
Building User-Driven Edge Devices

by

Vidushi Goyal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2023

Doctoral Committee:

Professor Valeria Bertacco, Co-Chair
Associate Professor Reetuparna Das, Co-Chair
Associate Professor Achilleas Anastasopoulos
Associate Professor Jenna Wiens

Vidushi Goyal

vidushi@umich.edu

ORCID iD: 0000-0002-5008-3049

© Vidushi Goyal 2023

ACKNOWLEDGMENTS

It is my great pleasure to acknowledge all the people who supported me throughout my Ph.D. jour-
ney. First and foremost, I would like to thank my advisors, Prof. Reetuparna Das and Prof. Valeria
Bertacco, for showing faith in me and constantly guiding me through lows and highs. They always
supported my endeavors to explore my research interests. The numerous brainstorming sessions
helped me develop critical thinking and grow as a researcher. I learned various research aspects,
ranging from precise problem formation to clear presentation of ideas. Thank you again for shar-
ing your knowledge and expertise. I am also grateful for the thorough feedback and advice that
I received from my committee members Prof. Jenna Wiens and Prof. Achilleas Anastasopoulos.
Thank you for sharing your unique perspectives. It definitely made this dissertation stronger. I
would also like to thank Prof. Thomas Wenisch, who laid my strong fundamentals of computer
architecture through rigorous coursework and projects. Prof. Todd Austin for sharing his wisdom,
experience, and inspiration all along.

The University of Michigan gave me the opportunity to interact with many amazing and like-
minded people from across the world. I would genuinely like to thank all the members of ABRe-
searh and Mbits research groups, especially Doowon Lee, Salessawi Yitbarek, Abraham Addisie,
Zelalem Aweke, Arun Subramaniyan, Daichi Fujiki, Xiowei Wang, Fitsum Andargie, Lauren Bier-
nacki, Charles Eckert, Andrew McCrabb, Shibo Chen, Tarunesh Verma, and Alireza Khadem. I
thoroughly enjoyed my time and conversations with all of you. I would also like to thank CSE
Staff and ADA Staff for their support. Especially Magdalena Calvillo for being so prompt and
accommodating of my requests. Big thanks to writing specialists Lauren Rudewicz and Annika
Pattenaude. Annika, thank you for being so patient.

My Ph.D. journey would have been incomplete without the friendships I forged along the way.
Thank you, Nishil Talati, Shruti Nagaraja, and Tarunesh Verma, for your unequivocal support
through dark times. I will always cherish our road trips and board game nights. Thank you,
Hiwot Kassa, for our extensive dinner sessions. Sravanti Panja for always being a phone call away.
Abraham Addisie, Arun Subramaniyam, and Subarno Banerjee for being there to answer my long
job search questions. Akshitha Sriraman for being such a great mentor and friend. Thank you for
encouraging me, listening to me, and reminding me of my strengths when I felt lost. Thank you,
Tamanna Dubey, for your wise life lessons. I learned a lot from you.

ii

Finally, I dedicate my dissertation to my family. My grandfather, Harish Chandra Goyal, for
going against the norms and always prioritizing our education. My parents, Vinita Goyal and
Subhash Kumar Goyal, for being my rock and trusting my decisions. You let me chase my dreams.
Mamma, I wouldn’t be able to see the end of this road without you. My sister, Sugandha Goyal,
for tolerating all my tantrums and mood swings. For taking over my responsibilities and cutting
me some slack. Thank you for always having my back. My brother, Harshit Goyal, for constant
reminders about the bigger picture of life. Last but not least, thank you to Vikalp Aggarwal.
I am glad I could share this unique experience with you. I am grateful for your patience and
understanding. You ensured that everything and everyone was well managed in the back-end while
I focused on my goal. Big thanks for being so supportive and bearing the last leg of this journey
with me. I also want to express my gratitude to my extended family for their love and kindness
throughout this journey.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xi

LIST OF ACRONYMS . xii

ABSTRACT . xiii

CHAPTER

1 Introduction . 1

1.1 Strategies . 5
1.2 Contributions . 7
1.3 Dissertation Organization . 11

2 Background . 12

2.1 Edge Devices . 13
2.1.1 Smartphone/Mobile Devices . 14
2.1.2 IoT/Embedded Devices . 16

2.2 Edge Applications . 18
2.2.1 Computer Vision . 18
2.2.2 GPS Sensing . 20
2.2.3 Machine Learning . 21

3 End-to-End Machine Learning Based Approach for Energy-Efficient Multi-Sensor
Edge Platforms . 25

3.1 Motivation . 27
3.2 Seesaw . 28

3.2.1 Prediction Model . 29
3.2.2 Correlation Finder . 32
3.2.3 Seesaw Applicability . 32

3.3 Evaluation Platforms . 33
3.3.1 Mountable Video Camera . 33
3.3.2 Fitness Tracker . 37

3.4 Experimental Evaluation . 39

iv

3.4.1 Mountable Video Camera . 39
3.4.2 Fitness Trackers . 43
3.4.3 Prediction Model Overhead . 45

3.5 Conclusion . 46

4 User-Driven Lightweight Machine Learning for Edge Devices 47

4.1 Background & Motivation . 50
4.2 MyML Overview . 53
4.3 Building the User Model . 53

4.3.1 Pruning Background . 54
4.3.2 Bottom-up Pruning . 55
4.3.3 Collaborative Edge System . 58

4.4 Pruning Granularity . 60
4.4.1 Symmetric Pruning . 61
4.4.2 Asymmetric Pruning . 62
4.4.3 Which pruning granularity to use . 64

4.5 Pruning on Edge Accelerator . 64
4.5.1 Repurposed Edge TPU . 66
4.5.2 Conversion Error from FP32 to BFP16 68

4.6 Methodology . 69
4.7 Evaluation . 71

4.7.1 Inception-V3 . 71
4.7.2 Resnet-50 . 74
4.7.3 Adaptive System: . 76
4.7.4 Sensitivity Studies: . 77
4.7.5 Discussion . 82

4.8 Limitations . 84
4.9 Conclusion . 85

5 User-Driven Recommendation Systems . 86

5.1 Background and Motivation . 88
5.2 Proposed Collaborative Recommendation System 92

5.2.1 Model Decomposition: . 93
5.2.2 Embedding tables . 93
5.2.3 Bottom MLP stack . 95
5.2.4 Top MLP Stack . 97
5.2.5 Training Decomposed Model . 99
5.2.6 Duet Architecture . 100
5.2.7 Multiple device synchronization . 103

5.3 Methodology . 104
5.4 Evaluation . 106

5.4.1 Performance . 106
5.4.2 Energy . 108
5.4.3 Accuracy . 111
5.4.4 Latency Breakdown . 112

v

5.4.5 Hardware Optimization Impact on Edge 115
5.4.6 Hardware Unit Silicon Overheads . 116
5.4.7 Sensitivity to Batch Size . 116
5.4.8 Comparison to NMP solutions . 117

5.5 Discussions . 119
5.6 Conclusion . 120

6 Interconnect Architecture for System-in-Package Based Low-Cost Edge Platforms . 121

6.1 Motivation . 123
6.2 Neksus Architecture . 124

6.2.1 Interconnect Chiplet . 124
6.2.2 Mini-Chains to Reduce Overhead . 125
6.2.3 Application-Level Chaining . 127
6.2.4 Network Interface . 129
6.2.5 Protocol Compatibility . 130
6.2.6 Neksus for System-on-Chip . 130

6.3 Cost Model . 131
6.3.1 Cost Model . 131
6.3.2 Non-Recurring Expenses . 131
6.3.3 Recurring Expenses . 133
6.3.4 Yield Modeling . 134

6.4 Evaluation Methodology . 135
6.4.1 Design Parameters . 135
6.4.2 Performance Model . 136
6.4.3 Power Model . 137

6.5 Results . 138
6.5.1 Cost Analysis . 138
6.5.2 Network Performance . 140
6.5.3 Application Evaluation for Neksus . 144
6.5.4 Cost-Efficiency Tradeoff for SiP and SoC 147

6.6 Discussion . 148
6.6.1 Scalability . 148
6.6.2 Chiplet Granularity . 148
6.6.3 Passive v/s Active Interposer . 149

6.7 Conclusion . 150

7 Conclusion and Future Scope . 151

7.1 Summary of Contributions . 151
7.2 Future Directions . 154

BIBLIOGRAPHY . 156

vi

LIST OF FIGURES

FIGURE

1.1 Strategies guiding proposed solutions. 6
1.2 Contributions highlighting four works of this dissertation. Each of the works is guided

by multiple dissertation strategies and targets a handful of sub-tasks that span across
various edge applications. The proposed solutions aim to resolve the three major
bottlenecks of any system - Network, Memory, and Compute. 8

2.1 Dieshots of 4 majors SoCs [7] from Qualcomm, Apple, Huawei, and Samsung com-
prising multiple IP blocks. 15

2.2 IoT platform consisting of sensors, DSPs, microcontrollers, flash storage, battery, and
a wireless radio communicating processed data to the cloud via a gateway. 17

3.1 Seesaw overview: Low-power sensors predict optimal sensing rate for a power-
intensive sensor by means of a low-overhead robust decision tree predictor with low
cross-validation error. 29

3.2 Error feedback mechanism dynamically modifies the root node of the decision tree to
limit the error. 29

3.3 Prediction mechanism for Video Camera: Speedometer and motion vectors are used
to determine the target frame rate. 34

3.4 (a)Video camera setup comprising OpenMV camera platform and ublox GPS. (b) Fit-
ness tracker setup comprising a Neo-6M ublox GPS and an IMU sensor fusion chip:
the MPU9250 configured by Arduino-Uno board. Power is measured using a USB
power-meter. 36

3.5 Prediction model for a fitness tracker. Error tracked using distance measurement from
pedometer and GPS is used as feedback to change the decision tree dynamically. . . . 38

3.6 Cross-validation errors of decision trees trained for the video camera over a range of
error tolerance limits. 39

3.7 Average frame rate across 45 videos for different error tolerance limits. Videos are
sorted based on their average pixel motion (12 low, 26 medium, and 7 high). 40

3.8 VMAF video quality error measured across 45 videos. 41
3.9 Average battery life of camera across error tolerance models. 42
3.10 Cross-validation errors of decision trees trained for the fitness tracker. 42
3.11 GPS update rates across 100 routes sorted based on their average curvature. The

update rate is measured as the time between two updates. In the baseline system, the
GPS updates every second. 43

3.12 Fitness tracker maximum error across the routes with and without feedback mechanism. 44
3.13 Fitness tracker battery savings across activity factors (f). 44

vii

4.1 Comparison of accuracy, model size, and execution time across various edge and
cloud ML models for ImageNet dataset. 52

4.2 Our three-phase end-to-end process to learn user preferences, build user-specific
model, and deploy it in real-time. 53

4.3 Bottom-up pruning shares compute for inference and pruning path until layer n − 1.
It diverges at the current pruning layer n and updates weights for layers n to last. . . . 56

4.4 Collaborative edge system with a tracking unit that checks for divergence in user pref-
erences by counting the number of predictions belonging to user classes. 59

4.5 Symmetric Channel Pruning: As a result of pruning the same channel IDs across all
filters in layer n, the corresponding (red) filter in layer n−1 is pruned completely. All
channels and connections shown in red are pruned. 61

4.6 Asymmetric Channel Pruning: Channels are pruned independently with no restric-
tions. More channels are pruned with this approach because of its flexible nature. All
channels and connections shown in red are pruned. 62

4.7 Bookkeeping mechanism with channel mask offset, difference point {diff}, and the
number of non-zero channels [nnz]. 64

4.8 FP32 precision: 1-bit sign, 23-bit mantissa, & 8-bit exponent for each element. 65
4.9 Block floating point (BFP16) precision: 1-bit sign and 7-bit mantissa for each element.

8-bit shared exponent across all the elements in a block. 65
4.10 Re-purposed Edge TPU for training. 67
4.11 Inception-V3: Inference latency and model size for different pruning types on mobile

CPU platform that supports Int8 precision for inference and FP32 for pruning. 71
4.12 Inception-V3: Model accuracy for user-specific dataset and the complete Imagenet

dataset for different pruning types on mobile CPU platform that supports Int8 preci-
sion for inference and FP32 for pruning. 71

4.13 Inception-V3: Inference latency and model size for different pruning types on Edge
TPU platform that supports Int8 precision for inference and BFP16 for pruning. 72

4.14 Inception-V3: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on the TPU platform that supports Int8 precision
for inference and BFP16 for pruning. 72

4.15 ResNet-50: Inference latency and model size for different pruning types on mobile
CPU platform that supports Int8 precision for inference and FP32 for pruning. 74

4.16 ResNet-50: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on mobile CPU platform that supports Int8 pre-
cision for inference and FP32 for pruning. 74

4.17 ResNet-50: Inference latency and model size for different pruning types on Edge TPU
platform that supports Int8 precision for inference and BFP16 for pruning. 75

4.18 ResNet-50: Model accuracy for user-specific dataset and the complete Imagenet
dataset for different pruning types on the TPU platform that supports Int8 precision
for inference and BFP16 for pruning. 75

4.19 Trace showing MyML in real-time. We show the three phases - learning, pruning, and
inference – of our end-to-end system as well as illustrate the working of the tracking
unit that monitors the change in user preferences. 77

4.20 Per layer asymmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning. 78

viii

4.21 Per layer symmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning. 79

4.22 Model size and accuracy for increasing training batch size. 80
4.23 Scalability of user-specific models with an increasing number of user classes. 82

5.1 Recommendation model comprising of three components – bottom MLP, embeddings,
and top MLP – computes 100s of inferences to rank all the candidates of a query.
Common computation pertaining to user-specific information can be reused across all
the inferences of the query. 88

5.2 Timing Breakdown in three components for a query with 1024 candidate inferences
for two RM Models. 89

5.3 Data flow for the state-of-the-art recommendation system at the datacenter computing
N inferences for the N candidates. 91

5.4 Data flow for our proposed collaborative edge-cloud recommendation system. The
monolithic model is decoupled into two concurrent models running on the edge device
and datacenter. The edge model is computed once per user query, and the reduced
datacenter model is computed for N candidate inferences. 91

5.5 Converting randomly accessed large user embeddings at datacenter to contiguous and
small user-specific embeddings at edge device, which are continuously populated and
updated with recent user interactions. 95

5.6 Decomposition of the bottom MLP stack into a pre-computed static bottom MLP and
a smaller dynamic bottom MLP stack. 96

5.7 Top MLP stack decomposed into user top MLP, item top MLP, and combined Top MLP. 97
5.8 Proposed Duet architecture with an on-chip hardware unit and quantized int8 precision

support to efficiently process the user model at the edge. 101
5.9 Query latency reduction across all the models for query size 1024 and 256 inferences. 107
5.10 Energy consumption across all the models for query size 1024 and 256 inferences. . . 109
5.11 Latency breakdown for RM2-4 models across all components for both the edge and

the datacenter platforms. 113
5.12 Impact of HW optimizations on edge device across all models. 114
5.13 Throughput improvement for multiple models over a wide range of batch sizes 117
5.14 Comparison of NMP-enabled Duet with state-of-the-art NMP solutions. 118

6.1 Bandwidth served by an ideal network (with infinite bandwidth), recent SiP, and SoC
for YouTube and Gallery applications. 122

6.2 Neksus, the proposed SiP architecture (a) - Interconnect IP (b) - Flow control table at
edge routers (c). 124

6.3 Hand-Shaking protocol: The sequence of steps indicates how to setup and tear down
a data transfer from IP2 to IP1. 126

6.4 Network interface for IP and interconnect chiplets. 126
6.5 Data flow solutions for IP-to-IP communication. 128
6.6 Cost with perfect and real yield for (a) 90% and (b) 70% reuse factors. 139
6.7 Interconnects performance comparisons: (a) throughput and (b) packet latency with

uniform random traffic. 142

ix

6.8 Chained traffic performance for Packet size = 32 flits, Packet size = 16 flits, and Packet
size = 4 flits . 143

6.9 IP data transfer bandwidth for mobile applications. 145
6.10 Frame completion rates for mobile applications. 145
6.11 Energy per bit transferred spent by interconnect, storage, and IP units, over a range of

architectural solutions. 146
6.12 Chiplet, bonding, and total system yield for various chiplet granularity. 147
6.13 Breakdown of total system cost for passive and active interposer system. 149

x

LIST OF TABLES

TABLE

3.1 Cross-validation errors of models trained for a precision agriculture device. 33
3.2 Video camera . 37
3.3 Fitness tracker . 37
3.4 User study scores averaged across 45 videos for 17 unique users. All the average

values are close to 0 and acceptable. 42
3.5 Power overhead of decision tree and SVM. 46

4.1 Architectural specifications for Snapdragon 855 Octa-core SoC representing mobile
CPU. 70

4.2 Inception-V3 pruning comparison between mobile CPU and repurposed Edge TPU. . . 73
4.3 Resnet-50 pruning comparison between mobile CPU and repurposed Edge TPU. . . . 76

5.1 Model configurations used for evaluation. 104
5.2 Architectural specifications for mobile and server. 104
5.3 Accuracy comparison between Duet & baseline models 111
5.4 Scratchpad Overhead . 116

6.1 SiP and SoC design cost components . 132
6.2 NRE parameters . 132
6.3 RE parameters . 134
6.4 Neksus design parameters . 135
6.5 GemDroid Settings . 136
6.6 Application chains . 137
6.7 Power model parameters . 137
6.8 Cost and efficiency tradeoff. 147

xi

LIST OF ACRONYMS

ML Machine Learning

QoS Quality of Service

IoT Internet of Things

SoC System-on-chip

SiP System-in-package

fps Frames per second

VMAF Video Multimethod Assessment Fusion

MLP Multilayer Perceptron

RM Recommendation Model

NoC Network-on-chip

xii

ABSTRACT

Edge devices like smartphones, wearables, and personal assistants have become an integral part

of our daily routines. Their ubiquitous and portable nature allows them to operate in any sort of

environment. They can be deployed in the wild or at home without requiring a constant power

source plugged into them. However, the small form factor and resource-constrained nature of edge

devices limit their computation capabilities and, thus, significantly impact the efficiency of tasks

performed on edge devices. The application efficiency is directly related to the quality of user

experience for the hand-held edge devices; thus, these shortcomings of the edge device impact the

user experience as well.

In this dissertation, we develop solutions to address these limitations of edge devices to enhance

the performance and energy efficiency of a wide range of user applications processed on edge

devices. Our proposed solutions are either low-cost alternatives that can replace expensive silicon

or extract extreme efficiencies from already in-use silicon, thus lowering the total cost of ownership

of edge devices. Our solutions are driven by three key strategies: 1) cross-component optimizations

across the system, 2) leverage user information and preferences in the hardware, and 3) co-design

the application and hardware for the edge system. In our first solution, Seesaw, we study user

applications for edge devices with tiny microcontrollers and sensors. We propose an end-to-end

automated technique to find optimal compute/sensing rates for power-intensive sensors governed

by low-power sensors and based on individual users’ preferences and inherent sensing capabilities.

This elongates battery life with minimal impact on the perceivable user experience.

In our second proposed solution, we customize the machine learning-based image recognition

application for each user by creating small and accurate user-specific machine learning models on

the resource constraint edge device. This significantly lowers computation demands and memory

xiii

footprint without impacting user accuracy. In the next work, Duet, we leverage the user history

and profile information to decompose the giant monolithic recommendation model into a separate

user and item model. The user model processes user information in a lightweight manner on the

local edge device, and its computation is reused by the item model, processing 100s of items at

the datacenter. Thus, we offer enhanced privacy along with performance improvement of 6.4x and

energy efficiency of 4.6x.

Finally, we present a low-cost and heterogeneous System-in-Package (SiP)-based multi-chiplet

interconnect architecture built over the 2.5D stacking interposer technology, which can replace the

expensive monolithic system-on-chip (SoC). The proposed architecture exposes high-bandwidth

links of the interposer over which we efficiently map popular bandwidth-intensive edge applica-

tions to enhance performance and energy efficiency.

xiv

CHAPTER 1

Introduction

User devices influence nearly all aspects of twenty-first-century life. These portable gadgets, like

smartphones and tablets, dominate various modes/sectors of human interaction, including commu-

nication, healthcare, entertainment, and transportation. For example, smartphones connect people

worldwide through instant messaging, audio/video calls, and social media platforms; these devices

enable users to shop online and attend doctor’s appointments via telemedicine. If the ability to

do so much from the comfort of our phones has improved our quality of life significantly, it has

also made user devices an indispensable part of our day-to-day lives. Furthermore, user devices

are not limited to just handheld devices. They come in various shapes and features to cater to

increasing user demands. Personal assistant devices like Alexa, smart-cameras like GoPro, fitness

trackers like FitBit, and weather monitoring units for precision agriculture like Arable are some of

the innovations driven by users’ demands.

The number of edge devices, including a wide range of edge devices like smartphones, sensors

devices to security cameras, is increasing rapidly. It is forecasted to increase to 6.5B by 2030, an

increase of 4B from 2020 [28]. As user devices are becoming more pervasive and smarter, so is

their demand for higher computation capabilities. Compared to the start of 2019, the average hours

spent by a user per month on mobile apps had increased by 40% [22] during the 2020 pandemic. An

increase in the number of mobile apps and user devices has led to the generation of terabytes of raw

data that can be processed in two ways: 1) offloading the computation to back-end cloud servers

and 2) computing the data locally at the edge device. Offloading computation to the cloud is a

1

simple option as it allows the edge device to act as a lightweight user-interface while computations

are carried out on back-end servers, and final results are communicated back to the user device.

However, it requires reliable internet connectivity and high bandwidth links to transfer bulky raw

data like videos, audios, and images to back-end servers, which adds to end-to-end service latency

and consumes much energy. Further, sharing users’ personal data with commodity servers is prone

to manipulations and cyber-attacks, thus compromising users’ privacy. An alternative option is to

process data on edge devices. However, this option is bounded by the computing capability of

small resource-constrained user devices.

Over the past decade, the performance and computing power of user devices like smartphones

has improved drastically. Simultaneously, algorithms/software applications have also evolved dra-

matically while becoming more complex to enhance user experience. There is still a wide gap

between the computing power offered by user devices and the computational demands of emerg-

ing user applications like machine learning (ML), recommendation systems, high-definition video

recording/playback, etc.

Additionally, the current edge platform landscape is very diverse and heterogeneous. It ranges

from giant autonomous vehicle (AV) systems with compute-intensive sensors and server-like ca-

pacity; handheld smartphones containing multi-core ARM architectures and application-specific

IPs connected through high bandwidth links; to tiny IoT devices that host small sensors powered

by tiny microcontrollers. Moreover, the mobile phone market in itself is very diverse. Facebook

[221] has reported that 72% of its users still use 6-year-old Systems-on-Chips. Only one-fourth of

its users own phones with CPUs designed in 2015 and later. This broad spectrum in computing

capacity shows that in the universe of applications for edge devices, there is no ”one-size-fits-all”

solution. Edge device solutions must be tailored for the application and the underlying architec-

ture. However, irrespective of the device, all innovations to improve edge devices are driven by the

common goal of offering an enhanced user experience.

Over the past few years, researchers have striven to achieve this goal by applying three ap-

proaches: developing software optimizations for applications, building application-specific hard-

2

ware accelerators, and transitioning the hardware to sophisticated but very expensive silicon tech-

nology nodes. A significant number of works [170, 225, 204, 154, 188, 241, 61] have extensively

studied application characteristics and proposed architectural techniques to reduce/reuse compute,

curb data-flow movement, and reduce memory access. These techniques have definitely improved

performance and reduced power consumption. However, they are not yet sufficient to provide a

seamless user experience for ever-increasing user applications’ computational requirements. For

example, the latest smartphones, Samsung’s S22 [26] and Apple’s iPhone 14 Pro [21], serve max-

imum video resolution of 8K at 24fps and 4k at 60fps, respectively, whereas upcoming AR/VR

applications require high-resolution frames at 90 fps and higher [25, 117]. Another emerging so-

lution relies on the development of application-specific hardware accelerators for specialized ap-

plications like machine learning, genome sequencing, neuromorphic computing, etc. However, the

accelerator approach is not scalable nor feasible for a multitude of newly emerging application do-

mains. It also requires applications to have well-defined data-flow or compute patterns that can be

mapped to customized hardware. Finally, the last approach of shifting to newer/sophisticated sili-

con technology nodes for better performance and energy is bounded by the slowdown of Moore’s

law. Moreover, the smaller and newer technology nodes have high production and development

costs [54, 15], which is extremely expensive for widespread adoption. The last two solutions are

impeded by the high procurement cost of upgrading to new hardware, which also contributes to

massive e-waste.

An ideal user edge device should be affordable, secure, easy to use/navigate, and have a cloud

server’s performance with infinite battery capacity in a form factor that fits in the pocket. Therefore,

there is a need for inexpensive hardware-software co-design approaches that can reduce the gap

between current user devices and the expected ideal device for emerging applications. Hence, the

goal of this dissertation is to improve the hardware performance, energy efficiency, and cost

of edge devices to enhance the user experience as discussed below. Other factors like design,

UI/UX, and OS/software are equally valuable but are beyond the scope of our work.

• Performance/Quality of Service: Quality of Service (QoS) or performance for user-

3

applications is directly related to the computational power of the underlying hardware. Edge

devices cannot host powerful datacenter style hardware components. They are restricted by

their form factor and thermal design power (TDP) limit. Furthermore, the definition of per-

formance/QoS varies with the application. For example, audio/video applications quantify

QoS by frames completed per second, whereas the performance of recommendation sys-

tems is measured by response time or latency. In this dissertation, we propose solutions

based on the application and compute capacity of the underlying edge platform to improve

performance and elevate user experience.

• Energy efficiency/Battery life: While handheld devices are getting smaller day by day,

at the same time, applications are getting more complex, compute-intensive, and energy-

intensive. Unlike cloud servers that are always plugged into a power outlet, edge devices

face major battery life concerns owing to their small form factor and portable nature. Further-

more, sometimes the application’s nature precludes frequent battery replacement/charging of

edge devices, like cameras in wildlife sanctuaries or IoT devices spread across agricultural

fields or in manufacturing units. Hence, there is a push to make applications lightweight

in order to extend the battery life of IoT/user devices. The proposed solutions in this dis-

sertation consider energy efficiency to be as critical as performance. Our solutions improve

energy efficiency while also improving or maintaining performance, thus overall enhancing

user experience.

• Cost/Affordability: The cost of high-performing hardware is increasing exponentially be-

cause of the shift to newer technology nodes and the addition of new application-specific

components to chips [136, 15]. Hence, there is a dire need to lower costs to make edge

devices accessible to a wider population. There are two ways to reduce the cost of user-

devices. The first is to shift to low-cost hardware alternatives without sacrificing power or

performance. The second is to transform current user-devices to support emerging resource-

intensive user-applications in an energy-efficient manner, which lowers the total cost of own-

4

ership of the user device. We provide solutions that reduce the development cost of new chips

and also offer techniques to improve user-applications’ efficiency on CPU-centric edge plat-

forms that account for most consumer devices deployed in the consumer market.

The first step in developing the work for this dissertation was to find applications that are

most relevant to users. Multiple studies [29, 23] conducted in 2022 have found that social me-

dia and communications apps (like Facebook, TikTok, Instagram, Messengers), teleconferencing

apps (like Zoom, Google Meet), entertainment apps like video streaming and audio streaming plat-

forms (like YouTube, Netflix, Spotify), and online shopping apps (like Amazon, Shopee) are the

most popular user apps. Another popular category is gaming apps; however, these have a limited

demographic reach. This distribution of mobile apps’ popularity was slightly different in 2019,

with apps like Uber, Lyft, and Google Maps also being part of the list of frequently-used mobile

apps. Maps are also actively used by fitness tracking applications like FitBit and Strava. Another

inbuilt application that is very frequently used by consumers on smartphones/smart-cameras is the

photo-capture and video-recording feature. In this dissertation, we target these categories since

they consume a significant fraction of mobile resources and dominate users’ daily activities. A

popular legacy application is web browsing. However, it is a very well-studied application, which

has been optimized by numerous prior efforts [242, 239, 240, 56, 59, 62, 176, 134] in hardware

and software domains that have focused on improving the application’s efficiency. Therefore, we

do not explore web browsing applications in this dissertation any further.

1.1 Strategies

In this dissertation, we explore various strategies to achieve the above-described goals for emerging

edge applications. Primarily, we devise three strategies, which are the foundation of our proposed

works, as shown in Figure 1.1. The first strategy is cross-component optimizations across the

edge system, where multiple components involved in applications work together cohesively to

improve the applications’ overall efficiency. The second strategy is leveraging user’s inherent

5

Seesaw MyML Duet Neksus
Cross component optimization

across the system

Leverage user properties &
preferences

Co-design application and
hardware for the edge systemSt

ra
te
gi
es

Solutions

✓ ✓ ✓
✓ ✓ ✓

✓ ✓ ✓
Figure 1.1: Strategies guiding proposed solutions.

properties and preferences to customize applications for the underlying hardware of the edge

device, thus, improving the application’s performance and energy efficiency. The third strategy is

co-design of applications and hardware for the edge systems, where hardware optimizations

are based on the unique software properties of applications.

The first strategy explores the benefits of owning multiple system components spanning an ap-

plication. The components can be different IP blocks, multiple sensors, or an edge and datacenter

comprising the system. Instead of individual components working in a standalone fashion, we

look into inter-component optimizations where the components work together and aid each other

to complete the given task efficiently. They achieve this by communicating intermediate results

directly to each other, sharing essential insights with each other, which helps the other compo-

nents, and distributing the work in a balanced manner based on the benefits and strengths of each

component.

The second strategy leverages the opportunity to tailor apps for the underlying hardware based

on individual user properties and preferences. In this dissertation, we first make an observation

that the QoS/performance and energy efficiency of user-facing applications can depend on indi-

vidual users’ characteristics/behavior. For example, audio/video applications’ QoS depends on the

sharpness of the user’s sensing capabilities, or GPS coordinates depend on user-chosen routes.

Second, we observe that user behavior and properties can also be leveraged by emerging error-

tolerant machine learning applications like image recognition, voice recognition, and recommen-

dation systems. These applications are flexible and malleable; thus, individual user traits can be

6

used to simplify the computation and improve the performance and energy efficiency of the execu-

tion on edge platforms. We draw upon these insights and explore the potential of leveraging user

properties to achieve our goals.

The third strategy co-designs the application and hardware for the edge system. We observe

that certain application properties that are visible to software can be leveraged by hardware to opti-

mize the application. For example, there are opportunities for computation reuse and computation

sharing for various user applications, which can be exploited by hardware to reduce the operational

intensity of an application. Further, we can judiciously balance the compute demands of an ap-

plication across the edge system, comprised of device and cloud, based on the capabilities of the

underlying hardware and the requirements of various parts forming the application.

In the next section, we will present the contributions of this dissertation developed on the three

strategies discussed in this section.

1.2 Contributions

In this dissertation, we offer hardware-software co-design solutions to enhance hardware-related

parameters that contribute to user experience - performance, energy (battery life), and cost - based

on the strategies discussed above. Our target workloads are sub-tasks that are part of popular user-

facing applications. As shown in Figure 1.2, these sub-tasks include streaming for entertainment

and teleconferencing; recommendation systems for entertainment, social media, and online shop-

ping; video recording for teleconferencing and smart-cameras; photo-capture for smart-cameras;

route tracking for maps application, and image/video classification for social media and smart-

cameras. Contributions of this dissertation strive to compute these bulky and complex applications

on resource-constrained local edge devices in a lightweight manner, to alleviate expensive trans-

mission back and forth between edge devices and the cloud, reduce dependency on a reliable and

fast internet connection, and enhance user data privacy.

In our first work [88], we target personal IoT/edge devices like smart-cameras with video

7

Strategies

Network

Memory

Compute

Cross-component optimization
across the system

Leverage user properties &
preferences

Solutions

Streaming
Video Record

Gallery
Entertainment

Teleconferencing
Smart-cameras

Neksus

Ch
ip

le
t i

nt
er

co
nn

ec
t

ar
ch

ite
ct

ur
e

Recommendation
System

Social Media
Online shopping
Entertainment

Duet

De
co

m
po

se
d

&
re

du
ce

 m
od

el
s

Image/Video
Classification

Smart-cameras
Social Media

MyML
Re

du
ce

d
m

od
el

 si
ze

s

Video Record
Route tracking

Smart-cameras
Maps

Seesaw

O
pt

im
al

 se
ns

in
g

ra
te

s

Sub-tasks
Edge Applications

Bo
tt
le
ne

ck
s

Co-design of application and
hardware for the edge system

Figure 1.2: Contributions highlighting four works of this dissertation. Each of the works is guided
by multiple dissertation strategies and targets a handful of sub-tasks that span across various edge
applications. The proposed solutions aim to resolve the three major bottlenecks of any system -
Network, Memory, and Compute.

8

recording and smartwatches/fitness-trackers with the map application. These devices host mul-

tiple sensors for various user interactions and are powered by small microcontrollers. We observe

that low-power sensors can indicate the impact of high-power sensors’ outputs on user experi-

ence. When low-power sensors infer that the user is not sensitive to the output of power-intensive

sensors, we can dial down the sensing rates of power-intensive sensors and vice-versa. Based on

this insight, we developed an end-to-end ML-based solution that automatically identifies corre-

lations between power-intensive and lightweight sensors without human expertise. It deploys a

low-overhead decision-tree predictor to determine the optimal sensing rates for power-intensive

sensors by using low-power sensors while avoiding significant quality degradation. As depicted

by the first (purple) bar in Figure 1.2, the proposed technique impacts the compute and memory

overheads by reducing the sensing rate and, thus, the number of data frames processed and stored

by the downstream pipeline. This work increases the battery life of edge devices without impacting

the human-perceivable experience on multi-sensor edge devices.

Our second work [89, 90] is based on the insight that user behavior can be utilized to increase

performance and energy efficiency of handheld user edge devices for the image classification task,

related to social media and smart-camera applications, as shown by the second (blue) bar in Figure

1.2. ML tasks, like image recognition, are compute-, memory-, and bandwidth-intensive; thus,

they incur high latency and power. The resource-constrained nature of edge platforms further ex-

acerbates the problem. However, ML is a flexible application that can be made lightweight by

reducing memory footprint, compute intensity, and bandwidth requirements using the established

ML pruning process. In this work, we leverage this malleable nature to prune ML models for

user preferences/choices to create small user-specific models. We first learn user preferences and

then present a hardware-friendly, lightweight pruning technique to create user-specific models on

mobile platforms while simultaneously executing inferences. We also build an end-to-end collab-

orative system that tracks user behavior changes to create new user-specific models when there is a

deviation in user preferences. These small user-specific models have a reduced memory footprint

that can easily be computed on edge platforms, thus, improving performance and energy efficiency.

9

In our third work, we incorporate the user edge device into the end-to-end recommendation

system to enhance the performance and energy efficiency of the task. Recommendation task is

a critical component of entertainment and social media applications. A generic recommendation

model comprises dense multilayer perceptron (MLP) and huge embedding tables with entries for

all the possible items in the database, which blows up the table size. It is considered to be a data-

center application because a recommendation query ranks 100s of candidates to recommend only

a few, which makes the recommendation task extremely memory and computationally demanding.

In this work, we decouple the monolithic recommendation model into user and item models, where

we offload the user model in a lightweight manner on the edge device, and the item model is com-

puted on the datacenter. The edge’s user model and the datacenter’s item model work cohesively

to deliver final recommendations. The user model is computed once for a user query on the edge

device, and its output is communicated to the datacenter. The edge model output (computation)

is then reused across all candidates ranked by the item model at the datacenter. The edge model

is processed in a lightweight fashion. It utilizes user information and user history, which is read-

ily available on the edge device, coupled with hardware optimization techniques of memoization,

scratchpad, and quantization. These optimizations reduce the computational demand and mem-

ory footprint of the recommendation model, as illustrated by the third (green) bar in Figure 1.2.

Our proposed edge-cloud collaborative recommendation system reduces the latency and energy

consumption of the complete end-to-end application.

Finally, in our last work [91], we design a new interconnect architecture for edge devices to

lower the cost and simultaneously improve performance and energy efficiency for video-related

tasks of streaming, recording, and photo capturing for entertainment, teleconferencing, and smart-

camera applications. We reduce the cost of building new SoCs for user edge devices by migrating

from monolithic System-on-chip to heterogeneous System-in-Package (SiP)-based designs, which

are comprised of multiple small chiplets bonded together by 2.5D stacking. We show that emerg-

ing 2.5D stacking-based SiPs have the potential to reduce the development cost because of the

high reuse factor and improved yield of small chiplets over a big monolithic chip. Our proposed

10

solution optimizes data-flow patterns between multiple chiplets by bypassing the memory access

and communicating directly. It then maps the data-flow patterns to high-speed and high band-

width interposer links supported by low-cost 2.5D stacked SiPs. This solution thereby decreases

the memory and network overheads resulting in improved performance and energy efficiency, as

depicted by the last (orange) bar in Figure 1.2.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 discusses the background and re-

lated work survey that helped us in developing this dissertation. In Chapter 3, we discuss Seesaw,

an end-to-end ML-based approach to improve the energy efficiency of multi-sensor IoT devices.

We propose a system where low-power sensors in the device can predict the optimal sensing rates

for power-intensive sensors, thus improving battery life without impacting the human-perceivable

user experience. Chapter 4 describes MyML, a user-driven machine learning technique where we

build user-specific models using a hardware-friendly bottom-up pruning process. The proposed

approach leverages compute sharing between pruning and inference, customizes the re-training

backward-pass, and chooses the pruning granularity for efficient processing on the edge. MyML

drastically reduces model size, thus improving the performance and energy at the edge device.

Chapter 5 outlines Duet, which decomposes the monolithic recommendation model into two con-

current smaller models. The user model is computed only once on the edge device, and the item

model repeatedly computes all the potential candidates the user may like. Computing only once the

user model in a lightweight manner on the edge device offers data privacy and significantly boosts

the performance and energy efficiency of the recommendation system. Chapter 6 describes Neksus,

an interconnect architecture for cost-efficient System-in-Package, which can replace System-on-

Chip, thereby reducing cost. We discover optimized data-flow patterns for audio/video smartphone

applications that can be easily mapped to Neksus, resulting in performance and energy improve-

ments. Finally, Chapter 7 briefly concludes this dissertation and outlines future directions.

11

CHAPTER 2

Background

This chapter reviews the background related to edge platforms. Edge devices are small resource-

constrained devices distributed in the environment that are responsible for continuous data sensing,

data pre-processing, and data collection. Some very early examples of edge devices are automated

toasters and coffee machines, which informed users once breakfast was ready. Since then, they

have become more ubiquitous and can be found in wildlife sanctuaries for animal tracking [127],

in the depth of the ocean to study marine ecosystems [6], as well as in the hands or pockets of

human beings to help them in daily activities. Depending on the use-case and user demand, they

come in various shapes, sizes, and functional capabilities, such as RFID tags, thermal sensors,

handheld devices, etc.

Historically, they acted as a gateway between sensors and back-end servers, where cloud servers

are responsible for the computation of sensed data. However, with the rise in automation, not only

is the number of edge devices increasing, but they are simultaneously getting intelligent to support

upcoming applications. Thus, it is not sustainable to communicate all the data from edge devices

to the back-end server for computation because of limited network bandwidth. This gave rise to

edge computing, an emerging paradigm that aimed to move computation close to the data gener-

ation for better analytics and reduce network bandwidth requirements. Unlike cloud computing,

which offloads computation to back-end servers by transmitting data all the way back to the cloud

servers, edge computing computes data locally on an edge device. Computing locally at edge

devices eliminates several concerns like the need for reliable internet connection, transmission

12

overheads, longer response time, and privacy. However, the small form factor, limited computing

capacity, and portable nature of edge devices still preclude us from adopting edge computing as the

default solution for all applications, especially emerging compute-intensive application domains

like augmented reality, virtual reality, machine learning, audio/video streaming, etc.

The current state of the edge platform is very heterogeneous, which further adds to the prob-

lem. Edge devices encapsulate a wide variety of user devices like the internet of things (IoT),

smartphones, tablets, autonomous vehicles, etc. They can be as small as a medical implant and as

big as a smartphone or tablet. Within the smartphone industry, mobile phones have transformed

from a primary device for communication via cellular connection to a source of constant entertain-

ment. This transformation has further increased diversity in edge devices. As per a study [221] by

Facebook, there is no standard SoC predominantly used by consumers. They report that the top-

50 most common SoCs account for only 65% of the smartphone market, which increases to 225

SoCs accounting for 95% of the market. This diversity and heterogeneity among edge devices and

associated applications have made the task of optimizing/improving edge devices for each unique

application very difficult. Nonetheless, irrespective of the edge device’s nature, the common con-

cerns from a hardware perspective that grip edge devices are the following: 1) development cost

that reflects in the final retail cost paid by the consumer; 2) energy efficiency that translates to

battery life; and 3) performance that determines the application’s functioning on the device.

In the rest of the chapter, we describe prior works that have focused on improving various

aspects of edge devices. We first discuss the current state of edge devices, followed by a discussion

about popular edge applications and the related prior works that aim to improve the efficiency of

these applications on edge devices.

2.1 Edge Devices

As discussed above, there is vast diversity within the ecosystem of edge devices. Anything that

can be handheld and powered by a battery can be classified as an edge device. In this section,

13

we broadly breakdown edge devices into two categories: 1) Smartphone or Mobile devices that

are powered by relatively powerful system-on-chips (SoCs), such as Snapdragon 855 [27] or A14

Bionic [20], and 2) IoT or Embedded devices that are powered by tiny microcontrollers like ARM

Cortex-M4 [5].

2.1.1 Smartphone/Mobile Devices

The number of smartphone subscribers is on the rise and is anticipated to grow to >7.5 billion

consumers by 2025 [24] with the potential to grow further in populated regions like China and

India. Clearly, mobile computing is here to stay for a long time. Moreover, mobile computing

workloads have evolved drastically. They range from conventional applications like voice calls

and web browsing to emerging applications like teleconferencing, online streaming, social net-

working, etc. Because of the increased presence of smartphones and associated applications, there

has been significant development in the chipset that powers mobile computing. SoCs that power

smartphones now comprise specialized IP blocks along with general-purpose CPU cores, mem-

ory, and network components, as shown in Figure 2.1. Two noteworthy trends are dominating the

current development effort in the mobile computing domain.

The first is the linear increase in the number of special function IP blocks for new SoCs to

support emerging complex applications [199]. This heterogeneity in the SoC landscape requires

solutions that improve each component separately and also as an integrated unit. For example,

increasing one IP block’s performance may not translate to an increase in the application’s per-

formance since it may be limited by network or memory bandwidth. Hill et al. [110] is the most

recent work that facilitates early-stage SoC design using analytical models to address the issues

of portability and high human resources associated with the integration of multiple IP blocks in

cycle-accurate simulators like Gem5. It takes into account multiple IPs of an SoC working simul-

taneously, interacting with memory and network hierarchy. It provides roofline top models to give

pre-estimation of SoC performance, which can guide designers in making decisions about which

IPs to include, IP size, IP performance, etc. Further, Shao et al.[199] is a simulation-based ap-

14

Figure 2.1: Dieshots of 4 majors SoCs [7] from Qualcomm, Apple, Huawei, and Samsung comprising
multiple IP blocks.

proach to enable large design space exploration for accelerators/IPs that is otherwise hampered by

the slow RTL development process. It gives power, performance, and area estimates given a high-

level design (in C/C++) for an accelerator without generating RTL. The work is also integrated

with the full system cycle-level simulator Gem5 to give estimates for SoC performance.

While the above works have focused on pre-estimating and improving performance for SoCs

with an increasing number of IP blocks, another problem associated with the growing number

of IP blocks is the high initial development cost. This is the second problem that has hampered

development efforts in the mobile computing domain. As shown by [187], although the number

of IP blocks is increasing, the number of total SoC chipsets and the companies developing these

chipsets are decreasing. This downfall is accredited to SoCs’ increasing development costs because

of the shift to expensive technology nodes and high development cost for new IP blocks [136]. It

presents significant challenges for hardware startups and, consequently, for the expansion of the

silicon industry. For example, a fabless silicon startup may require tens of millions of dollars to

15

bring a product to market, compared to as little as a few hundred thousand dollars for a software

startup [15, 54]. The key to the success of the software industry is the wide availability of open-

source software infrastructure, which allows cheap reuse of labor. Startup companies can begin

with much of their software already in place and then quickly add their own “special sauce” [64].

Hence, there are prior works that have advocated for low-cost heterogeneous System-in-

Package (SiPs) based hardware to replace monolithic SoCs. Stow et al. [207, 206] have studied

the cost benefits of 2.5D stacking-based chiplet integration over monolithic design owing to yield

improvements. [206] also discusses the feasibility of reducing NRE cost using die stacking by

leveraging IP reuse across various domains and generations of chips.

Performance study of interposer-based multi-core SiP systems has been done by prior

works [120, 131]. Jerger et al. [120] explore the benefits of using silicon interposers for wiring

within a multi-core chip. They propose a hybrid Network-on-chip (NoC) lying in the silicon layer,

as well as the interposer layer. Memory and core traffic can take advantage of hybrid NoCs, where

core-to-core cache coherence traffic is routed through the silicon layer, and main memory traffic

is routed through the interposer. [79] discusses the feasibility of network die regarding delay and

energy characteristics. Pal et al. [180] show a novel package-less chiplet integration technology—

Silicon Interconnection Fabric (Si-IF)—as a replacement for the interposer. There are ongoing

works [208, 139] on 2.5D-based SiP packaging, where multiple packaging substrates like ceramic,

glass, and silicon interposer properties are being explored. These substrates can be used to support

high bandwidth smartphone applications [145]. In the next section, we will discuss IoT/Embedded

devices, which is another dominant edge computing platform.

2.1.2 IoT/Embedded Devices

IoT is an emerging paradigm for a range of new capabilities brought about by ubiquitous connec-

tivity and extends computing capabilities to objects, sensors, and everyday items that can exchange

data with little to no human involvement [168]. Market growth forecasts that IoT-connected de-

vices will have reached ∼11 billion units by 2020 and will reach 30 billion units by 2025 [19].

16

Camera

Temperature

Heart rate

GPS

Cortex-M4 CPU

An
al

og
 S

en
so

rs

DS
P

Flash

Radio

Battery

Microcontroller

Gateway

CloudIoT Edge Node

Figure 2.2: IoT platform consisting of sensors, DSPs, microcontrollers, flash storage, battery, and a wireless
radio communicating processed data to the cloud via a gateway.

The IoT allows for limitless opportunity: smart cities, smart homes, wearable devices, precision

agriculture, eHealth, and factory automation are some of the domains which are adopting IoT

capabilities. Some of the popular IoT devices that are found in regular households are personal

assistants like Amazon Alexa and Google Home, Nest thermostat, Fitbit tracker, and many more.

At the heart of IoT systems are IoT edge devices, which are capable of continuous data col-

lection and smart networking. Any generic IoT platform consists of edge nodes, gateway nodes,

and the cloud. IoT edge nodes are responsible for sensing raw data by using diverse sensors, pre-

processing raw data, and communicating it to the cloud via gateway nodes. As shown in Figure

2.2, an IoT edge node typically consists of sensors, a DSP or media processor, a microcontroller, a

flash storage, a wireless radio for communication, and a battery. The edge node does lightweight

computing on raw data, and the pre-processed data is then transmitted to the cloud to compute the

final output. Thus, the majority of time is spent sending data back to the cloud or an edge gateway.

More recent IoT devices like Apple smartwatches [4], Echo Show [3], Google Home [14], and

Ring video doorbell [17] have small arm cores to enable higher processing at the device and reduce

the data transfer from the edge to cloud. However, the lightweight CPU cores can still only process

a small portion of the application because of their limited computing capabilities. Thus, we cannot

completely eliminate the transfer overheads between the edge and the cloud. These problems are

further exacerbated with the launch of more sophisticated edge IoT devices like Amazon Astro [2],

which require more processing power to support many computationally intensive applications.

17

Many prior works have strived to improve applications’ efficiency and have proposed intrigu-

ing techniques like developing application-specific microcontrollers [70, 71], intelligently of-

floading computing to cloud [159, 204], or optimal partitioning of mobile and cloud computa-

tion [130, 213]. [71] presents an automated hardware-software co-analysis technique to accurately

determine application-specific energy requirement and peak power for low-power processors, and

[70] proposes an automated approach that tailors microcontrollers to target applications by remov-

ing unwanted gates not used by an application, and thus reduces the power and area. In the next

section, we discuss in detail the above and many more prior works that have focused on improving

mobile and IoT devices for a wide range of popular user applications.

2.2 Edge Applications

In this section, we will discuss three broad application domains encompassing the most frequently

visited user apps on edge devices. The first is computer vision-based applications that process

images and videos, such as video recording/playback, photo/video capture, video streaming, and

teleconferencing. The second is GPS-based applications, such as map navigation and route track-

ing. The last is machine-learning-based applications of image classification and recommendation.

2.2.1 Computer Vision

With the boom of social media platforms for photos and video sharing, online streaming services,

such as Youtube and Netflix, teleconferencing or videoconferencing apps like Zoom, Google Meet,

Messenger, etc., the demand for better QoS and longer battery life has grown drastically. Edge

devices are upgrading to high-resolution power-hungry cameras and larger batteries to meet this

ever-increasing demand. This trend may not be sustainable in the long run, especially for new

emerging applications like Augmented and Virtual reality, which have to run on a small headset

and ensure a smooth, immersive experience. Thus, there is a dire need for hardware/software

solutions to enhance the overall efficiency of computer vision applications.

18

Prior works have proposed many interesting solutions to address this problem for mobile and

IoT edge devices. On the IoT front, [156] [55] have studied the potential of reducing power con-

sumption in mobile vision applications by changing frequency and moving to low power mode

while reducing frame rates. Glimpse [171] is another prior work that focuses on the sub-selection

of frames for offloading to the cloud for further heavy-weight vision processing. The selection

framework is based on sensors like PIR, audio, or thermal image sensors that detect humans. Prior

works [106, 178] propose dynamically changing the display resolution of a smartphone camera

based on user-device distance using ultrasonic sensors or activity detection. Yin et al. [227] lever-

age gesture recognition and human activity detection to save the camera and display energy during

photography on mobile phones.

For mobile devices, Yedapalli et al. [225] have studied the loopholes in data-flow patterns in

the current SoC design for computer vision applications. They have shown that there is unnec-

essary indirection involved which consumes memory bandwidth and also affects user experience.

Therefore, they propose bypassing memory by forwarding through the memory controller and

caches/flow-buffers. This work will definitely improve single application performance, but if mul-

tiple applications are trying to use the same IP, the second application may suffer due to a lack of

resources. Subsequent follow-up work [170] resolves this inefficiency. [121] proposes a method-

ology to compute reliability requirements for approximately storing compressed and encrypted

videos in video capture devices. The methodology improves energy spent on storage. Another

prior work [232] improves the energy efficiency of video streaming by frame-batching along with

frequency boosting and leveraging content similarity to reduce memory and bandwidth demands.

More recent work [233] proposes two mechanisms to reduce memory and bandwidth consumption:

1) exploit value-similarity in a tile to achieve on-the-fly compression and 2) approximate the video

frame early in the imaging pipeline. Another legacy application that is widely adopted by the edge

ecosystem is GPS sensing. The next section discusses this application in more depth.

19

2.2.2 GPS Sensing

GPS used for location tracking is part of many popular edge devices. It is present in sophisticated

devices like smartphones, smartwatches, and autonomous vehicles (AVs) to get precise location

coordinates utilized by many applications, such as Google Maps and Apple Maps, health apps

like Strava to record runs, social media apps to provide recommendations based on geo-locations,

and many more. GPS is also found in low-power devices like fitness trackers [44] to track user

activity, GoPro cameras [39] for adventure sport, and Wildlife tracking [127]. Nonetheless, it

consumes significant energy. In fact, we find that in a fitness tracker, a GPS chip consumes 74%

of total system power. This energy-hungry nature is also experienced by users while using maps

for navigation. Because of its wide applicability and energy-intensive nature, it has been studied

thoroughly by many prior works, as discussed below.

EnTracked [141] presents a technique to turn the GPS module on and off depending on activity

detected by an accelerometer. Paek et al. [179] propose turning GPS on and off depending on

user history, activity detection, and other location detector modules. Another relevant work by

Kjaergaard et al. [140] proposes duty cycling the GPS on mobile devices (smartphones) based on

activity detection, distance, and compass headings. This work depends on fixed thresholds and

thus is not efficient for fitness tracking devices that are user-dependent and used on a wide range

of tracks and trails. Youssef et al. [229] estimate new GPS positions using an accelerometer and

compass and synchronize these estimates with the real GPS values at regular intervals. Kim et

al. [137] do place detection, activity detection, and path tracking using WiFi, accelerometers,

and GPS. Their work switches the GPS on and off depending on the place detection output, i.e., it

turns on for place departure and off for place entrance. Prior works [157, 125, 151] also propose

to improve GPS accuracy in case of weak GPS signal detection. This is done by dynamically

changing the localization method from GPS to cellular or Bluetooth depending on the required

application accuracy or integrating GPS with inertial sensors. While GPS sensing is one of the

popular legacy applications, in the next section, we will discuss the most emerging application

domain now: machine learning.

20

2.2.3 Machine Learning

Machine learning concepts have been around since the 1990s. LeNet, an early simple convolution

neural network (CNN), was developed in 1998 [148]. However, it was not until the last decade that

it started gaining popularity and found its way into practical application. In 2012, Google’s X Lab

developed a machine learning algorithm that was able to autonomously browse YouTube videos

to identify the videos that contain cats. This happened at the same time as AlexNet [144], one

of the first deep neural networks (DNN), was developed for image recognition. Since then, DNN

models have evolved drastically. They have become deeper and wider with much more complex

layer structures. Apart from the advancement of DNN models, there were two other drivers that

led to the ML revolution. First was the availability of big datasets, like CIFAR [143] and Imagenet

[77], required to train accurate large ML models. The second was the increase in the computational

capacity offered by the hardware required to train and infer these complex models.

Some of the widespread machine learning applications are image recognition, object detec-

tion, keyword spotting, speech recognition, and recommendation. Image recognition and object

detection employ DNN models [105, 210, 211], which are comprised mostly of convolution lay-

ers (CNNs) followed by fully connected layers. These layers compute thousands of multiply-

accumulate (MAC) operations to produce an output, thus making them very memory-, compute-,

and bandwidth-intensive. Further, speech recognition, keyword spotting, and machine translation

are also based on DNN-based language models like LSTM/RNN [112, 222, 191]. These models

involve matrix-vector kernel computation and, thus, are limited by the MAC operations. Finally,

emerging DNN-based recommendation models [174] are composed of MLP, and embedding lay-

ers, which are compute- and memory-bound, respectively.

Recent years have witnessed an explosion in research on application-specific ML accelerators

[69, 67, 76, 236, 109, 78, 126, 215]. Almost all new smartphone SoCs have a dedicated neural

processing engine (such as Google Edge TPU [12], Samsung’s NPU [31], and the neural engine

on Apple’s A14 bionic chip [20]) to process compute-intensive and memory-intensive deep neural

network models on the user edge device. Despite such efforts, according to the analysis reported

21

by the prior work [98], conducting inference at the edge is not energy- or latency-efficient. There

is still a lot of room and need to improve the performance and energy efficiency of ML models on

edge devices. Therefore, numerous prior works have proposed exciting solutions to address the

limitations of these models on the edge device. Here, we will first discuss works that have focused

on accelerating inference at the edge for image and language models. We will then present prior

techniques that reduce the model size for the edge device. Finally, we will discuss techniques that

have focused on improving the efficiency of state-of-the-art recommendation models.

Accelerating inference at Edge node: Many prior works [115, 204, 241, 61, 188, 214, 130] have

focused on efficient machine learning at the edge or mobile devices. [115, 214] have proposed

accelerators to improve CNN model processing on edge. [61, 241, 188] utilize input similarity to

make machine learning efficient for continuous mobile vision and speech recognition. They utilize

motion vectors in a video stream to reuse CNN computation across consecutive frames. They trade

off energy and vision quality to improve energy efficiency. [204] developed a system to detect if

the incoming images are unseen by the working model at the edge device, sending only the unseen

images back to the cloud for progressive training. Previous work [130] has proposed solutions to

partition the DNN inference computation at the edge and cloud to reduce data movement. They

find that not all layers are compute-intensive, and thus, they compute some layers at the edge

device while the remaining layers are computed on the cloud. Similarly, Wang et al. [213] also

proposed an efficient technique to partition DNN models into mobile and cloud computation to get

overall power savings. RedEye [155] moves some CNN computation into the analog domain to

reduce data movement and improve energy efficiency.

Smaller ML models: A recent study [221] concludes that machine learning is carried out on

CPUs for most of its users. Therefore, there is a push for efficient machine learning on multi-

core CPUs. A common and effective approach to support ML on edge devices is to reduce the

model size by pruning ineffectual weights [102, 101]. Many prior works [152, 230, 102, 108, 231,

162, 177] guide which weights and how they should be pruned. [216] has utilized asymmetric

pruning for an in-cache acceleration of ML inference by adding a coalescing unit. [230] proposes

22

hardware-aware pruning for CPUs and GPUs. There are works that leverage sparsity in weight/bits

or tolerance towards lower precision in DNN and have proposed accelerators for such compressed

neural networks [235, 181, 100, 74, 238, 200, 75, 201, 182]. More recently, many works [86,

87, 119, 163, 234] have focused on accelerating the pruning process. Prior works [163, 234] are

based on the insight that instead of waiting for a baseline model to be trained in order to prune the

baseline model, the pruning process can be moved up and mixed with the training baseline model

process. They proactively prune/remove near-zero weights after the first few training epochs under

the assumption that near-zero weights will not revive during later training epochs. [86, 87] exploits

sparsity in dense DNN training computation and maps them efficiently on general-purpose CPU

cores. In addition, [119] reduces memory footprint by proposing a lossless and a lossy encoding

scheme for convolution and RELU layer to improve the performance of DNN pruning.

Further, there are works that aim to extract small student models from the baseline teacher

model to reduce model size. Knowledge distillation [111] is one such seminal work that changes

the objective function to train on soft targets, logits that are inputs of the softmax layer, for a small

dataset. FitNet [189] builds thinner and deeper networks based on knowledge distillation to also

include hints from the intermediate layers. AMC [107] is an automated technique that utilizes

reinforcement learning to provide the model compression policy for mobile devices. Prior works

[53, 63] use function preserving network transformations [66] to build new compressed models.

Next, we will describe the state-of-the-art optimization techniques for recommendation sys-

tems, an emerging machine-learning application.

Accelerating DNN-based Recommendation Systems: Many recent works have been able to suc-

cessfully accelerate recommendation inference using specialized hardware like GPUs [95, 146],

FPGAs [118, 124], and systolic arrays [96]. Furthermore, many accelerators [69, 67, 100, 50, 186,

198] have been proposed to enhance the performance of dense neural network layers. Furthermore,

numerous previous works [133, 184, 165, 52, 128, 146, 217, 223] have proposed solutions to over-

come the memory bottleneck experienced by embedding tables with two primary techniques: 1)

caching hot embeddings or a combination of frequently appearing embeddings on the CPU to

23

bypass DRAM access, and 2) performing embedding lookups and reduction operation in mem-

ory using near-memory processing (NMP). Both of the above techniques have shown significant

speedups compared to computing on general-purpose CPUs. Prior work RecPipe [96] proposed

a multi-stage model by adding a filtering model before the recommendation model to reduce the

candidates ranked by the big recommendation model.

In this chapter, we first reviewed the background of edge devices, where we described two

popular edge platforms – Smartphone/mobile devices and IoT devices. Next, we described three

important and emerging applications domains of edge devices – computer vision, GPS sensing,

and machine learning. In this dissertation, we take insights from these works and build solutions

over and above them that improve the performance, energy, and cost of ownership to enhance user

experience.

In the next chapter, we describe our first solution, Seesaw: an end-to-end machine-learning-

based approach for energy-efficient IoT edge devices. IoT devices are composed of multiple sen-

sors with varied power profiles. In Seesaw, we leverage users’ sensing capabilities and varied

power profiles to reduce the overall energy consumption of applications on edge devices. See-

saw is an automated framework that can be applied to any application involving multiple sensors

working together to serve the application.

24

CHAPTER 3

End-to-End Machine Learning Based Approach for

Energy-Efficient Multi-Sensor Edge Platforms

In this chapter, we study techniques to improve the battery life of IoT edge devices without im-

pacting user perception to reach the final goal of enhanced user experience. Instead of hosting

a powerful and extremely expensive SoC, IoT devices have multiple economical sensors to do

continuous data collection and smart networking, which are powered by microcontrollers [44] or

lightweight CPU cores [4].

The small form factor of these IoT edge devices constrains their battery life (size). Further,

several IoT domains necessitate these devices to be placed in remote, inaccessible locations, pre-

cluding frequent replacements. Thus, to improve the consumer experience for this category of edge

platforms, the focus in this chapter is on making them energy-efficient to improve their battery life.

A natural method to improve battery life is to reduce the energy requirements of an edge node by

reducing the data sensing rates and associated computing overheads. However, naı̈vely reducing

sensing rates can result in significant output accuracy loss, leading to key questions about how

to optimize the energy efficiency of the system while maintaining an acceptable output accuracy

level.

We make two important observations to achieve our goal of improving battery life without

impacting user-perceivable output quality. First, we observe that for these personalized and

application-specific edge devices, the quality of output is often dependent on an individual’s in-

built perception capability. For example, minute details/changes in videos, GPS routes, weather

25

monitoring data, etc., may not be captured by a human sensing system. The granularity at which

sensors capture data can be tailored to individual users depending on their requirements or inherent

discerning abilities.

Second, today’s edge devices consist of diverse sensors to cater to user requirements, which can

be leveraged to improve the overall energy efficiency of the device. Consider, for instance, struc-

tural health monitoring systems: they typically have various sensors with different functionalities

and accuracy trade-offs, such as a Vibrating Wire Strain Gauge to measure strain, an inclinometer

to measure inclination, and a laser displacement sensor to measure the vertical deflection [183].

Another example is a wearable fitness tracker, such as the FitBit Surge [44], which consists of an

accelerometer, magnetometer, GPS, and heart-rate monitor. The diversity in sensors usually re-

sults in uneven power consumption characteristics, where a few sensors are power-intensive while

others consume a tiny fraction of total power.

Nonetheless, we observe that diverse power profiles of various sensors in the system present an

opportunity to improve battery life. At power-intensive sensors, we find that only a small fraction

of data computed has a significant impact on its output accuracy, while the rest of the data has

minimal impact on accuracy. Furthermore, the lightweight sensors can give indications about the

impact on the output accuracy level of the data processing done at the power-intensive sensor.

Hence, in this chapter, we propose Seesaw, an end-to-end machine learning-based technique

to leverage this correlation between different sensors to improve battery life without degrading

the human-perceivable user experience. Battery life can be increased by dynamically changing

the sensing rates of the power-intensive sensors depending on the importance of the data being

processed. For significant data, the sensing rate should be high to minimize accuracy loss, while

sensing rates can be lowered for the rest. A low-overhead machine learning predictor is trained

to learn the correlation between the outputs of lightweight sensors and the sensing rate of the

power-intensive sensor for a given error tolerance limit. The correlation is established if the cross-

validation error of the trained predictor is very low, implying that the machine learning model

learns a valid pattern. Once the correlation is confirmed, the low-overhead machine learning pre-

26

dictor is deployed on the central microcontroller, where at runtime, based on outputs of lightweight

sensors, it predicts the sensing rate of the power-intensive sensor while limiting the output accuracy

loss.

We evaluate Seesaw for two use-cases - video recording on a mountable video camera, like

GoPro [39], and route tracking on fitness trackers, like FitBit surge [44]. For a mountable video

camera, which has a camera and GPS-based speedometer sensor, Seesaw finds a direct correlation

between speedometer reading and the frame rate at the camera sensor. High speedometer readings

imply high pixel motion between frames, and thus frame rates should be high, and vice-versa.

Seesaw also gives a strong relationship between compass headings and GPS sampling rate for

fitness trackers. We show the established correlations manifest into battery savings by regulating

the high-power sensor based on low-power sensors. Our experiments for 45 testing videos, using

Netflix’s Video Multi-Method Assessment Fusion (VMAF) [40] metric along with a user study

across 17 individuals, show an improvement of 32% in video camera battery life without impacting

video quality based on human perception. The fitness tracker evaluated across 100 real GPS routes

showed a 66% improvement in battery life, with an average GPS route error of only 2.63%.

3.1 Motivation

Despite a multitude of applications, short battery life is limiting the use of IoT edge devices. A

common trend observed in IoT platforms is to embed more sensors to improve the user experience.

However, such multi-sensor devices usually have one or more sensors that are power-intensive,

while others consume relatively low power. This diversity in sensors presents an opportunity to

explore the relationship among these sensors. For example, GoPro added a GPS module [39] in

their latest version to give users the additional feature of route tracking. For such a mountable video

capture device, the image-sensing pipeline consumes the largest share of the overall power budget.

From our experimental setup, we measure that image sensing and processing consume 51% and

31% of the total power, respectively, whereas GPS consumes only 10% of the total power. To re-

27

duce the power consumed by the imaging pipeline, we observe that a lightweight speedometer can

guide the frame rate of the captured video without affecting the quality of the video recorded. The

intuition is that a fast-moving GoPro needs to capture quickly changing scenery around it, while

the object motion between adjacent frames is insignificant for a slower pace. The above energy

management applies to mountable video capture devices such as Google Glass or GroPro. Further,

Arable [42], a precision agriculture platform, hosts many sensors like a Normal Vegetation Differ-

ence Index (NVDI) sensor, an acoustic sensor, sometimes an NVDI imaging sensor, and sensors to

measure air environmental conditions like temperature, humidity, pressure, and photosynthetic ac-

tive radiation (PAR). Here, the acoustic sensor for listening to rainfall acts as a portable rain gauge.

We observe that it can be sampled depending on environmental sensors like humidity sensors. The

intuition is that the probability of rainfall is strongly related to humidity; thus, audio sensors can

be sampled depending on the measured humidity or from a combination of other environmental

sensors.

As described in the background chapter, many prior works have shown standalone use cases

where a sensor can give hints to another sensor of the system. However, in this chapter, Seesaw, we

present a holistic, automated technique that automatically discovers new relationships between the

sensors with diverse characteristics to increase the battery life of the edge device without significant

quality loss.

3.2 Seesaw

Seesaw is a generalized, end-to-end machine learning-based technique to reduce the overall power

consumption of IoT edge devices comprising multiple sensors. Guidelines to deploy Seesaw on

any given IoT platform are as follows. First, the platform should fulfill two prerequisites: i) it

should contain at least two sensors, and ii) at least one of the sensors should be responsible for a

major fraction of the platform’s power consumption. Once these prerequisites are met, raw data

from the sensors is fed into Seesaw. Seesaw trains low-overhead decision-tree-based predictors

for various low-power / power-intensive sensor combinations, as shown in Figure 3.1. The goal

28

Figure 3.1: Seesaw overview: Low-power sensors predict optimal sensing rate for a power-intensive sensor
by means of a low-overhead robust decision tree predictor with low cross-validation error.

Figure 3.2: Error feedback mechanism dynamically modifies the root node of the decision tree to limit the
error.

of the predictor is to regulate the sensing rate of a power-intensive sensor (Sensork) based on the

output values of other low-power sensors (Sensor1, ...Sensorj). Based on the robustness of the pre-

dictor, estimated using k-fold cross-validation, Seesaw accepts or discards the correlation learned

by the predictor. Only predictors with very low cross-validation error, determined empirically, are

accepted, implying that the predictor learned a valid pattern. The predictor is then deployed on

the device’s microcontroller to modulate the sensing rate of the power-intensive sensor based on

information from low-power sensors.

3.2.1 Prediction Model

The predictor must execute on a small microcontroller that should be available on the edge device.

Thus, instead of a deep neural network, we use a simple decision-tree predictor to optimize power,

performance, and area. The input to the predictor is the output of the low-power sensors, and

the predictor’s output determines the sampling rate of the high-power sensor. During runtime, the

29

outputs of low-power sensors at time stamp t are fed into the low-overhead decision tree predictor,

which is extremely fast and runs in a few µs. The predictor processes the input signals provided

by low-power sensors to determine the sampling rate of the high-power sensor for time stamp t+1.

Seesaw works at a granularity of 1 sec; thus, a new sampling rate is predicted every second for

the power-intensive sensor. The high-power sensor works at the newly predicted sampling rate

for a timing window [t+1, t+2) until the next sampling rate is predicted at the time stamp t+2.

At the low-power sensors, only the outputs at the time stamp t are fed into the predictor. This

can be extended to a value over a timing window of a few secs, for example, a mean of the low-

power sensor values for a window of l secs [t-l, t]. A timing window can potentially improve the

predictor accuracy but will also add extra computing overhead to the microcontroller. We have not

investigated this trade-off in this work and will leave it for future studies.

The decision-tree model is generated for user-defined error tolerance. To train it, we generate

data during an offline phase as outlined by Algorithm 1, assuming that the low-power sensors

(LP sensors) guide the sampling/sensing rate of the high-power sensor (HP sensor). For each

training case and each sample within a training case, we sweep the sensing rate of HP Sensor and

measure the sensing error (the lowest sensing rate will generate the highest error) to form an array

of error rates along with their corresponding sensing rates. We then create a tuple that maps the

sensing rate array and error array, computed in the previous step, to the corresponding low-power

sensor output (LP sensor out). The global training data is collectively formed by the tuples created

for all the training cases and samples within each case. We then use this data to generate a decision

tree for a given error tolerance (Tolerance) as described below.

In Algorithm 2, we read the error and sensing rate vectors of each sample (LP sensor out). We

then choose the index with the largest error rate (sensing rate is minimum) that is still within the

tolerance limit. Using this index, we retrieve the corresponding sensing rate for the power-intensive

sensor (HP sensrate opt). Finally, we map LP sensor out to HP sensrate opt to form the selected

training data, and we train a regression tree model with this data.

Error feedback: Depending on the availability or feasibility of a real-time error measurement

30

technique, an optional error feedback mechanism can also be deployed by dynamically chang-

ing the root node of the decision tree. The start node represents the minimum sampling rate (or

maximum error) supported by the decision tree. The sampling rate increases from root to leaves,

resulting in lower error towards the leaves, as shown in Figure 3.2. For instance, if at any instant

the error is greater than the given error tolerance, we move the start node to a lower root node

in the decision tree, as shown in Figure 3.2, by traversing the tree and doubling the minimum

sampling rate until the error falls within the tolerance threshold. Once the error is stabilized with

the tolerance, we explore reducing the sampling rate by a factor of two by traversing back toward

the original root of the tree. Note that this adaptive approach based on error feedback is possible

because of the inherent structure of decision trees.
Algorithm 1 Generating global training data

1: Input: LP Sensor, HP Sensor; Output: Global Data
2: for each training case i do
3: for each sample j in training case i do
4: error← [], HP sensrate← []
5: for each HP sensor sensing rate k in [Kmin, Kmax] do
6: local error← calc error (HP Sensorij , k)
7: error← error ∪ local error
8: HP sensrate← HP sensrate ∪ k
9: end for

10: Global Data← Global Data ∪ {LP Sensor outij , error, HP sensrate}
11: end for
12: end for
13: return Global Data

Algorithm 2 Generating the decision tree
1: Input: Tol (Tolerance), Global Data; Output: Decision tree
2: for each training case i do
3: for each sample j in training case i do
4: (error[], HP sensrate[])← Global Data (LP Sensor outij)
5: (max error, idx)← max(error) such that max error < Tol
6: HP sensrate opt← HP sensrate(idx)
7: Training Data← Training Data

⋃
{LP Sensor outij , HP sensrate opt}

8: end for
9: end for

10: Decision tree = regression tree model(Training Data)
11: return Decision tree

31

3.2.2 Correlation Finder

We developed a correlation finder to identify any dependency between low-power and power-

intensive sensors. Our correlation finder is based on the robustness of the predictor model learned

during the offline phase for each pair of low-power and high-power sensors. The correlation finder

performs K-fold cross-validation for each predictor model. It splits the training set into K par-

titions, where one part is selected for testing a model trained on the remaining K-1 parts. This

process is repeated for every Kth partition. Root mean square error is calculated for each parti-

tion tested, measuring the robustness of the final model trained on the complete training set. The

predictor models with cross-validation errors smaller than an empirically determined threshold are

accepted as valid correlations.

3.2.3 Seesaw Applicability

As discussed at the beginning of the section, Seesaw is a general technique that can be deployed

on any IoT system fulfilling two prerequisites: multiple sensors and diverse power profiles among

the sensors. We extensively evaluated Seesaw for two setups (a mountable video camera and a

fitness tracker); however, Seesaw can be effective in many other commercial platforms. For ex-

ample, Arable [42], a precision agriculture IoT platform, hosts many sensors, making it amenable

to Seesaw. Plugging in the rain gauge, humidity, and temperature data [45] in the Seesaw method

establishes a direct correlation between humidity and acoustic rain gauge sensors based on low

cross-validation error (as shown in Table 3.1). Moreover, it also discards any correlation of tem-

perature with the acoustic rain gauge sensor due to high cross-validation error. These correlations

align with the intuition that the probability of rainfall is strongly related to humidity but unrelated

to temperature. Thus, the acoustic rain gauge sensor, which uses sound classification to calculate

the amount of rain, can be sampled at different rates depending on measured humidity.

Similarly, a smart traffic management system that continuously records live videos can use a

lightweight passive infrared radiation (PIR) sensor to detect movement in its field of view, which

can, in turn, guide the frame rate. As another example, smart parking edge devices [46] use a mag-

32

5% Error 10% Error 20% Error
Humidity 0.037 0.032 0.029
Temperature 79.6 71.3 55.6

Table 3.1: Cross-validation errors of models trained for a precision agriculture device.

netometer to detect the presence of a vehicle by computing variations in the earth’s magnetic field.

Here, naı̈ve optical sensors, detecting the change in intensity of light, can guide the sampling rate

of the magnetic sensor, which detects the presence/absence of vehicles in parking spots throughout

the day.

3.3 Evaluation Platforms

To evaluate Seesaw, we analyzed two specific IoT platforms: a mountable video camera and a

fitness tracker.

3.3.1 Mountable Video Camera

The GoPro, a smart video camera, consists of an imaging sensor, image processing DSP, flash

memory, Bluetooth module, and a GPS module to collect route information for activities like

biking, hiking, etc. Since these commercial devices do not provide fine-grained control to users,

which is required to implement Seesaw, we instead replicate the GoPro setup as shown in Figure

3.4(a). On the camera board, we run two image processing filters—a Gaussian and an edge filter—

followed by the motion estimation kernel used in video compression to measure active power

(Pact). We also measure idle power (Pidle) and memory write power (Pwr). All these parameters

are listed in Table 3.2. We calculate the total energy per frame (Eframe) and average power at

different frame rates using equations 3.1 and 3.2. Here, active time (Tact), idle time (Tidle), and

write time (Twr) will depend on frame rate (number of frames processed per second). Additionally,

Bluetooth energy (EBLE) is also added to the final power consumption. Using this setup, we find

that the image sensor, image processor, and GPS consume 51%, 36%, and 10% of total power,

respectively. The remaining 2% is spent on storage and data transfer. In a nutshell, most of the

33

Figure 3.3: Prediction mechanism for Video Camera: Speedometer and motion vectors are used to determine
the target frame rate.

power goes to the sensing and computing of images. Thus, energy consumption can be reduced

by lowering the frame rate intelligently, with minimal impact on video quality. We validated our

power model, based on the replicated GoPro setup, by comparing the battery life from the model

with the battery life obtained from running GoPro Hero 5 at 30 fps. We find that the GoPro battery

lasts for 2.25 hr, whereas our model estimates a battery life of 2.5 hrs at 30 fps.

Eframe = PactTact + PidleTidle + PwrTwr + EBLEFrame size (3.1)

Pfps = Eframefps (3.2)

Tbattery = Battery Capacity/Pavg (3.3)

Prediction Model: The predictor model considers GPS-based speedometer readings to predict the

lowest frame rate that produces an error within user-defined error tolerance. The correlation is

established only if the predictor model has a low cross-validation error. In addition to speedometer

readings, we also provide motion vectors to the predictor as another implicit sensor data. Motion

vectors computed for video compression, using a block-matching algorithm, give an estimate of the

displacement of objects in subsequent frames. In Seesaw, we leverage this information to predict

a desirable frame rate. Since the block-matching algorithm bounds its search space to reduce the

amount of on-the-fly computation, it does not produce accurate outputs when the camera is moving

fast. Hence, the speedometer and motion vectors are complementary to each other and are both

34

used by the predictor model, as illustrated in Figure 3.3.

We used 50 video sequences for training, and another 45 for testing, using GoPro videos avail-

able online. These videos belong to one of three categories: low, medium, and high pixel motion.

Speedometer data is obtained using the optical flow [82] algorithm. Libraries from the OpenCV

framework are used to gather speedometer and motion vectors. The FFMPEG utility is used to

process and change video frame rates. We trained the decision tree for three error tolerance values:

5%, 10%, and 20%. To extract the training data, we sweep the frame rate for every second of

each video from high to low and create a database, mapping frame rates to the error in the video

quality metric defined by Netflix’s Video Multi-Method Assessment Fusion (VMAF) [40]. VMAF

has three components: visual quality fidelity (VIF), detail loss measure (DLM), and pixel motion.

VIF and DLM measure loss in image quality, whereas pixel motion captures errors due to changes

in frame rate. The final VMAF output is a fused score of the three individual scores. Since we

modify only frame rates and do not alter image quality, the VMAF metric measures video quality

in our setup. The lowest frame rate, which produces the highest power savings (but is still within

the error tolerance), is selected to train the decision tree. Only models with cross-validation errors

within the empirically determined threshold limit are accepted. Bounded by the GPS (speedome-

ter) update rate of 1Hz, the decision tree is invoked every second. The optional error feedback

mechanism could not be applied for this application because of the lack of any real-time technique

to estimate error. Note that since the VMAF calculation is compute-intensive, the VMAF score is

only computed while training the decision tree and not during video capture.

User Study: We conducted a user study of video quality evaluation to relate the error thresh-

olds with human perception of video quality. The user study was reviewed by the University of

Michigan Health Sciences and Behavioral Sciences Institutional Review Board (HUM00149764)

and was deemed exempt. The study was advertised among graduate students in the department

of Computer Science and Engineering. Graduate student volunteers that signed up for the study

were asked to read the study description and consent form. They were then given an opportunity

to agree or decline. On their acceptance, we presented different versions of two unique videos

35

(a) Video camera (b) Fitness tracker

Figure 3.4: (a)Video camera setup comprising OpenMV camera platform and ublox GPS. (b) Fitness tracker
setup comprising a Neo-6M ublox GPS and an IMU sensor fusion chip: the MPU9250 configured by
Arduino-Uno board. Power is measured using a USB power-meter.

through a laptop to each participant. Each unique video had four versions - one original, and the

remaining three were the video outputs from Seesaw’s prediction model for three error rates - 5%,

10%, and 20%. After completely watching the first set of videos on a laptop, the participant was

asked to complete the first portion of the study via a google form. We then presented the second

set of videos, and the participant completed the evaluation on the same google form. The google

survey questionnaire asked the participant to provide a subjective comparative evaluation of pairs

of videos by providing a numerical score of relative quality. For each portion of the study, the

user was asked to compare the three versions of the video with a “baseline” and rate them on a

scale of [-10, +10], where positive scores indicate better quality than baseline and vice-versa. To

avoid bias, the “baseline” was chosen at random from the four versions and was not necessarily the

original video. Furthermore, the users were not informed which video was the original. To further

get rid of any bias, we sometimes replicated videos, i.e., different versions might be identical, and

users might also receive the same unique videos. This study was carried out for 30 sets of videos

picked out randomly from 45 videos consisting of fast videos and slow videos. User inputs were

anonymized. The survey also asked the participant whether they are avid video games because we

believe those participants are likely to have developed a strong skill in perceiving small differences

in video quality. A total of 17 graduate student volunteers, including all genders, completed the

36

Table 3.2: Video camera

Pact 492 mW
Pidle 40 mW
Pwr 216 mW

BLE energy 0.5 µJ/bit
Battery capacity 5.36 Wh

Frequency 216 Mhz
Frame size 1080p
Frame rate 30 fps

Video compr. ratio 1:15

Table 3.3: Fitness tracker

Pactive 196 mW
Pidle 90 mW

Pwrite [92] 6 pJ/bit
BLE energy 0.5 µJ/bit

Energy Capacity 0.37 Wh
GPS Data Size 8 bytes
Sensor Fusion 10 mW

MPU9250 power

user study. Out of 17, 4 identified themselves as avid video gamers with sharp vision. We ensured

that volunteers had no information about the optimization techniques we proposed to get unbiased

results. Data collected was stored in cloud storage via google drive and processed and aggregated

directly on the corresponding data file at the end of the study. The findings of this user study are

reported in Section 3.4.1.

3.3.2 Fitness Tracker

Fitbit Surge, a popular fitness tracker, contains an inertial measurement unit (IMU) with a digital

motion processor, GPS, Bluetooth, NOR flash, and a central microcontroller. Due to the lack

of availability of fine-grained control on commercially available devices, we replicated a fitness

tracker setup for our evaluation, shown in Figure 3.4(b). The GPS chip performs correlation-based

FFT search and transmits the output in the form of the National Marine Electronics Association

(NMEA) sentences to the Arduino board, which performs parsing and distance calculation. The

three operations – FFT, parsing, and distance calculation – contribute to active power. All the

parameters are listed in Table 3.3. The analytical power model is similar to that of the mountable

video camera, which used equations 3.1, 3.2, and 3.3, where the frame rate (fps) is replaced by the

update rate, and Tact and Tidle depend on the update rate. Using this setup, we find that GPS and

IMU consume 74% and 21%, respectively, of the total system power. Other components together

accrue 5% of the total power. Thus, the GPS sampling rate or update rate should be reduced

intelligently to improve battery life. We compare the battery life from the power model of our

37

Figure 3.5: Prediction model for a fitness tracker. Error tracked using distance measurement from pedometer
and GPS is used as feedback to change the decision tree dynamically.

setup with the optimistic battery life reported by Fitbit Surge [43], where only GPS is active, and

IMU, MCU, etc. are excluded. Fitbit reports at most 10 hrs of battery life, while we measure

Battery life of 7.8 hrs from our setup with GPS, IMU, and MCU all active, at an update rate of 1

Hz – a fair approximation of the Fitbit device’s reported value.

Prediction Model: We trained a predictor model that takes compass headings from the lightweight

IMU unit as input to predict the optimal GPS update rate within the given error tolerance, as shown

in Figure 3.5. If the predictor model has a low cross-validation error, the correlation is established.

The update rate is swept from 1Hz to 0.1Hz for each GPS route to generate the training data that

maps the update rate to the route error, defined by equation 3.4. The lowest update rate within the

given error threshold is selected to train the decision tree. We used a total of 200 real GPS routes

(100 train and 100 test), which are uploaded by users on Kaggle [41], to train our model. Decision

trees are trained for three error tolerance limits – 5%, 10%, and 20% – and the one in use is

invoked every second. Only prediction models with cross-validation errors within the empirically

determined threshold limit are accepted.

Route error =
Σ(dmeasured − doriginal)t

Total distance
(3.4)

Error feedback: Real-time error tracking is feasible, and it is based on the difference between

the distance calculated by GPS and the distance computed by the pedometer, using step count and

stride length. This error is fed into the decision tree to dynamically change the minimum update

38

0
0.1
0.2
0.3
0.4
0.5

1 0.5 0.3 0.1 0
Randomness factor (f)

Cr
os

sv
al

id
at

io
n

Er
ro

r

5% Error 10% Error 20% Error

(True Dataset)

Figure 3.6: Cross-validation errors of decision trees trained for the video camera over a range of error
tolerance limits.

rate (pointed by the start node) that it can support, which reduces the final output error as discussed

in Section 3.2.1. This closed-loop mechanism adapts the predictor model irrespective of the user

and terrain to limit the final output error.

3.4 Experimental Evaluation

3.4.1 Mountable Video Camera

Established Correlation: The K-fold cross-validation (k=10) method revealed that, for true

dataset, the cross-validation error is of the order of 0.01, as shown in Figure 3.6. For the rest

of the randomized datasets, wherein f represents a fraction of random data (f>0), the error is at

least 10× larger (> 0.1), and the error increases as the data diverges from the true dataset. For

the true dataset, Seesaw established a direct correlation between the frame rate of the camera and

the speedometer and motion vectors. The speedometer can be used to control the frame rate of

the video pipeline. During high-speed adventures like biking, rollerblading, or free-fall, the frame

rate should be high to capture all activities, but for regular activities, such as walking or diving, a

lower rate is acceptable. Another scenario that requires high frame rates occurs when objects are

moving rapidly around a still camera. Such a scenario is captured by motion vectors calculated

for the video compression task. Thus, this correlation, where the speedometer and motion vector

guide the frame rates at the camera, is used for the rest of the evaluation.

Frame Rate: Figure 3.7 shows the change in frame rates for 45 videos evaluated. The videos are

39

0

5

10

15

20

25

30

35

0.176 0.186 0.196 0.206 0.216 0.226 0.236 0.246 0.256 0.266

Av
er

ag
e

Fr
am

e
Ra

te
 (f

ps
)

Pixel Motion

5% Error 10% Error 20% Error

Low Medium High

Figure 3.7: Average frame rate across 45 videos for different error tolerance limits. Videos are sorted based
on their average pixel motion (12 low, 26 medium, and 7 high).

sorted by average pixel motion. As pixel motion increases, the delta between frames also increases,

indicating a rise in activity factor. Frame rates decrease as the error limit increases to accommodate

more errors. The average frame rate is 28fps, 26.4fps, and 23.4fps for decision trees trained at 5%,

10%, and 20% error tolerance, respectively. We also observe that the frame rate is lower,i.e., the

predictor can drop more frames, when pixel motion is small. Furthermore, there are fewer frame

drops (the frame rate is higher) for more dynamic videos to retain significant data intact.

Video Quality: Figure 3.8 shows the average VMAF error for each video for the three error

tolerance limits. Videos with high pixel motion have low errors, so no significant information is

lost. For slower and smoother videos with low pixel motion value, a larger error can be tolerated

since there is additional redundant information, the loss of which does not impact the quality of

the user’s experience. The average error is 4.9%, 7.7%, and 16.5% for 5%, 10%, and 20% error

tolerance, respectively. Thus, the average error is always within the error tolerance and increases

as the error tolerance increases.

User Study: We also relate these quantitative errors with our results from the user study to capture

human perception. The user study for carried out rigorously for 17 users. The goal of this user

study is to understand at what error tolerance limit humans can perceive a major difference with

the naked eye. We aim to find which of the three error tolerances—5%, 10%, and 20%—are ac-

ceptable. Average scores from the user study are listed in Table 3.4. The users had to assign scores

40

0

5

10

15

20

25

30

0.176 0.186 0.196 0.206 0.216 0.226 0.236 0.246 0.256 0.266

VM
AF

 E
rr

or
 (%

)

Pixel Motion

5% Error 10% error 20% error

7.7

16.5

4.9

Average

Figure 3.8: VMAF video quality error measured across 45 videos.

between [-10, 10]. Users were not informed which version was the original video, what decision

tree error thresholds were used for different video versions, and sometimes videos were replicated

to eliminate bias. Thus, users did not always rate the original video as the highest quality. It can

be seen that all the average values are close to 0 and acceptable. For slow videos, the difference is

almost negligible since there is not much information loss by getting rid of redundant frames. In

fact, the value is positive for 10% & 20% error since it tends to create a smoothening effect. For

the medium pixel motion range, the average score decreases with a higher error tolerance limit.

Hence, users can see some small changes, but the overall quality is acceptable. For high pixel

motion with fast-moving objects, it is difficult for users to track what was intact and what was

lost; hence we see irregularities, but the absolute scores are very close to zero. Post-processing

methods such as video motion interpolation, which can be combined with video decompression at

the back-end, can also be applied to enhance the user experience; however, we did not explore this

option for our work. Hence from this study, we conclude that intelligently changing frame rates

has minimal impact on user perception. Thus, we can safely choose 20% error tolerance or more

as an acceptable error limit. It can be higher than 20%, but we did not explore the option in our

user study and left it as future work.

Energy Efficiency: The average increase in battery life is shown in Figure 3.9. Our energy model

accounts for the entire image sensing pipeline (analog and digital), video data transfer, speedometer

sensing/computation, and decision tree predictor. We show two baselines: one without sleep mode

41

Pixel Motion Original 5% Error 10% Error 20% Error
Low pixel Motion 0.5 -0.25 0.25 0.062
Medium pixel Motion 1.20 -0.23 -1 -1.2
High pixel Motion 0.5 -0.8 0.8 -0.2

Table 3.4: User study scores averaged across 45 videos for 17 unique users. All the average values are close
to 0 and acceptable.

0

1

2

3

4

Baseline w/o
sleep

Baseline w/
sleep

5% Model 10% Model 20% Model

Ba
tt

er
y

Li
fe

 (h
rs

)

Figure 3.9: Average battery life of camera across error tolerance models.

on (Baseline w/o sleep), during which the processor is always on; and one with sleep mode on

(Baseline w/ sleep), during which the processor switches to sleep mode in between frames when it

is not being used for any computation. With sleep mode enabled, battery life improves by 18% at

30 fps. On using Seesaw, the battery life improves by 12.5%, 18.3%, and 31.5% for 5%, 10%, and

20% error tolerance, respectively, over a baseline with sleep mode. Savings improve as the error

limit increases because the predictor allows more errors and more frame drops. We also observe

that energy savings are higher for low-pixel motion or slow videos since the average frame rate is

low, and vice-versa.

0

5

10

1 0.5 0.3 0.1 0
Randomness factor (f)

Cr
os

sv
al

id
at

io
n

Er
ro

r

5% Error 10% Error 20% Error

(True Dataset)

Figure 3.10: Cross-validation errors of decision trees trained for the fitness tracker.

42

0

2

4

6

8

10

12

0 20 40 60 80 100 120

U
pd

at
e

Ra
te

 (s
ec

)

Mean Curvature

5% Error 10% Error 20% Error

5.3

7.4

9.2

Average

Figure 3.11: GPS update rates across 100 routes sorted based on their average curvature. The update rate is
measured as the time between two updates. In the baseline system, the GPS updates every second.

3.4.2 Fitness Trackers

Established Correlation: On applying K-fold (K=10) cross-validation method, we find that the

cross-validation error is ∼10E-02 for the true dataset, as shown in Figure 3.10. For the rest of

the randomized datasets, where f represents the fraction of random data, the error is at least 10×

and, at most, 100× higher than the true dataset. For the true dataset, Seesaw established a direct

correlation between the update rate of GPS and compass heading from the IMU sensor fusion

chip. Compass headings indicate a change in direction on the GPS route, which can be used to

control the update rate of GPS since the route or distance information does not change until a turn

is present on the GPS route. This correlation, in which the IMU compass heading guides the GPS

update rate, is used for the rest of the evaluation.

GPS Update Rate: Figure 3.11 shows the update rate across 100 testing routes. The routes are

sorted based on their average curvature, a measure of the irregularity of a route. Routes with lots of

twists and turns, e.g., hiking trails, will have a higher curvature as compared to routes with straight

paths, e.g., running across a paved city road. The average update rate is 5.3s, 7.4s, and 9.2s for our

5%, 10%, and 20% error tolerance model, increasing as the error tolerance increases.

Error: Figure 3.12 shows the maximum error across 100 routes with and without the error feed-

back mechanism. The maximum error with error feedback is 5.03%, 9.35%, and 17.16% for our

5%, 10%, and 20% error tolerance model, which increases to 17.44%, 23.12%, and 24.93% with-

43

0

5

10

15

20

25

Max error w/o feedback Max error w/ feedback

Ro
ut

e
Er

ro
r (

%
) 5% Model 10% Model 20% Model

Figure 3.12: Fitness tracker maximum error across the routes with and without feedback mechanism.

0

20

40

60

80

f=0.1 f=0.2 f=0.4 f=1

Ba
tt

er
y

Li
fe

 (h
rs

) Baseline w/o sleep Baseline w/ sleep 5% 10% 20%

Figure 3.13: Fitness tracker battery savings across activity factors (f).

out the error feedback mechanism. For the closed-loop error feedback mechanism used by our

proposed approach, the decision tree changes dynamically to adapt to any route; thus, the maxi-

mum error is within the tolerance limit. For both, with and without error feedback, the average

error is 2.63%, 4.02%, and 5.34% for 5%, 10%, and 20% error tolerance, respectively. As ex-

pected, average error increases as error tolerance increases.

Energy efficiency: The average increase in battery life is shown in Figure 3.13. We report results

for different activity factors, which capture user active time, i.e., the fraction of time in which the

GPS is actively used. We show battery life savings for four activity factor (f) values: 0.1, 0.2, 0.4,

and 1. We also show two baselines: a baseline without sleep mode on (Baseline w/o sleep) and a

baseline with sleep mode on (Baseline w/ sleep). Here, Baseline w/ sleep also resembles work that

turns GPS on/off depending on some activity detection, which is represented by an activity factor

(f).

On enabling sleep mode, the battery life increases by 7×, 4.2×, and 2.3× for activity factors (f)

0.1, 0.2, and 0.4 as compared to always-on mode. As the activity factor increases, this difference

44

reduces, and the two baselines become equal for f=1 when GPS is always actively used by the

consumer. With Seesaw, we observe that even with the smallest activity factor of 0.1, battery life

improves by 39%, 45%, and 49% for 5%, 10%, and 20% error tolerance, respectively, w.r.t. the

baseline w/ sleep mode enabled. For a maximum activity factor of 1, battery savings shoot up to

66%, 79%, and 88% for 5%, 10%, and 20% error tolerance, respectively. Our savings increase

as the activity factor increases since more GPS activity means more opportunities to optimize.

Savings also increase as we tolerate more error since the average update interval increases, allowing

the processor to sleep longer.

3.4.3 Prediction Model Overhead

To estimate the energy overhead of the decision tree, we run the model on an ARM M4 controller

[36]. The average decision tree power for the two use cases—mountable video capture and fitness

trackers—is shown in Table 3.5. It is insignificant: 0.210µW and 0.610µW for the fitness tracker

and video capture, respectively, which amounts to 0.1% of the power consumption of the other

components in these devices. Note the prediction model is invoked every second and runs for

1.043µs for the fitness tracker and 2.83µs for video capture. The decision trees have, in total,

17 nodes for the fitness tracker and 19 nodes for the video capture. The two decision trees take

60 kB of 1024 kB and 20 kB of 256 kB available flash and RAM, respectively. This is only

7% of available memory, and thus Seesaw can be scaled to accommodate more decision trees

generated for different applications. Decision trees are used because they are lightweight and

perform reasonably well. We also did an evaluation with a Support Vector Machine (SVM) as

the predictor to observe the trade-off between accuracy and predictor overheads. Using SVM with

Gaussian kernel, we found that the power overheads increased to 849 µW and 73 µW for the fitness

tracker and video capture, respectively, which is >100x larger than overheads of the decision tree.

Moreover, we did not find any improvement in accuracy with SVM. The SVM model resulted in

the same application error as found with the decision tree but at a higher power overhead of SVM.

45

Decision Tree SVM
Fitness Tracker 0.211 µW 849 µW
Video Camera 0.610 µW 73 µW

Table 3.5: Power overhead of decision tree and SVM.

3.5 Conclusion

In this work, we leveraged the relationship among sensors with diverse power profiles to increase

the battery life of edge devices. We presented Seesaw, an end-to-end machine learning-based so-

lution that used a low-overhead decision tree model to automatically identify correlations between

high-power and low-power sensors. Specifically, Seesaw explored whether a low-power sensor

can determine the impact on output accuracy by the data being processed at the high-power sen-

sor. Upon establishing a correlation, it used a decision-tree predictor that, based on low-power

sensor outputs, predicted the best sampling rate for the high-power sensor within a given error

tolerance. We assessed the benefits of Seesaw for two case studies: (1) video recording on a

mountable video camera, like the GoPro, and (2) route tracking on fitness trackers, like the FitBit

Surge. We showed that the established correlations improve battery life for the mountable camera

and the fitness tracker by 32% and 66%, respectively, without any significant accuracy loss. In this

chapter, we leveraged humans’ implicit discerning capabilities to tailor the application for each

user to improve the battery life of personal IoT/edge devices. In the next chapter, we will lever-

age users’ explicit preferences/choices to optimize the emerging machine learning-based computer

vision application for the underlying hardware to improve the consumer experience.

46

CHAPTER 4

User-Driven Lightweight Machine Learning for

Edge Devices

In the last chapter, we presented a technique to tailor the input sensing rate of applications based

on users’ implicit sensing capabilities. In this chapter, we leverage user preferences to tailor the

application kernel to individual users on their personal edge devices. We broaden our application

set to include emerging machine learning-based image/video recognition tasks, which is the most

popular use-case of machine learning in computer vision, to attain our goal of enhancing the user

experience on edge devices.

Machine learning on resource-constrained edge devices with multi-core ARM CPUs is compu-

tationally expensive and often requires offloading computation to the cloud. However, the type of

data processed at edge devices is user-specific and limited to a few inference classes. In this work,

we find an opportunity to build smaller, user-specific machine learning models based on user pref-

erences rather than utilizing a generic, compute-intensive machine learning model that caters to

a diverse range of users. Based on this insight, in this chapter, we present MyML, a hardware-

software approach to make machine learning on edge devices more feasible. We leverage transfer

learning [228] to create small, user-specific models based on user preferences instead of default-

ing to the complex original model. Transfer learning is an approach to learning models for a new

domain by re-training the currently available models with new domain inputs. We draw upon this

insight to build small user-specific models by simultaneously pruning and re-training the current

original model locally at the user device in an efficient way, feasible for resource-constrained edge

47

devices.

For MyML, We first developed a hardware-cognizant software solution to create user-specific

models without sending user data to the cloud. We propose a hardware-friendly, bottom-up pruning

scheme, which utilizes the unique opportunity of simultaneous inference and pruning to share com-

putation between the two. In bottom-up pruning, we prune one layer (or group of layers) at a time

and start pruning from the last layers of the model, moving up to the top layers. Bottom-up pruning

utilizes a structured pruning approach to achieve high training efficiency on edge CPU and edge

accelerator platforms. This work explores two kinds of structured channel pruning, symmetric and

asymmetric pruning, that have different trade-offs between pruning rates and pruning granularity.

Symmetric pruning works at coarse pruning granularity, leading to a lower pruning rate, but it does

not need a fine-control mechanism and the related overhead. On the other hand, asymmetric prun-

ing prunes at a finer granularity, thus, yielding a high pruning rate. However, asymmetric pruning

requires a sophisticated bookkeeping control mechanism for fine-grained computing, which has a

small overhead. Based on the properties of the underlying hardware, we show that Edge accelerator

platforms, like Edge TPU [12] with the 2D systolic array, can support symmetric pruning. In con-

trast, asymmetric pruning can be enabled at edge CPU-only platforms, supporting a fine-grained

bookkeeping control mechanism.

We show that, for the widely accepted Resnet-50 model, our user-specific model for five user

classes is 4.3× smaller and has comparable accuracy (≤1% accuracy drop) to the original ML

model while speeding up inference by 2.9×. For the more complex Inception-V3 model, our user-

specific model for five user classes is 4.7× smaller and has comparable accuracy (≤1% accuracy

drop) to the original ML model while speeding up inference by 2.3×. Our first sensitivity study

is for per-layer pruning and learning rates. We show that the bottom-most group of layers is the

major contributor to the model size and has the highest pruning rates of 78%. The pruning rates

gradually drop as we move to the top layers while stabilizing the accuracy. On the learning rate

front, the bottom layers have higher learning rates to facilitate initial fast learning. The learning

rates then drop slowly for the top layers for a stable and accurate model. The second sensitivity

48

study on training batch size, which determines the size of the dataset required to train a model,

gives an optimal batch size of 8 with the best trade-off between dataset size, accuracy, and model

size. The largest batch size of 64 with a much larger dataset did not offer significant benefits in

model size and accuracy. Our last sensitivity study, where we increase the number of user classes,

shows that our approach is scalable to a wider set of user classes representing an expansion of user

preferences, resulting in a model reduction of 3.2x for 40 classes. Furthermore, our bottom-up

pruning technique can converge to a user-specific model by processing 200 images per class at a

pruning/training throughput of 2.94 images/sec and 2.56 images/sec for ResNet-50 and Inception-

V3, respectively, on the octa-core Snapdragon mobile SoC.

Further, we develop a collaborative system that computes ML inferences at the edge using the

user-specific model and tracks changes in user preferences based on prediction probability and

entropy over probability distribution. Based on the estimated divergence in user preferences, it

determines when to discard the current user-specific model and bring back the original model to

restart a new user-specific model building process. Since all the computation – inference, tracking,

building models – is carried out locally at the edge device, our proposed system ensures user

privacy.

Finally, we propose architectural support to build user-specific models on heterogeneous edge

devices comprising general-purpose CPUs and edge ML accelerators by enabling pruning on ac-

celerators designed to support just the inference. We re-purpose Edge TPU, which computes in-

ference in int8 precision, to also support the backward pass of the pruning phase in block floating

point (BFP16) precision. We show that, by using bottom-up pruning and BFP16 precision, for the

Resnet-50 model, we can reduce the model size by 2.6× and have accuracy comparable (≤1%

accuracy drop) to the original model while speeding up inference by 1.5×. Furthermore, for the

Inception-V3 model, we can reduce the model size by 2.2× and have accuracy comparable (≤1%

accuracy drop) to the original model while speeding up inference by 2.25×. Moreover, the bottom-

up pruning technique gives a pruning/training throughput of 10 images/sec and 7.54 images/sec for

ResNet-50 and Inception-V3, respectively, on the re-purposed Edge TPU.

49

4.1 Background & Motivation

Machine learning (ML) has revolutionized technology in the past decade. It offers a wide range of

applications, e.g., computer vision [203], video recognition [202], and autonomous driving [158].

Machine learning is also used to design intelligent communication systems [116] that analyze com-

plex scenarios in communication systems and make optimal predictions to obtain high Quality of

service (QoS). For example, prior works [104, 194, 135] use a deep learning-based approach for

MIMO detection. Furthermore, prior works [224, 161] have proposed deep learning solutions

for the complex task of channel estimation. As a result of its increasing popularity, researchers

have studied ML extensively for various computing platforms, including CPU [86, 230], GPU

[230, 113, 218], and FPGA [84, 99, 193]. Its memory and compute-intensive nature have also

led to the development of specialized architectures, including TPU [126], NPU [20], and several

ML accelerators [209, 181, 68]. Recently, machine learning has emerged as a leading technique

for improving the ways humans interact with machines. A few examples are voice recognition by

IoT devices like Alexa/ Google Home, face recognition by smart cameras, and recommendation

systems [174] for online shopping, personalized news feeds, and many more. Furthermore, many

frequently used smartphone applications, like Facebook, Gallery/Photos, Instagram, Netflix, and

so on, rely heavily on machine learning.

Despite its ubiquitous presence, machine learning is still one of the most latency-sensitive and

energy-intensive applications for small, resource-constrained IoT/edge devices. IoT or edge de-

vices are usually powered by tiny ARM cores or microcontrollers, which work along with a few

specialized compute IP blocks or accelerators. Due to the limited compute capacity of edge de-

vices, there is a wide gap between the performance of ML applications on edge platforms and

server or desktop platforms. For instance, as shown in Figure 4.1, there is a wide gap between the

execution time of large and accurate cloud ML models, like the Inception-V3 and Resnet-50, and

small, but less accurate, edge-device friendly ML models, like Mobilenet and Shufflenet. Apart

from performance, the compute and memory-intensive nature of ML applications also make them

energy intensive, thereby reducing the battery life of edge platforms. Unlike servers or desktops

50

that are always plugged into a power source, lithium-ion batteries power edge platforms. The small

form factor of edge devices limits battery size and charge capacity. Furthermore, the portable and

seldom remote nature of edge devices precludes their frequent charging. Hence, ideally, edge de-

vices should be able to compute high-precision machine learning cloud models at the speed of

edge models and consume minimal energy.

Today, to compute these large and accurate models, edge devices follow the common practice of

offloading incoming machine learning requests to the cloud/back-end server. But such back-and-

forth communication with the cloud raises additional issues. First, communicating to cloud servers

requires fast and reliable internet connectivity, which can be a constraint in remote places. Second,

transferring to the cloud leads to additional transmission latency and energy, which can impact

overall performance and energy efficiency. Moreover, depending on the network traffic and avail-

able bandwidth, the transmission latency can result in a violation of the tight latency requirements

of many popular machine learning-based applications. Third, and most important, offloading to

a back-end server requires users to share their personal data with a back-end commodity server,

leading to privacy and data-breach concerns. With the increasing frequency of cyber-attacks, shar-

ing user data about every single activity may lead to harmful implications. For example, user data

can be exploited to study the habits or daily routines of users, which can then be manipulated by

malicious parties. All of the above concerns make it challenging to offload computation to the

cloud reliably.

In order to address the above concerns, emerging techniques move computation closer to the

edge/user device by computing either on edge servers or on edge devices. For example, [51]

proposes a distributed solution based on game theory techniques to optimally offload partial com-

putation to the multi-access edge servers in a risk-aware fashion. While an edge server-based

distributed solution, like the above work, reduces the overhead and risk of cloud computing, com-

puting entirely on edge devices completely eliminates those concerns. Hence, there have been

significant efforts in pushing machine learning to edge devices [241, 61, 204]. One such emerging

technique is Federated learning [60, 142], which endorses computation of all machine learning-

51

60

70

80

0

5

10

15

20

25

12 19 35 156 351

Shuffenet-V1 Mobilenet-V2 Mobilenet-V1 ResNet-50 Inception-V3

M
od

el
 A

cc
ur

ac
y

(%
)

M
od

el
 S

ize
 (M

B)

Execution Time (ms)

Model Size (MB) Accuracy (%)

0

Edge/Mobile Models Cloud Models

Figure 4.1: Comparison of accuracy, model size, and execution time across various edge and cloud
ML models for ImageNet dataset.

related operations (ML inference and ML training) locally at the user device to eliminate privacy

concerns related to sending user data back to the cloud. It trains the model at the edge and shares

model updates (instead of raw data) with the back-end cloud. Federated learning enables privacy-

preserving continuous training across many users but builds a generic model.

Another closely related work is transfer learning [228], a technique to learn models for new or

smaller domains from already available trained models. It utilizes the top layers as it is from avail-

able trained models for the new domain and fine-tunes the remaining layer for the new dataset.

Fixynn [219] is a transfer learning-based approach that builds multiple models for different do-

mains/datasets via transfer learning by keeping the feature extraction layers constant and learning

only the remaining layers. Our work is inspired by these efforts to keep all the ML computations

local to the user device and build new models via transfer learning. We leverage the user interac-

tion with the device to learn user preferences without sharing any data with other devices or the

cloud. We then use this knowledge to make ML lightweight and more amenable to edge devices.

To address these challenges, in this work, we present MyML, a hardware-software solution that

makes computationally intensive and accurate machine learning feasible at edge devices.

52

Three phase process

Learning Phase
To learn user-preferences

Pruning Phase
Prune original model to built user model

Inference Phase
Deploy user model in real-time

• Tracking mechanism

• Pruning background

• Bottom-up pruning

• Pruning granularity

• Pruning on edge
accelerator

• Collaborative edge system

Figure 4.2: Our three-phase end-to-end process to learn user preferences, build user-specific model,
and deploy it in real-time.

4.2 MyML Overview

Usually, machine learning models are built to serve numerous users with diverse choices and pref-

erences; however, individual users have limited preferences. In this work, we explore the possibil-

ity of creating small, user-specific models according to user preferences rather than resorting to a

larger generalized model for all users. We create such user-specific models based on the transfer

learning method and avail user classes as a dimension to prune big ML models.

4.3 Building the User Model

As also shown in Figure 4.2, we employ a three-phase process to create and run a user-specific

model as follows:

Learning Phase: In this phase, we use a tracking mechanism to learn user preferences based

on the output of the original model. The tracking mechanism identifies the most frequent cate-

gories/classes in the first batch of input, termed as learning window, as user classes. The number

of user classes depends on the number of categories with which the user frequently interacts. If

any category contributes to more than x% of total inputs in the learning window, we consider it a

user class. Our experiments have a tunable learning window of 50-100 images with an adjustable

value of x. Therefore, for x of 15%, each category must appear at least 7-8 times among the total

of 50 input trials. We also show a sensitivity study for increasing the number of user classes.

53

We have a naive learning phase, where we mark any category appearing more than x% (tunable

parameter) in the learning window as a user class. We assume the non-frequent classes are one-time

outliers. This approach can be modified to include any category encountered during the learning

phase. Another possible approach is to utilize our thresholding mechanism from the collaborative

edge system, discussed in a later section, to send the outliers back to the cloud server.

Pruning Phase: Pruning is defined as re-training of the current model with pruned weight set to

zero. During the pruning phase, we use the incoming inputs to prune and re-train the original model

to create a user-specific model for user classes learned during the first phase. We prune a block of

layers for one epoch to optimize for training cycles. We use the output of the original model as

ground truth for pruning. The goal is to build a user-specific model that has accuracy within 1%

relative to the original model. Note that incoming inputs that do not belong to the classes identified

during the learning phase are discarded and not used for pruning.

Inference Phase: After the pruning phase is complete and all layers are pruned, we switch the

current working model at the edge device to the newly generated user-specific model. The pruning

phase is a one-time process. Once the user-specific model is ready, inference can run efficiently

without compromising accuracy until user data deviates from the current learned user classes.

We discuss the process applied when user data begins to deviate from the learned preferences in

Section 4.3.3.

4.3.1 Pruning Background

Building a user-specific model is a one-time yet expensive process. It requires pruning and weight

updates of the original model for learned user classes, which are time and resource-consuming

processes. Pruning is essentially re-training of the model with pruned weight set to zero value. It

consists of two passes – forward pass and a backward pass. The forward pass is computationally

the same as inference and is used to calculate the error between the output prediction of the current

pruned model and ground truth. This final error, along with output activation for each layer, is

utilized during the backward pass. The backward pass itself has two steps – error propagation and

54

weight update. In error propagation, the final error calculated during the forward pass is propagated

back to individual layers to get error contributions from each layer. This per-layer error, along with

per-layer output activation stored during the forward pass, is used to find weight updates for each

layer. The above-explained pruning mechanism involves compute-intensive and memory-intensive

2D and 3D convolutions, which makes it heavy for resource-constrained edge platforms.

The goal of this work is to build user-specific models locally at edge devices in order to preserve

user privacy. To achieve this goal, we strive to make the complete pruning process lightweight by

making the forward and backward pass less intensive. The first step is to use layer-wise pruning,

where we prune/re-train one layer at one point in time while keeping the rest of the layers constant.

The intuition behind layer-wise pruning is to share compute for the constant layers between the

inference pass of the original model, currently serving incoming user requests, and the forward

pass of the pruning model. Within layer-wise pruning, we explore two flavors of pruning – top-

bottom pruning and bottom-up pruning.

In top-bottom layer-wise pruning, we start pruning from the top or first layers and iteratively

move down to prune the bottom layers. In this approach, when, say, layer 1 is being pruned, the

remainder of the bottom layers will be the same and can be shared with the original model. How-

ever, since the original model and the pruning model start diverging at the pruned layers, there will

be two sets of incoming inputs to the shared layers – one input coming from the unpruned/original

model top layers and the other input coming from pruned model top layers. We explore the possi-

bility of using the difference (or delta) between the two sets of inputs to reduce compute. If there

are a large number of zeros in the delta/difference, there can be a significant amount of compute

sharing between the original model and the pruning model. However, contrary to our expecta-

tions, we did not find a significant fraction of zeroes in the delta. Hence, we did not pursue the

top-bottom pruning approach further.

4.3.2 Bottom-up Pruning

The bottom-up pruning is inspired by the transfer learning [228] technique, where to learn new

55

Original Layer 1

Bottom-up Pruning

Output Prediction

Inference

Path

Retrain/
Update weights

Layer n:last

Pruning Path

Shared
Layers

Original Layer n-1

Original Layer n

Original Layer last

Inferred Label

Pruning Layer n

Pruned Layer last

Pruned Model Logits

Error/Loss

Figure 4.3: Bottom-up pruning shares compute for inference and pruning path until layer n− 1. It
diverges at the current pruning layer n and updates weights for layers n to last.

models in a different domain, the knowledge is transferred from an already learned model. The top

layers of the available model are transferred as is to the new model, and the bottom layers, specific

to the new domain, are trained from scratch. Deriving from this insight, in this work, we propose

bottom-up layer-wise pruning. Here, instead of learning the bottom layers from scratch, we start

pruning from the bottom-most layer and move up to prune the top layers in an iterative fashion.

When a layer is being pruned, all the layers above it are kept the same as the original model layers

and can share compute with it. Since the original model and pruning model start diverging at the

current pruning layer; there is no input mismatch until this pruning layer. This property makes it

easier to share compute between the original model and the pruning model. Therefore, in this work,

we opt for the hardware-friendly, bottom-up pruning technique to reduce computation related to

building the user-specific model. The bottom-up pruning mechanism reduces the computation

required for the forward and backward pass of the pruning process, as discussed in detail below.

4.3.2.1 Compute Sharing between Inference and Forward Pass:

Since MyML carries out all the computation locally at the user device, it presents a unique oppor-

tunity of reusing inference computation for the forward pass of the pruning process. In bottom-up

56

pruning, we perform layer-wise pruning starting from the last layer, as shown in Figure 4.3. While

layer n is being pruned, all layers up to layer n− 1 are frozen and identical to the original model.

Hence, both inference and pruning paths can share the computation carried out until layer n − 1.

Starting from layer n, the inference path (to the left) will continue processing the original model

to predict user output, while the pruning path (to the right) computes the remaining portion of the

forward pass of the pruning process separately. Thus, only the current pruning layer n, and the lay-

ers below it, require separate processing during the forward pass. The pruning path calculates the

error/loss based on logits (output of the last fully connected layer) produced by the pruned model

and inference from the original model, which acts as the ground truth. This error is then used to

compute weight updates for layers n to last. Note that we only have inference results from the

original model available in real-time; hence, we use it as ground truth for the pruning phase. This

methodology still achieves an accuracy within 1% of the original model for a dataset belonging to

the user classes only.

4.3.2.2 Reduced Backward Pass:

The backward pass of pruning is a combination of 3D and 2D convolution for error-propagation

and weight updates, respectively [164]. Bottom-up pruning provides the opportunity to reduce the

number of weight updates and computations for the backward pass. The proposed scheme freezes

all the layers until layer n−1. Thus, we do not require weight updates for layers 1 to n−1. Weight

updates are needed only for the current pruning layer n and beyond, reducing overall pruning time.

Furthermore, since we are progressively pruning layer by layer, when pruning layer n, all the layers

> n will have already been pruned and left with just unpruned channels/weights. Thus, the layers

n + 1 to layer last require weight updates for fewer channels, further reducing computation time

as we progressively prune layers in a bottom-up fashion. A significant advantage of the bottom-up

pruning technique is that we are able to keep to the original model (and its accuracy benefits) while

reusing the compute for top layers for the pruning process. Once all the layers up to the first layer

are pruned, we replace the original model with the user model.

57

Bottom-up pruning complexity: The proposed framework has an additional pruning path to train

the user-specific model. This comes with the added complexity of forward pass and backward pass.

As discussed before, the backward pass of a convolution layer is comprised of 3D convolution for

error propagation & 2D convolution for weight update, both of which are based on matrix-matrix

multiplication kernel. Furthermore, the forward pass, which is computationally similar to infer-

ence, consists of matrix-matrix multiplication-based 3D convolution for each layer. The matrix-

matrix multiplication has a worst-case computational complexity of O(n3). The pruning path adds

3 matrix multiplication kernels corresponding to forward and backward pass to update weights of

each convolution layer; thus, it increases the complexity linearly by 3 times, i.e., 3*O(n3). Equa-

tions 4.1 and 4.2 show the computational complexity of pruning and inference paths. For equation

4.1, the number of updates varies for each layer, i.e., the bottom layers, which are pruned first,

will have more number of updates and will decrease as we move to top layers, which are pruned

towards the end.

Total complexity pruning path =

top∑
i=bottom

num updates lyr i ∗ (3 ∗O(n3)) (4.1)

Total complexity inference path = total num layer ∗ (O(n3)) (4.2)

4.3.3 Collaborative Edge System

Once the user-specific model is constructed during the pruning phase, using bottom-up pruning and

the appropriate pruning granularity, we replace the original model with the user model and enter

the inference phase. However, the user can still switch or change preferences with time. If the

user-specific model trained for previous user preferences is utilized for new preferences/choices, it

will lead to severe accuracy degradation. Hence, there is a need for a mechanism to detect a switch

in user preferences. Therefore, for the inference phase, we develop a collaborative edge system to

58

Yes Keep user
Model

Pruned
User-Specific Model

Big original Model

Tracking Window

Replace user-specific
model with original

model

#images
estimated outside

user classes <
thresh

Tracking Unit

Prediction

No

Figure 4.4: Collaborative edge system with a tracking unit that checks for divergence in user preferences by
counting the number of predictions belonging to user classes.

find a deviation in user preferences with a tracking unit, as shown in Figure 4.4. In this adaptive

system, we use the newly created user-specific model to classify incoming inputs and a tracking

unit to count both the number of inputs classified within user classes and the number of inputs

classified outside of user classes. If the tracking unit classifies the majority of inputs as outside of

user classes, we conclude that user preferences have changed and restart the user model building

process. Since the user-specific model is biased to predict one of the user classes, we cannot

directly use the predictions to determine if the incoming input is within or outside of user classes.

Instead, we use the probability of the predicted user class and entropy of the probability distribution

over all the user classes as the metric to tag the input to a user class or out-of-user class. The

output probability is high, and entropy is low for inputs belonging to the user classes. In contrast,

the output probability is low, and entropy is high (implying the model has low confidence) for

inputs belonging to out-of-user classes. Any input with an output probability less than a threshold

and entropy higher than an empirically determined threshold is marked as belonging to an out-of-

user class. For a running window of 50 images, if more than 70% of images are estimated to be

outside learned user classes, we infer that user preferences have changed and discard the current

59

user-specific model. We then restore the original model and restart the learning phase of the user

model creation process to identify new user preferences. We assume the large original unpruned

model to be stored in flash (or DRAM) and fetched from there on being summoned by the CPU

for the classification task.

The threshold selection for output probability and entropy is guided by the statistical definition

of the parameters. For the output prediction probability, the threshold should be at least 50% to

claim that the input was confidently predicted. Thus, to make our adaptive system more robust,

we chose a slightly higher value of 60% (or 0.6). Furthermore, for the entropy threshold, we first

determined the maximum entropy. The maximum entropy of the prediction probability distribution

is when all the classes have an equal probability of prediction. For a model built for 5 user classes,

the equal probability is 1/5 (0.2), which upon plugging into the entropy equation, (
∑

-plog(p)),

gives the max entropy value of 2.32. To further reinforce model confidence and robustness for our

collaborative system, we set the entropy threshold to 1.5, which is less than half of the maximum

value.

4.4 Pruning Granularity

Our pruning techniques are guided by the underlying hardware computation granularity. For ex-

ample, a CPU with a SIMD width of 16 slots can compute and prune at the finest granularity of 16

continuous operations in parallel. If a few of the operations, say slots 8 and 10, are zeroed during

pruning, we cannot skip the two operations and get performance benefits since the CPU computes

those 16 slots together in parallel. The CPU can skip computations if all 16 operations are zeroed

out during pruning. Thus, to utilize the parallelism provided by the compute engine, for example,

the SIMD width of the CPU, we have to map only non-zero contiguous operations to each block

of compute. Hence, in this work, to create pruned user-specific models, we explore two kinds

of structured pruning techniques – symmetric channel pruning and asymmetric channel pruning.

Since channel pruning zeroes out all continuous weights in a pruned channel, we can skip com-

60

Fn-1

En-1

Sn-1

Sn-1

Hn-1

Mn-1
FiltersWn-1

Rn-1

Rn-1

Inputn-1 Outputn-1

Mn-1

Rn

Sn

Mn
Filters

Wn

En

Fn

Rn

Sn

Mn
Mn-1

Inputn Outputn

Hn

Convolution layer n-1 Convolution layer n

Figure 4.5: Symmetric Channel Pruning: As a result of pruning the same channel IDs across all
filters in layer n, the corresponding (red) filter in layer n − 1 is pruned completely. All channels
and connections shown in red are pruned.

putations for all weights of the channel altogether to improve performance and energy efficiency.

Furthermore, prior work has shown that classic sparse formats can lead to performance loss for

pruned weight matrices [230]. Our choice of an entire channel (2D filter) as a pruning granularity

allows us to retain the dense format for inference computation, even with pruned weight matrices.

4.4.1 Symmetric Pruning

In symmetric channel pruning, the same channel IDs are pruned across all the 3D filters in a given

layer, which is a more constrained approach illustrated in Figure 4.5. Channel IDs with the lowest

L2 norm values, summed across all the filters, are pruned (shown in red) in layer n. This step

further leads to the pruning of filters in the previous layer n − 1, corresponding to channel IDs

pruned in the current layer n. Symmetric pruning changes the existing dense convolution layers

structure to another dense convolution layer structure; hence it does not require any bookkeeping

mechanism for convolution layers to store which channels were pruned. The removal of filters in

layer n − 1 removes the corresponding output channel and the input channel for the subsequent

layer n. Therefore, in layer n, only input channels corresponding to unpruned filter channels are

61

Rn

Sn

Mn
Filters

Wn

Hn En

Fn

Rn

Sn

Mn

Inputn Outputn

Convolution layer n

Figure 4.6: Asymmetric Channel Pruning: Channels are pruned independently with no restrictions.
More channels are pruned with this approach because of its flexible nature. All channels and
connections shown in red are pruned.

present. Thus, we do not need to store any extra channel information for the convolution operation

to map input channels correctly to the remaining filter channels. Note that for identity mapping

in residual networks like ResNet, we need to store unpruned channel indexes to gather unpruned

channels and drop the pruned channels in the identity path for the final addition operation of the

identity branch and the parallel running convolution branch.

4.4.2 Asymmetric Pruning

In asymmetric pruning, we prune individual channel IDs with the least L2 norm values, across all

the filters, with no restriction to choose the same channel IDs across filters, as shown in Figure

4.6. This makes the approach more flexible and boosts the potential for increasing the pruning

rate. Asymmetric pruning maintains the current dense model structure with only unpruned channel

weights but requires a bookkeeping mechanism to store only unpruned channels in a dense format.

Bookkeeping:

The purpose of the bookkeeping mechanism is to store only non-zero channels and map them cor-

rectly to their corresponding input channels. Each filter of the convolution layer requires different

input channels. For instance, in Figure 4.6, the first channel for the top filter is pruned; thus, only

the last two channels need their corresponding input channels. Similarly, the last two channels are

62

pruned for the bottom filter; thus, it requires only the first input channel for computation. Due to

this asymmetric behavior, we store all the input channels in dense format. However, we need to

map non-zero channels in each filter to their corresponding input channels. We achieve this through

the bookkeeping mechanism, where we only store non-zero filter/weight channels in a contiguous

manner, along with some meta-data. To map weight/filters channels to their corresponding input

channels, we store a channel mask offset, the number of non-zero channels [nnz] per filter, and

the difference pointer {diff} between consecutive non-zero channels to point to the correct input

channel.

Convolution is a matrix multiplication operation between flattened 2D input and flattened 2D

weights. Each row of the input activation matrix is one input window from the Image-to-column

(Im2Col) operation, which is multiplied by different filters represented by columns of the weight

matrix. We show a small working example in Figure 4.7. The input pointer starts with channel

mask offset (in orange) to compute the first channel and then uses the stored difference pointer

{diff} (in blue) to move to the next non-zero channel. For instance, to skip pruned channels and

move to the next non-zero channel, we store a diff pointer value of {+3}. We simultaneously

keep a counter of the number of non-zero channels computed/visited. When the counter is equal

to the store number of non-zero channels (nnz) value for the filter, it indicates that no more non-

zero channels are present in the filter. We use this as an indicator to perform the accumulation or

aggregation operation across all the filter channels. In Figure 4.7, for filter F1, we do aggregation

when the counter becomes equal to nnz value of 2 after computing the two non-zero channels

of the filter. To move to the first non-zero channel for the next filter, F2, we reset the counter

and accumulator and then simply use the diff pointer {-2} to move to the correct location. This

approach incurs a small overhead for storing meta-data of the mask offset, difference pointer, and

the number of non-zero channels. However, this overhead corresponds to merely 24KB per layer

for our pruning rates.

63

F1 F2 F3 F4
Input window 1

Input window 6

{+3}

{+3}

Weight Matrix
(Only grey (non-zero) channels are stored)

[2] [1] [2] [3]

Channel mask
offset

Channel mask
offset

Input window 1

Input window 6

Input Activation Matrix
(Complete matrix is stored)

{-2}

{-2}

[2] [1] [2] [3]

F1 F2 F3 F4Step 2

Step 1 {diff pointer}
[#non-zero channels]

Filters

Figure 4.7: Bookkeeping mechanism with channel mask offset, difference point {diff}, and the number of
non-zero channels [nnz].

4.4.3 Which pruning granularity to use

The choice of pruning granularity depends on the user platform on which the machine learning

inference will be computed. Mobile platforms with only multi-core CPUs or mobile apps that

prefer to run machine learning on CPUs [221] should opt for asymmetric pruning because CPUs

can control and compute at a finer granularity, such as SIMD width. CPUs can efficiently handle

the bookkeeping mechanism required to support asymmetric pruning and thus benefit from high

pruning rates. However, edge accelerators that map machine learning computation to dense 2D

systolic arrays do not have the capability to control or skip computations at fine granularity. Thus,

such systolic-array-based edge accelerators can take advantage of symmetric pruning, which does

not require any bookkeeping, while still availing themselves of the benefits of pruning.

4.5 Pruning on Edge Accelerator

Edge accelerators or neural engines for machine learning-related tasks have become an integral part

of most of the state-of-the-art mobile SoC platforms [20, 31]. In such a heterogeneous CPU-edge

64

Figure 4.8: FP32 precision: 1-bit sign, 23-bit mantissa, & 8-bit exponent for each element.

Figure 4.9: Block floating point (BFP16) precision: 1-bit sign and 7-bit mantissa for each element.
8-bit shared exponent across all the elements in a block.

accelerator system, general-purpose CPU cores offload the incoming ML inference requests to

neural engines for faster and more energy-efficient computations. Unlike multi-core CPUs, where

the parallelism is limited by supported SIMD width (in order of 10s), edge accelerators provide a

high level of parallelism with hundreds of compute units working in parallel to produce the final

output. Therefore, in MyML, we also propose architectural techniques to enable the pruning phase

on a heterogeneous CPU-edge accelerator system. In this work, we use an accelerator modeled

after Google’s Edge TPU [12].

Edge TPU is a systolic array-based ML inference accelerator that supports processing elements

(PEs) with an 8-bit multiply-accumulate (MAC) operation. It is used to compute the General Ma-

trix Multiplication (GEMM) kernel that forms the backbone of ML inference and training. For an

N×N systolic array, each column computes N MAC operations in parallel to produce an output

activation. Thus, in one cycle, N output activations (one from each column) are computed in par-

allel. Moreover, EdgeTPU has streamlined data-flow where the read/write latency of input/output

is hidden by MAC computation with only one-time weight-loading latency visible. Hence, Edge

TPU outperforms a multi-core SoC with ARM ISA cores [13], which does not have pipelining or

65

overlapping and also has general-purpose instruction processing overheads. Edge accelerators are

designed to support only inference in int8 precision due to power and area constraints. However,

the backward pass of the training process needs floating-point precision to compute weight updates.

Supporting a dedicated accelerator for floating-point is expensive in terms of area/power. It is also

not justified for short pruning periods since the majority of the time is spent on inferences. Hence,

to make our solution practical for edge platforms with an inference accelerator, we re-purpose an

int8 edge accelerator to enable the higher precision needed for pruning. The re-purposing tech-

nique proposed in this work can have a broader scope and be used for Cloud TPU or other systolic

array-based ML compute engines.

4.5.1 Repurposed Edge TPU

In order to re-purpose the int8 precision edge accelerator for pruning, we want to leverage the

int8 computation done at Edge TPU and append it with some lightweight computation done at the

CPU. Therefore, we propose using Block Floating Point (BFP) [84] as an alternative to the FP32

floating-point format to compute the backward pass on Edge TPU. For FP32 representation, each

element has a dedicated sign, mantissa, and exponent bits, as shown in Figure 4.8. In contrast,

for BFP representation, each block/vector shares the same exponent across all the elements, while

each element in a block has an individual mantissa, as shown in Figure 4.9. The dot product of any

two BFP blocks is shown in Equation 4.4 where ma, mb are mantissa bits and ea, eb are exponents

for the Blocka and Blockb. The dot product of the two blocks is the dot product of the mantissa

bits, while the exponents can simply be added to get the exponent for the final dot product. In

MyML, Edge TPU is used to compute the dot product of the mantissa bits of weights and input

activation, while the host CPU appends the BFP output from the Edge TPU with the sum of the

exponent bits. Thus, the BFP format maps well to Edge TPU because the computation related

to shared exponents can be processed at the CPU, and the computation for mantissa bits can be

completed separately at Edge TPU. We use the BFP16 floating-point format, which has an 8-bit

signed mantissa and 8-bit exponent. The 8-bit signed mantissa can be mapped directly on an Edge

66

TPU architecture, supporting 8-bit fixed point MAC PEs.

Blocka = {ma1 , ..man} × ea Blockb = {mb1 , ..mbn} × eb (4.3)

Blocka ·Blockb = (

n∑
i=1

maimbi)× ea+b (4.4)

CPU

FP2BFP

Input
Activation

Edge TPU

BFP16 Wgts

BF
P1

6
8b

’ m
an

tis
sa

BF
P1

6
O

ut
Accum

ulate D
ow

n

("
!"#

!"$

𝑤#! ∗ 𝑥%!) × 𝒆𝑾𝟎(𝑿𝟏

X
10

eX1

X
11

X
12

W
00

eW0

W
01

("
!"#

!"$

𝑤%! ∗ 𝑥%!) × 𝒆𝑾𝟏(𝑿𝟏

("
!"#

!"$

𝑤+! ∗ 𝑥%!) × 𝒆𝑾𝟐(𝑿𝟏

W
02

W
10

eW1

W
11

W
12

W
20

eW2

W
21

W
22

Prune
(FP32)In

fe
re

nc
e

Systolic Array
64x64
(Int8)

DRAM
Filter 0 Filter 1 Filter 2

w0𝑖 ∗ 𝑒-# w1𝑖 ∗ 𝑒-% w2𝑖 ∗ 𝑒-+

In
t8

FP
 3

2
N

or
m

al
iz

at
io

n

BFP16
Blocks

Ex
po

ne
nt

 A
dd

er

("
!"#

!"$

𝑤#! ∗ 𝑥%!) × 𝒆𝑾𝟎 ("
!"#

!"$

𝑤%! ∗ 𝑥%!) × 𝒆𝑾𝟏 ("
!"#

!"$

𝑤)! ∗ 𝑥%!) × 𝒆𝑾𝟐

Exponent Adder

Figure 4.10: Re-purposed Edge TPU for training.

Figure 4.10 shows the complete block diagram for the re-purposed Edge TPU. Each column of

the systolic array is mapped to the individual filters of a layer and represents one block sharing

a common exponent. Similarly, each column of the input vector streaming into the systolic array

is mapped to an individual input window and represents one block sharing one exponent. Before

computation, BFP16 weights are loaded from DRAM into the PEs of the systolic array. This

weight loading is a one-time process, which is followed by a long computation phase. Only 8-bit

mantissas of loaded BFP16 weights are used during the computation phase. The 8-bits exponent

flows through directly to the output. During the computing phase, 8-bit mantissas of input blocks

67

are streamed into the 2D systolic array, and the output of each column of the systolic array is the

dot product of filter weights and input window activation mapped to that column. In one cycle

of the computing phase, Edge TPU completes N MAC operations in each of the N columns,

resulting in N×N completed operations in one cycle. The output from the Edge TPU is piped

out to the host CPU, which then appends the output with the sum of the exponent bits of input

and weight block to deliver the exponent bits for the final output in BFP16 format. Furthermore,

to accumulate the output for large filters spanned across multiple GEMM kernel calls, we use

normalization to convert the BFP16 output from Edge TPU to FP32. The FP32 outputs can then

be easily accumulated across multiple GEMM kernel calls to obtain the final output for the filters.

To support the CPU-repurposed Edge TPU system, we add three components to the host CPU.

The first component is a floating point to block floating point converter (FP2BFP) that converts

the input and intermediate activations in FP32 precision to BFP16 precision. The mantissa bits

of the BFP16 inputs are sent to Edge TPU for further computation. The second component is the

exponent adder, which adds the 8-bit exponents of input and weight BFP16 blocks to give the final

exponent of the output block. The last component is for FP32 normalization to convert BFP16

output blocks to FP32 blocks. Thus, our system fully implements the conversion process between

FP32 and BFP16 (and vice-versa) on the host CPU, as shown in Figure 4.10.

4.5.2 Conversion Error from FP32 to BFP16

Conversion from FP32 precision, which has 23-bit of mantissa and 8-bit of exponent (as shown

in Figure 4.8), to BFP16, which has 8-bit of signed mantissa and 8-bit of exponent and wherein

exponent is shared by all the elements within a block (as shown in Figure 4.9), leads to a deviation

of current/working weight and activation values from original values. The error due to the conver-

sion of FP32 values to BFP16 is because of the reduction in mantissa bits and the block size, i.e.,

the number of elements in a block of BFP16. While mantissa bits must be set to 8 to match the

underlying Edge TPU precision, the block size is flexible. Smaller block size reduces the chances

of overflow or underflow and the divergence from original (FP32) values, thus, reducing the error.

68

However, FP32 to BFP16 conversion overhead depends on the number of BFP16 blocks to con-

vert. It increases for small block sizes with more BFP16 blocks. Hence, it is a trade-off between

the sizes of each block and the number of blocks. Moreover, the minimum block size is limited

by the dimension of the systolic array present at Edge TPU. The small dimension of Edge TPU

(i.e., 64) constrains the block size and reduces the chances of overflow or underflow, resulting in

smaller errors. Thus, the block size is set to 64 to match Edge TPU’s 64x64 systolic PE block.

One column/row of matrix multiply is divided into multiple blocks of size 64, i.e., 64 elements in

each block. Furthermore, even using a small block size of 64 and mantissa width of 8, we observe

a significant drop in model accuracy with BFP16 precision. The original unpruned Inception-V3

model with FP32 precision has an accuracy of 79.2% for the user-specific dataset. This accuracy

drops down to 76% when using BFP16 precision for the same unpruned original model. Thus,

there is a significant, 3.2%, accuracy drop from the error generated due to conversion from FP32

to BFP16 precision. We regain this accuracy drop by re-training the model during the user-specific

pruning process to achieve 79.2% accuracy.

4.6 Methodology

We evaluate MyML for the image classification task with the Inception-V3 [211] and Resnet-

50 [105] models. We show results primarily for a user-dataset comprising five randomly chosen

classes from the Imagenet dataset [77], representing user preference. We prune the model using

TensorFlow’s tf-slim framework to obtain pruning rates and measure accuracy. We also extend the

TensorFlow framework to support block floating point (BFP16) precision by adding a floating point

(FP32) to the BFP16 conversion module. This is a generalized module that can be configured for

different block-size, mantissa bits, and exponent bits. For our experiments, we have set the block

size to 64, exponent bits to 8 bits wide, and mantissa bit to 7 bits with one additional bit to represent

the sign bit.

We use the XNNPACK [32] library for mobile CPU performance evaluation, which provides a

69

Cores 1xA76@2.84GHx, 3xA76@2.41GHz, 4xA55@1.78GHz
L1 cache 1x128KB, 3x128KB, 4x128KB
L2 cache 1x512KB, 3x256KB, 4x128KB
L3 cache 2MB
DRAM LPDDR4 6GB@2133MHz, 34.1GB/s

Table 4.1: Architectural specifications for Snapdragon 855 Octa-core SoC representing mobile
CPU.

SIMD implementation of 3D convolution using the ARM Neon ISA. We extend this library further

to add SIMD support for 2D convolution. Using the GEMM implementation of XNNPACK[32],

we can skip entire blocks, corresponding to pruned channels, for asymmetric pruning with the

bookkeeping mechanism explained in Section 4.4. We measure execution time and energy con-

sumption by executing these kernels on Samsung S10e mobile phone hosting Snapdragon 855

Octa-core mobile SoC with the complete architectural configuration listed in Table 4.1.

To evaluate the performance for Edge TPU, we use the SCALESim [192] simulator, which

gives compute cycles for a given systolic array configuration and assumes a TPU operating fre-

quency of 500MHz. Since SCALESim supports only 3D convolution, we extended it to support

2D convolution for the backward pass.

As discussed in Section 4.2, our learning window size is 50-100 images, and the minimum

appearance frequency is∼15% of window size for a class to be marked as a user class. We divided

the total layers into four blocks and pruned one block at a time, starting from the bottom block,

per our proposed bottom-up pruning technique. Each block was trained for 40 images per user

class, which accrued to 200 images for the five-class user-dataset, accounting for a total of 1000

images for the pruning phase. Furthermore, to optimize for accuracy as well as training cycles at

the mobile device, we trained each block for one epoch, with the option of training the last block

for multiple epochs to improve model accuracy. We trained the last block for simply one additional

epoch to build a robust user-specific model in our experiments.

70

4.7 Evaluation

We evaluate MyML on two distinct platforms – mobile CPU and Edge TPU – with various pruning

configurations for Inception-V3 and ResNet-50 models. For mobile CPU, we compare the user-

specific model pruned using asymmetric pruning with two baseline models: the original unpruned

model with pruning type as none and the original model pruned using channel pruning (user-

agnostic), which represents the prior user-agnostic pruning works. For TPU, we compare the

user-specific model pruned using symmetric pruning with the original model. Note that Edge TPU

is designed for dense GEMM matrix computation and cannot accrue the benefits of user-agnostic

channel pruning; hence, we do not report any user-agnostic pruning configuration for TPU.

0

5

10

15

20

25

0.0

1.5

3.0

4.5

6.0

7.5

None User-Agnostic
Pruning

User-Specific
Asymmetric Pruning

CPU CPU CPU

M
od

el
 S

ize
 (M

B)

In
fe

re
nc

e
La

te
nc

y
in

 m
s (

E+
02

)

Pruning type
Compute platform

Model Size (MB) Inference Latency (ms)

Figure 4.11: Inception-V3: Inference latency and
model size for different pruning types on mobile
CPU platform that supports Int8 precision for in-
ference and FP32 for pruning.

0

20

40

60

80

None User-Agnostic
Pruning

User-Specific
Asymmetric Pruning

CPU CPU CPU

M
od

el
 A

cc
ur

ac
y

(%
)

Pruning type
Compute platform

Accuracy User Dataset Accuracy Complete Dataset

Figure 4.12: Inception-V3: Model accuracy for
user-specific dataset and the complete Imagenet
dataset for different pruning types on mobile
CPU platform that supports Int8 precision for in-
ference and FP32 for pruning.

4.7.1 Inception-V3

The inception model was first developed by Szegedy et al. [210]. It was an important milestone

because it shifted the contemporary trend of building deeper models to wider models. Deeper

models are more prone to over-fitting. Hence, instead of having one filter at one level, these models

include multiple filters at one level to form a wider network. The Inception-V3 model [211] is an

71

0

5

10

15

20

25

0

10

20

30

40

50

None User-Specific Symmetric
Pruning

Edge TPU Edge TPU

M
od

el
 S

ize
 (M

B)

In
fe

re
nc

e
La

te
nc

y
in

 m
s

Pruning type
Compute platform

Model Size (MB) Inference Latency (ms)

Figure 4.13: Inception-V3: Inference latency
and model size for different pruning types on
Edge TPU platform that supports Int8 precision
for inference and BFP16 for pruning.

0

20

40

60

80

None User-Specific Symmetric
Pruning

Edge TPU Edge TPU

M
od

el
 A

cc
ur

ac
y

(%
)

Pruning type
Compute platform

Accuracy User Dataset Accuracy Complete Dataset

Figure 4.14: Inception-V3: Model accuracy for
user-specific dataset and the complete Imagenet
dataset for different pruning types on the TPU
platform that supports Int8 precision for infer-
ence and BFP16 for pruning.

advanced version that reduces computational bottlenecks.

Inference Performance and Accuracy. As shown in Figure 4.11, we find that the user-specific

model built using asymmetric pruning on the mobile CPU is 2.3× faster, corresponding to a 4.7×

reduction in model size, as compared to the original model. Moreover, compared to the pruned

user-agnostic model, the user-specific model provides a 1.4× speedup, along with a 2.5× reduction

in model size. The newly built user-specific model has an accuracy of 78.8% (less than a 1%

accuracy drop in user-dataset) compared to the original model with an accuracy of 79.2 %, as

shown in Figure 4.12. The user-specific model has higher accuracy compared to the user-agnostic

pruned model for the user-datatset because the user-specific model is pruned (and re-trained) only

for user classes. On the other hand, the user-agnostic model is pruned to maintain combined

average accuracy across all the 1000 classes of the complete Imagenet dataset. Henceforth, the

accuracy on the complete dataset is maintained by the user-agnostic pruning, whereas the accuracy

drops to < 1% (close to zero) for the user-specific model because the inputs belong to outside

user classes. Thus, we can conclude that the user-specific model yields an accuracy comparable to

the original model for inputs belonging to user classes but does not work for inputs outside user

classes, reinforcing the correct behavior of user-specific models.

72

Platform Pruning Type Precision Pruning Phase
Duration

mobile CPU User-Specific Asymmetric FP32 390.34 (s)
Edge TPU User-Specific Symmetric BFP 16 132.6 (s)

Table 4.2: Inception-V3 pruning comparison between mobile CPU and repurposed Edge TPU.

For inference on Edge TPU, we observe that inference time and model size reduce by 2.25×

and 2.2×, respectively, for the user-specific model built with symmetric pruning over the original

model (as shown in Figure 4.13), while maintaining an accuracy of 79.2% over the user-dataset (as

shown in Figure 4.14). Furthermore, similar to the mobile CPU platform, accuracy also drops to

< 1% (close to zero) for the complete Imagenet dataset on the Edge TPU platform.

There are two factors that contribute to performance improvement in Edge TPU. The first is

due to the reduction of model size because of channel pruning. The second is the reduction in

the Image-to-column (Im2col) operation that is a part of the pre-processing step. Inputs can be

piped out to the Edge TPU only once they are flattened out and converted to a 2D matrix to map

to a 2D systolic array. This operation depends on the number of input channels of the convolution

layer. Since we remove complete filters and corresponding output/input activation channels as part

of symmetric pruning, we end up reducing Im2col operations as well. This leads to additional

performance benefits over the GEMM operation reduction.

Pruning Performance: In Table 4.2, we report the duration of the pruning phase comprising 1,000

images. We find that the mobile CPU with asymmetric pruning can process 2.56 images/sec, which

accumulates to a total time of 390s for the pruning phase. Edge TPU with symmetric pruning can

process 7.54 images/sec, aggregating to 132s for the pruning phase. Our repurposed Edge TPU

is able to reduce pruning time by ≈ 3×. We expect the pruning to be a one-time cost for long

inference phases where user classes remain stable.

Energy: We also observe improvement in the energy efficiency of computing the models on our

mobile device. The energy per inference reduces to 0.98J for the user-specific model, compared

to 1.54J and 1.27J for the original and pruned user-agnostic model, respectively. This results

in energy reductions of 54% and 27%, respectively, for the user-specific model compared to the

pruned original model and the original unpruned model.

73

4.7.2 Resnet-50

ResNet-50 is a crucial machine learning model for image recognition/classification tasks and has

been widely adopted by industry and academia. It is an integral part of the MLPerf’s [166] AI

inference and training benchmark suite for datacenter, developed in collaboration with academia,

research labs, and industry, with reasonable accuracy of 75.6% with a 21.7 MB model size. It was

the first network to introduce the concept of identity mapping [105], which made training easier and

improved generalization. In this work, we include ResNet-50 in our experiments to demonstrate

the benefits as well as the broad applicability of MyML. We generalize that the MyML technique

can be applied to any deep neural network with convolution layers.

0

5

10

15

20

25

0.0

0.8

1.6

2.4

3.2

4.0

None User-Agnostic
Pruning

User-Specific
Asymmetric Pruning

CPU CPU CPU

M
od

el
 S

ize
 (M

B)

In
fe

re
nc

e
La

te
nc

y
in

 m
s (

E+
02

)

Pruning type
Compute platform

Model Size (MB) Inference Latency (ms)

Figure 4.15: ResNet-50: Inference latency and
model size for different pruning types on mo-
bile CPU platform that supports Int8 precision
for inference and FP32 for pruning.

0

24

48

72

None User-Agnostic
Pruning

User-Specific
Asymmetric Pruning

CPU CPU CPU

M
od

el
 A

cc
ur

ac
y

(%
)

Pruning type
Compute platform

Accuracy User Dataset Accuracy Complete Dataset

Figure 4.16: ResNet-50: Model accuracy for
user-specific dataset and the complete Imagenet
dataset for different pruning types on mobile
CPU platform that supports Int8 precision for in-
ference and FP32 for pruning.

Inference Performance and Accuracy. As shown in Figure 4.15, we find that the user-specific

model built using asymmetric pruning on the mobile CPU is 2.93× faster, corresponding to a 4.3×

reduction in model size, as compared to the original model. Moreover, compared to the user-

agnostic model, the user-specific model provides a 1.55× speedup and a 2.5× reduction in model

size. The newly built user-specific model has an accuracy of 73.2%, which is within a 1% accuracy

margin, compared to the original model with 72.4% in user-dataset, as shown in Figure 4.16. Also,

since the user-specific model is pruned (and re-trained) only for user classes, it has significantly

74

higher accuracy as compared to the user-agnostic model for the user-dataset. Furthermore, for the

complete dataset with inputs belonging to outside user classes, the accuracy drops to < 1% on

using the user-specific model, ensuring its correct behavior.

For symmetric pruning on Edge TPU, we show in Figure 4.17 that user-specific model size can

be reduced by 2.6× from 21.7 MB to 8.3 MB, resulting in a speedup of 1.5×. The user-specific

model also improves the accuracy to 73.6% for the user-dataset, within 1% margin, compared to

the unpruned model accuracy of 72.4%, as shown in Figure 4.18. Similar to the mobile CPU

platform, the accuracy drops to < 1% (close to zero) for the user-specific model on the complete

Imagenet dataset. As discussed for the Inception-V3 model, there are two factors that contribute

to performance improvement in Edge TPU. The first is the reduction of model size because of

channel pruning, and the second is the reduction in the Image-to-column (Im2col) operation that

is a part of the pre-processing step.

0

5

10

15

20

25

0

6

12

18

24

30

None User-Specific Symmetric
Pruning

Edge TPU Edge TPU

M
od

el
 S

ize
 (M

B)

In
fe

re
nc

e
La

te
nc

y
in

 m
s

Pruning type
Compute platform

Model Size (MB) Inference Latency (ms)

Figure 4.17: ResNet-50: Inference latency and
model size for different pruning types on Edge
TPU platform that supports Int8 precision for in-
ference and BFP16 for pruning.

0

20

40

60

80

None User-Specific Symmetric
Pruning

Edge TPU Edge TPU

M
od

el
 A

cc
ur

ac
y

(%
)

Pruning type
Compute platform

Accuracy User Dataset Accuracy Complete Dataset

Figure 4.18: ResNet-50: Model accuracy for
user-specific dataset and the complete Imagenet
dataset for different pruning types on the TPU
platform that supports Int8 precision for infer-
ence and BFP16 for pruning.

Pruning performance: In Table 4.3, we report the duration of the pruning phase, comprising

1,000 images. We find that the mobile CPU with asymmetric pruning can process 2.94 images/sec,

which accumulates to a total time of 340s for the pruning phase. Edge TPU with symmetric

pruning can process 10 images/sec, aggregating to 99.58s for the pruning phase. Our repurposed

75

Platform Pruning Type Precision Pruning Phase
Duration

mobile CPU User-Specific Asymmetric FP32 340.05 (s)
Edge TPU User-Specific Symmetric BFP 16 99.58 (s)

Table 4.3: Resnet-50 pruning comparison between mobile CPU and repurposed Edge TPU.

Edge TPU is able to reduce pruning time by≈ 3.42×. We expect the pruning to be a one-time cost

for long inference phases where user classes remain stable.

Energy: We also observe improvement in the energy efficiency of computing models on mobile

devices. The energy per inference reduces to 0.4J for the user-specific model, compared to 0.98J

and 0.67J for the original and pruned user-agnostic model, respectively.

In the rest of the evaluation section, we only show results for the Inception-v3 model. The

ResNet-50 model is made up of convolution layers similar to Inception-V3, and based on the above

discussion, the behavior of user-specific models built from the two original models is coherent.

Hence, trends and insights gained from the Inception-V3 model will be applicable to ResNet-50.

4.7.3 Adaptive System:

For the adaptive system, we start with a dataset that has only user classes as inputs. Upon building

the user-specific model and utilizing it for predictions in the inference phase, we modify our dataset

to include inputs belonging outside user classes. We gradually add outside-user-classes inputs in

the 50 image window. For the first 10 images of 50 images, 1 out of every 5 inputs belongs outside

of user classes. For the next 10 images, 2 out of every 5 inputs belong outside of user classes.

Following this pattern, all the inputs lie outside user classes for the last 10 images of the 50 image

window.

In Figure 4.19, we show the effectiveness of our proposed collaborative system on the above-

discussed user trace for the Inception-V3 model. We show the model building process for the given

user trace and also depict our system’s behavior once user preferences start changing. At time t=0,

the system kick-starts from the learning phase for a 50 input window. Once it learns user classes,

it enters the pruning phase, where it uses the original model for inference while simultaneously

76

0

5

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250 1500 1750 2000 2250 2500#i
np

ut
s e

st
im

at
ed

 o
ut

sid
e

us
er

 cl
as

se
s

Real time (s)

Pruning Phase Inference Phase

Learning Phase Learning Phase

Pruning Phase

Change in user
preferences

Tracker unit threshold

Figure 4.19: Trace showing MyML in real-time. We show the three phases - learning, pruning,
and inference – of our end-to-end system as well as illustrate the working of the tracking unit that
monitors the change in user preferences.

creating a user-specific model. Once the pruning phase is complete, we switch the original model

with the newly created user-specific model for inference.

During all phases, our tracking mechanism checks for divergence in user preferences. For our

experiments, the tracker counts the number of outside-user-classes inputs over a window of 50

input images and reports divergence if the count exceeds a threshold of 70%. In Figure 4.19, we

show the running average over the tracking window. Since the tracker resets its count after each

window, we observe a seesaw pattern in our trace. As shown in the figure, when the user slowly

starts changing the preferences around 1900s in real-time, the tracker count shoots up and crosses

the set threshold. The system then switches to a learning phase.

The trace also shows the correct and incorrect predictions by the appropriate inference model

in each phase. We see that there is a drop in the correct predictions only in the period where user

preferences transition to new classes.

4.7.4 Sensitivity Studies:

In this section, we conducted separate studies for an in-depth analysis of the MyML technique.

Layer breakdown:

77

0

20

40

60

80

100

0

5

10

15

20

25

Original Group 1
(Layers 7a-7c)

Group 2
(Layers 6d-6e)

Group 3
(Layers 6a-6c)

Group 4
(Layers 5b-5d)

M
od

el
 A

cc
ur

ac
y

(%
)

M
od

el
 S

ize
 (M

B)

Model Size Model Accuracy

0.001
0.001

0.0005 0.0005

Learning Rate

53.3
56.2

59.7 221

Pruning Time (s)

Figure 4.20: Per layer asymmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning.

The aim of this study was to understand in detail the pruning rates, pruning times, and learning

rates for individual layers comprising the deep neural network model.

Pruning rate: As shown in Figure 4.20 and Figure 4.21 for asymmetric and symmetric channel

pruning, model size decreases as we prune more layers and move towards the top layers from

group 1 to group 4. Asymmetric channel pruning has a higher model size reduction compared to

symmetric channel pruning because asymmetric pruning is more flexible than symmetric pruning

with constrained channel ID selection. However, both of these pruning types follow similar trends

for each group of layers, as discussed below.

Group 1, consisting of layers 7a, 7b, and 7c, has the highest pruning rates, leading to a drastic

reduction in model size. This reduction occurs because the bottom-most layers have a large number

of filters and channels accumulating to 12 MB of model size, thus resulting in a significant model

size reduction. Furthermore, bottom layers contribute towards the prediction stack, which makes

them more amenable for pruning. The model accuracy increases on pruning group 1 because we

tune the prediction layers for specific user classes, giving a significant boost to accuracy. As we

move up in the model and prune the top layers, the model size and corresponding pruning rates

slowly decrease until group 4. This behavior occurs because the top layers are smaller in size

and built for feature extraction, making them less prune-able. Furthermore, as we move up in the

78

0

20

40

60

80

100

0

5

10

15

20

25

Original Group 1
(Layers 7a-7c)

Group 2
(Layers 6d-6e)

Group 3
(Layers 6a-6c)

Group 4
(Layers 5b-5d)

M
od

el
 A

cc
ur

ac
y

(%
)

M
od

el
 S

ize
 (M

B)

Model Size Model Accuracy

10.6
18.6

28.3 73.5
0.001

0.001 0.0008

Learning Rate Pruning Time (s)

0.001

Figure 4.21: Per layer symmetric channel pruning showing model size, learning rate, and pruning
time for bottom-up pruning.

model and prune the top layers, the accuracy drops with each group until it is similar to the original

model accuracy. Moving from group 3 to group 4 gives a small reduction in model size; however,

it stabilizes the error and makes the model more robust.

Pruning time: We also show the pruning time for each group of layers in Figure 4.20 and Figure

4.21. Pruning time increases as we move up in the model, following the bottom-up pruning tech-

nique, because while pruning layer n, all the layers from layer n to the last layer will be re-trained.

For example, while pruning layers in group 4, all the layers in groups 1 to 3 will be re-trained.

Thus, group 4, the top-most group of layers, takes a big chunk of time. This is because we train

almost the entire model, except the untouched top feature extraction layer, and we train for one

extra epoch to get a stable model. Furthermore, pruning time is shorter for symmetric pruning on

the edge TPU accelerator as compared to asymmetric pruning on general-purpose mobile CPU.

Learning rate: Inspired by a commonly used training procedure that starts with a high learning

rate for the first few epochs, which is lowered gradually for later epochs, we also form a learning

rate schedule for the bottom-up pruning, as shown in Figure 4.20 and Figure 4.21. The bottom

groups, comprising group 1 and group 2, have the highest learning rate of 0.001. Learning rates

are reduced by 10-fold for the top layers in groups 3 and 4. Reducing the learning rate with

79

70

80

90

0

2

4

6

8 16 32 64 128

Ac
cu

ra
cy

 (%
)

M
od

el
 S

ize
 (M

B)

Batch size

Model Size Accuracy

Figure 4.22: Model size and accuracy for increasing training batch size.

time/layers allows the model to vigorously learn and jump around various local minima during the

start of the pruning process and gradually slow down to settle on global minima with a very low

loss value.

We also observe a difference in learning rates between asymmetric and symmetric pruning for

top layers/groups. The learning rates for top layers are relatively higher for symmetric pruning. We

suspect this is because, for symmetric pruning, more error is accumulated due to floating point to

block floating-point conversion as we move up to the top layers. Therefore, there is a need to have

higher learning rates in order to evade local minima to make up for the extra error and stabilize to

a low final loss value.

Training batch size:

Training batch size is an important parameter for the MyML approach to creating a user-specific

model. The batch size determines the number of times we can update weights for a given number

of images/inputs in the dataset. For example, a batch size of 10 for a dataset with 100 images will

lead to 10 model updates, whereas a batch size of 25 for the 100 image dataset will give only 4

model updates. Though a smaller batch size can give more model updates, keeping the size too

low can lead to the model jumping around different local minima and not stabilizing at a small loss

value. Hence, there is a trade-off between batch size and the accuracy (robustness) of the model.

In MyML, we want to keep a small batch size to have faster model updates within a reasonable

80

amount of user data. Therefore, we present a sensitivity study with a batch size in the range of

128 to 8, as shown in Figure 4.22. In this study, we keep the number of updates constant (to 25);

thus, the dataset size varies for training batch size. We observe that, at the largest batch size of 128

and dataset size of 3.2k, we can achieve the smallest model size (highest pruning rate) because the

model has more data to learn and evade local minima to settle at a stable loss. A higher pruning

rate demands more data to converge at a low loss value. As the batch size reduces, the model size

increases (i.e., pruning rate reduces) to stabilize at a low, stable loss with less amount of data.

However, the difference between the model size is not very significant. A model created with a

batch size of 8 is only bigger by 7%, compared to a model built with a batch size of 128. Across

all the training batch sizes, we maintain an accuracy margin of 1% within a baseline accuracy of

79.2%. Therefore, for this work, we choose the batch size of 8 for training user-specific models

that have an accuracy within 1% of the original unpruned model.

Scalability with number of user classes:

The second study measures the utility of building a small user-specific model over user-agnostic

pruning as the user diversifies their preferences or choices. Therefore, we conduct a sensitivity

study with an increasing number of user classes representing user preference. As done for prior

discussed results, we train these user-specific models to maintain accuracy within a margin of

1%. Figure 4.23 shows that, even on increasing the number of user classes from 5 to 40, we

achieve significant model reduction over user-agnostic pruning. For instance, with 40 user classes,

MyML gives 1.5× and 2.8× reduction compared to the user-agnostic pruned and original model,

respectively. This reduction in model size demonstrates the advantage of utilizing user-specific

models over the original generic model even as the user expands their preferences. The increase in

model size from 5 to 10 classes is 1.35×; this increase reduces to 1.13× from 10 to 20 classes and

1.1× from 20 to 40 classes. The increase in model size is highest when we expand from 5 to 10

classes, and thereafter, it tapers off as we expand to include more classes. Thus, we can infer that

even as user preferences will expand beyond 40, the increase in user-specific model size will be by

a small linear fraction compared to model size at 40 classes.

81

0

5

10

15

20

25

5 classes 10 classes 20 classes 40 classes User-agnostic
Pruned (1000

classes)

Original (1000
classes)

M
od

el
 S

ize
 (M

B)

Original
(1000 classes)

User-specific Models

User-agnostic
pruned

(1000 classes)

Figure 4.23: Scalability of user-specific models with an increasing number of user classes.

Ablation Study: We also performed an ablation study by choosing 5 known nearby classes –

pickup truck, tow truck, trailer truck, tractor, and recreational R.V. – as user classes for building a

user-specific model. We found that the model size for inception-v3 can be reduced to 6.2 MB from

23 MB while maintaining an accuracy of 79.2% for the user subset. This validates our hypothesis

that, by leveraging user preferences, we can build tiny user-specific ML models to improve the

efficiency of ML applications on user-devices.

4.7.5 Discussion

Re-training Cost: Although optimized by our MyML technique, pruning (re-training) is an ex-

pensive step in the process of building a user-specific model on a resource-constrained edge device.

Thus, it is necessary to amortize the pruning cost over a long inference phase. As reported in the

evaluation section, the average pruning duration phase for asymmetric pruning on the CPU is 365s

or ∼3 mins. Thus, it is possible to prune (re-train) and create a new user-specific model every 3

mins. However, to amortize the pruning cost, we should run the inference phase for another 3 mins

before we can start building a new user-specific model. Furthermore, for symmetric pruning on

edge TPU, the average pruning phase duration is 116s or ∼2 mins. Thus, to amortize the pruning

cost, the inference phase should be a minimum of 2 mins. Hence, if user preferences change as

frequently as every 2-3 mins, MyML would not be able to create user-specific models at such a fast

pace; however, this may not be the case for an average user with more stability in user preferences.

82

[122] shows a monthly change in user interests based on their twitter activities. Furthermore, [103]

reports that the model retraining frequency can vary between hourly to multi-monthly for a wide

range of ML models/tasks to capture a collective shift in preferences across all users, which will

be slower for individual users.

Practical Application: To demonstrate the practicality of our approach, we apply a real-world

dataset from Kaggle [18] to the Inception-v3 model to obtain the ratio of user classes and outliers.

We test our method on 500 images. The learning phase operates on the first 100 images, and the

remaining 400 images determine the fraction of user classes and outliers in the dataset. Unlike

Imagenet, where each image is manually processed to have exactly one object/entity, the Kaggle

real-world dataset has multiple objects in each image. Thus, we take the top-5 predicted classes for

each image in our analysis, which account for 119 unique classes within the 500 image window.

We mark the ten most frequent classes in the learning window as user classes and find that 95%

of the remaining images belong to these user classes. Thus, we observe that the ten frequently

appearing user classes (8.4% of total classes) consistently encapsulate 95% of images.

Our collaborative system has a tunable threshold for outlier tolerance. With a 95% threshold,

the collaborative system can tolerate a maximum of 5% outliers before discarding the current user-

specific model to create a new user-specific model for new preferences. We offer two solutions to

handle outliers. The first solution sends the 5% outliers to the cloud server for computation, which

applies the bulky original model, ensuring privacy for 95% of the inputs. The second solution is to

infer the 5% outliers using the bulky original model on the local edge device. The second solution

ensures privacy for all inputs by computing everything locally. Hence, MyML enforces privacy for

95% of user inputs regardless of the methods. Moreover, if the 5% outliers are computed locally

on the edge device using the original model, we provide 100% privacy for all user inputs.

We show that for the collaborative system, which sends the 5% outliers to the cloud, the speedup

is 2.2×. Additionally, computing the outliers on the device results in a 2.1× speedup. Note that the

remaining 95% of the inputs are always computed at the edge device employing the user-specific

model. These speedups are lower than the 2.3× speedup achieved when only the user-specific

83

model is applied to all inputs without the differentiation of outliers or its extra computation.

4.8 Limitations

Though we provide an end-to-end holistic approach that learns, builds, and deploys user-specific

models based on user preferences, there are still some limitations and scope for improvement for

this work.

This work assumes that there is a pre-built accurate original model ready to serve the user that

acts as ground truth. Training such a baseline model from scratch is a very expensive and time-

consuming process. However, it is a one-time process that can be done in the back-end cloud

server.

In this work, user-specific models are derived from original models, which are convolution

layer-based deep neural networks. Hence, the user-specific models are, in turn, made of computa-

tionally complex convolution layers. There can be an alternate way to build smaller user models

from scratch comprising simpler MLP layers and much lower depth. This approach has not been

explored in this work. The above limitation can be further expanded to study the switching point

from a simpler multi-layer perceptron (MLP) layer-based user-specific model to pruned convo-

lution layer-based user-specific model. When user preferences belong to a few classes (e.g., 5),

simpler models may provide good accuracy with smaller model sizes. However, as user prefer-

ences expand to a large number of classes, simpler models might not be accurate, and we may

need to switch to pruned complex models.

We determine user preferences by simply choosing the top-k appearing classes/categories in the

learning phase window. Here, the value of k is static and pre-defined by the user or the vendor.

This can be replaced by a sophisticated dynamic approach that is independent of k.

We use entropy and output probability to determine whether the inputs belong to user classes

or outside user classes. Once the majority of inputs in a window are estimated to be outside user

classes, we discard the current user-specific model and swap it with the original model. This

84

approach hurts the accuracy of the input window based on which we detect divergence in user

preferences. It can be replaced by a more fine-grained approach, where we can send individual

inputs to the original model if they are marked as outside user classes. However, such a fine-

grained system will require more robust statistics apart from prediction probability and entropy.

4.9 Conclusion

To circumvent the problems arising from offloading machine learning to the cloud, in this work,

we presented MyML, a hardware-software solution that supports machine learning at edge devices.

We leveraged the transfer learning approach to create small, lightweight, user-specific ML models

based on user preferences instead of defaulting to a large, compute-intensive ML model. We

proposed hardware-friendly, bottom-up pruning, which can be utilized by any mobile platform,

and we also repurposed a systolic array-based edge accelerator to support user-specific transfer

learning on edge devices without any cloud services intervention, thus ensuring user privacy. We

also developed a collaborative edge system that tracks deviations in user preferences to switch

back to the original model from the user-specific model and restart the model building process.

We demonstrated that the user-specific model could reduce the model size by 4.7× and 2.25×

using asymmetric and symmetric pruning for mobile CPU and edge TPU, respectively. In the

next chapter, we aim to expand this approach of building user-specific models for recommendation

systems, a new machine learning application that is the backbone of social-network platforms.

85

CHAPTER 5

User-Driven Recommendation Systems

Until now, we have studied and optimized many tasks widely used by popular edge applications,

such as GPS tracking, video recording, and image recognition, with the motive of improving

the application’s efficiency. In the last chapter, we specifically explored the potential of creat-

ing smaller user-specific models based on user preferences for image recognition tasks utilized

by smart-cameras apps, galleries, and image-based social media apps like Pinterest, Instagram,

Facebook, etc.

In this work, we expand our application suite to include recommendation systems that consti-

tute a significant portion of the inference cycle [221]. Recommendation systems are an integral

part of popular mobile applications, including social media (e.g., Instagram, Facebook, Pinter-

est), online shopping (e.g., Amazon, eBay, Alibaba), movie recommendation (e.g., Netflix, Hulu,

Prime), fitness (e.g., Fitbit, Peleton), and e-learning (e.g., Coursera, Udemy). Netflix attributes

80% of its streaming hours [10] to the recommendation system, and 35% of Amazon purchases

[16] result from the recommendation algorithm. Recommendation systems are the top consumer

of AI compute cycles in production-scale datacenters [97].

Furthermore, the steep rise of mobile devices and digital content in the last decade has in-

creased the demand for higher quality and more efficient recommendation systems to enhance user

experience. Hence, there are numerous ongoing efforts across the scientific community to im-

prove the efficiency of recommendation systems [133, 52, 220, 95, 184, 146, 81]. For example,

prior works [133, 52, 184, 146] have focused on using hot-embedding caching or near-memory

86

solutions and utilizing multi-stage recommendation models [96] to improve overall efficiency.

Until now, recommendation systems have been considered to be datacenter only applications

because of their large memory footprint. The existing solutions miss the opportunity to utilize

user history information, which is readily available on edge devices. Consider a recommendation

query that consists of several inferences (100s) to rank candidates. Each inference has to compute

MLPs and lookup multiple embedding tables. We observe that a significant portion of an inference

specific to user data is repeated for all inferences in a query, as shown in Figure 5.1. This common

computation can be performed once per query on edge to boost overall efficiency significantly.

Deriving from this insight, in this work, we present Duet, a collaborative user-driven edge-cloud

recommendation system. Duet decouples the monolithic recommendation model into two smaller

concurrent models, user and item models, distributed on edge and cloud, respectively. The user

model operates on the user data at the local edge device and transfers its output to the datacenter.

Simultaneously, the item model computes item features for all candidates to be ranked. It then

combines item model outputs with the user model output to provide final recommendations. More

importantly, unlike the item model that computes item features for all the candidates to be ranked,

the user model needs to be computed only once for the recommendation request. Thus, we reuse

the user-specific computation across all the candidates being ranked. Further, by processing user-

specific information on edge, Duet enhances data privacy.

The two models, the user and item models, are created by splitting the three components of

a generic recommendation model – embedding tables, the bottom MLP stack, and the top MLP

stack. First, embedding tables are divided between edge and cloud. We observe that storing the

entire user embedding table on the edge is overkill. Compared to large user embeddings (GBs)

on the cloud that cater to millions of users with diverse histories, user-specific embeddings at the

edge device store entries pertaining to only one user’s history, reducing storage needs drastically

(KBs). Second, we split the bottom MLP stack between static and dynamic inputs. Static inputs

comprise stable user information (such as age, gender, device id, device make, device IP address,

number of apps, etc.), and dynamic inputs are constituted by the transient context inputs (such as

87

Cand1

Cand2

Cand3

CandN

User
Emb 0

User
Emb 1

Item
Emb n

Feature Interaction (Concatenation)

Static inputs (e.g., user age)
Dynamic inputs (e.g., time)

Categorical Inputs

CTR

Bo
tt

om
 M

LP

Item
Emb k

User
Emb k-1

Dense Inputs

Common value
for all inferences

of user query

(Past user interactions e.g., clicks, etc.)

Top MLP Stack

Computation reused by
all candidate inferences

of user query

User Query
100 - 1000
Candidate
Inferences

Figure 5.1: Recommendation model comprising of three components – bottom MLP, embeddings,
and top MLP – computes 100s of inferences to rank all the candidates of a query. Common
computation pertaining to user-specific information can be reused across all the inferences of the
query.

current time, day, and time since the last watch). The static bottom MLP is pre-computed, and its

output is reused during execution; only lightweight dynamic bottom MLP is computed in real-time.

Finally, the top MLP is also split into user-specific and item-specific layers. User-specific layers

are computed once per query on edge. Its outputs are aggregated with outputs of item-specific

layers, which are channeled into final layers to produce the Click Through Rate (CTR) probability.

Since the decomposed user model is computed on a small edge device, we present a lightweight

Duet architecture to improve the edge user model’s energy efficiency. We propose a hardware

unit with a small user-specific scratchpad and location tracker to capture up-to-date user states

in hardware. Further, we support memoization for pre-computed static bottom MLP results and

heterogeneous edge-friendly lower precision (qint8) format for user-specific top MLP layers.

We evaluate our proposed end-to-end collaborative system across five recommendation models

and boost the performance by 6.4× and the energy efficiency by 4.6× with the accuracy impact

limited to <= 0.06%.

5.1 Background and Motivation

The recommendation is a two-stage process – candidate generation and candidate ranking. Can-

didate generation is tasked to provide potential candidates that the user may like; to do so, it uses

88

0%
20%
40%
60%
80%
100%

 Emb dominated (RM2)

Query latency breakdown
Bottom MLP Embedding Top MLP

0%
20%
40%
60%
80%
100%

Bot MLP dominated (RM3)

User
Emb
75%

Item Emb
25%

Static User
inputs
88%

Dynamic
inputs (12%)

Figure 5.2: Timing Breakdown in three components for a query with 1024 candidate inferences
for two RM Models.

lightweight filtering kernels like KNN or Matrix factorization. The candidates generated from this

step are then processed by the candidate ranking step, which utilizes a heavy DNN-based recom-

mendation model to rank all the candidates and recommend the top candidates with the highest

CTRs to the user. Thus, each recommendation query requires computing inferences for hundreds

to thousands of candidates (termed as query size) on a heavy DNN-based ranking model, which

makes this task very compute-intensive. Moreover, tight latency targets (SLA) to ensure a smooth

user experience makes it latency sensitive.

Recommendation models are built using embedding tables and MLP layers, as shown in Fig-

ure 5.1. The models have three components – the bottom MLP stack to process continuous inputs,

embedding tables to process sparse categorical inputs, and the top MLP stack – to predict the

click-through rate (CTR). Prior works [97, 95] have demonstrated that the models can either be

embedding-dominated or MLP-dominated. We further break down the timing and illustrate in

Figure 5.2 the time consumed by the three components for two particular model definitions. We

realize that while model RM2 is embedding-dominated, RM3 is dominated by the bottom MLP

stack. Thus, each of the components has to be optimized to ensure performance improvement for

all the models.

We observe that previous works [118, 146, 133, 96, 95, 165, 220, 52, 184, 128, 150] consider all

the embedding tables to be equivalent, which may not always be the case. There are user embed-

ding tables that gather past user history and item embedding tables that extract item features for the

candidates. As shown in Figure 5.2, the bigger chunk (75%) of the embedding time is consumed

89

by user embeddings, while item embeddings consume the remaining 25% of the embedding time.

Our findings yield two discoveries. First, we discover an opportunity to reduce embedding table

memory accesses because user embedding accesses, corresponding to a user history, are common

for all the inferences performed to rank multiple candidates of a user query. Hence, the user em-

bedding can be processed once for a query and shared by all the inferences. Second, we discover

that we can decouple the two embeddings, and user embedding operations can be offloaded to user

edge devices that have all the information about past user activities.

We also observe that, similar to embeddings, all the inputs to the bottom MLP stack are not

equivalent. A significant fraction of the inputs corresponding to stable user profile information can

be computed once per query and do not frequently change for a user. As shown in Figure 5.2, as

much as 88% of the bottom MLP inputs correspond to static user information, which is readily

available on the user edge device, and, thus, can potentially be computed locally.

In this work, Duet, we leverage this non-uniformity in the model definition to split the model

into two concurrent models: one to process user information, which is computed once per query

and shared by all the candidates of the query, and the other to process individual candidate infor-

mation for all the candidates to be ranked. We propose a holistic approach that tackles all three

components of the recommendation models by: 1) reducing and distributing the model on the edge

and datacenter and 2) optimizing the user model for the resource-constrained edge platform. To the

best of our knowledge, this is one of the first efforts that leverage user preferences to incorporate

edge computation in the recommendation engine.

Prior work EdgeREC [85] shows the advantage of using extra user inputs available only on

the user device, like scroll speed and exposure duration, to improve user-engagement/accuracy.

Our solution incorporates user edge devices to improve the performance and energy of the recom-

mendation engine. A related prior work, RecPipe [96], proposes a multi-stage model by adding a

filtering model before the recommendation model at the datacenter. In this work, we decompose

the recommendation model itself into smaller concurrent models, one of which leverages user

information by processing on the edge device, thus offering more privacy.

90

Bottom MLP

Feature
Interaction Top MLP x N

#candidates

Da
ta
ce
nt
er

Embedding lookups and
reduction

Continuous
dense inputs

Categorical
Sparse input IDs

Figure 5.3: Data flow for the state-of-the-art recommendation system at the datacenter computing
N inferences for the N candidates.

Embedding
lookups and

reduction

Feature
Interaction

Item
Top MLP

Dynamic
Bottom MLP

Embedding
lookups and

reduction

Feature
Interaction

User
Top MLP

Feature
Interaction

Combined
Top MLP

Static
Bottom MLP

x 1
Once per user

query

x N
#candidates

Ed
ge

 d
ev

ic
e

Da
ta

ce
nt

er

User & context
dense inputs

User sparse
input IDs

Item sparse
input IDs

User model
Output

Figure 5.4: Data flow for our proposed collaborative edge-cloud recommendation system. The
monolithic model is decoupled into two concurrent models running on the edge device and dat-
acenter. The edge model is computed once per user query, and the reduced datacenter model is
computed for N candidate inferences.

91

5.2 Proposed Collaborative Recommendation System

The data flow through the three components of the recommendation model is illustrated in Figure

5.3. The bottom MLP layers process the continuous dense inputs to produce a k-dimensional

output vector, and the embedding tables process the categorical inputs sparse IDs. Embedding

tables map sparse input IDs to a dense k-dimensional vector. Each embedding table gets multiple

sparse input IDs, over which it performs gather and reduction to produce a k-dimensional output

vector. The feature interaction block concatenates the output vectors from embeddings and bottom

MLP to give a final feature vector, which is then processed by the top MLP layers to output the

Click-through rate (CTR). This recommendation model inference is performed repeatedly N times

for each N input candidate to predict CTR for all the candidates.

In this work, we propose a user-aware recommendation system, which decomposes the giant

monolithic model into a user model at the edge device and an item model at the datacenter based on

the input characteristics, as shown in Figure 5.4. The user model at the edge device computes user

inputs comprising: 1) user-history-related sparse inputs IDs, 2) dense user inputs, and 3) dense

context inputs. The information processed by the user model is common to all the inferences that

need to be computed for ranking the N candidates of the query. Thus, this common computation

is processed once for a query and is reused for all the N candidate inferences, thus, significantly

reducing the embedding table memory access and MLP computation. The output produced by the

user model is sent back to the datacenter for further processing.

Simultaneously, the item model at the datacenter individually processes each candidate’s sparse

input IDs to extract candidate features. Thus, N inferences are performed on the item model for

N candidates. Though N inferences are still computed on the datacenter, the datacenter performs

less work by offloading user inputs processing to the edge platform. Finally, the output feature

vector of the user model is aggregated with each of the N candidate feature vectors individually.

The final MLP layers then process the aggregated N feature vectors to produce CTR for all the N

candidates of the user query. In a datacenter environment, multiple small queries can be merged

for batch processing, or large queries can be sharded into smaller sub-queries to achieve optimal

92

throughput and latency. Therefore, the baseline model batches any random combination of can-

didates; however, for our proposed solution, we batch only the candidates belonging to the same

user query with the vision of extending it to a random combination, using unique tags for queries.

We leave this extension for future work. Based on a production query size distribution [95], the

75th percentile query size is between 200-250, which is able to saturate the system resources with

queries following poisson distribution arrival rates. Based on our benchmarking, the RM2 model

with a query size of 256 can barely serve 49 QPS within the SLA targets. Thus, a median query

size of 256 is large enough to keep system utilization high.

5.2.1 Model Decomposition:

In this section, we discuss in detail the decomposition of the three components of the recommen-

dation model across edge and cloud.

5.2.2 Embedding tables

The size and the number of embedding tables in recommendation models are constantly increasing.

User embeddings comprise a major fraction of the total embeddings. For example, n− 1 lookups

out of the n embedding tables lookups pertain to past user-interaction [48, 128]. Recent work [81]

estimates user embeddings to occupy as much as ≈ 75% of total embedding memory space. User

embeddings are accessed to retrieve user information, such as past user likes, favorites, clicks, etc.

A user-agnostic model, which does not differentiate between user and item embedding character-

istics, accesses the user embedding tables every time a recommendation inference is calculated.

However, for a given query that ranks multiple candidates, past user interactions are common

across all the candidate inferences; thus, we can avoid repeated user embedding lookups over the

entire query by computing them once and reusing them across all the inferences. For Duet, we first

leverage this user embedding property to decouple the user embeddings from item embeddings,

where user embedding is computed only once for a query.

Second, we also discover the opportunity to maintain small user embedding tables on the local

93

edge device instead of accessing the giant user embedding table at the datacenter. The user em-

bedding tables at the datacenter (GBs) store cumulative histories for millions of users with diverse

preferences. However, user embedding memory accesses corresponding to one user history (KBs)

is required for a given user query. Assume a scenario with three users, user1, user2, and user3, with

individual user histories. User1 has liked movies 1-10, user2 has liked movies 5-30, and user3 has

liked movies 20-50. In the datacenter, the movie embedding table stores entries for all the movies

from 1-50. When a query from user1 is being served, the model will access this entire table to

lookup only at user1’s past liked movies from the entire table. Furthermore, unlike this example

where user1 accesses contiguous rows 1-10 of movie embedding tables, embedding table access

can be random and spread all over the embedding table. These factors make embedding operations

very expensive.

Nevertheless, based on this insight, we propose storing user-specific embedding tables pertain-

ing to user history on the local edge device. This shrinks the embedding table size from GBs to

KBs, which is feasible on a small edge device. Further, as shown in Figure 5.5, we not only re-

duce the user embedding table size but also store embeddings in a contiguous format instead of

accessing them randomly across the entire embedding table. Overall, we decrease the number of

embedding lookups from history size×num emb tables (n×k) to history size×1 (n×1). The user

history is bound to change with time as the user interacts with more items. In Duet, we constantly

update the user-specific embedding tables with recent user interactions with the help of Duet’s lo-

cation tracker in the hardware unit, as described in detail in architecture Section 5.2.6. On a high

level, for our edge system, the embedding entry data is relayed along with the meta-data attached

to the items recommended to the user. For example, as shown in Figure 5.5, a movie recommended

to a user will come along with the particular movie embedding entry and its genre embedding en-

try. Each embedding entry is only a few bytes (128 bytes). If the user clicks the movie, we update

the user-specific embedding table with the movie embedding entries associated with it. The loca-

tion tracker maintains a user history of fixed length n, corresponding to past n lookups in the local

device memory. Consider n is 10, and the user-specific embedding table contains the past 10 liked

94

Emb 0 Emb kEmb 1
Hist n…

…

Hist 1

Selected

Recommendation
Page

Emb 0 Emb kEmb 1

Random User Embeddings
(GBs)

(user-history such as past likes, clicks, etc.)

Datacenter Edge device

Contiguous User Embeddings
(KBs)

Figure 5.5: Converting randomly accessed large user embeddings at datacenter to contiguous and
small user-specific embeddings at edge device, which are continuously populated and updated with
recent user interactions.

movie entries. When a new movie 11 is liked by the user, the oldest entry in the table (movie 1) is

removed, and it is populated with movie 11 embeddings. In this manner, we constantly update the

user history stored in the user-specific embedding tables in a circular fashion on the edge device.

We discuss in detail the working of the location tracker in a later section describing the specialized

hardware unit.

5.2.3 Bottom MLP stack

Bottom MLP usually has a depth of three to four layers, and it processes continuous dense fea-

tures to provide an output feature vector, which is concatenated with the outputs of embeddings.

A significant fraction of the dense inputs to the bottom MLP layers is composed of stable user

information, which does not frequently change, such as user age, gender, demographic, number of

user engagement sessions, number of apps on the user device, user device class, device os, device

IP, etc. The remaining dense inputs comprise dynamic context inputs, such as time of day, day of

the week, or time since the last watch/login. Again, the dense inputs are common for all candidate

inferences of query and do not change while a query is being served. Thus, the common computa-

tion can be performed once per query and reused by all recommendation inferences of the query.

95

(User age, gender, etc.) (Time of day, etc.)
Dynamic context inputsStatic user inputsStatic + Dynamic

Inputs

Pre-computed

Bottom MLP Static bottom MLP Dynamic bottom MLP

Figure 5.6: Decomposition of the bottom MLP stack into a pre-computed static bottom MLP and
a smaller dynamic bottom MLP stack.

This optimization effectively reduces the amount of MLP computation required to process all rec-

ommendation inferences of a query. Since dense inputs comprise user and context information,

which are readily available on the user edge device, we incorporate the bottom MLP in the user

model computed on the edge device, as presented in Figure 5.4 showing our proposed data flow

pipeline.

Static-Dynamic bottom MLP split: Edge devices are not friendly to compute-intensive kernels

like bottom MLP. Computing bottom MLP in its entirety can be expensive on the small edge device

and can hurt the efficiency of bottom MLP-dominated models. However, as mentioned above,

the user information that is fed into the bottom MLP is relatively stable and does not frequently

change, whereas dynamic time-dependent context inputs are different for every query. Based on

this insight, in Duet, we split the bottom MLP into two MLPs – static bottom MLP and dynamic

bottom MLP – as shown in Figure 5.6. Furthermore, the stable or static user inputs processed

by the static bottom MLP layers can be pre-computed, and the output vector can be stored in a

memoization register for future reuse, as explained later in the Duet hardware architecture Section

5.2.6. During query execution time, we directly use the pre-computed output vector of the static

bottom MLP stack, which significantly reduces the amount of computation during runtime.

In contrast, contextual inputs of the bottom MLP need to be computed by the dynamic bottom

MLP for every query. Dynamic inputs represent the state of the input parameters when the query

is being served. They are a smaller fraction of total dense inputs and, thus, require a proportionally

96

Item
features

User
features

User + Item
features

Datacenter DatacenterEdge Device
User Top MLP

Ite
m

To

p
M

LP

Top MLP

Co
m

bi
ne

d
To

p
M

LP

Concatenate

Figure 5.7: Top MLP stack decomposed into user top MLP, item top MLP, and combined Top
MLP.

smaller MLP, reducing the amount of work performed in real-time at the edge device. We construct

the proposed split bottom MLPs by dividing all the layers in proportion to the number of static and

dynamic inputs. However, simply splitting the original bottom MLP based on input definitions

and using it as is degrades the accuracy of the recommendation model. This is because the all-

to-all connections of the MLP layers are broken during model decomposition. Hence, we re-train

the decomposed model to regain the accuracy, as discussed in Section 5.2.5. The decomposed

model has two separate bottom MLP stacks – static bottom MLP and dynamic bottom MLP. Post-

training, the two stacks learn new weights that are independent of each other, and their outputs are

concatenated before being processed by the next model component. We also observe that since the

bottom MLP stack is responsible for feature extraction, it is not very sensitive to decomposition

and is able to easily learn the new model structure. After re-training, the accuracy drop because of

model splitting is limited to <0.03%, as discussed in evaluation section 5.4.3.

5.2.4 Top MLP Stack

The top MLP stack used for CTR prediction processes the concatenated output feature vectors of

the bottom MLP and embeddings. It has a depth of three MLP layers followed by a softmax layer,

which processes aggregated vectors to produce CTR for all the candidates. The top-K candidates

with the highest prediction probability are then displayed to individual users.

User-Item top MLP decomposition: In Duet, we also strive to split top MLP as much as possible

97

to distribute the work between the edge and the datacenter, as shown in Figure 5.4. However, since

top MLP should consider the interaction between user and item features to predict accurate CTR,

we cannot entirely split top MLP into two as done previously for bottom MLP. As demonstrated

in Figure 5.7, we only split the first one-two layer of top MLP between the user model at the edge

and the item model at the cloud. The remaining layers of top MLP layers remain in the cloud.

By splitting the first few top MLP layers, the user top MLP layers, which process user features

on edge, are computed once per query. This would otherwise be computed for all the recommenda-

tion inferences of the query. Furthermore, by splitting the original top MLP layers, we can utilize

reduced/smaller item top MLP layers to repeatedly compute all the recommendation inferences at

the datacenter. Thus, splitting the top MLP layers helps distribute the work and reduces the overall

work that needs to be completed to rank all the query candidates.

As shown in Figure 5.4, the output from the user top MLP at the edge is sent back to the

datacenter. At the datacenter, it aggregates with the output vector of the N candidates computed by

the item top MLP. The combined top MLP layers then compute the final aggregated vectors. The

first few top MLP layers are split proportionately to the input vector length. The user top MLP,

which processes concatenated outputs of bottom MLP and user embeddings, receives a major

fraction of the split top MLP. In contrast, the item top MLP, which processes only outputs of

item embeddings, receives a smaller fraction. However, the user top MLP is computed just once

compared to the lighter/smaller item top MLP computed for all recommendation inferences. Thus,

we provide a balanced work distribution by proportionately dividing the model. To avoid any

significant accuracy impact of the split, we train the decomposed model as discussed in Section

5.2.5.

Processing top MLP on user features at the edge provides additional advantages by reducing the

amount of data transferred from the edge to the cloud, resulting in energy and performance benefits.

The payload size of the data uploaded to the cloud is important because the upload speeds for even

the latest ultra-wide 5G is limited to 24 Mbps, which is 10x smaller than the 5G download speed

of >300 Mbps. The evaluation section will discuss the communication overheads and their impact

98

on energy and performance.

5.2.5 Training Decomposed Model

Decomposing the monolithic model by naively splitting layers degrades accuracy. To regain ac-

curacy, we train the decomposed model from scratch offline in the datacenter. The decomposed

models do not fine-tune MLP weights or embeddings for individual users. For example, if both

users 1 & 2 like movie-1, they will have the same embedding value of movie-1 in their personal

user histories on edge. Similarly, the weights of decomposed top and bottom MLP stacks are

generic. For example, the static and dynamic bottom MLPs are generic to all users. However,

decomposition allows the pre-computation of stable user-specific inputs by the static bottom MLP.

Owing to its generic nature, we train decomposed models once at the datacenter. Trained decom-

posed models serve thousands of incoming queries, amortizing the training cost.

We require the definition of model inputs to determine the split ratio [user inputs:item inputs],

which is utilized to split model components. For example, a split ratio of 0.6 on an MLP layer

with 100 nodes will split user MLP and item MLP layers to have 60 and 40 nodes each. The split

ratio is determined based on the inputs pre-defined in the original model, which are independent

of users. Hence, the split ratio is not user-specific. The decomposed model is generic and can be

offloaded on any user device. While the split ratio guides the decomposition of layers, the decision

to split or not is empirically determined based on accuracy impact. In Duet, we iteratively split

and re-train one layer at a time, starting from the bottom-most MLP layer up to the top layers,

until we are within the pre-set accuracy drop threshold (<0.1%). If the accuracy drop exceeds the

threshold, we stop the splitting, thereby minimizing the accuracy impact. We observe that bottom

MLP layers responsible for feature extraction are more friendly to splitting. However, top MLP

layers responsible for prediction are vulnerable to splitting.

99

5.2.6 Duet Architecture

By decomposing the model, we add the user model and its associated work to the edge device,

which would otherwise offload the entire query computation to the cloud. Computing the user

model on the device without hardware optimizations leads to significant energy implications. We

observe that the battery life reduces drastically from 24 hrs to 18 hrs (a 25% drop), if we compute

the user model for a recommendation query every min. Hence, to reap the benefits of model decom-

position, we require a more energy-efficient and practical user model for the resource-constrained

edge device. In this work, we propose a specialized hardware unit, which is placed near the CPU

and communicates with it directly, as shown in Figure 5.8. For a query, the CPU triggers a read

request to the memoization register and the scratchpad of the hardware unit. The read values are

then processed by the CPU. The CPU computes dynamic bottom MLP and embedding reduction.

Their outputs are then concatenated and processed by the top MLP. We utilize heterogeneous lower

(qint8) precision for top MLP to reduce its processing overheads and payload size while curtailing

the impact of lower precision on accuracy. The output of the top MLP is transferred to the cloud

for final processing. Additionally, if the values in the hardware unit need an update, the CPU

sends a write request to the memoization register or (and) the scratchpad of the hardware unit. The

write update request is processed in the background and does not interfere with the query serving

process. We now explain individual components in detail.

5.2.6.1 Hardware Unit

The specialized hardware unit is responsible for storing all the relevant local user information

required by the recommendation query. It comprises memoization support to store the output of

pre-computed static bottom MLP and a user-specific scratchpad with a location tracker.

The memoization register stores the partially computed result of bottom MLP, corresponding

to static bottom MLP, which is reused across queries. During execution, the memoization register

value is read and concatenated with other model components. If inputs to the static bottom MLP

change, the register value is updated in the background without interfering with the query execution

100

Dyn
Bot MLP

Reduction

Memoiz-
ation

Location
Tracker

Concat & Quantize

Quant Top MLP Memoization Register

Base Addr

Oldest
Loctn Addr

+
Comp
-

0
1

-1

End Addr

Hist
1

Hist
n-1

Hist
n

Updated
Oldest loctn

Location Tracker User-specific
Scratchpad

Scratchpad
Write Update
(Background)

Scratchpad
ReadR/W

Ba
ck

gr
ou

nd

U
pd

at
e

On-chip Hardware Unit

CPU

DR
AM

Strt/End
Sessions Sc

rat
ch

-
pad

Updated
Oldest
Oldest
(End)

Base

Figure 5.8: Proposed Duet architecture with an on-chip hardware unit and quantized int8 precision
support to efficiently process the user model at the edge.

flow.

User-specific Scratchpad: Decomposing embedding tables into user and item embedding allows

us to store only user-specific embedding tables on the device. However, we still have to access off-

chip memory to fetch user embeddings into the CPU. Since the user-specific embedding table size

is in the order of KBs that stores only a fixed length of history, we propose a user-specific on-chip

scratchpad residing in the hardware unit to eliminate the DRAM accesses altogether. The scratch-

pad should contain only the most up-to-date history; thus, it requires a mechanism to populate and

update the scratchpad as described below.

Scratchpad Population: User embeddings are related to past user activities, such as apps installed

on the device, past liked movie genres, past clicked movies, etc. At the start of a session, the

scratchpad is pre-loaded with the user embedding table, base address [Base Addr] & end address

[End Addr] registers, and oldest embedding location address register [Oldest Loctn Addr] in the

scratchpad from the previous session. As the session unfolds, we update the scratchpad with user

embeddings corresponding to recent user interactions of the current session. If the user clicks on

a new item, we update the scratchpad with the item’s associated embeddings. There will never be

a scratchpad miss because the history size is fixed to the past n lookups. Consider the previously

discussed example of movie recommendation where n is 10, and the scratchpad contains the past

101

10 liked movie entries. When a new movie 11 is liked by the user, the oldest entry in the scratchpad

(movie 1) is removed, and it is populated with movie 11 embeddings. Simultaneously, movie 2

becomes the oldest entry in the scratchpad.

Scratchpad Update: We maintain an up-to-date user history on the small scratchpad with the

help of a lightweight location tracker, as shown in Figure 5.8. It provides the address of the oldest

embedding location on the scratchpad, which is overwritten on a scratchpad update to keep a fixed

history of length n. Tracker simultaneously also updates the oldest location address to the next

oldest location, which will be written next. To update Oldest Loctn Addr, the hardware location

tracker compares the values of Base Addr register and the current Oldest Loctn Addr register. In

case of a mismatch given by a comparator, Oldest Loctn Addr is decremented or moved up (red

arrow), pointing to the next oldest location. However, in case of a match, we have to circle back

to position n (green arrow) and update the Oldest Loctn Addr register with the End Addr of the

scratchpad. At the end of the current session, the scratchpad entries and the tracker state is stored

in the main memory, which a later session can retrieve. In this way, we continuously populate

and update the scratchpad to maintain recent user history in a lightweight manner. The update

action is performed in the background whenever a user clicks on a recommended item at the end

of query execution and does not interfere with the execution flow. The scratchpad will have the

most updated history during the execution, and we simply look up (read) all the entries to retrieve

user embeddings.

Duet architecture can easily support multiple models or apps sharing the scratchpad. Different

models can store their hardware unit state in the memory, which is retrieved when a session starts

to warm up the hardware unit. Scratchpad is also available to other applications in the absence

of any recommendation sessions on the device. Thus, we enable high utilization of the expensive

silicon area occupied by the hardware unit.

102

5.2.6.2 Heterogeneous precision with int8

Lower precisions are the most prominent solution for faster and more energy-efficient ML models.

Splitting MLP stacks on multiple platforms presents an opportunity to have different precision

on each platform, especially for resource-constrained edge devices that prefer int8 precision for

performance and energy efficiency. Since the major fraction of the bottom MLP stack is pre-

computed and does not need real-time computation, it does not consume significant energy or time.

However, user top MLP is computed for every query in its entirety and also constitutes the major

portion of the top MLP stack, thus consuming more energy and time. We observe that by reducing

the user model’s top MLP precision from fp32 to quantized int8 precision, we can reduce the MLP

energy (time) and the data-transfer energy (time) because of payload size reduction. Thus, we

utilize the post-training static quantization int8 (qint8) precision for the user top MLP to convert

it to int8 precision for inference. The concatenated output of the bottom MLP and embeddings is

quantized during execution and processed by the quantized user top MLP to produce an output in

qint8 precision, which is communicated to the cloud. Hence, quantization reduces computing and

communication energy and time.

5.2.7 Multiple device synchronization

A user may have the same recommendation app on multiple devices, such as a smartphone and

laptop, which leads to each device viewing only partial user history. Thus, there is a need for

synchronization between devices. For all practical purposes, recommendation sessions for a user

owning multiple devices will be in a serial fashion. Once a session is closed on device A, it will

transfer its history via Bluetooth or wi-fi network to the next session on device B. An alternative

is to use the cloud as the point of synchronization, where at the end of the session, device A will

send its partial history back to the cloud, which will be communicated to the next device B. The

communication overheads are limited to the size of partial history, which will be a fraction of the

KBs of the complete history. In our diverse set of models, 4 out of 5 have a user history of <60KB,

and only the fraction corresponding to a partial view of a few KBs is needed for synchronization.

103

Model Bottom Top #EMB #Lookups EMB size
MLP MLP tables per Emb (#entries)

RM1 [97, 95] 128-64-32 256-64-1 8 80 4M
RM2 [97, 95] 256-128-64 128-64-1 32 120 500K
RM3 [97, 95] 2560-1024-256-32 512-256-1 10 20 2M

RM4 [synthetic] 512-256-32 2560-1024-1 10 20 2M
RM5 [237] - 200-80-2 3 1-200-200 1M

Table 5.1: Model configurations used for evaluation.

Samsung S10e (Snapdragon 855) X86 Server
Cores 1xA76 @2.84 GHz, 18 @3.7Ghz

3xA76 @2.41 GHz,
4xA55 @1.78 GHz

L1 cache 1x128KB, 3x128KB, 4x128KB 32KB
L2 cache 1x512KB, 3x256KB, 4x128KB 1MB
L3 cache 2MB 25MB
SIMD NEON AVX-512
DRAM 6GB, 34.1GB/s 90 GB, 80 GB/s

Table 5.2: Architectural specifications for mobile and server.

Importantly, this synchronization can be done at the end of a session and not necessarily during

execution. The overheads are related to the transmission energy, which for a 10KB over Bluetooth

network of 1W/3Mbps is 0.027J.

5.3 Methodology

We evaluate our solution for the five models listed in Table 5.1. Each model has a different bot-

tleneck. Models RM1 and RM2 are embedding-dominated, RM3 is bottom MLP-dominated, and

RM4 is top MLP-dominated. RM5 is also embedding-dominated but does not have dedicated item

embedding tables. The last two embedding tables double as user and item embeddings, i.e., out

of 200 embedding table lookups, 199 correspond to the user history, and one corresponds to the

candidate information. The first embedding table is for user ids; thus, an incoming user query with

a unique user id will perform one lookup on the user id embedding table.

The baseline is evaluated on a server-class machine, and mobile performance results are eval-

104

uated on a Samsung 10E platform. The configurations are listed in Table 5.2. To support our

techniques, we extend an open-sourced caffe2-based benchmarking framework provided by prior

work [95]. We enable multi-threading for the caffe2 models to utilize the multi-core capabilities of

the servers. To support the mobile platform, we extend the framework to export x86 caffe2 models

to ARMv8 caffe2 models. ARM Caffe2 models use QNNPACK as the backend library to support

quantized int8 precision on the mobile platform. To emulate the scratchpad’s behavior on the edge

device, we store the user-specific embeddings on the L3 (System) cache of Samsung S10E, our

edge evaluation platform. The location tracker is synthesized separately using a 15nm commer-

cial library. We report its post-synthesis timing, area, and power in Section 5.4.6. We utilize the

speed benchmark utility provided by caffe2 to determine execution time and timing breakdown.

Our programming model batches all inferences of a query and uses multi-threading to distribute

the work on all cores of the server. Simultaneously, the mobile platform performs its user model

computation once for a query.

To study accuracy impact, we train models RM1-3 for the Criteo Kaggle advertising dataset

[8] using an open-sourced DLRM framework [174] and model RM5 for the Amazon electronics

dataset [167] using an open-sourced DIEN framework [11]. The RM1-3 models are trained for

MLP stack definitions listed in RM1-3 in Table 5.1. Based on Alibaba’s Taobao dataset [1, 30] that

explicitly state input feature definition, static inputs corresponding to user profile information are

88% (8/9) of total inputs, and dynamic inputs constituent the remaining 12% (1/9). Such feature

definitions are not explicitly available for DLRM datasets that are available publicly. Thus, we

assume a similar % split for them and divide the bottom MLPs in the static-dynamic input ratio of

87.5%-12.5%. The embedding tables are split into user-item embedding ratios of 75%-25%. Since

there is no explicit feature description corresponding to each embedding in the dataset, we assume

the first 75% to be user embeddings and the remaining 25% to be item embeddings to show the

decomposability of the model. Furthermore, we also split the first two layers of the top MLP stack

into the user and the item model; the last layer is not divided and is part of the combined top MLP.

The RM5 model and its dataset are more descriptive about feature definitions, so we can ex-

105

actly decouple the user-history access and the candidate-specific accesses for the last two shared

embedding tables. The decoupled user-history information is concatenated with the user id em-

bedding table entry to produce a user feature vector. Similarly, the decoupled candidate-specific

information is the item feature vector. We split the first layer of the top MLP stack proportional to

the user feature vector length and item feature vector length with a ratio of 60%-40%. The last two

MLP layers are not divided and are part of the combined top MLP.

The energy estimates are extracted by means of the python RAPL library for the server compu-

tation; we also utilize battery state dumps comprising charge counters and voltage measurements

for the mobile platform. The maximum data upload speed of 24 Mbps is obtained from a speed

test on a mobile phone over the 5G network, and the energy estimate is obtained from a recent 5G

characterization work [173].

5.4 Evaluation

In this section, we first present the query latency and energy benefits of Duet. We then demonstrate

the accuracy impact and discuss the latency breakdown for individual components for different

models. Next, we exhibit the benefits of the lightweight Duet architecture over Duet without

hardware optimizations and discuss its overhead. We then show results for throughput over a wide

range of batch sizes. Finally, we demonstrate the advantage of Duet with near-memory processing

(NMP) support over prior NMP embedding approaches.

5.4.1 Performance

We demonstrate the reduction in query latency for query sizes of 1024 and 256 candidates in Figure

5.9. We observe that for a query size of 1024, the average latency reduces by 6.4× compared to

the baseline. Similarly, for a query size of 256, we reduce the average query latency by 5×.

Since our holistic approach resolves all three components of a recommendation model, we present

consistent gains across all the models, which are bottlenecked on different components. The gains

106

0

20

40

60

80

100

RM 1 RM 2 RM 3 RM 4 RM 5 Geomean

Q
ue

ry
 L

at
en

cy
 (m

s)

Query Size 1024

Baseline Duet373

4.2x

4x

4.5x 3.6x

↑

40x
6.4x

(a)

0

5

10

15

20

25

30

RM 1 RM 2 RM 3 RM 4 RM 5 Geomean

Q
ue

ry
 L

at
en

cy
 (m

s) Query Size 256

Baseline Duet

4.7x 3.3x
3.9x

4x

↑

13.2x

93

5x

(b)

Figure 5.9: Query latency reduction across all the models for query size 1024 and 256 inferences.

107

are attributed to three factors: 1) decomposing the monolithic model into two smaller concurrent

models, thus, overlapping the computations; 2) processing the user embeddings and dense bottom

MLP once per query, which significantly reduces the DRAM access and MLP computation; and

3) optimizing the user model on edge with the lightweight Duet architecture. The architecture

comprises an updated user-specific scratchpad, memoization for static bottom MLP, and lower

qint8 precision for top MLP to reduce the computation and memory demands, which altogether

eliminates(stops) the user model from becoming a bottleneck.

As observed in Figure 5.9, the RM1-RM3 models have higher gains over the RM4 model. This

is because RM1-RM3 models compute a significant fraction of the dominating components, i.e.,

user embeddings and bottom MLP, once per query in an optimized fashion on the edge platform.

However, RM4 computes the relatively heavy (item + combined) top MLP (>1MB) repeatedly

for all the recommendation inferences on the datacenter, which consumes a considerable fraction

of the total execution time. Meanwhile, RM5 has the highest speedup because of the following

reasons. First, there is no separate item embedding for this model, which reduces the datacenter’s

item model size. Second, 199 of the 200 lookups for the two shared user/item embedding tables

correspond to the user history, which is computed only once with edge platform optimizations.

All inferences of the query reuse the edge computation, and each inference performs only one

remaining lookup to rank the candidate. Thus, we reduce the number of embedding lookups from

query size×200 to query size×1 for the embeddings. In a later section, we provide a detailed

latency breakdown of various components on the edge and datacenter.

5.4.2 Energy

We exhibit the energy efficiency of our proposed solution, Duet, over baseline in Figure 5.10.

The baseline constitutes only the datacenter energy consumption (brown). But our collaborative

edge-cloud solution constitutes datacenter (brown), edge computation (yellow), and data-transfer

(hashed) energy consumption. We observe an energy reduction of 4.6× and 2.5× for a query size

of 1024 and 256 items, respectively. The average datacenter energy consumption decreases by an

108

0

10

20

30
Ba

se
lin

e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

RM 1 RM 2 RM 3 RM 4 RM5 Geomean

Q
ue

ry
 E

ne
rg

y
(J

)

Query Size 1024

Datacenter Edge Data-transfer
↑

4.1x

3.7x

3.7x 1.5x 23x
4.6x

(a)

0

2

4

6

8

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

Ba
se

lin
e

D
ue

t

RM 1 RM 2 RM 3 RM 4 RM5 Geomean

Q
ue

ry
 E

ne
rg

y
(J

)

Query Size 256

Datacenter Edge Data-transfer
↑

3.3x

3.9x

1.9x
0.5x

7.4x
2.5x

(b)

Figure 5.10: Energy consumption across all the models for query size 1024 and 256 inferences.

109

average of 7× at the expense of an additional small fraction of energy consumption on edge. The

datacenter’s energy efficiency improves because Duet distributes the work in the user model at the

edge and the item model at the datacenter, which overall reduces the amount of work completed

on the datacenter. Moreover, our Duet architecture’s energy-centric optimizations reduce the edge

device’s energy consumption. Below, we discuss the breakdown of energy consumption for a

query size of 1024. Similar behavior is observed for a query size of 256, with deviation discussed

separately.

For embedding-dominated RM1 and RM2 models, more than 97% of Duet’s total energy is con-

sumed in the datacenter, which computes item embeddings, item-specific top MLP, and combined

top MLP. The remaining 3% of energy is consumed on the edge platform for user model process-

ing and data transfer. For the bottom MLP-dominated RM3 model, the datacenter consumes 75%

of the Duet energy, and the edge consumes the remaining 25%. The edge energy consumption in-

creases from 5% to 25% because the heavy bottom MLP of RM3 is computed on the edge device.

Nonetheless, because the bottom MLP is split into pre-computed static and dynamic bottom MLP,

we lower the query energy by 3.7× by limiting the energy consumption to only dynamic bottom

MLP.

Next, for the top MLP-dominated RM4 model, the energy spent by Duet on the datacenter and

the edge is 36% and 64%, respectively. The edge device consumes more energy than the datacenter

because, although quantized, a heavy user top MLP of 1.9 MB is computed on the edge device with

2MB of L3 cache. Quantization greatly reduces the user top MLP size from 7.5 MB to 1.9 MB,

but the working set size with activations and other model components is still greater than the cache

capacity. It does not completely eliminate DRAM overheads. However, compared to the fp32

model, the quantized qint8 model lowers the edge and the data-transfer energy to yield an overall

query energy reduction of 1.3x.

An exception to the above-discussed results is the energy consumption of the RM4 model for a

query size of 256 candidates. We find that the total energy consumption of Duet is greater than the

baseline, which computes the entire model for 256 candidate inferences on the datacenter. This is

110

Model Base (%) Duet w/o quant (%) Duet
Accuracy Accuracy Accuracy (%)

RM1 78.71 78.68 78.64
RM2 78.67 78.66 78.62
RM3 78.75 78.71 78.69
RM5 68.74 68.97 68.97

Table 5.3: Accuracy comparison between Duet & baseline models

because the energy consumed by the heavy user top MLP at the edge platform, even though just

once for a query, is higher than processing all the 256 inferences on the datacenter. Therefore, the

energy consumption of the edge model could not be amortized across 256 inferences. However,

for the query size of 1024, the user top MLP energy consumption is lower than 1024 inferences;

thus, the edge platform energy was amortized across 1024 inferences, resulting in overall energy

reduction.

We also demonstrate a significant energy reduction of 23× for the embedding-dominated RM5

model because the major fraction of the embedding lookups, attributed to the user history, are

computed once on the edge platform in an optimized manner. Moreover, after Duet’s distribution of

work, the energy consumption becomes more balanced, with the datacenter and the edge platform

consuming 46% and 54%, respectively.

5.4.3 Accuracy

We show the accuracy of our re-trained decomposed model for Duet and compare it with the

baseline accuracy of the monolithic model in Table 5.3. We show that our Duet model (with

bottom MLP split, user and item embedding split, and top MLP split) can achieve a comparable

accuracy with an accuracy drop limited to <= 0.03% across the models. Once the user top MLP

adopts a quantized int8 precision, we achieve accuracy within 0.06% of the baseline accuracy, thus,

still limiting the accuracy impact at a lower precision.

The benefit of quantization is more energy efficiency for the energy-constrained user device.

We find that for a query size of 1024, the average query energy consumption for non-quantized

Duet is 2.8×, which increases for quantized Duet to 4.6×. Meanwhile, quantization does not have

111

any considerable impact on the end-to-end query latency because the edge user model is able to

complete and produce its result well before the item model at the datacenter is ready to consume

the edge result. Thus, the latency is bounded by the datacenter computation. Hence, we provide

a trade-off where we can offer a more energy-efficient model with a minimal impact of 0.06% on

the accuracy or reduce the accuracy impact to <= 0.03% without energy-specific optimization. In

both cases, the accuracy impact is less than our threshold(< 0.1%).

5.4.4 Latency Breakdown

We have already discussed the overall query latency reduction for all the models and multiple

query sizes in the prior section. This section presents the query latency breakdown for a query

size of 1024 and describes, in detail, the time spent during execution on various components. We

show the latency breakdown in Figure 5.11 for one of the embedding-dominated models (RM2),

the bottom MLP-dominated model (RM3), and the top MLP-dominated model (RM4).

As presented in Figure 5.11a, the baseline RM2 model spends 73% of the time on user embed-

dings, 24% on item embeddings, 2% on the bottom MLP, and 1% on the top MLP. Decoupling the

user and item embeddings and storing only user-specific embeddings on the on-chip scratchpad

at the edge device has two benefits. First, we retrieve the contiguous user embeddings faster than

random DRAM access on the datacenter. Second, we compute this significant fraction of user

embeddings once for the query, reusing the computation across all the inferences of the query.

The combined execution time of bottom and top MLP stacks is also reduced to <1% of total Duet

execution time because of our hardware optimizations for MLP stacks. Eventually, the datacenter

computation limits the overall performance after decomposing and offloading the lightweight user

model to the edge device.

For the bottom MLP-dominated RM3 model, a major fraction of the execution time (44%) for

the baseline is spent on processing the bottom MLP, as illustrated in Figure 5.11b. The remaining

timing breakdown is 37% on user embeddings, 12% on item embeddings, and 7% on the top MLP.

We optimize the bottom MLP and user embeddings by computing them once per query with our

112

372.69

0

100

200

300

400

Baseline

La
te

nc
y

(m
s)

RM 2 / 1024

0.19

93.73

0

20

40

60

80

100

User Model Edge Item Model
Datacenter

Duet

La
te

nc
y

(m
s)

RM 2 / 1024 Breakdown

0

0.13

0.26

(a) Embedding-dominated model (RM2) latency breakdown

25.71

0

5

10

15

20

25

30

Baseline

La
te

nc
y

(m
s)

RM 3 / 1024

0.23

5.71

0

1

2

3

4

5

6

User Model Edge Item Model
Datacenter

Duet

La
te

nc
y

(m
s)

RM 3 / 1024 Breakdown

0

0.12

0.24

(b) Bottom MLP-dominated model (RM3) latency breakdown

25.93

0

5

10

15

20

25

30

Baseline

La
te

nc
y

(m
s)

RM 4 / 1024

1.68

7.18

0

1

2

3

4

5

6

7

8

User Model Edge Item Model
Datacenter

Duet

La
te

nc
y

(m
s)

RM 4 / 1024 Breakdown

0

0.6

1.2

1.8

(c) Top MLP-dominated model (RM4) latency breakdown

Figure 5.11: Latency breakdown for RM2-4 models across all components for both the edge and
the datacenter platforms.

113

0
0.2
0.4
0.6
0.8
1

RM1
RM2

RM3
RM4

RM5

Geomean

Ed
ge

 E
ne

rg
y

Re
du

ct
io

n

Duet w/o HW Opt Duet w/ HW Opt

Figure 5.12: Impact of HW optimizations on edge device across all models.

Duet architecture on the edge platform, thus significantly reducing the individual component’s

execution time. The top MLP’s execution time also decreases because the top MLP layers are

decomposed, which decreases the computation in the datacenter. We also notice that the edge

device spends the majority of time on the user model’s top MLP. The two original bottlenecks are

diminished because the hardware unit’s memoization register stores static bottom MLP output, and

its on-chip scratchpad optimizes user embeddings.

We exhibit in Figure 5.11c the execution time breakdown for the top MLP-dominated RM4

model. 54% of the time is spent on the top MLP, 29% on the user embeddings, 10% on the item

embeddings, and 8% on the bottom MLP. Duet’s architecture optimizes the top MLP time by

splitting top MLP layers into user-specific, item-specific, and combined top MLP layers. The user

top MLP on edge is computed once with qint8 precision and overlaps with computation on the

datacenter. Moreover, splitting reduces the size of the datacenter’s top MLP; thus, it completes all

the 1024 inferences sooner than the baseline. Additionally, the user embedding and bottom MLP

fractions are also reduced because of Duet’s optimizations.

Note that an additional data-transfer time is added to Duet, but we limit it by reducing the

payload size with the user top MLP processing and quantization.

114

5.4.5 Hardware Optimization Impact on Edge

Until now, we have presented results with all hardware optimizations enabled for the complete

edge-cloud system. In this section, we study the energy impact on the edge device and show the

benefits of hardware optimizations (Duet w/ HW Opt) over the software-based model decomposi-

tion (Duet w/o HW Opt). The Duet w/o HW Opt only decomposes the monolithic model into user

and item models but does not enable hardware edge optimizations – hardware unit (user-specific

scratchpad and memoization register) and qint8 precision. Though model decomposition reduces

overall work through compute reuse, it adds work on the edge device due to the processing of the

user model, which consumes considerable energy. As illustrated in Figure 5.12, hardware edge

optimizations reduce this edge energy consumption of user models by 83% on average. Both the

hardware unit and lower qint8 precision contribute toward the energy reduction of each model.

However, significant gains for embedding-dominated RM1 and RM2 models are attributed to the

user-specific scratchpad of the hardware unit. We also obtain a 97% energy reduction for the

bottom-MLP dominated RM3 model because the compute-intensive static bottom MLP’s output is

memoized, significantly reducing the MLP workload during execution time. Top MLP-dominated

RM4 model energy consumption is also reduced by edge-friendly lower (qint8) precision. Finally,

all the models benefit from the reduction in data-transfer energy over 5G, owing to a smaller output

(payload) size of quantized user top MLP. Overall, the hardware optimizations lead to only an 8%

reduction in battery life compared to a 25% drop without any optimizations for a user query com-

puted every minute. There is still a slight drop in battery life because of the additional compute

added by the user model processing on the edge device.

We also compare the energy consumption of the end-to-end edge-cloud system for a query

(size 1024) with hardware optimizations disabled and enabled. We observe that the average energy

consumption is lowered by 1.8× without hardware architecture because of a reduced amount of

work. However, the edge consumes a significant fraction of total energy. By enabling Duet’s

energy-efficient architecture for the edge device, we reduce the system’s query energy by 4.6×.

In conclusion, model decomposition decreases overall work, resulting in query energy reduc-

115

Model Scratchpad Scratchpad
Size (KBs) Area (mm2)

RM1 60 0.020
RM2 720 0.238
RM3 17.5 0.006
RM4 17.5 0.006
RM5 28.2 0.009

Table 5.4: Scratchpad Overhead

tion. Nevertheless, it also computes the user model on edge, which consumes significant energy at

the energy-limited device. Our proposed Duet architecture reduces the edge energy consumption;

thus, it is extremely important for the viability of model decomposition.

5.4.6 Hardware Unit Silicon Overheads

Table 5.4 presents the on-chip scratchpad size required for storing user-specific embeddings by

the different models. These are derived from a recent SRAM design in 10nm technology node

[93]. The location tracker is synthesized separately using a 15nm commercial library at a clock

frequency of 2.8Ghz. The post-synthesis timing is just 0.33ns@0.66mW and occupies 250um2.

Thus, our location tracker is an extremely lightweight unit. The majority area of the hardware

unit is occupied by the scratchpad. Embedding heavy RM2 requires the largest scratchpad space

of 720 KB, corresponding to 0.24mm2 of silicon area. In contrast, all the other models require

only a few tens of KB of scratchpad and <0.1mm2 area. Thus, Duet is a high-performance and

energy-efficient solution with negligible area overheads.

5.4.7 Sensitivity to Batch Size

Figure 5.13 illustrates throughput improvement over a wide range of batch sizes from 8-1024 for

embedding-dominated model RM2, bottom MLP-dominated model RM3, and top MLP-dominated

model RM4. In this work, we assume a single node server computes all the items of the query.

However, a query can be composed of multiple batches that are distributed by the front-end server

across multiple servers. We demonstrate that Duet increases the average throughput by 3×. Models

116

0
20
40
60
80

100
120
140
160
180
200

8 16 32 64 128 256 512 1024

In
fe
re
nc
es
/m

s

Batch Size

RM2 Duet RM3 Duet RM4 Duet
RM2 base RM3 base RM4 base

Figure 5.13: Throughput improvement for multiple models over a wide range of batch sizes

RM2-3 provide consistent throughput gains for all batch sizes. However, throughput decreases for

the RM4 model at smaller batch sizes of 8, 16, and 32. This behavior is because the user model’s

execution time at the edge device is higher than the total time taken to process all the items of a

batch, sized 8-32, in the datacenter; hence, edge model computation becomes a bottleneck. The

RM4 user model’s edge latency could not be amortized across 8-32 inferences of a batch because

the heavy user top MLP (1.9MB) of RM4 cannot be completely cached, leading to higher latency

than RM2-3 user edge models. RM2-3 models are embedding and bottom MLP heavy; the pre-

computed static bottom MLP and an on-chip scratchpad make these models lightweight, even for

small batch sizes.

5.4.8 Comparison to NMP solutions

We also compare Duet with two recent state-of-the-art near memory processing (NMP) based

techniques: RecNMP [133] with an average 10× embedding speedup and TRiM [184] with an

average 39× speedup (3.9x reported speedup over RecNMP). The NMP solutions are targeted

to resolve the embedding bottlenecks. Notably, as a secondary impact, they also improve the

performance of MLP layers because of lowered cache evictions of MLP weights and activations,

117

0

5

10

15

Re
cN

M
P

TR
iM

Re
cN

M
P

TR
iM

Re
cN

M
P

TR
iM

RM 2 RM 3 RM 4

La
te

nc
y

(m
s)

State-of-the-art NMP Duet NMP
40.3

Figure 5.14: Comparison of NMP-enabled Duet with state-of-the-art NMP solutions.

which otherwise are replaced by embedding vectors. The NMP techniques are complementary

to our solution; therefore, we also utilize these techniques for our item model computation at the

datacenter for a fair comparison. Our NMP-enabled Duet solution has two parallel running models.

The user model at the edge is by Duet’s architecture without NMP support, and the item model at

the datacenter is computed with NMP enabled for the item embeddings. To support NMP for our

framework, we scale the item embeddings by the embedding operation speedups reported by prior

works and determine the MLP speedups by performing the MLPs standalone on the server without

any interruption from embeddings, thus, eliminating eviction impacts.

In Figure 5.14, we compare the NMP-enabled Duet with the two solutions – RecNMP and

TRiM – for embedding-dominated model RM2, bottom MLP-dominated model RM3, and top

MLP-dominated model RM4. Duet-NMP decreases the average query latency by 4.18× and 4.2×

over RecNMP and TRiM because the distribution of models reduces the amount of work that is

completed at the datacenter compared to computing the entire model on the datacenter. Thus, at

the datacenter, Duet-NMP completes a lesser amount of work faster than the state-of-the-art NMP

solutions.

We also show improvements for MLP-dominated RM3 and RM4 models and for high NMP

embedding speedups (thus, practically eliminating the embedding bottleneck) because of the de-

composition of the MLP stack on the edge and the datacenter. A high speedup of 8.7× is observed

for the RM3 model, as we memoize static bottom MLP output and, thus, eliminate that computa-

118

tion. For the top MLP-dominated RM4 model, the average speedup is 2.7×, which is compara-

tively smaller than RM3. This is because the remaining item top MLP at the datacenter consumes

a considerable execution time by repeatedly performing all the inferences of the query. Hence,

overall, our holistic approach that individually optimizes all the components of the recommenda-

tion model can provide speedups over state-of-the-art NMP solutions across models with different

bottlenecks.

5.5 Discussions

Scalability: Duet’s scalability is driven by the size of user-specific embedding tables, which, com-

pared to entire embedding tables (10+ GB), are small because they store only a fixed length of

the user history. While for the current models considered in this work, the size of user history is

limited to < 1MB. However, if the user history becomes too large for future models, we may

have to employ intelligent tiered solutions by partitioning user-specific embedding tables into

scratchpad and DRAM. To reduce DRAM overheads, we can leverage near-memory processing

for user-embedding operations on DRAM at edge devices. Moreover, new technologies like dense

STT-RAM and embedded NVMs can accommodate larger user-embedding tables.

Training Cost: We train the decomposed model from scratch for Duet, as discussed in Section

5.2.5. Although the model is trained once offline in the datacenter, still training the model takes 10+

hours. Therefore, it is important to reduce the training time. Many recent works [48, 49, 147, 196]

have focused on accelerating the training of the recommendation models, which can be adopted by

Duet to reduce the training overhead. The other option is to amortize the training cost by serving

thousands of queries over a long period of time. To our advantage, the weights and embedding

values of the decomposed model are generic and not fine-tuned for individual users; thus, it can be

offloaded to any user device, serving queries from all users at any point in time.

119

5.6 Conclusion

Recommendation models process multiple candidates to recommend only a few to the user. They

also exhibit non-uniformity in their inputs, which can be categorized as user inputs and item inputs.

This work explores the opportunity to decouple the two inputs and operate on user-related inputs

at the local edge device, thus enhancing data privacy. We present Duet, a novel collaborative edge-

cloud recommendation system, which decomposes the giant monolithic model into two smaller

concurrent models – a user model on edge and an item model on the datacenter – that come together

to deliver final recommendations. The user model is computed once per query by our new energy-

efficient Duet architecture on the resource-constrained edge device, and its output is reused by

all the candidates computed by the item model on the datacenter for the query. We demonstrate

that our proposed lightweight Duet architecture reduces query latency by an average of 6.4× and

lowers average energy consumption by 4.6×. Until now, we have proposed hardware-software co-

design approaches which modify the application based on the hardware present in the edge device.

In the next chapter, we will present a new hardware design and efficiently map popular mobile

applications on the proposed hardware architecture.

120

CHAPTER 6

Interconnect Architecture for System-in-Package

Based Low-Cost Edge Platforms

As discussed in previous chapters, the goal of this dissertation is to improve the consumer experi-

ence for edge platforms. In this chapter, we provide a performance and energy-efficient low-cost

mobile architecture. Mobile/Smartphones represent a major fraction of the space of edge devices.

At present, smartphones have a Systems-on-Chip (SoC) at their heart for all computational pur-

poses. While SoCs are becoming more powerful to fulfill the computational demands of emerging

applications, they are also simultaneously getting expensive to develop. SoCs require huge initial

capital investments because of their monolithic nature, shift to expensive technology nodes, the

inclusion of more custom IP blocks, and lower yields. This is driving up the retail cost of smart-

phones for users. To replace sophisticated, expensive SoCs, we need a cheaper alternative with

comparable or better performance and energy efficiency to serve user demands for powerful and

reasonably priced smartphones. In this chapter, we explore the potential of the emerging 2.5D-

based System-In-Package (SiP) architectures to lower these costs while simultaneously improving

the performance and energy efficiency of edge applications.

In a SiP, individual IPs are manufactured separately as chiplets. These small chiplets are then

integrated on an interposer substrate using a low-cost assembly step, avoiding many other expen-

sive and mandatory steps required to integrate SoCs monolithically. The modular nature of SiP has

many other benefits, like cheap reuse of IPs across multiple domains, higher yields, heterogeneous

integration of multiple technology nodes, and shorter time to market. Clearly, SiP has the potential

121

0
0.2
0.4
0.6
0.8
1
1.2

0
5

10
15
20
25
30
35

Ideal N/W Current SiP SoC Ideal N/W Current SiP SoC

Youtube Gallery

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(F

ra
m

es
/s

ec
)

Ba
nd

w
id

th
 S

er
ve

d
(G

Bp
s) Bandwidth Normalized Performance

Figure 6.1: Bandwidth served by an ideal network (with infinite bandwidth), recent SiP, and SoC
for YouTube and Gallery applications.

to reduce the startup cost of indigenous heterogeneous systems like SoC and IoT systems.

In this chapter, we propose Neksus – an interconnect architecture for SiP designs based on

2.5D stacking on an interposer substrate. Neksus includes a general and flexible interconnect

layer to support modular “plug-and-play” of chiplets while mitigating the area overheads of micro-

bumps connecting to/from the interposer layer. The design comprises a hub-interconnect chiplet

that connects to IP chiplets via mini-chains, paired with a Network Interface (NI) and SerDes

module within each IP chiplet. Besides decreasing micro-bump area costs, our mini-chains are

tailored to support common data-flow patterns of applications, which are typical of mobile and

IoT platforms. Data-intensive applications, such as video streaming and audio-playback, consist

of recurring patterns in which data frames flow sequentially (i.e., in a pipelined manner) through

several IPs, each writing and reading intermediate (and final) results to and from memory. In this

work, we show that such flow patterns can benefit from the mini-chain structure, which enables

direct IP-to-IP communication with no intermediate data buffering in memory. Finally, we develop

a protocol shell within the NI to support compatibility with existing SoC protocols, offering a low

barrier for porting current infrastructures to our proposed architecture.

In our evaluation, we show that mini-chains improve application performance by 28% with 31%

energy savings in a SiP system. We also study the deployment of mini-chains in SoC systems and

show that it can improve performance by 28% with 36% energy savings.

122

6.1 Motivation

SiP-based designs have an immense potential to reduce the startup cost of developing a new hetero-

geneous chip by allowing cheap reuse of IP. However, for the emerging 2.5D-based SiP framework,

a flexible interconnect solution that addresses the design constraints of SiPs is still lacking. Hence,

in this work, we present a holistic interconnect architecture for SiP systems. Our approach is

governed by three key design principles based on SiP characteristics. First, to enable plug-and-

play of IP chiplets, the interconnect architecture should require minimal changes to the chiplets’

designs, and the network layer should be largely decoupled from the IPs. Second, we strive to

minimize the number of expensive micro-bumps, which facilitate the electrical connection be-

tween chiplets and interposer layer. They are expensive area resources as their size does not scale

at the same rate as the feature size of transistors. For instance, a 256-bit bidirectional port with

40µm pitch micro-bumps occupies ∼0.41mm2, while a bitcoin chiplet [136], at the 16nm tech-

nology node, occupies only ∼0.23mm2. This gap between chiplets size and micro-bump port size

will increase as we move to lower technology nodes for better performance. There is a need to

reduce the number of micro-bumps to avoid the extra silicon cost of accommodating more micro-

bumps. Lastly, the network layer should leverage high speed/bandwidth interposer link to sup-

port bandwidth-intensive SoC applications. Recent SiP [131] interconnects or conventional

mesh based SoC are unable to serve the bandwidth requirements of mobile applications, which

can improve performance from increased bandwidth provided by an ideal network, with infinite

bandwidth, as shown in Figure 6.1. Towards this end, we present Neksus, a solution that features

an exclusive interconnect chiplet and a network interface to satisfy the SiP design requirements

and leverage interposer properties to support real-world applications.

123

Figure 6.2: Neksus, the proposed SiP architecture (a) - Interconnect IP (b) - Flow control table at
edge routers (c).

6.2 Neksus Architecture

6.2.1 Interconnect Chiplet

We propose a dedicated interconnect chiplet acting as a central hub for two main reasons. First,

a dedicated chiplet supports modular “plug-and-play” integration since it minimizes the required

changes to existing IP chiplets. Second, in SiP, it enables heterogeneity by allowing IP chiplets

from multiple sources to connect directly to the interconnect chiplet. Figure 6.2 shows the SiP

integration model proposed in this work. The interconnect chiplet connects to other chiplets via

dedicated ports. Signals from each port travel through sender IP micro-bumps, the interposer

metal layers, and receiver IP micro-bumps to reach their destinations. An internal router network

is integrated within the interconnect chiplet, supporting any topology specified at design time.

Passive v/s Active. Although this work presents a passive interposer solution connecting to a

dedicated interconnect chiplet, a similar approach could be devised for an active interposer ar-

chitecture. We chose a passive interposer because of its more immediate commercial feasibility

[37, 190], lower cost [207], and potential of choosing upcoming organic [185]; glass substrates as

interposers [208, 139], which are cheaper and provide better performance than silicon. We discuss

in detail about active interposer and its pros and cons in Section 6.6.3.

124

6.2.2 Mini-Chains to Reduce Overhead

Micro-bumps are the interface between chiplets and the network channels through the interposer.

Signals from each port travel through sender IP micro-bumps, the interposer metal layers, and

receiver IP micro-bumps. The number of micro-bumps used is proportional to the number of ports

in the interconnect chiplet. We introduce the concept of mini-chains to reduce it. Mini-chains allow

ports to be shared across multiple chiplets by chaining several IPs together in a unidirectional ring.

We choose a unidirectional ring over a bidirectional ring or multidrop bus in order to minimize

micro-bump overheads and support a completely passive interposer. Each unidirectional mini-

chain is connected to a port on the interconnect chiplet. Therefore, a single port of the interconnect

chiplet multiplexes over all the IP chiplets within a mini-chain, as shown in Figure 6.2. These

chains can support data flows only among non-overlapping source-destination pairs at any point

in time. Chaining eliminates the need for a dedicated port for each IP chiplet on the interconnect

chiplet and hence helps keep its size smaller, making the architecture scalable as the number of

chiplets grows. Most importantly, using mini-chains provides high-bandwidth wires connecting

multiple IPs within the chain directly, without the overheads or limitations of a router.

The size and composition of mini-chains can be governed by the applications’ behavior, with IPs

heavily interacting with each other placed on the same chain. Furthermore, the data flow pattern

can guide the relative placement of IP chiplets within a mini-chain. For example, IPs sharing a

producer-consumer relationship should be placed at a one-hop distance in the mini-chain.

For IP chiplets to communicate, packets are first routed over the source IP’s mini-chain, then

through the router network in the interconnect chiplet, and then over the destination IP’s mini-

chain. In a typical on-chip network, routers are used to arbitrate between packets transmitted

over a channel. In contrast, there are no routers within a mini-chain; IP chiplets on a chain have

simple network interfaces. The interconnect chiplet’s edge router, which connects externally to the

mini-chain, is responsible for arbitrating among the IPs on the same chain. We adopt a low-cost

hand-shaking mechanism to enable this arbitration.

Hand-Shaking Mechanism. To enable inter-IP communication within a mini-chain, additional

125

Figure 6.3: Hand-Shaking protocol: The se-
quence of steps indicates how to setup and tear
down a data transfer from IP2 to IP1.

Figure 6.4: Network interface for IP and inter-
connect chiplets.

logic bits, Forward/Receive (F/R), are required at the chiplet interface. These bits decide whether to

forward the incoming data to neighbors or accept it for processing. Each chiplet sends a request to

the edge router in the interconnect chiplet over dedicated 1-bit control links (dotted lines in Figure

6.3). The interconnect IP keeps small flow control tables, as shown in Figure 6.2(c), to track the

availability of data-links for each mini-chain. Each mini-chain has a dedicated flow control table

with 12 entries (representing each possible src-dest pair in a 4-IP mini-chain) tracking src-dest

pair flow statuses. Consider, for example, a scenario in which IP2 wants to communicate with

IP1, also illustrated in Figure 6.3. First, a request signal (1) is sent over the handshake link to the

interconnect IP. Once the src-dest pair entry is available, the interconnect IP sends an ack signal

(2) and sets the F/R bits at each IP. Specifically, the forward (F) bit is set to 1 at intermediate IPs

and to 0 at the receiver IP1. After the F/R bits are set, the data flow (3) begins. When the tail flit

reaches its destination, a reset signal (4) is sent to update the flow status in the lookup table. Setting

the flow control bits requires only one extra cycle since it uses a fast, direct, 1-bit control link to

each IP chiplet and only a small table lookup. Note that the reset by the tail flit can be carried

out concurrently with de-serialization and, therefore, does not incur an extra cycle of delay. The

broadcasting of information is done as in NoC, where the packet is duplicated at multiple points

in the network. If the broadcast bit is set, the packet is replicated and sent to the next IP or router

in the network. In another scenario, if the intermediate data is needed at a later instant in time, it

will also be directed to the memory module that stores a valid copy. There is no extra overhead

126

incurred to keep a valid copy as compared to the baseline. In the baseline, two network access

- memory writes and memory read by the next IP - is required. Neksus also needs two network

access - sending to the next chained IP and writing to memory - in case the intermediate data needs

to be stored for later use.

6.2.3 Application-Level Chaining

The proposed mini-chains can also efficiently support the data flow patterns of applications typi-

cally run on hand-held devices. Previous work [225] has investigated the inefficiency of the data

flow patterns in these applications. In particular, read/write accesses to DRAM are unnecessary

when the memory simply serves as a buffer, as illustrated in Figure 6.5(a). In the figure, arrows

3 and 5 show the data-path for reads/writes to the memory. Upon receiving a request from the

core (1), IP1 reads data from DRAM (2). Once the processing is complete, it writes the result to

DRAM (3). Once IP2 receives a request from the core (4), it reads the data (5) stored in memory

by IP1 and starts processing it, eventually writing back to DRAM (6). Note that although this

example uses only two IPs, many more may be involved in the pipelined data-flow, depending on

the application. For example, in a Skype call, video and audio flows can be pipelined in various

chains: camera and video-encoder; video-decoder and display IP; microphone and audio-encoder;

audio-decoder and speaker IP.

Bypassing: To alleviate this problem, it is possible to bypass memory as in [225] by reading

data from the memory controller’s transaction queue and bank queues or by forwarding the data

from a scratchpad. While the performance would improve, the network bottleneck would remain

unresolved, as much of the network traffic must still traverse the congested links at the memory

controller or scratchpad.

Subframing: Unfortunately, this IP-to-IP data reuse can require substantial buffering if there is

a delay between data production by the upstream IP and its consumption by the downstream IP.

Buffering requirements can be on the order of a single frame, which would be infeasible. Sub-

127

(a) Data transferred via DRAM (b) Mini-chain data transfer

Figure 6.5: Data flow solutions for IP-to-IP communication.

framing [225] can be employed to mitigate the large buffering needs; it facilitates the processing

of data at a much finer granularity using small data units rather than complete frames. With the

original approach, the second IP is only invoked after the first IP completes the processing of one

frame and has written the result back to DRAM. But with sub-framing, once a small chunk of

a frame (i.e., a sub-frame) is processed, it can be passed immediately to the downstream IP for

processing. This technique is viable because applications naturally tend to work at fairly small

granularities, which can be used as sub-frame units: tiling for rendering, slicing for video codecs,

and independent audio frames for large audio files.

IP-to-IP Chaining: Neksus is particularly well-suited to facilitate efficient data-flow. For example,

the data flow depicted by arrows 3 and 5 in Figure 6.5(a) can be replaced by a network path

connecting IP1 and IP2 directly, as in Figure 6.5(b), thus bypassing DRAM and eliminating the

network bottleneck. This is because IP1 (upstream IP) and IP2 (downstream IP) share a producer-

consumer relationship, where IP2 uses data produced by IP1 as input for processing. This direct

IP-to-IP data flow can be efficiently mapped onto the mini-chains in Neksus. Direct data flow

from an upstream IP to a downstream IP can take advantage of high-bandwidth links through

the interposer without paying the penalty of going through routers. Since current IP designs can

support similar data-rates [38], buffering a couple of sub-frames is sufficient. Our evaluation uses

1KB sub-frames and buffering capacity of 2KB for each IP. Mapping application chains to the

interconnect’s mini-chains is expected to improve performance because it enables high-bandwidth

128

IP-to-IP communication and enables data pipelining among multiple IPs. Energy savings result

from a reduction in IP active cycles due to faster computation because of decreased memory stalls

and a reduction in memory access, which, in turn, reduces network energy.

6.2.4 Network Interface

A Network Interface (NI) is placed in all Neksus’ IP chiplets, as shown in Figure 6.4. The NI

has a protocol shell, a couple of incoming/outgoing flit queues, a SerDes interface, a flow-control

bit (F/R) that determines whether the data has to be received by the current IP or forwarded to

the downstream IP, and finally, a layer of micro-bumps. The data flow is pipelined through three

stages: serialization, link traversal, and de-serialization. The signal passes through SerDes only

at the endpoints of the transmission to minimize the latency penalty, while it bypasses it at the

intermediate nodes (interconnect and chiplets in a mini-chain) through a multiplexer. Since high-

data-rate signals will be traveling through the interposer wires, these must use differential, or

ground-reference signaling [185]. For this purpose, our design uses analog multiplexers. The

maximum signal loss for 4 hops of the multiplexer+interposer track, as found from the SPICE

simulation using a 45nm technology node library [175], is 8dB (using the interposer and micro-

bump RLC models from [132]). To overcome this signal loss, an optional pre-emphasis block at

the transmitter can be used, which can easily compensate for a 10db loss in signal, as discussed in

prior work [185].

SerDes to reduce Microbumps: A complementary approach to reduce the number of micro-

bumps at each port for all chiplet is by leveraging serial communication via a Serializer/ Deseri-

alizer (SerDes) module at the NI. Essentially, SerDes is a high-frequency multiplexer capable of

sending multiple bits through a single micro-bump in a short window of time, enabling the same

number of data bits to be sent through fewer micro-bumps within a comparable timeframe. In our

architecture, a 6:1 SerDes is used to reduce the number of micro-bumps by a factor of six (re-

duced 256 micro-bumps per port to ∼44). SerDes adds one cycle of extra latency at each end of

the transmission. We designed and synthesized a mux-based SerDes on an IBM 45nm technology

129

node with Synopsys Design Compiler and found that we can drive a 6:1 mux at 10 GHz (0.1ns

delay), which is well within our 0.5ns requirement. The synthesized SerDes module takes an area

of 42µm2 and consumes 0.34mW of power.

6.2.5 Protocol Compatibility

To make Neksus compatible with current IP designs, which may support one of several popular

industry or customized protocols, there is a need for protocol migration. NI’s protocol shell handles

this migration. Neksus is based on packetized network flow-control, which is yet to be supported by

existing SoC protocols to the best of our knowledge. Hence, there is a need to build an interface for

standardizing existing SoC protocols by packetizing the signal at the protocol shell. To demonstrate

an example protocol shell, we choose AXI4 [34], which is a widely supported protocol for on-chip

communication in SoC products. AXI4 is a point-to-point socket protocol and can be applied for

communication among multiple IPs via an interconnect.

We modeled the proposed protocol shell in SystemVerilog, with an IBM 45nm technology node.

The design synthesizes at z 2GHz frequency and has a 330µm2 area.

Interfacing with DRAM. An exception to the above NI architecture is the DRAM chiplets. Most

DRAM modules used in hand-held devices use an LPDDR interface[205]. Due to the complex

timing requirements in the LPDDR standard, it is not efficient to packetize the LPDDR protocol.

Instead, we use a memory controller IP chiplet that communicates with other chiplets using a

packetized format and communicates with DRAM directly through LPDDR signals.

6.2.6 Neksus for System-on-Chip

Neksus addresses the design constraints of interposer-based System-in-Package, in addition to ex-

ploiting its unique properties. Note, however, that Neksus is not restricted to SiP platforms. While

SoC platforms do not suffer from the same technology constraints as SiP, SoCs can still enjoy the

benefits Neksus provides to typical mobile applications through mini-chains. Thus, Neksus can

be repurposed to SoC as follows. Since SoCs are not limited by micro-bumps, the SerDes in the

130

Network Interface can be removed. However, since Neksus is a packet-switched network, the NI

must still host the proposed protocol shell along with multiplexer logic for forwarding. Note that

Neksus on an SoC platform can support more wires, as it is not limited by micro-bump pitch, and

more wires can be placed at an SoC port. So, even though individual SoC wires are slower than

properly buffered fat interposer wires, which results in lower bandwidth per wire, the SoC band-

width would end up equivalent to that of a SiP interposer by having more channels. For this work,

we assume the port bandwidth of SiP and SoC are the same for a fair comparison.

6.3 Cost Model

6.3.1 Cost Model

To understand quantitatively the impact that a SiP architecture may have on startup investment, we

developed a cost model for two platforms: a SiP and an SoC. The proposed cost model breaks down

the total cost into two major components: 1) Non-Recurring Expenses (NRE) and 2) Recurring

Expenses (RE). The model is based on ASICs’ cost breakdown from [136, 83] and interposer cost

analysis from [153]. The cost analysis modifies the cost parameters from those works to account

for low-cost reuse of hard chiplets and provides benefits to SoC design wherever possible to be

conservative.

6.3.2 Non-Recurring Expenses

Non-recurring Expenses (NRE) refer to the one-time lump-sum capital required for a startup. This

cost is amortized over time as the product enters the mass production stage. However, it is the

major contributor to the initial investment capital. It takes into account various factors, such as

mask cost, design labor & design tools cost, verification cost, and IP procurement/licensing cost.

Table 6.1 lists the components that apply to SiP and SoC, which are also described below.

Mask cost: Mask cost is one of the major contributors to NRE cost. At the 28nm technology node,

131

SoC SiP

NRE

Complete System Mask Cost New IP Mask Cost
Complete System Design Cost New IP Design Cost

New IP Verification Cost New IP Verification Cost
Reused IP License Cost

RE
Complete System Wafer New IP, Interposer,

and Test cost Reused Chiplets Wafer
and test Costs

Table 6.1: SiP and SoC design cost components

Parameters New IP SoC New IP SiP Reused IP SoC Reused IP SiP
BE labor cost/gate($) 0.131 0.164 0.131 0.164
BE tool cost/gate($) 0.331 0.414 0.331 0.414
FE labor cost/gate($) 0.065 0.065 0.019 0.00
FE tool cost/gate($) 0.026 0.026 0.008 0.00

Gate Count for
4mm2 chiplet (K) 4917 4917 4917 0
Top level module

integration gates(K) 15 15 15 15

Table 6.2: NRE parameters

it can be as high as $2,250k and is increasing rapidly due to double patterning for 16nm and lower.

Owing to its monolithic nature, SoC requires the development of a new mask for the complete

system on changing even a single component, whereas, in SiP, only new components need mask

development.

Design cost: Design cost captures the development cost from scratch for the new IPs on both

platforms. We took the largest ASIC designed by prior work [136] and listed the front-end (FE)

and back-end (BE) labor and tool cost per gate in Table 6.2, for new as well as reused IPs. Reused

IPs make the difference between both platforms. For SiP, reused IPs will be taken off the shelf

and, therefore, will not require any front-end (FE) and back-end (BE) design efforts for chiplets.

Additional back-end tools and engineering effort may be required owing to 2.5D stacking over an

interposer. Thus, to take this aspect into account, we increased the BE cost per gate for SiP by 25%

over SoC, which manifests in the form of extra person-months and CAD-months for IPs in SiP.

Nonetheless, for SoC, reused IPs will be delivered in the form of soft cores. Thus, the SoC design

requires both FE and BE costs for each IP. However, the FE engineering efforts required will be

132

less than that of designing IPs from scratch. This observation is captured by reducing the FE costs

per gate for reused IPs in SoC by 70%, as also reported in Table 6.2. Module/Chiplet integration

cost should be added to back-end engineering cost for both SiP and SoC. Therefore, the top-level

gates, as reported by [136], accounting for I/Os and routers, are added for each IP.

Licensing cost: Soft cores procurement will include licensing costs for each reused IP. The SiP-

based design avoids this cost. From [136], IP license for standard cells, SRAM is approximately

$100K.

Verification cost: There are two components of verification: individual IP verification and system-

level verification for IP integration. We assume to have reused soft cores in SoC or off-the-shelf

chiplets pre-verified by the vendor. Only new IPs will introduce the extra verification cost for

integrating with existing components. This cost will be the same for SiP and SoC. According to

Foster [83], verification consumes ∼60% of total turnaround time. We add this cost for new IPs to

the design cost to obtain the total product development cost.

We recognize that hard macros can be used instead of soft cores. However, using hard macros

will restrict design flexibility, reusability, and portability. For example, new licenses will be needed

when migrating a design to a new technology node, eliminating the benefits of reusability. More-

over, mask cost and licensing cost of hard macros will still exist, which are significant, as discussed

above. Thus, we do not explore this option further.

6.3.3 Recurring Expenses

RE refers to the cost customers pay for the manufactured chip. Thus, it includes only the silicon

cost, which can be due to the wafer, interposer, and off-the-shelf chiplet costs, as described below.

Wafer cost: SoC will incur wafer cost for the complete monolithic system, whereas SiP will

include wafer cost for only new IPs, as listed in Table 6.1. The wafer parameters used are shown

in Table 6.3.

Interposer cost: SiP will also include the interposer cost. Each SiP platform is assumed to use

an interposer die of the size of the complete system with an extra 10% area overhead. The cost of

133

Wafer(28nm) Interposer (passive 65nm)
Diameter 300mm 300mm

Cost per wafer ($) 7600 1500
Stacking Cost/chiplet ($) - 0.05

Test cost Active silicon area ($/mm2) 0.01 0.01
Test cost Interposer ($) - 0.27

Test cost microbump probing/chiplet ($) - 0.05

Table 6.3: RE parameters

passive interposers, as reported by prior work on a cost analysis for interposers [153], is shown in

Table 6.3, which includes the TSV creation, BEOL, RDL, micro-bump, and C4 bump processing,

at ∼$1500 per wafer and with production throughput of 50k/month.

Off-the-shelf chiplet & Bonding cost: SiP will also include off-the-shelf chiplet costs for reused

IPs. This is simply the wafer cost for each chiplet since they are assumed to be mass-produced. An

extra cost is also added to include the stacking/bonding cost for each chiplet. Currently, the bond

yield of stacking is 99% [149], which can be increased by adding a few redundant micro-bumps by

deploying approaches similar to those used to improve TSV stacking yield [129, 160, 114] from

15% up to 99.99%. We compute that the 99% 2.5D bond yield can be increased to 99.99%, with

just 0.1% redundant micro-bumps and a pessimistic 10% area overhead for extra logic embedded

in each chiplet. Another work [80] proposes using ECC at each chipset to increase the assembly

yield for microbump with interposer to almost 100% with a small power overhead of ECC.

Testing Cost: Table 6.3 also reports the testing cost [212], scaled for our system, incurred by active

dies, interposer die, and microbump probing. SoC will just incur the testing cost of only the active

monolithic chip, whereas SiP will incur all three costs.

6.3.4 Yield Modeling

The yield factor represents the fraction of good dies over total manufactured dies. We assume

300mm diameter wafers. Defect density (Do) of 2000 defects/mm2 for the wafer, 200 defects/mm2

for passive interposer, Fraccrit of 0.9 and 0.01, for chiplets and passive interposer respectively,

which determines critical area Acrit for transistors and α of 1.5 are used in the yield model, which

134

Size Interconnect Chiplet 8mm2

Size Chiplet 2mm×2mm
#Chiplets/#Ports 64/16

Interposer/Chiplet Technology Node 65nm/28nm
IP-to-IP Channel length 2mm

Interposer Delay 42 ps/mm
SerDes Delay 1cycle each

Router frequency 2Ghz
Max B/W Achieved 32GB/s

Chaining factor 4
SerDes Operating Frequency 10Ghz

Table 6.4: Neksus design parameters

is based on the classic equation provided by [73]:

Y ield = (1 +
DoAcrit

α
)−α (6.1)

6.4 Evaluation Methodology

6.4.1 Design Parameters

Design parameters used for our Neksus architecture are listed in Table 6.4. A passive interposer,

with an extra area overhead of 10% over the complete system size, is used. The interposer wire (at

65nm) delay is estimated to be 42ps/mm [57], and a channel size of 2mm is used. An interconnect

chiplet of size 8mm2 with 16 ports is used, with micro-bumps spread over a small area at each port.

Table 6.4 also lists the design parameters of the SerDes.

Note that for our cost model, instead of a minimum-sized chiplet, we assume an average-sized

chiplet, which may not suffer from micro-bump constraints. However, this choice makes our cost

analysis fairer, even though our architecture seeks to alleviate constraints faced by all chiplet sizes.

135

Core 1 way, 1.8GHz
Memory 2GB/300Mhz

Mem-ctrl TransQ 64 entries;
Mem-ctrl Bank-Q 24 entries

Chiplet Clk 500 Mhz
Video/Img size 4K/1080p

Audio size 16Kb

Table 6.5: GemDroid Settings

6.4.2 Performance Model

We evaluated the Neksus architecture using two approaches. The first is a design exploration ap-

proach, where different topologies are examined for Neksus’ router network in the interconnect IP.

We also evaluate Neksus for best-case and worst-case traffic patterns. This topology exploration is

carried out in the cycle-accurate Booksim simulator [123]. All routers use a three-stage microarchi-

tecture. We use simple deterministic routing algorithms, finite input buffering, and virtual-channel

flow control. The network assumes a packet size of 64B (512 bits) for memory requests/replies

and a subframe size of 1KB for direct IP-IP communication, 4 VCs per port, with a per-VC buffer

size of 4 flits. Neksus uses mini-chains of 4 chiplets, and thus it implements a 16-port network,

whereas the SoC includes a 64-port router network. Because of the unidirectional nature of mini-

chains, only non-overlapping data flows are supported at a time. For an interposer wire delay (at

65nm) of 42ps/mm [57] (i.e., 94ps for unbuffered 2mm channel), and a maximum distance between

chiplets of 10mm, two IPs within a mini-chain can transfer data at a 470ps latency accounting for

5 hops through intermediate IP. Signals are buffered at the network interface of each intermediate

die which restricts the maximum unbuffered distance in Neksus to channel length (i.e., 2mm here).

This falls within 1 clock cycle at the network frequency of 2GHz. Therefore, the unidirectional

nature of a ring does not impact the performance of the system. Apart from this, an extra cycle is

spent to set the Forward/Receive bits for each packet. We measure both latency and bandwidth in

our evaluation to compare different topologies.

The second approach analyzes the performance of the architecture on application traces from

Youtube, Video-Record, PhotoCapture, Gallery, Audio-Record, and Skype. For this approach, we

136

YouTube VD-DC; AD-SND
Video-Record CAM-VE-MMC; MIC-AE-MMC
Photo-Capture CAM-IMG-DC; CAM-IMG-MMC
Audio-Record MIC-AE-MMC

Gallery MMC-IMG-DC
Skype VD-DC; CAM-VE; MIC-AE; AD-SND

Table 6.6: Application chains

Router link (28nm) 0.07 pJ/mm-bit
Power per VC 2.5 mW

SoC Router crossbar (8×8) 12.57 pJ/transaction
SiP crossbar (16×16) 18.6 pJ/transaction

SerDes power 8.14 mW
Interposer link (65nm) 0.23 pJ/mm-bit

DRAM [65] [172] 10 pJ/bit
IP Buffer Read/Write [169] 0.042 pJ/bit

IP power 150 mW

Table 6.7: Power model parameters

collected multiple application traces from an android emulator. We then run them through the

Gemdroid framework [72] that has 11 IPs, along with a core and memory module, which was

modified to support the proposed architecture. Gemdroid is integrated with the proposed Neksus

architecture modeled in Booksim to support closed-loop simulations. GemDroid settings are listed

in Table 6.5. Performance is measured as frames completed within a per-application deadline. In

Table 6.6, we report the chiplet chains exercised by the applications.

6.4.3 Power Model

The power demands of Neksus can be partitioned into three components: 1) Network power, 2)

DRAM power, and 3) Active IP power. Network power captures power spent on routers, the

SerDes, and the interposer. Routers crossbar, buffer, and channel power were assessed using SPICE

modeling for a 28nm industrial process. The crossbars have a matrix architecture and embedded

arbitration at cross-points [195, 197]. DRAM power depends on the number of memory accesses.

The power for the IP units is calculated based on active cycles and peak power. Table 6.7 lists the

137

power parameters used for the modeling. The peak power of IPs is estimated to be 150mW.

6.5 Results

6.5.1 Cost Analysis

Cost Model Validation:

ARM projections [226] report the cost of developing a constant area (100 mm2) chip for different

technology nodes and across numbers of units manufactured. The projections account for the NRE

cost of design and mask. We validated our cost model using the design and mask cost parameters

from Section 6.3.2, and the transistor counts for two commercially available chips: (1) Apple A7

with die area of 102 mm2 and one billion transistors [35] at 28nm; (2) Intel Core 2 Duo Wolfdale

with a die area of 107 mm2 and 411 million transistors [33] at 45nm. Assuming 4-8 transistors

per gate, based on the technology node, we found that our cost model is accurate within 4-6% for

one million and 50 thousand units. Hence, this validates our cost model’s design and mask NRE

factor.

For high-volume production (beyond 100 million units) where NRE is amortized, and only

silicon wafer cost remains, the cost diverges from the projections because of the difference in

wafer cost estimates used by the two approaches. Note that we take a more pessimistic silicon

wafer cost; thus, we show a worst-case analysis at the mass production stage.

Our cost model captures the SiP reuse characteristic across domains in the form of a reuse

factor. The reuse factor is defined as the fraction of IPs in the SiP that is bought off-the-shelf as

silicon chiplets assembled on the interposer. Since most IPs remain unmodified as they are ported

to new platforms or are bought as soft cores for development, we use reuse factors of 90% and

70% in our models, which aligns with the 80% reuse factor reported by Darpachips [9]. Using

these two reuse factors, we study the cost per system for SoC and SiP as the number of systems

manufactured grows.

Ideal Yield: As shown in Figures 6.6(a) and 6.6(b), with perfect yield, given our reuse factors,

138

(a) 90% reuse

(b) 70% reuse

Figure 6.6: Cost with perfect and real yield for (a) 90% and (b) 70% reuse factors.

139

we note that the startup cost for the SiP is lower than that of the SoC design by 3.9× and 1.7×,

respectively. This result is due to three major factors: mask, design, and licensing cost. For SiP,

new masks are created for only new IPs, whereas for SoC, a new mask has to be prepared for

the complete system. The design cost of SoCs is high since it requires extra engineering effort

for reusable soft cores, whereas the design cost is low for SiPs since it requires design effort only

for integration. Similarly, licensing costs are required for SoCs but not for SiPs. With a 90%

reuse, the cost gap is higher. This is because the mask and engineering requirement cost decreases

more for SiP than for SoC; SoC also suffers an increase in licensing cost. As the number of parts

in production increases, the one-time cost is distributed across millions of parts. Therefore, at

mass production, only silicon cost is left. Towards the tail of the graph, as shown in the inset of

Figure 6.6(a),(b), we observe that SoC is cheaper than SiP because SiP incurs the extra cost of the

interposer, stacking, and testing. Note that the above analysis assumes perfect yield and is thus not

realistic. If defects are taken into consideration, a realistic yield will determine the total number of

good dies that can be carved out of a wafer.

Realistic Yield: It is common knowledge that small chiplets have a higher yield than big monolithic

designs. From that model, using a defect density of 2,000 defects per mm2, a 256 mm2 SoC has

a 66.9% yield, compared to 93% yield for a SiP on taking into account new chiplets, interposer,

and bonding yields. It is interesting to note the impact that yield has on cost. Accounting for

yields, with 90% and 70% reuse factors, we observe that startup costs can be reduced by 5.2×

and 2.3×, respectively, as shown in Figures 6.6(a) and 6.6(b), since the SiP delivers a higher yield

than the SoC, it amortizes its cost over more parts. Therefore, cost savings increase more for the

SiP. Moreover, at the tail of the plot in Figures 6.6(a), (b) (see inset), the cost for the SiP is slightly

lower or similar to the SoC at billions of parts. This is because the extra cost overhead for SiP due

to the interposer, stacking, and testing are compensated by the SoC’s lower yield.

6.5.2 Network Performance

Neksus Topology Exploration:

140

In this section, we examine three interconnect topologies within the Neksus’ interconnect chiplet:

a 4×4 mesh, a 4-ary 3-flat 2-dimensional flattened butterfly, and a 16×16 crossbar. Here mesh

is similar to a grid structure, with each router connecting to three neighboring routers and an

input/output node; the crossbar connects n inputs to m outputs without intermediate stages in a

single hop; and flattened butterfly is one of the most widely used high radix topology where each

row of the network of a conventional butterfly (k-ary n-fly) is combined or flattened into a single

router [138]. We then compare these three topologies against the following Network-on-Chip

topologies: an 8×8 mesh, a Star topology with a local router degree of 4, connecting to a single

global router, and a 4×4 concentrated mesh with a degree of 4. We also compare against the

misaligned ButterDonut (BD) topology proposed by prior work [131] for interposer-based SiP.

As shown in Figure 6.7, latency and bandwidth results for uniform random traffic indicate

that the crossbar topology is the best suited for the central hub characteristic of the interconnect

chiplet. Crossbar has 57% lower latency and is within 6% bandwidth of mesh; has 12% lower

latency and is within 3% bandwidth of Star; has 23% lower latency and 52% more bandwidth than

concentrated mesh. Among the interconnect chiplet topologies considered, the crossbar provides

the performance closest to the NoC topologies. However, for Uniform Random traffic patterns,

the crossbar has 41% lower bandwidth and 38% lower latency than the SiP ButterDonut topology.

This result is in sync with prior work, which reports that Butterdonut is the best fit for the uniform

random traffic patterns found in multicore systems. This study also represents worst-case traffic

evaluation since uniform random traffic represents an all-to-all communication where each node

sends a packet to every other node in the system, which comes with a lot of overlapping data flows.

Even though mini-chains in Neksus can support only non-overlapping data-flows at any instant of

time, which penalizes Neksus for overlapping data-flows, Neksus with a crossbar is able to perform

on par with other SoC topologies which can support overlapping data-flows simultaneously.

Benefits of Mini-chain:

Since our proposed Neksus architecture supports mini-chains, we also created a synthetic chained

traffic, where IP1 communicates with IP2, followed by IP2 communicating with IP3, and IP3

141

0

0.02

0.04

0.06

0.08

0 0.02 0.04 0.06 0.08

Th
ro

ug
hp

ut

(P
ac

ke
ts

/n
od

e/
cy

cl
e)

Injection rate (Packet/node/cycle)

Mesh Neksus SiP

Xbar Neksus SiP

Fbfly Neksus SiP

ButterDonut SiP

Cmesh SoC

Mesh SoC

Star SoC

(a) Throughput

0

20

40

60

80

100

120

140

0 0.02 0.04 0.06 0.08

Av
er

ag
e

Pa
ck

et
 L

at
en

cy

(c
yc

le
s)

Injection Rate (Packets/node/cycle)

Mesh Neksus SiP

Xbar Neksus SiP

Fbfly Neksus SiP

ButterDonut SiP

Cmesh SoC

Mesh SoC

Star SoC

(b) Average Packet Latency

Figure 6.7: Interconnects performance comparisons: (a) throughput and (b) packet latency with
uniform random traffic.

142

0

20

40

60

80

100

120

140

160

180

0 0.05 0.1 0.15 0.2 0.25 0.3

Av
er

ag
e P

ac
ke

t L
ate

nc
y (

cy
cle

s)

Injection rate (Packets/node/cycle)

32 Flits

16 Flits

4 Flits

Figure 6.8: Chained traffic performance for Packet size = 32 flits, Packet size = 16 flits, and Packet
size = 4 flits

with IP4, with all communicating IPs localized in the same mini-chain. This pattern is used to

assess the performance benefits of mini-chains in isolation over different packet sizes. As shown

in Figure 6.8, the mini-chain within the Neksus is the best solution over the mesh, concentrated

mesh, butterdonut, and Star for synthetic chained traffic. Star and concentrated mesh present the

same performance. This is because they share the same underlying network architecture utilized

by the synthetic local traffic, which is a single router connected to four IPs. Similarly, ButterDonut

uses mesh topology locally within each chiplet, and thus, mesh and BD have the same performance.

We observe that for the competitive SoC & SiP topologies—cmesh and ButterDonut—Neksus’s

latency advantage increases to 24% and 32 %, respectively, as the packet size increases to 32

flits. This is because of the high-bandwidth direct IP-IP communication supported by the mini-

chain, in contrast with router-centered communication. Also, the delay required for setting up the

communication for each packet is amortized as packet sizes increase.

Therefore, an important observation is that, for traffic patterns following pipelined data-flow

patterns, which are common in heterogeneous systems, the Neksus architecture with a crossbar

interconnect and mini-chain provides better performance than regular homogeneous NoC archi-

tectures.

143

6.5.3 Application Evaluation for Neksus

We studied 6 applications listed in Table 6.6 on two SiP architectures—Neksus and ButterDonut

(BD). For this evaluation, we examined three dataflow configurations: 1) direct IP-to-IP commu-

nication, where application and software stack are co-designed so that IPs talk directly with each

other rather than going through memory (Network-IP-to-IP), 2) via-buffer communication, where

memory requests are forwarded from caches/buffers at the memory Controller chiplet (Network-

via-buf), and 3) via-memory communication, where a producer IP writes everything back to mem-

ory and the consumer reads it from memory (Network-via-mem).

Bandwidth Evaluation:

Figure 6.9 shows the bandwidth attained by the different configurations. For any individual IP,

Neksus with IP-IP communication serves a peak bandwidth of ∼31GBps, compared to Neksus-

via-buf, which only serves up to∼12 GBps. This is because multiple IPs are actively trying to read

from the memory controller chiplet; thus, network congestion from the memory controller chiplet

link becomes a bottleneck. The Neksus-via-mem configuration suffers from memory bottleneck

and is only able to utilize up to ∼11Gbps of available bandwidth. Neksus with IP-IP commu-

nication is also better than both, ButterDonut with buffering and Butterdonut with IP-to-IP com-

munication configurations, which serves a peak bandwidth of ∼25GBps. This is because Neksus

can support multiple non-overlapping data flows in each mini-chain, whereas regular router-based

topologies are bounded by the router microarchitecture, which can transfer only one data packet at

a point in time. We also observe that audio applications such as audio-record require less network

bandwidth because of their small frame sizes.

Performance Evaluation: Figure 6.10 plots frames completed within a deadline. The bandwidth

served by the different configurations determines their performance. We observe that Neksus with

IP-IP communication reports 2.9x and 4x, on average, better performance over the Neksus-via-

buf and Neksus-via-mem, respectively. Furthermore, Neksus with IP-IP communication has better

performance than both the BD configurations by 16% on average, peaking at 28% over BD with

IP-to-IP communication.

144

0
5

10
15
20
25
30

DC SN
D

IM
G DC

M
M

C VE AE

M
M

C

IM
G DC AE

M
M

C DC VE

SN
D AE

YouTube Photo Capture Video Record Gallery Audio Record Skype

IP
 B

an
dw

id
th

 (G
Bp

s)

Neksus-IP-to-IP Neksus-via-buf Neksus-via-mem BD-IP-to-IP BD-via-buf

Figure 6.9: IP data transfer bandwidth for mobile applications.

0
2
4
6
8

10

VD
-D

C

AD
-S

N
D

CA
M

-IM
G-

M
M

C

CA
M

-IM
G-

DC

CA
M

-V
E-

M
M

C

M
IC

-A
E-

M
M

C

M
M

C-
IM

G-
DC

M
IC

-A
E-

M
M

C

VD
-D

C

CA
M

-V
E

AD
-S

N
D

M
IC

-A
E

YouTube Photo Capture Video Record Gallery Audio
Record

Skype

N
or

m
al

ize
d

Fr
am

e
Co

m
pl

et
ed

Neksus-IP-to-IP Neksus-via-buf Neksus-via-mem BD-IP-to-IP BD-via-buf

Figure 6.10: Frame completion rates for mobile applications.

145

-

0

0.2

0.4

0.6

0.8

1

IP
-to

-IP
Vi
a-
bu

f
Vi
a-
m
em

IP
-to

-IP
Vi
a-
bu

f
IP
-to

-IP
Vi
a-
bu

f
Vi
a-
m
em

IP
-to

-IP
Vi
a-
bu

f
IP
-to

-IP
Vi
a-
bu

f
Vi
a-
m
em

IP
-to

-IP
Vi
a-
bu

f
IP
-to

-IP
Vi
a-
bu

f
Vi
a-
m
em

IP
-to

-IP
Vi
a-
bu

f
IP
-to

-IP
Vi
a-
bu

f
Vi
a-
m
em

IP
-to

-IP
Vi
a-
bu

f
IP
-to

-IP
Vi
a-
bu

f
Vi
a-
m
em

IP
-to

-IP
Vi
a-
bu

f

Youtube Photocapture Video-Record Gallery Audio-Record Skype

N
or

m
al

ize
d

En
er

gy
 p

er
 b

it Interconnect DRAM IP

YouTube Photo Capture Video Record Gallery Audio Record Skype

Neksus BD Neksus BD Neksus BD Neksus BDNeksus BD Neksus BD

Figure 6.11: Energy per bit transferred spent by interconnect, storage, and IP units, over a range
of architectural solutions.

For audio applications like audio-record, Neksus provides no significant improvements. This

is because audio uses small frames, requiring less network bandwidth. However, in application

scenarios where audio chains run concurrently with video chains, the memory controller has to

service large amounts of data. Thus, significant improvements can be seen with Neksus for audio

chains as well as with IP-to-IP communication configuration. Most of the performance gains are

seen with image/video applications, which work on high data rates and high-resolution frames.

This is because they require significant data movement and are bandwidth intensive.

Energy Evaluation:

Figure 6.11 shows the average energy per bit. We find that Neksus with IP-IP communication

is more energy efficient by 60%, and 88%, on average, over the Neksus with buffering and via-

memory configurations, respectively. Similarly, Neksus consumes less energy than ButterDonut

with buffering and ButterDonut with direct communication by an average of 70% and 31%, respec-

tively. The network-related energy improvements in Neksus with IP-IP communication are because

we avoid router hops along with their buffer reads/writes, replacing them with the interposer. En-

ergy improvements of Neksus with IP-to-IP communication over Neksus-via-mem configuration

can be attributed to eliminating redundant read/write accesses to DRAM where DRAM is accessed

only as a source/sink for IP chains, but not as a buffer.

146

Neksus SiP Neksus SoC SoC w/ buf SoC
Normalized EDP 0.047 0.043 0.28 1
Normalized Cost 0.189 1 1 1

Table 6.8: Cost and efficiency tradeoff.

256 128 64 32 16 8 4

0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99

1 2 4 8 16 32 64

Chiplets

Yi
el
d

Chiplet Size (mm2)

Chiplet yield Bonding yield Total Yield

Figure 6.12: Chiplet, bonding, and total system yield for various chiplet granularity.

6.5.4 Cost-Efficiency Tradeoff for SiP and SoC

As discussed in §6.2.6, the Neksus architecture can be deployed in an SoC platform as an optimized

interconnect for mobile applications. Neksus for SoC provides similar bandwidth as for SiP but

does not incur SerDes-related overhead (extra power consumption). However, in using SoC, we

lose all the benefits of SiP—modularity, heterogeneity, and reusability, along with reduced startup

cost. Table 6.8 shows that Neksus for SiP is the most pareto optimal point for energy-delay product

(EDP) and cost. Neksus for SoC is slightly more energy-efficient (by 7.9%) due to SerDes removal

but is significantly more expensive to develop. Overall, both Neksus SiP and Neksus SoC have

lower EDP compared to regular SoC with memory reads/writes or SoC w/buf configuration, which

bypasses memory and forwards data from caches/buffers at the memory controller.

147

6.6 Discussion

6.6.1 Scalability

Our proposed Neksus architecture assumes a centralized model with a single interconnect chiplet.

However, since scalability is a limitation of crossbars solutions, we recommend a hierarchical

approach comprising small interconnect chiplets distributed over the interposer. We envision mul-

tiple levels of interconnect chiplets, where those at the lowest level interface with IPs/mini-chains.

These interconnect chiplets interface with other interconnect chiplets at higher levels of the hierar-

chy, adding latency of just one cycle for every hop between interconnect chiplet crossbars. IPs can

be efficiently placed so that IPs communicating with each other are mapped to the same intercon-

nect chiplet or logical siblings in the hierarchical tree. To improve the bandwidth of the system,

either more micro-bumps or SerDes factor can be increased. SerDes accounts for only 2.7% of to-

tal power consumption, while DRAM is the major contributor. Neksus will reduce DRAM power

consumption at a small overhead in network power due to additional SerDes power consumption.

Another way to scale is to increase the size of the mini-chain. However, this will impact the delays

in the system.

6.6.2 Chiplet Granularity

Instead of having separate chiplet for smaller functions/kernels, we can also aggregate multiple

kernels to form one chiplet to reduce the total number of chiplet in the system. The decision

regarding which chiplets should be combined depends on the communication pattern between

chiplets for application traffic (i.e., chiplets frequently communicating should be combined), and

chiplet size and number of chiplets in the system. Combining a lot of smaller chiplets can lead

to a giant chiplet that will hit the system yield and defeats the whole purpose of disintegrating a

monolithic chip for SiP architecture. Therefore, the granularity of the chiplet should be governed

by the total yield of the system, which depends on the chiplet yield and stacking/bonding yield.

Figure 6.12 shows the two different yields at different chip granularity and total system yield. For a

148

0

10

20

30

40

50

60

Passive w/
interconnect

Chiplet (f = 0.9)

Active(f = 0.01) Active(f = 0.1) Active(f = 0.5) Active(f = 0.9)

Co
st

 o
f s

ys
te

m
 ($

)

Interposer cost Chiplet + stacking cost Interconnect Chiplet cost Test cost

Figure 6.13: Breakdown of total system cost for passive and active interposer system.

256mm2 monolithic system, as the size of the chiplet increases, the chiplet yield decreases but due

to a decrease in the number of chiplets to stack/bond, the total bonding yield increases. Therefore,

the total is maximum for 4mm2 chiplet with 2mm2 and 8mm2 at almost par with the best. Neksus

assumes a system of 64, 4mm2 chiplet with 1, 8mm2 interconnect IP, which is in sync with the chip

granularity results from this sensitivity study.

6.6.3 Passive v/s Active Interposer

In this work, we focus on passive interposers because of their market feasibility, but the solution

can be ported to active interposers as well. The benefits of the active interposer are because of

buffering offered by the repeaters, due to which the maximum port bandwidth supported increases

to 37 GBps (active interposer buffered every 1mm) from 32 GBps (passive interposer channel

buffered at every 2mm at chiplet NI). Since performance is directly related to bandwidth, an active

interposer can potentially improve the performance by 15% as compared to a passive interposer

design. However, an active interposer is expensive and impacts the final retail cost of the system.

As a counterargument, using separate chiplet in passive interposer also adds to the final cost of

the system. Figure 6.13 shows the tradeoff of using active v/s passive interposer. To account for

fabricating active transistors requiring more masks, we use an active interposer at 65nm with about

2.5× [207] cost as of passive interposer. Furthermore, for a fair comparison, instead of using a

completely active layer of the interposer, we use a minimally active interposer [131] defined by

149

the critical area (Acric) in yield factor. As shown in Figure 6.13, using a cheaper passive interposer

along with a small interconnect chiplet is economically better than a minimally active interposer

with just 1% active area.

6.7 Conclusion

In this work, we explored the emerging System-in-Package (SiP) based designs to tackle critical

challenges the industry is facing today. We identified a unique opportunity to design SiPs both to

facilitate the modular plug-and-play integration of chiplets and to target the unique applications

of heterogeneous mobile systems. We presented Neksus—a flexible interconnect architecture de-

signed to mitigate the overheads of interposer-based 2.5D integration. Neksus included a dedicated

interconnect chiplet that connects to IP chiplets via high-bandwidth mini-chains, which are partic-

ularly suitable for common data-flow patterns found in mobile applications. Our experimental

evaluation showed that, for popular mobile SoC applications, Neksus provides up to 28% per-

formance improvement and 31% energy savings over recent SiP architectures. Furthermore, we

developed a detailed cost model that shows that SiPs reduce startup costs by approximately 5.2×

over System-on-Chip (SoC) designs while not increasing the recurring costs of mass manufac-

turing. Hence, in this chapter, we achieved this dissertation’s goal of building performance and

energy-efficient architecture for a low-cost SiP alternative to replace expensive SoCs, which are

driving up the cost of edge platforms.

150

CHAPTER 7

Conclusion and Future Scope

In this chapter, we first provide a summary of the contributions proposed in this dissertation. We

then discuss the potential future research directions for the work presented in this dissertation.

7.1 Summary of Contributions

Edge devices have grown rapidly in the past decade. They have evolved from lightweight sensing

devices to portable mini-computers that we can wear or carry in our pockets. Simultaneously, edge

applications are getting more intensive due to the rise of complex user-facing applications such

as social media platforms, teleconferencing, fitness tracking, online shopping, and more, which

have become a part of users’ daily lives. However, despite advancements in the hardware design

of edge devices, they are still unable to meet the increased computational demands of these heavy

user applications. This dissertation aims to enhance the user experience on resource-constrained

edge devices for such heavy user applications. To achieve this goal, we set out to improve the

cost, performance, and energy efficiency of applications on such small resource-constrained edge

devices.

The solutions developed in this dissertation first mitigate architectural bottlenecks of comput-

ing, memory, and network to improve the performance and energy of the existing devices. We

then also offer performance and energy-efficient architecture for an upcoming low-cost hardware

technology to reduce the cost of edge devices. We propose solutions that are guided by three

151

principles: 1) cross-component optimizations across the system, 2) leverage user preference and

characteristics in the hardware, and 3) co-design application and hardware for the edge system.

We first propose Seesaw, an energy-efficient end-to-end machine learning-based approach for

IoT devices that leverages users’ inherent sensing capabilities to trade-off applications’ accuracy

for lower compute and memory demand. This approach is based on the hypothesis that by looking

at a visual output, like a video or a GPS route, a user cannot necessarily distinguish between the

original and an intelligently modified, user-aware version of the visual output. We leverage the

availability of multiple sensors on the edge device and offer an automated solution where low-

power sensors, capturing user-activity, can govern the sensing rate of a high-power sensor without

impacting the perceivable user experience. We employ a low-overhead decision tree predictor to

learn such correlation automatically, and once the correlation is established, we predict the optimal

sensing rate for the high-power sensor. This technique reduces the compute rate and memory

storage requirements and therefore enhances the energy efficiency and battery life of the edge

device. We show that we can improve the battery life of video recording devices by 32% and

fitness trackers by 66% without significantly impacting the accuracy.

Our second solution, MyML, addresses the challenge of efficiently processing large and com-

plex machine learning applications on the edge device. We observe that large models cater to a

diverse set of users and are overkill to deploy on the user edge device since a single user does

not have such variegated interests. In this work, we propose a hardware-friendly pruning mech-

anism to create small, user-specific ML models customized to users’ preferences. The custom

user-specific models have pruning granularity and precision governed by the underlying compute

engine, such as a CPU or accelerator, which makes them highly performance- and energy-efficient.

To the end, we also present an end-to-end collaborative system, which continuously learns the user

preferences, builds the user-specific model, and updates the model when user preferences start to

diverge. Our user-specific approach increases the average performance by 2.6× and reduces the

average energy consumption by 1.9×.

Duet, the third work of this dissertation, focuses on accelerating the recommendation system

152

that is the backbone of many popular user applications. A recommendation system ranks 100s of

candidates to recommend only a few relevant items to the user, based on the user’s preferences and

properties. DNN-based recommendation models are extremely memory and compute-intensive,

which makes it hard to adopt these models on edge devices. In this work, we decompose the

monolithic recommendation model into user and item models, which are processed on the edge

device and datacenter, respectively. The user model is computed only once for a user query, and

its output (compute) is reused across all the candidates ranked by the item model to recommend

only a few. Furthermore, we leverage user information that is readily available on the edge de-

vice to process the user model in a lightweight manner using scratchpad, memoization, and lower

precision techniques. Therefore, the decomposition into a user model, its reuse, and lightweight

edge computation helps us to enhance the performance and energy efficiency of the applications

while also increasing privacy. We demonstrate that the proposed energy-efficient Duet architecture

reduces the average latency by 6.4× and significantly improves energy efficiency by 4.6× across

a wide range of recommendation models.

Finally, we propose Neksus, a low-cost design-time solution that improves performance and

energy while also reducing the cost of edge devices. We present an interconnect architecture for

SiP design that comprises cost-efficient chiplets stacked on a 2.5D interposer to overcome the cost

of building a monolithic, expensive SoC. We demonstrate that the cost of building the SiP-based

design is 5.2× lower than an SoC-based design. Moreover, our flexible interconnect architec-

ture exposes the high-bandwidth interposer links to the hardware and efficiently maps bandwidth-

intensive application data-flows over the new 2.5D architecture to extract performance and energy

efficiency. Neksus increases the performance by 28% and improve energy efficiency by 31%.

To summarize, the proposed solutions in this dissertation enhance the user experience by: 1)

Increasing performance or quality of service offered to the user, 2) Improving energy efficiency,

which also lowers the total ownership cost, and 3) Building a flexible and efficient architecture

for an emerging low-cost hardware alternative, which reduces the startup cost of developing edge

devices.

153

7.2 Future Directions

In this section, we will discuss the future research directions in which we can expand the scope of

this dissertation.

The methods established in this dissertation can be extended beyond the applications discussed

in this thesis. Some of the emerging applications like Augmented Reality (AR) and Virtual Reality

(VR) are envisioned to fit in a form factor of an eyeglass. However, the applications executed

by an AR/VR device are extremely heavy. High-definition gaming/streaming, teleconferencing,

localization, and hologram 3D rendering are a few examples of workloads of AR/VR applications.

We believe that our solutions leveraging individual users’ characteristics can be easily applied

to these emerging applications. The fidelity of the applications will be highly dependent on the

perceivable capabilities of the user; therefore, there is an opportunity to achieve better application

efficiency by trading off accuracy to gain performance and energy, while still maintaining the

fidelity of the application. Moreover, there is also an opportunity to leverage user information and

propose user-aware hardware optimizations.

Another application that is gaining traction and proving its mettle in the automotive industry

is the Advanced Driver Assisted System (ADAS). ADAS improves safety by actively providing

information like incoming stop signs, lane detection, cruise control, collision detection, and more.

ADAS is an ecosystem with multiple input sources like sensors (proximity, GPS, IMU, etc.), cam-

eras, LiDARs, and, optionally, information received from nearby vehicles via vehicle-to-vehicle

communication (V2X). ADAS-enabled vehicles also host a relatively powerful compute engine to

process various tasks, which belong in the broad domain of computer vision, machine learning,

point cloud analytics, etc. Such richness and diversity in the sensors offer a unique opportunity for

cross-component optimizations across the system. There can be shared computation between dif-

ferent sensors or tasks working towards a common goal of mapping the nearby environment. The

multiple input sources can communicate their findings to each other to improve performance, en-

ergy, and accuracy. There is also scope to balance the work distribution on edge and the datacenter

for enhanced QoS.

154

Carbon emissions have become a major concern in the hardware community. There are ongoing

efforts to study carbon footprints, and there is a push to build carbon-first systems [58, 94, 47]. In

this dissertation, we have focused on the energy efficiency of edge devices; however, there is a

scope to expand this body of work to focus on the carbon emissions of edge devices.

We see the potential in developing hybrid edge-cloud systems to reduce the total carbon foot-

print. Instead of optimizing the energy of applications, the hybrid system will optimize the carbon

emissions by distributing the work intelligently on the device and a carbon-efficient datacenter. It

will be the best of both worlds approach, where instead of processing entirely on either of the two

computing ends (device or datacenter), which constantly erodes their life span, we can improve

their combined life span and reduce the carbon footprint of renewing or replacing them. This ap-

proach also opens opportunities to judiciously select a carbon-efficient datacenter to complete the

reduced amount of work, rather than choosing the fastest or the nearest datacenter to compute the

entire application.

Furthermore, chiplet-based designs have immense potential to achieve the goal of sustainable

hardware. Edge devices like smartphones are frequently discarded to upgrade their hardware,

which offers better performance capabilities and battery life. This process creates massive e-waste

problems and carbon emissions from frequent mass production. Chiplet-based architectures have

the ability to upgrade each component individually instead of discarding the whole chip to change

one piece, thus reducing e-waste and carbon emissions rapidly. We imagine chiplet technology

to become the future for SoC, and thus there is a wide scope to study the emerging applications

on these SiP platforms. It will bring with it new challenges & bottlenecks and, along with it,

opportunities for new optimizations and innovative architecture.

155

BIBLIOGRAPHY

[1] Ad display/click data on taobao.com. https://tianchi.aliyun.com/dataset/
dataDetail?dataId=56.

[2] Amazon astro, household robot for home monitoring, with alexa. https://www.
theverge.com/23141966/amazon-astro-robot-review.

[3] Amazon echo show teardown. https://www.ifixit.com/Teardown/Amazon+
Echo+Show+Teardown/94625.

[4] Apple watch series 6 teardown. https://www.ifixit.com/Teardown/Apple+
Watch+Series+6+Teardown/136694.

[5] Arm cortex-m4 in a nutshell. https://www.st.com/content/st_com/en/
arm-32-bit-microcontrollers/arm-cortex-m4.html.

[6] A battery-free sensor for underwater exploration. https://news.mit.edu/2019/
battery-free-sensor-underwater-exploration-0820.

[7] Comparing the sizes of flagship chipsets: Qualcomm, samsung, huawei and ap-
ple. https://www.gsmarena.com/comparing_the_sizes_of_flagship_
chipsets_qualcomm_samsung_huawei_adn_apple-news-30240.php.

[8] Criteo kaggele advertising dataset. https://ailab.criteo.com/ressources/.

[9] DARPA Program: Common Heterogeneous Integration and IP Reuse
Strategies (CHIPS). https://www.darpa.mil/program/
common-heterogeneous-integration-and-ip-reuse-strategies.

[10] Deep dive into netflix’s recommender system. https://towardsdatascience.com/deep-dive-
into-netflixs-recommender-system-341806ae3b48.

[11] Deep interest evolution network for click-through rate prediction framework. https://
github.com/mouna99/dien.

[12] Edge tpu. https://cloud.google.com/edge-tpu.

[13] Edge tpu performance benchmarks. https://coral.ai/docs/edgetpu/
benchmarks/.

156

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://www.theverge.com/23141966/amazon-astro-robot-review
https://www.theverge.com/23141966/amazon-astro-robot-review
https://www.ifixit.com/Teardown/Amazon+Echo+Show+Teardown/94625
https://www.ifixit.com/Teardown/Amazon+Echo+Show+Teardown/94625
https://www.ifixit.com/Teardown/Apple+Watch+Series+6+Teardown/136694
https://www.ifixit.com/Teardown/Apple+Watch+Series+6+Teardown/136694
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
https://news.mit.edu/2019/battery-free-sensor-underwater-exploration-0820
https://news.mit.edu/2019/battery-free-sensor-underwater-exploration-0820
https://www.gsmarena.com/comparing_the_sizes_of_flagship_chipsets_qualcomm_samsung_huawei_adn_apple-news-30240.php
https://www.gsmarena.com/comparing_the_sizes_of_flagship_chipsets_qualcomm_samsung_huawei_adn_apple-news-30240.php
https://ailab.criteo.com/ressources/
https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies
https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies
https://github.com/mouna99/dien
https://github.com/mouna99/dien
https://cloud.google.com/edge-tpu
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/

[14] Google home teardown. https://www.ifixit.com/Teardown/Google+Home+
Teardown/72684.

[15] How much will that chip cost? http://semiengineering.com/
how-much-will-that-chip-cost/.

[16] How retailers can keep up with consumers. https://www.mckinsey.com/industries/retail/our-
insights/how-retailers-can-keep-up-with-consumers.

[17] Inside amazon’s ring alarm system. https://medium.com/tenable-techblog/
inside-amazons-ring-alarm-system-9731bc519974.

[18] Intel image classification: Image scene classification of multiclass. https://www.
kaggle.com/puneet6060/intel-image-classification/version/2.

[19] Internet of things (iot) and non-iot active device connections worldwide from
2010 to 2025. https://www.statista.com/statistics/1101442/
iot-number-of-connected-devices-worldwide/.

[20] iphone 12 pro specifications. https://www.apple.com/iphone-12-pro/.

[21] iphone 14 pro specifications. https://www.apple.com/iphone-14-pro/
specs/.

[22] Mobile apps usage reached an all-time high amidst stay-at-home measures due to covid-
19 pandemic. https://www.appannie.com/en/insights/market-data/
mobile-app-usage-surged-40-during-covid-19-pandemic/.

[23] Most popular apps (2022). https://www.businessofapps.com/data/
most-popular-apps/.

[24] Number of smartphone users worldwide from 2016 to 2026. https://www.statista.
com/statistics/330695/number-of-smartphone-users-worldwide/.

[25] Oculus quest 2 now offers 120hz refresh rate and wire-
less pc streaming. https://www.tomsguide.com/news/
oculus-quest-2-now-offers-120hz-refresh-rate-and-wireless-pc-streaming.

[26] Samsung s22 specifications. https://www.samsung.com/global/galaxy/
galaxy-s22/specs/.

[27] Snapdragon 855 mobile platform. https://www.
qualcomm.com/products/application/smartphones/
snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform.

[28] Statista Reports. https://www.statista.com/statistics/1259878/
edge-enabled-iot-device-market-worldwide/#:˜:text=The%
20number%20of%20consumer%20edge,%2C%20smartphones%2C%20to%
20security%20cameras.

157

https://www.ifixit.com/Teardown/Google+Home+Teardown/72684
https://www.ifixit.com/Teardown/Google+Home+Teardown/72684
http://semiengineering.com/how-much-will-that-chip-cost/
http://semiengineering.com/how-much-will-that-chip-cost/
https://medium.com/tenable-techblog/inside-amazons-ring-alarm-system-9731bc519974
https://medium.com/tenable-techblog/inside-amazons-ring-alarm-system-9731bc519974
https://www.kaggle.com/puneet6060/intel-image-classification/version/2
https://www.kaggle.com/puneet6060/intel-image-classification/version/2
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.apple.com/iphone-12-pro/
https://www.apple.com/iphone-14-pro/specs/
https://www.apple.com/iphone-14-pro/specs/
https://www.appannie.com/en/insights/market-data/mobile-app-usage-surged-40-during-covid-19-pandemic/
https://www.appannie.com/en/insights/market-data/mobile-app-usage-surged-40-during-covid-19-pandemic/
https://www.businessofapps.com/data/most-popular-apps/
https://www.businessofapps.com/data/most-popular-apps/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.tomsguide.com/news/oculus-quest-2-now-offers-120hz-refresh-rate-and-wireless-pc-streaming
https://www.tomsguide.com/news/oculus-quest-2-now-offers-120hz-refresh-rate-and-wireless-pc-streaming
https://www.samsung.com/global/galaxy/galaxy-s22/specs/
https://www.samsung.com/global/galaxy/galaxy-s22/specs/
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform
https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/#:~:text=The%20number%20of%20consumer%20edge,%2C%20smartphones%2C%20to%20security%20cameras
https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/#:~:text=The%20number%20of%20consumer%20edge,%2C%20smartphones%2C%20to%20security%20cameras
https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/#:~:text=The%20number%20of%20consumer%20edge,%2C%20smartphones%2C%20to%20security%20cameras
https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/#:~:text=The%20number%20of%20consumer%20edge,%2C%20smartphones%2C%20to%20security%20cameras

[29] Top apps of 2022 by installs, spend, and active users: Report.
https://www.forbes.com/sites/johnkoetsier/2022/03/23/
top-apps-of-2022-by-installs-spend-and-active-users-report/
?sh=7cb533b4d3ac.

[30] User behavior data from taobao for recommendation. https://tianchi.aliyun.
com/dataset/dataDetail?dataId=649.

[31] What is the npu in galaxy and what does it do? https://www.samsung.com/
global/galaxy/what-is/npu/.

[32] Xnnpack. https://github.com/google/XNNPACK.

[33] Product specifications intel core2 duo processor e8400. https://ark.intel.com/
products/33910/Intel-Core2-Duo-Processor-E8400-6M-Cache-3_
00-GHz-1333-MHz-FSB, 2008.

[34] Axi, arm amba and axi, ace protocol specification. AXI4, and AXI4-Lite, ACE and ACE-Lite,
Technical report, 2011.

[35] Chipworks provide first apple a7 die shot. https://www.anandtech.com/show/
7355/chipworks-provides-first-apple-a7-die-shot, 2013.

[36] Frdm-k64f. https://os.mbed.com/platforms/FRDM-K64F/, 2014.

[37] AMD Radeion R9 Fury X Review. http://www.anandtech.com/show/9390/
the-amd-radeon-r9-fury-x-review/3, 2015.

[38] Nvidia Tegra X1 white paper. http://international.download.nvidia.com/
pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf, 2015.

[39] GoPro reveals what the GPS in the Hero5 Black
camera is for. https://www.cnet.com/news/
gopro-unlocks-hero5-black-telemetry-data-for-video-overlays/,
2016.

[40] VMAF - Video Multi-Method Assessment Fusion. https://github.com/Netflix/
vmaf, 2016.

[41] Gps watch data. https://www.kaggle.com/jsphyg/
weather-dataset-rattle-package, 2017.

[42] Arable Agricultural IoT platform. https://www.arable.com/, 2018.

[43] Fitbit battery life. https://help.fitbit.com/articles/en_US/Help_
article/2004, 2018.

[44] FitBit Products. https://www.fitbit.com/us/shop/surge, 2018.

158

https://www.forbes.com/sites/johnkoetsier/2022/03/23/top-apps-of-2022-by-installs-spend-and-active-users-report/?sh=7cb533b4d3ac
https://www.forbes.com/sites/johnkoetsier/2022/03/23/top-apps-of-2022-by-installs-spend-and-active-users-report/?sh=7cb533b4d3ac
https://www.forbes.com/sites/johnkoetsier/2022/03/23/top-apps-of-2022-by-installs-spend-and-active-users-report/?sh=7cb533b4d3ac
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://www.samsung.com/global/galaxy/what-is/npu/
https://www.samsung.com/global/galaxy/what-is/npu/
https://github.com/google/XNNPACK
https://ark.intel.com/products/33910/Intel-Core2-Duo-Processor-E8400-6M-Cache-3_00-GHz-1333-MHz-FSB
https://ark.intel.com/products/33910/Intel-Core2-Duo-Processor-E8400-6M-Cache-3_00-GHz-1333-MHz-FSB
https://ark.intel.com/products/33910/Intel-Core2-Duo-Processor-E8400-6M-Cache-3_00-GHz-1333-MHz-FSB
https://www.anandtech.com/show/7355/chipworks-provides-first-apple-a7-die-shot
https://www.anandtech.com/show/7355/chipworks-provides-first-apple-a7-die-shot
https://os.mbed.com/platforms/FRDM-K64F/
http://www.anandtech.com/show/9390/the-amd-radeon-r9-fury-x-review/3
http://www.anandtech.com/show/9390/the-amd-radeon-r9-fury-x-review/3
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
https://www.cnet.com/news/gopro-unlocks-hero5-black-telemetry-data-for-video-overlays/
https://www.cnet.com/news/gopro-unlocks-hero5-black-telemetry-data-for-video-overlays/
https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf
https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
https://www.arable.com/
https://help.fitbit.com/articles/en_US/Help_article/2004
https://help.fitbit.com/articles/en_US/Help_article/2004
https://www.fitbit.com/us/shop/surge

[45] Rain in australia. https://www.kaggle.com/antgoldbloom/
gps-watch-data, 2018.

[46] Smart parking product brief. http://www.libelium.com/products/
smart-parking/, 2018.

[47] Bilge Acun, Benjamin Lee, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David
Brooks, and Carole-Jean Wu. A holistic approach for designing carbon aware datacenters.
arXiv preprint arXiv:2201.10036, 2022.

[48] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and Kim
Hazelwood. Understanding training efficiency of deep learning recommendation models
at scale. In 2021 IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA), pages 802–814. IEEE, 2021.

[49] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and Prashant J.
Nair. Accelerating recommendation system training by leveraging popular choices.
15(1):127–140, sep 2021.

[50] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger,
and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network computing.
ACM SIGARCH Computer Architecture News, 44(3):1–13, 2016.

[51] Pavlos Athanasios Apostolopoulos, Eirini Eleni Tsiropoulou, and Symeon Papavassil-
iou. Risk-aware data offloading in multi-server multi-access edge computing environment.
IEEE/ACM Transactions on Networking, 28(3):1405–1418, 2020.

[52] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Sung-Kyu Lim, Hyesoon Kim, et al. Fafnir:
Accelerating sparse gathering by using efficient near-memory intelligent reduction. In
2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA),
pages 908–920. IEEE, 2021.

[53] Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M Kitani. N2n learning: Net-
work to network compression via policy gradient reinforcement learning. arXiv preprint
arXiv:1709.06030, 2017.

[54] Todd Austin. Preparing for a post moore’s law world. Keynote
at International Symposium of Microarchitecture (MICRO-48), 2015.
https://www.microarch.org/micro48/files/slides/Keynote-II.pdf.

[55] Suat U Ay. A 1.32 pw/frame•pixel 1.2 v cmos energy-harvesting and imaging (ehi) aps
imager. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE
International, pages 116–118. IEEE, 2011.

[56] Carmen Badea, Mohammad R Haghighat, Alexandru Nicolau, and Alexander V Veiden-
baum. Towards parallelizing the layout engine of firefox. Proc. of USENIX HotPar, 2010.

[57] James Balfour and William J Dally. Design tradeoffs for tiled cmp on-chip networks. In
ACM International Conference on Supercomputing (ICS), pages 187–198. ACM, 2006.

159

https://www.kaggle.com/antgoldbloom/gps-watch-data
https://www.kaggle.com/antgoldbloom/gps-watch-data
http://www.libelium.com/products/smart-parking/
http://www.libelium.com/products/smart-parking/

[58] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy, Ramesh
Sitaraman, Abel Souza, and Adam Wierman. Enabling sustainable clouds: The case for
virtualizing the energy system. In Proceedings of the ACM Symposium on Cloud Computing,
pages 350–358, 2021.

[59] Vikram Bhatt, Nathan Goulding-Hotta, Qiaoshi Zheng, Jack Sampson, Steven Swanson,
and Michael Bedford Taylor. Sichrome: Mobile web browsing in hardware to save energy.
In DaSi: First Dark Silicon Workshop, 2012.

[60] Keith Bonawitz et al. Towards federated learning at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

[61] Mark Buckler, Philip Bedoukian, Suren Jayasuriya, and Adrian Sampson. Eva2: Exploiting
temporal redundancy in live computer vision. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 533–546. IEEE, 2018.

[62] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas Sekar.
Klotski: Reprioritizing web content to improve user experience on mobile devices. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), pages
439–453, 2015.

[63] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network
transformation for efficient architecture search. In International Conference on Machine
Learning, pages 678–687. PMLR, 2018.

[64] Luiz Ceze, Mark Hill, Karu Sankaralingam, and Thomas Wenisch. Democratizing design
for future computing platforms. CRA Whitepapers, 2017. http://cra.org/ccc/resources/ccc-
led-whitepapers/.

[65] Niladrish Chatterjee, Mike O’Connor, Donghyuk Lee, Daniel R Johnson, Stephen W Keck-
ler, Minsoo Rhu, and William J Dally. Architecting an energy-efficient dram system for
gpus. In IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 73–84. IEEE, 2017.

[66] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via
knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

[67] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. ACM SIGARCH Computer Architecture News, 42(1):269–284, 2014.

[68] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In 2016 ACM/IEEE 43rd Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 367–379, 2016.

[69] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE journal of solid-
state circuits, 52(1):127–138, 2016.

160

[70] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. Bespoke
processors for applications with ultra-low area and power constraints. In Computer Archi-
tecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on, pages 41–54.
IEEE, 2017.

[71] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. Determining
application-specific peak power and energy requirements for ultra-low-power processors.
ACM Transactions on Computer Systems (TOCS), 35(3):9, 2017.

[72] Nachiappan Chidambaram Nachiappan, Praveen Yedlapalli, Niranjan Soundararajan, Mah-
mut Taylan Kandemir, Anand Sivasubramaniam, and Chita R Das. Gemdroid: A frame-
work to evaluate mobile platforms. ACM SIGMETRICS Performance Evaluation Review,
42(1):355–366, 2014.

[73] James A Cunningham. The use and evaluation of yield models in integrated circuit manu-
facturing. IEEE Transactions on Semiconductor Manufacturing, 3(2):60–71, 1990.

[74] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mah-
moud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas Moshovos. Bit-tactical: A
software/hardware approach to exploiting value and bit sparsity in neural networks. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 749–763. ACM, 2019.

[75] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K Parhi, Xuehai Qian, and Bo Yuan. Permdnn:
Efficient compressed dnn architecture with permuted diagonal matrices. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 189–202.
IEEE, 2018.

[76] Chunhua Deng, Fangxuan Sun, Xuehai Qian, Jun Lin, Zhongfeng Wang, and Bo Yuan. Tie:
energy-efficient tensor train-based inference engine for deep neural network. In Proceed-
ings of the 46th International Symposium on Computer Architecture, pages 264–278. ACM,
2019.

[77] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[78] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng,
Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision processing closer to the sensor.
In ACM SIGARCH Computer Architecture News, volume 43, pages 92–104. ACM, 2015.

[79] Masoumeh Ebrahimi, Awet Yemane Weldezion, and Masoud Daneshtalab. Nod: Network-
on-die as a standalone noc for heterogeneous many-core systems in 2.5 d ics. In 2017 19th
International Symposium on Computer Architecture and Digital Systems (CADS), pages 1–
6. IEEE, 2017.

[80] Pete Ehrett, Todd Austin, and Valeria Bertacco. Sipterposer: A fault-tolerant substrate for
flexible system-in-package design. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 510–515. IEEE, 2019.

161

[81] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey Pupyrev,
Kim Hazelwood, Asaf Cidon, and Sachin Katti. Bandana: Using non-volatile memory for
storing deep learning models. Proceedings of Machine Learning and Systems, 1:40–52,
2019.

[82] David Fleet and Yair Weiss. Optical flow estimation. In Handbook of mathematical models
in computer vision, pages 237–257. Springer, 2006.

[83] Harry D Foster. Trends in functional verification: a 2014 industry study. In Proceedings of
the 52nd Annual Design Automation Conference, page 48. ACM, 2015.

[84] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel
Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, et al. A configurable
cloud-scale dnn processor for real-time ai. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 1–14. IEEE, 2018.

[85] Yu Gong, Ziwen Jiang, Yufei Feng, Binbin Hu, Kaiqi Zhao, Qingwen Liu, and Wenwu Ou.
Edgerec: recommender system on edge in mobile taobao. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pages 2477–2484,
2020.

[86] Zhangxiaowen Gong, Houxiang Ji, Christopher W Fletcher, Christopher J Hughes, Sara
Baghsorkhi, and Josep Torrellas. Save: Sparsity-aware vector engine for accelerating dnn
training and inference on cpus. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 796–810. IEEE, 2020.

[87] Zhangxiaowen Gong, Houxiang Ji, Christopher W Fletcher, Christopher J Hughes, and
Josep Torrellas. Sparsetrain: Leveraging dynamic sparsity in software for training dnns
on general-purpose simd processors. In Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, pages 279–292, 2020.

[88] Vidushi Goyal, Valeria Bertacco, and Reetuparna Das. Seesaw: End-to-end dynamic sensing
for iot using machine learning. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–19. IEEE, 2020.

[89] Vidushi Goyal, Valeria Bertacco, and Reetuparna Das. Myml: User-driven machine learn-
ing. In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.

[90] Vidushi Goyal, Reetuparna Das, and Valeria Bertacco. Hardware-friendly user-specific
machine learning for edge devices. ACM Transactions on Embedded Computing Systems
(TECS), 2022.

[91] Vidushi Goyal, Xiaowei Wang, Valeria Bertacco, and Reetuparna Das. Neksus: An inter-
connect for heterogeneous system-in-package architectures. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 12–21. IEEE, 2020.

162

[92] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H
Siegel, and Jack K Wolf. Characterizing flash memory: Anomalies, observations, and ap-
plications. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 24–33, 2009.

[93] Zheng Guo, Daeyeon Kim, Satyanand Nalam, Jami Wiedemer, Xiaofei Wang, and Eric Karl.
A 23.6-mb/mm {̂2} sram in 10-nm finfet technology with pulsed-pmos tvc and stepped-wl
for low-voltage applications. IEEE Journal of Solid-State Circuits, 54(1):210–216, 2018.

[94] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S Lee, David Brooks,
and Carole-Jean Wu. Act: designing sustainable computer systems with an architectural
carbon modeling tool. In Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, pages 784–799, 2022.

[95] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon
Wei, Hsien-Hsin S Lee, David Brooks, and Carole-Jean Wu. Deeprecsys: A system for
optimizing end-to-end at-scale neural recommendation inference. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA), pages 982–995. IEEE,
2020.

[96] Udit Gupta, Samuel Hsia, Jeff Zhang, Mark Wilkening, Javin Pombra, Hsien-Hsin Sean
Lee, Gu-Yeon Wei, Carole-Jean Wu, and David Brooks. Recpipe: Co-designing models
and hardware to jointly optimize recommendation quality and performance. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, pages 870–884,
2021.

[97] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen, David
Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al. The architectural
implications of facebook’s dnn-based personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages 488–501.
IEEE, 2020.

[98] Ramyad Hadidi, Jiashen Cao, Yilun Xie, Bahar Asgari, Tushar Krishna, and Hyesoon Kim.
Characterizing the deployment of deep neural networks on commercial edge devices. In
2019 IEEE International Symposium on Workload Characterization (IISWC), pages 35–48.
IEEE, 2019.

[99] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong
Luo, Song Yao, Yu Wang, et al. Ese: Efficient speech recognition engine with sparse
lstm on fpga. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 75–84, 2017.

[100] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: Efficient inference engine on compressed deep neural network. ACM
SIGARCH Computer Architecture News, 44(3):243–254, 2016.

163

[101] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[102] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections
for efficient neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 1, pages 1135–1143, 2015.

[103] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhul-
gakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied machine
learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 620–629. IEEE,
2018.

[104] Hengtao He, Chao-Kai Wen, Shi Jin, and Geoffrey Ye Li. Model-driven deep learning for
mimo detection. IEEE Transactions on Signal Processing, 68:1702–1715, 2020.

[105] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630–645. Springer,
2016.

[106] Songtao He, Yunxin Liu, and Hucheng Zhou. Optimizing smartphone power consump-
tion through dynamic resolution scaling. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, pages 27–39. ACM, 2015.

[107] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the European
conference on computer vision (ECCV), pages 784–800, 2018.

[108] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE international conference on computer vision, pages
1389–1397, 2017.

[109] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christo-
pher W Fletcher. Ucnn: Exploiting computational reuse in deep neural networks via weight
repetition. In Proceedings of the 45th Annual International Symposium on Computer Archi-
tecture, pages 674–687. IEEE Press, 2018.

[110] Mark Hill and Vijay Janapa Reddi. Gables: A roofline model for mobile socs. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 317–
330. IEEE, 2019.

[111] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[112] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

164

[113] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, and Bo Wu. Grnn: Low-latency
and scalable rnn inference on gpus. In Proceedings of the Fourteenth EuroSys Conference
2019, pages 1–16, 2019.

[114] Ang-Chih Hsieh and TingTing Hwang. Tsv redundancy: Architecture and design issues in
3-d ic. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(4):711–722,
2012.

[115] Chao-Tsung Huang, Yu-Chun Ding, Huan-Ching Wang, Chi-Wen Weng, Kai-Ping Lin, Li-
Wei Wang, and Li-De Chen. ecnn: A block-based and highly-parallel cnn accelerator for
edge inference. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 182–195, 2019.

[116] Xin-Lin Huang, Xiaomin Ma, and Fei Hu. Machine learning and intelligent communica-
tions. Mobile Networks and Applications, 23(1):68–70, 2018.

[117] Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee, Fang
Lu, Yihan Pang, Joseph Ravichandran, Finn Sinclair, et al. Exploring extended reality with
illixr: A new playground for architecture research. arXiv preprint arXiv:2004.04643, 2020.

[118] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Centaur: A chiplet-based,
hybrid sparse-dense accelerator for personalized recommendations. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages 968–981.
IEEE, 2020.

[119] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko.
Gist: Efficient data encoding for deep neural network training. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), pages 776–789. IEEE,
2018.

[120] Natalie Enright Jerger, Ajaykumar Kannan, Zimo Li, and Gabriel H Loh. Noc architectures
for silicon interposer systems: Why pay for more wires when you can get them (from your
interposer) for free? In 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 458–470. IEEE, 2014.

[121] Djordje Jevdjic, Karin Strauss, Luis Ceze, and Henrique S Malvar. Approximate storage of
compressed and encrypted videos. ACM SIGOPS Operating Systems Review, 51(2):361–
373, 2017.

[122] Bo Jiang and Ying Sha. Modeling temporal dynamics of user interests in online social
networks. Procedia Computer Science, 51:503–512, 2015.

[123] Nan Jiang, Daniel U Becker, George Michelogiannakis, James Balfour, Brian Towles,
David E Shaw, John Kim, and William J Dally. A detailed and flexible cycle-accurate
network-on-chip simulator. In 2013 IEEE international symposium on performance analy-
sis of systems and software (ISPASS), pages 86–96. IEEE, 2013.

165

[124] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preußer, Kai Zeng, Liang Feng, Jian-
song Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, et al. Microrec: efficient recommenda-
tion inference by hardware and data structure solutions. Proceedings of Machine Learning
and Systems, 3:845–859, 2021.

[125] Antonio R Jimenez, Fernando Seco, Carlos Prieto, and Jorge Guevara. A comparison of
pedestrian dead-reckoning algorithms using a low-cost mems imu. In Intelligent Signal
Processing, 2009. WISP 2009. IEEE International Symposium on, pages 37–42. IEEE, 2009.

[126] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

[127] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and Daniel
Rubenstein. Energy-efficient computing for wildlife tracking: Design tradeoffs and early
experiences with zebranet. In Proceedings of the 10th international conference on Architec-
tural support for programming languages and operating systems, pages 96–107, 2002.

[128] Hongju Kal, Seokmin Lee, Gun Ko, and Won Woo Ro. Space: locality-aware processing
in heterogeneous memory for personalized recommendations. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pages 679–691. IEEE,
2021.

[129] Uksong Kang, Hoe-Ju Chung, Seongmoo Heo, Duk-Ha Park, Hoon Lee, Jin Ho Kim, Soon-
Hong Ahn, Soo-Ho Cha, Jaesung Ahn, DukMin Kwon, et al. 8 gb 3-d ddr3 dram using
through-silicon-via technology. IEEE Journal of Solid-State Circuits, 45(1):111–119, 2010.

[130] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars,
and Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. ACM SIGPLAN Notices, 52(4):615–629, 2017.

[131] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H Loh. Enabling interposer-based
disintegration of multi-core processors. In 2015 48th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 546–558. IEEE, 2015.

[132] M Ataul Karim, Paul D Franzon, and Anil Kumar. Power comparison of 2d, 3d and 2.5 d
interconnect solutions and power optimization of interposer interconnects. In 2013 IEEE
63rd Electronic Components and Technology Conference, pages 860–866. IEEE, 2013.

[133] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril,
Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, et al. Recnmp: Accel-
erating personalized recommendation with near-memory processing. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages 790–803.
IEEE, 2020.

[134] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das. Improving user
perceived page load times using gaze. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 545–559, 2017.

166

[135] Mehrdad Khani, Mohammad Alizadeh, Jakob Hoydis, and Phil Fleming. Adaptive neu-
ral signal detection for massive mimo. IEEE Transactions on Wireless Communications,
19(8):5635–5648, 2020.

[136] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor. Moonwalk: Nre
optimization in asic clouds. ACM SIGARCH Computer Architecture News, 45(1):511–526,
2017.

[137] Donnie H Kim, Younghun Kim, Deborah Estrin, and Mani B Srivastava. Sensloc: sensing
everyday places and paths using less energy. In Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems, pages 43–56, 2010.

[138] John Kim, James Balfour, and William Dally. Flattened butterfly topology for on-chip
networks. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 172–182. IEEE Computer Society, 2007.

[139] Youngwoo Kim, Jonghyun Cho, Kiyeong Kim, Venky Sundaram, Rao Tummala, and
Joungho Kim. Signal and power integrity analysis in 2.5 d integrated circuits (ics) with
glass, silicon and organic interposer. In 2015 IEEE 65th Electronic Components and Tech-
nology Conference (ECTC), pages 738–743. IEEE, 2015.

[140] Mikkel Baun Kjærgaard, Sourav Bhattacharya, Henrik Blunck, and Petteri Nurmi. Energy-
efficient trajectory tracking for mobile devices. In Proceedings of the 9th international
conference on Mobile systems, applications, and services, pages 307–320. ACM, 2011.

[141] Mikkel Baun Kjærgaard, Jakob Langdal, Torben Godsk, and Thomas Toftkjær. Entracked:
energy-efficient robust position tracking for mobile devices. In Proceedings of the 7th inter-
national conference on Mobile systems, applications, and services, pages 221–234. ACM,
2009.

[142] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[143] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[144] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[145] Gokul Kumar, Tapobrata Bandyopadhyay, Vijay Sukumaran, Venky Sundaram, Sung Kyu
Lim, and Rao Tummala. Ultra-high i/o density glass/silicon interposers for high bandwidth
smart mobile applications. In 2011 IEEE 61st Electronic Components and Technology Con-
ference (ECTC), pages 217–223. IEEE, 2011.

167

[146] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep learning. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
740–753, 2019.

[147] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensor casting: Co-designing algorithm-
architecture for personalized recommendation training. In 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pages 235–248. IEEE, 2021.

[148] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[149] Chang-Chi Lee, CP Hung, Calvin Cheung, Ping-Feng Yang, Chin-Li Kao, Dao-Long Chen,
Meng-Kai Shih, Chien-Lin Chang Chien, Yu-Hsiang Hsiao, Li-Chieh Chen, et al. An
overview of the development of a gpu with integrated hbm on silicon interposer. In 2016
IEEE 66th Electronic Components and Technology Conference (ECTC), pages 1439–1444.
IEEE, 2016.

[150] Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, Jae W Lee, and
Tae Jun Ham. Merci: efficient embedding reduction on commodity hardware via sub-query
memoization. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 302–313, 2021.

[151] Robert W Levi and Thomas Judd. Dead reckoning navigational system using accelerometer
to measure foot impacts, December 10 1996. US Patent 5,583,776.

[152] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[153] HY Li, Guruprasad Katti, L Ding, Surya Bhattacharya, and GQ Lo. The cost study of
300mm through silicon interposer (tsi) with beol interconnect. In 2013 IEEE 15th Electron-
ics Packaging Technology Conference (EPTC 2013), pages 664–668. IEEE, 2013.

[154] Daniyal Liaqat, Silviu Jingoi, Eyal de Lara, Ashvin Goel, Wilson To, Kevin Lee, Italo
De Moraes Garcia, and Manuel Saldana. Sidewinder: An energy efficient and developer
friendly heterogeneous architecture for continuous mobile sensing. volume 44, pages 205–
215. ACM, 2016.

[155] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong. Redeye: ana-
log convnet image sensor architecture for continuous mobile vision. In ACM SIGARCH
Computer Architecture News, volume 44, pages 255–266. IEEE Press, 2016.

[156] Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir Bahl. En-
ergy characterization and optimization of image sensing toward continuous mobile vision.
In Proceeding of the 11th annual international conference on Mobile systems, applications,
and services, pages 69–82. ACM, 2013.

168

[157] Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and Feng Zhao. Energy-accuracy
trade-off for continuous mobile device location. In Proceedings of the 8th international
conference on Mobile systems, applications, and services, pages 285–298. ACM, 2010.

[158] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang,
and Jason Mars. The architectural implications of autonomous driving: Constraints and
acceleration. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 751–766, 2018.

[159] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor S Ramos, Antonio AF Loureiro, and Qiang
Wang. Energy efficient gps sensing with cloud offloading. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems, pages 85–98. ACM, 2012.

[160] Igor Loi, Subhasish Mitra, Thomas H Lee, Shinobu Fujita, and Luca Benini. A low-
overhead fault tolerance scheme for tsv-based 3d network on chip links. In Proceedings
of the 2008 IEEE/ACM International Conference on Computer-Aided Design, pages 598–
602. IEEE Press, 2008.

[161] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. Channel state in-
formation prediction for 5g wireless communications: A deep learning approach. IEEE
Transactions on Network Science and Engineering, 7(1):227–236, 2018.

[162] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international conference on
computer vision, pages 5058–5066, 2017.

[163] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and Mattan
Erez. Prunetrain: fast neural network training by dynamic sparse model reconfiguration. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13, 2019.

[164] Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Omar Mohamed Awad, Gennady Pekhi-
menko, Jorge Albericio, and Andreas Moshovos. Tensordash: Exploiting sparsity to accel-
erate deep neural network training. In 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 781–795. IEEE, 2020.

[165] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia
De Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and Wen-mei Hwu.
Deepstore: In-storage acceleration for intelligent queries. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 224–238, 2019.

[166] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos, David
Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling, Hanlin Tang, et al.
Mlperf: An industry standard benchmark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

[167] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-
based recommendations on styles and substitutes. In Proceedings of the 38th international

169

ACM SIGIR conference on research and development in information retrieval, pages 43–52,
2015.

[168] David Metcalf, Sharlin TJ Milliard, Melinda Gomez, and Michael Schwartz. Wearables and
the internet of things for health: Wearable, interconnected devices promise more efficient
and comprehensive health care. volume 7, pages 35–39. IEEE, 2016.

[169] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0: A tool
to model large caches. HP Laboratories, pages 22–31, 2009.

[170] Nachiappan Chidambaram Nachiappan, Haibo Zhang, Jihyun Ryoo, Niranjan Soundarara-
jan, Anand Sivasubramaniam, Mahmut T Kandemir, Ravi Iyer, and Chita R Das. Vip: vir-
tualizing ip chains on handheld platforms. ACM SIGARCH Computer Architecture News,
43(3):655–667, 2016.

[171] Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyantha, Jie Liu, and
Deepak Ganesan. Glimpse: A programmable early-discard camera architecture for contin-
uous mobile vision. In Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, pages 292–305. ACM, 2017.

[172] Omar Naji, Christian Weis, Matthias Jung, Norbert Wehn, and Andreas Hansson. A high-
level dram timing, power and area exploration tool. In 2015 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pages
149–156. IEEE, 2015.

[173] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin, Xiao Zhu,
Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao, et al. A varie-
gated look at 5g in the wild: performance, power, and qoe implications. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 610–625, 2021.

[174] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan
Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Az-
zolini, et al. Deep learning recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[175] NCSU. Freepdk 45nm. Available:https://www.eda.ncsu.edu/wiki/
FreePDK.

[176] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Polaris: Faster page
loads using fine-grained dependency tracking. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), 2016.

[177] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi Wang,
and Bin Ren. Patdnn: Achieving real-time dnn execution on mobile devices with pattern-
based weight pruning. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 907–922,
2020.

170

Available:https://www.eda.ncsu.edu/wiki/FreePDK
Available:https://www.eda.ncsu.edu/wiki/FreePDK

[178] Kent W Nixon, Xiang Chen, and Yiran Chen. Scope-quality retaining display rendering
workload scaling based on user-smartphone distance. In Computer-Aided Design (ICCAD),
2016 IEEE/ACM International Conference on, pages 1–6. IEEE, 2016.

[179] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. Energy-efficient rate-adaptive
gps-based positioning for smartphones. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, pages 299–314. ACM, 2010.

[180] Saptadeep Pal, Daniel Petrisko, Adeel A Bajwa, Puneet Gupta, Subramanian S Iyer, and
Rakesh Kumar. A case for packageless processors. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 466–479. IEEE, 2018.

[181] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally. Scnn:
An accelerator for compressed-sparse convolutional neural networks. In Proceedings of
44th International Symposium on Computer Architecture, pages 27–40. ACM, 2017.

[182] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. Energy-efficient neural network accel-
erator based on outlier-aware low-precision computation. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 688–698. IEEE, 2018.

[183] Hyo Park, Yunah Shin, Se Choi, and Yousok Kim. An integrative structural health monitor-
ing system for the local/global responses of a large-scale irregular building under construc-
tion. volume 13, pages 9085–9103. Multidisciplinary Digital Publishing Institute, 2013.

[184] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn.
Trim: Enhancing processor-memory interfaces with scalable tensor reduction in memory. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, pages
268–281, 2021.

[185] John W Poulton, William J Dally, Xi Chen, John G Eyles, Thomas H Greer, Stephen G Tell,
John M Wilson, and C Thomas Gray. A 0.54 pj/b 20 gb/s ground-referenced single-ended
short-reach serial link in 28 nm cmos for advanced packaging applications. IEEE Journal
of Solid-State Circuits, 48(12):3206–3218, 2013.

[186] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu
Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks. Minerva: Enabling
low-power, highly-accurate deep neural network accelerators. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 267–278. IEEE,
2016.

[187] Vijay Janapa Reddi, Hongil Yoon, and Allan Knies. Two billion devices and counting. IEEE
Micro, 38(1):6–21, 2018.

[188] Marc Riera, Jose-Maria Arnau, and Antonio González. Computation reuse in dnns by ex-
ploiting input similarity. In 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA), pages 57–68. IEEE, 2018.

171

[189] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[190] Kirk Saban. Xilinx stacked silicon interconnect technology delivers breakthrough fpga ca-
pacity, bandwidth, and power efficiency. Whitepaper, 2012.

[191] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. 2014.

[192] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna.
Scale-sim: Systolic cnn accelerator simulator. arXiv preprint arXiv:1811.02883, 2018.

[193] Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushanfar. Customizing
neural networks for efficient fpga implementation. In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 85–92.
IEEE, 2017.

[194] Neev Samuel, Tzvi Diskin, and Ami Wiesel. Deep mimo detection. In 2017 IEEE 18th Inter-
national Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
pages 1–5. IEEE, 2017.

[195] Sudhir Satpathy, Korey Sewell, Thomas Manville, Yen-Po Chen, Ronald G. Dreslinski, Den-
nis Sylvester, Trevor N. Mudge, and David Blaauw. A 4.5tb/s 3.4tb/s/w 64x64 switch fabric
with self-updating least recently granted priority and quality of service arbitration in 45nm
cmos. In ISSCC, 2012.

[196] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and Carole-
Jean Wu. Recshard: Statistical feature-based memory optimization for industry-scale neural
recommendation. arXiv preprint arXiv:2201.10095, 2022.

[197] Korey Sewell, Ronald G. Dreslinski, Thomas Manville, Sudhir Satpathy, Nathaniel Ross
Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das, Thomas F. Wenisch, Dennis
Sylvester, David Blaauw, and Trevor N. Mudge. Swizzle-switch networks for many-core
systems. IEEE J. Emerg. Sel. Topics Circuits Syst., 2012.

[198] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul
Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer
Architecture News, 44(3):14–26, 2016.

[199] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. The aladdin ap-
proach to accelerator design and modeling. IEEE Micro, 35(3):58–70, 2015.

[200] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Dy-
lan Malone Stuart, Zissis Poulos, and Andreas Moshovos. Laconic deep learning inference
acceleration. In Proceedings of the 46th International Symposium on Computer Architec-
ture, pages 304–317. ACM, 2019.

172

[201] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chan-
dra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural networks. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, pages 764–775. IEEE Press, 2018.

[202] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. Advances in neural information processing systems, 27, 2014.

[203] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[204] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang, Jing Wang,
and Tao Li. In-situ ai: Towards autonomous and incremental deep learning for iot systems.
In 2018 IEEE InternatiOnal SympOsium On High PerfOrmance COmputer Architecture
(HPCA), pages 92–103. IEEE, 2018.

[205] J.E.D.E.C. Standard. Low power double data rate 4. LPDDR4, 2014.

[206] Dylan Stow, Itir Akgun, Russell Barnes, Peng Gu, and Yuan Xie. Cost analysis and cost-
driven ip reuse methodology for soc design based on 2.5 d/3d integration. In Proceedings
of the 35th International Conference on Computer-Aided Design, page 56. ACM, 2016.

[207] Dylan Stow, Yuan Xie, Taniya Siddiqua, and Gabriel H Loh. Cost-effective design of scal-
able high-performance systems using active and passive interposers. In Proceedings of the
36th International Conference on Computer-Aided Design, pages 728–735. IEEE Press,
2017.

[208] Vijay Sukumaran, Tapobrata Bandyopadhyay, Venky Sundaram, and Rao Tummala. Low-
cost thin glass interposers as a superior alternative to silicon and organic interposers for
packaging of 3-d ics. IEEE Transactions on Components, Packaging and Manufacturing
Technology, 2(9):1426–1433, 2012.

[209] Vivienne Sze et al. Efficient processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

[210] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

[211] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 2818–2826, 2016.

[212] Mottaqiallah Taouil, Said Hamdioui, Erik Jan Marinissen, and Sudipta Bhawmik. Using
3d-costar for 2.5 d test cost optimization. In IEEE International 3D Systems Integration
Conference (3DIC), pages 1–8. IEEE, 2013.

173

[213] Aosen Wang, Lizhong Chen, and Wenyao Xu. Xpro: A cross-end processing architecture
for data analytics in wearables. In ACM SIGARCH Computer Architecture News, volume 45,
pages 69–80. ACM, 2017.

[214] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania, and Tu-
lika Mitra. High-throughput cnn inference on embedded arm big. little multicore proces-
sors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(10):2254–2267, 2019.

[215] Xiaowei Wang, Vidushi Goyal, Jiecao Yu, Valeria Bertacco, Andrew Boutros, Eriko Nurvi-
tadhi, Charles Augustine, Ravi Iyer, and Reetuparna Das. Compute-capable block rams
for efficient deep learning acceleration on fpgas. In 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 88–96.
IEEE, 2021.

[216] Xiaowei Wang, Jiecao Yu, Charles Augustine, Ravi Iyer, and Reetuparna Das. Bit pru-
dent in-cache acceleration of deep convolutional neural networks. In 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages 81–93.
IEEE, 2019.

[217] Yitu Wang, Zhenhua Zhu, Fan Chen, Mingyuan Ma, Guohao Dai, Yu Wang, Hai Li, and
Yiran Chen. Rerec: In-reram acceleration with access-aware mapping for personalized
recommendation. In 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pages 1–9. IEEE, 2021.

[218] Ziheng Wang. Sparsert: Accelerating unstructured sparsity on gpus for deep learning infer-
ence. In Proceedings of the ACM International Conference on Parallel Architectures and
Compilation Techniques, pages 31–42, 2020.

[219] Paul N Whatmough, Chuteng Zhou, Patrick Hansen, Shreyas Kolala Venkataramanaiah,
Jae-sun Seo, and Matthew Mattina. Fixynn: Efficient hardware for mobile computer vision
via transfer learning. arXiv preprint arXiv:1902.11128, 2019.

[220] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David
Brooks, and Gu-Yeon Wei. Recssd: Near data processing for solid state drive based rec-
ommendation inference extended abstract.

[221] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan,
Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning at facebook:
Understanding inference at the edge. In 2019 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pages 331–344. IEEE, 2019.

[222] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural ma-
chine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

174

[223] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian Gao, Kai Ren, and Jiwu Shu. Fleche:
an efficient gpu embedding cache for personalized recommendations. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 402–416, 2022.

[224] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Juang. Power of deep learning for channel
estimation and signal detection in ofdm systems. IEEE Wireless Communications Letters,
7(1):114–117, 2017.

[225] Praveen Yedlapalli, Nachiappan Chidambaram Nachiappan, Niranjan Soundararajan,
Anand Sivasubramaniam, Mahmut T Kandemir, and Chita R Das. Short-circuiting memory
traffic in handheld platforms. In 2015 Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 166–177, 2014.

[226] Greg Yeric. Moore’s law at 50: Are we planning for retirement? In 2015 IEEE International
Electron Devices Meeting (IEDM), pages 1–1. IEEE, 2015.

[227] Yafeng Yin, Lei Xie, Yuanyuan Fan, and Sanglu Lu. Tracking human motions in pho-
tographing: A context-aware energy-saving scheme for smart phones. ACM Transactions
on Sensor Networks (TOSN), 13(4):1–37, 2017.

[228] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features
in deep neural networks? In Proceedings of the 27th International Conference on Neural
Information Processing Systems-Volume 2, pages 3320–3328, 2014.

[229] Moustafa Youssef, Mohamed Amir Yosef, and Mohamed El-Derini. Gac: energy-efficient
hybrid gps-accelerometer-compass gsm localization. In IEEE Global Telecommunications
Conference GLOBECOM, pages 1–5. IEEE, 2010.

[230] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott
Mahlke. Scalpel: Customizing dnn pruning to the underlying hardware parallelism. ACM
SIGARCH Computer Architecture News, 45(2):548–560, 2017.

[231] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

[232] Haibo Zhang, Prasanna Venkatesh Rengasamy, Shulin Zhao, Nachiappan Chidambaram
Nachiappan, Anand Sivasubramaniam, Mahmut T Kandemir, Ravi Iyer, and Chita R Das.
Race-to-sleep+ content caching+ display caching: A recipe for energy-efficient video
streaming on handhelds. In Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 517–531, 2017.

[233] Haibo Zhang, Shulin Zhao, Ashutosh Pattnaik, Mahmut T Kandemir, Anand Sivasubra-
maniam, and Chita R Das. Distilling the essence of raw video to reduce memory usage
and energy at edge devices. In Proceedings of the 52nd Annual IEEE/ACM international
symposium on microarchitecture, pages 657–669, 2019.

175

[234] Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager pruning: algorithm and
architecture support for fast training of deep neural networks. In 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA), pages 292–303. IEEE,
2019.

[235] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tian-
shi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neural networks. In
Microarchitecture (MICRO), 49th International Symposium on, pages 1–12. IEEE, 2016.

[236] Xingyao Zhang, Chenhao Xie, Jing Wang, Weidong Zhang, and Xin Fu. Towards mem-
ory friendly long-short term memory networks (lstms) on mobile gpus. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 162–174.
IEEE, 2018.

[237] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan,
Junqi Jin, Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 1059–1068, 2018.

[238] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai Zhou,
Ling Li, Tianshi Chen, and Yunji Chen. Cambricon-s: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 15–28. IEEE,
2018.

[239] Yuhao Zhu and Vijay Janapa Reddi. Webcore: Architectural support for mobileweb brows-
ing. ACM SIGARCH Computer Architecture News, 42(3):541–552, 2014.

[240] Yuhao Zhu and Vijay Janapa Reddi. Optimizing general-purpose cpus for energy-efficient
mobile web computing. ACM Transactions on Computer Systems (TOCS), 35(1):1–31,
2017.

[241] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. Euphrates:
Algorithm-soc co-design for low-power mobile continuous vision. arXiv preprint
arXiv:1803.11232, 2018.

[242] Yuhao Zhu, Aditya Srikanth, Jingwen Leng, and Vijay Janapa Reddi. Exploiting webpage
characteristics for energy-efficient mobile web browsing. IEEE Computer Architecture Let-
ters, 13(1):33–36, 2012.

176

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	Introduction
	Strategies
	Contributions
	Dissertation Organization

	Background
	Edge Devices
	Smartphone/Mobile Devices
	IoT/Embedded Devices

	Edge Applications
	Computer Vision
	GPS Sensing
	Machine Learning

	End-to-End Machine Learning Based Approach for Energy-Efficient Multi-Sensor Edge Platforms
	Motivation
	Seesaw
	Prediction Model
	Correlation Finder
	Seesaw Applicability

	Evaluation Platforms
	Mountable Video Camera
	Fitness Tracker

	Experimental Evaluation
	Mountable Video Camera
	Fitness Trackers
	Prediction Model Overhead

	Conclusion

	User-Driven Lightweight Machine Learning for Edge Devices
	Background & Motivation
	MyML Overview
	Building the User Model
	Pruning Background
	Bottom-up Pruning
	Compute Sharing between Inference and Forward Pass:
	Reduced Backward Pass:

	Collaborative Edge System

	Pruning Granularity
	Symmetric Pruning
	Asymmetric Pruning
	Which pruning granularity to use

	Pruning on Edge Accelerator
	Repurposed Edge TPU
	Conversion Error from FP32 to BFP16

	Methodology
	Evaluation
	Inception-V3
	Resnet-50
	Adaptive System:
	Sensitivity Studies:
	Discussion

	Limitations
	Conclusion

	User-Driven Recommendation Systems
	Background and Motivation
	Proposed Collaborative Recommendation System
	Model Decomposition:
	Embedding tables
	Bottom MLP stack
	Top MLP Stack
	Training Decomposed Model
	Duet Architecture
	Hardware Unit
	Heterogeneous precision with int8

	Multiple device synchronization

	Methodology
	Evaluation
	Performance
	Energy
	Accuracy
	Latency Breakdown
	 Hardware Optimization Impact on Edge
	 Hardware Unit Silicon Overheads
	Sensitivity to Batch Size
	Comparison to NMP solutions

	Discussions
	Conclusion

	Interconnect Architecture for System-in-Package Based Low-Cost Edge Platforms
	Motivation
	Neksus Architecture
	Interconnect Chiplet
	Mini-Chains to Reduce Overhead
	Application-Level Chaining
	Network Interface
	Protocol Compatibility
	Neksus for System-on-Chip

	Cost Model
	Cost Model
	Non-Recurring Expenses
	Recurring Expenses
	Yield Modeling

	Evaluation Methodology
	Design Parameters
	Performance Model
	Power Model

	Results
	Cost Analysis
	Network Performance
	Application Evaluation for Neksus
	Cost-Efficiency Tradeoff for SiP and SoC

	Discussion
	Scalability
	Chiplet Granularity
	Passive v/s Active Interposer

	Conclusion

	Conclusion and Future Scope
	Summary of Contributions
	Future Directions

	Bibliography

