Building User-Driven Edge Devices

by

Vidushi Goyal

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in the University of Michigan
2023

Doctoral Committee:

Professor Valeria Bertacco, Co-Chair
Associate Professor Reetuparna Das, Co-Chair
Associate Professor Achilleas Anastasopoulos
Associate Professor Jenna Wiens

Vidushi Goyal
vidushi@umich.edu
ORCID iD: 0000-0002-5008-3049

© Vidushi Goyal 2023

ACKNOWLEDGMENTS

It is my great pleasure to acknowledge all the people who supported me throughout my Ph.D. jour-
ney. First and foremost, I would like to thank my advisors, Prof. Reetuparna Das and Prof. Valeria
Bertacco, for showing faith in me and constantly guiding me through lows and highs. They always
supported my endeavors to explore my research interests. The numerous brainstorming sessions
helped me develop critical thinking and grow as a researcher. I learned various research aspects,
ranging from precise problem formation to clear presentation of ideas. Thank you again for shar-
ing your knowledge and expertise. I am also grateful for the thorough feedback and advice that
I received from my committee members Prof. Jenna Wiens and Prof. Achilleas Anastasopoulos.
Thank you for sharing your unique perspectives. It definitely made this dissertation stronger. I
would also like to thank Prof. Thomas Wenisch, who laid my strong fundamentals of computer
architecture through rigorous coursework and projects. Prof. Todd Austin for sharing his wisdom,
experience, and inspiration all along.

The University of Michigan gave me the opportunity to interact with many amazing and like-
minded people from across the world. I would genuinely like to thank all the members of ABRe-
searh and Mbits research groups, especially Doowon Lee, Salessawi Yitbarek, Abraham Addisie,
Zelalem Aweke, Arun Subramaniyan, Daichi Fujiki, Xiowei Wang, Fitsum Andargie, Lauren Bier-
nacki, Charles Eckert, Andrew McCrabb, Shibo Chen, Tarunesh Verma, and Alireza Khadem. 1
thoroughly enjoyed my time and conversations with all of you. I would also like to thank CSE
Staff and ADA Staff for their support. Especially Magdalena Calvillo for being so prompt and
accommodating of my requests. Big thanks to writing specialists Lauren Rudewicz and Annika
Pattenaude. Annika, thank you for being so patient.

My Ph.D. journey would have been incomplete without the friendships I forged along the way.
Thank you, Nishil Talati, Shruti Nagaraja, and Tarunesh Verma, for your unequivocal support
through dark times. I will always cherish our road trips and board game nights. Thank you,
Hiwot Kassa, for our extensive dinner sessions. Sravanti Panja for always being a phone call away.
Abraham Addisie, Arun Subramaniyam, and Subarno Banerjee for being there to answer my long
job search questions. Akshitha Sriraman for being such a great mentor and friend. Thank you for
encouraging me, listening to me, and reminding me of my strengths when I felt lost. Thank you,

Tamanna Dubey, for your wise life lessons. I learned a lot from you.

i

Finally, I dedicate my dissertation to my family. My grandfather, Harish Chandra Goyal, for
going against the norms and always prioritizing our education. My parents, Vinita Goyal and
Subhash Kumar Goyal, for being my rock and trusting my decisions. You let me chase my dreams.
Mamma, I wouldn’t be able to see the end of this road without you. My sister, Sugandha Goyal,
for tolerating all my tantrums and mood swings. For taking over my responsibilities and cutting
me some slack. Thank you for always having my back. My brother, Harshit Goyal, for constant
reminders about the bigger picture of life. Last but not least, thank you to Vikalp Aggarwal.
I am glad I could share this unique experience with you. I am grateful for your patience and
understanding. You ensured that everything and everyone was well managed in the back-end while
I focused on my goal. Big thanks for being so supportive and bearing the last leg of this journey
with me. I also want to express my gratitude to my extended family for their love and kindness

throughout this journey.

1l

TABLE OF CONTENTS

ACKNOWLEDGMENTS e e e e i1
LISTOF FIGURES e e e vii
LISTOF TABLES e e e e e e xi
LIST OF ACRONYMS e e e Xxii
ABSTRACT e e xiil
CHAPTER

1 Introduction 1
I.1 Strategies e e e e e 5
1.2 Contributions e e e e e e 7
1.3 Dissertation Organization oo 11
2 Background e 12
2.1 EdgeDevices 13
2.1.1 Smartphone/Mobile Devices 14
2.1.2 IoT/Embedded Devices 16
2.2 Edge Applications e e e e 18
2.2.1 Computer VISION ot v vt e e e 18
222 GPSSensing 20
2.2.3 Machine Learning 21

3 End-to-End Machine Learning Based Approach for Energy-Efficient Multi-Sensor
Edge Platforms 25
3.1 Motivation L e e e e e e e e e e 27
32 Seesaw e e e e e 28
3.2.1 PredictionModel 29
32.2 Correlation Finder, 32
3.2.3 Seesaw Applicability o 32
3.3 Evaluation Platforms 33
3.3.1 Mountable VideoCamera 33
3.3.2 Fitness Tracker 37
3.4 Experimental Evaluation 39

v

3.4.1 Mountable Video Camera i 39

34.2 Fitness Trackers 43

3.4.3 Prediction Model Overhead 45

3.5 Conclusion 46
4 User-Driven Lightweight Machine Learning for Edge Devices 47
4.1 Background & Motivation e 50
42 MyML Overview i e 53
4.3 Building the User Model 53
4.3.1 Pruning Background L. 54

432 Bottom-upPruning 55

4.3.3 Collaborative Edge System, 58

4.4 Pruning Granularity L L 60
44.1 SymmetricPruning L o 61

442 AsymmetricPruning L Lo oo 62

4.4.3 Which pruning granularity touse, 64

4.5 Pruning on Edge Accelerator L L oo 64
4.5.1 Repurposed Edge TPU 66

4.5.2 Conversion Error from FP32 to BFP16 68

4.6 Methodology e 69
477 Evaluation 71
4.7.1 Inception-V3 e 71

4772 Resnet-50 74

4773 Adaptive System: Lo 76

474 Sensitivity Studies: 77

4775 Discussion e e 82

4.8 Limitations e e 84
49 Conclusion e e e 85
5 User-Driven Recommendation Systems 86
5.1 Background and Motivation L Lo 88
5.2 Proposed Collaborative Recommendation System 92
5.2.1 Model Decomposition: 93

5.2.2 Embeddingtables. 93

5.23 BottomMLPstack 95

524 TopMLPStack 97

5.2.5 Training Decomposed Model 99

5.2.6 Duet Architecture 100

5.2.7 Multiple device synchronization 103

5.3 Methodology 104
5.4 Evaluation e e e e e e 106
54.1 Performance 106

542 Energy e e 108

543 ACCUTACY e e e 111

5.44 Latency Breakdown o ... 112

5.4.5 Hardware Optimization ImpactonEdge 115

5.4.6 Hardware Unit Silicon Overheads 116

5.4.7 SensitivitytoBatchSize o 0o L 116

5.4.8 Comparisonto NMP solutions 117

5.5 DISCUSSIONS v v i e e e e e e e e e e 119
5.6 Conclusion e e e e 120
6 Interconnect Architecture for System-in-Package Based Low-Cost Edge Platforms . 121
6.1 Motivation L. e e e e 123
6.2 Neksus Architecture L 124
6.2.1 Interconnect Chiplet 124

6.2.2 Mini-Chains to Reduce Overhead 125

6.2.3 Application-Level Chaining 127

6.2.4 Network Interface oo o 129

6.2.5 Protocol Compatibility 130

6.2.6 Neksus for System-on-Chip 130

6.3 CostModel e 131
6.3.1 CostModel e 131

6.3.2 Non-Recurring Expenses 131

6.3.3 Recurring Expenseso 133

6.3.4 YieldModeling 134

6.4 Evaluation Methodology, 135
6.4.1 Design Parameters oo 135

6.4.2 Performance Model, 136

6.43 PowerModel 137

6.5 Results. o e 138
6.5.1 CostAnalysis e 138

6.5.2 Network Performance 140

6.5.3 Application Evaluation for Neksus 144

6.5.4 Cost-Efficiency Tradeoff for SiPand SoC 147

6.6 Discussion e 148
6.6.1 Scalability 148

6.6.2 Chiplet Granularity 148

6.6.3 Passive v/s Active Interposer L L. 149

6.7 Conclusion L e 150
7 Conclusion and Future Scope 151
7.1 Summary of Contributions 151
7.2 Future Directions e 154
BIBLIOGRAPHY e 156

vi

LIST OF FIGURES

FIGURE
1.1 Strategies guiding proposed solutions. Lo 6
1.2 Contributions highlighting four works of this dissertation. Each of the works is guided

2.1

22

3.1

3.2

33

34

3.5
3.6
3.7
3.8
3.9

3.10
3.11

3.12
3.13

by multiple dissertation strategies and targets a handful of sub-tasks that span across
various edge applications. The proposed solutions aim to resolve the three major

bottlenecks of any system - Network, Memory, and Compute. 8
Dieshots of 4 majors SoCs [7] from Qualcomm, Apple, Huawei, and Samsung com-
prising multiple IPblocks. 15
IoT platform consisting of sensors, DSPs, microcontrollers, flash storage, battery, and
a wireless radio communicating processed data to the cloud via a gateway. 17

Seesaw overview: Low-power sensors predict optimal sensing rate for a power-
intensive sensor by means of a low-overhead robust decision tree predictor with low

cross-validation €rror. L. 29
Error feedback mechanism dynamically modifies the root node of the decision tree to
limittheerror. L 29
Prediction mechanism for Video Camera: Speedometer and motion vectors are used
to determine the target framerate. oL 34

(a)Video camera setup comprising OpenMV camera platform and ublox GPS. (b) Fit-
ness tracker setup comprising a Neo-6M ublox GPS and an IMU sensor fusion chip:
the MPU9250 configured by Arduino-Uno board. Power is measured using a USB

POWET-MELET. v v vt vt e 36
Prediction model for a fitness tracker. Error tracked using distance measurement from

pedometer and GPS is used as feedback to change the decision tree dynamically. . . . 38
Cross-validation errors of decision trees trained for the video camera over a range of

error tolerance limits. oL oL 39
Average frame rate across 45 videos for different error tolerance limits. Videos are

sorted based on their average pixel motion (12 low, 26 medium, and 7 high). 40
VMAF video quality error measured across 45 videos. 41
Average battery life of camera across error tolerance models. 42
Cross-validation errors of decision trees trained for the fitness tracker. 42

GPS update rates across 100 routes sorted based on their average curvature. The
update rate is measured as the time between two updates. In the baseline system, the

GPSupdateseverysecond. oL 43
Fitness tracker maximum error across the routes with and without feedback mechanism. 44
Fitness tracker battery savings across activity factors (f). 44

vil

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10
4.11
4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Comparison of accuracy, model size, and execution time across various edge and
cloud ML models for ImageNet dataset.
Our three-phase end-to-end process to learn user preferences, build user-specific
model, and deploy itinreal-time.
Bottom-up pruning shares compute for inference and pruning path until layer n — 1.
It diverges at the current pruning layer n and updates weights for layers n to last. . . .
Collaborative edge system with a tracking unit that checks for divergence in user pref-
erences by counting the number of predictions belonging to user classes.
Symmetric Channel Pruning: As a result of pruning the same channel IDs across all
filters in layer n, the corresponding (red) filter in layer n — 1 is pruned completely. All
channels and connections shown inred are pruned.
Asymmetric Channel Pruning: Channels are pruned independently with no restric-
tions. More channels are pruned with this approach because of its flexible nature. All
channels and connections shown inred are pruned.
Bookkeeping mechanism with channel mask offset, difference point {diff}, and the
number of non-zero channels [nnz].
FP32 precision: 1-bit sign, 23-bit mantissa, & 8-bit exponent for each element.
Block floating point (BFP16) precision: 1-bit sign and 7-bit mantissa for each element.
8-bit shared exponent across all the elements inablock.
Re-purposed Edge TPU for training.
Inception-V3: Inference latency and model size for different pruning types on mobile
CPU platform that supports Int8 precision for inference and FP32 for pruning.
Inception-V3: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on mobile CPU platform that supports Int8 preci-
sion for inference and FP32 for pruning.
Inception-V3: Inference latency and model size for different pruning types on Edge
TPU platform that supports Int8 precision for inference and BFP16 for pruning.
Inception-V3: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on the TPU platform that supports Int8 precision
for inference and BFP16 for pruning.,
ResNet-50: Inference latency and model size for different pruning types on mobile
CPU platform that supports Int8 precision for inference and FP32 for pruning.
ResNet-50: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on mobile CPU platform that supports Int8 pre-
cision for inference and FP32 for pruning.
ResNet-50: Inference latency and model size for different pruning types on Edge TPU
platform that supports Int8 precision for inference and BFP16 for pruning.
ResNet-50: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on the TPU platform that supports Int8 precision
for inference and BFP16 for pruning.,
Trace showing MyML in real-time. We show the three phases - learning, pruning, and
inference — of our end-to-end system as well as illustrate the working of the tracking
unit that monitors the change in user preferences.
Per layer asymmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning.

61

62

64
65

4.21

4.22
4.23

5.1

5.2

53

54

5.5

5.6

5.7
5.8

59
5.10
5.11

5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5

6.6
6.7

Per layer symmetric channel pruning showing model size, learning rate, and pruning

time for bottom-up pruning. L e e e e 79
Model size and accuracy for increasing training batch size. 80
Scalability of user-specific models with an increasing number of user classes. 82

Recommendation model comprising of three components — bottom MLP, embeddings,
and top MLP — computes 100s of inferences to rank all the candidates of a query.
Common computation pertaining to user-specific information can be reused across all

the inferences of the query. L oL 88
Timing Breakdown in three components for a query with 1024 candidate inferences
fortwoRMModels. &9
Data flow for the state-of-the-art recommendation system at the datacenter computing
N inferences for the N candidates. 91

Data flow for our proposed collaborative edge-cloud recommendation system. The
monolithic model is decoupled into two concurrent models running on the edge device
and datacenter. The edge model is computed once per user query, and the reduced
datacenter model is computed for N candidate inferences. 91
Converting randomly accessed large user embeddings at datacenter to contiguous and
small user-specific embeddings at edge device, which are continuously populated and

updated with recent user interactions. 95
Decomposition of the bottom MLP stack into a pre-computed static bottom MLP and
a smaller dynamic bottom MLP stack. 96

Top MLP stack decomposed into user top MLP, item top MLP, and combined Top MLP. 97
Proposed Duet architecture with an on-chip hardware unit and quantized int8 precision

support to efficiently process the user model at theedge. 101
Query latency reduction across all the models for query size 1024 and 256 inferences. 107
Energy consumption across all the models for query size 1024 and 256 inferences. . . 109
Latency breakdown for RM2-4 models across all components for both the edge and

the datacenter platforms. 113
Impact of HW optimizations on edge device across allmodels. 114
Throughput improvement for multiple models over a wide range of batch sizes 117
Comparison of NMP-enabled Duet with state-of-the-art NMP solutions. 118
Bandwidth served by an ideal network (with infinite bandwidth), recent SiP, and SoC

for YouTube and Gallery applications. 122
Neksus, the proposed SiP architecture (a) - Interconnect IP (b) - Flow control table at

edge routers (C). e e e e e e e e e e e 124
Hand-Shaking protocol: The sequence of steps indicates how to setup and tear down

adata transfer from IP2 to IP1.o oL 126
Network interface for IP and interconnect chiplets. 126
Data flow solutions for IP-to-IP communication. 128
Cost with perfect and real yield for (a) 90% and (b) 70% reuse factors. 139
Interconnects performance comparisons: (a) throughput and (b) packet latency with

uniform random traffic.o L L L L 142

1X

6.8
6.9
6.10
6.11

6.12
6.13

Chained traffic performance for Packet size = 32 flits, Packet size = 16 flits, and Packet

size=41lits L. 143
IP data transfer bandwidth for mobile applications. 145
Frame completion rates for mobile applications. 145
Energy per bit transferred spent by interconnect, storage, and IP units, over a range of

architectural solutions. L L 146
Chiplet, bonding, and total system yield for various chiplet granularity. 147
Breakdown of total system cost for passive and active interposer system. 149

LIST OF TABLES

TABLE

3.1 Cross-validation errors of models trained for a precision agriculture device.
32 Videocamera e e
3.3 Fitnesstracker e
3.4 User study scores averaged across 45 videos for 17 unique users. All the average
values are close to O and acceptable.
3.5 Power overhead of decision treeand SVM. L oL

4.1 Architectural specifications for Snapdragon 855 Octa-core SoC representing mobile

CPU. .
4.2 Inception-V3 pruning comparison between mobile CPU and repurposed Edge TPU. . .
4.3 Resnet-50 pruning comparison between mobile CPU and repurposed Edge TPU.

5.1 Model configurations used for evaluation.
5.2 Architectural specifications for mobile and server.00
5.3 Accuracy comparison between Duet & baselinemodels
54 Scratchpad Overhead

6.1 SiP and SoC design cost componentsl
6.2 NREparameters e e e e
6.3 REparameters e e e e e
6.4 Neksus design parameterso e e e e
6.5 GemDroid Settings e
6.6 Applicationchains L L L
6.7 Power model parameters L e
6.8 Costand efficiency tradeoff. L

X1

LIST OF ACRONYMS

ML Machine Learning

QoS Quality of Service

IoT Internet of Things

SoC System-on-chip

SiP System-in-package

fps Frames per second

VMAF Video Multimethod Assessment Fusion
MLP Multilayer Perceptron

RM Recommendation Model

NoC Network-on-chip

Xii

ABSTRACT

Edge devices like smartphones, wearables, and personal assistants have become an integral part
of our daily routines. Their ubiquitous and portable nature allows them to operate in any sort of
environment. They can be deployed in the wild or at home without requiring a constant power
source plugged into them. However, the small form factor and resource-constrained nature of edge
devices limit their computation capabilities and, thus, significantly impact the efficiency of tasks
performed on edge devices. The application efficiency is directly related to the quality of user
experience for the hand-held edge devices; thus, these shortcomings of the edge device impact the
user experience as well.

In this dissertation, we develop solutions to address these limitations of edge devices to enhance
the performance and energy efficiency of a wide range of user applications processed on edge
devices. Our proposed solutions are either low-cost alternatives that can replace expensive silicon
or extract extreme efficiencies from already in-use silicon, thus lowering the total cost of ownership
of edge devices. Our solutions are driven by three key strategies: 1) cross-component optimizations
across the system, 2) leverage user information and preferences in the hardware, and 3) co-design
the application and hardware for the edge system. In our first solution, Seesaw, we study user
applications for edge devices with tiny microcontrollers and sensors. We propose an end-to-end
automated technique to find optimal compute/sensing rates for power-intensive sensors governed
by low-power sensors and based on individual users’ preferences and inherent sensing capabilities.
This elongates battery life with minimal impact on the perceivable user experience.

In our second proposed solution, we customize the machine learning-based image recognition
application for each user by creating small and accurate user-specific machine learning models on

the resource constraint edge device. This significantly lowers computation demands and memory

Xiil

footprint without impacting user accuracy. In the next work, Duet, we leverage the user history
and profile information to decompose the giant monolithic recommendation model into a separate
user and item model. The user model processes user information in a lightweight manner on the
local edge device, and its computation is reused by the item model, processing 100s of items at
the datacenter. Thus, we offer enhanced privacy along with performance improvement of 6.4x and
energy efficiency of 4.6x.

Finally, we present a low-cost and heterogeneous System-in-Package (SiP)-based multi-chiplet
interconnect architecture built over the 2.5D stacking interposer technology, which can replace the
expensive monolithic system-on-chip (SoC). The proposed architecture exposes high-bandwidth
links of the interposer over which we efficiently map popular bandwidth-intensive edge applica-

tions to enhance performance and energy efficiency.

X1V

CHAPTER 1

Introduction

User devices influence nearly all aspects of twenty-first-century life. These portable gadgets, like
smartphones and tablets, dominate various modes/sectors of human interaction, including commu-
nication, healthcare, entertainment, and transportation. For example, smartphones connect people
worldwide through instant messaging, audio/video calls, and social media platforms; these devices
enable users to shop online and attend doctor’s appointments via telemedicine. If the ability to
do so much from the comfort of our phones has improved our quality of life significantly, it has
also made user devices an indispensable part of our day-to-day lives. Furthermore, user devices
are not limited to just handheld devices. They come in various shapes and features to cater to
increasing user demands. Personal assistant devices like Alexa, smart-cameras like GoPro, fitness
trackers like FitBit, and weather monitoring units for precision agriculture like Arable are some of
the innovations driven by users’ demands.

The number of edge devices, including a wide range of edge devices like smartphones, sensors
devices to security cameras, is increasing rapidly. It is forecasted to increase to 6.5B by 2030, an
increase of 4B from 2020 [28]. As user devices are becoming more pervasive and smarter, so is
their demand for higher computation capabilities. Compared to the start of 2019, the average hours
spent by a user per month on mobile apps had increased by 40% [22] during the 2020 pandemic. An
increase in the number of mobile apps and user devices has led to the generation of terabytes of raw
data that can be processed in two ways: 1) offloading the computation to back-end cloud servers

and 2) computing the data locally at the edge device. Offloading computation to the cloud is a

simple option as it allows the edge device to act as a lightweight user-interface while computations
are carried out on back-end servers, and final results are communicated back to the user device.
However, it requires reliable internet connectivity and high bandwidth links to transfer bulky raw
data like videos, audios, and images to back-end servers, which adds to end-to-end service latency
and consumes much energy. Further, sharing users’ personal data with commodity servers is prone
to manipulations and cyber-attacks, thus compromising users’ privacy. An alternative option is to
process data on edge devices. However, this option is bounded by the computing capability of
small resource-constrained user devices.

Over the past decade, the performance and computing power of user devices like smartphones
has improved drastically. Simultaneously, algorithms/software applications have also evolved dra-
matically while becoming more complex to enhance user experience. There is still a wide gap
between the computing power offered by user devices and the computational demands of emerg-
ing user applications like machine learning (ML), recommendation systems, high-definition video
recording/playback, etc.

Additionally, the current edge platform landscape is very diverse and heterogeneous. It ranges
from giant autonomous vehicle (AV) systems with compute-intensive sensors and server-like ca-
pacity; handheld smartphones containing multi-core ARM architectures and application-specific
IPs connected through high bandwidth links; to tiny IoT devices that host small sensors powered
by tiny microcontrollers. Moreover, the mobile phone market in itself is very diverse. Facebook
[221] has reported that 72% of its users still use 6-year-old Systems-on-Chips. Only one-fourth of
its users own phones with CPUs designed in 2015 and later. This broad spectrum in computing
capacity shows that in the universe of applications for edge devices, there is no ~one-size-fits-all”
solution. Edge device solutions must be tailored for the application and the underlying architec-
ture. However, irrespective of the device, all innovations to improve edge devices are driven by the
common goal of offering an enhanced user experience.

Over the past few years, researchers have striven to achieve this goal by applying three ap-

proaches: developing software optimizations for applications, building application-specific hard-

ware accelerators, and transitioning the hardware to sophisticated but very expensive silicon tech-
nology nodes. A significant number of works [170, 225, 204, 154, 188, 241, 61] have extensively
studied application characteristics and proposed architectural techniques to reduce/reuse compute,
curb data-flow movement, and reduce memory access. These techniques have definitely improved
performance and reduced power consumption. However, they are not yet sufficient to provide a
seamless user experience for ever-increasing user applications’ computational requirements. For
example, the latest smartphones, Samsung’s S22 [26] and Apple’s iPhone 14 Pro [21], serve max-
imum video resolution of 8K at 24fps and 4k at 60fps, respectively, whereas upcoming AR/VR
applications require high-resolution frames at 90 fps and higher [25, 117]. Another emerging so-
lution relies on the development of application-specific hardware accelerators for specialized ap-
plications like machine learning, genome sequencing, neuromorphic computing, etc. However, the
accelerator approach is not scalable nor feasible for a multitude of newly emerging application do-
mains. It also requires applications to have well-defined data-flow or compute patterns that can be
mapped to customized hardware. Finally, the last approach of shifting to newer/sophisticated sili-
con technology nodes for better performance and energy is bounded by the slowdown of Moore’s
law. Moreover, the smaller and newer technology nodes have high production and development
costs [54, 15], which is extremely expensive for widespread adoption. The last two solutions are
impeded by the high procurement cost of upgrading to new hardware, which also contributes to
massive e-waste.

An ideal user edge device should be affordable, secure, easy to use/navigate, and have a cloud
server’s performance with infinite battery capacity in a form factor that fits in the pocket. Therefore,
there is a need for inexpensive hardware-software co-design approaches that can reduce the gap
between current user devices and the expected ideal device for emerging applications. Hence, the
goal of this dissertation is to improve the hardware performance, energy efficiency, and cost
of edge devices to enhance the user experience as discussed below. Other factors like design,

UI/UX, and OS/software are equally valuable but are beyond the scope of our work.

* Performance/Quality of Service: Quality of Service (QoS) or performance for user-

applications is directly related to the computational power of the underlying hardware. Edge
devices cannot host powerful datacenter style hardware components. They are restricted by
their form factor and thermal design power (TDP) limit. Furthermore, the definition of per-
formance/QoS varies with the application. For example, audio/video applications quantify
QoS by frames completed per second, whereas the performance of recommendation sys-
tems is measured by response time or latency. In this dissertation, we propose solutions
based on the application and compute capacity of the underlying edge platform to improve

performance and elevate user experience.

Energy efficiency/Battery life: While handheld devices are getting smaller day by day,
at the same time, applications are getting more complex, compute-intensive, and energy-
intensive. Unlike cloud servers that are always plugged into a power outlet, edge devices
face major battery life concerns owing to their small form factor and portable nature. Further-
more, sometimes the application’s nature precludes frequent battery replacement/charging of
edge devices, like cameras in wildlife sanctuaries or IoT devices spread across agricultural
fields or in manufacturing units. Hence, there is a push to make applications lightweight
in order to extend the battery life of IoT/user devices. The proposed solutions in this dis-
sertation consider energy efficiency to be as critical as performance. Our solutions improve
energy efficiency while also improving or maintaining performance, thus overall enhancing

user experience.

Cost/Affordability: The cost of high-performing hardware is increasing exponentially be-
cause of the shift to newer technology nodes and the addition of new application-specific
components to chips [136, 15]. Hence, there is a dire need to lower costs to make edge
devices accessible to a wider population. There are two ways to reduce the cost of user-
devices. The first is to shift to low-cost hardware alternatives without sacrificing power or
performance. The second is to transform current user-devices to support emerging resource-

intensive user-applications in an energy-efficient manner, which lowers the total cost of own-

ership of the user device. We provide solutions that reduce the development cost of new chips
and also offer techniques to improve user-applications’ efficiency on CPU-centric edge plat-

forms that account for most consumer devices deployed in the consumer market.

The first step in developing the work for this dissertation was to find applications that are
most relevant to users. Multiple studies [29, 23] conducted in 2022 have found that social me-
dia and communications apps (like Facebook, TikTok, Instagram, Messengers), teleconferencing
apps (like Zoom, Google Meet), entertainment apps like video streaming and audio streaming plat-
forms (like YouTube, Netflix, Spotify), and online shopping apps (like Amazon, Shopee) are the
most popular user apps. Another popular category is gaming apps; however, these have a limited
demographic reach. This distribution of mobile apps’ popularity was slightly different in 2019,
with apps like Uber, Lyft, and Google Maps also being part of the list of frequently-used mobile
apps. Maps are also actively used by fitness tracking applications like FitBit and Strava. Another
inbuilt application that is very frequently used by consumers on smartphones/smart-cameras is the
photo-capture and video-recording feature. In this dissertation, we target these categories since
they consume a significant fraction of mobile resources and dominate users’ daily activities. A
popular legacy application is web browsing. However, it is a very well-studied application, which
has been optimized by numerous prior efforts [242, 239, 240, 56, 59, 62, 176, 134] in hardware
and software domains that have focused on improving the application’s efficiency. Therefore, we

do not explore web browsing applications in this dissertation any further.

1.1 Strategies

In this dissertation, we explore various strategies to achieve the above-described goals for emerging
edge applications. Primarily, we devise three strategies, which are the foundation of our proposed
works, as shown in Figure 1.1. The first strategy is cross-component optimizations across the
edge system, where multiple components involved in applications work together cohesively to

improve the applications’ overall efficiency. The second strategy is leveraging user’s inherent

Solutions

Seesaw MyML Duet Neksus
Cross component optimization
8 across the system \/ \/ \/
S .
@ Leverage user properties & \/ \/ \/
© preferences
| S
= Co-design application and
70}
hardware for the edge system \/ \/ \/

Figure 1.1: Strategies guiding proposed solutions.

properties and preferences to customize applications for the underlying hardware of the edge
device, thus, improving the application’s performance and energy efficiency. The third strategy is
co-design of applications and hardware for the edge systems, where hardware optimizations
are based on the unique software properties of applications.

The first strategy explores the benefits of owning multiple system components spanning an ap-
plication. The components can be different IP blocks, multiple sensors, or an edge and datacenter
comprising the system. Instead of individual components working in a standalone fashion, we
look into inter-component optimizations where the components work together and aid each other
to complete the given task efficiently. They achieve this by communicating intermediate results
directly to each other, sharing essential insights with each other, which helps the other compo-
nents, and distributing the work in a balanced manner based on the benefits and strengths of each
component.

The second strategy leverages the opportunity to tailor apps for the underlying hardware based
on individual user properties and preferences. In this dissertation, we first make an observation
that the QoS/performance and energy efficiency of user-facing applications can depend on indi-
vidual users’ characteristics/behavior. For example, audio/video applications’ QoS depends on the
sharpness of the user’s sensing capabilities, or GPS coordinates depend on user-chosen routes.
Second, we observe that user behavior and properties can also be leveraged by emerging error-
tolerant machine learning applications like image recognition, voice recognition, and recommen-

dation systems. These applications are flexible and malleable; thus, individual user traits can be

used to simplify the computation and improve the performance and energy efficiency of the execu-
tion on edge platforms. We draw upon these insights and explore the potential of leveraging user
properties to achieve our goals.

The third strategy co-designs the application and hardware for the edge system. We observe
that certain application properties that are visible to software can be leveraged by hardware to opti-
mize the application. For example, there are opportunities for computation reuse and computation
sharing for various user applications, which can be exploited by hardware to reduce the operational
intensity of an application. Further, we can judiciously balance the compute demands of an ap-
plication across the edge system, comprised of device and cloud, based on the capabilities of the
underlying hardware and the requirements of various parts forming the application.

In the next section, we will present the contributions of this dissertation developed on the three

strategies discussed in this section.

1.2 Contributions

In this dissertation, we offer hardware-software co-design solutions to enhance hardware-related
parameters that contribute to user experience - performance, energy (battery life), and cost - based
on the strategies discussed above. Our target workloads are sub-tasks that are part of popular user-
facing applications. As shown in Figure 1.2, these sub-tasks include streaming for entertainment
and teleconferencing; recommendation systems for entertainment, social media, and online shop-
ping; video recording for teleconferencing and smart-cameras; photo-capture for smart-cameras;
route tracking for maps application, and image/video classification for social media and smart-
cameras. Contributions of this dissertation strive to compute these bulky and complex applications
on resource-constrained local edge devices in a lightweight manner, to alleviate expensive trans-
mission back and forth between edge devices and the cloud, reduce dependency on a reliable and
fast internet connection, and enhance user data privacy.

In our first work [88], we target personal [oT/edge devices like smart-cameras with video

Bottlenecks

Seesaw
Network
2
Memory _E"
(%]
c
v wn
w o
—_
g ©
£
Compute o
Video Record

Route tracking

Smart-cameras | Smart-cameras | Social Media
Social Media | Online shopping Teleconferencing
| Entertainment

Maps

<€

Solutions

MyML Duet
N

»
Jo
o>

o3 »
(]
5 e
8 o
g 3
o
8 =]
©
(]
a2
Image/Video Recommendation
System

I
I
I
Classification i
I
I
I
|

Sub-tasks

Edge Applications

Chiplet interconnect

architecture

Streaming
Video Record
Gallery

Entertainment

Smart-cameras

 ————

Strategies

):(Cross-component optimization |

across the system

‘2' Leverage user properties &

preferences 5

r*y Co-design of application and |

—° hardware for the edge system

Figure 1.2: Contributions highlighting four works of this dissertation. Each of the works is guided
by multiple dissertation strategies and targets a handful of sub-tasks that span across various edge
applications. The proposed solutions aim to resolve the three major bottlenecks of any system -
Network, Memory, and Compute.

recording and smartwatches/fitness-trackers with the map application. These devices host mul-
tiple sensors for various user interactions and are powered by small microcontrollers. We observe
that low-power sensors can indicate the impact of high-power sensors’ outputs on user experi-
ence. When low-power sensors infer that the user is not sensitive to the output of power-intensive
sensors, we can dial down the sensing rates of power-intensive sensors and vice-versa. Based on
this insight, we developed an end-to-end ML-based solution that automatically identifies corre-
lations between power-intensive and lightweight sensors without human expertise. It deploys a
low-overhead decision-tree predictor to determine the optimal sensing rates for power-intensive
sensors by using low-power sensors while avoiding significant quality degradation. As depicted
by the first (purple) bar in Figure 1.2, the proposed technique impacts the compute and memory
overheads by reducing the sensing rate and, thus, the number of data frames processed and stored
by the downstream pipeline. This work increases the battery life of edge devices without impacting
the human-perceivable experience on multi-sensor edge devices.

Our second work [89, 90] is based on the insight that user behavior can be utilized to increase
performance and energy efficiency of handheld user edge devices for the image classification task,
related to social media and smart-camera applications, as shown by the second (blue) bar in Figure
1.2. ML tasks, like image recognition, are compute-, memory-, and bandwidth-intensive; thus,
they incur high latency and power. The resource-constrained nature of edge platforms further ex-
acerbates the problem. However, ML is a flexible application that can be made lightweight by
reducing memory footprint, compute intensity, and bandwidth requirements using the established
ML pruning process. In this work, we leverage this malleable nature to prune ML models for
user preferences/choices to create small user-specific models. We first learn user preferences and
then present a hardware-friendly, lightweight pruning technique to create user-specific models on
mobile platforms while simultaneously executing inferences. We also build an end-to-end collab-
orative system that tracks user behavior changes to create new user-specific models when there is a
deviation in user preferences. These small user-specific models have a reduced memory footprint

that can easily be computed on edge platforms, thus, improving performance and energy efficiency.

In our third work, we incorporate the user edge device into the end-to-end recommendation
system to enhance the performance and energy efficiency of the task. Recommendation task is
a critical component of entertainment and social media applications. A generic recommendation
model comprises dense multilayer perceptron (MLP) and huge embedding tables with entries for
all the possible items in the database, which blows up the table size. It is considered to be a data-
center application because a recommendation query ranks 100s of candidates to recommend only
a few, which makes the recommendation task extremely memory and computationally demanding.
In this work, we decouple the monolithic recommendation model into user and item models, where
we offload the user model in a lightweight manner on the edge device, and the item model is com-
puted on the datacenter. The edge’s user model and the datacenter’s item model work cohesively
to deliver final recommendations. The user model is computed once for a user query on the edge
device, and its output is communicated to the datacenter. The edge model output (computation)
is then reused across all candidates ranked by the item model at the datacenter. The edge model
is processed in a lightweight fashion. It utilizes user information and user history, which is read-
ily available on the edge device, coupled with hardware optimization techniques of memoization,
scratchpad, and quantization. These optimizations reduce the computational demand and mem-
ory footprint of the recommendation model, as illustrated by the third (green) bar in Figure 1.2.
Our proposed edge-cloud collaborative recommendation system reduces the latency and energy
consumption of the complete end-to-end application.

Finally, in our last work [91], we design a new interconnect architecture for edge devices to
lower the cost and simultaneously improve performance and energy efficiency for video-related
tasks of streaming, recording, and photo capturing for entertainment, teleconferencing, and smart-
camera applications. We reduce the cost of building new SoCs for user edge devices by migrating
from monolithic System-on-chip to heterogeneous System-in-Package (SiP)-based designs, which
are comprised of multiple small chiplets bonded together by 2.5D stacking. We show that emerg-
ing 2.5D stacking-based SiPs have the potential to reduce the development cost because of the

high reuse factor and improved yield of small chiplets over a big monolithic chip. Our proposed

10

solution optimizes data-flow patterns between multiple chiplets by bypassing the memory access
and communicating directly. It then maps the data-flow patterns to high-speed and high band-
width interposer links supported by low-cost 2.5D stacked SiPs. This solution thereby decreases
the memory and network overheads resulting in improved performance and energy efficiency, as

depicted by the last (orange) bar in Figure 1.2.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 discusses the background and re-
lated work survey that helped us in developing this dissertation. In Chapter 3, we discuss Seesaw,
an end-to-end ML-based approach to improve the energy efficiency of multi-sensor 1oT devices.
We propose a system where low-power sensors in the device can predict the optimal sensing rates
for power-intensive sensors, thus improving battery life without impacting the human-perceivable
user experience. Chapter 4 describes MyML, a user-driven machine learning technique where we
build user-specific models using a hardware-friendly bottom-up pruning process. The proposed
approach leverages compute sharing between pruning and inference, customizes the re-training
backward-pass, and chooses the pruning granularity for efficient processing on the edge. MyML
drastically reduces model size, thus improving the performance and energy at the edge device.
Chapter 5 outlines Duet, which decomposes the monolithic recommendation model into two con-
current smaller models. The user model is computed only once on the edge device, and the item
model repeatedly computes all the potential candidates the user may like. Computing only once the
user model in a lightweight manner on the edge device offers data privacy and significantly boosts
the performance and energy efficiency of the recommendation system. Chapter 6 describes Neksus,
an interconnect architecture for cost-efficient System-in-Package, which can replace System-on-
Chip, thereby reducing cost. We discover optimized data-flow patterns for audio/video smartphone
applications that can be easily mapped to Neksus, resulting in performance and energy improve-

ments. Finally, Chapter 7 briefly concludes this dissertation and outlines future directions.

11

CHAPTER 2

Background

This chapter reviews the background related to edge platforms. Edge devices are small resource-
constrained devices distributed in the environment that are responsible for continuous data sensing,
data pre-processing, and data collection. Some very early examples of edge devices are automated
toasters and coffee machines, which informed users once breakfast was ready. Since then, they
have become more ubiquitous and can be found in wildlife sanctuaries for animal tracking [127],
in the depth of the ocean to study marine ecosystems [6], as well as in the hands or pockets of
human beings to help them in daily activities. Depending on the use-case and user demand, they
come in various shapes, sizes, and functional capabilities, such as RFID tags, thermal sensors,
handheld devices, etc.

Historically, they acted as a gateway between sensors and back-end servers, where cloud servers
are responsible for the computation of sensed data. However, with the rise in automation, not only
is the number of edge devices increasing, but they are simultaneously getting intelligent to support
upcoming applications. Thus, it is not sustainable to communicate all the data from edge devices
to the back-end server for computation because of limited network bandwidth. This gave rise to
edge computing, an emerging paradigm that aimed to move computation close to the data gener-
ation for better analytics and reduce network bandwidth requirements. Unlike cloud computing,
which offloads computation to back-end servers by transmitting data all the way back to the cloud
servers, edge computing computes data locally on an edge device. Computing locally at edge

devices eliminates several concerns like the need for reliable internet connection, transmission

12

overheads, longer response time, and privacy. However, the small form factor, limited computing
capacity, and portable nature of edge devices still preclude us from adopting edge computing as the
default solution for all applications, especially emerging compute-intensive application domains
like augmented reality, virtual reality, machine learning, audio/video streaming, etc.

The current state of the edge platform is very heterogeneous, which further adds to the prob-
lem. Edge devices encapsulate a wide variety of user devices like the internet of things (IoT),
smartphones, tablets, autonomous vehicles, etc. They can be as small as a medical implant and as
big as a smartphone or tablet. Within the smartphone industry, mobile phones have transformed
from a primary device for communication via cellular connection to a source of constant entertain-
ment. This transformation has further increased diversity in edge devices. As per a study [221] by
Facebook, there is no standard SoC predominantly used by consumers. They report that the top-
50 most common SoCs account for only 65% of the smartphone market, which increases to 225
SoCs accounting for 95% of the market. This diversity and heterogeneity among edge devices and
associated applications have made the task of optimizing/improving edge devices for each unique
application very difficult. Nonetheless, irrespective of the edge device’s nature, the common con-
cerns from a hardware perspective that grip edge devices are the following: 1) development cost
that reflects in the final retail cost paid by the consumer; 2) energy efficiency that translates to
battery life; and 3) performance that determines the application’s functioning on the device.

In the rest of the chapter, we describe prior works that have focused on improving various
aspects of edge devices. We first discuss the current state of edge devices, followed by a discussion
about popular edge applications and the related prior works that aim to improve the efficiency of

these applications on edge devices.

2.1 Edge Devices

As discussed above, there is vast diversity within the ecosystem of edge devices. Anything that

can be handheld and powered by a battery can be classified as an edge device. In this section,

13

we broadly breakdown edge devices into two categories: 1) Smartphone or Mobile devices that
are powered by relatively powerful system-on-chips (SoCs), such as Snapdragon 855 [27] or A14
Bionic [20], and 2) IoT or Embedded devices that are powered by tiny microcontrollers like ARM

Cortex-M4 [5].

2.1.1 Smartphone/Mobile Devices

The number of smartphone subscribers is on the rise and is anticipated to grow to >7.5 billion
consumers by 2025 [24] with the potential to grow further in populated regions like China and
India. Clearly, mobile computing is here to stay for a long time. Moreover, mobile computing
workloads have evolved drastically. They range from conventional applications like voice calls
and web browsing to emerging applications like teleconferencing, online streaming, social net-
working, etc. Because of the increased presence of smartphones and associated applications, there
has been significant development in the chipset that powers mobile computing. SoCs that power
smartphones now comprise specialized IP blocks along with general-purpose CPU cores, mem-
ory, and network components, as shown in Figure 2.1. Two noteworthy trends are dominating the
current development effort in the mobile computing domain.

The first is the linear increase in the number of special function IP blocks for new SoCs to
support emerging complex applications [199]. This heterogeneity in the SoC landscape requires
solutions that improve each component separately and also as an integrated unit. For example,
increasing one IP block’s performance may not translate to an increase in the application’s per-
formance since it may be limited by network or memory bandwidth. Hill et al. [110] is the most
recent work that facilitates early-stage SoC design using analytical models to address the issues
of portability and high human resources associated with the integration of multiple IP blocks in
cycle-accurate simulators like Gem5. It takes into account multiple IPs of an SoC working simul-
taneously, interacting with memory and network hierarchy. It provides roofline top models to give
pre-estimation of SoC performance, which can guide designers in making decisions about which

IPs to include, IP size, IP performance, etc. Further, Shao et al.[199] is a simulation-based ap-

14

Al1 Bionic
87.66mm?

Snapdragon 845
91mm?

Exynos 9810
118.94 mm?

Kirin 970

p—— DORL— DDR insignhts

Figure 2.1: Dieshots of 4 majors SoCs [7] from Qualcomm, Apple, Huawei, and Samsung comprising
multiple IP blocks.

proach to enable large design space exploration for accelerators/IPs that is otherwise hampered by
the slow RTL development process. It gives power, performance, and area estimates given a high-
level design (in C/C++) for an accelerator without generating RTL. The work is also integrated
with the full system cycle-level simulator GemS5 to give estimates for SoC performance.

While the above works have focused on pre-estimating and improving performance for SoCs
with an increasing number of IP blocks, another problem associated with the growing number
of IP blocks is the high initial development cost. This is the second problem that has hampered
development efforts in the mobile computing domain. As shown by [187], although the number
of IP blocks is increasing, the number of total SoC chipsets and the companies developing these
chipsets are decreasing. This downfall is accredited to SoCs’ increasing development costs because
of the shift to expensive technology nodes and high development cost for new IP blocks [136]. It
presents significant challenges for hardware startups and, consequently, for the expansion of the

silicon industry. For example, a fabless silicon startup may require tens of millions of dollars to

15

bring a product to market, compared to as little as a few hundred thousand dollars for a software
startup [15, 54]. The key to the success of the software industry is the wide availability of open-
source software infrastructure, which allows cheap reuse of labor. Startup companies can begin
with much of their software already in place and then quickly add their own “special sauce” [64].

Hence, there are prior works that have advocated for low-cost heterogeneous System-in-
Package (SiPs) based hardware to replace monolithic SoCs. Stow et al. [207, 206] have studied
the cost benefits of 2.5D stacking-based chiplet integration over monolithic design owing to yield
improvements. [206] also discusses the feasibility of reducing NRE cost using die stacking by
leveraging IP reuse across various domains and generations of chips.

Performance study of interposer-based multi-core SiP systems has been done by prior
works [120, 131]. Jerger et al. [120] explore the benefits of using silicon interposers for wiring
within a multi-core chip. They propose a hybrid Network-on-chip (NoC) lying in the silicon layer,
as well as the interposer layer. Memory and core traffic can take advantage of hybrid NoCs, where
core-to-core cache coherence traffic is routed through the silicon layer, and main memory traffic
is routed through the interposer. [79] discusses the feasibility of network die regarding delay and
energy characteristics. Pal et al. [180] show a novel package-less chiplet integration technology—
Silicon Interconnection Fabric (Si-IF)—as a replacement for the interposer. There are ongoing
works [208, 139] on 2.5D-based SiP packaging, where multiple packaging substrates like ceramic,
glass, and silicon interposer properties are being explored. These substrates can be used to support
high bandwidth smartphone applications [145]. In the next section, we will discuss [oT/Embedded

devices, which is another dominant edge computing platform.

2.1.2 IToT/Embedded Devices

IoT is an emerging paradigm for a range of new capabilities brought about by ubiquitous connec-
tivity and extends computing capabilities to objects, sensors, and everyday items that can exchange
data with little to no human involvement [168]. Market growth forecasts that loT-connected de-

vices will have reached ~11 billion units by 2020 and will reach 30 billion units by 2025 [19].

16

loT Edge Node Cloud

— Batter
Camera Ill 1 y
& Microcontroller
i Temperature lL

‘Cortex—M4 CPU ‘ '{

o I
Coeen

GPS Q Radio —— M

Gateway

DSP

Heart rate 6@

Analog Sensors

|
|

Figure 2.2: IoT platform consisting of sensors, DSPs, microcontrollers, flash storage, battery, and a wireless
radio communicating processed data to the cloud via a gateway.

The IoT allows for limitless opportunity: smart cities, smart homes, wearable devices, precision
agriculture, eHealth, and factory automation are some of the domains which are adopting IoT
capabilities. Some of the popular 10T devices that are found in regular households are personal
assistants like Amazon Alexa and Google Home, Nest thermostat, Fitbit tracker, and many more.
At the heart of IoT systems are IoT edge devices, which are capable of continuous data col-
lection and smart networking. Any generic IoT platform consists of edge nodes, gateway nodes,
and the cloud. IoT edge nodes are responsible for sensing raw data by using diverse sensors, pre-
processing raw data, and communicating it to the cloud via gateway nodes. As shown in Figure
2.2, an IoT edge node typically consists of sensors, a DSP or media processor, a microcontroller, a
flash storage, a wireless radio for communication, and a battery. The edge node does lightweight
computing on raw data, and the pre-processed data is then transmitted to the cloud to compute the
final output. Thus, the majority of time is spent sending data back to the cloud or an edge gateway.
More recent [oT devices like Apple smartwatches [4], Echo Show [3], Google Home [14], and
Ring video doorbell [17] have small arm cores to enable higher processing at the device and reduce
the data transfer from the edge to cloud. However, the lightweight CPU cores can still only process
a small portion of the application because of their limited computing capabilities. Thus, we cannot
completely eliminate the transfer overheads between the edge and the cloud. These problems are
further exacerbated with the launch of more sophisticated edge IoT devices like Amazon Astro [2],

which require more processing power to support many computationally intensive applications.

17

Many prior works have strived to improve applications’ efficiency and have proposed intrigu-
ing techniques like developing application-specific microcontrollers [70, 71], intelligently of-
floading computing to cloud [159, 204], or optimal partitioning of mobile and cloud computa-
tion [130, 213]. [71] presents an automated hardware-software co-analysis technique to accurately
determine application-specific energy requirement and peak power for low-power processors, and
[70] proposes an automated approach that tailors microcontrollers to target applications by remov-
ing unwanted gates not used by an application, and thus reduces the power and area. In the next
section, we discuss in detail the above and many more prior works that have focused on improving

mobile and 10T devices for a wide range of popular user applications.

2.2 Edge Applications

In this section, we will discuss three broad application domains encompassing the most frequently
visited user apps on edge devices. The first is computer vision-based applications that process
images and videos, such as video recording/playback, photo/video capture, video streaming, and
teleconferencing. The second is GPS-based applications, such as map navigation and route track-

ing. The last is machine-learning-based applications of image classification and recommendation.

2.2.1 Computer Vision

With the boom of social media platforms for photos and video sharing, online streaming services,
such as Youtube and Netflix, teleconferencing or videoconferencing apps like Zoom, Google Meet,
Messenger, etc., the demand for better QoS and longer battery life has grown drastically. Edge
devices are upgrading to high-resolution power-hungry cameras and larger batteries to meet this
ever-increasing demand. This trend may not be sustainable in the long run, especially for new
emerging applications like Augmented and Virtual reality, which have to run on a small headset
and ensure a smooth, immersive experience. Thus, there is a dire need for hardware/software

solutions to enhance the overall efficiency of computer vision applications.

18

Prior works have proposed many interesting solutions to address this problem for mobile and
IoT edge devices. On the IoT front, [156] [55] have studied the potential of reducing power con-
sumption in mobile vision applications by changing frequency and moving to low power mode
while reducing frame rates. Glimpse [171] is another prior work that focuses on the sub-selection
of frames for offloading to the cloud for further heavy-weight vision processing. The selection
framework is based on sensors like PIR, audio, or thermal image sensors that detect humans. Prior
works [106, 178] propose dynamically changing the display resolution of a smartphone camera
based on user-device distance using ultrasonic sensors or activity detection. Yin et al. [227] lever-
age gesture recognition and human activity detection to save the camera and display energy during
photography on mobile phones.

For mobile devices, Yedapalli et al. [225] have studied the loopholes in data-flow patterns in
the current SoC design for computer vision applications. They have shown that there is unnec-
essary indirection involved which consumes memory bandwidth and also affects user experience.
Therefore, they propose bypassing memory by forwarding through the memory controller and
caches/flow-buffers. This work will definitely improve single application performance, but if mul-
tiple applications are trying to use the same IP, the second application may suffer due to a lack of
resources. Subsequent follow-up work [170] resolves this inefficiency. [121] proposes a method-
ology to compute reliability requirements for approximately storing compressed and encrypted
videos in video capture devices. The methodology improves energy spent on storage. Another
prior work [232] improves the energy efficiency of video streaming by frame-batching along with
frequency boosting and leveraging content similarity to reduce memory and bandwidth demands.
More recent work [233] proposes two mechanisms to reduce memory and bandwidth consumption:
1) exploit value-similarity in a tile to achieve on-the-fly compression and 2) approximate the video
frame early in the imaging pipeline. Another legacy application that is widely adopted by the edge

ecosystem is GPS sensing. The next section discusses this application in more depth.

19

2.2.2 GPS Sensing

GPS used for location tracking is part of many popular edge devices. It is present in sophisticated
devices like smartphones, smartwatches, and autonomous vehicles (AVs) to get precise location
coordinates utilized by many applications, such as Google Maps and Apple Maps, health apps
like Strava to record runs, social media apps to provide recommendations based on geo-locations,
and many more. GPS is also found in low-power devices like fitness trackers [44] to track user
activity, GoPro cameras [39] for adventure sport, and Wildlife tracking [127]. Nonetheless, it
consumes significant energy. In fact, we find that in a fitness tracker, a GPS chip consumes 74%
of total system power. This energy-hungry nature is also experienced by users while using maps
for navigation. Because of its wide applicability and energy-intensive nature, it has been studied
thoroughly by many prior works, as discussed below.

EnTracked [141] presents a technique to turn the GPS module on and off depending on activity
detected by an accelerometer. Paek et al. [179] propose turning GPS on and off depending on
user history, activity detection, and other location detector modules. Another relevant work by
Kjaergaard et al. [140] proposes duty cycling the GPS on mobile devices (smartphones) based on
activity detection, distance, and compass headings. This work depends on fixed thresholds and
thus is not efficient for fitness tracking devices that are user-dependent and used on a wide range
of tracks and trails. Youssef et al. [229] estimate new GPS positions using an accelerometer and
compass and synchronize these estimates with the real GPS values at regular intervals. Kim et
al. [137] do place detection, activity detection, and path tracking using WiFi, accelerometers,
and GPS. Their work switches the GPS on and off depending on the place detection output, i.e., it
turns on for place departure and off for place entrance. Prior works [157, 125, 151] also propose
to improve GPS accuracy in case of weak GPS signal detection. This is done by dynamically
changing the localization method from GPS to cellular or Bluetooth depending on the required
application accuracy or integrating GPS with inertial sensors. While GPS sensing is one of the
popular legacy applications, in the next section, we will discuss the most emerging application

domain now: machine learning.

20

2.2.3 Machine Learning

Machine learning concepts have been around since the 1990s. LeNet, an early simple convolution
neural network (CNN), was developed in 1998 [148]. However, it was not until the last decade that
it started gaining popularity and found its way into practical application. In 2012, Google’s X Lab
developed a machine learning algorithm that was able to autonomously browse YouTube videos
to identify the videos that contain cats. This happened at the same time as AlexNet [144], one
of the first deep neural networks (DNN), was developed for image recognition. Since then, DNN
models have evolved drastically. They have become deeper and wider with much more complex
layer structures. Apart from the advancement of DNN models, there were two other drivers that
led to the ML revolution. First was the availability of big datasets, like CIFAR [143] and Imagenet
[77], required to train accurate large ML models. The second was the increase in the computational
capacity offered by the hardware required to train and infer these complex models.

Some of the widespread machine learning applications are image recognition, object detec-
tion, keyword spotting, speech recognition, and recommendation. Image recognition and object
detection employ DNN models [105, 210, 211], which are comprised mostly of convolution lay-
ers (CNNs) followed by fully connected layers. These layers compute thousands of multiply-
accumulate (MAC) operations to produce an output, thus making them very memory-, compute-,
and bandwidth-intensive. Further, speech recognition, keyword spotting, and machine translation
are also based on DNN-based language models like LSTM/RNN [112, 222, 191]. These models
involve matrix-vector kernel computation and, thus, are limited by the MAC operations. Finally,
emerging DNN-based recommendation models [174] are composed of MLP, and embedding lay-
ers, which are compute- and memory-bound, respectively.

Recent years have witnessed an explosion in research on application-specific ML accelerators
[69, 67, 76, 236, 109, 78, 126, 215]. Almost all new smartphone SoCs have a dedicated neural
processing engine (such as Google Edge TPU [12], Samsung’s NPU [31], and the neural engine
on Apple’s A14 bionic chip [20]) to process compute-intensive and memory-intensive deep neural

network models on the user edge device. Despite such efforts, according to the analysis reported

21

by the prior work [98], conducting inference at the edge is not energy- or latency-efficient. There
is still a lot of room and need to improve the performance and energy efficiency of ML models on
edge devices. Therefore, numerous prior works have proposed exciting solutions to address the
limitations of these models on the edge device. Here, we will first discuss works that have focused
on accelerating inference at the edge for image and language models. We will then present prior
techniques that reduce the model size for the edge device. Finally, we will discuss techniques that
have focused on improving the efficiency of state-of-the-art recommendation models.
Accelerating inference at Edge node: Many prior works [115, 204, 241, 61, 188, 214, 130] have
focused on efficient machine learning at the edge or mobile devices. [115, 214] have proposed
accelerators to improve CNN model processing on edge. [61, 241, 188] utilize input similarity to
make machine learning efficient for continuous mobile vision and speech recognition. They utilize
motion vectors in a video stream to reuse CNN computation across consecutive frames. They trade
off energy and vision quality to improve energy efficiency. [204] developed a system to detect if
the incoming images are unseen by the working model at the edge device, sending only the unseen
images back to the cloud for progressive training. Previous work [130] has proposed solutions to
partition the DNN inference computation at the edge and cloud to reduce data movement. They
find that not all layers are compute-intensive, and thus, they compute some layers at the edge
device while the remaining layers are computed on the cloud. Similarly, Wang et al. [213] also
proposed an efficient technique to partition DNN models into mobile and cloud computation to get
overall power savings. RedEye [155] moves some CNN computation into the analog domain to
reduce data movement and improve energy efficiency.

Smaller ML models: A recent study [221] concludes that machine learning is carried out on
CPUs for most of its users. Therefore, there is a push for efficient machine learning on multi-
core CPUs. A common and effective approach to support ML on edge devices is to reduce the
model size by pruning ineffectual weights [102, 101]. Many prior works [152, 230, 102, 108, 231,
162, 177] guide which weights and how they should be pruned. [216] has utilized asymmetric

pruning for an in-cache acceleration of ML inference by adding a coalescing unit. [230] proposes

22

hardware-aware pruning for CPUs and GPUs. There are works that leverage sparsity in weight/bits
or tolerance towards lower precision in DNN and have proposed accelerators for such compressed
neural networks [235, 181, 100, 74, 238, 200, 75, 201, 182]. More recently, many works [86,
87, 119, 163, 234] have focused on accelerating the pruning process. Prior works [163, 234] are
based on the insight that instead of waiting for a baseline model to be trained in order to prune the
baseline model, the pruning process can be moved up and mixed with the training baseline model
process. They proactively prune/remove near-zero weights after the first few training epochs under
the assumption that near-zero weights will not revive during later training epochs. [86, 87] exploits
sparsity in dense DNN training computation and maps them efficiently on general-purpose CPU
cores. In addition, [119] reduces memory footprint by proposing a lossless and a lossy encoding
scheme for convolution and RELU layer to improve the performance of DNN pruning.

Further, there are works that aim to extract small student models from the baseline teacher
model to reduce model size. Knowledge distillation [111] is one such seminal work that changes
the objective function to train on soft targets, logits that are inputs of the softmax layer, for a small
dataset. FitNet [189] builds thinner and deeper networks based on knowledge distillation to also
include hints from the intermediate layers. AMC [107] is an automated technique that utilizes
reinforcement learning to provide the model compression policy for mobile devices. Prior works
[53, 63] use function preserving network transformations [66] to build new compressed models.

Next, we will describe the state-of-the-art optimization techniques for recommendation sys-
tems, an emerging machine-learning application.

Accelerating DNN-based Recommendation Systems: Many recent works have been able to suc-
cessfully accelerate recommendation inference using specialized hardware like GPUs [95, 146],
FPGAs [118, 124], and systolic arrays [96]. Furthermore, many accelerators [69, 67, 100, 50, 186,
198] have been proposed to enhance the performance of dense neural network layers. Furthermore,
numerous previous works [133, 184, 165, 52, 128, 146, 217, 223] have proposed solutions to over-
come the memory bottleneck experienced by embedding tables with two primary techniques: 1)

caching hot embeddings or a combination of frequently appearing embeddings on the CPU to

23

bypass DRAM access, and 2) performing embedding lookups and reduction operation in mem-
ory using near-memory processing (NMP). Both of the above techniques have shown significant
speedups compared to computing on general-purpose CPUs. Prior work RecPipe [96] proposed
a multi-stage model by adding a filtering model before the recommendation model to reduce the
candidates ranked by the big recommendation model.

In this chapter, we first reviewed the background of edge devices, where we described two
popular edge platforms — Smartphone/mobile devices and IoT devices. Next, we described three
important and emerging applications domains of edge devices — computer vision, GPS sensing,
and machine learning. In this dissertation, we take insights from these works and build solutions
over and above them that improve the performance, energy, and cost of ownership to enhance user
experience.

In the next chapter, we describe our first solution, Seesaw: an end-to-end machine-learning-
based approach for energy-efficient IoT edge devices. [oT devices are composed of multiple sen-
sors with varied power profiles. In Seesaw, we leverage users’ sensing capabilities and varied
power profiles to reduce the overall energy consumption of applications on edge devices. See-
saw is an automated framework that can be applied to any application involving multiple sensors

working together to serve the application.

24

CHAPTER 3

End-to-End Machine Learning Based Approach for
Energy-Efficient Multi-Sensor Edge Platforms

In this chapter, we study techniques to improve the battery life of IoT edge devices without im-
pacting user perception to reach the final goal of enhanced user experience. Instead of hosting
a powerful and extremely expensive SoC, IoT devices have multiple economical sensors to do
continuous data collection and smart networking, which are powered by microcontrollers [44] or
lightweight CPU cores [4].

The small form factor of these IoT edge devices constrains their battery life (size). Further,
several IoT domains necessitate these devices to be placed in remote, inaccessible locations, pre-
cluding frequent replacements. Thus, to improve the consumer experience for this category of edge
platforms, the focus in this chapter is on making them energy-efficient to improve their battery life.
A natural method to improve battery life is to reduce the energy requirements of an edge node by
reducing the data sensing rates and associated computing overheads. However, naively reducing
sensing rates can result in significant output accuracy loss, leading to key questions about how
to optimize the energy efficiency of the system while maintaining an acceptable output accuracy
level.

We make two important observations to achieve our goal of improving battery life without
impacting user-perceivable output quality. First, we observe that for these personalized and
application-specific edge devices, the quality of output is often dependent on an individual’s in-

built perception capability. For example, minute details/changes in videos, GPS routes, weather

25

monitoring data, etc., may not be captured by a human sensing system. The granularity at which
sensors capture data can be tailored to individual users depending on their requirements or inherent
discerning abilities.

Second, today’s edge devices consist of diverse sensors to cater to user requirements, which can
be leveraged to improve the overall energy efficiency of the device. Consider, for instance, struc-
tural health monitoring systems: they typically have various sensors with different functionalities
and accuracy trade-offs, such as a Vibrating Wire Strain Gauge to measure strain, an inclinometer
to measure inclination, and a laser displacement sensor to measure the vertical deflection [183].
Another example is a wearable fitness tracker, such as the FitBit Surge [44], which consists of an
accelerometer, magnetometer, GPS, and heart-rate monitor. The diversity in sensors usually re-
sults in uneven power consumption characteristics, where a few sensors are power-intensive while
others consume a tiny fraction of total power.

Nonetheless, we observe that diverse power profiles of various sensors in the system present an
opportunity to improve battery life. At power-intensive sensors, we find that only a small fraction
of data computed has a significant impact on its output accuracy, while the rest of the data has
minimal impact on accuracy. Furthermore, the lightweight sensors can give indications about the
impact on the output accuracy level of the data processing done at the power-intensive sensor.

Hence, in this chapter, we propose Seesaw, an end-to-end machine learning-based technique
to leverage this correlation between different sensors to improve battery life without degrading
the human-perceivable user experience. Battery life can be increased by dynamically changing
the sensing rates of the power-intensive sensors depending on the importance of the data being
processed. For significant data, the sensing rate should be high to minimize accuracy loss, while
sensing rates can be lowered for the rest. A low-overhead machine learning predictor is trained
to learn the correlation between the outputs of lightweight sensors and the sensing rate of the
power-intensive sensor for a given error tolerance limit. The correlation is established if the cross-
validation error of the trained predictor is very low, implying that the machine learning model

learns a valid pattern. Once the correlation is confirmed, the low-overhead machine learning pre-

26

dictor is deployed on the central microcontroller, where at runtime, based on outputs of lightweight
sensors, it predicts the sensing rate of the power-intensive sensor while limiting the output accuracy
loss.

We evaluate Seesaw for two use-cases - video recording on a mountable video camera, like
GoPro [39], and route tracking on fitness trackers, like FitBit surge [44]. For a mountable video
camera, which has a camera and GPS-based speedometer sensor, Seesaw finds a direct correlation
between speedometer reading and the frame rate at the camera sensor. High speedometer readings
imply high pixel motion between frames, and thus frame rates should be high, and vice-versa.
Seesaw also gives a strong relationship between compass headings and GPS sampling rate for
fitness trackers. We show the established correlations manifest into battery savings by regulating
the high-power sensor based on low-power sensors. Our experiments for 45 testing videos, using
Netflix’s Video Multi-Method Assessment Fusion (VMAF) [40] metric along with a user study
across 17 individuals, show an improvement of 32% in video camera battery life without impacting
video quality based on human perception. The fitness tracker evaluated across 100 real GPS routes

showed a 66% improvement in battery life, with an average GPS route error of only 2.63%.

3.1 Motivation

Despite a multitude of applications, short battery life is limiting the use of IoT edge devices. A
common trend observed in IoT platforms is to embed more sensors to improve the user experience.
However, such multi-sensor devices usually have one or more sensors that are power-intensive,
while others consume relatively low power. This diversity in sensors presents an opportunity to
explore the relationship among these sensors. For example, GoPro added a GPS module [39] in
their latest version to give users the additional feature of route tracking. For such a mountable video
capture device, the image-sensing pipeline consumes the largest share of the overall power budget.
From our experimental setup, we measure that image sensing and processing consume 51% and

31% of the total power, respectively, whereas GPS consumes only 10% of the total power. To re-

27

duce the power consumed by the imaging pipeline, we observe that a lightweight speedometer can
guide the frame rate of the captured video without affecting the quality of the video recorded. The
intuition is that a fast-moving GoPro needs to capture quickly changing scenery around it, while
the object motion between adjacent frames is insignificant for a slower pace. The above energy
management applies to mountable video capture devices such as Google Glass or GroPro. Further,
Arable [42], a precision agriculture platform, hosts many sensors like a Normal Vegetation Differ-
ence Index (NVDI) sensor, an acoustic sensor, sometimes an NVDI imaging sensor, and sensors to
measure air environmental conditions like temperature, humidity, pressure, and photosynthetic ac-
tive radiation (PAR). Here, the acoustic sensor for listening to rainfall acts as a portable rain gauge.
We observe that it can be sampled depending on environmental sensors like humidity sensors. The
intuition is that the probability of rainfall is strongly related to humidity; thus, audio sensors can
be sampled depending on the measured humidity or from a combination of other environmental
Sensors.

As described in the background chapter, many prior works have shown standalone use cases
where a sensor can give hints to another sensor of the system. However, in this chapter, Seesaw, we
present a holistic, automated technique that automatically discovers new relationships between the
sensors with diverse characteristics to increase the battery life of the edge device without significant

quality loss.

3.2 Seesaw

Seesaw is a generalized, end-to-end machine learning-based technique to reduce the overall power
consumption of IoT edge devices comprising multiple sensors. Guidelines to deploy Seesaw on
any given loT platform are as follows. First, the platform should fulfill two prerequisites: 1) it
should contain at least two sensors, and ii) at least one of the sensors should be responsible for a
major fraction of the platform’s power consumption. Once these prerequisites are met, raw data
from the sensors is fed into Seesaw. Seesaw trains low-overhead decision-tree-based predictors

for various low-power / power-intensive sensor combinations, as shown in Figure 3.1. The goal

28

Low-power Sensors Predictor Power-Intensive Sensor

e
Rate

Cortex M4 CPU

Figure 3.1: Seesaw overview: Low-power sensors predict optimal sensing rate for a power-intensive sensor
by means of a low-overhead robust decision tree predictor with low cross-validation error.

W08
| VT deds &b

Figure 3.2: Error feedback mechanism dynamically modifies the root node of the decision tree to limit the
erTor.

Error
Sampling Rate

of the predictor is to regulate the sensing rate of a power-intensive sensor (Sensory) based on the
output values of other low-power sensors (Sensory, ...Sensor;). Based on the robustness of the pre-
dictor, estimated using k-fold cross-validation, Seesaw accepts or discards the correlation learned
by the predictor. Only predictors with very low cross-validation error, determined empirically, are
accepted, implying that the predictor learned a valid pattern. The predictor is then deployed on
the device’s microcontroller to modulate the sensing rate of the power-intensive sensor based on

information from low-power sensors.

3.2.1 Prediction Model

The predictor must execute on a small microcontroller that should be available on the edge device.
Thus, instead of a deep neural network, we use a simple decision-tree predictor to optimize power,
performance, and area. The input to the predictor is the output of the low-power sensors, and

the predictor’s output determines the sampling rate of the high-power sensor. During runtime, the

29

outputs of low-power sensors at time stamp ¢ are fed into the low-overhead decision tree predictor,
which is extremely fast and runs in a few us. The predictor processes the input signals provided
by low-power sensors to determine the sampling rate of the high-power sensor for time stamp 7+ 1.
Seesaw works at a granularity of 1 sec; thus, a new sampling rate is predicted every second for
the power-intensive sensor. The high-power sensor works at the newly predicted sampling rate
for a timing window [7+1, t+2) until the next sampling rate is predicted at the time stamp #+2.
At the low-power sensors, only the outputs at the time stamp ¢ are fed into the predictor. This
can be extended to a value over a timing window of a few secs, for example, a mean of the low-
power sensor values for a window of [secs [#-1, t]. A timing window can potentially improve the
predictor accuracy but will also add extra computing overhead to the microcontroller. We have not
investigated this trade-off in this work and will leave it for future studies.

The decision-tree model is generated for user-defined error tolerance. To train it, we generate
data during an offline phase as outlined by Algorithm 1, assuming that the low-power sensors
(LP_sensors) guide the sampling/sensing rate of the high-power sensor (HP_sensor). For each
training case and each sample within a training case, we sweep the sensing rate of HP_Sensor and
measure the sensing error (the lowest sensing rate will generate the highest error) to form an array
of error rates along with their corresponding sensing rates. We then create a tuple that maps the
sensing rate array and error array, computed in the previous step, to the corresponding low-power
sensor output (LP_sensor_out). The global training data is collectively formed by the tuples created
for all the training cases and samples within each case. We then use this data to generate a decision
tree for a given error tolerance (Tolerance) as described below.

In Algorithm 2, we read the error and sensing rate vectors of each sample (LP_sensor_out). We
then choose the index with the largest error rate (sensing rate is minimum) that is still within the
tolerance limit. Using this index, we retrieve the corresponding sensing rate for the power-intensive
sensor (HP_sensrate_opt). Finally, we map LP_sensor_out to HP_sensrate_opt to form the selected
training data, and we train a regression tree model with this data.

Error feedback: Depending on the availability or feasibility of a real-time error measurement

30

technique, an optional error feedback mechanism can also be deployed by dynamically chang-
ing the root node of the decision tree. The start node represents the minimum sampling rate (or
maximum error) supported by the decision tree. The sampling rate increases from root to leaves,
resulting in lower error towards the leaves, as shown in Figure 3.2. For instance, if at any instant
the error is greater than the given error tolerance, we move the start node to a lower root node
in the decision tree, as shown in Figure 3.2, by traversing the tree and doubling the minimum
sampling rate until the error falls within the tolerance threshold. Once the error is stabilized with
the tolerance, we explore reducing the sampling rate by a factor of two by traversing back toward
the original root of the tree. Note that this adaptive approach based on error feedback is possible

because of the inherent structure of decision trees.
Algorithm 1 Generating global training data
1: Input: LP_Sensor, HP_Sensor; Output: Global Data

2: for each training case ¢ do
3: for each sample j in training case ¢ do

4: error < [], HP_sensrate < []

5: for each HP_sensor sensing rate k in [K in, Knee] do

6: local_error < calc_error (HP_Sensor;;, k)

7 error <— error U local_error

8: HP_sensrate < HP_sensrate U k

9: end for
10: Global Data < Global_Data U {LP_Sensor_out;;, error, HP_sensrate }
11: end for
12: end for

13: return Global_Data

Algorithm 2 Generating the decision tree

1: Input: Tol (Tolerance), Global_Data; Output: Decision_tree

2: for each training case i do
3: for each sample j in training case ¢ do

4 (error[], HP_sensrate[]) <— Global_Data (LP_Sensor_out;;)

5: (max_error, idx) <— max(error) such that max_error < Tol

6: HP_sensrate_opt <— HP_sensrate(idx)

7 Training_Data < Training_Data | J {LP_Sensor_out;;, HP_sensrate_opt}
8 end for

9: end for

10: Decision_tree = regression_tree_model(Training_Data)
11: return Decision_tree

31

3.2.2 Correlation Finder

We developed a correlation finder to identify any dependency between low-power and power-
intensive sensors. Our correlation finder is based on the robustness of the predictor model learned
during the offline phase for each pair of low-power and high-power sensors. The correlation finder
performs K-fold cross-validation for each predictor model. It splits the training set into K par-
titions, where one part is selected for testing a model trained on the remaining K-1 parts. This
process is repeated for every K™ partition. Root mean square error is calculated for each parti-
tion tested, measuring the robustness of the final model trained on the complete training set. The
predictor models with cross-validation errors smaller than an empirically determined threshold are

accepted as valid correlations.

3.2.3 Seesaw Applicability

As discussed at the beginning of the section, Seesaw is a general technique that can be deployed
on any loT system fulfilling two prerequisites: multiple sensors and diverse power profiles among
the sensors. We extensively evaluated Seesaw for two setups (a mountable video camera and a
fitness tracker); however, Seesaw can be effective in many other commercial platforms. For ex-
ample, Arable [42], a precision agriculture 10T platform, hosts many sensors, making it amenable
to Seesaw. Plugging in the rain gauge, humidity, and temperature data [45] in the Seesaw method
establishes a direct correlation between humidity and acoustic rain gauge sensors based on low
cross-validation error (as shown in Table 3.1). Moreover, it also discards any correlation of tem-
perature with the acoustic rain gauge sensor due to high cross-validation error. These correlations
align with the intuition that the probability of rainfall is strongly related to humidity but unrelated
to temperature. Thus, the acoustic rain gauge sensor, which uses sound classification to calculate
the amount of rain, can be sampled at different rates depending on measured humidity.

Similarly, a smart traffic management system that continuously records live videos can use a
lightweight passive infrared radiation (PIR) sensor to detect movement in its field of view, which

can, in turn, guide the frame rate. As another example, smart parking edge devices [46] use a mag-

32

5% Error | 10% Error | 20% Error
Humidity 0.037 0.032 0.029
Temperature | 79.6 71.3 55.6

Table 3.1: Cross-validation errors of models trained for a precision agriculture device.
netometer to detect the presence of a vehicle by computing variations in the earth’s magnetic field.
Here, naive optical sensors, detecting the change in intensity of light, can guide the sampling rate
of the magnetic sensor, which detects the presence/absence of vehicles in parking spots throughout

the day.

3.3 Evaluation Platforms

To evaluate Seesaw, we analyzed two specific [oT platforms: a mountable video camera and a

fitness tracker.

3.3.1 Mountable Video Camera

The GoPro, a smart video camera, consists of an imaging sensor, image processing DSP, flash
memory, Bluetooth module, and a GPS module to collect route information for activities like
biking, hiking, etc. Since these commercial devices do not provide fine-grained control to users,
which is required to implement Seesaw, we instead replicate the GoPro setup as shown in Figure
3.4(a). On the camera board, we run two image processing filters—a Gaussian and an edge filter—
followed by the motion estimation kernel used in video compression to measure active power
(Puet). We also measure idle power (P;4.) and memory write power (P,,.). All these parameters
are listed in Table 3.2. We calculate the total energy per frame (Ef,.m) and average power at
different frame rates using equations 3.1 and 3.2. Here, active time (T,.), idle time (T;4.), and
write time (T,,,.) will depend on frame rate (number of frames processed per second). Additionally,
Bluetooth energy (Eprp) is also added to the final power consumption. Using this setup, we find
that the image sensor, image processor, and GPS consume 51%, 36%, and 10% of total power,

respectively. The remaining 2% is spent on storage and data transfer. In a nutshell, most of the

33

Predictor

Speedometer

Speed

B ——]
o
[——]

Video recorder
\ Motion Vectors

Frame Rate

'“‘"‘4 """ ' Cortex M4 CPU

Figure 3.3: Prediction mechanism for Video Camera: Speedometer and motion vectors are used to determine
the target frame rate.

power goes to the sensing and computing of images. Thus, energy consumption can be reduced
by lowering the frame rate intelligently, with minimal impact on video quality. We validated our
power model, based on the replicated GoPro setup, by comparing the battery life from the model
with the battery life obtained from running GoPro Hero 5 at 30 fps. We find that the GoPro battery

lasts for 2.25 hr, whereas our model estimates a battery life of 2.5 hrs at 30 fps.

Eframe = actTact + PidleT‘idle + Perwr + EBLEFTCI/)TLG,SZ'ZQ (31)
Ppps = Eframe fDs 3.2)
Thattery = Battery_Capacity/ Py, (3.3)

Prediction Model: The predictor model considers GPS-based speedometer readings to predict the
lowest frame rate that produces an error within user-defined error tolerance. The correlation is
established only if the predictor model has a low cross-validation error. In addition to speedometer
readings, we also provide motion vectors to the predictor as another implicit sensor data. Motion
vectors computed for video compression, using a block-matching algorithm, give an estimate of the
displacement of objects in subsequent frames. In Seesaw, we leverage this information to predict
a desirable frame rate. Since the block-matching algorithm bounds its search space to reduce the
amount of on-the-fly computation, it does not produce accurate outputs when the camera is moving

fast. Hence, the speedometer and motion vectors are complementary to each other and are both

34

used by the predictor model, as illustrated in Figure 3.3.

We used 50 video sequences for training, and another 45 for testing, using GoPro videos avail-
able online. These videos belong to one of three categories: low, medium, and high pixel motion.
Speedometer data is obtained using the optical flow [82] algorithm. Libraries from the OpenCV
framework are used to gather speedometer and motion vectors. The FFMPEG utility is used to
process and change video frame rates. We trained the decision tree for three error tolerance values:
5%, 10%, and 20%. To extract the training data, we sweep the frame rate for every second of
each video from high to low and create a database, mapping frame rates to the error in the video
quality metric defined by Netflix’s Video Multi-Method Assessment Fusion (VMAF) [40]. VMAF
has three components: visual quality fidelity (VIF), detail loss measure (DLM), and pixel motion.
VIF and DLM measure loss in image quality, whereas pixel motion captures errors due to changes
in frame rate. The final VMAF output is a fused score of the three individual scores. Since we
modify only frame rates and do not alter image quality, the VMAF metric measures video quality
in our setup. The lowest frame rate, which produces the highest power savings (but is still within
the error tolerance), is selected to train the decision tree. Only models with cross-validation errors
within the empirically determined threshold limit are accepted. Bounded by the GPS (speedome-
ter) update rate of 1Hz, the decision tree is invoked every second. The optional error feedback
mechanism could not be applied for this application because of the lack of any real-time technique
to estimate error. Note that since the VMAF calculation is compute-intensive, the VMAF score is
only computed while training the decision tree and not during video capture.

User Study: We conducted a user study of video quality evaluation to relate the error thresh-
olds with human perception of video quality. The user study was reviewed by the University of
Michigan Health Sciences and Behavioral Sciences Institutional Review Board (HUMO00149764)
and was deemed exempt. The study was advertised among graduate students in the department
of Computer Science and Engineering. Graduate student volunteers that signed up for the study
were asked to read the study description and consent form. They were then given an opportunity

to agree or decline. On their acceptance, we presented different versions of two unique videos

35

@biox ©
NEO-6M-0-001
2424,

(a) Video camera (b) Fitness tracker

Figure 3.4: (a)Video camera setup comprising OpenMV camera platform and ublox GPS. (b) Fitness tracker
setup comprising a Neo-6M ublox GPS and an IMU sensor fusion chip: the MPU9250 configured by
Arduino-Uno board. Power is measured using a USB power-meter.

through a laptop to each participant. Each unique video had four versions - one original, and the
remaining three were the video outputs from Seesaw’s prediction model for three error rates - 5%,
10%, and 20%. After completely watching the first set of videos on a laptop, the participant was
asked to complete the first portion of the study via a google form. We then presented the second
set of videos, and the participant completed the evaluation on the same google form. The google
survey questionnaire asked the participant to provide a subjective comparative evaluation of pairs
of videos by providing a numerical score of relative quality. For each portion of the study, the
user was asked to compare the three versions of the video with a “baseline” and rate them on a
scale of [-10, +10], where positive scores indicate better quality than baseline and vice-versa. To
avoid bias, the “baseline” was chosen at random from the four versions and was not necessarily the
original video. Furthermore, the users were not informed which video was the original. To further
get rid of any bias, we sometimes replicated videos, i.e., different versions might be identical, and
users might also receive the same unique videos. This study was carried out for 30 sets of videos
picked out randomly from 45 videos consisting of fast videos and slow videos. User inputs were
anonymized. The survey also asked the participant whether they are avid video games because we
believe those participants are likely to have developed a strong skill in perceiving small differences

in video quality. A total of 17 graduate student volunteers, including all genders, completed the

36

Table 3.2: Video camera Table 3.3: Fitness tracker

Pt 492 mW Pictive 196 mW
Pigie 40 mW Pige 90 mW
Py, 216 mW Prite [92] 6 pl/bit
BLE energy 0.5 pJ/bit BLE energy 0.5 pJ/bit
Battery capacity | 5.36 Wh Energy Capacity | 0.37 Wh
Frequency 216 Mhz GPS Data Size 8 bytes
Frame size 1080p Sensor Fusion 10 mW
Frame rate 30 fps MPU9250 power
Video compr. ratio 1:15

user study. Out of 17, 4 identified themselves as avid video gamers with sharp vision. We ensured
that volunteers had no information about the optimization techniques we proposed to get unbiased
results. Data collected was stored in cloud storage via google drive and processed and aggregated
directly on the corresponding data file at the end of the study. The findings of this user study are

reported in Section 3.4.1.

3.3.2 Fitness Tracker

Fitbit Surge, a popular fitness tracker, contains an inertial measurement unit (IMU) with a digital
motion processor, GPS, Bluetooth, NOR flash, and a central microcontroller. Due to the lack
of availability of fine-grained control on commercially available devices, we replicated a fitness
tracker setup for our evaluation, shown in Figure 3.4(b). The GPS chip performs correlation-based
FFT search and transmits the output in the form of the National Marine Electronics Association
(NMEA) sentences to the Arduino board, which performs parsing and distance calculation. The
three operations — FFT, parsing, and distance calculation — contribute to active power. All the
parameters are listed in Table 3.3. The analytical power model is similar to that of the mountable
video camera, which used equations 3.1, 3.2, and 3.3, where the frame rate (fps) is replaced by the
update rate, and 7} and T}, depend on the update rate. Using this setup, we find that GPS and
IMU consume 74% and 21%, respectively, of the total system power. Other components together
accrue 5% of the total power. Thus, the GPS sampling rate or update rate should be reduced

intelligently to improve battery life. We compare the battery life from the power model of our

37

Inertial Measurement Unit Predictor Pedometer

E Magnel\}ometer : :'"“““““26;4‘)‘: 10241 e.
| > ! i i

RVVI/A\ 7A\ PR : : ’
! \\/‘\/j i Compass basashbsbhassass | Update

E \\..S.// ' Heading | 10%: Rate Error

! Accelerometer ! '

; . i Cortex M4 CPU

Figure 3.5: Prediction model for a fitness tracker. Error tracked using distance measurement from pedometer
and GPS is used as feedback to change the decision tree dynamically.

setup with the optimistic battery life reported by Fitbit Surge [43], where only GPS is active, and
IMU, MCU, etc. are excluded. Fitbit reports at most 10 hrs of battery life, while we measure
Battery life of 7.8 hrs from our setup with GPS, IMU, and MCU all active, at an update rate of 1
Hz — a fair approximation of the Fitbit device’s reported value.

Prediction Model: We trained a predictor model that takes compass headings from the lightweight
IMU unit as input to predict the optimal GPS update rate within the given error tolerance, as shown
in Figure 3.5. If the predictor model has a low cross-validation error, the correlation is established.
The update rate is swept from 1Hz to 0.1Hz for each GPS route to generate the training data that
maps the update rate to the route error, defined by equation 3.4. The lowest update rate within the
given error threshold is selected to train the decision tree. We used a total of 200 real GPS routes
(100 train and 100 test), which are uploaded by users on Kaggle [41], to train our model. Decision
trees are trained for three error tolerance limits — 5%, 10%, and 20% — and the one in use is
invoked every second. Only prediction models with cross-validation errors within the empirically

determined threshold limit are accepted.

E(dmeasured - doriginal)t
Total_distance

Route_error = (3.4

Error feedback: Real-time error tracking is feasible, and it is based on the difference between
the distance calculated by GPS and the distance computed by the pedometer, using step count and

stride length. This error is fed into the decision tree to dynamically change the minimum update

38

0.5
5% Error m 10% Error W 20% Error

[

S 0.4

©

g § 0.3

g |I| 0.2

a 01

s ° [] I |

U O T e—
1 0.5 0.3 0.1 0

Randomness factor (f) (True Dataset)

Figure 3.6: Cross-validation errors of decision trees trained for the video camera over a range of error
tolerance limits.

rate (pointed by the start node) that it can support, which reduces the final output error as discussed
in Section 3.2.1. This closed-loop mechanism adapts the predictor model irrespective of the user

and terrain to limit the final output error.

3.4 Experimental Evaluation

3.4.1 Mountable Video Camera

Established Correlation: The K-fold cross-validation (k=10) method revealed that, for true
dataset, the cross-validation error is of the order of 0.01, as shown in Figure 3.6. For the rest
of the randomized datasets, wherein f represents a fraction of random data (f>0), the error is at
least 10x larger (> 0.1), and the error increases as the data diverges from the true dataset. For
the true dataset, Seesaw established a direct correlation between the frame rate of the camera and
the speedometer and motion vectors. The speedometer can be used to control the frame rate of
the video pipeline. During high-speed adventures like biking, rollerblading, or free-fall, the frame
rate should be high to capture all activities, but for regular activities, such as walking or diving, a
lower rate is acceptable. Another scenario that requires high frame rates occurs when objects are
moving rapidly around a still camera. Such a scenario is captured by motion vectors calculated
for the video compression task. Thus, this correlation, where the speedometer and motion vector
guide the frame rates at the camera, is used for the rest of the evaluation.

Frame Rate: Figure 3.7 shows the change in frame rates for 45 videos evaluated. The videos are

39

5% Error 10% Error @20% Error
35

30 @A ——O1-n0n——O0—— 2
” | —el % —0—* °
20

—

Average Frame Rate (fps)

15 & ..‘: w: PS
10 | ®qo% S PP, .
5 4 — : <
Low Medium High
0
0.176 0.186 0.196 0.206 0.216 0.226 0.236 0.246 0.256 0.266

Pixel Motion

Figure 3.7: Average frame rate across 45 videos for different error tolerance limits. Videos are sorted based
on their average pixel motion (12 low, 26 medium, and 7 high).

sorted by average pixel motion. As pixel motion increases, the delta between frames also increases,
indicating a rise in activity factor. Frame rates decrease as the error limit increases to accommodate
more errors. The average frame rate is 28fps, 26.4fps, and 23.4fps for decision trees trained at 5%,
10%, and 20% error tolerance, respectively. We also observe that the frame rate is lower,i.e., the
predictor can drop more frames, when pixel motion is small. Furthermore, there are fewer frame
drops (the frame rate is higher) for more dynamic videos to retain significant data intact.

Video Quality: Figure 3.8 shows the average VMAF error for each video for the three error
tolerance limits. Videos with high pixel motion have low errors, so no significant information is
lost. For slower and smoother videos with low pixel motion value, a larger error can be tolerated
since there is additional redundant information, the loss of which does not impact the quality of
the user’s experience. The average error is 4.9%, 7.7%, and 16.5% for 5%, 10%, and 20% error
tolerance, respectively. Thus, the average error is always within the error tolerance and increases
as the error tolerance increases.

User Study: We also relate these quantitative errors with our results from the user study to capture
human perception. The user study for carried out rigorously for 17 users. The goal of this user
study is to understand at what error tolerance limit humans can perceive a major difference with
the naked eye. We aim to find which of the three error tolerances—35%, 10%, and 20%—are ac-

ceptable. Average scores from the user study are listed in Table 3.4. The users had to assign scores

40

5% Error 10% error =e=20% error Average — — -

N
w

N
o

=G
Ui

VMAF Error (%)
o

~N

o P uN
©

0.176 0.186 0.196 0.206 0.216 0.226 0.236 0.246 0.256 0.266
Pixel Motion

Figure 3.8: VMAF video quality error measured across 45 videos.

between [-10, 10]. Users were not informed which version was the original video, what decision
tree error thresholds were used for different video versions, and sometimes videos were replicated
to eliminate bias. Thus, users did not always rate the original video as the highest quality. It can
be seen that all the average values are close to 0 and acceptable. For slow videos, the difference is
almost negligible since there is not much information loss by getting rid of redundant frames. In
fact, the value is positive for 10% & 20% error since it tends to create a smoothening effect. For
the medium pixel motion range, the average score decreases with a higher error tolerance limit.
Hence, users can see some small changes, but the overall quality is acceptable. For high pixel
motion with fast-moving objects, it is difficult for users to track what was intact and what was
lost; hence we see irregularities, but the absolute scores are very close to zero. Post-processing
methods such as video motion interpolation, which can be combined with video decompression at
the back-end, can also be applied to enhance the user experience; however, we did not explore this
option for our work. Hence from this study, we conclude that intelligently changing frame rates
has minimal impact on user perception. Thus, we can safely choose 20% error tolerance or more
as an acceptable error limit. It can be higher than 20%, but we did not explore the option in our
user study and left it as future work.

Energy Efficiency: The average increase in battery life is shown in Figure 3.9. Our energy model
accounts for the entire image sensing pipeline (analog and digital), video data transfer, speedometer

sensing/computation, and decision tree predictor. We show two baselines: one without sleep mode

41

Pixel Motion Original | 5% Error | 10% Error | 20% Error
Low pixel Motion 0.5 -0.25 0.25 0.062
Medium pixel Motion | 1.20 -0.23 -1 -1.2

High pixel Motion 0.5 -0.8 0.8 -0.2

Table 3.4: User study scores averaged across 45 videos for 17 unique users. All the average values are close
to 0 and acceptable.

0 I I I I I

Baseline w/o Baseline w/ 5% Model 10% Model 20% Model
sleep sleep

N W b

[EnY

Battery Life (hrs)

Figure 3.9: Average battery life of camera across error tolerance models.
on (Baseline w/o sleep), during which the processor is always on; and one with sleep mode on
(Baseline w/ sleep), during which the processor switches to sleep mode in between frames when it
is not being used for any computation. With sleep mode enabled, battery life improves by 18% at
30 fps. On using Seesaw, the battery life improves by 12.5%, 18.3%, and 31.5% for 5%, 10%, and
20% error tolerance, respectively, over a baseline with sleep mode. Savings improve as the error
limit increases because the predictor allows more errors and more frame drops. We also observe
that energy savings are higher for low-pixel motion or slow videos since the average frame rate is

low, and vice-versa.

5% Error m 10% Error W 20% Error
10
5
0 | - - —
1 0.5

0.3 0.1 0
(True Dataset)

Crossvalidation
Error

Randomness factor (f)

Figure 3.10: Cross-validation errors of decision trees trained for the fitness tracker.

42

[E=y
N

o —5% Error 10% Error ~ —20% Error
@ 10
(%]
~— 92 — =i DAl e AN T e
I s
S 74 A N
£ 53— _—
- 4
o
o 2
— — — Average
0

20 40 60 80 100 120
Mean Curvature

o

Figure 3.11: GPS update rates across 100 routes sorted based on their average curvature. The update rate is
measured as the time between two updates. In the baseline system, the GPS updates every second.

3.4.2 Fitness Trackers

Established Correlation: On applying K-fold (K=10) cross-validation method, we find that the
cross-validation error is ~10E-02 for the true dataset, as shown in Figure 3.10. For the rest of
the randomized datasets, where f represents the fraction of random data, the error is at least 10x
and, at most, 100 x higher than the true dataset. For the true dataset, Seesaw established a direct
correlation between the update rate of GPS and compass heading from the IMU sensor fusion
chip. Compass headings indicate a change in direction on the GPS route, which can be used to
control the update rate of GPS since the route or distance information does not change until a turn
is present on the GPS route. This correlation, in which the IMU compass heading guides the GPS
update rate, is used for the rest of the evaluation.

GPS Update Rate: Figure 3.11 shows the update rate across 100 testing routes. The routes are
sorted based on their average curvature, a measure of the irregularity of a route. Routes with lots of
twists and turns, e.g., hiking trails, will have a higher curvature as compared to routes with straight
paths, e.g., running across a paved city road. The average update rate is 5.3s, 7.4s, and 9.2s for our
5%, 10%, and 20% error tolerance model, increasing as the error tolerance increases.

Error: Figure 3.12 shows the maximum error across 100 routes with and without the error feed-
back mechanism. The maximum error with error feedback is 5.03%, 9.35%, and 17.16% for our

5%, 10%, and 20% error tolerance model, which increases to 17.44%, 23.12%, and 24.93% with-

43

5% Model m 10% Model m 20% Model
25

20

15
10
0 .

Max error w/o feedback Max error w/ feedback

Route Error (%)
()]

Figure 3.12: Fitness tracker maximum error across the routes with and without feedback mechanism.

M Baseline w/o sleep Baselinew/sleep ®W5% ®10% 20%

PO
£
E‘g 60
)
> 40
I3
o
o W m - m=EH
f=0.1 £=0.2 f=0.4 f=1

Figure 3.13: Fitness tracker battery savings across activity factors (f).

out the error feedback mechanism. For the closed-loop error feedback mechanism used by our
proposed approach, the decision tree changes dynamically to adapt to any route; thus, the maxi-
mum error is within the tolerance limit. For both, with and without error feedback, the average
error is 2.63%, 4.02%, and 5.34% for 5%, 10%, and 20% error tolerance, respectively. As ex-
pected, average error increases as error tolerance increases.
Energy efficiency: The average increase in battery life is shown in Figure 3.13. We report results
for different activity factors, which capture user active time, i.e., the fraction of time in which the
GPS is actively used. We show battery life savings for four activity factor (f) values: 0.1, 0.2, 0.4,
and 1. We also show two baselines: a baseline without sleep mode on (Baseline w/o sleep) and a
baseline with sleep mode on (Baseline w/ sleep). Here, Baseline w/ sleep also resembles work that
turns GPS on/off depending on some activity detection, which is represented by an activity factor
®.

On enabling sleep mode, the battery life increases by 7, 4.2x, and 2.3 x for activity factors (f)

0.1, 0.2, and 0.4 as compared to always-on mode. As the activity factor increases, this difference

44

reduces, and the two baselines become equal for f=1 when GPS is always actively used by the
consumer. With Seesaw, we observe that even with the smallest activity factor of 0.1, battery life
improves by 39%, 45%, and 49% for 5%, 10%, and 20% error tolerance, respectively, w.r.t. the
baseline w/ sleep mode enabled. For a maximum activity factor of 1, battery savings shoot up to
66%, 79%, and 88% for 5%, 10%, and 20% error tolerance, respectively. Our savings increase
as the activity factor increases since more GPS activity means more opportunities to optimize.
Savings also increase as we tolerate more error since the average update interval increases, allowing

the processor to sleep longer.

3.4.3 Prediction Model Overhead

To estimate the energy overhead of the decision tree, we run the model on an ARM M4 controller
[36]. The average decision tree power for the two use cases—mountable video capture and fitness
trackers—is shown in Table 3.5. It is insignificant: 0.210uW and 0.610pW for the fitness tracker
and video capture, respectively, which amounts to 0.1% of the power consumption of the other
components in these devices. Note the prediction model is invoked every second and runs for
1.043us for the fitness tracker and 2.83us for video capture. The decision trees have, in total,
17 nodes for the fitness tracker and 19 nodes for the video capture. The two decision trees take
60 kB of 1024 kB and 20 kB of 256 kB available flash and RAM, respectively. This is only
7% of available memory, and thus Seesaw can be scaled to accommodate more decision trees
generated for different applications. Decision trees are used because they are lightweight and
perform reasonably well. We also did an evaluation with a Support Vector Machine (SVM) as
the predictor to observe the trade-off between accuracy and predictor overheads. Using SVM with
Gaussian kernel, we found that the power overheads increased to 849 W and 73 ;W for the fitness
tracker and video capture, respectively, which is >100x larger than overheads of the decision tree.
Moreover, we did not find any improvement in accuracy with SVM. The SVM model resulted in

the same application error as found with the decision tree but at a higher power overhead of SVM.

45

Decision Tree | SVM
Fitness Tracker | 0.211 uW 849 uW
Video Camera | 0.610 uW 73 uW

Table 3.5: Power overhead of decision tree and SVM.

3.5 Conclusion

In this work, we leveraged the relationship among sensors with diverse power profiles to increase
the battery life of edge devices. We presented Seesaw, an end-to-end machine learning-based so-
lution that used a low-overhead decision tree model to automatically identify correlations between
high-power and low-power sensors. Specifically, Seesaw explored whether a low-power sensor
can determine the impact on output accuracy by the data being processed at the high-power sen-
sor. Upon establishing a correlation, it used a decision-tree predictor that, based on low-power
sensor outputs, predicted the best sampling rate for the high-power sensor within a given error
tolerance. We assessed the benefits of Seesaw for two case studies: (1) video recording on a
mountable video camera, like the GoPro, and (2) route tracking on fitness trackers, like the FitBit
Surge. We showed that the established correlations improve battery life for the mountable camera
and the fitness tracker by 32% and 66%, respectively, without any significant accuracy loss. In this
chapter, we leveraged humans’ implicit discerning capabilities to tailor the application for each
user to improve the battery life of personal IoT/edge devices. In the next chapter, we will lever-
age users’ explicit preferences/choices to optimize the emerging machine learning-based computer

vision application for the underlying hardware to improve the consumer experience.

46

CHAPTER 4

User-Driven Lightweight Machine Learning for

Edge Devices

In the last chapter, we presented a technique to tailor the input sensing rate of applications based
on users’ implicit sensing capabilities. In this chapter, we leverage user preferences to tailor the
application kernel to individual users on their personal edge devices. We broaden our application
set to include emerging machine learning-based image/video recognition tasks, which is the most
popular use-case of machine learning in computer vision, to attain our goal of enhancing the user
experience on edge devices.

Machine learning on resource-constrained edge devices with multi-core ARM CPUs is compu-
tationally expensive and often requires offloading computation to the cloud. However, the type of
data processed at edge devices is user-specific and limited to a few inference classes. In this work,
we find an opportunity to build smaller, user-specific machine learning models based on user pref-
erences rather than utilizing a generic, compute-intensive machine learning model that caters to
a diverse range of users. Based on this insight, in this chapter, we present MyML, a hardware-
software approach to make machine learning on edge devices more feasible. We leverage transfer
learning [228] to create small, user-specific models based on user preferences instead of default-
ing to the complex original model. Transfer learning is an approach to learning models for a new
domain by re-training the currently available models with new domain inputs. We draw upon this
insight to build small user-specific models by simultaneously pruning and re-training the current

original model locally at the user device in an efficient way, feasible for resource-constrained edge

47

devices.

For MyML, We first developed a hardware-cognizant software solution to create user-specific
models without sending user data to the cloud. We propose a hardware-friendly, bottom-up pruning
scheme, which utilizes the unique opportunity of simultaneous inference and pruning to share com-
putation between the two. In bottom-up pruning, we prune one layer (or group of layers) at a time
and start pruning from the last layers of the model, moving up to the top layers. Bottom-up pruning
utilizes a structured pruning approach to achieve high training efficiency on edge CPU and edge
accelerator platforms. This work explores two kinds of structured channel pruning, symmetric and
asymmetric pruning, that have different trade-offs between pruning rates and pruning granularity.
Symmetric pruning works at coarse pruning granularity, leading to a lower pruning rate, but it does
not need a fine-control mechanism and the related overhead. On the other hand, asymmetric prun-
ing prunes at a finer granularity, thus, yielding a high pruning rate. However, asymmetric pruning
requires a sophisticated bookkeeping control mechanism for fine-grained computing, which has a
small overhead. Based on the properties of the underlying hardware, we show that Edge accelerator
platforms, like Edge TPU [12] with the 2D systolic array, can support symmetric pruning. In con-
trast, asymmetric pruning can be enabled at edge CPU-only platforms, supporting a fine-grained
bookkeeping control mechanism.

We show that, for the widely accepted Resnet-50 model, our user-specific model for five user
classes is 4.3 x smaller and has comparable accuracy (<1% accuracy drop) to the original ML
model while speeding up inference by 2.9 x. For the more complex Inception-V3 model, our user-
specific model for five user classes is 4.7 x smaller and has comparable accuracy (<1% accuracy
drop) to the original ML model while speeding up inference by 2.3x. Our first sensitivity study
is for per-layer pruning and learning rates. We show that the bottom-most group of layers is the
major contributor to the model size and has the highest pruning rates of 78%. The pruning rates
gradually drop as we move to the top layers while stabilizing the accuracy. On the learning rate
front, the bottom layers have higher learning rates to facilitate initial fast learning. The learning

rates then drop slowly for the top layers for a stable and accurate model. The second sensitivity

48

study on training batch size, which determines the size of the dataset required to train a model,
gives an optimal batch size of 8 with the best trade-off between dataset size, accuracy, and model
size. The largest batch size of 64 with a much larger dataset did not offer significant benefits in
model size and accuracy. Our last sensitivity study, where we increase the number of user classes,
shows that our approach is scalable to a wider set of user classes representing an expansion of user
preferences, resulting in a model reduction of 3.2x for 40 classes. Furthermore, our bottom-up
pruning technique can converge to a user-specific model by processing 200 images per class at a
pruning/training throughput of 2.94 images/sec and 2.56 images/sec for ResNet-50 and Inception-
V3, respectively, on the octa-core Snapdragon mobile SoC.

Further, we develop a collaborative system that computes ML inferences at the edge using the
user-specific model and tracks changes in user preferences based on prediction probability and
entropy over probability distribution. Based on the estimated divergence in user preferences, it
determines when to discard the current user-specific model and bring back the original model to
restart a new user-specific model building process. Since all the computation — inference, tracking,
building models — is carried out locally at the edge device, our proposed system ensures user
privacy.

Finally, we propose architectural support to build user-specific models on heterogeneous edge
devices comprising general-purpose CPUs and edge ML accelerators by enabling pruning on ac-
celerators designed to support just the inference. We re-purpose Edge TPU, which computes in-
ference in int8 precision, to also support the backward pass of the pruning phase in block floating
point (BFP16) precision. We show that, by using bottom-up pruning and BFP16 precision, for the
Resnet-50 model, we can reduce the model size by 2.6 x and have accuracy comparable (<1%
accuracy drop) to the original model while speeding up inference by 1.5x. Furthermore, for the
Inception-V3 model, we can reduce the model size by 2.2x and have accuracy comparable (<1%
accuracy drop) to the original model while speeding up inference by 2.25 x. Moreover, the bottom-
up pruning technique gives a pruning/training throughput of 10 images/sec and 7.54 images/sec for

ResNet-50 and Inception-V3, respectively, on the re-purposed Edge TPU.

49

4.1 Background & Motivation

Machine learning (ML) has revolutionized technology in the past decade. It offers a wide range of
applications, e.g., computer vision [203], video recognition [202], and autonomous driving [158].
Machine learning is also used to design intelligent communication systems [116] that analyze com-
plex scenarios in communication systems and make optimal predictions to obtain high Quality of
service (QoS). For example, prior works [104, 194, 135] use a deep learning-based approach for
MIMO detection. Furthermore, prior works [224, 161] have proposed deep learning solutions
for the complex task of channel estimation. As a result of its increasing popularity, researchers
have studied ML extensively for various computing platforms, including CPU [86, 230], GPU
[230, 113, 218], and FPGA [84, 99, 193]. Its memory and compute-intensive nature have also
led to the development of specialized architectures, including TPU [126], NPU [20], and several
ML accelerators [209, 181, 68]. Recently, machine learning has emerged as a leading technique
for improving the ways humans interact with machines. A few examples are voice recognition by
IoT devices like Alexa/ Google Home, face recognition by smart cameras, and recommendation
systems [174] for online shopping, personalized news feeds, and many more. Furthermore, many
frequently used smartphone applications, like Facebook, Gallery/Photos, Instagram, Netflix, and
so on, rely heavily on machine learning.

Despite its ubiquitous presence, machine learning is still one of the most latency-sensitive and
energy-intensive applications for small, resource-constrained IoT/edge devices. IoT or edge de-
vices are usually powered by tiny ARM cores or microcontrollers, which work along with a few
specialized compute IP blocks or accelerators. Due to the limited compute capacity of edge de-
vices, there is a wide gap between the performance of ML applications on edge platforms and
server or desktop platforms. For instance, as shown in Figure 4.1, there is a wide gap between the
execution time of large and accurate cloud ML models, like the Inception-V3 and Resnet-50, and
small, but less accurate, edge-device friendly ML models, like Mobilenet and Shufflenet. Apart
from performance, the compute and memory-intensive nature of ML applications also make them

energy intensive, thereby reducing the battery life of edge platforms. Unlike servers or desktops

50

that are always plugged into a power source, lithium-ion batteries power edge platforms. The small
form factor of edge devices limits battery size and charge capacity. Furthermore, the portable and
seldom remote nature of edge devices precludes their frequent charging. Hence, ideally, edge de-
vices should be able to compute high-precision machine learning cloud models at the speed of
edge models and consume minimal energy.

Today, to compute these large and accurate models, edge devices follow the common practice of
offloading incoming machine learning requests to the cloud/back-end server. But such back-and-
forth communication with the cloud raises additional issues. First, communicating to cloud servers
requires fast and reliable internet connectivity, which can be a constraint in remote places. Second,
transferring to the cloud leads to additional transmission latency and energy, which can impact
overall performance and energy efficiency. Moreover, depending on the network traffic and avail-
able bandwidth, the transmission latency can result in a violation of the tight latency requirements
of many popular machine learning-based applications. Third, and most important, offloading to
a back-end server requires users to share their personal data with a back-end commodity server,
leading to privacy and data-breach concerns. With the increasing frequency of cyber-attacks, shar-
ing user data about every single activity may lead to harmful implications. For example, user data
can be exploited to study the habits or daily routines of users, which can then be manipulated by
malicious parties. All of the above concerns make it challenging to offload computation to the
cloud reliably.

In order to address the above concerns, emerging techniques move computation closer to the
edge/user device by computing either on edge servers or on edge devices. For example, [51]
proposes a distributed solution based on game theory techniques to optimally offload partial com-
putation to the multi-access edge servers in a risk-aware fashion. While an edge server-based
distributed solution, like the above work, reduces the overhead and risk of cloud computing, com-
puting entirely on edge devices completely eliminates those concerns. Hence, there have been
significant efforts in pushing machine learning to edge devices [241, 61, 204]. One such emerging

technique is Federated learning [60, 142], which endorses computation of all machine learning-

51

Model Size (MB) #-Accuracy (%)

25 Edge/Mobile Models | Cloud Models 20
\
‘ —
@ 20 | &S
\
2 |)
o 15 ‘ ©
& | 70 D
bl | o
o 10 } <
E | z
= | 3
5 [o
! =
\
0 T 0
12 19 35 156 351
Shuffenet-V1 Mobilenet-V2 Mobilenet-V1 ResNet-50 Inception-V3

Execution Time (ms)
Figure 4.1: Comparison of accuracy, model size, and execution time across various edge and cloud
ML models for ImageNet dataset.
related operations (ML inference and ML training) locally at the user device to eliminate privacy
concerns related to sending user data back to the cloud. It trains the model at the edge and shares
model updates (instead of raw data) with the back-end cloud. Federated learning enables privacy-
preserving continuous training across many users but builds a generic model.

Another closely related work is transfer learning [228], a technique to learn models for new or
smaller domains from already available trained models. It utilizes the top layers as it is from avail-
able trained models for the new domain and fine-tunes the remaining layer for the new dataset.
Fixynn [219] is a transfer learning-based approach that builds multiple models for different do-
mains/datasets via transfer learning by keeping the feature extraction layers constant and learning
only the remaining layers. Our work is inspired by these efforts to keep all the ML computations
local to the user device and build new models via transfer learning. We leverage the user interac-
tion with the device to learn user preferences without sharing any data with other devices or the
cloud. We then use this knowledge to make ML lightweight and more amenable to edge devices.

To address these challenges, in this work, we present MyML, a hardware-software solution that

makes computationally intensive and accurate machine learning feasible at edge devices.

52

Three phase process
¢ Pruning background

. . * Bottom-up prunin
* Tracking mechanism ——> Y g —> « Collaborative edge system

¢ Pruning granularity

* Pruning on edge
accelerator

Learning Phase Pruning Phase Inference Phase
To learn user-preferences Prune original model to built user model Deploy user model in real-time

Figure 4.2: Our three-phase end-to-end process to learn user preferences, build user-specific model,
and deploy it in real-time.

4.2 MyML Overview

Usually, machine learning models are built to serve numerous users with diverse choices and pref-
erences; however, individual users have limited preferences. In this work, we explore the possibil-
ity of creating small, user-specific models according to user preferences rather than resorting to a
larger generalized model for all users. We create such user-specific models based on the transfer

learning method and avail user classes as a dimension to prune big ML models.

4.3 Building the User Model

As also shown in Figure 4.2, we employ a three-phase process to create and run a user-specific
model as follows:

Learning Phase: In this phase, we use a tracking mechanism to learn user preferences based
on the output of the original model. The tracking mechanism identifies the most frequent cate-
gories/classes in the first batch of input, termed as learning window, as user classes. The number
of user classes depends on the number of categories with which the user frequently interacts. If
any category contributes to more than x% of total inputs in the learning window, we consider it a
user class. Our experiments have a tunable learning window of 50-100 images with an adjustable
value of x. Therefore, for x of 15%, each category must appear at least 7-8 times among the total

of 50 input trials. We also show a sensitivity study for increasing the number of user classes.

53

We have a naive learning phase, where we mark any category appearing more than x% (tunable
parameter) in the learning window as a user class. We assume the non-frequent classes are one-time
outliers. This approach can be modified to include any category encountered during the learning
phase. Another possible approach is to utilize our thresholding mechanism from the collaborative
edge system, discussed in a later section, to send the outliers back to the cloud server.

Pruning Phase: Pruning is defined as re-training of the current model with pruned weight set to
zero. During the pruning phase, we use the incoming inputs to prune and re-train the original model
to create a user-specific model for user classes learned during the first phase. We prune a block of
layers for one epoch to optimize for training cycles. We use the output of the original model as
ground truth for pruning. The goal is to build a user-specific model that has accuracy within 1%
relative to the original model. Note that incoming inputs that do not belong to the classes identified
during the learning phase are discarded and not used for pruning.

Inference Phase: After the pruning phase is complete and all layers are pruned, we switch the
current working model at the edge device to the newly generated user-specific model. The pruning
phase is a one-time process. Once the user-specific model is ready, inference can run efficiently
without compromising accuracy until user data deviates from the current learned user classes.
We discuss the process applied when user data begins to deviate from the learned preferences in

Section 4.3.3.

4.3.1 Pruning Background

Building a user-specific model is a one-time yet expensive process. It requires pruning and weight
updates of the original model for learned user classes, which are time and resource-consuming
processes. Pruning is essentially re-training of the model with pruned weight set to zero value. It
consists of two passes — forward pass and a backward pass. The forward pass is computationally
the same as inference and is used to calculate the error between the output prediction of the current
pruned model and ground truth. This final error, along with output activation for each layer, is

utilized during the backward pass. The backward pass itself has two steps — error propagation and

54

weight update. In error propagation, the final error calculated during the forward pass is propagated
back to individual layers to get error contributions from each layer. This per-layer error, along with
per-layer output activation stored during the forward pass, is used to find weight updates for each
layer. The above-explained pruning mechanism involves compute-intensive and memory-intensive
2D and 3D convolutions, which makes it heavy for resource-constrained edge platforms.

The goal of this work is to build user-specific models locally at edge devices in order to preserve
user privacy. To achieve this goal, we strive to make the complete pruning process lightweight by
making the forward and backward pass less intensive. The first step is to use layer-wise pruning,
where we prune/re-train one layer at one point in time while keeping the rest of the layers constant.
The intuition behind layer-wise pruning is to share compute for the constant layers between the
inference pass of the original model, currently serving incoming user requests, and the forward
pass of the pruning model. Within layer-wise pruning, we explore two flavors of pruning — top-
bottom pruning and bottom-up pruning.

In top-bottom layer-wise pruning, we start pruning from the top or first layers and iteratively
move down to prune the bottom layers. In this approach, when, say, layer 1 is being pruned, the
remainder of the bottom layers will be the same and can be shared with the original model. How-
ever, since the original model and the pruning model start diverging at the pruned layers, there will
be two sets of incoming inputs to the shared layers — one input coming from the unpruned/original
model top layers and the other input coming from pruned model top layers. We explore the possi-
bility of using the difference (or delta) between the two sets of inputs to reduce compute. If there
are a large number of zeros in the delta/difference, there can be a significant amount of compute
sharing between the original model and the pruning model. However, contrary to our expecta-
tions, we did not find a significant fraction of zeroes in the delta. Hence, we did not pursue the

top-bottom pruning approach further.

4.3.2 Bottom-up Pruning

The bottom-up pruning is inspired by the transfer learning [228] technique, where to learn new

55

Bottom-up Pruning

Shared ‘ Original Layer 1 ‘
Layers v
‘ Original Layer n-1 ‘
(\Ge '0/’(/
§esS 2Up,
‘ Original Layer n ‘ ‘ Pruning Layer n
!
i ! Retrain/
Original Layer /ast | Pruned Layer /ast Update weights
1 Layer n:last
| Inferred Label | [Pruned Model Logits

Output Igrediction

Figure 4.3: Bottom-up pruning shares compute for inference and pruning path until layer n — 1. It
diverges at the current pruning layer n and updates weights for layers n to last.

models in a different domain, the knowledge is transferred from an already learned model. The top
layers of the available model are transferred as is to the new model, and the bottom layers, specific
to the new domain, are trained from scratch. Deriving from this insight, in this work, we propose
bottom-up layer-wise pruning. Here, instead of learning the bottom layers from scratch, we start
pruning from the bottom-most layer and move up to prune the top layers in an iterative fashion.
When a layer is being pruned, all the layers above it are kept the same as the original model layers
and can share compute with it. Since the original model and pruning model start diverging at the
current pruning layer; there is no input mismatch until this pruning layer. This property makes it
easier to share compute between the original model and the pruning model. Therefore, in this work,
we opt for the hardware-friendly, bottom-up pruning technique to reduce computation related to
building the user-specific model. The bottom-up pruning mechanism reduces the computation

required for the forward and backward pass of the pruning process, as discussed in detail below.

4.3.2.1 Compute Sharing between Inference and Forward Pass:

Since MyML carries out all the computation locally at the user device, it presents a unique oppor-

tunity of reusing inference computation for the forward pass of the pruning process. In bottom-up

56

pruning, we perform layer-wise pruning starting from the last layer, as shown in Figure 4.3. While
layer n is being pruned, all layers up to layer n — 1 are frozen and identical to the original model.
Hence, both inference and pruning paths can share the computation carried out until layer n — 1.
Starting from layer n, the inference path (to the left) will continue processing the original model
to predict user output, while the pruning path (to the right) computes the remaining portion of the
forward pass of the pruning process separately. Thus, only the current pruning layer n, and the lay-
ers below it, require separate processing during the forward pass. The pruning path calculates the
error/loss based on logits (output of the last fully connected layer) produced by the pruned model
and inference from the original model, which acts as the ground truth. This error is then used to
compute weight updates for layers n to last. Note that we only have inference results from the
original model available in real-time; hence, we use it as ground truth for the pruning phase. This
methodology still achieves an accuracy within 1% of the original model for a dataset belonging to

the user classes only.

4.3.2.2 Reduced Backward Pass:

The backward pass of pruning is a combination of 3D and 2D convolution for error-propagation
and weight updates, respectively [164]. Bottom-up pruning provides the opportunity to reduce the
number of weight updates and computations for the backward pass. The proposed scheme freezes
all the layers until layer n — 1. Thus, we do not require weight updates for layers 1 to n — 1. Weight
updates are needed only for the current pruning layer n and beyond, reducing overall pruning time.
Furthermore, since we are progressively pruning layer by layer, when pruning layer n, all the layers
> n will have already been pruned and left with just unpruned channels/weights. Thus, the layers
n + 1 to layer [ast require weight updates for fewer channels, further reducing computation time
as we progressively prune layers in a bottom-up fashion. A significant advantage of the bottom-up
pruning technique is that we are able to keep to the original model (and its accuracy benefits) while
reusing the compute for top layers for the pruning process. Once all the layers up to the first layer

are pruned, we replace the original model with the user model.

57

Bottom-up pruning complexity: The proposed framework has an additional pruning path to train
the user-specific model. This comes with the added complexity of forward pass and backward pass.
As discussed before, the backward pass of a convolution layer is comprised of 3D convolution for
error propagation & 2D convolution for weight update, both of which are based on matrix-matrix
multiplication kernel. Furthermore, the forward pass, which is computationally similar to infer-
ence, consists of matrix-matrix multiplication-based 3D convolution for each layer. The matrix-
matrix multiplication has a worst-case computational complexity of O(n?®). The pruning path adds
3 matrix multiplication kernels corresponding to forward and backward pass to update weights of
each convolution layer; thus, it increases the complexity linearly by 3 times, i.e., 3*O(n?). Equa-
tions 4.1 and 4.2 show the computational complexity of pruning and inference paths. For equation
4.1, the number of updates varies for each layer, i.e., the bottom layers, which are pruned first,
will have more number of updates and will decrease as we move to top layers, which are pruned

towards the end.

top

Total _complexity_pruning_path = Z num_updates_lyr_i (3 O(n?)) 4.1)
i=bottom
Total _complexity_inference_path = total_num_layer x (O(n*)) 4.2)

4.3.3 Collaborative Edge System

Once the user-specific model is constructed during the pruning phase, using bottom-up pruning and
the appropriate pruning granularity, we replace the original model with the user model and enter
the inference phase. However, the user can still switch or change preferences with time. If the
user-specific model trained for previous user preferences is utilized for new preferences/choices, it
will lead to severe accuracy degradation. Hence, there is a need for a mechanism to detect a switch

in user preferences. Therefore, for the inference phase, we develop a collaborative edge system to

58

Pruned Tracking Unit
User-Specific Model r—————=—=—=-—=—=-—=-=-c-=---

#images
estimated outside
user classes <
thresh

! Yes Keep user
Model

Prediction:‘
I

Iy
r T TT T T T T T T r--""
I
I
I

Replace user-specific
model with original
model

Big original Model

Figure 4.4: Collaborative edge system with a tracking unit that checks for divergence in user preferences by
counting the number of predictions belonging to user classes.

find a deviation in user preferences with a tracking unit, as shown in Figure 4.4. In this adaptive
system, we use the newly created user-specific model to classify incoming inputs and a tracking
unit to count both the number of inputs classified within user classes and the number of inputs
classified outside of user classes. If the tracking unit classifies the majority of inputs as outside of
user classes, we conclude that user preferences have changed and restart the user model building
process. Since the user-specific model is biased to predict one of the user classes, we cannot
directly use the predictions to determine if the incoming input is within or outside of user classes.
Instead, we use the probability of the predicted user class and entropy of the probability distribution
over all the user classes as the metric to tag the input to a user class or out-of-user class. The
output probability is high, and entropy is low for inputs belonging to the user classes. In contrast,
the output probability is low, and entropy is high (implying the model has low confidence) for
inputs belonging to out-of-user classes. Any input with an output probability less than a threshold
and entropy higher than an empirically determined threshold is marked as belonging to an out-of-
user class. For a running window of 50 images, if more than 70% of images are estimated to be

outside learned user classes, we infer that user preferences have changed and discard the current

59

user-specific model. We then restore the original model and restart the learning phase of the user
model creation process to identify new user preferences. We assume the large original unpruned
model to be stored in flash (or DRAM) and fetched from there on being summoned by the CPU
for the classification task.

The threshold selection for output probability and entropy is guided by the statistical definition
of the parameters. For the output prediction probability, the threshold should be at least 50% to
claim that the input was confidently predicted. Thus, to make our adaptive system more robust,
we chose a slightly higher value of 60% (or 0.6). Furthermore, for the entropy threshold, we first
determined the maximum entropy. The maximum entropy of the prediction probability distribution
is when all the classes have an equal probability of prediction. For a model built for 5 user classes,
the equal probability is 1/5 (0.2), which upon plugging into the entropy equation, (> -plog(p)),
gives the max entropy value of 2.32. To further reinforce model confidence and robustness for our
collaborative system, we set the entropy threshold to 1.5, which is less than half of the maximum

value.

4.4 Pruning Granularity

Our pruning techniques are guided by the underlying hardware computation granularity. For ex-
ample, a CPU with a SIMD width of 16 slots can compute and prune at the finest granularity of 16
continuous operations in parallel. If a few of the operations, say slots 8 and 10, are zeroed during
pruning, we cannot skip the two operations and get performance benefits since the CPU computes
those 16 slots together in parallel. The CPU can skip computations if all 16 operations are zeroed
out during pruning. Thus, to utilize the parallelism provided by the compute engine, for example,
the SIMD width of the CPU, we have to map only non-zero contiguous operations to each block
of compute. Hence, in this work, to create pruned user-specific models, we explore two kinds
of structured pruning techniques — symmetric channel pruning and asymmetric channel pruning.

Since channel pruning zeroes out all continuous weights in a pruned channel, we can skip com-

60

: Mo .
= Filters “E
<~ Fn1

k " Output, ,
Rt -

« >
Sn-’I
Convolution layer n-1 Convolution layer n

Figure 4.5: Symmetric Channel Pruning: As a result of pruning the same channel IDs across all
filters in layer n, the corresponding (red) filter in layer n — 1 is pruned completely. All channels
and connections shown in red are pruned.

putations for all weights of the channel altogether to improve performance and energy efficiency.
Furthermore, prior work has shown that classic sparse formats can lead to performance loss for
pruned weight matrices [230]. Our choice of an entire channel (2D filter) as a pruning granularity

allows us to retain the dense format for inference computation, even with pruned weight matrices.

4.4.1 Symmetric Pruning

In symmetric channel pruning, the same channel IDs are pruned across all the 3D filters in a given
layer, which is a more constrained approach illustrated in Figure 4.5. Channel IDs with the lowest
L2 norm values, summed across all the filters, are pruned (shown in red) in layer n. This step
further leads to the pruning of filters in the previous layer n — 1, corresponding to channel IDs
pruned in the current layer n. Symmetric pruning changes the existing dense convolution layers
structure to another dense convolution layer structure; hence it does not require any bookkeeping
mechanism for convolution layers to store which channels were pruned. The removal of filters in
layer n — 1 removes the corresponding output channel and the input channel for the subsequent

layer n. Therefore, in layer n, only input channels corresponding to unpruned filter channels are

61

Convolution layer n

Figure 4.6: Asymmetric Channel Pruning: Channels are pruned independently with no restrictions.
More channels are pruned with this approach because of its flexible nature. All channels and
connections shown in red are pruned.

present. Thus, we do not need to store any extra channel information for the convolution operation
to map input channels correctly to the remaining filter channels. Note that for identity mapping
in residual networks like ResNet, we need to store unpruned channel indexes to gather unpruned
channels and drop the pruned channels in the identity path for the final addition operation of the

identity branch and the parallel running convolution branch.

4.4.2 Asymmetric Pruning

In asymmetric pruning, we prune individual channel IDs with the least L2 norm values, across all
the filters, with no restriction to choose the same channel IDs across filters, as shown in Figure
4.6. This makes the approach more flexible and boosts the potential for increasing the pruning
rate. Asymmetric pruning maintains the current dense model structure with only unpruned channel
weights but requires a bookkeeping mechanism to store only unpruned channels in a dense format.
Bookkeeping:

The purpose of the bookkeeping mechanism is to store only non-zero channels and map them cor-
rectly to their corresponding input channels. Each filter of the convolution layer requires different
input channels. For instance, in Figure 4.6, the first channel for the top filter is pruned; thus, only

the last two channels need their corresponding input channels. Similarly, the last two channels are

62

pruned for the bottom filter; thus, it requires only the first input channel for computation. Due to
this asymmetric behavior, we store all the input channels in dense format. However, we need to
map non-zero channels in each filter to their corresponding input channels. We achieve this through
the bookkeeping mechanism, where we only store non-zero filter/weight channels in a contiguous
manner, along with some meta-data. To map weight/filters channels to their corresponding input
channels, we store a channel mask offset, the number of non-zero channels [nnz] per filter, and
the difference pointer {diff} between consecutive non-zero channels to point to the correct input
channel.

Convolution is a matrix multiplication operation between flattened 2D input and flattened 2D
weights. Each row of the input activation matrix is one input window from the Image-to-column
(Im2Col) operation, which is multiplied by different filters represented by columns of the weight
matrix. We show a small working example in Figure 4.7. The input pointer starts with channel
mask offset (in orange) to compute the first channel and then uses the stored difference pointer
{diff} (in blue) to move to the next non-zero channel. For instance, to skip pruned channels and
move to the next non-zero channel, we store a diff pointer value of {+3}. We simultaneously
keep a counter of the number of non-zero channels computed/visited. When the counter is equal
to the store number of non-zero channels (nnz) value for the filter, it indicates that no more non-
zero channels are present in the filter. We use this as an indicator to perform the accumulation or
aggregation operation across all the filter channels. In Figure 4.7, for filter F1, we do aggregation
when the counter becomes equal to nnz value of 2 after computing the two non-zero channels
of the filter. To move to the first non-zero channel for the next filter, F2, we reset the counter
and accumulator and then simply use the diff pointer {-2} to move to the correct location. This
approach incurs a small overhead for storing meta-data of the mask offset, difference pointer, and
the number of non-zero channels. However, this overhead corresponds to merely 24KB per layer

for our pruning rates.

63

Step1l Channel mask Channel mask {diff pointer}

Filters
offset
offset m FL _F2 F3 4

Input window 1

{+3}

Input window 6

Input window 1

{-2} /’
_

Input window 6

Input Activation Matrix Weight Matrix
(Complete matrix is stored) (Only grey (non-zero) channels are stored)

Figure 4.7: Bookkeeping mechanism with channel mask offset, difference point {diff}, and the number of
non-zero channels [nnz].

4.4.3 Which pruning granularity to use

The choice of pruning granularity depends on the user platform on which the machine learning
inference will be computed. Mobile platforms with only multi-core CPUs or mobile apps that
prefer to run machine learning on CPUs [221] should opt for asymmetric pruning because CPUs
can control and compute at a finer granularity, such as SIMD width. CPUs can efficiently handle
the bookkeeping mechanism required to support asymmetric pruning and thus benefit from high
pruning rates. However, edge accelerators that map machine learning computation to dense 2D
systolic arrays do not have the capability to control or skip computations at fine granularity. Thus,
such systolic-array-based edge accelerators can take advantage of symmetric pruning, which does

not require any bookkeeping, while still availing themselves of the benefits of pruning.

4.5 Pruning on Edge Accelerator

Edge accelerators or neural engines for machine learning-related tasks have become an integral part

of most of the state-of-the-art mobile SoC platforms [20, 31]. In such a heterogeneous CPU-edge

64

1-bit sign 23-bit mantissa 8-bit exponent

Figure 4.8: FP32 precision: 1-bit sign, 23-bit mantissa, & 8-bit exponent for each element.

1-bit sign 7-bit rnantissa
| " |
[A 8-bit exponent
1 p
A [|
soc, x T T T 1]
single exponent shared by
elements of a block
A

Figure 4.9: Block floating point (BFP16) precision: 1-bit sign and 7-bit mantissa for each element.
8-bit shared exponent across all the elements in a block.

accelerator system, general-purpose CPU cores offload the incoming ML inference requests to
neural engines for faster and more energy-efficient computations. Unlike multi-core CPUs, where
the parallelism is limited by supported SIMD width (in order of 10s), edge accelerators provide a
high level of parallelism with hundreds of compute units working in parallel to produce the final
output. Therefore, in MyML, we also propose architectural techniques to enable the pruning phase
on a heterogeneous CPU-edge accelerator system. In this work, we use an accelerator modeled
after Google’s Edge TPU [12].

Edge TPU is a systolic array-based ML inference accelerator that supports processing elements
(PEs) with an 8-bit multiply-accumulate (MAC) operation. It is used to compute the General Ma-
trix Multiplication (GEMM) kernel that forms the backbone of ML inference and training. For an
N x N systolic array, each column computes N MAC operations in parallel to produce an output
activation. Thus, in one cycle, NV output activations (one from each column) are computed in par-
allel. Moreover, EdgeTPU has streamlined data-flow where the read/write latency of input/output
is hidden by MAC computation with only one-time weight-loading latency visible. Hence, Edge

TPU outperforms a multi-core SoC with ARM ISA cores [13], which does not have pipelining or

65

overlapping and also has general-purpose instruction processing overheads. Edge accelerators are
designed to support only inference in int8 precision due to power and area constraints. However,
the backward pass of the training process needs floating-point precision to compute weight updates.
Supporting a dedicated accelerator for floating-point is expensive in terms of area/power. It is also
not justified for short pruning periods since the majority of the time is spent on inferences. Hence,
to make our solution practical for edge platforms with an inference accelerator, we re-purpose an
int8 edge accelerator to enable the higher precision needed for pruning. The re-purposing tech-
nique proposed in this work can have a broader scope and be used for Cloud TPU or other systolic

array-based ML compute engines.

4.5.1 Repurposed Edge TPU

In order to re-purpose the int8 precision edge accelerator for pruning, we want to leverage the
int8 computation done at Edge TPU and append it with some lightweight computation done at the
CPU. Therefore, we propose using Block Floating Point (BFP) [84] as an alternative to the FP32
floating-point format to compute the backward pass on Edge TPU. For FP32 representation, each
element has a dedicated sign, mantissa, and exponent bits, as shown in Figure 4.8. In contrast,
for BFP representation, each block/vector shares the same exponent across all the elements, while
each element in a block has an individual mantissa, as shown in Figure 4.9. The dot product of any
two BFP blocks is shown in Equation 4.4 where m,, m; are mantissa bits and e?, e® are exponents
for the Block, and Block,. The dot product of the two blocks is the dot product of the mantissa
bits, while the exponents can simply be added to get the exponent for the final dot product. In
MyML, Edge TPU is used to compute the dot product of the mantissa bits of weights and input
activation, while the host CPU appends the BFP output from the Edge TPU with the sum of the
exponent bits. Thus, the BFP format maps well to Edge TPU because the computation related
to shared exponents can be processed at the CPU, and the computation for mantissa bits can be
completed separately at Edge TPU. We use the BFP16 floating-point format, which has an 8-bit

signed mantissa and 8-bit exponent. The 8-bit signed mantissa can be mapped directly on an Edge

66

TPU architecture, supporting 8-bit fixed point MAC PEs.

©
— = I
= IR

] i=n

Q.

Int8
BFP16
8b’ mantissa

Blocky = {ma,,..ma,} x e* Blocky = {my,,..my, } x €’ 4.3)
n
Block,, - Block, = (Z Mg, Mp;) X ettt 4.4)
i=1
o BFP16Wgts o !
,: wo; * eW0 Jwy; e fwy; x eW? S 1
l l I [I
EdgeTPU -~ Filter0 Filter1 Filter2 |
I eWo e N > I
Systolic Array 1 S 8 :
64x64 ! R 5 !
N ¥ K 2
(Int8) , S S BFP16 !
| QL \ |
(N o & Blocks
S ¥ ¥ AN o '
N N S I
\ S |
\& I
I
I
I
I

i=n i=n
Wo; * x1;) X e"0 (Z wy; * xq;) X et (Z Wy * xq;) X eW?
. i=0 . i=0

i=0

@
] | Fr2eFP | S IS ! | Exponent Adder | :
o i |3 : I
K3 Prune [N g 1 /] I
S (FP32) g = | i=n i=n |
‘23 2 :(Z wo; * x1;) X eW0 X1 (Z Wy * xq;) X eWZ XL
o c =n o I
Input ‘('\17 % 1 =0 w1 Xll ° |
e o W | () wi*xxy)Xe .

_ Activation L —
‘n.‘l_ _______ l:O ___________________ 1
CPU

Figure 4.10: Re-purposed Edge TPU for training.

Figure 4.10 shows the complete block diagram for the re-purposed Edge TPU. Each column of
the systolic array is mapped to the individual filters of a layer and represents one block sharing
a common exponent. Similarly, each column of the input vector streaming into the systolic array
is mapped to an individual input window and represents one block sharing one exponent. Before
computation, BFP16 weights are loaded from DRAM into the PEs of the systolic array. This
weight loading is a one-time process, which is followed by a long computation phase. Only 8-bit
mantissas of loaded BFP16 weights are used during the computation phase. The 8-bits exponent

flows through directly to the output. During the computing phase, 8-bit mantissas of input blocks

67

are streamed into the 2D systolic array, and the output of each column of the systolic array is the
dot product of filter weights and input window activation mapped to that column. In one cycle
of the computing phase, Edge TPU completes N MAC operations in each of the N columns,
resulting in N X /N completed operations in one cycle. The output from the Edge TPU is piped
out to the host CPU, which then appends the output with the sum of the exponent bits of input
and weight block to deliver the exponent bits for the final output in BFP16 format. Furthermore,
to accumulate the output for large filters spanned across multiple GEMM kernel calls, we use
normalization to convert the BFP16 output from Edge TPU to FP32. The FP32 outputs can then
be easily accumulated across multiple GEMM kernel calls to obtain the final output for the filters.

To support the CPU-repurposed Edge TPU system, we add three components to the host CPU.
The first component is a floating point to block floating point converter (FP2BFP) that converts
the input and intermediate activations in FP32 precision to BFP16 precision. The mantissa bits
of the BFP16 inputs are sent to Edge TPU for further computation. The second component is the
exponent adder, which adds the 8-bit exponents of input and weight BFP16 blocks to give the final
exponent of the output block. The last component is for FP32 normalization to convert BFP16
output blocks to FP32 blocks. Thus, our system fully implements the conversion process between

FP32 and BFP16 (and vice-versa) on the host CPU, as shown in Figure 4.10.

4.5.2 Conversion Error from FP32 to BFP16

Conversion from FP32 precision, which has 23-bit of mantissa and 8-bit of exponent (as shown
in Figure 4.8), to BFP16, which has 8-bit of signed mantissa and 8-bit of exponent and wherein
exponent is shared by all the elements within a block (as shown in Figure 4.9), leads to a deviation
of current/working weight and activation values from original values. The error due to the conver-
sion of FP32 values to BFP16 is because of the reduction in mantissa bits and the block size, i.e.,
the number of elements in a block of BFP16. While mantissa bits must be set to 8 to match the
underlying Edge TPU precision, the block size is flexible. Smaller block size reduces the chances

of overflow or underflow and the divergence from original (FP32) values, thus, reducing the error.

68

However, FP32 to BFP16 conversion overhead depends on the number of BFP16 blocks to con-
vert. It increases for small block sizes with more BFP16 blocks. Hence, it is a trade-off between
the sizes of each block and the number of blocks. Moreover, the minimum block size is limited
by the dimension of the systolic array present at Edge TPU. The small dimension of Edge TPU
(i.e., 64) constrains the block size and reduces the chances of overflow or underflow, resulting in
smaller errors. Thus, the block size is set to 64 to match Edge TPU’s 64x64 systolic PE block.
One column/row of matrix multiply is divided into multiple blocks of size 64, i.e., 64 elements in
each block. Furthermore, even using a small block size of 64 and mantissa width of 8, we observe
a significant drop in model accuracy with BFP16 precision. The original unpruned Inception-V3
model with FP32 precision has an accuracy of 79.2% for the user-specific dataset. This accuracy
drops down to 76% when using BFP16 precision for the same unpruned original model. Thus,
there is a significant, 3.2%, accuracy drop from the error generated due to conversion from FP32
to BFP16 precision. We regain this accuracy drop by re-training the model during the user-specific

pruning process to achieve 79.2% accuracy.

4.6 Methodology

We evaluate MyML for the image classification task with the Inception-V3 [211] and Resnet-
50 [105] models. We show results primarily for a user-dataset comprising five randomly chosen
classes from the Imagenet dataset [77], representing user preference. We prune the model using
TensorFlow’s tf-slim framework to obtain pruning rates and measure accuracy. We also extend the
TensorFlow framework to support block floating point (BFP16) precision by adding a floating point
(FP32) to the BFP16 conversion module. This is a generalized module that can be configured for
different block-size, mantissa bits, and exponent bits. For our experiments, we have set the block
size to 64, exponent bits to 8 bits wide, and mantissa bit to 7 bits with one additional bit to represent
the sign bit.

We use the XNNPACK [32] library for mobile CPU performance evaluation, which provides a

69

Cores 1xA76@2.84GHx, 3xA76@2.41GHz, 4xA55@1.78 GHz
L1 cache | 1x128KB, 3x128KB, 4x128KB

L2 cache | 1x512KB, 3x256KB, 4x128KB

L3 cache | 2MB

DRAM LPDDR4 6GB@2133MHz, 34.1GB/s

Table 4.1: Architectural specifications for Snapdragon 855 Octa-core SoC representing mobile
CPU.

SIMD implementation of 3D convolution using the ARM Neon ISA. We extend this library further
to add SIMD support for 2D convolution. Using the GEMM implementation of XNNPACK][32],
we can skip entire blocks, corresponding to pruned channels, for asymmetric pruning with the
bookkeeping mechanism explained in Section 4.4. We measure execution time and energy con-
sumption by executing these kernels on Samsung S10e mobile phone hosting Snapdragon 855
Octa-core mobile SoC with the complete architectural configuration listed in Table 4.1.

To evaluate the performance for Edge TPU, we use the SCALESim [192] simulator, which
gives compute cycles for a given systolic array configuration and assumes a TPU operating fre-
quency of SO0MHz. Since SCALESim supports only 3D convolution, we extended it to support
2D convolution for the backward pass.

As discussed in Section 4.2, our learning window size is 50-100 images, and the minimum
appearance frequency is ~15% of window size for a class to be marked as a user class. We divided
the total layers into four blocks and pruned one block at a time, starting from the bottom block,
per our proposed bottom-up pruning technique. Each block was trained for 40 images per user
class, which accrued to 200 images for the five-class user-dataset, accounting for a total of 1000
images for the pruning phase. Furthermore, to optimize for accuracy as well as training cycles at
the mobile device, we trained each block for one epoch, with the option of training the last block
for multiple epochs to improve model accuracy. We trained the last block for simply one additional

epoch to build a robust user-specific model in our experiments.

70

4.7 Evaluation

We evaluate MyML on two distinct platforms — mobile CPU and Edge TPU — with various pruning
configurations for Inception-V3 and ResNet-50 models. For mobile CPU, we compare the user-
specific model pruned using asymmetric pruning with two baseline models: the original unpruned
model with pruning type as none and the original model pruned using channel pruning (user-
agnostic), which represents the prior user-agnostic pruning works. For TPU, we compare the
user-specific model pruned using symmetric pruning with the original model. Note that Edge TPU
is designed for dense GEMM matrix computation and cannot accrue the benefits of user-agnostic

channel pruning; hence, we do not report any user-agnostic pruning configuration for TPU.

Model Size (MB) {FInference Latency (ms) M Accuracy User Dataset < FAccuracy Complete Dataset

g7° 2 80

<

L 6.0 0_ o

» @ = 60

€ S

45 157 g

) > 2 40

g30 oy £

g 3T =

3 15 s 2 %t

§ s

500 0 0

= None User-Agnostic User-Specific None User-Agnostic User-Specific

Pruning Asymmetric Pruning Pruning Asymmetric Pruning

cPU CPU CPU CPU CPU CPU

Pruning type
Compute platform

Figure 4.11: Inception-V3: Inference latency and
model size for different pruning types on mobile
CPU platform that supports Int8 precision for in-
ference and FP32 for pruning.

4.7.1 Inception-V3

Pruning type
Compute platform

Figure 4.12: Inception-V3: Model accuracy for
user-specific dataset and the complete Imagenet
dataset for different pruning types on mobile
CPU platform that supports Int8 precision for in-
ference and FP32 for pruning.

The inception model was first developed by Szegedy et al. [210]. It was an important milestone
because it shifted the contemporary trend of building deeper models to wider models. Deeper
models are more prone to over-fitting. Hence, instead of having one filter at one level, these models

include multiple filters at one level to form a wider network. The Inception-V3 model [211] is an

71

Model Size (MB) {*Inference Latency (ms) M Accuracy User Dataset {<kAccuracy Complete Dataset
25

80
20

60
15

(%)
o

N
o

w
1S
=
g 3
©
P & 340
820 10 2 8§
g 3 =
210 s 3 82
c
= =
0 0 0
None User-Specific Symmetric None User-Specific Symmetric
Pruning Pruning
Edge TPU Edge TPU Edge TPU Edge TPU
Pruning type Pruning type
Compute platform Compute platform

Figure 4.13: Inception-V3: Inference latency Figure 4.14: Inception-V3: Model accuracy for

and model size for different pruning types on user-specific dataset and the complete Imagenet

Edge TPU platform that supports Int8 precision dataset for different pruning types on the TPU

for inference and BFP16 for pruning. platform that supports Int8 precision for infer-
ence and BFP16 for pruning.

advanced version that reduces computational bottlenecks.

Inference Performance and Accuracy. As shown in Figure 4.11, we find that the user-specific
model built using asymmetric pruning on the mobile CPU is 2.3 x faster, corresponding to a 4.7 x
reduction in model size, as compared to the original model. Moreover, compared to the pruned
user-agnostic model, the user-specific model provides a 1.4 x speedup, along with a 2.5 x reduction
in model size. The newly built user-specific model has an accuracy of 78.8% (less than a 1%
accuracy drop in user-dataset) compared to the original model with an accuracy of 79.2 %, as
shown in Figure 4.12. The user-specific model has higher accuracy compared to the user-agnostic
pruned model for the user-datatset because the user-specific model is pruned (and re-trained) only
for user classes. On the other hand, the user-agnostic model is pruned to maintain combined
average accuracy across all the 1000 classes of the complete Imagenet dataset. Henceforth, the
accuracy on the complete dataset is maintained by the user-agnostic pruning, whereas the accuracy
drops to < 1% (close to zero) for the user-specific model because the inputs belong to outside
user classes. Thus, we can conclude that the user-specific model yields an accuracy comparable to
the original model for inputs belonging to user classes but does not work for inputs outside user

classes, reinforcing the correct behavior of user-specific models.

72

Platform Pruning Type Precision | Pruning Phase
Duration
mobile CPU | User-Specific Asymmetric | FP32 390.34 (s)
Edge TPU User-Specific Symmetric | BFP 16 132.6 (s)

Table 4.2: Inception-V3 pruning comparison between mobile CPU and repurposed Edge TPU.

For inference on Edge TPU, we observe that inference time and model size reduce by 2.25 x
and 2.2 X, respectively, for the user-specific model built with symmetric pruning over the original
model (as shown in Figure 4.13), while maintaining an accuracy of 79.2% over the user-dataset (as
shown in Figure 4.14). Furthermore, similar to the mobile CPU platform, accuracy also drops to
< 1% (close to zero) for the complete Imagenet dataset on the Edge TPU platform.

There are two factors that contribute to performance improvement in Edge TPU. The first is
due to the reduction of model size because of channel pruning. The second is the reduction in
the Image-to-column (Im2col) operation that is a part of the pre-processing step. Inputs can be
piped out to the Edge TPU only once they are flattened out and converted to a 2D matrix to map
to a 2D systolic array. This operation depends on the number of input channels of the convolution
layer. Since we remove complete filters and corresponding output/input activation channels as part
of symmetric pruning, we end up reducing Im2col operations as well. This leads to additional
performance benefits over the GEMM operation reduction.

Pruning Performance: In Table 4.2, we report the duration of the pruning phase comprising 1,000
images. We find that the mobile CPU with asymmetric pruning can process 2.56 images/sec, which
accumulates to a total time of 390s for the pruning phase. Edge TPU with symmetric pruning can
process 7.54 images/sec, aggregating to 132s for the pruning phase. Our repurposed Edge TPU
is able to reduce pruning time by ~ 3x. We expect the pruning to be a one-time cost for long
inference phases where user classes remain stable.

Energy: We also observe improvement in the energy efficiency of computing the models on our
mobile device. The energy per inference reduces to 0.98] for the user-specific model, compared
to 1.54) and 1.27] for the original and pruned user-agnostic model, respectively. This results
in energy reductions of 54% and 27%, respectively, for the user-specific model compared to the

pruned original model and the original unpruned model.

73

4.7.2 Resnet-50

ResNet-50 is a crucial machine learning model for image recognition/classification tasks and has
been widely adopted by industry and academia. It is an integral part of the MLPerf’s [166] Al
inference and training benchmark suite for datacenter, developed in collaboration with academia,
research labs, and industry, with reasonable accuracy of 75.6% with a 21.7 MB model size. It was
the first network to introduce the concept of identity mapping [105], which made training easier and
improved generalization. In this work, we include ResNet-50 in our experiments to demonstrate
the benefits as well as the broad applicability of MyML. We generalize that the MyML technique

can be applied to any deep neural network with convolution layers.

None User-Agnostic

Pruning

User-Specific
Asymmetric Pruning

None

Model Size (MB) {FInference Latency (ms) M Accuracy User Dataset < FAccuracy Complete Dataset

< 4.0 25 72
?

w 3.2 20 = =

£ 24 152 748
> & £

2 16 10 © 3

] 3 < 24
5 08 5 § g

8]

S 0.0 0 2 0
9]

=

User-Agnostic
Pruning

User-Specific
Asymmetric Pruning

CPU CPU CPU CPU CPU CPU

Pruning type
Compute platform

Figure 4.15: ResNet-50: Inference latency and
model size for different pruning types on mo-
bile CPU platform that supports Int8 precision
for inference and FP32 for pruning.

Pruning type
Compute platform

Figure 4.16: ResNet-50: Model accuracy for
user-specific dataset and the complete Imagenet

dataset for different pruning types on mobile
CPU platform that supports Int8 precision for in-

ference and FP32 for pruning.

Inference Performance and Accuracy. As shown in Figure 4.15, we find that the user-specific
model built using asymmetric pruning on the mobile CPU is 2.93 x faster, corresponding to a 4.3 x
reduction in model size, as compared to the original model. Moreover, compared to the user-
agnostic model, the user-specific model provides a 1.55x speedup and a 2.5 x reduction in model
size. The newly built user-specific model has an accuracy of 73.2%, which is within a 1% accuracy
margin, compared to the original model with 72.4% in user-dataset, as shown in Figure 4.16. Also,

since the user-specific model is pruned (and re-trained) only for user classes, it has significantly

74

higher accuracy as compared to the user-agnostic model for the user-dataset. Furthermore, for the
complete dataset with inputs belonging to outside user classes, the accuracy drops to < 1% on
using the user-specific model, ensuring its correct behavior.

For symmetric pruning on Edge TPU, we show in Figure 4.17 that user-specific model size can
be reduced by 2.6x from 21.7 MB to 8.3 MB, resulting in a speedup of 1.5x. The user-specific
model also improves the accuracy to 73.6% for the user-dataset, within 1% margin, compared to
the unpruned model accuracy of 72.4%, as shown in Figure 4.18. Similar to the mobile CPU
platform, the accuracy drops to < 1% (close to zero) for the user-specific model on the complete
Imagenet dataset. As discussed for the Inception-V3 model, there are two factors that contribute
to performance improvement in Edge TPU. The first is the reduction of model size because of
channel pruning, and the second is the reduction in the Image-to-column (Im2col) operation that

is a part of the pre-processing step.

Model Size (MB) {Inference Latency (ms) MAccuracy User Dataset < *Accuracy Complete Dataset
« 30 25 80
€
<
£ 24 20 <
9 g] 60
s >
218 15 = 8
8 8 5 40
(] (%) O
g 12 10 g %
fd s} g 20
£ 6 5 = -é
0 0 0
None User-Specific Symmetric None User-Specific Symmetric
Pruning Pruning
Edge TPU Edge TPU Edge TPU Edge TPU

Pruning type
Compute platform

Pruning type
Compute platform

Figure 4.17: ResNet-50: Inference latency and Figure 4.18: ResNet-50: Model accuracy for

model size for different pruning types on Edge user-specific dataset and the complete Imagenet

TPU platform that supports Int8 precision for in- dataset for different pruning types on the TPU

ference and BFP16 for pruning. platform that supports Int8 precision for infer-
ence and BFP16 for pruning.

Pruning performance: In Table 4.3, we report the duration of the pruning phase, comprising
1,000 images. We find that the mobile CPU with asymmetric pruning can process 2.94 images/sec,
which accumulates to a total time of 340s for the pruning phase. Edge TPU with symmetric

pruning can process 10 images/sec, aggregating to 99.58s for the pruning phase. Our repurposed

75

Platform Pruning Type Precision | Pruning Phase
Duration
mobile CPU | User-Specific Asymmetric | FP32 340.05 (s)
Edge TPU User-Specific Symmetric | BFP 16 | 99.58 (s)

Table 4.3: Resnet-50 pruning comparison between mobile CPU and repurposed Edge TPU.
Edge TPU is able to reduce pruning time by ~ 3.42x. We expect the pruning to be a one-time cost
for long inference phases where user classes remain stable.

Energy: We also observe improvement in the energy efficiency of computing models on mobile
devices. The energy per inference reduces to 0.4J for the user-specific model, compared to 0.98]
and 0.67] for the original and pruned user-agnostic model, respectively.

In the rest of the evaluation section, we only show results for the Inception-v3 model. The
ResNet-50 model is made up of convolution layers similar to Inception-V3, and based on the above
discussion, the behavior of user-specific models built from the two original models is coherent.

Hence, trends and insights gained from the Inception-V3 model will be applicable to ResNet-50.

4.7.3 Adaptive System:

For the adaptive system, we start with a dataset that has only user classes as inputs. Upon building
the user-specific model and utilizing it for predictions in the inference phase, we modify our dataset
to include inputs belonging outside user classes. We gradually add outside-user-classes inputs in
the 50 image window. For the first 10 images of 50 images, 1 out of every 5 inputs belongs outside
of user classes. For the next 10 images, 2 out of every 5 inputs belong outside of user classes.
Following this pattern, all the inputs lie outside user classes for the last 10 images of the 50 image
window.

In Figure 4.19, we show the effectiveness of our proposed collaborative system on the above-
discussed user trace for the Inception-V3 model. We show the model building process for the given
user trace and also depict our system’s behavior once user preferences start changing. At time t=0,
the system kick-starts from the learning phase for a 50 input window. Once it learns user classes,

it enters the pruning phase, where it uses the original model for inference while simultaneously

76

#inputs outside user class in the tracking window 4= Correct Prediction Incorrect Prediction

Tracker urlit threshold

Inference Phase Pruning Phase

Pruning Phase

#inputs estimated outside user classes
N N
o un

1
0
0 250 500 750 1000 1250 1500 1750 000 2250 2500
) Real time (s i earning Phase
Learning Phase (s) Changein user g
preferences

Figure 4.19: Trace showing MyML in real-time. We show the three phases - learning, pruning,
and inference — of our end-to-end system as well as illustrate the working of the tracking unit that
monitors the change in user preferences.

creating a user-specific model. Once the pruning phase is complete, we switch the original model
with the newly created user-specific model for inference.

During all phases, our tracking mechanism checks for divergence in user preferences. For our
experiments, the tracker counts the number of outside-user-classes inputs over a window of 50
input images and reports divergence if the count exceeds a threshold of 70%. In Figure 4.19, we
show the running average over the tracking window. Since the tracker resets its count after each
window, we observe a seesaw pattern in our trace. As shown in the figure, when the user slowly
starts changing the preferences around 1900s in real-time, the tracker count shoots up and crosses
the set threshold. The system then switches to a learning phase.

The trace also shows the correct and incorrect predictions by the appropriate inference model
in each phase. We see that there is a drop in the correct predictions only in the period where user

preferences transition to new classes.

4.7.4 Sensitivity Studies:

In this section, we conducted separate studies for an in-depth analysis of the MyML technique.

Layer breakdown:

77

25 100
L
® -
20 o ® ® 80 X
@ 53.3 o)
S s N e P - @
— === 1 : 2 5
g 10001} Lot 3
) [—— o= R
b 1 : 59.7 : : : <
3 10 200t} LG il g0 g
g (00005 ! faoeoc E
> 1000051 10.0005 ; 3
5 S Y20
0 0
Original Group 1 Group 2 Group 3 Group 4

(Layers 7a-7c) (Layers 6d-6e) (Layers 6a-6c¢) (Layers 5b-5d)

Figure 4.20: Per layer asymmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning.

The aim of this study was to understand in detail the pruning rates, pruning times, and learning

rates for individual layers comprising the deep neural network model.
Pruning rate: As shown in Figure 4.20 and Figure 4.21 for asymmetric and symmetric channel
pruning, model size decreases as we prune more layers and move towards the top layers from
group 1 to group 4. Asymmetric channel pruning has a higher model size reduction compared to
symmetric channel pruning because asymmetric pruning is more flexible than symmetric pruning
with constrained channel ID selection. However, both of these pruning types follow similar trends
for each group of layers, as discussed below.

Group 1, consisting of layers 7a, 7b, and 7c, has the highest pruning rates, leading to a drastic
reduction in model size. This reduction occurs because the bottom-most layers have a large number
of filters and channels accumulating to 12 MB of model size, thus resulting in a significant model
size reduction. Furthermore, bottom layers contribute towards the prediction stack, which makes
them more amenable for pruning. The model accuracy increases on pruning group 1 because we
tune the prediction layers for specific user classes, giving a significant boost to accuracy. As we
move up in the model and prune the top layers, the model size and corresponding pruning rates
slowly decrease until group 4. This behavior occurs because the top layers are smaller in size

and built for feature extraction, making them less prune-able. Furthermore, as we move up in the

78

N
(52}
o
[y
o
o

N
o
¢
i
o -
o
=6
o
®
0]
o

[ERN
Ul

Model Size (MB)

[N
o

;

]

1

|

=

o

o

[y

E

 Q It

1 o

1 (o]
o
o

Model Accuracy (%)

(6,]
N
o

Original Group 1 Group 2 Group 3 Group 4
(Layers 7a-7c) (Layers 6d-6e) (Layers 6a-6¢) (Layers 5b-5d)

Figure 4.21: Per layer symmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning.

model and prune the top layers, the accuracy drops with each group until it is similar to the original
model accuracy. Moving from group 3 to group 4 gives a small reduction in model size; however,
it stabilizes the error and makes the model more robust.

Pruning time: We also show the pruning time for each group of layers in Figure 4.20 and Figure
4.21. Pruning time increases as we move up in the model, following the bottom-up pruning tech-
nique, because while pruning layer n, all the layers from layer n to the last layer will be re-trained.
For example, while pruning layers in group 4, all the layers in groups 1 to 3 will be re-trained.
Thus, group 4, the top-most group of layers, takes a big chunk of time. This is because we train
almost the entire model, except the untouched top feature extraction layer, and we train for one
extra epoch to get a stable model. Furthermore, pruning time is shorter for symmetric pruning on
the edge TPU accelerator as compared to asymmetric pruning on general-purpose mobile CPU.
Learning rate: Inspired by a commonly used training procedure that starts with a high learning
rate for the first few epochs, which is lowered gradually for later epochs, we also form a learning
rate schedule for the bottom-up pruning, as shown in Figure 4.20 and Figure 4.21. The bottom
groups, comprising group 1 and group 2, have the highest learning rate of 0.001. Learning rates

are reduced by 10-fold for the top layers in groups 3 and 4. Reducing the learning rate with

79

Model Size -m-Accuracy

6 90
o —_
2 S
g * >
n 80 &
o 2 <
>

0 70

8 16 32 64 128
Batch size

Figure 4.22: Model size and accuracy for increasing training batch size.
time/layers allows the model to vigorously learn and jump around various local minima during the
start of the pruning process and gradually slow down to settle on global minima with a very low
loss value.

We also observe a difference in learning rates between asymmetric and symmetric pruning for
top layers/groups. The learning rates for top layers are relatively higher for symmetric pruning. We
suspect this is because, for symmetric pruning, more error is accumulated due to floating point to
block floating-point conversion as we move up to the top layers. Therefore, there is a need to have
higher learning rates in order to evade local minima to make up for the extra error and stabilize to
a low final loss value.

Training batch size:

Training batch size is an important parameter for the MyML approach to creating a user-specific
model. The batch size determines the number of times we can update weights for a given number
of images/inputs in the dataset. For example, a batch size of 10 for a dataset with 100 images will
lead to 10 model updates, whereas a batch size of 25 for the 100 image dataset will give only 4
model updates. Though a smaller batch size can give more model updates, keeping the size too
low can lead to the model jumping around different local minima and not stabilizing at a small loss
value. Hence, there is a trade-off between batch size and the accuracy (robustness) of the model.

In MyML, we want to keep a small batch size to have faster model updates within a reasonable

80

amount of user data. Therefore, we present a sensitivity study with a batch size in the range of
128 to 8, as shown in Figure 4.22. In this study, we keep the number of updates constant (to 25);
thus, the dataset size varies for training batch size. We observe that, at the largest batch size of 128
and dataset size of 3.2k, we can achieve the smallest model size (highest pruning rate) because the
model has more data to learn and evade local minima to settle at a stable loss. A higher pruning
rate demands more data to converge at a low loss value. As the batch size reduces, the model size
increases (i.e., pruning rate reduces) to stabilize at a low, stable loss with less amount of data.
However, the difference between the model size is not very significant. A model created with a
batch size of 8 is only bigger by 7%, compared to a model built with a batch size of 128. Across
all the training batch sizes, we maintain an accuracy margin of 1% within a baseline accuracy of
79.2%. Therefore, for this work, we choose the batch size of 8 for training user-specific models
that have an accuracy within 1% of the original unpruned model.

Scalability with number of user classes:

The second study measures the utility of building a small user-specific model over user-agnostic
pruning as the user diversifies their preferences or choices. Therefore, we conduct a sensitivity
study with an increasing number of user classes representing user preference. As done for prior
discussed results, we train these user-specific models to maintain accuracy within a margin of
1%. Figure 4.23 shows that, even on increasing the number of user classes from 5 to 40, we
achieve significant model reduction over user-agnostic pruning. For instance, with 40 user classes,
MyML gives 1.5 and 2.8 x reduction compared to the user-agnostic pruned and original model,
respectively. This reduction in model size demonstrates the advantage of utilizing user-specific
models over the original generic model even as the user expands their preferences. The increase in
model size from 5 to 10 classes is 1.35 x; this increase reduces to 1.13x from 10 to 20 classes and
1.1x from 20 to 40 classes. The increase in model size is highest when we expand from 5 to 10
classes, and thereafter, it tapers off as we expand to include more classes. Thus, we can infer that
even as user preferences will expand beyond 40, the increase in user-specific model size will be by

a small linear fraction compared to model size at 40 classes.

81

N
[52]

—~ 20
o
2
15
N
>
o 10
©
S
2 5

0

5 classes 10 classes 20 classes 40 classes User-agnostic Original
pruned (1000 classes)

(1000 classes)

+————— User-specific Models

Figure 4.23: Scalability of user-specific models with an increasing number of user classes.
Ablation Study: We also performed an ablation study by choosing 5 known nearby classes —
pickup truck, tow truck, trailer truck, tractor, and recreational R.V. — as user classes for building a
user-specific model. We found that the model size for inception-v3 can be reduced to 6.2 MB from
23 MB while maintaining an accuracy of 79.2% for the user subset. This validates our hypothesis
that, by leveraging user preferences, we can build tiny user-specific ML models to improve the

efficiency of ML applications on user-devices.

4.7.5 Discussion

Re-training Cost: Although optimized by our MyML technique, pruning (re-training) is an ex-
pensive step in the process of building a user-specific model on a resource-constrained edge device.
Thus, it is necessary to amortize the pruning cost over a long inference phase. As reported in the
evaluation section, the average pruning duration phase for asymmetric pruning on the CPU is 365s
or ~3 mins. Thus, it is possible to prune (re-train) and create a new user-specific model every 3
mins. However, to amortize the pruning cost, we should run the inference phase for another 3 mins
before we can start building a new user-specific model. Furthermore, for symmetric pruning on
edge TPU, the average pruning phase duration is 116s or ~2 mins. Thus, to amortize the pruning
cost, the inference phase should be a minimum of 2 mins. Hence, if user preferences change as
frequently as every 2-3 mins, MyML would not be able to create user-specific models at such a fast

pace; however, this may not be the case for an average user with more stability in user preferences.

82

[122] shows a monthly change in user interests based on their twitter activities. Furthermore, [103]
reports that the model retraining frequency can vary between hourly to multi-monthly for a wide
range of ML models/tasks to capture a collective shift in preferences across all users, which will
be slower for individual users.

Practical Application: To demonstrate the practicality of our approach, we apply a real-world
dataset from Kaggle [18] to the Inception-v3 model to obtain the ratio of user classes and outliers.
We test our method on 500 images. The learning phase operates on the first 100 images, and the
remaining 400 images determine the fraction of user classes and outliers in the dataset. Unlike
Imagenet, where each image is manually processed to have exactly one object/entity, the Kaggle
real-world dataset has multiple objects in each image. Thus, we take the top-5 predicted classes for
each image in our analysis, which account for 119 unique classes within the 500 image window.
We mark the ten most frequent classes in the learning window as user classes and find that 95%
of the remaining images belong to these user classes. Thus, we observe that the ten frequently
appearing user classes (8.4% of total classes) consistently encapsulate 95% of images.

Our collaborative system has a tunable threshold for outlier tolerance. With a 95% threshold,
the collaborative system can tolerate a maximum of 5% outliers before discarding the current user-
specific model to create a new user-specific model for new preferences. We offer two solutions to
handle outliers. The first solution sends the 5% outliers to the cloud server for computation, which
applies the bulky original model, ensuring privacy for 95% of the inputs. The second solution is to
infer the 5% outliers using the bulky original model on the local edge device. The second solution
ensures privacy for all inputs by computing everything locally. Hence, MyML enforces privacy for
95% of user inputs regardless of the methods. Moreover, if the 5% outliers are computed locally
on the edge device using the original model, we provide 100% privacy for all user inputs.

We show that for the collaborative system, which sends the 5% outliers to the cloud, the speedup
is 2.2 x. Additionally, computing the outliers on the device results in a 2.1 x speedup. Note that the
remaining 95% of the inputs are always computed at the edge device employing the user-specific

model. These speedups are lower than the 2.3 x speedup achieved when only the user-specific

83

model is applied to all inputs without the differentiation of outliers or its extra computation.

4.8 Limitations

Though we provide an end-to-end holistic approach that learns, builds, and deploys user-specific
models based on user preferences, there are still some limitations and scope for improvement for
this work.

This work assumes that there is a pre-built accurate original model ready to serve the user that
acts as ground truth. Training such a baseline model from scratch is a very expensive and time-
consuming process. However, it is a one-time process that can be done in the back-end cloud
Server.

In this work, user-specific models are derived from original models, which are convolution
layer-based deep neural networks. Hence, the user-specific models are, in turn, made of computa-
tionally complex convolution layers. There can be an alternate way to build smaller user models
from scratch comprising simpler MLP layers and much lower depth. This approach has not been
explored in this work. The above limitation can be further expanded to study the switching point
from a simpler multi-layer perceptron (MLP) layer-based user-specific model to pruned convo-
lution layer-based user-specific model. When user preferences belong to a few classes (e.g., 5),
simpler models may provide good accuracy with smaller model sizes. However, as user prefer-
ences expand to a large number of classes, simpler models might not be accurate, and we may
need to switch to pruned complex models.

We determine user preferences by simply choosing the top-k appearing classes/categories in the
learning phase window. Here, the value of k is static and pre-defined by the user or the vendor.
This can be replaced by a sophisticated dynamic approach that is independent of k.

We use entropy and output probability to determine whether the inputs belong to user classes
or outside user classes. Once the majority of inputs in a window are estimated to be outside user

classes, we discard the current user-specific model and swap it with the original model. This

84

approach hurts the accuracy of the input window based on which we detect divergence in user
preferences. It can be replaced by a more fine-grained approach, where we can send individual
inputs to the original model if they are marked as outside user classes. However, such a fine-

grained system will require more robust statistics apart from prediction probability and entropy.

4.9 Conclusion

To circumvent the problems arising from offloading machine learning to the cloud, in this work,
we presented MyML, a hardware-software solution that supports machine learning at edge devices.
We leveraged the transfer learning approach to create small, lightweight, user-specific ML models
based on user preferences instead of defaulting to a large, compute-intensive ML model. We
proposed hardware-friendly, bottom-up pruning, which can be utilized by any mobile platform,
and we also repurposed a systolic array-based edge accelerator to support user-specific transfer
learning on edge devices without any cloud services intervention, thus ensuring user privacy. We
also developed a collaborative edge system that tracks deviations in user preferences to switch
back to the original model from the user-specific model and restart the model building process.
We demonstrated that the user-specific model could reduce the model size by 4.7x and 2.25x
using asymmetric and symmetric pruning for mobile CPU and edge TPU, respectively. In the
next chapter, we aim to expand this approach of building user-specific models for recommendation

systems, a new machine learning application that is the backbone of social-network platforms.

85

CHAPTER 5

User-Driven Recommendation Systems

Until now, we have studied and optimized many tasks widely used by popular edge applications,
such as GPS tracking, video recording, and image recognition, with the motive of improving
the application’s efficiency. In the last chapter, we specifically explored the potential of creat-
ing smaller user-specific models based on user preferences for image recognition tasks utilized
by smart-cameras apps, galleries, and image-based social media apps like Pinterest, Instagram,
Facebook, etc.

In this work, we expand our application suite to include recommendation systems that consti-
tute a significant portion of the inference cycle [221]. Recommendation systems are an integral
part of popular mobile applications, including social media (e.g., Instagram, Facebook, Pinter-
est), online shopping (e.g., Amazon, eBay, Alibaba), movie recommendation (e.g., Netflix, Hulu,
Prime), fitness (e.g., Fitbit, Peleton), and e-learning (e.g., Coursera, Udemy). Netflix attributes
80% of its streaming hours [10] to the recommendation system, and 35% of Amazon purchases
[16] result from the recommendation algorithm. Recommendation systems are the top consumer
of Al compute cycles in production-scale datacenters [97].

Furthermore, the steep rise of mobile devices and digital content in the last decade has in-
creased the demand for higher quality and more efficient recommendation systems to enhance user
experience. Hence, there are numerous ongoing efforts across the scientific community to im-
prove the efficiency of recommendation systems [133, 52, 220, 95, 184, 146, 81]. For example,

prior works [133, 52, 184, 146] have focused on using hot-embedding caching or near-memory

86

solutions and utilizing multi-stage recommendation models [96] to improve overall efficiency.

Until now, recommendation systems have been considered to be datacenter only applications
because of their large memory footprint. The existing solutions miss the opportunity to utilize
user history information, which is readily available on edge devices. Consider a recommendation
query that consists of several inferences (100s) to rank candidates. Each inference has to compute
MLPs and lookup multiple embedding tables. We observe that a significant portion of an inference
specific to user data is repeated for all inferences in a query, as shown in Figure 5.1. This common
computation can be performed once per query on edge to boost overall efficiency significantly.

Deriving from this insight, in this work, we present Duet, a collaborative user-driven edge-cloud
recommendation system. Duet decouples the monolithic recommendation model into two smaller
concurrent models, user and item models, distributed on edge and cloud, respectively. The user
model operates on the user data at the local edge device and transfers its output to the datacenter.
Simultaneously, the item model computes item features for all candidates to be ranked. It then
combines item model outputs with the user model output to provide final recommendations. More
importantly, unlike the item model that computes item features for all the candidates to be ranked,
the user model needs to be computed only once for the recommendation request. Thus, we reuse
the user-specific computation across all the candidates being ranked. Further, by processing user-
specific information on edge, Duet enhances data privacy.

The two models, the user and item models, are created by splitting the three components of
a generic recommendation model — embedding tables, the bottom MLP stack, and the top MLP
stack. First, embedding tables are divided between edge and cloud. We observe that storing the
entire user embedding table on the edge is overkill. Compared to large user embeddings (GBs)
on the cloud that cater to millions of users with diverse histories, user-specific embeddings at the
edge device store entries pertaining to only one user’s history, reducing storage needs drastically
(KBs). Second, we split the bottom MLP stack between static and dynamic inputs. Static inputs
comprise stable user information (such as age, gender, device id, device make, device IP address,

number of apps, etc.), and dynamic inputs are constituted by the transient context inputs (such as

87

CTR .
Cand; 777, [-I Computation reused by
—¥]) I all candidate inferences
|:7 ./ Common value Top MLP Stack == of user query

/"~ forall inferences
Candyi7on, of user query Feature Interaction (Concatenation)
) st
| 2 P I
User Query —»< cand, 1770, | E |
100 - 1000 M (-] |
Candidate s) I
Inferences |@ -~ - | ftem Item
| Static inputs (e.g., user age) Emb0 Emb1 Emb k-1 Emb k Embn
o | Dynamic inputs (e.g., time) (Past user interactions e.g., clicks, etc)JI

____ . .
CandNU Dense Inputs Categorical Inputs

Figure 5.1: Recommendation model comprising of three components — bottom MLP, embeddings,
and top MLP — computes 100s of inferences to rank all the candidates of a query. Common
computation pertaining to user-specific information can be reused across all the inferences of the

query.

current time, day, and time since the last watch). The static bottom MLP is pre-computed, and its
output is reused during execution; only lightweight dynamic bottom MLP is computed in real-time.
Finally, the top MLP is also split into user-specific and item-specific layers. User-specific layers
are computed once per query on edge. Its outputs are aggregated with outputs of item-specific
layers, which are channeled into final layers to produce the Click Through Rate (CTR) probability.

Since the decomposed user model is computed on a small edge device, we present a lightweight
Duet architecture to improve the edge user model’s energy efficiency. We propose a hardware
unit with a small user-specific scratchpad and location tracker to capture up-to-date user states
in hardware. Further, we support memoization for pre-computed static bottom MLP results and
heterogeneous edge-friendly lower precision (qint8) format for user-specific top MLP layers.

We evaluate our proposed end-to-end collaborative system across five recommendation models
and boost the performance by 6.4x and the energy efficiency by 4.6 x with the accuracy impact

limited to <= 0.06%.

5.1 Background and Motivation

The recommendation is a two-stage process — candidate generation and candidate ranking. Can-

didate generation is tasked to provide potential candidates that the user may like; to do so, it uses

88

H Bottom MLP m Embedding m Top MLP

100% - Item Emb o Dynamic
’ . 25% 100% inputs (12%)
80%

80%
60% 60% |
40% 40%

20% + user 20%)
5 Emb Static User
0% 759% 0% inputs
Emb dominated (RM2) Bot MLP dominated (RM3) 88%

Figure 5.2: Timing Breakdown in three components for a query with 1024 candidate inferences
for two RM Models.

lightweight filtering kernels like KNN or Matrix factorization. The candidates generated from this
step are then processed by the candidate ranking step, which utilizes a heavy DNN-based recom-
mendation model to rank all the candidates and recommend the top candidates with the highest
CTRs to the user. Thus, each recommendation query requires computing inferences for hundreds
to thousands of candidates (termed as query size) on a heavy DNN-based ranking model, which
makes this task very compute-intensive. Moreover, tight latency targets (SLA) to ensure a smooth
user experience makes it latency sensitive.

Recommendation models are built using embedding tables and MLP layers, as shown in Fig-
ure 5.1. The models have three components — the bottom MLP stack to process continuous inputs,
embedding tables to process sparse categorical inputs, and the top MLP stack — to predict the
click-through rate (CTR). Prior works [97, 95] have demonstrated that the models can either be
embedding-dominated or MLP-dominated. We further break down the timing and illustrate in
Figure 5.2 the time consumed by the three components for two particular model definitions. We
realize that while model RM2 is embedding-dominated, RM3 is dominated by the bottom MLP
stack. Thus, each of the components has to be optimized to ensure performance improvement for
all the models.

We observe that previous works [118, 146, 133, 96, 95, 165, 220, 52, 184, 128, 150] consider all
the embedding tables to be equivalent, which may not always be the case. There are user embed-
ding tables that gather past user history and item embedding tables that extract item features for the

candidates. As shown in Figure 5.2, the bigger chunk (75%) of the embedding time is consumed

89

by user embeddings, while item embeddings consume the remaining 25% of the embedding time.
Our findings yield two discoveries. First, we discover an opportunity to reduce embedding table
memory accesses because user embedding accesses, corresponding to a user history, are common
for all the inferences performed to rank multiple candidates of a user query. Hence, the user em-
bedding can be processed once for a query and shared by all the inferences. Second, we discover
that we can decouple the two embeddings, and user embedding operations can be offloaded to user
edge devices that have all the information about past user activities.

We also observe that, similar to embeddings, all the inputs to the bottom MLP stack are not
equivalent. A significant fraction of the inputs corresponding to stable user profile information can
be computed once per query and do not frequently change for a user. As shown in Figure 5.2, as
much as 88% of the bottom MLP inputs correspond to static user information, which is readily
available on the user edge device, and, thus, can potentially be computed locally.

In this work, Duet, we leverage this non-uniformity in the model definition to split the model
into two concurrent models: one to process user information, which is computed once per query
and shared by all the candidates of the query, and the other to process individual candidate infor-
mation for all the candidates to be ranked. We propose a holistic approach that tackles all three
components of the recommendation models by: 1) reducing and distributing the model on the edge
and datacenter and 2) optimizing the user model for the resource-constrained edge platform. To the
best of our knowledge, this is one of the first efforts that leverage user preferences to incorporate
edge computation in the recommendation engine.

Prior work EdgeREC [85] shows the advantage of using extra user inputs available only on
the user device, like scroll speed and exposure duration, to improve user-engagement/accuracy.
Our solution incorporates user edge devices to improve the performance and energy of the recom-
mendation engine. A related prior work, RecPipe [96], proposes a multi-stage model by adding a
filtering model before the recommendation model at the datacenter. In this work, we decompose
the recommendation model itself into smaller concurrent models, one of which leverages user

information by processing on the edge device, thus offering more privacy.

90

Bottom MLP

Feature x N
Interaction r .
#candidates

PO -CUIC TN Embedding lookup
Y SparselnputIDs ,/’ reduction

Datacenter

Figure 5.3: Data flow for the state-of-the-art recommendation system at the datacenter computing
N inferences for the N candidates.

Static

--------- Feature x1
Interaction Once per user

i User sparse query

Edge device

User model
Output

S

" “ltem sparse "+, | Embedding
reduction #ca ndldates

1

‘s.__inputIDs __-

> lookups and

Datacenter

Figure 5.4: Data flow for our proposed collaborative edge-cloud recommendation system. The
monolithic model is decoupled into two concurrent models running on the edge device and dat-
acenter. The edge model is computed once per user query, and the reduced datacenter model is

computed for N candidate inferences.

91

5.2 Proposed Collaborative Recommendation System

The data flow through the three components of the recommendation model is illustrated in Figure
5.3. The bottom MLP layers process the continuous dense inputs to produce a k-dimensional
output vector, and the embedding tables process the categorical inputs sparse IDs. Embedding
tables map sparse input IDs to a dense k-dimensional vector. Each embedding table gets multiple
sparse input IDs, over which it performs gather and reduction to produce a k-dimensional output
vector. The feature interaction block concatenates the output vectors from embeddings and bottom
MLP to give a final feature vector, which is then processed by the top MLP layers to output the
Click-through rate (CTR). This recommendation model inference is performed repeatedly N times
for each N input candidate to predict CTR for all the candidates.

In this work, we propose a user-aware recommendation system, which decomposes the giant
monolithic model into a user model at the edge device and an item model at the datacenter based on
the input characteristics, as shown in Figure 5.4. The user model at the edge device computes user
inputs comprising: 1) user-history-related sparse inputs IDs, 2) dense user inputs, and 3) dense
context inputs. The information processed by the user model is common to all the inferences that
need to be computed for ranking the N candidates of the query. Thus, this common computation
is processed once for a query and is reused for all the N candidate inferences, thus, significantly
reducing the embedding table memory access and MLP computation. The output produced by the
user model is sent back to the datacenter for further processing.

Simultaneously, the item model at the datacenter individually processes each candidate’s sparse
input IDs to extract candidate features. Thus, N inferences are performed on the item model for
N candidates. Though N inferences are still computed on the datacenter, the datacenter performs
less work by offloading user inputs processing to the edge platform. Finally, the output feature
vector of the user model is aggregated with each of the N candidate feature vectors individually.
The final MLP layers then process the aggregated N feature vectors to produce CTR for all the N
candidates of the user query. In a datacenter environment, multiple small queries can be merged

for batch processing, or large queries can be sharded into smaller sub-queries to achieve optimal

92

throughput and latency. Therefore, the baseline model batches any random combination of can-
didates; however, for our proposed solution, we batch only the candidates belonging to the same
user query with the vision of extending it to a random combination, using unique tags for queries.
We leave this extension for future work. Based on a production query size distribution [95], the
75th percentile query size is between 200-250, which is able to saturate the system resources with
queries following poisson distribution arrival rates. Based on our benchmarking, the RM2 model
with a query size of 256 can barely serve 49 QPS within the SLA targets. Thus, a median query

size of 256 is large enough to keep system utilization high.

5.2.1 Model Decomposition:

In this section, we discuss in detail the decomposition of the three components of the recommen-

dation model across edge and cloud.

5.2.2 Embedding tables

The size and the number of embedding tables in recommendation models are constantly increasing.
User embeddings comprise a major fraction of the total embeddings. For example, n — 1 lookups
out of the n embedding tables lookups pertain to past user-interaction [48, 128]. Recent work [81]
estimates user embeddings to occupy as much as ~ 75% of total embedding memory space. User
embeddings are accessed to retrieve user information, such as past user likes, favorites, clicks, etc.
A user-agnostic model, which does not differentiate between user and item embedding character-
istics, accesses the user embedding tables every time a recommendation inference is calculated.
However, for a given query that ranks multiple candidates, past user interactions are common
across all the candidate inferences; thus, we can avoid repeated user embedding lookups over the
entire query by computing them once and reusing them across all the inferences. For Duet, we first
leverage this user embedding property to decouple the user embeddings from item embeddings,
where user embedding is computed only once for a query.

Second, we also discover the opportunity to maintain small user embedding tables on the local

93

edge device instead of accessing the giant user embedding table at the datacenter. The user em-
bedding tables at the datacenter (GBs) store cumulative histories for millions of users with diverse
preferences. However, user embedding memory accesses corresponding to one user history (KBs)
is required for a given user query. Assume a scenario with three users, userl, user2, and user3, with
individual user histories. Userl has liked movies 1-10, user?2 has liked movies 5-30, and user3 has
liked movies 20-50. In the datacenter, the movie embedding table stores entries for all the movies
from 1-50. When a query from userl is being served, the model will access this entire table to
lookup only at user1’s past liked movies from the entire table. Furthermore, unlike this example
where userl accesses contiguous rows 1-10 of movie embedding tables, embedding table access
can be random and spread all over the embedding table. These factors make embedding operations
very expensive.

Nevertheless, based on this insight, we propose storing user-specific embedding tables pertain-
ing to user history on the local edge device. This shrinks the embedding table size from GBs to
KBs, which is feasible on a small edge device. Further, as shown in Figure 5.5, we not only re-
duce the user embedding table size but also store embeddings in a contiguous format instead of
accessing them randomly across the entire embedding table. Overall, we decrease the number of
embedding lookups from history_size x num_emb_tables (nxk) to history_sizex 1 (nx1). The user
history is bound to change with time as the user interacts with more items. In Duet, we constantly
update the user-specific embedding tables with recent user interactions with the help of Duet’s lo-
cation tracker in the hardware unit, as described in detail in architecture Section 5.2.6. On a high
level, for our edge system, the embedding entry data is relayed along with the meta-data attached
to the items recommended to the user. For example, as shown in Figure 5.5, a movie recommended
to a user will come along with the particular movie embedding entry and its genre embedding en-
try. Each embedding entry is only a few bytes (128 bytes). If the user clicks the movie, we update
the user-specific embedding table with the movie embedding entries associated with it. The loca-
tion tracker maintains a user history of fixed length n, corresponding to past n lookups in the local

device memory. Consider n is 10, and the user-specific embedding table contains the past 10 liked

94

Datacenter Edge device - Recommendation
; Page

EmbO Emb1 Emb k Emb 0O Emb 1 Emb k i -

. i family
HIS.t nl | = |eeeeees : \ j;&?{f;;”i

..... —p N et

Hist 1 | = [======= ‘: E I_l

T T 1 :’?\%{:\K“e’f

! .) ! 220

Random User Embeddings Contiguous User Embeddings | 3 ﬂf\
| \ S, -
(GBs) (KBs) | =

(user-history such as past likes, clicks, etc.) Selected :

Figure 5.5: Converting randomly accessed large user embeddings at datacenter to contiguous and
small user-specific embeddings at edge device, which are continuously populated and updated with
recent user interactions.

movie entries. When a new movie 11 is liked by the user, the oldest entry in the table (movie 1) is
removed, and it is populated with movie 11 embeddings. In this manner, we constantly update the
user history stored in the user-specific embedding tables in a circular fashion on the edge device.
We discuss in detail the working of the location tracker in a later section describing the specialized

hardware unit.

5.2.3 Bottom MLP stack

Bottom MLP usually has a depth of three to four layers, and it processes continuous dense fea-
tures to provide an output feature vector, which is concatenated with the outputs of embeddings.
A significant fraction of the dense inputs to the bottom MLP layers is composed of stable user
information, which does not frequently change, such as user age, gender, demographic, number of
user engagement sessions, number of apps on the user device, user device class, device os, device
IP, etc. The remaining dense inputs comprise dynamic context inputs, such as time of day, day of
the week, or time since the last watch/login. Again, the dense inputs are common for all candidate
inferences of query and do not change while a query is being served. Thus, the common computa-

tion can be performed once per query and reused by all recommendation inferences of the query.

95

Bottom MLP Static bottom MLP Dynamic bottom MLP

Pre-computed

Static + Dynamic Static user inputs Dynamic context inputs
Inputs (User age, gender, etc.) (Time of day, etc.)

Figure 5.6: Decomposition of the bottom MLP stack into a pre-computed static bottom MLP and
a smaller dynamic bottom MLP stack.

This optimization effectively reduces the amount of MLP computation required to process all rec-
ommendation inferences of a query. Since dense inputs comprise user and context information,
which are readily available on the user edge device, we incorporate the bottom MLP in the user
model computed on the edge device, as presented in Figure 5.4 showing our proposed data flow
pipeline.
Static-Dynamic bottom MLP split: Edge devices are not friendly to compute-intensive kernels
like bottom MLP. Computing bottom MLP in its entirety can be expensive on the small edge device
and can hurt the efficiency of bottom MLP-dominated models. However, as mentioned above,
the user information that is fed into the bottom MLP is relatively stable and does not frequently
change, whereas dynamic time-dependent context inputs are different for every query. Based on
this insight, in Duet, we split the bottom MLP into two MLPs — static bottom MLP and dynamic
bottom MLP — as shown in Figure 5.6. Furthermore, the stable or static user inputs processed
by the static bottom MLP layers can be pre-computed, and the output vector can be stored in a
memoization register for future reuse, as explained later in the Duet hardware architecture Section
5.2.6. During query execution time, we directly use the pre-computed output vector of the static
bottom MLP stack, which significantly reduces the amount of computation during runtime.

In contrast, contextual inputs of the bottom MLP need to be computed by the dynamic bottom
MLP for every query. Dynamic inputs represent the state of the input parameters when the query

is being served. They are a smaller fraction of total dense inputs and, thus, require a proportionally

96

Datacenter Edge Device| Datacenter
Top MLP User TopMLP | @ 2
52 e
°00 S8 ege
° ’ ’ ’ - jm———— = Concatenate
£
000000 0000 > oo
User + Item User | 2 Item
features features features

Figure 5.7: Top MLP stack decomposed into user top MLP, item top MLP, and combined Top
MLP.

smaller MLP, reducing the amount of work performed in real-time at the edge device. We construct
the proposed split bottom MLPs by dividing all the layers in proportion to the number of static and
dynamic inputs. However, simply splitting the original bottom MLP based on input definitions
and using it as is degrades the accuracy of the recommendation model. This is because the all-
to-all connections of the MLP layers are broken during model decomposition. Hence, we re-train
the decomposed model to regain the accuracy, as discussed in Section 5.2.5. The decomposed
model has two separate bottom MLP stacks — static bottom MLP and dynamic bottom MLP. Post-
training, the two stacks learn new weights that are independent of each other, and their outputs are
concatenated before being processed by the next model component. We also observe that since the
bottom MLP stack is responsible for feature extraction, it is not very sensitive to decomposition
and is able to easily learn the new model structure. After re-training, the accuracy drop because of

model splitting is limited to <0.03%, as discussed in evaluation section 5.4.3.

5.2.4 Top MLP Stack

The top MLP stack used for CTR prediction processes the concatenated output feature vectors of
the bottom MLP and embeddings. It has a depth of three MLP layers followed by a softmax layer,
which processes aggregated vectors to produce CTR for all the candidates. The top-K candidates
with the highest prediction probability are then displayed to individual users.

User-Item top MLP decomposition: In Duet, we also strive to split top MLP as much as possible

97

to distribute the work between the edge and the datacenter, as shown in Figure 5.4. However, since
top MLP should consider the interaction between user and item features to predict accurate CTR,
we cannot entirely split top MLP into two as done previously for bottom MLP. As demonstrated
in Figure 5.7, we only split the first one-two layer of top MLP between the user model at the edge
and the item model at the cloud. The remaining layers of top MLP layers remain in the cloud.

By splitting the first few top MLP layers, the user top MLP layers, which process user features
on edge, are computed once per query. This would otherwise be computed for all the recommenda-
tion inferences of the query. Furthermore, by splitting the original top MLP layers, we can utilize
reduced/smaller item top MLP layers to repeatedly compute all the recommendation inferences at
the datacenter. Thus, splitting the top MLP layers helps distribute the work and reduces the overall
work that needs to be completed to rank all the query candidates.

As shown in Figure 5.4, the output from the user top MLP at the edge is sent back to the
datacenter. At the datacenter, it aggregates with the output vector of the N candidates computed by
the item top MLP. The combined top MLP layers then compute the final aggregated vectors. The
first few top MLP layers are split proportionately to the input vector length. The user top MLP,
which processes concatenated outputs of bottom MLP and user embeddings, receives a major
fraction of the split top MLP. In contrast, the item top MLP, which processes only outputs of
item embeddings, receives a smaller fraction. However, the user top MLP is computed just once
compared to the lighter/smaller item top MLP computed for all recommendation inferences. Thus,
we provide a balanced work distribution by proportionately dividing the model. To avoid any
significant accuracy impact of the split, we train the decomposed model as discussed in Section
5.2.5.

Processing top MLP on user features at the edge provides additional advantages by reducing the
amount of data transferred from the edge to the cloud, resulting in energy and performance benefits.
The payload size of the data uploaded to the cloud is important because the upload speeds for even
the latest ultra-wide 5G is limited to 24 Mbps, which is 10x smaller than the 5SG download speed

of >300 Mbps. The evaluation section will discuss the communication overheads and their impact

98

on energy and performance.

5.2.5 Training Decomposed Model

Decomposing the monolithic model by naively splitting layers degrades accuracy. To regain ac-
curacy, we train the decomposed model from scratch offline in the datacenter. The decomposed
models do not fine-tune MLP weights or embeddings for individual users. For example, if both
users 1 & 2 like movie-1, they will have the same embedding value of movie-1 in their personal
user histories on edge. Similarly, the weights of decomposed top and bottom MLP stacks are
generic. For example, the static and dynamic bottom MLPs are generic to all users. However,
decomposition allows the pre-computation of stable user-specific inputs by the static bottom MLP.
Owing to its generic nature, we train decomposed models once at the datacenter. Trained decom-
posed models serve thousands of incoming queries, amortizing the training cost.

We require the definition of model inputs to determine the split ratio [user_inputs:item_inputs],
which is utilized to split model components. For example, a split ratio of 0.6 on an MLP layer
with 100 nodes will split user MLP and item MLP layers to have 60 and 40 nodes each. The split
ratio is determined based on the inputs pre-defined in the original model, which are independent
of users. Hence, the split ratio is not user-specific. The decomposed model is generic and can be
offloaded on any user device. While the split ratio guides the decomposition of layers, the decision
to split or not is empirically determined based on accuracy impact. In Duet, we iteratively split
and re-train one layer at a time, starting from the bottom-most MLP layer up to the top layers,
until we are within the pre-set accuracy drop threshold (<0.1%). If the accuracy drop exceeds the
threshold, we stop the splitting, thereby minimizing the accuracy impact. We observe that bottom
MLP layers responsible for feature extraction are more friendly to splitting. However, top MLP

layers responsible for prediction are vulnerable to splitting.

99

5.2.6 Duet Architecture

By decomposing the model, we add the user model and its associated work to the edge device,
which would otherwise offload the entire query computation to the cloud. Computing the user
model on the device without hardware optimizations leads to significant energy implications. We
observe that the battery life reduces drastically from 24 hrs to 18 hrs (a 25% drop), if we compute
the user model for a recommendation query every min. Hence, to reap the benefits of model decom-
position, we require a more energy-efficient and practical user model for the resource-constrained
edge device. In this work, we propose a specialized hardware unit, which is placed near the CPU
and communicates with it directly, as shown in Figure 5.8. For a query, the CPU triggers a read
request to the memoization register and the scratchpad of the hardware unit. The read values are
then processed by the CPU. The CPU computes dynamic bottom MLP and embedding reduction.
Their outputs are then concatenated and processed by the top MLP. We utilize heterogeneous lower
(qint8) precision for top MLP to reduce its processing overheads and payload size while curtailing
the impact of lower precision on accuracy. The output of the top MLP is transferred to the cloud
for final processing. Additionally, if the values in the hardware unit need an update, the CPU
sends a write request to the memoization register or (and) the scratchpad of the hardware unit. The
write update request is processed in the background and does not interfere with the query serving

process. We now explain individual components in detail.

5.2.6.1 Hardware Unit

The specialized hardware unit is responsible for storing all the relevant local user information
required by the recommendation query. It comprises memoization support to store the output of
pre-computed static bottom MLP and a user-specific scratchpad with a location tracker.

The memoization register stores the partially computed result of bottom MLP, corresponding

to static bottom MLP, which is reused across queries. During execution, the memoization register
value is read and concatenated with other model components. If inputs to the static bottom MLP

change, the register value is updated in the background without interfering with the query execution

100

Write Update Read

i "1 On-chip Hardware Unit IR/W Scratchpad 4Scratchpad

! Background)]
CPU AV TP PO, (!
Quant Top MLP :| Memoization Register | :
L) : Hist N

- B
| Concat & Quantize | ||! 1| ¢ ’\ :
g 7Y Ly x 1||. "Oldest " .]]
) 1 . . - 1 1
3 k. Dyn ||Reduction|| ! Loetn Adds Updated ! !
& i WilOldest loctn | Hist|Updated | |
f‘; S Bot MLP ‘ n-1| Oldest | |
@ T T PR ===t hist| Oldest | [1
T | . X » 1
|Memaiz-|i| Location) ‘3’(‘6 L n | (End) |
Strt/En " .ation -[|| Tracker | = : Location Tracker User-specific ;
Sessions {f- - - | I) RS- 1 Scratchpad !
N e o2 2Udatt pad_,

Figure 5.8: Proposed Duet architecture with an on-chip hardware unit and quantized int8 precision
support to efficiently process the user model at the edge.

flow.

User-specific Scratchpad: Decomposing embedding tables into user and item embedding allows

us to store only user-specific embedding tables on the device. However, we still have to access off-
chip memory to fetch user embeddings into the CPU. Since the user-specific embedding table size
is in the order of KBs that stores only a fixed length of history, we propose a user-specific on-chip
scratchpad residing in the hardware unit to eliminate the DRAM accesses altogether. The scratch-
pad should contain only the most up-to-date history; thus, it requires a mechanism to populate and
update the scratchpad as described below.

Scratchpad Population: User embeddings are related to past user activities, such as apps installed
on the device, past liked movie genres, past clicked movies, etc. At the start of a session, the
scratchpad is pre-loaded with the user embedding table, base address [Base Addr] & end address
[End Addr] registers, and oldest embedding location address register [Oldest Loctn Addr] in the
scratchpad from the previous session. As the session unfolds, we update the scratchpad with user
embeddings corresponding to recent user interactions of the current session. If the user clicks on
a new item, we update the scratchpad with the item’s associated embeddings. There will never be
a scratchpad miss because the history size is fixed to the past n lookups. Consider the previously

discussed example of movie recommendation where n is 10, and the scratchpad contains the past

101

10 liked movie entries. When a new movie 11 is liked by the user, the oldest entry in the scratchpad
(movie 1) is removed, and it is populated with movie 11 embeddings. Simultaneously, movie 2
becomes the oldest entry in the scratchpad.

Scratchpad Update: We maintain an up-to-date user history on the small scratchpad with the

help of a lightweight location tracker, as shown in Figure 5.8. It provides the address of the oldest

embedding location on the scratchpad, which is overwritten on a scratchpad update to keep a fixed
history of length n. Tracker simultaneously also updates the oldest location address to the next
oldest location, which will be written next. To update Oldest Loctn Addr, the hardware location
tracker compares the values of Base Addr register and the current Oldest Loctn Addr register. In
case of a mismatch given by a comparator, Oldest Loctn Addr is decremented or moved up (red
arrow), pointing to the next oldest location. However, in case of a match, we have to circle back
to position n (green arrow) and update the Oldest Loctn Addr register with the End Addr of the
scratchpad. At the end of the current session, the scratchpad entries and the tracker state is stored
in the main memory, which a later session can retrieve. In this way, we continuously populate
and update the scratchpad to maintain recent user history in a lightweight manner. The update
action is performed in the background whenever a user clicks on a recommended item at the end
of query execution and does not interfere with the execution flow. The scratchpad will have the
most updated history during the execution, and we simply look up (read) all the entries to retrieve
user embeddings.

Duet architecture can easily support multiple models or apps sharing the scratchpad. Different
models can store their hardware unit state in the memory, which is retrieved when a session starts
to warm up the hardware unit. Scratchpad is also available to other applications in the absence
of any recommendation sessions on the device. Thus, we enable high utilization of the expensive

silicon area occupied by the hardware unit.

102

5.2.6.2 Heterogeneous precision with int8

Lower precisions are the most prominent solution for faster and more energy-efficient ML models.
Splitting MLP stacks on multiple platforms presents an opportunity to have different precision
on each platform, especially for resource-constrained edge devices that prefer int8 precision for
performance and energy efficiency. Since the major fraction of the bottom MLP stack is pre-
computed and does not need real-time computation, it does not consume significant energy or time.
However, user top MLP is computed for every query in its entirety and also constitutes the major
portion of the top MLP stack, thus consuming more energy and time. We observe that by reducing
the user model’s top MLP precision from fp32 to quantized int8 precision, we can reduce the MLP
energy (time) and the data-transfer energy (time) because of payload size reduction. Thus, we
utilize the post-training static quantization int8 (qint8) precision for the user top MLP to convert
it to int8 precision for inference. The concatenated output of the bottom MLP and embeddings is
quantized during execution and processed by the quantized user top MLP to produce an output in
qint8 precision, which is communicated to the cloud. Hence, quantization reduces computing and

communication energy and time.

5.2.7 Multiple device synchronization

A user may have the same recommendation app on multiple devices, such as a smartphone and
laptop, which leads to each device viewing only partial user history. Thus, there is a need for
synchronization between devices. For all practical purposes, recommendation sessions for a user
owning multiple devices will be in a serial fashion. Once a session is closed on device A, it will
transfer its history via Bluetooth or wi-fi network to the next session on device B. An alternative
is to use the cloud as the point of synchronization, where at the end of the session, device A will
send its partial history back to the cloud, which will be communicated to the next device B. The
communication overheads are limited to the size of partial history, which will be a fraction of the
KBs of the complete history. In our diverse set of models, 4 out of 5 have a user history of <60KB,

and only the fraction corresponding to a partial view of a few KBs is needed for synchronization.

103

Model Bottom Top #EMB | #Lookups | EMB size
MLP MLP tables | per Emb | (#entries)
RM1 [97, 95] 128-64-32 256-64-1 8 80 4M
RM2 [97, 95] 256-128-64 128-64-1 32 120 500K
RM3 [97,95] | 2560-1024-256-32 | 512-256-1 10 20 2M
RM4 [synthetic] 512-256-32 2560-1024-1 10 20 M
RMS [237] - 200-80-2 3 1-200-200 M

Table 5.1: Model configurations used for evaluation.

Samsung S10e (Snapdragon 855) | X86 Server
Cores 1xA76 @2.84 GHz, 18 @3.7Ghz
3xA76 @2.41 GHz,
4xAS55 @1.78 GHz
L1 cache | 1x128KB, 3x128KB, 4x128KB 32KB
L2 cache | 1x512KB, 3x256KB, 4x128KB 1MB

L3 cache | 2MB 25MB
SIMD NEON AVX-512
DRAM 6GB, 34.1GB/s 90 GB, 80 GB/s

Table 5.2: Architectural specifications for mobile and server.
Importantly, this synchronization can be done at the end of a session and not necessarily during
execution. The overheads are related to the transmission energy, which for a 10KB over Bluetooth

network of 1W/3Mbps is 0.027].

5.3 Methodology

We evaluate our solution for the five models listed in Table 5.1. Each model has a different bot-
tleneck. Models RM1 and RM2 are embedding-dominated, RM3 is bottom MLP-dominated, and
RM4 is top MLP-dominated. RMS5 is also embedding-dominated but does not have dedicated item
embedding tables. The last two embedding tables double as user and item embeddings, i.e., out
of 200 embedding table lookups, 199 correspond to the user history, and one corresponds to the
candidate information. The first embedding table is for user_ids; thus, an incoming user query with
a unique user-_id will perform one lookup on the user_id embedding table.

The baseline is evaluated on a server-class machine, and mobile performance results are eval-

104

uated on a Samsung 10E platform. The configurations are listed in Table 5.2. To support our
techniques, we extend an open-sourced caffe2-based benchmarking framework provided by prior
work [95]. We enable multi-threading for the caffe2 models to utilize the multi-core capabilities of
the servers. To support the mobile platform, we extend the framework to export x86 caffe2 models
to ARMvS caffe2 models. ARM Caffe2 models use QNNPACK as the backend library to support
quantized int8 precision on the mobile platform. To emulate the scratchpad’s behavior on the edge
device, we store the user-specific embeddings on the L3 (System) cache of Samsung S10E, our
edge evaluation platform. The location tracker is synthesized separately using a 15nm commer-
cial library. We report its post-synthesis timing, area, and power in Section 5.4.6. We utilize the
speed benchmark utility provided by caffe2 to determine execution time and timing breakdown.
Our programming model batches all inferences of a query and uses multi-threading to distribute
the work on all cores of the server. Simultaneously, the mobile platform performs its user model
computation once for a query.

To study accuracy impact, we train models RM1-3 for the Criteo Kaggle advertising dataset
[8] using an open-sourced DLRM framework [174] and model RM5 for the Amazon electronics
dataset [167] using an open-sourced DIEN framework [11]. The RM1-3 models are trained for
MLP stack definitions listed in RM1-3 in Table 5.1. Based on Alibaba’s Taobao dataset [1, 30] that
explicitly state input feature definition, static inputs corresponding to user profile information are
88% (8/9) of total inputs, and dynamic inputs constituent the remaining 12% (1/9). Such feature
definitions are not explicitly available for DLRM datasets that are available publicly. Thus, we
assume a similar % split for them and divide the bottom MLPs in the static-dynamic input ratio of
87.5%-12.5%. The embedding tables are split into user-item embedding ratios of 75%-25%. Since
there is no explicit feature description corresponding to each embedding in the dataset, we assume
the first 75% to be user embeddings and the remaining 25% to be item embeddings to show the
decomposability of the model. Furthermore, we also split the first two layers of the top MLP stack
into the user and the item model; the last layer is not divided and is part of the combined top MLP.

The RMS model and its dataset are more descriptive about feature definitions, so we can ex-

105

actly decouple the user-history access and the candidate-specific accesses for the last two shared
embedding tables. The decoupled user-history information is concatenated with the user_id em-
bedding table entry to produce a user feature vector. Similarly, the decoupled candidate-specific
information is the item feature vector. We split the first layer of the top MLP stack proportional to
the user feature vector length and item feature vector length with a ratio of 60%-40%. The last two
MLP layers are not divided and are part of the combined top MLP.

The energy estimates are extracted by means of the python RAPL library for the server compu-
tation; we also utilize battery state dumps comprising charge counters and voltage measurements
for the mobile platform. The maximum data upload speed of 24 Mbps is obtained from a speed
test on a mobile phone over the 5G network, and the energy estimate is obtained from a recent 5G

characterization work [173].

5.4 Evaluation

In this section, we first present the query latency and energy benefits of Duet. We then demonstrate
the accuracy impact and discuss the latency breakdown for individual components for different
models. Next, we exhibit the benefits of the lightweight Duet architecture over Duet without
hardware optimizations and discuss its overhead. We then show results for throughput over a wide
range of batch sizes. Finally, we demonstrate the advantage of Duet with near-memory processing

(NMP) support over prior NMP embedding approaches.

5.4.1 Performance

We demonstrate the reduction in query latency for query sizes of 1024 and 256 candidates in Figure
5.9. We observe that for a query size of 1024, the average latency reduces by 6.4x compared to
the baseline. Similarly, for a query size of 256, we reduce the average query latency by 5x.
Since our holistic approach resolves all three components of a recommendation model, we present

consistent gains across all the models, which are bottlenecked on different components. The gains

106

;. Baseline m Duet
Query Size 1024

3
100 1
80
60 -
4.2x 6.4x
lLII-“ >
0 J
RM 1

Query Latency (ms)
N

N
o
1

7
4x
RM 2 RM 3 RM 4 RM5 Geomean
(a)
m Baseline mDuet

93
4x Query Size 256
3.9x 5X
RM 1 RM 2

RM 3 RM 4 RM5 Geomean
(b)

N w
[¢)] o
1

N
o

Query Latency (ms)
3 &

a

o

Figure 5.9: Query latency reduction across all the models for query size 1024 and 256 inferences.

107

are attributed to three factors: 1) decomposing the monolithic model into two smaller concurrent
models, thus, overlapping the computations; 2) processing the user embeddings and dense bottom
MLP once per query, which significantly reduces the DRAM access and MLP computation; and
3) optimizing the user model on edge with the lightweight Duet architecture. The architecture
comprises an updated user-specific scratchpad, memoization for static bottom MLP, and lower
qint8 precision for top MLP to reduce the computation and memory demands, which altogether
eliminates(stops) the user model from becoming a bottleneck.

As observed in Figure 5.9, the RM1-RM3 models have higher gains over the RM4 model. This
is because RM1-RM3 models compute a significant fraction of the dominating components, i.e.,
user embeddings and bottom MLP, once per query in an optimized fashion on the edge platform.
However, RM4 computes the relatively heavy (item + combined) top MLP (>1MB) repeatedly
for all the recommendation inferences on the datacenter, which consumes a considerable fraction
of the total execution time. Meanwhile, RMS5 has the highest speedup because of the following
reasons. First, there is no separate item embedding for this model, which reduces the datacenter’s
item model size. Second, 199 of the 200 lookups for the two shared user/item embedding tables
correspond to the user history, which is computed only once with edge platform optimizations.
All inferences of the query reuse the edge computation, and each inference performs only one
remaining lookup to rank the candidate. Thus, we reduce the number of embedding lookups from
query _sizex200 to query_sizex 1 for the embeddings. In a later section, we provide a detailed

latency breakdown of various components on the edge and datacenter.

5.4.2 Energy

We exhibit the energy efficiency of our proposed solution, Duet, over baseline in Figure 5.10.
The baseline constitutes only the datacenter energy consumption (brown). But our collaborative
edge-cloud solution constitutes datacenter (brown), edge computation (yellow), and data-transfer
(hashed) energy consumption. We observe an energy reduction of 4.6 and 2.5 for a query size

of 1024 and 256 items, respectively. The average datacenter energy consumption decreases by an

108

<
o
4
I
<>
[4 x I
(O]
b S Q
C A
& o |
= N
© o) -
T = ¥
A -] I
g
(O]
) %
O N~
L o
I
[
£ <+ x I
c ~
8 o
S <
©
Q
u <«
A..
]
I T T 1
o o o o
o™ N ~
(p) ABuouz Alend

long
auljeseg
1ong
auljeseg
lengd
auljeseg
leng
auljeseg
lengd
auljeseg
loeng

auljeseg

RM5 Geomean

RM 2 RM 3 RM 4

RM 1

(a)

Query Size 256
itﬁ

(r) ABaaug Auenp

1ong
auljeseg
1eng
auljeseg
JonQ
auljeseg
JonQ
auljeseg
JonQ
auljeseg

ond

RM5 Geomean

RM 2 RM 3 RM 4

RM 1

(b)

Figure 5.10: Energy consumption across all the models for query size 1024 and 256 inferences.

109

average of 7x at the expense of an additional small fraction of energy consumption on edge. The
datacenter’s energy efficiency improves because Duet distributes the work in the user model at the
edge and the item model at the datacenter, which overall reduces the amount of work completed
on the datacenter. Moreover, our Duet architecture’s energy-centric optimizations reduce the edge
device’s energy consumption. Below, we discuss the breakdown of energy consumption for a
query size of 1024. Similar behavior is observed for a query size of 256, with deviation discussed
separately.

For embedding-dominated RM1 and RM2 models, more than 97% of Duet’s total energy is con-
sumed in the datacenter, which computes item embeddings, item-specific top MLP, and combined
top MLP. The remaining 3% of energy is consumed on the edge platform for user model process-
ing and data transfer. For the bottom MLP-dominated RM3 model, the datacenter consumes 75%
of the Duet energy, and the edge consumes the remaining 25%. The edge energy consumption in-
creases from 5% to 25% because the heavy bottom MLP of RM3 is computed on the edge device.
Nonetheless, because the bottom MLP is split into pre-computed static and dynamic bottom MLP,
we lower the query energy by 3.7 x by limiting the energy consumption to only dynamic bottom
MLP.

Next, for the top MLP-dominated RM4 model, the energy spent by Duet on the datacenter and
the edge is 36% and 64 %, respectively. The edge device consumes more energy than the datacenter
because, although quantized, a heavy user top MLP of 1.9 MB is computed on the edge device with
2MB of L3 cache. Quantization greatly reduces the user top MLP size from 7.5 MB to 1.9 MB,
but the working set size with activations and other model components is still greater than the cache
capacity. It does not completely eliminate DRAM overheads. However, compared to the fp32
model, the quantized qint8 model lowers the edge and the data-transfer energy to yield an overall
query energy reduction of 1.3x.

An exception to the above-discussed results is the energy consumption of the RM4 model for a
query size of 256 candidates. We find that the total energy consumption of Duet is greater than the

baseline, which computes the entire model for 256 candidate inferences on the datacenter. This is

110

Model | Base (%) | Duet w/o quant (%) Duet
Accuracy Accuracy Accuracy (%)
RM1 78.71 78.68 78.64
RM2 78.67 78.66 78.62
RM3 78.75 78.71 78.69
RM5 68.74 68.97 68.97

Table 5.3: Accuracy comparison between Duet & baseline models
because the energy consumed by the heavy user top MLP at the edge platform, even though just
once for a query, is higher than processing all the 256 inferences on the datacenter. Therefore, the
energy consumption of the edge model could not be amortized across 256 inferences. However,
for the query size of 1024, the user top MLP energy consumption is lower than 1024 inferences;
thus, the edge platform energy was amortized across 1024 inferences, resulting in overall energy
reduction.

We also demonstrate a significant energy reduction of 23 x for the embedding-dominated RM5
model because the major fraction of the embedding lookups, attributed to the user history, are
computed once on the edge platform in an optimized manner. Moreover, after Duet’s distribution of
work, the energy consumption becomes more balanced, with the datacenter and the edge platform

consuming 46% and 54%, respectively.

5.4.3 Accuracy

We show the accuracy of our re-trained decomposed model for Duet and compare it with the
baseline accuracy of the monolithic model in Table 5.3. We show that our Duet model (with
bottom MLP split, user and item embedding split, and top MLP split) can achieve a comparable
accuracy with an accuracy drop limited to <= 0.03% across the models. Once the user top MLP
adopts a quantized int8 precision, we achieve accuracy within 0.06% of the baseline accuracy, thus,
still limiting the accuracy impact at a lower precision.

The benefit of quantization is more energy efficiency for the energy-constrained user device.
We find that for a query size of 1024, the average query energy consumption for non-quantized

Duet is 2.8 x, which increases for quantized Duet to 4.6 x. Meanwhile, quantization does not have

111

any considerable impact on the end-to-end query latency because the edge user model is able to
complete and produce its result well before the item model at the datacenter is ready to consume
the edge result. Thus, the latency is bounded by the datacenter computation. Hence, we provide
a trade-off where we can offer a more energy-efficient model with a minimal impact of 0.06% on
the accuracy or reduce the accuracy impact to <= 0.03% without energy-specific optimization. In

both cases, the accuracy impact is less than our threshold(< 0.1%).

5.4.4 Latency Breakdown

We have already discussed the overall query latency reduction for all the models and multiple
query sizes in the prior section. This section presents the query latency breakdown for a query
size of 1024 and describes, in detail, the time spent during execution on various components. We
show the latency breakdown in Figure 5.11 for one of the embedding-dominated models (RM2),
the bottom MLP-dominated model (RM3), and the top MLP-dominated model (RM4).

As presented in Figure 5.11a, the baseline RM2 model spends 73% of the time on user embed-
dings, 24% on item embeddings, 2% on the bottom MLP, and 1% on the top MLP. Decoupling the
user and item embeddings and storing only user-specific embeddings on the on-chip scratchpad
at the edge device has two benefits. First, we retrieve the contiguous user embeddings faster than
random DRAM access on the datacenter. Second, we compute this significant fraction of user
embeddings once for the query, reusing the computation across all the inferences of the query.
The combined execution time of bottom and top MLP stacks is also reduced to <1% of total Duet
execution time because of our hardware optimizations for MLP stacks. Eventually, the datacenter
computation limits the overall performance after decomposing and offloading the lightweight user
model to the edge device.

For the bottom MLP-dominated RM3 model, a major fraction of the execution time (44%) for
the baseline is spent on processing the bottom MLP, as illustrated in Figure 5.11b. The remaining
timing breakdown is 37% on user embeddings, 12% on item embeddings, and 7% on the top MLP.

We optimize the bottom MLP and user embeddings by computing them once per query with our

112

m Bot MLP m User EMB Iltem EMB m Top MLP
m User Top MLP = Data-transfer mItem Top MLP

400 4 372.69 100 4 93.73
go | 026
300
m m
1S]
£ =97 o013
& 200 - %)
C C
ko) 9 40 A
. 3 0
100 20 | .
! 0.19)
0 0- ‘ \
User Model Edge Iltem Model
Datacenter
Baseline Duet

(a) Embedding-dominated model (RM2) latency breakdown

30 + 6 1 5.71
25.71
251 |- 5402
@ 20 | @4 -
£ E o012
315 A 33
C ey
i))
® 10 { 824 o/ WE
5 A 14 J‘J \“x
1023}
0 04 —
User Model Edge Item Model
Datacenter

Baseline Duet
(b) Bottom MLP-dominated model (RM3) latency breakdown

30 1 8 -
25.93 B REY: 7.18
25 4
61 12
@ 20 m
£ A
315 - 344
5 5 .
T 10 - 53
2 /168"
N ' .
0 - 0-
User Model Edge Item Model
Datacenter
Baseline Duet

(c) Top MLP-dominated model (RM4) latency breakdown

Figure 5.11: Latency breakdown for RM2-4 models across all components for both the edge and
the datacenter platforms.

113

m Duet w/o HW Opt Duet w/ HW Opt

(@

S 1
©

_g 0.8
o 0.6 |
o

> 04 |
20

o 0.2
[

w 0
Q

o0 N Vv > ™ \e) A

Figure 5.12: Impact of HW optimizations on edge device across all models.
Duet architecture on the edge platform, thus significantly reducing the individual component’s
execution time. The top MLP’s execution time also decreases because the top MLP layers are
decomposed, which decreases the computation in the datacenter. We also notice that the edge
device spends the majority of time on the user model’s top MLP. The two original bottlenecks are
diminished because the hardware unit’s memoization register stores static bottom MLP output, and
its on-chip scratchpad optimizes user embeddings.

We exhibit in Figure 5.11c the execution time breakdown for the top MLP-dominated RM4
model. 54% of the time is spent on the top MLP, 29% on the user embeddings, 10% on the item
embeddings, and 8% on the bottom MLP. Duet’s architecture optimizes the top MLP time by
splitting top MLP layers into user-specific, item-specific, and combined top MLP layers. The user
top MLP on edge is computed once with qint8 precision and overlaps with computation on the
datacenter. Moreover, splitting reduces the size of the datacenter’s top MLP; thus, it completes all
the 1024 inferences sooner than the baseline. Additionally, the user embedding and bottom MLP
fractions are also reduced because of Duet’s optimizations.

Note that an additional data-transfer time is added to Duet, but we limit it by reducing the

payload size with the user top MLP processing and quantization.

114

5.4.5 Hardware Optimization Impact on Edge

Until now, we have presented results with all hardware optimizations enabled for the complete
edge-cloud system. In this section, we study the energy impact on the edge device and show the
benefits of hardware optimizations (Duet w/ HW Opt) over the software-based model decomposi-
tion (Duet w/o HW Opt). The Duet w/o HW Opt only decomposes the monolithic model into user
and item models but does not enable hardware edge optimizations — hardware unit (user-specific
scratchpad and memoization register) and qint8 precision. Though model decomposition reduces
overall work through compute reuse, it adds work on the edge device due to the processing of the
user model, which consumes considerable energy. As illustrated in Figure 5.12, hardware edge
optimizations reduce this edge energy consumption of user models by 83% on average. Both the
hardware unit and lower qint8 precision contribute toward the energy reduction of each model.
However, significant gains for embedding-dominated RM1 and RM2 models are attributed to the
user-specific scratchpad of the hardware unit. We also obtain a 97% energy reduction for the
bottom-MLP dominated RM3 model because the compute-intensive static bottom MLP’s output is
memoized, significantly reducing the MLP workload during execution time. Top MLP-dominated
RM4 model energy consumption is also reduced by edge-friendly lower (qint8) precision. Finally,
all the models benefit from the reduction in data-transfer energy over 5G, owing to a smaller output
(payload) size of quantized user top MLP. Overall, the hardware optimizations lead to only an 8%
reduction in battery life compared to a 25% drop without any optimizations for a user query com-
puted every minute. There is still a slight drop in battery life because of the additional compute
added by the user model processing on the edge device.

We also compare the energy consumption of the end-to-end edge-cloud system for a query
(size 1024) with hardware optimizations disabled and enabled. We observe that the average energy
consumption is lowered by 1.8x without hardware architecture because of a reduced amount of
work. However, the edge consumes a significant fraction of total energy. By enabling Duet’s
energy-efficient architecture for the edge device, we reduce the system’s query energy by 4.6 .

In conclusion, model decomposition decreases overall work, resulting in query energy reduc-

115

Model | Scratchpad | Scratchpad
Size (KBs) | Area (mm?)
RM1 60 0.020
RM2 720 0.238
RM3 17.5 0.006
RM4 17.5 0.006
RMS5 28.2 0.009

Table 5.4: Scratchpad Overhead
tion. Nevertheless, it also computes the user model on edge, which consumes significant energy at
the energy-limited device. Our proposed Duet architecture reduces the edge energy consumption;

thus, it is extremely important for the viability of model decomposition.

5.4.6 Hardware Unit Silicon Overheads

Table 5.4 presents the on-chip scratchpad size required for storing user-specific embeddings by
the different models. These are derived from a recent SRAM design in 10nm technology node
[93]. The location tracker is synthesized separately using a 15nm commercial library at a clock
frequency of 2.8Ghz. The post-synthesis timing is just 0.33ns@0.66mW and occupies 250um?.
Thus, our location tracker is an extremely lightweight unit. The majority area of the hardware
unit is occupied by the scratchpad. Embedding heavy RM2 requires the largest scratchpad space
of 720 KB, corresponding to 0.24mm? of silicon area. In contrast, all the other models require
only a few tens of KB of scratchpad and <0.1mm? area. Thus, Duet is a high-performance and

energy-efficient solution with negligible area overheads.

5.4.7 Sensitivity to Batch Size

Figure 5.13 illustrates throughput improvement over a wide range of batch sizes from 8-1024 for
embedding-dominated model RM2, bottom MLP-dominated model RM3, and top MLP-dominated
model RM4. In this work, we assume a single node server computes all the items of the query.
However, a query can be composed of multiple batches that are distributed by the front-end server

across multiple servers. We demonstrate that Duet increases the average throughput by 3. Models

116

RM2 Duet = =<RM3 Duet RM4 Duet
200 - RM2 base == RM3 base RM4 base
180 - pmmemme

Inferences/ms
el el e
A 00 O NN b O
OO O O O o o
\
\
\
\
\
\
\
\

B
o
1
\
\

§

o
L

8 16 32 64 128 256 512 1024
Batch Size

Figure 5.13: Throughput improvement for multiple models over a wide range of batch sizes
RM2-3 provide consistent throughput gains for all batch sizes. However, throughput decreases for
the RM4 model at smaller batch sizes of 8, 16, and 32. This behavior is because the user model’s
execution time at the edge device is higher than the total time taken to process all the items of a
batch, sized 8-32, in the datacenter; hence, edge model computation becomes a bottleneck. The
RM4 user model’s edge latency could not be amortized across 8-32 inferences of a batch because
the heavy user top MLP (1.9MB) of RM4 cannot be completely cached, leading to higher latency
than RM2-3 user edge models. RM2-3 models are embedding and bottom MLP heavy; the pre-
computed static bottom MLP and an on-chip scratchpad make these models lightweight, even for

small batch sizes.

5.4.8 Comparison to NMP solutions

We also compare Duet with two recent state-of-the-art near memory processing (NMP) based
techniques: RecNMP [133] with an average 10x embedding speedup and TRiM [184] with an
average 39x speedup (3.9x reported speedup over RecNMP). The NMP solutions are targeted
to resolve the embedding bottlenecks. Notably, as a secondary impact, they also improve the

performance of MLP layers because of lowered cache evictions of MLP weights and activations,

117

M State-of-the-art NMP Duet NMP

40.3
Tn‘
§10
S
5 5
w 0
— o S o > o >
= o = [= o
= - = = = -
O O (&)
] [¢)) [¢)
o o o
RM 2 RM 3 RM 4

Figure 5.14: Comparison of NMP-enabled Duet with state-of-the-art NMP solutions.
which otherwise are replaced by embedding vectors. The NMP techniques are complementary
to our solution; therefore, we also utilize these techniques for our item model computation at the
datacenter for a fair comparison. Our NMP-enabled Duet solution has two parallel running models.
The user model at the edge is by Duet’s architecture without NMP support, and the item model at
the datacenter is computed with NMP enabled for the item embeddings. To support NMP for our
framework, we scale the item embeddings by the embedding operation speedups reported by prior
works and determine the MLP speedups by performing the MLPs standalone on the server without
any interruption from embeddings, thus, eliminating eviction impacts.

In Figure 5.14, we compare the NMP-enabled Duet with the two solutions — RecNMP and
TRiM - for embedding-dominated model RM2, bottom MLP-dominated model RM3, and top
MLP-dominated model RM4. Duet-NMP decreases the average query latency by 4.18 x and 4.2 x
over RecNMP and TRiM because the distribution of models reduces the amount of work that is
completed at the datacenter compared to computing the entire model on the datacenter. Thus, at
the datacenter, Duet-NMP completes a lesser amount of work faster than the state-of-the-art NMP
solutions.

We also show improvements for MLP-dominated RM3 and RM4 models and for high NMP
embedding speedups (thus, practically eliminating the embedding bottleneck) because of the de-
composition of the MLP stack on the edge and the datacenter. A high speedup of 8.7 is observed

for the RM3 model, as we memoize static bottom MLP output and, thus, eliminate that computa-

118

tion. For the top MLP-dominated RM4 model, the average speedup is 2.7, which is compara-
tively smaller than RM3. This is because the remaining item top MLP at the datacenter consumes
a considerable execution time by repeatedly performing all the inferences of the query. Hence,
overall, our holistic approach that individually optimizes all the components of the recommenda-
tion model can provide speedups over state-of-the-art NMP solutions across models with different

bottlenecks.

5.5 Discussions

Scalability: Duet’s scalability is driven by the size of user-specific embedding tables, which, com-
pared to entire embedding tables (10+ GB), are small because they store only a fixed length of
the user history. While for the current models considered in this work, the size of user history is
limited to < IMB. However, if the user history becomes too large for future models, we may
have to employ intelligent tiered solutions by partitioning user-specific embedding tables into
scratchpad and DRAM. To reduce DRAM overheads, we can leverage near-memory processing
for user-embedding operations on DRAM at edge devices. Moreover, new technologies like dense
STT-RAM and embedded NVMs can accommodate larger user-embedding tables.

Training Cost: We train the decomposed model from scratch for Duet, as discussed in Section
5.2.5. Although the model is trained once offline in the datacenter, still training the model takes 10+
hours. Therefore, it is important to reduce the training time. Many recent works [48, 49, 147, 196]
have focused on accelerating the training of the recommendation models, which can be adopted by
Duet to reduce the training overhead. The other option is to amortize the training cost by serving
thousands of queries over a long period of time. To our advantage, the weights and embedding
values of the decomposed model are generic and not fine-tuned for individual users; thus, it can be

offloaded to any user device, serving queries from all users at any point in time.

119

5.6 Conclusion

Recommendation models process multiple candidates to recommend only a few to the user. They
also exhibit non-uniformity in their inputs, which can be categorized as user inputs and item inputs.
This work explores the opportunity to decouple the two inputs and operate on user-related inputs
at the local edge device, thus enhancing data privacy. We present Duet, a novel collaborative edge-
cloud recommendation system, which decomposes the giant monolithic model into two smaller
concurrent models — a user model on edge and an item model on the datacenter — that come together
to deliver final recommendations. The user model is computed once per query by our new energy-
efficient Duet architecture on the resource-constrained edge device, and its output is reused by
all the candidates computed by the item model on the datacenter for the query. We demonstrate
that our proposed lightweight Duet architecture reduces query latency by an average of 6.4x and
lowers average energy consumption by 4.6 <. Until now, we have proposed hardware-software co-
design approaches which modify the application based on the hardware present in the edge device.
In the next chapter, we will present a new hardware design and efficiently map popular mobile

applications on the proposed hardware architecture.

120

CHAPTER 6

Interconnect Architecture for System-in-Package

Based Low-Cost Edge Platforms

As discussed in previous chapters, the goal of this dissertation is to improve the consumer experi-
ence for edge platforms. In this chapter, we provide a performance and energy-efficient low-cost
mobile architecture. Mobile/Smartphones represent a major fraction of the space of edge devices.
At present, smartphones have a Systems-on-Chip (SoC) at their heart for all computational pur-
poses. While SoCs are becoming more powerful to fulfill the computational demands of emerging
applications, they are also simultaneously getting expensive to develop. SoCs require huge initial
capital investments because of their monolithic nature, shift to expensive technology nodes, the
inclusion of more custom IP blocks, and lower yields. This is driving up the retail cost of smart-
phones for users. To replace sophisticated, expensive SoCs, we need a cheaper alternative with
comparable or better performance and energy efficiency to serve user demands for powerful and
reasonably priced smartphones. In this chapter, we explore the potential of the emerging 2.5D-
based System-In-Package (SiP) architectures to lower these costs while simultaneously improving
the performance and energy efficiency of edge applications.

In a SiP, individual IPs are manufactured separately as chiplets. These small chiplets are then
integrated on an interposer substrate using a low-cost assembly step, avoiding many other expen-
sive and mandatory steps required to integrate SoCs monolithically. The modular nature of SiP has
many other benefits, like cheap reuse of IPs across multiple domains, higher yields, heterogeneous

integration of multiple technology nodes, and shorter time to market. Clearly, SiP has the potential

121

m Bandwidth Normalized Performance

‘@ 35 1.2§
& 0 L S
825 0.8@8

(2]
2 20 i
) OGD_(D
n 15 04'OE
e . O ®©
§10 02%@
50 0 2

Ideal N/'W Current SiP SoC Ideal N/'W Current SiP SoC
Youtube Gallery

Figure 6.1: Bandwidth served by an ideal network (with infinite bandwidth), recent SiP, and SoC
for YouTube and Gallery applications.

to reduce the startup cost of indigenous heterogeneous systems like SoC and IoT systems.

In this chapter, we propose Neksus — an interconnect architecture for SiP designs based on
2.5D stacking on an interposer substrate. Neksus includes a general and flexible interconnect
layer to support modular “plug-and-play” of chiplets while mitigating the area overheads of micro-
bumps connecting to/from the interposer layer. The design comprises a hub-interconnect chiplet
that connects to IP chiplets via mini-chains, paired with a Network Interface (NI) and SerDes
module within each IP chiplet. Besides decreasing micro-bump area costs, our mini-chains are
tailored to support common data-flow patterns of applications, which are typical of mobile and
IoT platforms. Data-intensive applications, such as video streaming and audio-playback, consist
of recurring patterns in which data frames flow sequentially (i.e., in a pipelined manner) through
several IPs, each writing and reading intermediate (and final) results to and from memory. In this
work, we show that such flow patterns can benefit from the mini-chain structure, which enables
direct IP-to-IP communication with no intermediate data buffering in memory. Finally, we develop
a protocol shell within the NI to support compatibility with existing SoC protocols, offering a low
barrier for porting current infrastructures to our proposed architecture.

In our evaluation, we show that mini-chains improve application performance by 28% with 31%
energy savings in a SiP system. We also study the deployment of mini-chains in SoC systems and

show that it can improve performance by 28% with 36% energy savings.

122

6.1 Motivation

SiP-based designs have an immense potential to reduce the startup cost of developing a new hetero-
geneous chip by allowing cheap reuse of IP. However, for the emerging 2.5D-based SiP framework,
a flexible interconnect solution that addresses the design constraints of SiPs is still lacking. Hence,
in this work, we present a holistic interconnect architecture for SiP systems. Our approach is
governed by three key design principles based on SiP characteristics. First, to enable plug-and-
play of IP chiplets, the interconnect architecture should require minimal changes to the chiplets’
designs, and the network layer should be largely decoupled from the IPs. Second, we strive to
minimize the number of expensive micro-bumps, which facilitate the electrical connection be-
tween chiplets and interposer layer. They are expensive area resources as their size does not scale
at the same rate as the feature size of transistors. For instance, a 256-bit bidirectional port with
40um pitch micro-bumps occupies ~0.41mm?, while a bitcoin chiplet [136], at the 16nm tech-
nology node, occupies only ~0.23mm?. This gap between chiplets size and micro-bump port size
will increase as we move to lower technology nodes for better performance. There is a need to
reduce the number of micro-bumps to avoid the extra silicon cost of accommodating more micro-
bumps. Lastly, the network layer should leverage high speed/bandwidth interposer link to sup-
port bandwidth-intensive SoC applications. Recent SiP [131] interconnects or conventional
mesh based SoC are unable to serve the bandwidth requirements of mobile applications, which
can improve performance from increased bandwidth provided by an ideal network, with infinite
bandwidth, as shown in Figure 6.1. Towards this end, we present Neksus, a solution that features
an exclusive interconnect chiplet and a network interface to satisfy the SiP design requirements

and leverage interposer properties to support real-world applications.

123

Source | Destination | Flow Status

SRC 1 DEST 1 1

SRC 2 DEST 2 0

Network Interface (NI)

Figure 6.2: Neksus, the proposed SiP architecture (a) - Interconnect IP (b) - Flow control table at
edge routers (c).

6.2 Neksus Architecture

6.2.1 Interconnect Chiplet

We propose a dedicated interconnect chiplet acting as a central hub for two main reasons. First,
a dedicated chiplet supports modular “plug-and-play” integration since it minimizes the required
changes to existing IP chiplets. Second, in SiP, it enables heterogeneity by allowing IP chiplets
from multiple sources to connect directly to the interconnect chiplet. Figure 6.2 shows the SiP
integration model proposed in this work. The interconnect chiplet connects to other chiplets via
dedicated ports. Signals from each port travel through sender IP micro-bumps, the interposer
metal layers, and receiver IP micro-bumps to reach their destinations. An internal router network
is integrated within the interconnect chiplet, supporting any topology specified at design time.

Passive v/s Active. Although this work presents a passive interposer solution connecting to a
dedicated interconnect chiplet, a similar approach could be devised for an active interposer ar-
chitecture. We chose a passive interposer because of its more immediate commercial feasibility
[3