it to a continuum
theory with a 2 × 2 dimensional compatibility matrix Ccontinuum(k⃗) via an LDLT decomposition.
The last step requires that one eigenvalue of the elastic moduli matrix (3×3 in the Voigt notation) of
the 2D lattice is much smaller than the other 2, a measure of how far the lattice is from the Maxwell
point. We then calculate the topological index, the frequencies, and the penetration depths of the
edge modes from the Ccontinuum(k⃗) matrix.

Interestingly, our calculation shows that the topological polarization remains unchanged as we
increase k2/k1, compared to the Maxwell limit (k2/k1 = 0). Instead, as k2/k1 becomes large,
it is the small eigenvalue of the elastic moduli matrix becoming comparable with the other two,
invalidating the definition of the topological polarization. As shown in Fig. 4.4, the 3 eigenvalues
of the elastic moduli matrix become comparable as k2/k1 1. Concurrently, the solved penetration
depths of one of the edge modes diverge at this point. This indicates that this edge mode is merged
into the bulk bands. This is in good agreement with the numerical results of edge stiffness in
Fig. 4.2(g), where the topological asymmetry vanishes around k2/k1 1.

Therefore, we show via this continuum theory that as long as the springs added for bistability
are weak (k2/k1 ≪ 1), the topological polarization and the resulting asymmetric edge stiffnesses
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Figure 4.4: Continuous theory of topological mechanics in Maxwell lattices in the presence of
bistable spring, k2. (a) Eigenvalues of the elastic moduli matrix (measured in the unit of k1) as
functions of k2/k1. (b) Penetration depths of the two edge modes as functions of k2/k1. Dashed
lines in (b) indicate the penetration depths at the ideal Maxwell limit k2 = 0. Here the pene-
tration depths are characterized as the parameter b in the zero-mode solution of the decay rate
q′′y = q2x/b, so the physical penetration depth is b/q2x, depending on the wave vector along the edge.
For k2/k1 < 0.1, one of the eigenvalues is significantly smaller than the other two, and the contin-
uous theory exhibits the same topological index and penetration depths as the ideal Maxwell limit.
Beyond this point, the smallest eigenvalue becomes comparable with the other two, and the system
undergoes a crossover towards the rigid regime, for which the continuous topological theory is no
longer valid.

81



are well preserved.

4.2.3 Reconfigurable interface between topologically distinct states of a
multistable Maxwell lattice

The introduction of multistability to a Maxwell lattice offers new opportunities for studying
intriguing structural features from topological interfaces to defects, as well as their reconfigura-
bility. As an important first step in understanding heterogeneous states in multistable Maxwell
lattices, here we study the static interface between topologically polarized and unpolarized phases
in a multistable lattice.

For a homogenous multistable Maxwell lattice, as a shear strain is applied from one boundary
of the lattice, a portion of the lattice undergoes a topological transition from one topological state
to another. However, due to the different primitive vectors between the two lattice domains in
different topological states (Fig. 4.5(i)), the interface bears geometric frustration, and interesting
questions arise in terms of the equilibrium configurations of the lattice. To understand the profile
of the interface in the static limit, a numerical study using energy minimization is conducted. We
set up the initial configuration such that two lattice domains in distinct topological phases, namely,
one unpolarized (RT = 0) and one polarized (RT = a2 − a1), are connected. Depending on which
domain is placed on the top, we have either a SSS interface or a ZM interface [1]. As mentioned
above, because the lattice vectors of the two domains along the interface are in general different,
in order to connect them, we elongated some bonds in the initial condition, and then let the lattice
evolve according to (nonlinear) energy minimization to reach the equilibrium configuration. As a
result, interesting interface configurations show up, as shown in Fig. 4.5.

The lattice-vector mismatch between the two domains causes interesting profiles where the
interface curves and widens in all cases. This curvature shares similarities with curved thin elastic
bodies in continuum elasticity due to frustration [110; 35; 111]. Another key feature is that the
exact interface profile depends on the initial configuration, i.e., how the two domains are connected
initially, because the energy minimization could lead to multiple local minima given the complexity
of the energy landscape. The initial configuration to create interface profiles in Fig. 4.5 is described
in the supplementary materials.

The study of the interface profile reveals a geometric frustration when this multistable lattice
transforms from one topological state to another via an interface. When the whole lattice trans-
forms uniformly, there is no geometric frustration, but as we described above, when this transition
occurs across the lattice with an interface, the lattice vector mismatch causes frustration and in-
ternal stress, giving rise to interesting profiles. While such a transition is often dynamic (i.e., as
the lattice is triggered by an impact from one end and the transformation propagates through the
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Figure 4.5: Reconfiguration interfaces of multistable topological kagome lattices. Reconfiguration
interface of (a-b) 10 × 8, (c-d) 14 × 8, (e-f) 20 × 8, and (g-h) 30 × 8 kagome lattices based
on minimization of nonlinear elastic energy of the lattice. (a, c, e, g) Initial configurations of
the lattices have non-polarized domains at the top area of the lattice and polarized domains at
the bottom area, respectively (forming a zero-mode interface). (b, d, f, h) Initial configuration
presents that the non-polarized area is at the bottom while the polarized area is on the top part of
the lattice, creating a self-stress-state interface. (i) Two uniform lattices with different primitive
vectors are shown to illustrate fitting them together while with different widths. Examples of
initial configurations are shown in Supplementary Materials, Figure. 4.9. The colormap is used for
the differences of the twisting angles α between unit cells, and αa2−a1—positive values (in blue)
indicate non-polarized unit cells, and negative (in red) represent polarized unit cells. α−αa2−a1 =
±0.2 imply the unit cell is at its bistable equilibrium in which the spring is relaxed (α0 = 2.95 and
α0 = 2.55).
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lattice), we have chosen to focus on the statics in this study; the dynamics of this interface pro-
file will require further study to achieve a deeper understanding of how this geometric frustration
interplays with waves of stress.

4.2.4 Experiments on multistable hinged Maxwell lattices

A prototype of a 3D-printed lattice is used for experimental demonstration of the theoretical
findings in the previous sections. The lattice consisting of 6-unit cells in both length and width
are assembled with bistable units, where the added springs are incorporated between two triangles
from adjacent unit cells (one unit cell with spring embedded is shown Fig. 4.1(d)). Fig. 4.6(a)
shows the combined lattice transitioning from the non-polarized domain to the polarized domain
via soft twisting manually [16]. This process experimentally demonstrates the ease of manipulation
of topological transformation, where the lower left of the lattice is held by one hand and the upper
right corner can be pulled diagonally using the other hand. Compared with the similar manipulation
in the previous study [16], where the Guest mode has to be realized by a uniform dilation which is
difficult to control, the multistable lattice efficiently improves the twisting manipulation and speeds
up the transition process.

The experimental setup for measuring the surface stiffness of the lattice is shown in Fig. 4.6(b)
and the corresponding force/stiffness versus displacement results for two opposite edges are given
in Fig. 4.6(c) and (d). Tips on three of four edges are bonded to the ground using hook-and-loop
self-adhesive tapes (also adding superglue to prevent edges slipping) and the last edge is a free
boundary for applying mechanical loads for testing. Fig. 4.6(b) demonstrates the large pushing
force needed (43.7 N) when a displacement (here 20 mm) is given at a tip of the hard edge, as well
as the small deformations as a result, while a more distinct shape change is observed when it is
pushed at the tip from the soft edge, and the corresponding force (0.86 N for 19 mm) is roughly
2% of the one at the hard edge. The edge stiffness (the ratio of force to displacement) is calculated
and presented in Fig. 4.6(c). The mechanical test is implemented within the regime where the
hinges start to bear mechanical forces. More details of the differences between theoretical and
experimental stiffness are explained in the Supplementary Note. Fig. 4.6(d) illustrates that there are
roughly two orders of magnitude difference between the stiffness of the hard and soft edges (when
a pushing load is given). The experimental results are further proofs that the polarized multistable
lattice maintains the property where the surface stiffness of the hard edge sharply increases and
becomes much higher than that of the soft edge.

Through a set of 3D-printed Maxwell lattices, it is verified that the transformation of the lattice
can be done through merely soft twisting of the network and the final angles of the unit cells are
guaranteed to be nearly homogenous as they are controlled by the energy minimum of the springs.
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Figure 4.6: Experimental validation on topological transition and surface stiffness. (a) Topological
transition (swift twist of angles) from non-polarized phase to polarized phase for a 6 × 6-unit
cell lattice. (b) The comparison of forces needed to push the tips of two opposite edges at given
displacements. The hard edge is pushed to 20 mm which needs over 43 N, while 19 mm is given
for the soft edge needing only 0.86 N. (c) Force and (d) corresponding edge stiffness against
displacement for two edges. The black (blue) line indicates the hard edge undergoes a pushing
(pulling) load, while the red (magenta) represents soft edges applied by a pushing (pulling) force.
Solid and dashed lines are used to distinguish theoretical results and experimental data.
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Furthermore, since the force-displacement curves are measured on both sides of the lattice as it
falls in the topologically polarized state, the difference in the edge stiffness on those two sides
due to the topological polarization is observed, as well as the hardening due to the addition of the
springs.

4.2.5 Experiments on multi-material Maxwell lattice and hingeless bistable
unit

To further demonstrate a significant contrast of the edge stiffnesses between two boundaries of
the lattice, a multi-material additive manufacturing technique is utilized. In this design, VeroWhite,
a stiff material, has been used to construct a solid triangle body for the unit cells to maintain the
unit cell structure, and Agilus30, a softer material, has been used as the hinges connecting the
triangles in the lattice. The hinges are stiff in response to a tensile force along the hinge axis
because the Agilus30 hinge is constrained via its attachment to the stiff Vero-White triangles. The
hinges are compliant in bending because the soft Agilus30 is free to bend. During the force vs.
displacement measurements of the multi-material lattice, the boundary of interest is probed by a
force sensor while the other 3 boundaries are fixed in place. The measurement shows a promising
contrast between the edge stiffnesses of the rigid and floppy edges with an average initial stiffness
ratio of 16. The experimental set up and the measured force-displacement curves are shown in
Fig. 4.7.

This experiment demonstrates that the incorporation of multi-material 3D printing nicely pre-
serves the topological polarization, which was originally defined in the “pin-joint” limit with no
bending stiffness. Homogeneous (one-material) 3D printing of Maxwell lattices led to the design
of interesting metamaterials for contrasting surface stiffnesses [28; 2; 3]. However, the ratio of the
surface stiffness at the hard and soft edges are limited to ∼< 5 in these designs, due to significant
bending stiffness at the hinges. Multi-material 3D printing presented here offers a creative way to
resolve this issue, using soft materials at the hinges, as discussed above. Furthermore, the softness
of these hinges may also enable reconfiguration of the lattice between topological phases and the
incorporation of the bistable mechanism, and these will be topics for future studies.

With a desire to achieve bistability in the Maxwell lattices through additive manufacturing, a
new design of a hingeless bistable unit (Fig. 4.7(c)) is proposed to be incorporated to connect the
red and blue triangles in each unit cell. A force displacement test was performed to show the
transition between the two stable states of the unit in Fig. 4.6(d). The fact that the force curve
drops down to zero and then rises back up as the unit is pushed in a single direction indicates the
existence of the second stable state.

However, the integration between the bistable units and the topologically polarized kagome
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Figure 4.7: Surface stiffness of bistable lattice made by multi-materials and bistable unit design
and test. (a) Experimental setup for surface stiffness testing of multi-material Maxwell lattice. A
zoom-in panel shows the detailed unit cells and the hinges using soft materials. (b) Force versus
displacement for the hard and floppy edges. The solid lines indicate three trials for the hard edge
while the dashed lines represent trials for the soft edge. The stiffness ratio between the two edges
is averaged by the fitting with 3 trials and is around 16. (c) A bistable hinge, composed of two
approximately triangular shaped prisms attached by a flexural hinge, and connected by a thin spring
element. Experimental setup for force-displacement testing of the bistable hinge. (d) Force versus
displacement for the bistable hinge. The force probe starts from one stable state of the bistable
hinge and pushes the structure snapping to the other stable state with a displacement rate of 0.2
mm/s.
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lattice has not been achieved yet due to both size limitation and material properties. A lattice
with small unit cells such as the one shown in Fig. 4.7(a) cannot accommodate the bistable units
as they would be under the printing resolution of the 3D printer, while enlarging the unit cells
to incorporate the bistable units would lead to an overall size of the lattice beyond the limitation
of the printing platform. A further engineering design needs to be considered to succeed in the
integration of bistability and topological kagome lattices through additive manufacturing methods.

4.3 Discussion

In summary, a multi-stable topological mechanical lattice is first-ever created by attaching a
spring between two specific edges of the unit cell of a topological kagome lattice. We experimen-
tally and computationally show that the new design of the multistable Maxwell lattice can achieve
a controllable and swift transformation between different topological phases with dramatically dif-
ferent mechanical behaviors and enhanced load-bearing capacity (Fig. 4.2(d)). We also studied
interfaces between domains of lattices in different topological phases, revealing rich patterns. The
asymmetric dynamics of this interface induced by the topological polarization will be interesting
topics for future studies, with promising applications in impact control. In addition, we explored
additive manufacturing methods to produce multistable lattices, demonstrating that multi-material
3D printing can help achieve edge stiffness ratios much greater than in previous studies, as well as
proposing a bistable hingeless unit which can be incorporated into these lattices in future studies.

Multi-stable Maxwell lattices have broad potential applications according to different working
circumstances. The edge of the polarized Maxwell lattices with a higher stiffness (hard edge) can
be used for ballistic protection and vehicle components acting as load-bearing elements, while the
soft edges of the lattices can be used as energy absorption layers and buffers. As the lattice re-
programs to the non-polarized phase, both edges become soft, and this effect can be utilized to
absorb and store external impact energy. The introduced bistability enables a feasible approach
for improving the operation of programmable topological mechanical metamaterials. While in this
specific example, bistablity in each unit cell is achieved through an addition of a spring, there are
other methods by which bistability or multistability can be introduced including but not limited to
strain engineering [112; 113; 114; 115] and mechanical buckling [116], opening important areas
for future study. In addition, a valuable extension of the current study is to introduce multistabil-
ity to 3D topological Maxwell lattices[ref], which exhibit 3 Guest-Hutchinson modes and more
interesting modes of transformation, in addition to wide applicability as a structural material.

Moreover, the multistable mechanical metamaterials, with novel mechanical properties and de-
formation modes, provide a new approach to innovate mechanical computing architectures (both
non-volatile and volatile systems). Hence, our study can inspire neuromorphic metamaterials with

88



unprecedented reprogrammability and controllability, for instance, ReMM that can perform ad-
vanced logical functions thanks to the multi-stability and superb reconfigurability of the lattice.

4.4 Materials and Methods

The primary methods used in this work were theoretical analysis combined with experimen-
tal validation. Computer-aided programming and numerical computations were implemented via
MATLAB. The prototype consisting of 6 × 6-unit cells was 3D printed using PLA materials by a
commercial 3D printer (Ender 3 Pro) and assembled with springs (Uxewll 304 stainless steel) to
generate a multistable lattice. A surface stiffness test was implemented using a digital force gauge
by pushing and pulling tips at the soft and hard edges.

The experiment on the multimaterial-3D-printed lattice was performed on a platform that em-
ploys a constant-speed actuator instrumented with a 1N force sensor (FORT 100). Three bound-
aries of the sample were fixed on the platform by clamps and tapes, and the force probe indented a
selected tip at the open boundary by up to ∼ 3 mm.

The hingeless bistable unit was 3D printed with a Nylon material (Ultracur3D ST 45) on a
commercial 3D printer (Origin MDK4). The mechanical characterization of the bistable hinge was
performed on a dynamic mechanical analyzer (TA RSA3) using a custom fixture to apply pressure
to the outer edges of the unit while providing clearance for the spring element.

4.5 Appendices

4.5.1 Note 1: Elastic energy of a unit cell in the lattice

A unit cell chosen to calculate the elastic energy is illustrated on Fig. 4.1(a), where the displace-
ment in x and y directions at each node has added to the unit cell, shown in Fig. 4.8. The bonds of
the triangles can be defined as deformable rods with an effective stiffness, k1, and the stiffness of
the spring linking the centers of two bonds is k2. When the unit cell is deformed associated with
the lattice, displacements u of every nodes are generated, resulting in creating elastic energy of the
unit cell.

Nodes defined as A, B, C, A′, and B′ in the unit cell are shared by two triangles either from the
same unit cell or from different units. To avoid double counting of these nodes, each unit cell only
contains three nodes, A, B, and C, which have notations of i,j , representing the unit cell from ith
row and jth column of the lattice. Adding nodes from the boundaries, the total number of nodes
for a lattice with n×m unit cells is 6nm+2n+2m. The displacement vector of the unit cell (i, j)
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Figure 4.8: A unit cell of a homogeneous lattice with a bistable unit where the internal angle
between two triangles is α. Node A, B, A′, and B′ are shared with the adjacent unit cells, while
Node C belongs to the current unit cell corresponding to the α angle.
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shown in Fig. 4.8 is defined as

u =
(
ui,j,x1, ui,j,x2, ui,j,x3, ui+1,j,x1, ui+1,j+1,x2, ui,j,y1, ui,j,y2, ui,j,y3, ui+1,j,y1, ui+1,j+1,y2

)T
.

(4.5)
The total elastic energy in the unit cell consisting of the energy from six sides of triangles and the
last one from the added spring is given by

En =
k2
2

1

2

√√√√[−ui,j,x1 + ui+1,j,x1 + br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr)]
2

+ [ui,j,y1 − ui+1,j,y1 + br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr)]
2
− ls

2

+
k1
2



√√√√[−ui,j,x1 + ui,j,x2 + ar cos(θ + ψbb)]

2

+ [ui,j,y1 − ui,j,y2 + ar sin(θ + ψbb)]
2
− ar

2

+


√√√√[−ui,j,x1 + ui,j,x3 + br cos(θ + ψbb + ψcr)]

2

+ [ui,j,y1 − ui,j,y3 + br sin(θ + ψbb + ψcr)]
2
− br

2

+


√√√√[ui,j,x2 − ui,j,x3 + ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr)]

2

+ [−ui,j,y2 + ui,j,y3 + ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr)]
2
− cr

2

+


√√√√[−ui+1,j,x1 + ui,j,x3 + ab cos(α + θ + ψar + ψbb + ψcr)]

2

+ [ui+1,j,y1 − ui,j,y3 + ab sin(α + θ + ψar + ψbb + ψcr)]
2
− ab

2

+



√√√√√√√√√√
[−ui+1,j+1,x2 + ui,j,x3

+ bb cos(α + θ + ψar + ψbb + ψcr + ψcb)]
2

+ [ui+1,j+1,y2 − ui,j,y3
+ bb sin(α + θ + ψar + ψbb + ψcr + ψcb)]

2

− bb



2

+



√√√√√√√√√√
[−ui+1,j,x1 + ui+1,j+1,x2 + ab cos(α + θ + ψar + ψbb + ψcr)

− bb cos(α + θ + ψar + ψbb + ψcr + ψcb)]
2

+ [ui+1,j,y1 − ui+1,j+1,y2 + ab sin(α + θ + ψar + ψbb + ψcr)

− bb sin(α + θ + ψar + ψbb + ψcr + ψcb)]
2

− cb



2

.

(4.6)

Eq. (4.6) gives the energy of an entire unit cell. However, the total energy of a lattice is the com-
bination of these entire unit cells having added spring and additional unit cells which only include
red triangles from the top edge or blue triangles from the bottom. These incomplete unit cells only
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Figure 4.9: initial configurations of a 14 × 8 lattice with (a) RT = a2 − a1 at the bottom and
RT = 0 at the top, and (b) RT = a2 − a1 at the top and RT = 0 at the bottom.

have partial terms of energy in Eq. (4.6) which are related to those triangles. Reconfiguration re-
sults in Fig. 4.5 are solved by nonlinear minimization of the total elastic energy of the lattice using
Eq. (4.6). First, two initial configurations of the lattice are given by two different sets of angles
from homogeneous lattices, one located in the polarized domain, and the other in the non-polarized
phase. Second, bonds at the interface of two groups of lattices are stretched and connected together
to create an entire lattice consisting of these two domains (two examples in Fig. 4.9). Third, the
combined lattice is relaxed and the nonlinear minimization (nonlinear conjugate gradient method)
is applied to solve this unconstrained problem.

4.5.2 Note 2: Linearized elastic energy of a unit cell

To quantify the surface stiffness of a Maxwell lattice during the polarization transition, it is as-
sumed that the relative deformations of neighboring sites of the lattice is small enough (small ∆u

values) when compared with the geometry of the lattice, and thus the simplified linearized energy
of a unit cell, Ten, can be used as an approximation instead of the nonlinear energy En. The
linearized elastic energy of an entire unit cell represented in Fig. 4.8 is given by

Ten = uTKenu+ F T
enu+ Ten0, (4.7)

where Ken and Fen are a 10 by 10 semi positive-definite matrix corresponding to the quadratic
term and an 10 by 1 vector relate to the force on the bistable spring away from the rest length ls,
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respectively, at a given α, which have the forms

Ken =



K1,1 K1,2 K1,3 K1,4 0 K1,6 K1,7 K1,8 K1,9 0

K2,1 K2,2 K2,3 0 0 K2,6 K2,7 K2,8 0 0

K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10

K4,1 0 K4,3 K4,4 K4,5 K4,6 0 K4,8 K4,9 K4,10

0 0 K5,3 K5,4 K5,5 0 0 K5,8 K5,9 K5,10

K6,1 K6,2 K6,3 K6,4 0 K6,6 K6,7 K6,8 K6,9 0

K7,1 K7,2 K7,3 0 0 K7,6 K7,7 K7,8 0 0

K8,1 K8,2 K8,3 K8,4 K8,5 K8,6 K8,7 K8,8 K8,9 K8,10

K9,1 0 K9,3 K9,4 K9,5 K9,6 0 K9,8 K9,9 K9,10

0 0 K10,3 K10,4 K10,5 0 0 K10,8 K10,9 K10,10


α

, (4.8)

F T
en =

[
F1 0 0 F4 0 F6 0 0 F9 0

]
α
, (4.9)

and Ten0 = k2
4

(
a2b + b2r − 2abbr cos(α + ψar) + 4ls(ls −

√
a2b + b2r − 2abbr cos(α + ψar))

)
is an

energy constant resulting from the prestress in the spring, where ls is the rest length of the added
spring.
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Coefficients of diagonal terms in the dynamic matrix Ken are calculated:

K1,1 =k1 cos
2(θ + ψbb) + k1 cos

2(θ + ψbb + ψcr) (4.10)

+
k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))

2

4(a2b + b2r − 2abbr cos(α + ψar))
(4.11)

K2,2 =k1 cos
2(θ + ψbb) +

k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))
2

a2r + b2r − 2arbr cos(ψcr)
(4.12)

K3,3 =k1 cos
2(θ + ψbb + ψcr) + k1 cos

2(α + θ + ψar + ψbb + ψcr)+

k1 cos
2(α + θ + ψar + ψbb + ψcr + ψcb) +

k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))
2

a2r + b2r − 2arbr cos(ψcr)

(4.13)

K4,4 =k1 cos
2(α + θ + ψar + ψbb + ψcr)+

k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))
2

4(a2b + b2r − 2abbr cos(α + ψar))
+

k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))
2

a2b + b2b − 2abbb cos(ψcb)

(4.14)

K5,5 =k1 cos
2(α + θ + ψar + ψbb + ψcr + ψcb)+

k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))
2

a2b + b2b − 2abbb cos(ψcb)

(4.15)

K6,6 =k1 sin
2(θ + ψbb) + k1 sin

2(θ + ψbb + ψcr)+ (4.16)

k2(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))
2

4(a2b + b2r − 2abbr cos(α + ψar))
(4.17)

K7,7 =k1 sin
2(θ + ψbb)+

k1(ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr))
2

a2r + b2r − 2arbr cos(ψcr)

(4.18)

K8,8 =k1 sin
2(θ + ψbb + ψcr) + k1 sin

2(α + θ + ψar + ψbb + ψcr)+

k1 sin
2(α + θ + ψar + ψbb + ψcr + ψcb) +

k1(ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr))
2

a2r + b2r − 2arbr cos(ψcr)

(4.19)

K9,9 =k1 sin
2(α + θ + ψar + ψbb + ψcr)+

k2(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))
2

4(a2b + b2r − 2abbr cos(α + ψar))
+

k1(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))
2

a2b + b2b − 2abbb cos(ψcb)

(4.20)

K10,10 =k1 sin
2(α + θ + ψar + ψbb + ψcr + ψcb)+

k1(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))
2

a2b + b2b − 2abbb cos(ψcb)

. (4.21)
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Coefficients of off-diagonal terms in Eq. (4.8) are expressed below:

K1,2 =K2,1 = −k1 cos2(θ + ψbb) (4.22)

K1,3 =K3,1 = −k1 cos2(θ + ψbb + ψcr) (4.23)

K1,4 =K4,1 =
−k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))

2

4(a2b + b2r − 2abbr cos(α + ψar))
(4.24)

K1,6 =K6,1 = −k1 cos(θ + ψbb) sin(θ + ψbb)− k1 cos(θ + ψbb + ψcr) sin(θ + ψbb + ψcr)−
k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))·
(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))

4(a2b + b2r − 2abbr cos(α + ψar))

(4.25)

K1,7 =K7,1 = k1 cos(θ + ψbb) sin(θ + ψbb) (4.26)

K1,8 =K8,1 = k1 cos(θ + ψbb + ψcr) sin(θ + ψbb + ψcr) (4.27)

K1,9 =K9,1 = k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))·
(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))

4(a2b + b2r − 2abbr cos(α + ψar))

(4.28)

K2,3 =K3,2 =
−k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))

2

a2r + b2r − 2arbr cos(ψcr)
(4.29)

K2,6 =K6,2 = k1 cos(θ + ψbb) sin(θ + ψbb) (4.30)

K2,7 =K7,2 = k1 cos(θ + ψbb) sin(θ + ψbb)+

k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))(−ar sin(θ + ψbb) + br sin(θ + ψbb + ψcr))

a2r + b2r − 2arbr cos(ψcr)

(4.31)

K2,8 =K8,2 =
k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))(ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr))

a2r + b2r − 2arbr cos(ψcr)

(4.32)
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K3,4 =K4,3 = −k1 cos2(α + θ + ψar + ψbb + ψcr) (4.33)

K3,5 =K5,3 = −k1 cos2(α + θ + ψar + ψbb + ψcr + ψcb) (4.34)

K3,6 =K6,3 = k1 cos(θ + ψbb + ψcr) sin(θ + ψbb + ψcr) (4.35)

K3,7 =K7,3 =
k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))(ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr))

a2r + b2r − 2arbr cos(ψcr)

(4.36)

K3,8 =K8,3 = −k1 cos(θ + ψbb + ψcr) sin(θ + ψbb + ψcr)+

− k1 cos(α + θ + ψar + ψbb + ψcr) sin(α + θ + ψar + ψbb + ψcr)+

− k1 cos(α + θ + ψar + ψbb + ψcr + ψcb) sin(α + θ + ψar + ψbb + ψcr + ψcb)+

k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))(−ar sin(θ + ψbb) + br sin(θ + ψbb + ψcr))

a2r + b2r − 2arbr cos(ψcr))

(4.37)

K3,9 =K9,3 = k1 cos(α + θ + ψar + ψbb + ψcr) sin(α + θ + ψar + ψbb + ψcr) (4.38)

K3,10 =K10,3 = k1 cos(α + θ + ψar + ψbb + ψcr + ψcb) sin(α + θ + ψar + ψbb + ψcr + ψcb)

(4.39)
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K4,5 =K5,4 =
−k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))

2

a2b + b2b − 2abbb cos(ψcb)

(4.40)

K4,6 =K6,4 = k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))·
(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))

4(a2b + b2r − 2abbr cos(α + ψar))

(4.41)

K4,8 =K8,4 = k1 cos(α + θ + ψar + ψbb + ψcr) sin(α + θ + ψar + ψbb + ψcr) (4.42)

K4,9 =K9,4 = −k1 cos(α + θ + ψar + ψbb + ψcr) sin(α + θ + ψar + ψbb + ψcr)+

− k2(br cos(θ + ψbb + ψcr)− ab cos(α + θ + ψar + ψbb + ψcr))·
(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))

4(a2b + b2r − 2abbr cos(α + ψar))
+

− k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))·
(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))

a2b + b2b − 2abbb cos(ψcb)

(4.43)

K4,10 =K10,4 = k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))·
(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))

a2b + b2b − 2abbb cos(ψcb)

(4.44)
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K5,8 =K8,5 = k1 cos(α + θ + ψar + ψbb + ψcr + ψcb) sin(α + θ + ψar + ψbb + ψcr + ψcb)

(4.45)

K5,9 =K9,5 = k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))·
(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))

a2b + b2b − 2abbb cos(ψcb)

(4.46)

K5,10 =K10,5 = −k1 cos(α + θ + ψar + ψbb + ψcr + ψcb) sin(α + θ + ψar + ψbb + ψcr + ψcb)−
k1(ab cos(α + θ + ψar + ψbb + ψcr)− bb cos(α + θ + ψar + ψbb + ψcr + ψcb))·
(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))

a2b + b2b − 2abbb cos(ψcb)

(4.47)

K6,7 =K7,6 = −k1 sin2(θ + ψbb) (4.48)

K6,8 =K8,6 = −k1 sin2(θ + ψbb + ψcr) (4.49)

K6,9 =K9,6 =
−k2(br sin(θ + ψbb + ψcr)− ab sin(α + θ + ψar + ψbb + ψcr))

2

4(a2b + b2r − 2abbr cos(α + ψar))
(4.50)

K7,8 = K8,7 =
−k1(ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr))

2

a2r + b2r − 2arbr cos(ψcr)
(4.51)

K8,9 =K9,8 = −k1 sin2(α + θ + ψar + ψbb + ψcr) (4.52)

K8,10 =K10,8 = −k1 sin2(α + θ + ψar + ψbb + ψcr + ψcb) (4.53)

K9,10 = K10,9 =
−k1(ab sin(α + θ + ψar + ψbb + ψcr)− bb sin(α + θ + ψar + ψbb + ψcr + ψcb))

2

a2b + b2b − 2abbb cos(ψcb)
.

(4.54)
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Additional coefficients in the Fen vector are

F1 =k2(−2ls +
√
a2b + b2r − 2abbr cos(α + ψar))·

−br cos(α + ψar) + ab cos(α + θ + ψar + ψbb + ψcr)

2
√
a2b + b2r − 2abbr cos(α + ψar)

(4.55)

F4 =k2(−2ls +
√
a2b + b2r − 2abbr cos(α + ψar))·

br cos(α + ψar)− ab cos(α + θ + ψar + ψbb + ψcr)

2
√
a2b + b2r − 2abbr cos(α + ψar)

(4.56)

F6 =k2(−2ls +
√
a2b + b2r − 2abbr cos(α + ψar))·

br sin(α + ψar)− ab sin(α + θ + ψar + ψbb + ψcr)

2
√
a2b + b2r − 2abbr cos(α + ψar)

(4.57)

F9 =k2(−2ls +
√
a2b + b2r − 2abbr cos(α + ψar))·

−br sin(α + ψar) + ab sin(α + θ + ψar + ψbb + ψcr)

2
√
a2b + b2r − 2abbr cos(α + ψar)

. (4.58)

The lattice also consists of unit cells with only red or blue triangles at the top or bottom edges
without bistable units. For a unit cell, (1, j), which only includes a blue triangle at the bottom
of the lattice, the displacement vector u only consists of Node A′, B′, and C in Fig. 4.8, and is
represented as

u =
(
ui+1,j,x1, ui+1,j+1,x2, ui,j,x3, ui+1,j,y1, ui+1,j+1,y2, ui,j,y3

)T
. (4.59)

The corresponding linearized energy can be written by

Tb = uTKbu, (4.60)

where Kb is a 6 by 6 semi positive-definite matrix and is expressed

Kb =



Kb1,1 Kb1,2 Kb1,3 Kb1,4 Kb1,5 Kb1,6

Kb2,1 Kb2,2 Kb2,3 Kb2,4 Kb2,5 Kb2,6

Kb3,1 Kb3,2 Kb3,3 Kb3,4 Kb3,5 Kb3,6

Kb4,1 Kb4,2 Kb4,3 Kb4,4 Kb4,5 Kb4,6

Kb5,1 Kb5,2 Kb5,3 Kb5,4 Kb5,5 Kb5,6

Kb6,1 Kb6,2 Kb6,3 Kb6,4 Kb6,5 Kb6,6


. (4.61)
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Each coefficient in the Kb is given as follow

Kb1,1 =k1 + k1 cos
2(ψbb) (4.62)

Kb2,2 =k1 +
k1(cb − ab cos(ψbb))

2

a2b + c2b − 2abcb cos(ψbb)
(4.63)

Kb3,3 =k1 cos
2(ψbb) +

k1(cb − ab cos(ψbb))
2

a2b + c2b − 2abcb cos(ψbb)
(4.64)

Kb4,4 =k1 sin
2(ψbb) (4.65)

Kb5,5 =
k1(ab sin(ψbb))

2

a2b + c2b − 2abcb cos(ψbb)
(4.66)

Kb6,6 =k1 sin
2(ψbb) +

k1(ab sin(ψbb))
2

a2b + c2b − 2abcb cos(ψbb)
, (4.67)

Kb1,2 =Kb2,1 = −k1 (4.68)

Kb1,3 =Kb3,1 = −k1 cos2(ψbb) (4.69)

Kb1,4 =Kb4,1 = −k1 cos(ψbb) sin(ψbb) (4.70)

Kb1,6 =Kb6,1 = k1 cos(ψbb) sin(ψbb) (4.71)

Kb2,3 =Kb3,2 = −
k1(cb − ab cos(ψbb))

2

a2b + c2b − 2abcb cos(ψbb)
(4.72)

Kb2,5 =Kb5,2 =
k1(cb − ab cos(ψbb))(ab sin(ψbb))

a2b + c2b − 2abcb cos(ψbb)
(4.73)

Kb2,6 =Kb6,2 =
−k1(cb − ab cos(ψbb))(ab sin(ψbb))

a2b + c2b − 2abcb cos(ψbb)
(4.74)

Kb3,4 =Kb4,3 = k1 cos(ψbb) sin(ψbb) (4.75)

Kb3,5 =Kb5,3 =
−k1(cb − ab cos(ψbb))(ab sin(ψbb))

a2b + c2b − 2abcb cos(ψbb)
(4.76)

Kb3,6 =Kb6,3 = −k1 cos(ψbb) sin(ψbb)+

k1(cb − ab cos(ψbb))(ab sin(ψbb))

a2b + c2b − 2abcb cos(ψbb)

(4.77)

Kb4,6 =Kb6,4 = −k1 sin2(ψbb) (4.78)

Kb5,6 =Kb6,5 =
−k1(ab sin(ψbb))

2

a2b + c2b − 2abcb cos(ψbb)
. (4.79)

For a unit cell, (n, j), that only has a red triangle at the top edge, the displacement vector u now
has Nodes A, B, and C accordingly. The corresponding semi positive-definite matrix Kr of this
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unit cell associated with these displacements is shown below.

u =
(
ui,j,x1, ui,j,x2, ui,j,x3, ui,j,y1, ui,j,y2, ui,j,y3

)T
, (4.80)

Kr =



K1,1r K1,2 K1,3 K1,6r K1,7 K1,8

K2,1 K2,2 K2,3 K2,6 K2,7 K2,8

K3,1 K3,2 K3,3r K3,6 K3,7 K3,8r

K6,1r K6,2 K6,3 K6,6r K6,7 K6,8

K7,1 K7,2 K7,3 K7,6 K7,7 K7,8

K8,1 K8,2 K8,3r K8,6 K8,7 K8,8r


α

, (4.81)

where Ki,j is the coefficient from the dynamic matrix Ken, and Ki,jr are given by

K1,1r =k1 cos
2(θ + ψbb) + k1 cos

2(θ + ψbb + ψcr) (4.82)

K3,3r =k1 cos
2(θ + ψbb + ψcr) +

k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))
2

a2r + b2r − 2arbr cos(ψcr)
(4.83)

K6,6r =k1 sin
2(θ + ψbb) + k1 sin

2(θ + ψbb + ψcr) (4.84)

K8,8r =k1 sin
2(θ + ψbb + ψcr) +

k1(−ar sin(θ + ψbb) + br sin(θ + ψbb + ψcr))
2

a2r + b2r − 2arbr cos(ψcr)
(4.85)

K1,6r =K6,1r = −k1 cos(θ + ψbb) sin(θ + ψbb)− k1 cos(θ + ψbb + ψcr) sin(θ + ψbb + ψcr)

(4.86)

K3,8r =K8,3r = −k1 cos(θ + ψbb + ψcr) sin(θ + ψbb + ψcr)−
k1(ar cos(θ + ψbb)− br cos(θ + ψbb + ψcr))(ar sin(θ + ψbb)− br sin(θ + ψbb + ψcr))

a2r + b2r − 2arbr cos(ψcr)
.

(4.87)

Compared Ki,jr with Ki,j at the same position in Ken, Ki,jr does not include the terms related to
the energy from the bistable unit.

The total linearized elastic energy, T = uTKu+F Tu+T0, in Eq. (1) is the sum of the energy
from all unit cells, including all those units with or without springs. The composite dynamic
matrix K is a linear combination of Ken, Kb and Kr that forms a N × N matrix, where N =

6nm+2n+2m, and the composite vector F is a N by 1 coefficient vector generated from Fen of
each unit cell. The energy constant, T0 = (n − 1)mTen0, is the sum of Ten0 from (n − 1)m unit
cells which have bistable units.
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4.5.3 Note 3: Linearized mechanical stiffness

Without bistable units, a homogeneous Maxwell lattice can be transformed between different topo-
logical polarization domains via strain-free soft twisting. However, during the twisting process, the
introduced bistability can generate new mechanical stiffness for the lattice, such as effective elastic
and shear stiffness, when the spring is under compressed/elongated.

It is assumed that all bonds of the lattice have infinite stiffness and only added springs generate
the elastic energy of the system. Starting from a homogeneous lattice with an initial twisting angle
α, the rest length of the added spring is

ls =

√
a2b
4

+
b2r
4
− abbr cos (α + ψar)

2
, (4.88)

where the side length and inner angle of triangles are shown in Fig 4.8. Fixing the red triangle and
given a small displacement, ux, horizontal to the primitive vector, a1, (or uy, perpendicular to a1)
at Node A′, the resulting angle change at Node C happens defined as δα, and the corresponding
length of the spring is

l =

√
a2b
4

+
b2r
4
− abbr cos (α + δα + ψar)

2
. (4.89)

According to the geometric relation of two triangles in a unit cell, the small displacement ux and
uy can be rewritten as a function of δα:

ux = ab cos(π − ψbb − δα)− ab cos(π − ψbb),

uy = ab sin(π − ψbb − δα)− ab sin(π − ψbb).
(4.90)

Since the displacement and angle change is assumed to be small enough, Eqs. (4.89-4.90) can be
linearized and are given as:

l = ls(1 +
abbr sin(α + ψar)

2l2s
δα), (4.91)

ux = ab sin(π − ψbb)δα,

uy = −ab cos(π − ψbb)δα.
(4.92)

The pushing force of Fx (Fy) parallel (perpendicular) to the primitive vector of a1 that twists
the lattice can be obtained by calculating the work that equals the total elastic energy of the added
spring.

Fx =
k2
2ux

δl2,

Fy =
k2
2uy

δl2,
(4.93)
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where δl is the difference of the current length of spring and the rest length of the spring, which is

δl = l − ls =
abbr sin(α + ψar)

2ls
δα. (4.94)

Therefore, the effective elastic stiffness and shear stiffness are

kel =
Fy

uy| cosϕ|
= k2

b2r sin
2(α + ψar)

8l2s cos
2(π − ψbb)| cosϕ|

,

ksh =
Fx

ux| sinϕ|
= k2

b2r sin
2(α + ψar)

8l2s sin
2(π − ψbb)| sinϕ|

,

(4.95)

where ϕ is the angle between the vector of a1 and the side of cb, which is given by

arctanϕ =
ar sin(α− ψbb − ψbr)

cb + ar cos(α− ψbb − ψbr)
. (4.96)

4.5.4 Note 4: Information on the 3D printed Maxwell lattice

The prototype is designed using SOLIDWORKS and 3D printed using PLA materials via an Ender
3 Pro printer. The material infill density of 10% is used for the 3D printed parts. The spring is
selected from commercial Uxewll 304 stainless steel, which has a spring constant of k2 = 150

N/m. Fig. 4.10 shows a 3D-assembled designed unit cell, spring connectors and an example of an
assembly of bistable lattice. Two rigid triangles (blue and red in Fig. 4.10a) are jointed at a vertex
of each triangle to create a flexible hinge. Thus, the two triangles can be able to freely rotate to each
other, so do the triangles in different unit cells. Moreover, the triangles are consisted of two layers,
which gives the space for the additional spring embedded into the triangles. This added spring with
much lower stiffness can provide an additional constraint of the unit and realize bistable equilibria
(shown in Fig. 4.6(a)). The spring connectors (Fig. 4.10b) have raised parts which can hold the
spring providing compressive or stretching force.

The effective stiffness k1 for bonds of unit cells are determined by [117; 118; 119]

k1 =
f

∆L
= 2E

S

L
, (4.97)

where f is the stretching/compression force applied to the bond, ∆L is the stretched/compressed
displacement, E ≈ 500 MPa is the Young’s modulus of the PLA material [120; 121; 122] (the infill
density, printing speed and temperature, and holes in the part are expected to reduce the Young’s
modulus of PLA), and S = 2.5× 10−6 m2 and L are the cross-sectional area and the length of the
bond, respectively. The factor of 2 is due to the double-layered configuration of the printed unit
cell. In the experiments, since the length of the each bond are different (L = 0.09, 0.036, 0.072,
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Figure 4.10: (a) 3-dimensional model of a unit cell, (b) 3D modeled and printed spring connectors,
and (c) assembled unit cells connected with springs.

0.045, and 0.063 m), k1 is used to calculate the theoretical results with different values, which are
shown as k1 = 2.778×104, 6.944×104, 3.472×104, 5.556×104 and 3.968×104 N/m. Theoretical
force-displacement and stiffness plots in Fig. 4.6(d) are created using these parameters (k1 and k2).

The experimental data show a good agreement with theoretical analysis (Fig. 4.6(d)), while
there are slight discrepancy. The theoretical stiffness of the hard edge shows an insignificant de-
crease (no change for the pulling case) as the displacement increases; the experimental data show
the increase of stiffness for the hard edge with increasing the displacement. At the low displace-
ment range, the low stiffness is caused by the relative sliding of the fixed boundaries. But at the
high displacement area, the friction, generated from the compression between hinges and trian-
gles, dominates over the ratio of the force to displacement, leading to higher edge stiffness. The
experimental stiffness of the soft edge (especially for the pushing case) is generally higher than the
theoretical one since there are non-negligible surface frictions at the junctions of each unit cell.

Box plots of force-displacement are shown in Fig. 4.11 to illustrate surface stiffness at the
soft and hard edge. Each edge is tested 15 times for both pushing and pulling it from the zero-
displacement configuration with a displacement no less than 14 mm. The hard edge is around 50
times stiffer than the soft edge (see Fig. 4.6(d)), while in theory, the hard edge can get 100 times
stiffer than the soft edge. This discrepancy is because that in a real system, the lattice still has
friction at the contacting surfaces and bending stiffness from each triangle, resulting in the reduced
difference in edge stiffness between two opposite edges. Nevertheless, these results validate that
the added bistable units maintain the property of the surface stiffness of the lattice.

Fig. 4.12a and b show a 3D modeled bistable lattice design and multimaterial-3D-printed test
piece, where dark colored hinges (red in (a)) are printed using Agilus30, a softer material, and light
white parts are solid triangle bodies using a stiffer material, namely VeroWhite. Dark parts of the
lattices are used to create hinges between the solid triangles in the lattice to resemble ideal hinged
kagome lattice with zero bending stiffness. The hingeless bistable unit (3D model in Fig. 4.12c) 3D

104



Figure 4.11: Box plots of force displacement relations for (a) pushing soft edge, (b) pushing hard
edge, (c) pulling soft edge, and (d) pulling hard edge.

printed using a Nylon material (printed piece in Fig. 4.12d) and is used to link two solid triangles
in each unit cell as a low-stiffness hinge. This hinge has two stable states, like the 3D-assembled
bistable unit cell, with one state in topological polarized phase and the other one in non-polarized
domain.
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Figure 4.12: (a) 3-dimensional model of and (b) 3D printed multi-material bistable Maxwell lattice.
(c) 3D modeled and (d) 3D printed bistable hinge.
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CHAPTER 5

Quasi-static Nonlinear Wave-like Phenomena in a
Topological Maxwell Lattice

This chapter summarizes the work “Synthetically Non-Hermitian Nonlinear Wave-like Behav-

ior in a Topological Mechanical Metamaterial” co-authored by Haning Xiu, Ian Frankel, Harry
Liu, Kai Qian, Siddhartha Sarkar, Brianna Macnider, Zi Chen1, Nicholas Boechler, and Xiaom-
ing Mao under submission to PNAS, and posted as on arXiv as arXiv:2207.09273. The finalized
version in the publication may appear with more contexts than this Chapter.

5.1 Introduction

The study of topological band theory in condensed matter physics has led to novel classes of
materials termed topological insulators [123; 124] and topological superconductors [125], which
support localized modes at the materials’ edges that are highly robust to defects and perturba-
tion [126]. The stability of these modes stems from topological protection conferred by the ma-
terial’s bulk properties. Topologically nontrivial materials have been shown to support unidirec-
tional, backscattering-immune mode propagation, thus, facilitating the development of new super-
conducting devices [127] with applications in areas such as quantum computation [128; 129], as
well as magnetoelectronic [130] and optoelectronic devices [131]. Recently, topological band the-
ory has also been applied to the mechanical domain, which has enabled the creation of topological
mechanical metamaterials (TMMs) that support phenomena such as energy localization and im-
munity to backscattering at finite frequencies, and a new ability to design and control quasi-static
and spatiotemporally-varying stress and deformation fields in materials [132; 89; 86; 87; 94].

TMMs at the Maxwell point, referred to as Maxwell lattices, are a subclass of TMMs where
the number of degrees of freedom (Degree of Freedom (DOF)s) balances with the number of con-
straints in the bulk (Fig. 5.1(a)); modes with zero energy arising in Maxwell lattices are referred
to as “zero” or “floppy” modes [1; 53]. These ZMs have a topological nature described by a
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polarization vector that is analogous to the topological invariant seen in the Su-Schrieffer-Heeger
model [32] and they localize such that, in the linkage-limit, the edges the polarization vector points
towards have zero stiffness and the opposite are rigid [1]. The direction of the polarization vector
is controlled by the lattice’s geometry and tunable [1; 53], arise. These ZMs have a topological
nature described by a polarization vector that is analogous to the topological invariant seen in the
Su-Schrieffer-Heeger model [32] and they localize such that, in the linkage-limit, the edges the
polarization vector points towards have zero stiffness and the opposite are rigid [1]. The direc-
tion of the polarization vector is controlled by the lattice’s geometry and tunable through a soft
strain [16]. In the presence of interfaces or topological defects, this polarization can result in in-
ternal localized states of self-stress (SSSs) and ZMs [1; 14]. Further, due to the balanced numbers
of DOFs and constraints in the bulk, such lattices are holographic and the state of the zero-energy
configuration of a d−dimensional material can be fully prescribed from its (d − 1) dimensional
boundary. In special cases such as twisted kagome lattices, the mechanisms can be written as
conformal transformations [92; 30]. Such holography adds additional levels of deformation con-
trol since the bulk state can be controlled via the boundary. Due to their intrinsic scalability and
high degree of control over deformation and stress fields through the tuning of the topological
polarization vector, Maxwell lattices have been suggested for future use related to robotics, im-
pact and energy absorption, tear resistance, nanoscale manufacturing via origami, and acoustic
and phonon logic and computation devices (see, e.g., logic strategies via multistable metamateri-
als [133]) [23; 26; 25; 27; 134; 2].

Despite this revealed wealth of applications, the study of Maxwell lattices has been con-
fined, by and large, to the linear, small deformation limit [53; 30; 1; 16; 22]. Intriguing non-
linear effects such as topological solitons have been revealed in one-dimensional (1D) Maxwell
chains [93; 135]. In two-dimensional (2D) topological Maxwell lattices, the study of nonlinear
effects have been so far limited to perturbation theories [23]. This is an important gap, as nonlinear
systems do not obey superposition and, as such, support an ability to control the spatiotempo-
ral allocation of energy in materials that vastly exceeds their linear counterparts [136; 137; 138]
through phenomena such as self-localization [139; 140], frequency conversion and dynamic tun-
ability [141; 142], and chaos [143], as well as rich interplay with finite-frequency topological
states [23; 144; 124; 145; 146; 147; 148; 149]. Hence, we envision that combining nonlinear
responses with the strong localization, non-reciprocity, and the robust nature of topological pro-
tection will lead to an important expansion of the ability to tailor spatiotemporal stress, defor-
mation, and energy fields, with application areas demonstrated for nonlinear dynamical systems
ranging from impact mitigation [150] to neuromorphic [151] and ultrafast mechanoacoustic com-
putation [152; 153].

In this work, we show that ZMs of 2D topological Maxwell lattices map to waves in 1D non-
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Figure 5.1: Zero energy configuration, polarization diagram, and subsequent nonlinear wave-
like behavior in the zero energy deformation field of a deformed kagome Maxwell lattice. The
analogy between the 2D static deformation fields and a 1D, nonlinear, non-Hermitian wave
equation is denoted in the axes labels. (a) Geometry of the deformed kagome lattice we study
here, where θ, α, and γ are internal angles between the red and blue triangles in the unit cells
(with normalized dimensionless side lengths of (0.4, 0.8, 1) and (0.5, 0.7, 1) for red and blue
triangles, respectively). (b) Topological transitions of the lattice shown in (a) by twisting α. The
black arrows point to configurations at the boundary between polarization domains. The blue
vertical lines denote angles between which det ϵ0 < 0 and the linearized ZM deformation of the
homogeneous lattice obeys hyperbolic PDEs, outside of which det ϵ0 > 0 and the lattice obeys
elliptic PDEs. (c) A zoomed-in view of a calculated section of an initially homogeneous lattice
with a2 polarization, α0 = 1.3344, and periodic boundary conditions on left and right, perturbed
by a sinusoidal static signal with kx = 0.349 rad/unit cell and ε = 20 mrad. (d) The full lattice
corresponding to the section shown in (c). (e) The 2D Fourier transform of the deformation field
shown in (d), where the nonlinear phenomena of harmonic generation can be seen. Subscripts x
and y denote the “columns” and “rows” axes, respectively.
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Hermitian (active or damped [154; 155]) and non-reciprocal dynamical systems, and a rich set
of nonlinear phenomena associated with dynamical systems arise in this static system, offering
precise remote control of complex zero-energy spatial deformation patterns. It is important to
highlight that there is a direct interplay between the topology of the lattice, which directly maps
to the synthetic non-Hermiticity, and the observed nonlinear phenomena as a result of the induced
amplification. In other fields, space-time mappings have historically brought critical insight in
many fields in science, from polymer physics to quantum criticality, and time crystals [156; 157;
158; 159]. Using exact geometric calculations and subsequent experimental validation of nonlinear
ZMs in deformed kagome TMMs, we observe spatial nonlinear wave-like phenomena including
harmonic generation, localized topological domain switching, amplification enhanced frequency
conversion, and solitary waves. The results presented here are scale-free, material independent,
and add a new dimension to mechanical metamaterials engineering, wherein deformation fields
can be predicted and intricately designed using insights derived from the analysis of nonlinear
waves in non-Hermitian systems [154; 139; 136; 160; 161; 162; 163].

5.2 Results

5.2.1 Topological polarization and analogy to 1D dynamical systems

In Maxwell lattices, the number of DOFs and the number of constraints are identical in the bulk.
By the Maxwell-Calladine index theorem [29; 1; 92; 53], this equality indicates that the difference
between the number of ZMs and SSSs is proportional to the size of the open boundary. By manip-
ulating the unit cell geometry, the ZMs can be localized at the boundaries of the lattice at which the
topological polarization vector RT points. Considering a finite 2D deformed kagome lattice con-
sisting of Nx (number of columns) by Ny (number of rows) unit cells (with two triangles per unit
cell), the total number of nodes and bonds (edges of triangles) under open boundary conditions are
N = 3NxNy +Nx +Ny and Nb = 6NxNy, respectively. Consequently, the number of ZMs N0, is
given by N0 = 2N −Nb+Ns = 2Nx+2Ny +Ns where (Ns are the number of SSS in the system.
Ns = 0 for a open boundary conditioned lattice). Removing the number of rigid body DOFs of the
whole lattice, the remaining number of nontrivial ZMs is 2Nx+2Ny− 3. For our lattice, shown in
Fig. 5.1(a), its configuration is described by a set of angles {αi,j, θi,j, γi,j} defined for each unit cell
at i-th row and j-th column. For a homogeneous lattice, all {αi,j, θi,j, γi,j} are set to be the same in
each unit cell, leaving only one free angle (i.e., the Guest-Hutchinson mode, labeled as α here) to
determine the geometry of the homogeneous configuration as is shown in Fig. 5.1(b). This angle
also determines the topological polarization RT of the lattice [1], which is defined via the phase
winding ϕ(k) of the determinant of the equilibrium matrix Q that maps tension on the bonds to the
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total force on the sites in momentum space k, where [Q(k) = |Q(k)|iϕ(k)], and lattice vectors ai,
such that RT =

∑
i ai

1
2π

∮
dki · ∇kiϕ(k). When RT = 0 (with a proper gauge), all edges of the

lattice have ZMs, while when RT ̸= 0, the polarization vector points towards the “soft” edges that
the ZMs are localized to, such that the edges opposite to the direction of RT becomes the “hard”
edges. As shown in Fig. 5.1(b), the deformed kagome lattice experiences topological transitions at
three critical angles αa2 , αa1 , and αa2−a1 . When α < αa2 or α > αa2−a1 , the lattice has RT = 0.
Between these two critical angles, the lattice is topologically polarized, and RT has two distinct
directions, a2 or a2 − a1, separated by αa1 .

We first consider the deformation of our TMMs in the continuum limit, where ZMs are deter-
mined by partial differential equations (PDEs), such that to third derivatives at linear order of the
x component of the displacement vector, ux:

([ϵ0yy∂
2
x − 2ϵ0xy∂x∂y + ϵ0xx∂

2
y ] + [C1∂

3
x + C2∂

2
x∂y + C3∂x∂

2
y ])ux = 0, (5.1)

with ϵ0 being the Guest-Hutchinson mode, a soft strain always present in Maxwell lattices [31]
(see SI for the derivation of this PDE). As discussed in Ref. [16], this type of soft, spatially
varying modes u generally arise in all materials in which a homogeneous strain ϵ0 is soft. In
Maxwell lattices, this soft strain ϵ0 is guaranteed to exist and cost exactly zero energy [31], and
the spatially varying soft modes u take the form of exact zero energy modes, protected by the
Maxwell-Calladine index theorem [16; 30]. Such soft strain ϵ0 can also accidentally arise due to
geometric singularities in over-constrained lattices, such as planar quadrilateral kirigami, where
these soft modes u cost a small amount of elastic energy even when the hinges are considered
perfect [164; 165; 166; 167; 168]. Importantly, in Maxwell lattices, the fact that these ZMs are
exact zero energy makes them scale free and materials independent.

Solutions to this PDE to the quadratic order (first square brackets) can be obtained by con-
sidering the case with prescribed kx (wave number along x), where the ZM is given by ky =
ϵ0xy±

√
− det ϵ0

ϵ0xx
kx. When det ϵ0 > 0, corresponding to the Guest-Hutchinson mode being a dilation

dominant (auxetic) mechanism and the PDE being elliptic, ky is complex with an imaginary part
k′′y ∝ ±kx, describing a pair of ZMs localized on the top and bottom edges, respectively. With
proper coordinate transformations, these ZMs are mapped to conformal transformations [92; 16].
Adding terms with higher order derivatives only quantitatively changes these ZMs. In the op-
posite case, det ϵ0 < 0, corresponding to the Guest-Hutchinson mode being a shear dominant
(non-auxetic) mechanism and the PDE being hyperbolic, ky is real, describing a pair of bulk ZMs.
Unless fine-tuned, when terms of higher order derivatives (the second square brackets in Eq. (5.1))
are introduced, the solution of ky becomes complex, with the imaginary part k′′y ∝ k2x being higher
order, indicating slower decay. Importantly, the sign of these decay rates is determined by the
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topological polarization RT , in all cases. The same conclusion can be reached by starting with
given ky. We note that most known cases of topologically polarized 2D Maxwell lattices belong to
the hyperbolic case (det ϵ0 < 0) [16].

For the non-auxetic case, the mapping to a hyperbolic equation suggests that an analogy can be
made between the 2D spatial PDE of Eq. (5.1) and a 1D space-time PDE. As shown in Fig. 5.1, the
specific analogy between 2D spatial deformation and 1D spatiotemporal deformation we propose
herein has progression across columns, or in the x direction, correlating with space, and progres-
sion across rows, or in the y direction, correlating with time evolution in the 1D analog dynamical
system (y ↔ t). In Eq. 5.1, the 2nd order cross derivative term thus provides a conservative non-
reciprocity along the x direction as the “waves” propagate in “time” (y). Interestingly, the 3rd order
terms become non-conservative in the analog system, making the wave equation, “synthetically”
non-Hermitian [155]. The y-component of the topological polarization in the 2D spatial lattice
thus translates to a spatially uniform activity/damping in the 1D space-time lattice. Similarly, the
∂x∂

2
yux term provides a non-reciprocal activity in the effective 1D lattice.
Given aforementioned analogy to a 1D non-reciprocal, non-Hermitian, spatiotemporal system,

we aim to study “wave propagation” in our 2D spatial TMM. With the expected polarization-
dependent spatial amplification/decay, we expect large amplitude deformations outside the con-
fines of a linear, small deformation approximation, leading to the proliferation of rich nonlinear
phenomena. We note that while the spatiotemporal analogy is made using Eq. (5.1), which is
linear, the full deformation field can be described by adding nonlinear terms, such that the map-
ping between the topological phase and the synthetic non-Hermiticity still applies in the nonlinear
regime. To this end, we numerically calculate the exact nonlinear ZM configuration for chosen ho-
mogeneous configurations, with periodic boundary conditions on its left and right edges, and then
an applied perturbation to the soft or hard edge of the lattice such that the θ angles θ1,j = θ0+f(j),
where θ0 is the initial homogeneous θ value. Given three angles and fixed edge lengths of the trian-
gles, a hexagon is fully determined to within a choice of a single convex or concave angle (Fig. 5.1
and see the SI for details). We choose the convexity where the complementary angle (angle on the
opposite side across the hinge) to θ is always less than π, which allows us to span the entire topo-
logical polarization range. By solving iteratively through each row starting with the edge where
the perturbation is applied, the entire lattice can be determined geometrically, without approxima-
tion. Periodic boundary conditions are implemented by using Newton’s method and numerically
solving for a compatible periodic solution at each row. Within the context of our analogy to a 1D
spatiotemporal system, this is as if we are applying an initial condition across the entire lattice, and
then letting the system evolve in time.
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5.2.2 Linear and weakly nonlinear response

We start by verifying wave characteristics of ZMs in 2D Maxwell lattices in the linear
and weakly nonlinear regimes using our exact geometrical numerical method. Because the
lattice satisfies the Maxwell criterion, this ZM configuration is exactly geometrically deter-
mined, independent of materials and length scales, in contrast to low energy modes studied in
Refs. [164; 166; 167; 168]. We start with a homogeneous lattice deep in the a2 topologically po-
larized phase. The critical angles between which the lattice is hyperbolic, αc1, αc2, are shown in
Fig. 5.1(b). We then apply a low-amplitude sinusoidal perturbation to the soft edge (the top row),
such that f(j) = ε sin (kxj). The resulting deformation field is shown in Fig. 5.2(a-c), and is de-
scribed by a superposition of two ZMs that decay into the bulk that closely match expectations from
the linear theory (further described in the SI). A 2D Fourier transform of the deformation field can
be seen in Fig. 5.2(b), overlaid with two white lines denoting the real part of the wave number ky of
the two ZMs predicted by linear theory. Of the two ZMs, one has a shorter y-direction wavelength
(higher “frequency” in the effective 1D spatiotemporal system) with faster decay, which is part of a
highly dispersive branch, and the other a longer y-direction wavelength with slower decay, which is
part of a weakly dispersive branch. The initial increase in amplitude of the deformation field with
distance from the perturbation (decreasing row number) that can be seen in Fig. 5.2(a,c) is due to
the input phase of the two ZMs and coherent interference. Fig. 5.2(d-f) details the same system
shown in Fig. 5.2(a-c), but with a larger initial perturbation, inducing the nonlinear phenomena of
harmonic generation [142], similar to Fig. 5.1.

5.2.3 Strongly nonlinear phenomena

We now proceed to explore more strongly nonlinear phenomena arising in these lattices. In par-
ticular, we show three examples, namely, automatic and localized topological polarization switch-
ing, amplification enhanced frequency conversion, and solitary wave formation. The first example,
the switching of topological polarization as a result of nonlinear waves, occurs when the lattice is
in the a2 phase close to the boundary with the a2 − a1 phase. As shown in Fig. 5.3, for this case, a
sinusoidal perturbation causes regions of deformation significant enough to cause local transitions
to a2 − a1 polarization. The boundaries between regions of different polarization are known to
support internal SSSs [14], which has been shown to have implications for lattice fracture [54].
We highlight that this domain switching is a strictly nonlinear effect, as it requires finite deforma-
tion. Such finite deformation effects may lead to boundary-defined (holographic) programmable
topological domain walls.

The second example, amplification enhanced frequency conversion, occurs when the lattice is
excited from the hard edge of a polarized lattice, or either edge of a non-polarized lattice. In the
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Figure 5.2: Linear and weakly nonlinear response due to a sinusoidal perturbation applied
to the soft (top) edge of a kagome Maxwell lattice deep in the a2 polarized region. The lattice
has α0 = 1.3144 rad and kx = 0.0524 rad/unit cell. (a-c) Linear response at ε = 1 µrad. (d-f)
Weakly nonlinear response and harmonic generation at ε = 1 mrad. (a,d) Deformation field. (b,e)
2D Fourier transform of (a,d). White lines denote the real part of the ZM modes predicted by linear
theory. (c,f) Select rows of (a,d). The pink star in (c,f) denotes the initial homogeneous angle, and
the background shading denotes the topological phase (always a2 polarization in this case).
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Figure 5.3: Intrinsic localized topological polarization switching and domain formation due
to a sinusoidal polarization applied to the soft edge (top) of the deformed kagome Maxwell
lattice near the border of the a2 polarized phase. The lattice has α0 = 1.5344 rad, kx = 0.0524
rad/unit cell, and ε = 1 mrad. (a) Deformation field, (b) 2D Fourier transform of (a) with white
lines representing the real part of the ZMs solved from the linear theory, and (c) Select rows of (a).
The pink star in (c) denotes the initial homogeneous angle, and the background shading denotes the
topological phases. The dashed black lines in (a) denote boundaries between regions of different
polarizations.
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Figure 5.4: Nonlinear wave amplification and frequency conversion in Maxwell lattices in re-
sponse to sinusoidal perturbation. (a-c) Hard edge perturbation (from the bottom) of an a2 − a1

polarized lattice (α0 = 2.3144 rad), where kx = 0.314 rad/unit cell and ε = 1 µrad. (d-f) Per-
turbation (from the top) of an unpolarized lattice with α0 = 0.7144 rad, with kx = 0.314 rad/unit
cell and ε = 1 mrad. (a,d) Deformation field. The configuration of the lattice in the dashed box
is shown below the plot. (b,e) Phase space of (a,d), where blue to red color gradient denotes a
progression from top to bottom rows, respectively. The insets provide a zoomed-in view near the
perturbation. (c,f) Select rows of (a,d). The pink stars in (c,f) denote the initial homogeneous
angles, and the background shadings denote the polarization regions.

case of perturbing from the hard edge, following the linear theory, we expect the perturbation to
project to two ZMs which both grow exponentially into the bulk. In the context of our analogy with
the 1D, non-reciprocal, non-Hermitian system, this would map to either an active system evolving
forwards in time, or a damped system evolving backwards in time. In Fig. 5.4(a-c), we show the
calculation for the sinusoidal perturbation of a lattice deep in the a2 − a1 domain. As shown in
Fig. 5.4(a), the deformation field amplifies into the bulk. We stop the calculation at 18 rows, after
which a zero strain solution cannot be found, due to overlap or non-connection of the triangles,
such that the lattice is “broken”. To better illustrate the ”time evolution” of the mode, we show the
trajectory of the lattice in the phase space of the angles. In Fig. 5.4(a,c) the growth in amplitude
can be seen to be accompanied by the generation of higher frequency wave components, which is
connected to the blue loops in the angular phase space plot of Fig. 5.4(b).

The other case where the ZM amplifies is when an non-polarized lattice is perturbed from
either edge. In this case, in the linear theory, one ZM grows and the other decays. A generic
perturbation projects to both ZMs and the growing one is observed far from the edge. Here we
study a sinusoidal perturbation on a lattice deep in the RT = 0 domain. As mentioned above,
linear ZMs in this lattice are described by conformal transformations. In Fig. 5.4(d-f), using the
same conventions as Fig. 5.4(a-c), we show the deformation of the perturbed lattice. In contrast to
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Figure 5.5: Formation of two solitary waves resulting from a point perturbation at the edge
of an a2 polarized Maxwell lattice and their collisions. The lattice has α0 = 1.3144 rad, and the
point perturbation is applied to the top row at column 50. (a-c) Perturbation amplitude ε = 0.23
mrad. (a) d2α/dr2 as a function of space. (b) α − α0 and (c) d2α/dr2 for rows 5000 (blue), 5200
(red), and 5400 (black). Rows 5200 and 5400 are sequentially offset by 1.25 mrad in (b) and 0.2
µrad/(unit cell)2 for visualization purposes. The black arrows point to the fast moving, spatially
wider, solitary wave. (d) “Speed” dc/dr of the solitary waves as a function of ε. (e) Decay rate of
the peak-to-peak magnitude of d2α/dr2 of the solitary waves σ, defined d2α

dr2 max
− d2α

dr2 min
= Aeσr.

the hyperbolic case of hard-edge perturbation, in Fig. 5.4(d,f), we see the formation of “kinks”. At
linear order, these kinks can be understood as a signature of conformal transformations, which have
a one-to-one correspondence with complex analytic functions. All analytic functions periodic in x
can be expanded in the basis of eikz, which features these kinks. Higher order terms, both in u and
in derivatives, lead to further complex features of these kinks. Such kink formation may find future
use in applications that can take advantage of deformation amplification or stress concentration. In
the SI, we show further examples for sinusoidal perturbation of RT = 0 and a2 − a1 lattices that
are closer to the polarization boundaries, wherein domain switching can be observed.

The third—and perhaps the most intriguing—example, solitary waves, occur when the lattice
is subject to localized perturbations. Typically described as localized waves that maintain their
shape as they propagate with constant, often amplitude-dependent, speed and shape, solitary waves
are one of the most canonical phenomena that emerge from nonlinear systems [139; 140; 138].
Herein, we distinguish solitary waves from the more restrictive localized type of wave referred to
as “solitons”, which “reappear virtually unaffected in size or shape” following collisions [169].
While solitary waves are most commonly considered in conservative systems, they have also been
studied in a wide range of non-conservative (i.e. non-Hermitian) systems [154; 139; 136; 160; 138;
162; 163].

To explore the possibility of such localized traveling structures in our system, we induce a
point perturbation at the top of a lattice with the same homogeneous configuration as studied in
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Figure 5.6: Repulsion between two solitary waves, visualized via d2α/dr2, for two point per-
turbations applied to the soft edge (top) of a lattice with the same homogeneous angle as in
Fig. 5.5. Perturbations of ±ε = 0.6 mrad are applied at columns 50 and 350, respectively. The
solid and dashed lines demonstrate the predicted behavior of their perspective perturbations, re-
spectively, based on the speeds calculated in the SI.
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Fig. 5.2, and sweep a range of perturbation amplitudes, where f(j) = εδ(j − jp) and jp is column
to which the perturbation is applied. As can be seen in Fig. 5.5(a-c), using the language of the
1D spatiotemporal system analogy, we see two main solitary waves emerge with nearly constant
speeds and interact with each other: one with a fast wave-speed and decay rate, and the other with
a slow wave-speed and decay rate. In Fig. 5.5 and below, we use r and c to denote rows and
columns, respectively, in the derivative terms. Figure 5.5(d,e) shows the dependence of speed and
decay rate of the two solitary waves on perturbation amplitude. At first glance, it appears that there
is a minimal interaction between the two solitary waves as they intersect. However, additional
calculations for the same conditions as described in Fig. 5.5, but with five times fewer columns,
and thus more collisions between the waves (see the SI), shows a significantly greater variation
in the speeds and decay rates of the solitary waves. This suggests that the two solitary waves do
interact upon their collisions. Additional data for the peak-to-peak decay rate in terms of α and
the evolution of average α with increasing row number is included in the SI. Interestingly, both
the narrow and wide lattices have perturbation amplitudes for which the decay rate of α is zero
across the sampled rows (in contrast to d2α/dr2), which is reminiscent of solitary waves in non-
conservative systems, where nonlinearity, dispersion, and loss/gain balance to form a traveling
wave packet of constant shape [154; 139; 138; 162; 163]. Such slow decay suggests that these
waves can be considered analogs to weakly dissipative solitary waves [160; 163].

Augmenting the complexity of the two solitary waves generated from a single point perturbation
in the examples of Fig. 5.6, we simulate the response of the TMM to two point perturbations of
differing signs. As can be expected from the prior results, four solitary waves are generated,
however, here we see the unexpected phenomenon that the two long-lived solitary waves appear to
repel one another and propagate with similar speeds thereafter. This change of behavior can be seen
by comparing to their predicted intersection is denoted by the white solid and dashed lines, which
use the wave-speeds identified from the single perturbation case in the SI. Such repulsion has been
seen for solitary waves in other nonlinear systems, for instance that of two kinks or two anti-kinks
(topological solitons) in Sine-Gordon systems [140; 170] or optical spatial solitons [171].

5.2.4 Experimental validation

To validate the numerical simulation results, we built physical models composed of laser cut
acrylic triangles pinned together such that they are free to rotate. Further details of the experimental
setup are included in the SI. In summary, boundary conditions are set by pinning the edges to
the prescribed periodic angles found from the simulation on the left and right, and to the top
edge where the perturbation was initiated. The angles of each triangle in the resulting deformed
configuration are then measured by using image processing to identify the position of each pinned
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Experimental Results Numerical Results(a) (b) (c)

Experimental Results Numerical Results
(d) (e) (f)

Figure 5.7: Physical realization of a2 polarized Maxwell lattices with laser cut triangles,
pinned hinges, and three prescribed boundaries, along with comparison to numerical pre-
dictions. (a-c) Sinusoidal perturbation for α0 = 1.3144, ε = 0.1 rad, kx = 0.6283 rad/unit cell.
(d-f) Point perturbation for α0 = 1.3144 rad, ε = 45 mrad applied at column 3. (a,d) Photographs
of the deformed lattice, where the left and right boundaries are prescribed to follow the computed
periodic boundary configuration, (b,e) measured angles, and (c,f) simulated angles.

hinge. In Fig. 5.7, we show two lattice configurations with different sized unit cells under two
different perturbations. The experimental lattices closely match the numerical predictions (exact
error calculations given in the SI). We note that in our experimental realization for the configuration
showing the solitary wave propagation Fig. 5.7(d-f), multiple unit cells with θ angles close to π
with sufficient pressure can be forced to snap from concave to convex configurations with the
given prescribed boundaries, as well as slight variability in the experimental configuration due to
manufacturing tolerances of the hinges.

5.3 Discussion

The two central contributions of this work are: i) demonstrating, to the linear order, that the ZMs
of 2D TMMs (Maxwell lattices) can be mapped to waves in 1D non-Hermitian, non-reciprocal, dy-
namical systems; and ii) extending the study of 2D TMMs to the nonlinear regime. Within that
scope, we showed that an array of nonlinear wave-like phenomena exists, including harmonic gen-
eration, localized topological domain switching, amplification enhanced frequency conversion, and
solitary wave generation. Each of these phenomena has its own unique implications for designing
stress and deformation fields in materials that extends significantly past what has hitherto been
achievable in linear regimes of TMMs, and, more broadly, via elasticity. Amongst these, localized
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intrinsic domain formation has the potential to tailor regions of SSSs with implications to fracture
mechanics [54], and solitary wave generation has implications for compact, amplitude-dependent
spatially-addressable signal transmission [172] and remote-controlled localization of stress and
deformation, both of which may find interesting use in the context of mechano-responsive meta-
materials [173]. In the context of the analogy to the 1D spatiotemporal system, these 2D lattices
offer a convenient emulator for nonlinear waves and shares similarities with the mapping between
d-dimensional quantum systems with (d + 1)-dimensional classical systems, which led to impor-
tant advances in understanding quantum phase transitions [157]. Finally, we envision a potentially
intriguing scenario stemming from this work, wherein elasticity and inertial effects are incorpo-
rated into the lattice, such that perturbations are restricted by the underlying topology of the lattice
as shown herein, but evolve in time.

5.4 Materials and Methods

The fabricated lattice structures are created by laser cutting (using a Glowforge Basic 3D laser
cutter) 1/8-inch-thick acrylic layers assembled with barrels (Fig. 5.7(a)) or dowel pins (Fig. 5.7(d))
and screws. For the experiment in Fig. 5.7(a), each of the barrels (6063 Aluminum Low-Profile
Binding Barrels from McMaster-Carr) has a diameter of 13/64 inch and length of 1/4 inch (3/8
inch at the boundaries due to an extra layer of acrylic for prescribed periodic left-right boundary
condition). For the experiment in Fig. 5.7(d), each of the dowel pins (Alloy Steel Pull-Out Dowel
Pin from McMaster-Carr) has a diameter of 1/4 inch and a length of 1/2 inch. Geometries of
triangle unit cells are shown in the SI. The lattices are assembled by pinning down the triangles
in two layers and to the laser cut acrylic boundaries. Left and right boundaries are connected at
the bottom without interfering with the bottom row of triangles mitigate bending of the boundary.
Boundary pieces are connected using M3 screws and nuts.

5.5 Appendices

5.5.1 Note 1: Floppy Modes of Maxwell Lattice and Control Variables

For a general mechanical structural frame (a Maxwell lattice herein) in a d-dimensional domain
that has point masses hinge-connected by central-force bonds, one can apply the Calladine index
theorem [29; 1; 92; 53; 54] to count the number of zero energy lattice modes (ZMs). The ZMs are
given by

dN −Nb = N0 −Ns, (5.2)
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Figure 5.8: Schematic of a deformed kagome lattice with 3×3 unit cells. Each unit cell consists
of a rigid red and blue triangle connected by hinges. The configuration of the lattice is represented
by the angles between the triangles, θ, α, and γ.

whereN0 is the number of ZMs,Ns is the number of states of self-stress (SSSs),N is the number of
nodes, and Nb is the number of bonds in the lattice. A periodic Maxwell lattice with no boundaries
always yields dN − Nb = 0, resulting in no ZMs in the lattice unless pairs of SSS and ZM
arise due to the geometric singularity, which is the case at topological transitions. However, the
generation of ZMs can be achieved by selecting a finite piece from an infinite lattice. In that
case, dN − Nb > 0, and the number of floppy modes are related to the length of the boundary.
Considering a two-dimensional (2D) finite Maxwell lattice consisting of Nx columns by Ny rows
of unit cells (the dashed box area in Fig. 5.8 represents a unit cell), the total number of nodes and
bonds are N = 3NxNy +Nx +Ny and Nb = 6NxNy, respectively, and consequently, the number
of ZMs is N0 = 2Nx + 2Ny +Ns. Removing the number of rigid body planar degrees of freedom
(DOFs), the remaining floppy modes (FMs) of the finite lattice is 2Nx + 2Ny + Ns − 3 (note
in the main text FMs and ZMs are used almost interchangeable since for a large lattice they are
approximately equal to each other and only differ by three rigid body rotations). In other words,
by controlling these 2Nx + 2Ny − 3 floppy modes (FMs) of a Maxwell lattice with Nx ×Ny unit
cells (here Ns = 0), the configuration of the lattice is fully determined.

A deformed kagome lattice (the type of Maxwell lattice considered herein) is configured by the
internal angles of θ, α, and γ between triangles, each one of which is formed by three bonds. The
angle, θ, is the one between the red and blue triangles in the unit cell. The notation of α represents
the angle between triangles from different unit cells connected in adjacent rows, while γ shows the
angle between triangles from different unit cells connected in adjacent columns. The Maxwell-
Calladine counting rule, for a deformed kagome lattice with periodic left-right boundaries has
2(Nx + Ny) − 3 floppy modes originally, then periodic boundary conditions give additional con-
straints on each row (except the bottom row) removing the 2Ny−2 modes. Additionally connecting
the right-most node to the left-most node in the bottom row removes θ1,Nx as a free variable leaving
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2Nx − 2 floppy modes which can be fully defined by choosing θ, and γ angles along the bottom.
Each αi,1 = αi,Nx angle is numerically determined such that periodicity is met (see Fig. 5.8). For
example, a lattice consisting of 3×3 unit cells can be fully determined by 4 variables including θ11,
θ12, γ12, and γ13. Here it is assumed θ13 = θ11 from periodic boundary conditions. All other angles
of θi,j , αi,j , and γi,j inside the lattice can be solved by these variables, and the remaining boundary
variables θ21, θ31, α21 and α31 can be numerically solved using the periodic boundary conditions
as constraints. The non-linear configuration of the Maxwell lattice in the following sections will
be solved using these defined independent variables.

5.5.2 Note 2: Nonlinear Exact Solution of Zero Energy Configurations

The internal geometry formed by unit cells in the lattice is investigated and the corresponding
structure of the lattice is then studied and presented. As can be seen in Fig. 5.8, a hexagon is
generated by the adjacent four unit cells, including two entire unit cells of θi,j and θi+1,j+1, a
blue triangle from the unit cell of θi+1,j , and a red triangle from the one of θi,j+1, where the first
subscript represents the row of the lattice while the second subscript denotes the column. The
nonlinear configuration of the Maxwell lattice can be determined based on all angles in the lattice.

5.5.2.1 Geometry of a General Hexagon

Consider a hexagon defined in a Cartesian coordinate system (Fig. 5.9(a)) with the origin at site
A, which is located at the angle of θi,j . The xij-axis is aligned with side cb of the blue triangle
of the bottom row. Sites B to F correspond to the angles of γi,j+1, αi+1,j+1, θi+1,j+1, γi+1,j+1 ,
and αi+1,j , respectively. If initial conditions are given for the left and bottom edges of the lattice,
all other angles can be obtained by solving hexagons from the bottom left corner to the top right
corner in the lattice. Starting from a single hexagon, using known angles, θi,j , γi,j+1 and αi+1,j ,
and related sides of triangles, the other unknown angles (θi+1,j+1, γi+1,j+1 and αi+1,j+1) can be
determined by calculating the intersection coordinate of site D. The coordinates of the remaining
vertexes are given:

xA = 0, yA = 0, xB = cb, yB = 0,

xC = cb − cr cos(γi,j+1 + ψab + ψbr), yC = −cr sin(γi,j+1 + ψab + ψbr),

xF = br cos(θij + ψbb + ψcr), yF = −br sin(θij + ψbb + ψcr),

xE = br cos(θij + ψbb + ψcr)− bb cos(θij + αi+1,j + ψbb + ψcr + ψcb + ψar),

yE = −br sin(θij + ψbb + ψcr) + bb sin(θij + αi+1,j + ψbb + ψcr + ψcb + ψar),

(5.3)
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where both the sides of the triangles cb, bb, cr, and br, as well as the internal angles of the triangles
ψab, ψbb, ψcb, ψar, ψbr and ψcr are given in Fig. 5.9. Based on the geometry of the hexagon, the
last site D should satisfy the following constraints:(xD − xE)2 + (yD − yE)2 = a2r,

(xD − xC)2 + (yD − yC)2 = a2b .
(5.4)

Equations (5.4) result in two solutions, one of which (xD2 , yD2) forms θi+1,j+1 > π (site D2 in
Fig. 5.9(a), which we call the concave solution), and the other of which (xD1 , yD1) corresponds to
θi+1,j+1 ⩽ π (site D1 in Fig. 5.9(a), which we call the convex solution). A hexagon is considered
concave or convex based on the θi+1,j+1 angle, or in coordinate basis the angle ¯EDC. There exists
a particular situation where two solutions overlap and hence θi+1,j+1 = π. The concave solution
D1 is chosen if the previous θi,j < π, and the convex solution is chosen if θi,j > π.

The coordinate of site D can be presented in two ways using known angles defined above and
written as

xD = br cos(θi,j + ψbb + ψcr)− bb cos(θi,j + αi+1,j + ψbb + ψcr + ψcb + ψar)

+ ar cos(γi+1,j+1 − θi,j − αi+1,j − ψbb − ψcr − ψcb − ψar),

yD = −br sin(θi,j + ψbb + ψcr) + bb sin(θi,j + αi+1,j + ψbb + ψcr + ψcb + ψar)

+ ar sin(γi+1,j+1 − θi,j − αi+1,j − ψbb − ψcr − ψcb − ψar).

(5.5)

xD = cb − cr cos(γi,j+1 + ψab + ψbr) + ab cos(γi,j+1 − αi+1,j+1 + ψab + ψbr),

yD = −cr sin(γi,j+1 + ψab + ψbr) + ab sin(γi,j+1 − αi+1,j+1 + ψab + ψbr).
(5.6)

By solving Eqs. (5.5) and (5.6), angles of γi+1,j+1 and αi+1,j+1 can be achieved. The last angle
θi+1,j+1 is then obtained by the sum of the inner angles of the hexagon subtracting the other five
angles. Figure 5.9(c) illustrates possible three known angles, which can generate hexagons using
the configuration and parameters given from Fig. 5.9(b). Constraints, such as the strain free condi-
tion, are shown by blue, red, and green dots. The multicolored line (grey for RT = 0, light green
for RT = a2, and light yellow for RT = a2 − a1) represents the family of angles generating ho-
mogeneous Maxwell lattices. Processing along this line represents a uniform twisting synonymous
with the Guest-Hutchinson modes in the system. The choice of solutions D1 and D2 to calculate
the value of θi+1,j+1 for the current hexagon is determined by the value of θi,j . For the topological
Maxwell lattice, we assume the more favorable solution for a lattice configuration is one with less
discontinuous jumps in perturbation, thus we choose either the concave or convex θi+1,j+1 based
on the previous result θi,j . If θi,j > π, θi+1,j+1 will still be greater than π, and vice versa. However,
we note that the transition between different convexities does not happen for all cases shown.
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Figure 5.9: (a) Schematic of a general hexagon in the lattice. The hexagon is generated by sides
from three red triangles and three blue triangles. Site A, B, and F correspond to three known
angles, θi,j , γi,j+1, and αi+1,j , respectively, while site C, D, and E are related to the other three
angles (αi+1,j+1, θi+1,j+1, and γi+1,j+1) to be solved. (b) Dimensions of a unit cell from (a). (c)
Possible given angles that can generate hexagons shown in (a). Pink dots represent all possible
given angles, which can form a hexagon without constraints (i.e. triangles can overlap indicating
not a strain free condition or ZM), while blue, red, and green dots indicate all feasible angles under
a strain free constraint. Blue and red dots show the convex (D1) and concave (D2) cases, respec-
tively, and green dots imply that the given angles can create both convex and concave solutions.
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Note that if a lattice is perturbed at the hard edge, we solve all unknown angles of hexagons
(θi+1,j+1, γi+1,j+1 and αi+1,j+1) using known angles of θi,j , γi,j+1 and αi+1,j , shown in Fig. 5.9(a).
If a lattice is perturbed at the soft edge, we start solving angles of θ̄i,j , γ̄i,j+1, and ᾱi+1,j , which
are complementary angles of θi,j , γi,j+1, and αi+1,j subtracting two neighboring inner angles of
triangles, using θ̄i+1,j+1, γ̄i+1,j+1, and ᾱi+1,j+1.

5.5.2.2 Transformation of Coordinates for Unit Cells

The positions of each unit cell can be solved once all necessary angles in the lattice are obtained.
Here, local coordinate systems from each unit cell associated with θi,j must be rotated to align
within a global coordinate system, set by the original unit cell and the value of θ11.

To simplify the notations of the lattice, where all nodes except those on boundaries are shared
with two surrounding unit cells, only three nodes are counted for one unit cell, noted by â, b̂, and ĉ
(symbols in the parentheses in Fig. 5.9(a) from red triangles). The coordinates of nodes ân,m, b̂n,m
and ĉn,m in the unit cell at nth row and mth column (the lattice consists of Nx ×Ny unit cells) are
shown below:

Unit cell of θn,m (n ⩽ m)(
x

y

)
ân,m

=
m−n∑
p=1

(
p∏

i=1

R(φ1i)

(
xθ1,p→θ1,p+1

yθ1,p→θ1,p+1

))
+

n−1∑
p=1

(
m−n∏
i=1

R(φ1i)

p∏
i=1

R(φi,i+m−n)

(
xθp,p+m−n→θp+1,p+m−n+1

yθp,p+m−n→θp+1,p+m−n+1

))
,(

x

y

)
b̂n,m

=

(
x

y

)
ân,m

+
m−n∏
i=1

R(φ1i)
n∏

i=1

R(φi,i+m−n)

(
ar cos(θn,m + ψbb)

−ar sin(θn,m + ψbb)

)
,(

x

y

)
ĉn,m

=

(
x

y

)
ân,m

+
m−n∏
i=1

R(φ1i)
n∏

i=1

R(φi,i+m−n)

(
br cos(θn,m + ψbb + ψcr)

−br sin(θn,m + ψbb + ψcr)

)
,

(5.7)
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Unit cell of θn,m (n > m)(
x

y

)
ân,m

=
n−m∑
p=1

(
p∏

i=1

R(φi1)

(
xθp,1→θp+1,1

yθp,1→θp+1,1

))
+

m−1∑
p=1

(
n−m∏
i=1

R(φi1)

p∏
i=1

R(φi,i+n−m)

(
xθp,p+n−m→θp+1,p+n−m+1

yθp,p+n−m→θp+1,p+n−m+1

))
,(

x

y

)
b̂n,m

=

(
x

y

)
ân,m

+
n−m∏
i=1

R(φi1)
m∏
i=1

R(φi,i+n−m)

(
ar cos(θn,m + ψbb)

−ar sin(θn,m + ψbb)

)
,(

x

y

)
ĉn,m

=

(
x

y

)
ân,m

+
n−m∏
i=1

R(φi1)
m∏
i=1

R(φi,i+n−m)

(
br cos(θn,m + ψbb + ψcr)

−br sin(θn,m + ψbb + ψcr)

)
,

(5.8)

where
∑

and
∏

are cumulative sum and product operators. The coordinate transformation matrix,
R(φi,j), is given by

R(φi,j) =

[
cosφi,j − sinφi,j

sinφi,j cosφi,j

]
, (5.9)

where φi,j is the deflection angle between xi,j-axis and the previous x-axis (φ11 = 0), and:

φ1,j = γ1,j + θ1,j−1 + ψab + ψbb − 2π,

φi,1 = 2π − αi,1 − θi−1,1 − ψar − ψcr,

φi,j = γi−1,j − αi,j + ψbb + ψab + ψbr − π (i, j > 1).

(5.10)

The cumulative coordinates with subscripts θ1,j → θ1,j+1 (in Fig. 5.10(a)), θi,1 → θi+1,1 (in
Fig. 5.10(b)), and θi,j → θi+1,j+1 (in Fig. 5.9(a)) are those converted from (1, j + 1)th to (1, j)th

unit cell, from (i+1, 1)th to (i, 1)th unit cell and from (i+1, j+1)th to (i, j)th unit cell, respectively:

xθ1,j→θ1,j+1
= cb − ar cos(ψab + γ1,j+1),

yθ1,j→θ1,j+1
= −ar sin(ψab + γ1,j+1),

xθi,1→θi+1,1
= br cos(θi,1 + ψbb + ψcr)− ab cos(αi+1,1 + θi,1 + ψar + ψcr + ψbb),

yθi,1→θi+1,1
= −br sin(θi,1 + ψbb + ψcr) + ab sin(αi+1,1 + θi,1 + ψar + ψcr + ψbb)),

xθi,j→θi+1,j+1
= cb − cr cos(γi,j+1 + ψab + ψbr) + ab cos(γi,j+1 − αi+1,j+1 + ψab + ψbr),

yθi,j→θi+1,j+1
= −cr sin(γi,j+1 + ψab + ψbr) + ab sin(γi,j+1 − αi+1,j+1 + ψab + ψbr).

(5.11)

Equations (5.7) and (5.8) solve for the number of nodes of 3NxNy related to all red triangles,
while the remaining (Nx + Ny) nodes come from the first row θ1,m and last column θn,Nx , which
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Figure 5.10: Schematic of two unit cells from (a) the bottom edge and (b) the left edge of the
lattice.

are respectively given by:(
x

y

)
ĉ0,m

=

(
x

y

)
â1,m

+
m∏
i=1

R(φ1i)

(
ab cos(ψbb)

−ab sin(ψbb)

)
. (5.12)

(
x

y

)
b̂n,Nx+1

=

(
x

y

)
ân,Nx

+
Nx−n∏
i=1

R(φ1i)
n∏

i=1

R(φi,i+Nx−n)

(
cb

0

)
, (n ⩽ Nx)(

x

y

)
b̂n,Nx+1

=

(
x

y

)
ân,Nx

+
n−Nx∏
i=1

R(φi1)
Nx∏
i=1

R(φi,i+n−Nx)

(
cb

0

)
, (n > Nx).

(5.13)

5.5.2.3 Periodic Boundary Conditions

Newton’s method, an algorithm for finding roots of a function f(x) such that f(x) = 0, is used
in order to achieve periodic boundary conditions. Herein, the goal is to find periodic boundary
conditions such that f(x) is a function of α, and periodic boundary conditions are met when
f(αi,1) = αi,n − αi,1 = 0, for the i-th row of an M × N lattice. The general Newton’s method
algorithm is given below, where:

αn+1 = αn −
f(αn)

f ′(αn)
. (5.14)

The input variable αn is the initial guess for αi,1. The derivative f ′(αn) is calculated numerically
using a central difference method, such that:
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(a) (b)

Figure 5.11: “Dispersion relation.” (a) Real component k′y = Re(ky) vs kx in the first Brillouin
Zone for an a2 polarized lattice. (b) Imaginary component k′′y = Im(ky) vs kx for an a2 polarized
lattice. The red branch has a much higher decay rate, and “velocity” at long wavelength (low kx
values).

f ′(αn) =
f(α + h/2)− f(α− h/2)

h
, (5.15)

where h/2 is an angular increment δα that is small in comparison to α. In this paper, a value of
δα = 0.1 µrad was used. For each value of f(α), f(α + δα), and f(α − δα), the corresponding
configuration of the row must be calculated. The algorithm continues to update the initial guess
of α, until the residual is less than a specified tolerance value. In this paper, we set the tolerance
value as 0.01 µrad.

5.5.2.4 Linear Mode Analysis

In the small amplitude perturbation limit, where ε is small (on the order of 10−6 rad, for our
simulations 10−3 rad was considered ”large perturbations”), the numerically solved wave profile in
the static limit can be approximated by a linear mode analysis. In our case, of a finite boundary in
y and a periodic boundary in x, one can prescribe a real kx and solve for a complex ky that satisfies
the condition detC(k⃗) = 0 to find the ZMs [1]. The resulting complex ky = k′y(kx) + ik′′y(kx)

has k′y = Re(ky) being the real spatial wave profile in the lattice and k′′y = Im(ky) being the decay
rate of the ZMs. The relation of kx and ky for the given homogeneous lattice (α0 = 1.3144 rad) is
shown in Fig. 5.11 and Fig. 5.2 of the main text. The numerical results shown in Fig. 5.2(b) are in
close agreement with the linear ZM analysis.
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5.5.3 Note 3: Space-Time Mapping in Maxwell Lattices

In this section, we discuss the general elasticity theory of 2D materials with a soft strain (or
“mechanism”), and how their static zero energy configurations map to 1D dynamical systems in
linear and weakly nonlinear cases.

5.5.3.1 From soft strain to partial differential equations of ZMs in linear theory

We start by considering the general case of elasticity in 2D, where, to leading order in strain
and spatial gradient of deformation, the elastic energy can be written as:

fel =
1

2
ϵaKabϵb, (5.16)

where ϵ = {ϵxx, ϵyy, ϵxy} are the strains in Voigt notation, forming a 3-dimensional vector, and
K is the (real symmetric) elastic constant matrix. This elastic energy can be generally applied to
any 2D elastic structure. For lattices considered in this paper, this continuum elastic energy can be
obtained by properly taking the long-wavelength limit from the lattice elastic energy [30; 73].

Now, let’s consider the case when this material has a soft strain, which means the K matrix
has an eigenvalue that is zero or much smaller than the other two eigenvalues. This can arise from
microscopic mechanisms of the material, e.g. auxetic foams or pentamode metamaterials [174; 90].
In this paper, we are particularly interested in the case of Maxwell lattices, where this soft mode is
guaranteed to arise, taking the form of Guest-Hutchinson modes [31; 30].

This soft strain has far-reaching effects on the elasticity of these lattices. To see this, we diago-
nalize the K matrix, K = V TΛV , where V is a 3× 3 orthogonal matrix, the row vectors of which
formed by eigenvectors of K, and Λ is a diagonal matrix with two positive eigenvalues:

V =

ϵ1ϵ2
ϵ0

 , Λ =

λ1 0 0

0 λ2 0

0 0 0

 , (5.17)

where the last strain vector ϵ0 is the soft deformation, which comes with the zero eigenvalue in Λ.
To see the consequence of this elastic energy on spatially varying ZMs in the material, we

rewrite Eq. (5.16) in terms of displacement field u = {ux, uy}:

fel =
1

2
ϵaKabϵb =

1

2
ui
←−
ST
iaKab

−→
Sbjuj ≡

1

2
uiKijuj, (5.18)
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where

−→
S ≡ i

kx 0

0 ky
ky
2

kx
2

 , (5.19)

with kx, ky representing x and y directional wave vectors and the overhead arrow denoting that
these wave vectors are differential operators (in real space) acting on the wave to the right. Simi-
larly, the left overhead arrow on

←−
ST
ia acts on ui to its left.

With the diagonalization in Eq. (5.17), the stiffness matrix K is given by:

K =
←−
STK
−→
S =

←−
STV TΛV

−→
S . (5.20)

Because the last eigenvalue of Λ vanishes, we can define Ṽ to be the 2× 3 matrix with the last row
removed from V , and Λ̃ to the 2× 2 matrix with the last row removed in Λ. Thus, we have a 2× 2

matrix C that maps displacement fields to the “nonsoft” strains:

−→
C = Ṽ

−→
S , (5.21)

and correspondingly
K =

←−
CT Λ̃

−→
C . (5.22)

Therefore, zero modes in this media are waves that satisfy:

−→
Cu = 0. (5.23)

We can eliminate uy and write this as a differential equation of ux only, which becomes:

det
−→
Cux = 0. (5.24)

This C matrix is the same as the final 2 × 2 matrix in the continuum theory (after integrating out
high frequency modes and expanding to the linear order in wavenumbers kx and ky) for topological
ZMs in Maxwell lattices [73].

Using the fact that {ϵ1, ϵ2, ϵ0} form an orthogonal triplet, we have:

det
−→
C = −1

2

(
ϵ02k

2
x − 2ϵ03kxky + ϵ01k

2
y

)
. (5.25)

It is perhaps more transparent if we turn q into differential operators, where Eq. (5.23) becomes:

(
ϵ02∂

2
x − 2ϵ03∂x∂y + ϵ01∂

2
y

)
ux = 0, (5.26)
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where {ϵ01, ϵ02, ϵ03} are the 3 components of the soft strain ϵ0 (using the Voigt notation). When
det ϵ0 > 0, the material is dilation dominated (auxetic), and this equation is elliptic; when det ϵ0 <

0, the material is shear dominated (non-auxetic), and this equation is hyperbolic. The relationship
between the real and imaginary components of the x and y component wavenumbers for the first
Brillouin zone of an a2 polarized lattice are shown in Fig. 5.11.

5.5.3.2 Interpreting Eq. (5.26) as a wave equation when det ϵ0 < 0

Since for det ϵ0 < 0, Eq. (5.26) is hyperbolic, it can be thought of as a wave equation in a 1D
medium if we interpret spatial direction y as time t. With this interpretation, Eq. (5.26) can be
rewritten as: (

ϵ01∂
2
t − 2ϵ03∂x∂t + ϵ02∂

2
x

)
ux = 0. (5.27)

The presence of the second term means that the equation is not time reversal invariant since under
the transformation t → −t, ∂x∂t → −∂x∂t. This manifests itself in the nonsymmetric dispersion
relation once we plug in the plane wave ansatz ux ∼ ei(kx−ωt):

ω = −ϵ03
ϵ01
k ± k

√
ϵ203
ϵ201
− ϵ02
ϵ01

= −ϵ03
ϵ01
k ± k

√
− det ϵ0
|ϵ01|

; (5.28)

i.e., ω(k) ̸= ω(−k). Note that ω is real since det ϵ0 < 0. And since the equations of motion is not
time reversal symmetric, it is non-reciprocal.

Even though Eq. (5.27) is not time reversal symmetric, it is energy conserving. This can be seen
from the following argument. This wave equation can be written as the Euler-Lagrange equation
of the action:

S =

∫
dtdxL =

∫
dtdx

[
1

2
ϵ01(∂tux)

2 +
1

2
ϵ02(∂xux)

2 − ϵ03(∂tux)(∂xux)
]
, (5.29)

where L is the Lagrangian density. The Euler-Lagrange equation of this action is:

∂t
∂L

∂(∂tux)
+ ∂x

∂L
∂(∂xux)

=
∂L
∂ux
⇒
(
ϵ01∂

2
t − 2ϵ03∂x∂t + ϵ02∂

2
x

)
ux = 0, (5.30)

which confirms the validity of the action. Since this Lagrangian is invariant under time translation
t→ t+ t0, according to Noether’s theorem, the energy E, defined below, is conserved:

E =

∫
dx

[
∂L

∂(∂tux)
∂tux − L

]
=

∫
dx

1

2

[
ϵ01(∂tux)

2 − ϵ02(∂xux)2
]
. (5.31)
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The fact that energy E is conserved can be seen directly in the following way:

dE

dt
=

∫
dx

1

2
∂t
[
ϵ01(∂tux)

2 − ϵ02(∂xux)2
]

=

∫
dx
[
ϵ01∂tux∂

2
t ux − ϵ02∂xux∂t∂xux

]
=

∫
dx
[
∂tux(2ϵ03∂x∂tux − ϵ02∂2xux)− ϵ02∂xux∂t∂xux

]
=

∫
dx ∂x

[
ϵ03(∂tux)

2 − ϵ02(∂xux)(∂tux)
]

= 0,

(5.32)

where we used Eq. (5.27) from second to third equality. The last equality is due to periodic bound-
ary conditions.

5.5.3.3 Higher order corrections to Eq. (5.23), topological polarization, and interpretation
of the resulting equation as time evolution of non-Hermitian 1D system

So far we have kept to linear order terms in kx and ky in the effective 2×2 compatibility matrix
−→
C , which corresponds to a classical elastic energy in terms of the strain tensor (without strain
gradient terms). In this case, the ZMs are delocalized bulk modes. This can be seem from the fact
that det

−→
C = −1

2

(
ϵ02k

2
x − 2ϵ03kxky + ϵ01k

2
y

)
= 0 results in ky = ϵ03

ϵ01
kx ± kx

√
− det ϵ0
|ϵ01| ≡ k±, which

are real—meaning that the ZMs are plane waves in the bulk.
The localization of the ZMs to edges are captured when terms up to the second order in kx and

ky in the effective 2× 2 compatibility matrix
−→
C are kept [30; 73]. To see this, we follow the steps

from Eq. (5.23) to Eq. (5.25) keeping terms up to quadratic order in q in
−→
C to get:

det
−→
C = −1

2

(
ϵ02k

2
x − 2ϵ03kxky + ϵ01k

2
y

)
− i

2
(C1k

3
x+C2k

2
xky+C3kxk

2
y+C4k

3
y)+O(k4), (5.33)

where the parameters Ci, i = 1, 2, 3, 4 are real (this is due to time reversal symmetry of the
Maxwell lattice) and are evaluated numerically using the scheme described in Ref. [73]. The cubic
terms in k in det

−→
C gives correction of order k2x to solutions ky = k± mentioned above. The real

and imaginary components of kx and ky are shown in Fig. 5.11 for an a2 polarized hyperbolic
PDE. To get the corrections, we plug in the ansatz ky = k± + iδ±k2x in Eq. (5.33), and keep the
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terms up to the cubic order in kx to get:

(ϵ02k
2
x − 2ϵ03kx(k± + iδ±k

2
x) + ϵ01(k± + iδ±k

2
x)

2 + i(C1k
3
x + C2k

2
x(k± + iδ±k

2
x) +

C3kx(k± + iδ±k
2
x)

2 + C4(k± + iδ±k
2
x)

3) = 0,

⇒ i(2ϵ01k±k
2
x − 2ϵ03k

3
x)δ± + i(C1k

3
x + C2k

2
xk± + C3kxk

2
± + C4k

3
±) +O(k4x) = 0

⇒ δ± =
C1 + C2k̃± + C3k̃

2
± + C4k̃

3
±

2ϵ03 − 2ϵ01k̃±
,

(5.34)

where we defined k̃± ≡ k±/kx = ϵ03
ϵ01
±

√
− det ϵ0
|ϵ01| . Note that the solutions ky = k̃±kx + iδ±k2x to

the order k2x are complex numbers, meaning these zero modes are actually localized at the edges
of the system. C4 is numerically calculated to equal zero when the lattice vector a1 aligns with
the x-axis, and in the case of topologically polarized Maxwell lattices, δ+ and δ− have the signs
implying that both zero modes are at the same edge, hence the polarization. This is determined by
the topological polarization.

Now, we can turn to the corresponding wave equation in a 1-dimensional dynamical system by
replacing ki with (−i∂i) and interpreting direction y as time t:

[(
ϵ01∂

2
t − 2ϵ03∂x∂t + ϵ02∂

2
x

)
+ (C1∂

3
x + C2∂

2
x∂t + C3∂x∂

2
t + C4∂

3
t )
]
ux = 0. (5.35)

We showed in the previous section that the terms with second order derivatives can be obtained
from a time-invariant Lagrangian and hence energy conserving. However, the third order deriva-
tive terms cannot be obtained from a Lagrangian. The reason is the following. If there were a
Lagrangian from which these terms with derivatives could be obtained, then that Lagragian would
have to have three derivatives and have to be of the order u2x; hence the most generic form of the
Lagrangian would be ux∂i∂j∂lux (i, j, l ∈ {x, t}). By taking variation of the action, we would
obtain the following:

δS = S[ux + δux]− S[ux] =
∫
dtdx [(ux + δux)∂i∂j∂l(ux + δux)− ux∂i∂j∂lux]

=

∫
dtdx [ux∂i∂j∂lδux + δux∂i∂j∂lux]

=

∫
dtdx [δux∂i∂j∂lux − δux∂i∂j∂lux]

= 0,

(5.36)

where we used integration by parts from the second to the third equality and assumed that the
variations at the boundary of the integration domain are zero. This shows that the Euler-Lagrange
equation of terms ux∂i∂j∂lux in the Lagrangian are zero; hence terms with third order derivatives

133



1 100 200 300 400 500 600
599

500

400

300

200

100

1

Columns

R
ow

s

−6

−4

−2

0

2

4

6
·10−5

α
−
α
0
(r
ad

)
(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

kx (rad/unit cell)

k
y
(r
ad

/u
n
it
ce
ll
)

10−4

10−3

10−2

10−1

100

[r
ad

]

(b)

1 100 200 300 400 500 600
1.91434

1.91436

1.91438

1.9144

1.91442

1.91444

RT = a2 − a1

Columns

α
(r
ad

)

Top row
Middle row
Bottom row
Input Angle

(c)

Figure 5.12: (a) Perturbation from homogeneous configuration α − α0 for a 600×600 a2 − a1

polarized lattice (α0 = 1.9144) with periodic boundary conditions given a sinusoidal wave pertur-
bation on the top floppy edge with kx = 0.0523 (rad/unit cell) and ε = 1 µrad. (b) 2D Fourier
transform of (a). (c) Wave shapes of select rows (top, middle, and bottom) from the perturbed
lattice for (a).

in an equation of motion cannot be obtained from a Lagrangian. As a result the argument of
energy conservation in the previous subsection does not hold anymore as we include the terms
with third order derivatives in the equation of motion. Furthermore, plugging the plane wave
ansatz ux ∼ ei(kx−ωt) along with ω = − ϵ03

ϵ01
k ± k

√
− det ϵ0
|ϵ01| + iδ±k2 in Eq. (5.35), and carrying

out a calculation similar to Eq. (5.34), we would get complex ω. Depending on the sign of the
imaginary part of ω, the wave would grow/decay exponentially with time. Hence, we can interpret
the system as active/dissipative. Interestingly, the distinction between active and dissipative in this
1D problem is determined by the topological polarization of the 2D lattice.

5.5.4 Note 4: Simulated Soft Edge Sinusoidal Perturbation of an a2 − a1

Polarized Lattice

In addition to the simulations of the soft edge sinusoidal perturbation of a2 lattices in the main
text (Figs. 5.2), here we show simulations with similar perturbation, but of a2 − a1 polarized
lattices. Figure 5.12 and Fig. 5.13 shows the simulated deformation field for the a2− a1 polarized
lattices at low and high perturbation magnitudes, respectively. The key difference that can be
observed between cases shown here and the a2 polarized lattices shown in the main text, is that
the two excited modes propagate in opposite directions, rather than the same direction, as was the
case for the a2 polarized lattices.
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Figure 5.13: (a) Perturbation from homogeneous configuration α − α0 for a 600×600 a2 − a1

polarized lattice (α0 = 1.9144) with periodic boundary conditions given a sinusoidal wave pertur-
bation on the top floppy edge with kx = 0.0523 (rad/unit cell) and ε = 1 mrad. (b) 2D Fourier
transform of (a). (c) Wave shapes of select rows (top, middle, and bottom) from the perturbed
lattice for (a).

5.5.5 Note 5: Additional Wave Amplification Simulations

In Fig. 5.14, we show additional computational examples of wave amplification for 60-column-
wide lattices with periodic boundary conditions over an array of α0 values. We observe polarization
domain switching in Fig. 5.14(a,b,d,e,f) and high frequencies generation (compared to the input
wavelength) in Fig. 5.14(e,f).

5.5.6 Note 6: Solitary-Wave-Like Behavior of the Deformed Kagome Lattice

In addition to the example of the 10000 × 3000 a2 polarized lattice in the main text, here we
show a 10000× 600 a2 polarized lattice with a point perturbation applied at the top (floppy) edge.
The computational results are shown in Figs. 5.15 and 5.16.

In Fig. 5.17, we further analyze the simulated results from Fig. 5.15. Fig. 5.17(a) [(b)] is
obtained by tracking the peak magnitude of d2α/dr2 (where derivatives with respect to r are found
via a finite difference formulation subtracting over columns) in each row for slower [faster] moving
solitary wave using the findpeaks command in MATLAB. Figure 5.17(c) shows the rate of change
of average α, where αavg is the mean value in each row given by αavg =

∑
α/c = α/600, with

respect to rows, as a function of point perturbation value ε. This is tracked by taking αavg at each
row and performing a linear fitting αavg = mr+b ranging the entire lattice (rows 1−10000), using
the polyfit command in MATLAB. dαavg/dr is thus given by the fitting parameter m.

Figure 5.17(d) shows the fitted decay rate s of the slower moving solitary wave, as a function of
point perturbation value ε, obtained by finding αmax and αmin using the max and min commands
in MATLAB, and then calculating the peak-to-peak amplitude αmax − αmin at each row. The
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Figure 5.14: Computational results (α) of wave amplification in 60-column-wide lattices with pe-
riodic boundary conditions due to sinusoidal perturbation (kx = 0.314) for an array of α0 values.
(a,d) α0 originally in a2 polarization, near the boundary with RT = 0. (b,e) α0 in RT = 0 po-
larization near the boundary with a2. (c,f) α0 further in RT = 0 than before. (a-c) Perturbation
amplitude ε = 1 mrad. (a) Bottom edges after perturbing at the top (soft) edges. (b,c) Bottom
edges after perturbing at the top edge of the unpolarized lattices. (d-f) Perturbation amplitude
ε = 1 µrad. (d) Top edges after perturbing at the bottom (hard) edges. (e,f) Top edges after per-
turbing the bottom of the unpolarized lattices. In (a), 60 rows is chosen; In (b-f), the displayed row
is the last row before the lattice breaks.
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Figure 5.15: Computational results of a 10000×600 a2 polarized lattice with periodic left-right
boundary conditions. The lattice has α0 = 1.3144 rad, and the point perturbation is applied on the
top row at column 50. (a) α − α0, (b) dα/dr, and (c) d2α/dr2. Logarithmic scale is used in the
colorbars of (b) and (c). Note, (b) [(c)], dα/dr [d2α/dr2] is saturated at the lower limit of 10−6 rad
[10−8 rad].

behavior of the peak to peak amplitude is oscillatory and decaying, in order to fit the decay rate,
we first find the peak values of αmax−αmin in the plot of αmax−αmin versus r using the findpeak

command in MATLAB, then fit these peak values to an exponential function Aesr. Figure 5.17(e)
shows the fitted decay rate σ for both slower and faster moving solitary waves, as a function of point
perturbation value ε, based on d2α/dr2max−d2α/dr2min at each row, instead of αmax−αmin. Here,
for each solitary wave, d2α/dr2max and d2α/dr2min represent the local maximum and minimum
of d2α/dr2 at each row. For the results shown in Fig. 5.17(e), rows 50− 300 are the chosen range
for fitting d2α/dr2max−d2α/dr2min = Aeσr since the solitary waves separate from each other and
have not collided again.

The “speed” of the solitary waves for the 600 column wide lattice is shown in Fig. 5.17(f).
Differing algorithms were used to find the speed for the 3000 (main text) and 600 (here) column
wide lattices, since the higher number of interactions in the 600 column wide lattice makes it
difficult to locate the individual solitary wave peaks in each row. For the 3000-column-wide lattice
shown in the main text, the speed d(col)/d(row) → dc/dr is obtained by tracking the location of
peaks for d2α/dr2 at each row, which can correspond with slower (bigger peak) and faster solitary
waves (smaller peak). Again, the findpeaks command in MATLAB is used here. During collision
no data is collected. Once peaks of d2α/dr2 are found at each row, a linear fitting is performed on
rows 50− 400. The row range is chosen for the same reason as the previous fitting in Fig. 5.17(e).
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Figure 5.16: Selected computational results for the two solitary waves observed in the lattice in
Fig. 5.15. (a-c) Slower moving solitary wave: (a) α − α0, (b) dα/dr, and (c) d2α/dr2 at column
300 (middle column). Rows 3700 − 4800 are chosen to minimize the interaction with the faster
moving solitary wave. (d-f) Faster moving solitary wave: (d) α − α0, (e) dα/dr, and (f) d2α/dr2

at columns 500 (red) and 600 (blue), respectively. Rows 70− 300 are chosen to avoid the effect of
substantial amplitude decay. Note that we avoid very early rows 1− 70 to give the solitary waves
adequate time to separate.

138



1 200 400 600
10−7

10−6

10−5

10−4

10−3

Rows

d
2
α
/d
r2

(a)

1 200 400 600
10−7

10−6

10−5

10−4

Rows

d
2
α
/d
r2

(b)

−1 −0.5 0 0.5 1

·10−3

−2

0

2

4
·10−5

ε (rad)

d
α
a
v
g
/d

r
(r
ad

/
ro
w
)

(c)

−1 −0.5 0 0.5 1

·10−3

−1
−0.8
−0.6
−0.4
−0.2

0

0.2
·10−4

ε (rad)

D
ec
ay

ra
te

s

(d) (e)

−1 −0.5 0 0.5 1

·10−3

0.7

0.8

0.9

1

ε (rad)W
av
es
p
ee
d
d
c/
d
r
fo
r
sl
ow

4.7

5

5.3

5.6

W
av
es
p
ee
d
d
c/
d
r
fo
r
fa
st

(f)

Figure 5.17: (a,b) Peak magnitude of d2α/dr2 as a function of rows for (a) slower and (b) faster
moving solitary waves. The fluctuation of magnitude is due to the interaction of two solitary
waves. As a function of point perturbation magnitude ϵ the: (c) rate of change of αavg with respect
to rows, (d) decay rate s based on the amplitude αmax − αmin at each row of the slower moving
solitary wave, (e) decay rate σ based on the peak-to-peak magnitude of d2α/dr2 at each row for
both solitary waves, and (f) wave-speeds of slower and faster moving solitary waves versus the
point perturbation value ϵ.
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Figure 5.18: Additional computational results of a 10000×3000 a2 polarized lattice (α0 = 1.3144
rad) with periodic left-right boundary conditions and the point perturbation applied on the top row
at column 50. As a function of point perturbation magnitude ϵ, the: (a) rate of change of αavg with
respect to rows, and (b) decay rate s based on the amplitude αmax−αmin at each row of the slower
moving solitary wave.

For each solitary wave, columns can be related to rows in the linear form r = m′c + b′ the slope
m′ gives wave-speed dc/dr. For the 600 column wide lattice, the local maximum is found using
the same peak detection algorithm, however this time, the data analyzed comes from one column
for a prescribed set of rows, such as in Fig 5.16(c). The peaks denote when the solitary wave
passes the column of interest, the distance between peaks ∆r is calculated. The columns traversed
is the width of the lattice, thus the velocity is given by dc/dr = ∆c/∆r = 600/∆r. In order
to avoid the interaction between the two solitary waves at the beginning rows of the lattice, the
slower moving solitary wave is investigated in the range of r/3 − 4r/5. The final speed in main
text Fig. 5 is calculated as the average of 600/∆r for all ∆r in the specified range. The error
bars are calculated by taking the maximum and minimum solitary wave velocities for a particular
ε value. The amplitude of the faster moving solitary wave is found by looking at the far right
column (column 600) and the first 500 rows of the acceleration term d2α/dr2. The peaks and their
corresponding row locations of the fast solitary wave are obtained using the findpeaks command,
which gives ∆r, the faster solitary wave’s velocity is then found in the same manner as before
dc/dr = 600/(∆r). The error is found similar to the slower solitary wave case by taking the
difference between the maximum and the minimum velocities.

Additional computational results of a 10000× 3000 a2 polarized lattice are shown in Fig. 5.18.
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5.5.7 Note 7: Experimental Setup and Image Processing

Photographs of the assembled lattices were taken and MATLAB was used to post process the
images. The hinge points were found using the imfindcircles function, which allows the lattice to
be reconstructed and analyzed. The lattices composed of laser cut black [red and blue] acrylic tri-
angles in both the SI and the main text are shown in Fig. 5.19 [Fig. 5.20], respectively. Figure 5.21
shows the error between the measured and simulated lattices shown in Fig. 5.7.40.0000
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Figure 5.19: Dimensions (in the unit of mm) of laser cut acrylic triangles in the unit cell used in
Fig. 5.7(a) of the main text.
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Figure 5.20: Dimensions (in the unit of mm) of laser cut acrylic triangles in the unit cell used in
Fig. 5.7(d) of the main text.
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Figure 5.21: Difference between measured and simulated angles normalized by homogeneous
angle α0 = 1.3144 for the two examples shown in Fig. 5.7. (a) Sinusoidal perturbation for ε = 0.1
rad, kx = 0.6283 rad/unit cell. (b) Point perturbation for ε = 45 mrad applied at column 3.
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CHAPTER 6

Summary and Outlooks

6.1 Conclusions

In this thesis, I have explored the Maxwell mechanical frames in the scope of both non-ideal
springs and non-linear deformations. In Chapter II, I examined the Vertex Model (VM) and Active

Tension Network (ATN) models for the epithelial tissue, in which the springs are on the faces of
the polygons which represent the cells, rather than the regular springs which have only site-to-
site interactions. Under such a model, the Maxwell-Calladine index theorem still applies, and the
isostaticity of the system still holds, thus it was possible for me to find a topologically polarized
floppy modes (FM) in this model, which perhaps indicates how the boundary phenomena in tissue
morphogenesis are controlled by geometry. In Chapter III, the effect of bending stiffness is taken
into consideration, and it was discovered that the increase in bending stiffness would have a mask-
ing effect on the stress-focusing effect at a topological domain wall. Not only such an effect is
observed, but by tuning the geometry of the Maxwell lattice, such masking can be reduced. Fur-
thermore, by tuning the geometry of the Maxwell lattice, the response to different strains such as
shear can be engineered. The inclusion of bending stiffness, even through simple models, was able
to facilitate our understanding of how the theoretically predicted topological phenomena appear
in real materials. In Chapter IV, a Maxwell lattice with bi-stable unit cells is engineered to give
multi-stability to the whole lattice. In this lattice, the incorporation of bi-stable units accomplished
convenient and robust transformations between topologically distinguished states, and the quasi-
static analysis on the interface between the two states shows the possible pathway of the trans-
formation under the multi-stability. Through the observation of the transformation pathway, one
can observe a hint of how topologically polarized Maxwell lattices respond to impact, which is an
important step to utilize the asymmetric boundary stiffness of the topologically polarized Maxwell
lattices to achieve the design of a metamaterial for mechanical cloaking. In Chapter V, a study
on the Maxwell lattice under both topologically polarized and non-polarized regimes is performed
after giving a sinusoidal perturbation at one of the boundaries of the lattice to a non-linear level.
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Under such a condition, the non-linear zero energy deformations are examined, in which not only
the regular phenomena in non-linear systems were revealed, but a solitary wave is also observed.
The formation of the solitary wave suggests a compact, amplitude-dependent spatially-addressable
signal transmission and remote-controlled localization of stress and deformation, which leads to
opportunities for application in mechano-responsive metamaterials.

Using theoretical modeling, numerical simulation, and experimental demonstration, the works
demonstrated in this thesis extend the analysis of topological states in Maxwell lattices to a level
when non-ideal springs and large deformations are considered. The interesting phenomena caused
by the non-ideal springs and non-linearity revealed its potential for many future physics problems
and engineering considerations. Thus, I’ll introduce some of the potential future perspectives in
both physical and engineering aspects.

6.2 Outlook

On the results shown in Chapter II, although the epithelial tissue demonstrates polarized topo-
logical states, it happens under a very strict situation that the cells must have a concave shape.
Though it is uncommon to observe such a phenomenon in biology, it is possible to appear in future
experiments. Besides, one can speculate an experimental design that has elastic constraints on
polygonal faces that restricts the perimeter and area of the polygon to observe the topologically
polarized states. On the theoretical side, one can imagine an inclusion of the active elements of bi-
ology so that the expansion and contraction of cells on the epithelial tissue have an asymmetry that
breaks the energy conservation of the system. Under such a consideration, the dynamical matrix of
the system becomes non-Hermitian, and interesting physics may appear as other non-Hermiticity
physical systems that have been extensively considered [154; 175; 23; 149; 161].

Chapter III has demonstrated the effect of bending stiffness on the topological states of Maxwell
lattices, and showed the possibility of achieving the ability of stress control, but the story is far
from complete. The simple angular spring (AS) and next nearest neighbor (NNN) model offered
us insight into the bending strength at the hinges, but the hinge is treated as unbreakable. And
as it was observed in both experiments and simulation that fracturing happens more often at the
hinges instead of the bonds, it would be a natural extension to assign fracturing thresholds to the
AS and NNN springs to study hinge fracturing. Another important extension would be to use the
model on 2D systems with Weyl points to examine the effect finite bending stiffness has on the
Weyl points. Or even modify the model to a 3D Maxwell system such as the Pyrochlore lattice,
which has been observed with the presence of Weyl lines [18], to investigate the effect of bending
stiffness on topological modes in 3D structures, as well as the modes on the Weyl line.

The multi-stable Maxwell lattice introduced in Chapter IV promised many potential applica-
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tions that it can be applied to, such as mechanical shock absorbers, mechanical computing logic
systems, etc., which are all great natural future directions to work towards in the engineering per-
spective. Moreover, it is natural to extend the 2D system to a 3D lattice, while making the unit cells
multi-stable. This would offer a tremendously large configuration space for the Maxwell lattice,
and it would be a step closer to the mechanical shock absorber mentioned above. Another aspect of
this work that requires further attention is the study of the interface between two distinct topologi-
cal states. It has an important relation with impact mitigation as the interface would form when the
lattice goes through the transformation from the topologically polarized state to the non-polarized
state. Thus, it is important to follow up with the dynamics and the impact loading on the Maxwell
lattice.

The work presented in Chapter V utilized a quasi-static method to solve for the exact geometry
of the Maxwell lattice following the zero energy deformations under a prescribed boundary. The
observation of non-linear wave formation already gives us insights into the dynamics of a 2D
Maxwell lattice, but it would be great to extend it to include the time domain dynamics. With the
time domain inclusion, the mapping demonstrated in this work from space to time is no longer
needed to verify the non-Hermiticity of the 2D Maxwell lattice.
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