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ABSTRACT

Polygenic risk scores (PRS) has been proven to help improve predictive models[66][65][34], build
instrumental variables[76][77], study disease etiology [60], and contribute to risk assessment when
combined with other diagnostic tools[38]. Thus their importance to research has increased over
time. However, PRS has limited transferability across ancestral populations due to differences in
linkage disequilibrium (LD), allele frequencies, and environmental exposure. In addition, most
of the GWAS samples are of European ancestry, and diversity has not increased in recent years.
As a result, a pre-mature inclusion of PRS into clinical practice could increase health dispari-
ties across ancestral groups. Currently, there are several projects exist that are very intentional
in collecting samples from non-European populations [51][31][82][1]. However, increasing sam-
ples of under-represented groups must be done through community inclusion [28] and protecting
against commodification[26]. Moreover, even after all the previously mentioned efforts, the over-
representation of European samples has not changed significantly up to 2021[23]. Thus, there is a
need for methods designed explicitly to improve the prediction and estimation of targeted popula-
tions to empower researchers from these communities to leverage the existing data efficiently.

Chapter 2 of this work quantifies the role of different LD structures on a PRS constructed
using European genome-wide significant variants. We estimate the change across populations
of a European-derived tag variant’s predictive ability using extensive simulations with the 1000
Genome Project haplotypes. To isolate the effect of LD, we assume a genetic model with the same
effect size of the true underlying risk variant across the five populations of 1000 genomes. Under
this scenario, if the most significant variant is not the risk variant, then its predictive ability depends
on the LD between the index and true causal variants. In our simulations across the genome, we
found that even under an optimistic scenario, the index variant was not the risk variant around 60%
of the time. If, most of the time, we are not finding the causal variant, then how much predictive
ability do we expect to lose in different populations? Chapter 2 estimates that the reduction in the
predictive ability of the most significant variant is modest in Admixed American, South Asian, and
East Asian ancestral populations. However, in African populations, the loss of predictive ability
can be substantial, reaching up to a 50% reduction in 22% of the time. Finally, in this chapter, we
present evidence that suggests that LD score can be informative on the probability of tagging the
true risk variant in a region.
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We are interested in improving prediction measures such as mean square error (MSE) or area
under the curve (AUC) by leveraging an external population with precise but biased information.
Generally, when considering an external population as a valuable source of information, it is as-
sumed that any inference that relies on that population is biased at the gain of a reduction in
variance. In the context of the transferability of PRS in Chapter 2, we showed that different LD
could cause significant bias in the prediction of PRS. Nevertheless, we also showed that this bias
could be slight even in genetically distant populations. Chapter 3 proposes a method that dynam-
ically adapts to LD and effect size differences across populations to increase the predictive ability
in one of them, called the target population. The method works with GWAS summary statistics
from two populations and returns an estimate of the multivariate effect size for a region for a target
population. GWAS summary statistics are effect size estimates of the univariate regressions and
thus are not comparable across populations with different LD structures. We use the Regression
with Summary Statistics to infer the multivariate effect size in each population by using the joint
likelihood of the marginal summary statistics. Nevertheless, the multivariate regression in a ge-
nomic region is still a miss specified model because it is impossible to include all the possible
interactions. When this is the case, the multivariate effect size might differ between populations
due to differences in allele frequencies and environmental exposures. To account for this possible
scenario, we use a Power Prior to account for the heterogeneity across populations. We simulated
GWAS data from European and African populations and showed that our method improves predic-
tion in several measures when the genetic correlation is positive between populations. This method
has promising results in increasing the predictive ability of PRS for populations where the sample
size of the existing GWAS sample size is limited.

In non-genetics scenarios, there is extensive literature on leveraging existing studies to improve
estimation or prediction in one study. Chapter 4 extends the Data Enriched Linear Regression[15]
to generalized linear regression link functions. We show that the objective function of DELR is
equivalent to the objective function of penalized regression, which means we can use existing
software to obtain estimates. However, penalized regression does not differentiate between target
and external data sources, and thus it requires a different algorithm to find the best penalty. We
develop a Cross-Validation algorithm to find the penalty factor that would optimize prediction in
the target population. Furthermore, we show through simulations that DEGLR improves prediction
when bias is small and converges to ignoring the external study as bias increases. In a real data
analysis, the Health and Retirement Study is our target data source, and the Genes for Good study
is our external study. We use these data sources to explore the ability to increase the predictive
ability of PRS as a covariate when the proportion of White participants is much higher in the
external data source than in the target. We systematically split the HRS data into small training
sets and increased the sample size gradually. From this analysis, we see that as the HRS’s training

xiv



sample size increases, DEGLR adapts the weight of GfG to optimize the predictive ability. When
the ratio of the synthetic GfG is large, the DEGLR uses the GfG data and increases the predictive
ability of HRS. As this ratio decreases, the DEGLR method uses less GfG data and matches the
predictive ability of HRS alone.
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CHAPTER 1

Introduction

The world is more connected than ever, and the potential benefits to science are immense. Rapid
technological advances produce large amounts of complex, personalized, and sensitive biomedical
data. One example is the accelerated growth of genetic data. Since 2001 the cost of sequencing
the human genome has gone from a hundred million to a thousand dollars [36]. Because of this,
the amount of genetic studies has increased constantly. In particular, the number of genome wide
association study (GWAS) and their sample sizes[10] has increased dramatically over the last two
decades.

GWAS calculates the marginal association of an SNP with a trait across millions of SNPs.
One application of GWAS is to build polygenic risk scores (PRS) with the resulting associa-
tions. To build PRS, we aggregate the highly associated variants from GWAS[17] to obtain a
single number containing a trait’s genetic information. Researchers use PRS to improve predictive
models[66][65][38][34], build instrumental variables[76][77], and study disease etiology[60], and
to contribute to risk assessment when combined with other diagnostic tools [39][24][38].

However, PRS has limited utility by the lack of diversity in the underlying GWAS data[22]. In
addition, most of the samples are of European ancestry, and diversity has not increased in recent
years [49][58][23]. A European over-representation in GWAS samples is a concern because many
studies show that European-based PRS have a reduced predictive ability in non-European popula-
tions. For example, Curtis [19] showed a PRS build for schizophrenia based on a mainly European
GWAS shown to be more powerful in predicting ancestry than schizophrenia. Martin et al.[49]
found a lack of transferability of single-ancestry GWAS in eight well-studied phenotypes, such as
height and type 2 diabetes. Mars et al. [48] found much less predictive ability of PRS in African
populations for type 2 diabetes, coronary artery disease, and breast and prostate cancer when using
six biobanks accounted for one million people altogether. As a result, a pre-mature inclusion of
PRS into clinical practice could increase health disparities across ancestral groups.

The factors why PRS do not transfer across ancestral populations are: First, different LD struc-
tures will cause indexing SNPs to be less valuable surrogates for causal SNPs in different popula-
tions [11]. Second, true marginal effect sizes may differ substantially across ancestral populations
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as different environments benefit from different interactions [82][57]. Third, differences in allele
frequencies between populations may change the proportion of variance explained by a marker
[37]. As a result of these factors, the predictive power of index variants decreases in popula-
tions genetically distant from the population of the GWAS. Understanding these factors allows
the development of methods that can construct PRS that are more generalizable across ancestral
populations.

Chapter 2 of this work quantifies the role of different LD structures on a PRS constructed using
European genome-wide significant variants. To isolate the effect of LD, we assume a genetic model
with the same effect size of the true underlying risk variant across the five populations of 1000
genomes [4]. For each variant with allele frequency greater than 0.1 in the European haplotypes of
1000 genomes [4], we sequentially simulated high-power European GWAS assuming that variant
was the only risk variant. We select the variant with the lowest p-value as the index variant to use as
a predictor in the four non-European populations from the 1000 genomes [4]. If the index variant
is not the risk variant, then its predictive ability depends on the LD between the index and true
causal variants. Since the initial (discovery) GWAS had exclusively European samples, we expect
high LD in the European population. Thus, the LD will typically be lower in any non-European
population, which means the predictive ability of the index variant will also be lower. In Chapter
2, we calculate the expected proportion of times for this event to happen across the genome and
how much loss of predictive ability we should expect in Admixed American, South Asian, East
Asian, and African populations.

Statistical power is a function of typically unknown quantities except for sample size. A sim-
ulation approach allows us to control all unknown parameters of statistical power and study them
appropriately. In our simulations across the genome, we found that even under an optimistic sce-
nario, the index variant was not the risk variant around 60% of the time. Even in the simulations
where the power of a genome-wide association of the risk variant was above 0.99, the proportion
of risk variants being index variants remained above 50%, which means that most of the GWAS
discoveries are highly correlated variants with the causal variant. Thus, this first result highlights
the difficulty of overcoming complex LD structures through increasing sample size.

If, most of the time, we are not finding the causal variant, then how much predictive ability
do we expect to lose in different populations? When the index variant is not causal, its expected
predictive ability is approximately the correlation with the causal variant times the effect size of the
causal variant[59]. Chapter 2 estimates the correlation of the most significant variant with the true
causal variant across the genome. We found a modest impact in Admixed American, South Asian,
and East Asian ancestral populations. However, in African populations, the loss of predictive
ability can be substantial, reaching up to a 50% reduction in 22% of the time. We compared
the genome-wide distribution of the reduced predictive ability with the distribution using GWAS
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catalog hits [10] from studies with only European samples and found no significant difference,
suggesting our estimates transfer well into sites that are GWAS hits. Finally, we found that being
in the lowest decile of the LD score of the risk variant significantly increases the probability of
being the index variant. In practice, we do not know the causal variant, but we found that the
index variant’s LD score strongly correlates (r2 = 0.99) with the LD score of the risk variant. This
association gives a practical way to assess the probability of an index variant being causal. If the
index variant is in the first decile of the LD score, it has a much higher probability of being the risk
variant.

These conclusions are robust to assumptions about true effect size and sample size choices for
simulations and that changing the power of the initial GWAS only has a modest effect on the
probability of identifying the true risk variant and, thus, the transferability of the index variant.
Chapter 2 shows that differences in LD across ancestral populations can largely explain the lack of
transferability of PRS. Methods and frameworks that intend to increase the transferability of PRS
should emphasize modeling LD differences carefully.

There are many attempts to improve the predictive ability of a PRS built with variants discov-
ered with European GWAS in non-European populations. This research topic is currently very
active, and most methods integrate large sample sizes of European ancestry with a similar or lower
sample size of different ancestry. Marquez-Luna et al. [53] developed a method that leverages
large sample size European studies to improve the prediction of much lower sample size studies of
a target population by optimizing the linear combination of the single ancestry PRSs. Marnetto et
al. [47] proposed a method that combines single ancestry PRS from different populations based on
local ancestry inference, using the ancestrally closest PRS in each region. Coram et al. [18] pro-
posed to declare index variants with trans-ethnic GWAS and estimate the effect with ethnic-specific
GWAS. Grinde et al. [29] evaluated different approaches for selecting SNPs and estimating effect
sizes using European and Latino samples. They found that selecting European variants works well
for some traits but less for others. While estimating the effect sizes using the much smaller sample
size Latino data set or a combination of both data sets was always better. These methods assume
that underlying effect sizes are likely to be shared and use ancestral inference to differentiate pop-
ulations. Nevertheless, do not model the differences in LD explicitly. These methods show that
transferability improves when ancestral differences are acknowledged. However, all these methods
consider ancestry as categorical information.

The statistical problem of using a different population to increase the efficiency of an estima-
tor falls on the bias-variance trade-off. Generally, when considering an external population as a
valuable source of information, it is assumed that any inference that relies on that population is bi-
ased at the gain of a reduction in variance. The objective overall is that reducing variance without
a significant bias increase can decrease the estimand’s means square error. In the context of the
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transferability of PRS in Chapter 2, we showed that different LD could cause significant bias in the
prediction of PRS. Nevertheless, we also showed that this bias could be small even in genetically
distant populations.

Chapter 3 proposes a method that dynamically adapts to LD and effect size differences across
populations to increase the predictive ability in one of them, called the target population. The
method takes GWAS summary statistics from two populations and returns an estimate of the mul-
tivariate effect size for a region. GWAS summary statistics are effect size estimates of the univariate
regressions and thus are not comparable across populations with different LD structures. We use
the regression with summary statistics (RSS) to infer the multivariate effect size in each popula-
tion. Nevertheless, the multivariate regression in a genomic region is still a miss specified model
because it does not include all the possible interactions. When this is the case, if allele frequencies
are different and or environmental exposures differ across populations, the multivariate effect size
will differ between populations. To account for this possible scenario, we use a Power Prior (PP)
to adjust for the heterogeneity across populations due to unadjusted interactions. We simulated
GWAS data from European and African populations and showed that our method improves predic-
tion in several measures when the genetic correlation is positive between populations. This method
has promising results in increasing the predictive ability of PRS for populations where the sample
size of the existing GWAS sample size is limited.

In non-genetics scenarios, there is extensive literature on leveraging existing studies to improve
estimation or prediction in one study. Multi-task learning integrates several small tasks to increase
prediction by leveraging common characteristics and preserving each task’s unique characteristics
[30][21]. Another example is transfer learning, which considers the setting of several data sources
that are rich in sample size from which we can obtain information for a target source when they are
“close”[70][73]. Several methods exist to leverage external summary statistics on a subset of the
covariates of the target data set to improve estimation [7] [16] [69] [14]. However, the objective of
these methods is not precisely the one we are looking at in this dissertation. Chen, Owen, and Shi
[15] develop the data enriched linear regression (DELR) to leverage one potentially biased external
source to improve the prediction of a target data source in the linear regression setting. However,
most of the outcomes in biomedical data would can not be modelled with the linear regression and
generalized linear models are instead preferred.

Chapter 4 develops data enriched generalized linear regression (DEGLR) to extend the DELR
to several links. In this chapter, we show that the objective function of DELR is equivalent to the
objective function of penalized regression, which means we can use existing software to obtain
estimates. The glmnet R package is the state-of-the-art software to fit penalized linear regression.
However, it does not differentiate between target and external data sources, and thus it requires a
different algorithm to find the best penalty. We develop a cross validation (CV) algorithm to find
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the penalty factor that would optimize prediction in the target population. Our effect size estimates
match those using DELR (with a theoretical way to find the best penalty) and the DEGLR with
the Gaussian link function. Furthermore, we show through simulations that DEGLR improves
prediction when bias is small and converges to ignoring the external study as bias increases.

In our real data analysis, we have access to the Health and Retirement Study (HRS) as our
target data source. This study is a longitudinal panel representative of the 50 years and older US
population. For this study, we have access to genotyped data, so we construct a PRS for type 2
diabetes (T2D), and we want to evaluate the PRS’s ability to predict the disease’s status, adjusting
for age, race, education, BMI, and sex. We use the Genes for Good (GfG) study as an external data
source. The GfG participants are volunteers that answer questionnaires on a Facebook app. With
access to genotype data, we construct a PRS for T2D and have access to the same covariates as for
HRS. GfG participants are primarily White, while for HRS, White participants represent 64%. We
assume then that there are two sources of bias in GfG, the selection bias, and the different ancestry
distribution. However, the sample size of GfG is in the same order as HRS. The assumption of our
method is to have a much larger sample size on the external data source. To match the assumptions
of DEGLR, we create a large synthetic GfG data by sampling with replacement from GfG. We also
systematically split the HRS data into training and testing data. From this analysis, we see that as
the training sample size increases, DEGLR adapts the weight of GfG to optimize the predictive
ability. When the ratio of the synthetic GfG is large, the DEGLR uses the GfG data and increases
the predictive ability of HRS. As this ratio decreases, the DEGLR method uses less GfG data and
matches the predictive ability of HRS alone.

In the final chapter, we discuss future work for the three chapters. We discuss the importance
of utilizing external data sources to benefit a targeted population as a tool to aid underrepresented
populations in exploiting existing studies for their benefit.
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CHAPTER 2

The Role of Linkage Disequilibrium in the Change of
Predictive Ability of Polygenic Risk Scores Across

Populations

2.1 Introduction

Polygenic risk scores (PRS) quantify an individual’s genetic risk for a given phenotype as a
weighted sum of risk alleles associated with this phenotype [56]. The list of included variants
and their weights are typically obtained from genome-wide association studies (GWAS)[17]. PRS
are leveraged for improving prediction models [66][65][38][34], as instrumental variables for
Mendelian randomization [76][77], and understanding the etiology of related traits [60], among
others. Moreover, there is an ongoing debate about including PRS in clinical practice and manage-
ment [40][5][46][72][43][42].

As the importance of PRS is increasing, their utility is limited by the lack of diversity in the
underlying GWAS data[22]: Since 2014 only 20% of all GWAS studied non-European popula-
tions and only 4% study populations of African or Native American ancestry [58]; this proportion
was constant at least up to 2019 [49]. Many studies show that such under-representation of non-
European populations reduces the predictive power of PRS in non-European populations: Curtis
[19] showed a PRS build for schizophrenia based on a mainly European GWAS shown to be more
powerful to predict ancestry than schizophrenia in a sample of 38,131 cases and 114,674 controls,
while Martin et al.[49] found a lack of transferability of single-ancestry GWAS from Europeans
to Africans, South Asians, East Asians and Americans in eight well-studied phenotypes, such as
height and type 2 diabetes. Moreover, Reisberg et al. [61] showed that the distribution of a Eu-
ropean built PRS of coronary heart disease changes significantly across populations meaning that
the cut off for risk assessment for European populations is not applicable in other populations,
especially in African populations. Similarly, Mars et al. [48] found much less predictive ability
of PRS in African populations for type 2 diabetes, coronary artery disease and breast and prostate
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cancer when using six biobanks that accounted for one million people all together. As PRS may
become a part of clinical care, this lack of transferability limits the benefit of this new approach to
underrepresented populations thus aggravating health disparities [5]. It is critical to understand the
causes of this lack of transferability and to identify strategies to ameliorate them.

Fundamentally, the lack of transferability reflects that variants identified by a European GWAS
have a different effect on population risk in non-European populations than in Europeans. This dif-
ference can be explained by three biological factors: First, variants may have a different effect in
different populations. Typically this is conceptualized as variants acting in different environments
across populations. As GWAS effect sizes estimate the marginal effect size of a variant across all
interactions within their environment, changing populations may change environments and thus
change this marginal effect size and result in variants being more or less predictive for a pheno-
type [82]. Second, as allele frequencies differ between populations, the change in the genotype’s
variance will modify the proportion of variance explained by the variant. [37]. Third, LD differs
between populations. As the variant causing the functional effect is unknown, PRS typically select
the most significant variant in a region (index variant) as the predictor to be included in the statistic.
If the index variant is not the functional variant, prediction accuracy depends on the LD between
the index and the functional variant [11].

As a result of these factors the predictive power of index variants decreases in populations genet-
ically distant to the population of the GWAS. Moreover, the distribution of the PRS differs between
populations thus predictive models need to be adjusted accordingly [61]. While a range of statisti-
cal methods have been developed to overcome this lack of transferability [53][47][18][29][79][62],
there is still a significant gap in the transferability of PRS.

Optimizing this transferability requires understanding the relative contribution of these three
factors. Bitarello and Mathieson [6]have shown that changes in Allele frequency (AF) are unlikely
to explain more than 8% of the changes in effect size. However, broad statements about similar
effect sizes across all populations and all phenotypes are not possible as the change in marginal
effect sizes likely depends on the unknown underlying biology of each trait that is not amendable
to modelling[57]. Moreover, differences in estimated effect sizes may just reflect that the index
variant differs from the true risk variant and changes in LD between populations cause changes in
marginal effect size. On the other hand, the change in LD between populations is well understood,
though the impact in transferability is complex and very challenging to model[78][64]. As LD
structure differs across the genome and different parts of the genome are relevant to different traits,
it is important to assess the whole genome in a systematic way to measure the change in predictive
ability of PRS due to different LD structure. Here we use computer simulations to quantify the
role of LD in the transferability of PRS based on resampling haplotypes from 1000 genomes [4].
We sequentially consider each variant with minor allele frequency (MAF)> 0.1 as risk variant and
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simulate a high-powered European GWAS to identify this variant. From this GWAS, we use the
most significantly associated variant (index variant) as predictor for the trait and estimate the effect
size of this predictor in four non-European populations. If the initial index variant is not the true
risk variant, this effect size depends on its LD with the causal variant. To effectively isolate the
effect of LD, we assume that the effect size of the true underlying risk variant is the same across
populations. Under this model, the predictive ability of a risk variant can only differ between
populations, if the initial index variant is not the true risk variant.

In our simulations across the genome, we found that in 61.1% of simulations, the risk variant
is not the index variant. Thus, changes in LD result in an average reduction of 25% in the effect
size of the index variant in African populations. For South Asian, American, and East Asian
populations, the average reduction is 7.3%, 7.9%, and 9%, respectively. Consistent with empirical
observations [50][48][25], loss of information is limited for East Asian, South Asian, and Admixed
American populations and substantial for African populations. We compared the genome wide
distribution of this statistic with the distribution of European GWAS hits from the GWAS catalog
and predict that 22% of the European GWAS hits have a reduced predictive ability of at least 50%
in African ancestry. These conclusions are robust to assumptions about true effect size and sample
size choices for simulations. We varied true effect size and sample size in repeated simulation in
chromosome 22 and observed consistent results with our genome-wide simulations with one true
effect size. Furthermore, with this set of simulations in chromosome 22 observed that changing
the power of the initial GWAS only has a modest effect on the probability of identifying the true
risk variant and thus the transferability of the index variant. Thus, our work shows that much of
the observed lack of transferability can be explained by the differences in LD between populations.
Strategies to overcome this lack of transferability thus should account for uncertainty in identifying
the true underlying causal variant.
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2.2 Methods

We assess the transferability of polygenic risk scores by simulating genome-wide association stud-
ies in a European population and then estimating the effect of the most significant variant (MS)
in other populations. We sequentially consider every autosomal variant with European allele fre-
quency (AF) between 0.1 and 0.5 as causal variant affecting a binary trait, simulate a GWAS to
identify this variant, assess the most significant (MS) variant in that GWAS and estimate the effect
size of that MS variant in other populations assuming that the underlying risk variant has the same
effect in all populations. Thus we estimate the transferability of the causal variant.

2.2.1 Genetic model

We assume a binary phenotype Y where 1 indicates affected status and 0 indicates unaffected
status. We assume a single causal variant Gc, let g denote the genotype of the risk allele of that
causal variant. We assume the following data generating mechanism for a population p.

logit(P (Y = 1|Gc = g)) = β0p + βg, (2.1)

where logit(x) = log(x)/log(1 − x). We chose β0p based on the allele frequency of Gc in
population p to ensure the same prevalence in all populations. The prevalence and the value of β
is always the same for all populations.

2.2.2 Simulation Algorithm

For each autosomal variant Gc with European AF between 0.1 and 0.5, we simulate a dataset
of cases and controls assuming that Gc is a functional variant. We then test all variants within
40kb for association with the trait. To generate cases and controls, we sample with replacement
haplotypes from the Phase 3 release of 1000 Genome project [4]. Samples thus have LD structures
that are very similar to the reference sample. To ensure a preset number of cases and controls, we
sample haplotypes conditional on their affection status. The probability of being sampled for each
haplotype, conditional on disease status is provided by Equation 2.3.
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P (Di|Hi = h) = P (Di|H = h)
P (Hi = h)

P (Di)
(2.2)

= P (Di|Gci = g)
P (Hi = h)

P (Di)
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(
eβo+gβ

1 + eβ0+gβ

P (Hi = h)

P (Di)

)Di
(

1

1 + eβ0+gβ

P (Hi = h)

P (Di)

)1−Di

, (2.3)

where h is a vector with dosages of a haplotype, Gih is the dosage of the risk variant in haplotype
h of individual i, and θ is a vector that is zero for all non risk variants and β for the risk variant.
The conditional probability of the disease status given the haplotype only depends on the genotype
of the causal variant P (Di|Hi = h) = P (Di|Gci = g).

We simulate cases by setting Yi = 1, and sampling with replacement nA diploid cases. We
simulate controls by setting Yi = 0 and sampling with replacement nU diploid controls. After
generating the case control data set we test for association at all polymorphic variants within 100kb
of the risk variant.

2.2.3 Simulation procedure

For each variant with an allele frequency between 0.1 and 0.5 in the EUR population, we performed
the following simulation pipeline.

1. Simulate nA =30,000 cases and nU =30,000 controls with European haplotypes in a window
of 200kb centered in the causal variant.

2. Test each polymorphic SNP in the haplotype region for significant association with Z-tests.

* Stop if there is no genome-wide significant variant (p-value < 5e-8) and move to the next
variant.

3. Identify the variant with the lowest p-value as the MS variant. If more than one variant are
tied with the lowest p-value because r2 = 1 between them, choose one at random.

4. Estimate the effect size of the MS variant in the simulated European by running a logistic
regression.

5. Simulate 30,000 cases and 30,000 controls for each of the super populations, including a
second sample of EUR, assuming the same causal variant as in step 1.

6. Estimate selected statistics with each of the newly simulated data sets, including the new
European data set.
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We run the simulation procedure one time per variant in all autosomal chromosomes except
chromosome 22. In the case of chromosome 22 we run the simulation procedure 20 times per
variant.

2.2.4 GWAS catalog analysis

We download the files all associations v1.0.2 and all ancestry data v1.0 from the GWAS cata-
log on August 26, 2022. The first file contains all associations in the GWAS catalog and the
second contains the ancestry of the samples for each study. From this files we kept associ-
ations that came from studies that only had European ancestry samples according to the field
BROAD.ANCESTRAL.CATEGORY from all ancestry data v1.0, a p value less than 5e-8 according
to the field P.VALUE from all associations v1.0.2, an allele frequency of the risk variant between
0.1 and 0.9 according to the field RISK.ALLELE.FREQUENCY from all associations v1.0.2, and
that did not have NA in the field OR.or.BETA from all associations v1.0.2. We then matched by
the field SNPS from all associations v1.0.2 with our simulations from chromosome 22 to obtain an
estimate of ρ∗ for each population.

2.2.5 Ldscore and probability of the MS variant being causal

We obtained the ldscore of all variants from chromosome 22 in the European population. We took
the ldscore of a variant as the sum of pairwise correlations with that variant that were equal or
greater than 0.1. We used plink v1.90b6.2 to obtain a table with all r2 of the variants and used R to
aggregate the results. We then used the repeated simulations from chromosome 22 to obtain a point
estimate of the probability of the MS variant to be the risk variant for each variant with and AF
between 0.1 and 0.5 in the European population. We then obtained the ldscore for the MS variant
in each of the repeated simulations and aggregate it across all 20 repetitions for each variant.

2.2.6 Measures of transferability

The expected predictive ability of a variant Gj’s GWAS effect size estimate is approximately βρj
[59], where ρj = cor(Gc, Gj). As we assume the same β for all populations, the difference in
predictive ability of a variant Gj across populations is determined by the difference in ρj across
populations. Let G∗ be the most significant variant in a European GWAS, then ρ∗ = cor(Gc, G∗).
Through extensive simulations we estimate ρ∗, assuming model 2.1 holds for each of the five
super populations of the 1000 Genome project [4]: African (African (AFR)), American (Admixed
American (AMR)), East Asian (East Asian (EAS)), European (European (EUR)), and South Asian
(South Asian (SAS)). Thus, we estimate ρAFR

∗ , ρAMR
∗ , ρEAS

∗ , ρEUR
∗ , and ρSAS

∗ . We indicate with
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the population’s abbreviation as a sub index to indicate the population used to estimate statistics in
the non-discovery data. The statistics that we estimate with the simulations are:

a) Using the European discovery data set we calculate the probability that the MS variant is the
causal variant.

b) For Population j ∈ {AFR,AMR,EAS,EUR,SAS} using simulated data not used for testing:
β̂jc effect size estimates of the causal SNP, β̂j∗ effect size estimates of the index SNP, ρ̂j∗ =
corj(β̂jc, β̂j∗) correlation between the most significant variant and the causal variant.

c) For Population j ∈ {AFR,AMR,EAS,EUR,SAS} using simulated data not used for testing
for association we calculate the relative estimated effect size of the index variant β̂j∗/β.

d) A column to indicate one of four possible outcomes: the causal variant was the most signif-
icant, a non causal variant was the most significant, the causal variant was the only variant
genome wide significant, and at least one non causal variant that was perfectly correlated
with the causal variant was the most significant. When we encounter a set of multiple vari-
ants with pairwise LD r2 = 1 being the most significant, we choose the MS variant at random
to be the index variant.

From the previous data, we will calculate two statistics, which we will use to measure the
transferability of PRS. The correlation coefficient between the MS variant and the causal variant
ρ̂j∗, and the probability of the MS variant being the causal variant α. The first statistic estimates the
change in the predictive ability of an index variant. The second statistic estimates the proportion
of times the index SNP has the same predictive ability in all populations.
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2.3 Results

We simulated discovery GWAS studies using European haplotypes from the 1000 Genome Project,
modeling each variant with minor AF >0.1 as a risk variant (5,482,942 variants total) with a
1.1 odds ratio. A total of 4,929,437 (90%) simulations had at least one genome-wide significant
variant. We then asses the ability of this GWAS’s most significant (MS) variant in the vicinity of
that risk variant to predict the phenotype as part of a PRS across European, South Asian, Admixed
American East Asian, and African, populations, assuming that the marginal effect of the true risk
variant is unchanged. Here, we have to consider two data configurations: (1) either the MS variant
is the underlying risk variant. Then it is equally predictive in all populations. (2) The MS variant
is not the risk variant, but in LD with it. Then the ability of the MS variant to predict disease risk
changes between populations as this LD changes.

2.3.1 Identifying the true risk variant

Across the genome, we observed that in 25.7% of simulations, the MS variant was the causal
variant while in 61.1% of simulations, the MS is not the causal variant. In the remaining 13.2%
of simulations, a set of multiple variants with perfect pairwise LD (r2 = 1) in 1000 Genomes,
including the true risk variant were equally most significant. For the following analyses, we choose
the predictive variant at random from this set of perfectly correlated variants. Thus, in 67.7% of
all simulations, the predictive variant is a nearby tag SNP whose effect size depends on the LD
between the MS SNP and the risk variant.

2.3.2 Correlation between MS variant and risk variant

The loss of informativeness of the MS variant is determined by the correlation between the MS
variant and the risk variant ρ∗[59]. This correlation averages ρ∗ = 1 for the 32% of cases where
the MS variant is the risk variant and the LD (r2) between the MS variant and the risk variant for
the 68% of cases where they differ. In Europeans, the mean ρ̂∗ is 0.96 and 95% of MS variants
have high LD (ρ̂∗ > 0.79) with the causal variant Figure 2.1. In the the South Asian, Admixed
American, East Asian and African population, the mean (median) ρ̂∗ is 0.93 (0.99), 0.92 (0.98),
0.91 (0.99) and 0.75 (0.93). However, this distribution of ρ̂∗ has a long tail, in South Asian,
Admixed American, East Asian and African population, 95% of MS variants have a ρ̂∗ > 0.61,
0.63, 0.45, and 0.09.

If we consider ρ̂∗ < 0.9 as a meaningful loss of information, we see that for 48% of variants,
ρ̂∗ is below this threshold in the African population, a considerably larger proportion than in Eu-
ropeans (13%), South Asian (21%), Admixed Americans (25%), and East Asians (22%) (Table
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2.1). Variants with ρ̂∗ < 0.5 lose at least half their predictive power when transferred between
populations. Almost one quarter of variants (24%) showed this pattern in the African population
while it was uncommon (≤ 6%) in the other populations.

To assess if known GWAS hits have different patterns of transferability than the genome av-
erage, we calculate the distribution of ρ̂∗ from our genome wide simulations for 109,843 GWAS
hits across 5,761 traits from the GWAS catalog (see Methods for details). We also evaluated this
distribution individually for 9 diseases with > 90 significant findings. Across all GWAS hits, the
distribution of ρ̂∗ was very similar to the distribution of the entire genome(Table 2.1) with a mean
ρ̂∗ of 0.97 for European, 0.93 for South Asian, 0.93 for Admixed American, 0.91 for East Asian,
and 0.77 for Africans. The same pattern was observed across all individual traits with mean ρ̂∗
ranging from 0.95 to 0.97 for Europeans, 0.92 to 0.94 for South Asians, 0.90 to 0.94 for Admixed
Americans, 0.89 to 0.93 for East Asians, and 0.74 to 0.80 for Africans (Figure2.4).

Figure 2.1: Boxplot of the squared correlation between the most significant and the causal variant
for each population. The red interval represents the 0.05 and 0.95 quantiles and the red diamond is
the mean.
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Genome wide results
Population ρ̂∗ < 0.99 ρ̂∗ < 0.95 ρ̂∗ < 0.90 ρ̂∗ < 0.75 ρ̂∗ < 0.50
European 0.46 0.22 0.13 0.04 0.005
South Asian 0.49 0.30 0.21 0.10 0.03
Admixed American 0.55 0.36 0.25 0.10 0.03
East Asian 0.45 0.29 0.22 0.12 0.06
African 0.62 0.53 0.48 0.37 0.24

GWAS hits results
Population ρ̂∗ < 0.99 ρ̂∗ < 0.95 ρ̂∗ < 0.90 ρ̂∗ < 0.75 ρ̂∗ < 0.50
European 0.41 0.21 0.12 0.04 0.006
South Asian 0.44 0.29 0.20 0.10 0.03
Admixed American 0.47 0.32 0.22 0.10 0.03
East Asian 0.41 0.27 0.20 0.12 0.06
African 0.52 0.45 0.41 0.32 0.22

Table 2.1: Proportion of times the correlation of the most significant variant with the causal variant
is below the threshold indicated in the columns. In the top table we present results using simula-
tions across all predictive variants. In the table below we present the simulation results for variants
that are GWAS hits from the GWAS catalog.

2.3.3 Distribution of estimated effect sizes

The differences in ρ̂∗ translate directly into differences of informativeness for estimates of effect
sizes of the MS variant: Aggregate across all variants, the mean (median) relative estimated effect
size for Europeans was 0.97 (0.97) , for South Asians 0.96 (0.97), for Admixed Americans 0.95
(0.96), for East Asians 0.94 (0.96), and for Africans and 0.83 (0.88) (Table2.2). To understand
the change of the estimated effect size across populations, we stratified simulations on whether the
MS was the causal variant, the MS was not the causal variant, and the MS was among multiple
markers in perfect LD with the causal variant (Figure 2.2). As expected under our model, there is
no difference in estimated effect size if the MS variant is also the functional variant. For variants
where MS was not the causal variant, the mean (median) relative estimated effect size was 0.96
(0.96) for Europeans, 0.93 (0.94) for South Asians, 0.93 (0.94) for Admixed Americans, 0.91
(0.94) for East Asians, and 0.75 ( 0.80) for Africans (Table 2.2). For a few variants, the effect
size of MS changes signs between populations, this occurred for 0.09% of variants in the South
Asians, for 0.03% in the Americans, for 1.9% in the East Asians, and for 2.6% in the African
sample. If multiple variants are in perfect LD with the causal variant and one of these is MS, the
mean (median) relative estimated effect size was 1.00 (1.00) for Europeans, 0.99 (0.99) for South
Asians, Admixed Americans, East Asians, and 0.93 ( 0.95) for Africans.

To quantify the impact of these differences on a PRS composed of many risk variants, we
constructed a set of PRS that had 1, 10, 20, and 30 causal variants with allele frequency between
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Figure 2.2: Distribution of estimated odds ratio of the most significant variant in the replicate
population stratified by the cases in which the most significant variant is not the causal variant
(blue), most significant variant is the causal variant (red) and the causal variant has r2 = 1 with
another variant and both are the most significant (green). Vertical lines show the median of each
distribution.
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All simulations

European South Asian Admixed
American East Asian African

Mean 0.97 0.96 0.95 0.94 0.83
Median 0.97 0.97 0.96 0.96 0.88

Simulations were MS is not causal

European South Asian Admixed
American East Asian African

Mean 0.96 0.93 0.93 0.91 0.75
Median 0.96 0.94 0.94 0.94 0.80

Table 2.2: Mean and median of the estimated effect size divided by the true effect size across the
five populations for all predictive variants. The top table is for all simulations, the bottom table is
for simulations in which the MS variant was not the causal variant.

0.1 and 0.5 in the European population by sampling this number of variants from our simulation
and calculating PRS based on the effect sizes of the MS variants. We evaluated these PRS by
calculating the difference in prevalence between the individuals with a PRS in the bottom 1% and
individuals with a PRS in the top 99%. In this model based on 10 variants, we calculate a mean
relative risk (RR) of 1.81 in the European sample, 1.76 in the South Asian and Admixed American
sample, 1.70 in the East Asian Sample and 1.57 in the African sample. Increasing the number of
predictive variants increased the relative risks. When normalizing each population’s RR by the RR
in Europeans, we see that the relative difference between populations is similar across the number
of risk variants simulated A.1. American and South Asian populations have normalized RR of
0.97, East Asian samples have normalized RR of 0.92 and a African samples have normalized RR
of 0.83 relative to the European RR.

2.3.4 Local LD patterns and study power modify transferability

To assess if local LD patterns allow predicting whether the MS variant is the true risk variant,
we calculated the LD score in the European population for every variant and correlated it with
the probability of tagging the true variant, observing a modest correlation (r2 = 0.17) (Figure
A.1). In practice, the true risk variant is unknown and we can only assess the LD-score of the MS
variant. However, the LD-score of the true risk variant and the LD-score of the MS variant are
highly correlated (r2 = 0.99) and thus the LD-score of the MS variant and the probability of MS
being the true risk variant is also r2 = 0.17 (Figure A.2). Thus the LD patterns of the MS variant
provide provide some evidence for our ability to identify the functional variant. For variants in
the lowest decile of LD-scores (LD score< 16) the mean (median) probability of the MS variant
being the functional variant is 0.33 (0.21). For all other deciles, the mean (median) probability

17



is below 0.14 (0.05). In the highest decile of the LD-score distribution (LD score> 193), the
probability of tagging the right variant is 0.04 (0.0). To evaluate the impact of allele frequency
of the causal variant, we correlated ρ̂∗ with minor allele frequency across markers and observe a
positive correlation with MAF (Figure 2.3). In the lowest frequency quantile, the mean ρ̂∗ ranges
from 0.937 in the European population to 0.669 in the African population, while in the highest
frequency quantile, the mean ρ̂∗ ranges from 0.966 in the European population to 0.786 in the
African population. However, MAF and power of the discovery study are confounded in our initial
study design. Variants in the lowest allele frequency bin had a mean power of 0.75, while variants
in the highest allele frequency bin had a mean power of 0.99996.

We performed extra simulations varying allele frequency and expected power (See Methods)
to untangle this relationship and assess which one of the two factors was primarily driving the
results above. In Figure A.4 (see Appendix) we show that power increases ρ̂∗ at every bin for all
populations. In the case of African populations the impact of power is more notable as it increases
the mean ρ̂∗ from 0.65 for a power between 0.2 and 0.4 to a mean ρ̂∗ of 0.75 for a power above 0.9.
On the other hand, the mean ρ̂∗ has almost no change for different intervals of allele frequency of
the causal variant. Except for African populations in which we can observe a mild change in mean
ρ̂∗ when the allele frequency of the causal variant is between 0.4 and 0.5.

Figure 2.3: Relationship between power and the correlation between the most significant and the
causal variant. Each bin in the x-axis has 5% of all simulations and the y-axis has the average
correlation between the MS and the causal variant for each population.
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Figure 2.4: Distribution of the correlation of the most significant variant with the causal variant
among GWAS hits from studies with samples of European ancestry. In the top plot we present all
GWAS hits , in the bottom plot we present the distribution for some selected traits.
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2.4 Discussion

While PRS increase in importance in biomedical research, it is now well established that these
statistics are less predictive in non-European populations. Here, we assessed how differences
between populations patterns of LD affect transferability of PRS by simulating large discovery
GWAS in Europeans, modeling each variant with minor AF > 0.1 as a potential risk variant. We
identify the most significant (MS) variant in the vicinity of that risk variant and considered this MS
variant as the best estimate for the underlying risk variant. We then assess the predictive ability of
the MS variant in African, East Asian, South Asian, and Admixed American populations assum-
ing the same risk variants acts with the same effect size in all populations. Under this scenario,
the predictive ability of a GWAS finding only differs between populations when the MS variant is
not the true risk variant. The magnitude of the difference then depends on the difference in LD
patterns between populations. Across all common variants in the genome, the MS variant was
the true risk variant in only 32.3% of simulations, even though our discovery GWAS had power
> 0.75. As a result, the MS variant lost predictive power in populations other than the European
population. Across all simulations, the mean loss of predictive power was around 8%, in East
Asians, Admixed Americans and South Asians populations, which have LD patterns similar to the
European discovery population [4]. The mean predictive power of the MS variant is reduced by
25% in the African population, consistent with African LD patterns being less similar to European
LD patterns with overall lower levels of LD in Africa [71]. To assess if GWAS hits were different
than random common markers in the genome, we focused on 109,843 variants that had been iden-
tified as genome-wide significant in the GWAS catalogue [10] and observed no difference in the
simulated mean change in effect size across populations between the set of all common variants
and the set of GWAS hits. We also assessed, if patterns of LD in the discovery population provide
insight in the change of effect size and saw that the LD score of the most significant variant is
correlated with its probability of being causal (r2 = 0.17) Interestingly, it is sufficient to calculate
the LD score of the MS variant as it is very highly correlated with the LD score of the true risk
variant. To evaluate how these single-variant results would affect a PRS constructed out of many
variants, we constructed PRS from 10, 20 or 30 simulated variants and calculated the relative risk
between PRS deciles. The informativeness of these PRS not only depended on changes in LD, but
also changes in allele frequency. For these PRS, we observed that the relative risk between the
lowest decile and the highest decile of the PRS decreases by a factor of 0.97 in South Asians and
Admixed Americans, a factor of 0.92 in Each Asians, and a factor of 0.83 African samples, regard-
less of the number of variants included in the PRS. These the pattern of reduction in effect size
very comparable to the patterns observed in comparative studies of PRS informativeness; Martin
et al. [50] showed predictive accuracy across 17 traits to be 1.6 fold lower in American and South
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Asian samples, 2.0 fold lower in East Asian samples, and 4.5 fold lower in African samples. Veturi
et al. [74] estimated the correlation of effect sizes for the MS variants for height to be between 0.5
and 0.75 between European Americans and African Americans. Under a model where these dif-
ferences in effect size are driven by LD differences, this result is consistent with our result that the
mean correlation between the mean correlation between the MS variant and the functional variant
is 0.75 in an African population.

Thus it seems plausible that differences in LD between populations are the mayor driver for
the lack of transferability of PRS. This hypothesis is supported by several empirical studies Shi
et al. [67], stratified variants across nine traits by posterior probability after fine mapping and
showed that variants with high likelihood of correctly identifying the functional variant, had highly
correlated effect sizes between European and East Asian populations. Cavazos [12] showed that
using Africans as a discovery population can increase transferability of a PRS.

While some of these effects could also be driven by changes in allele frequency, Bitarello and
Mathieson [6] estimate that differences in the site frequency spectrum explain at most, 8% of the
decrease in partial r2 in non-European samples. Hou et all [32] recently showed that in admixed in-
dividuals, effect sizes are similar across ancestries. Patel et al [57] showed that genetic interactions
are the drive a large portion of the heterogeneity of causal effect sizes.

If we consider that changes in LD are the major driver for differences in transferability, how
can we use this model to improve transferability? Our results indicate that the transferability of a
marker modestly increases with the power of the initial discovery study, as increasing the power
increase the probability of the true risk variant being the MS variant. However, the impact of
this approach is limited: even for studies with power > 0.99, risk variants still had their effect
size reduced by 30% in African samples. This is not surprising, in many regions of the genome
have many markers in very tight LD in Europeans and each of those variants has about the same
probability of being the MS variant. Thus the increasing sample sizes of European GWAS will not
suffice to overcome the problem of reduced transferability[35]. Functional annotation may improve
fine-mapping, but so far, many attempts to annotate GWAS hits, which are typically regulatory, has
been challenging [52]. Diverse samples have also been leveraged to improve fine-mapping [82].
Here we have two approaches: (1) combining samples and generating effect size estimates from
the combined sample or (2) using the combined sample to fine-map the risk variant. Note that
if the goal is to identify the true functional variant, we don’t necessarily need a sample from the
population we want to calculate the PRS in, including diverse samples with different patterns of
LD will improve the ability of identifying the true functional variant.

Without specifically focussing on fine-mapping, combining samples across diverse populations
has been shown to improve PRS across many traits [12][62][53]. Not only can such studies provide
more precise estimates of effect sizes, they can also help identify variants that are of low frequency
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in Europeans. However, how to optimally combine data across multiple populations when some
population samples are much bigger than others without drowning out the smaller populations is
an open question.

We obtained these conclusions using a relatively simplistic PRS consisting of variants that
are genome-wide significant in the discovery GWAS. Other methods aim to accumulate evidence
across variants with less evidence for association while carefully modelling the LD in the discovery
population[75][62].However, considering complex methods that jointly analyze the genome is not
possible in the systematic fashion employed here where equal weight is given to every variant. In
practice, PRS derived from such methods is not substantially different from a PRS based on GWAS
: Bench marking several methods, Kulm et al. [41] found little to no improvement in power and
transferability when using complex methods over more straightforward methods. Cecile et al. [13]
found that using genome-wide significant variants in PRS has more clinical utility and the same
predictive ability than using millions of variants as in LDpred. Moreover, it seems unlikely that the
role of LD differences between populations is smaller in methods that leverage detailed models of
LD to derive the best predictor.

In summary, our simulations of common variants a cross the genome estimate the transferability
of European-derived PRS under the assumption that the genetic architecture of the trait is the same
in all populations, thus providing an upper bound for this transferability. Our results indicate
that differences in LD between population is likely a major driver for the performance of PRS. We
discuss several strategies for improving transferability under this scenario and show that even if the
genetic architecture is identical across populations, we can expect substantive loss of information
when applying European-derived instruments to non-European populations, which can only be
avoided by including substantial non-European samples in future analyses.
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CHAPTER 3

Increasing the Prediction Ability of Polygenic Risk
Scores in a Target Low Sample GWAS by an

Adaptive Integration of Large Sample GWAS of an
External Population

3.1 Introduction

PRS assess an individual’s genetic risk for a phenotype calculated as a weighted sum of
risk variants obtained from GWAS[17]. They are leveraged for improving prediction models
[66][65][38][34], as instrumental variables for Mendelian randomization [76][77], and understand-
ing the etiology of related traits [60], among others. For example, studies use PRS as a surrogate
variable of the genetic contribution of a phenotype. In clinical research, PRS can be used to in-
vestigate the increase in the risk of early onset of a disease under different environmental factors.
Aas et al. [2] investigated the genetic load of Schizophrenia and cannabis use before onset by
comparing Schizophrenia PRS between people that use cannabis and people who do not. Thus,
in combination with other sources of information, PRS will contribute to the risk assessment of
complex diseases as it becomes better at capturing the genetic contribution.

One advantage of PRS is that researchers can build them using publicly available GWAS sum-
mary statistics[17]. Thus allowing several studies to leverage existing GWAS at the same time
without compromising privacy of participants. The down side is that PRSs are limited because
most samples used in GWAS are of European ancestry[22]. In 2016 only 20% of all GWAS an-
alyzed non-European populations, with 16% being of Asian ancestry [58]. This proportion was
constant since 2014 and at least up to 2019 [49]. Even multi-ethnic GWAS have much larger
European sample sizes than any other population [48][44][45]. Such under-representation of non-
European populations has been shown in many studies to reduce the predictive power of PRS in
non-European populations. Curtis [19] showed a PRS build for Schizophrenia based on a mainly
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European GWAS shown to be more powerful in predicting ancestry than Schizophrenia. Martin et
al.[49] found a lack of transferability of single-ancestry GWAS in eight well-studied phenotypes,
such as height and type 2 diabetes. The lack of predictive ability of European GWAS in other pop-
ulations means that research about populations genetically distant from the European population
are much less benefited by the massive amount of publicly available GWAS.

Some studies have shown that GWAS associations from large sample populations can be used in
other populations to increase their predictive ability. Marquez-Luna et al. [53] developed a method
that linearly combines PRS from two populations and shows that increased the over all predictive
ability in both populations. Marnetto et al. [47] propose a method that uses PRS from different
populations based on local ancestry inference. Grindle et al. [29] found that the optimal way to
use meta-analysis to pick the best tag SNP between a European GWAS and Hispanic Latinos from
the HCHS/SOL was the trait and sample size of the discovery GWAS dependent. Coram et al.
[18][22] propose a method that declares a tag SNP in trans-ethnic GWAS and estimates its effect
with ethnic-specific GWAS. Weissbrod et al. [80] developed a method that leverages functional
data and GWAS from multiple populations to improve the generalizability of PRS. Ruan et al.
[63] developed a method that uses population-specific parameters of a continuous shrinkage prior
to increasing the predictive of a PRS in multiple populations. Most of these methods rely upon
access to data beyond publicly available summary statistics.

Multi-ethnic PRS methods focus on increasing the predictive ability of PRS in all populations
involved in the calculation of the PRS. While this is the end goal of a multi-ethnic PRS, the objec-
tive of our method is to focus on increasing the predictive ability of the PRS in a target population
with a small or moderate sample size. The proposed method leverages existing huge sample GWAS
from a different population, generally of European ancestry, that we call the external GWAS. We
rely on the external GWAS’s large sample to detect the small effect sizes that small samples GWAS
would not have the power to detect. However, different environmental exposures and gene-gene
interactions across populations will bias the effect size estimates. Cavazos and Witte [12] showed
that the bias of European estimates in effect size estimates increases as genetic divergence in-
creases. We are willing to accept biased estimates of the effect sizes in return for decreasing the
estimates’ variance and thus increasing the predictive ability of the resulting PRS.

Some parts of the genome might be more similar than others across populations, meaning the
bias’s magnitude and direction might differ across regions in the genome. Weighting regions dif-
ferently is crucial for leveraging the external GWAS without diluting the target GWAS population-
specific information. We propose to use a Power Prior [33] model that integrates an external source
of information by modeling the effect size heterogeneity across populations. The Power Prior is
a Bayesian model that gives more weight to the external GWAS when data suggests that popula-
tions are similar and gives less weight otherwise. This approach uses the European data as part
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of the prior and regulates the strength of the European summary statistics in the analysis based on
heterogeneity through a parameter called power parameter.

The original Power Prior is used with complete data, which we assume is unavailable. Thus we
use the Regression with Summary Statistics likelihood, which enables us to infer the multivariate
effect sizes from marginal summary statistics and allows us to assume the same likelihood for the
target and external population. We show that the Power Prior PRS increases the concordance cor-
relation with the phenotype, increases the heritability explained by the PRS, and reduces the mean
squared error of the causal variants in comparison to using only the target GWAS, only the exter-
nal GWAS, or using external GWAS as prior without weighting. We show that under a different
effect size scenario, the optimal weight is strictly below one and above zero, which supports the
idea of dynamic weight across regions. The Power Prior with Regression with Summary Statistics
(PP-RSS) is a robust and powerful method that considers heterogeneity and different LD structures
to construct PRS based on multivariate effect size estimates. PP-RSS integrates GWAS summary
statistics from two populations with significantly different sample sizes and genetic architecture
that emphasizes the low sample population to avoid diluting population-specific regions.
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3.2 Methods

In our method we assume that we only have access to GWAS summary statistics from both popu-
lation. Because of LD structure the marginal associations from GWAS can be directly integrated
when the external and the target population are have different LD structure. We infer the joint
effect size from the marginal association using the regression with summary statistics (RSS) likeli-
hood. However, the joint effect size might be different due to different environment exposures. We
use the power prior that can adaptively weight the external likelihood to account for differences
in the joint effect size. This section is organized in the following way. In subsection 3.2.1 we
describe the RSS likelihood for one population. Subsection 3.2.2 describes how to construct the
power prior when we have access to data from two populations that assume a similar likelihood.
Subsection 3.2.3 puts together the idea of using the RSS likelihood and power prior. Finally, in
subsection 3.2.4 we describe how to choose the tuning power parameter to optimize the prediction
on the target population.

3.2.1 The Regression with Summary Statistics (RSS) likelihood

Suppose that we have summary statistics from a Genome Wide Association Study, this is effect
sizes and standard deviation of the single variant regressions. We assume the GWAS had individ-
uals from a single ancestral population; hence we use data source and population interchangeably.
In the rest of the document we parametrize Gaussian distributions with mean and precision; thus
N(x;µ,Ω) is the density of a Gaussian distribution with mean vector µ, precision matrix Ω evalu-
ated at x.

Consider the following multivariate regression model.

Y = Xβ + ϵ, (3.1)

where ϵ ∼ N(0, ϕI) is a n×1 vector of independent errors and ϕ is a scalar precision parameter,
Y ∈ Rn is the standardized phenotype, X ∈ Rn×m is a centered genotype matrix information at a
region with m variants.

Assuming known ϕ, the likelihood for β is L(β|Y,X, ϕ) = N(Y ;Xβ, ϕI). However, we do
not have access to individual-level data. Instead, we have access to summary statistics from the m
univariate regressions Y = αjXj , j = 1, ...,m from a GWAS. Let (α̂j, σ̂

2
j ) be the OLS estimator

of αj and the OLS estimator o the variance of α̂j respectively. Let sj = sd(β̂j) be the standard
deviation of the j element of the estimated multivariate effect size. Then S = diag(s) can be
estimated with Ŝ = diag(ŝ1, ..., ŝm) with ŝ2j = σ̂2

j + α̂2
j/n. Finally let R be the LD matrix of the

genotype matrix of the GWAS X and R̂ be the LD or correlation matrix estimated with a reference
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panel. The Regression with Summary Statistics (RSS) likelihood proposed by Zhu & Stephens
[85] is a likelihood of the multivariate effect sizes β conditional on marginal summary statistics
α̂, Ŝ, R̂.

The RSS likelihood of β is

L(β|α̂, Ŝ, R̂) = N(α̂; ŜR̂Ŝ−1β, (ŜR̂Ŝ)−1), (3.2)

where ŜR̂Ŝ−1 is a matrix that maps the joint effect sizes to the expected effect sizes of marginal
models and (ŜR̂Ŝ)−1 is the precision matrix of the model. Zhu & Stephens proved that the RSS
likelihood is proportional to the multivariate likelihood from model 3.1 we would obtain with
individual level data, this inference about β depends only on summary data α̂, Ŝ, R̂, in other words:

L(β|Y,X, ϕ) ∝ L(β|α̂, Ŝ, R̂). (3.3)

3.2.2 Power Prior

Let Dt and De be the data for a target and external population respectively. We assume that the
external and target populations have the same underlying model that is indexed by a parameter β.
Let likelihoods L(β|Dt) and L(β|Dt) be the corresponding likelihood for the parameter β. An
important assumption is that the sample size of De is much larger than that of Dt.

Given data De from the external source and a parameter of interest β, the power prior is defined
as follows.

P (β|a0, De, b) ∝ L(β|De)
a0π0(β|b) (3.4)

where a0 ∈ [0, 1], π0 is the initial prior of β, b is a set of hyper parameters for π0.
The power prior is a family of priors to perform Bayesian inference when an external data

source is available. Its unique characteristic is the inclusion of the power parameter a0 which
weights the influence of the external population. When a0 = 1, the power prior is equivalent to
a Bayesian update with the full use of the external data source information. In the case of a0, the
power prior is equivalent to ignoring the external data source. The power prior’s strength resides
in the flexibility to regulate the influence that the external population will have in the inference
on β through a sensible choice of a0. In essence the power parameter is an scale parameter that
regulates the tails of the external likelihood to increase or decrease the importance of the external
data.

Equation 3.4 assumes a fixed value of a0. Such value has to correspond with the heterogeneity
of effect sizes among the external data De and the target data Dt. A way to find a0 is to define a
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function f(a0) that has a monotonic behaviour with the predictive ability in the target population.
A candidate for a0 would be such that optimizes f(a0).

Another option is to assume a prior distribution on a0. In that case, Equation 3.4 is no longer a
proper prior[54]. In order to have an adequate prior we need to divide by the appropriate constant
c(a0) = 1/

∫
L(β|De)

a0π0(β|b)dβ. Thus the power prior with π(a0|γ) as a prior for a0 is:

P (β, a0|De, b, γ) ∝ L(β|De)
a0c(a0)π(a0|γ)π0(β|b), (3.5)

where γ are the hyper parameters for π(a0|γ).
Finally, the power prior from Equation 3.4 or Equation 3.5 is used to construct the posterior

distribution of β conditional on the target data, external data and the hyper parameters. Thus the
posterior distribution of β is

P (β, a0|Dt, De, b, γ) ∝ L(β|Dt)L(β|De)
a0c(a0)π(a0|γ)π0(β|b). (3.6)

3.2.3 Using RSS likelihood and the power prior to integrate GWAS from
different populations

Let Dt = (Yt, Xt) and De = (Ye, Xe) be the target and external data sources when we have access
to individual level data. We assume multivariate model 3.1 for the target and external population.
Thus, a natural way to integrate both studies is through a Bayesian approach in which L(β|Dt)

and L(β|De) is the target and external contribution to the posterior of β. However, in genetic data
model 3.1 is most likely to be miss-specified due to unaccounted gene gene and gene environment
interactions. This interactions will impact the expected value of β̂ in each population creating
heterogeneity across the populations that depends on allele frequencies and population average en-
vironment exposures. The we could use posterior 3.6 with likelihoods L(β|Dt) = N(Yt;Xtβ, ϕtI)
and L(β|De) = N(Ye;Xeβ, ϕeI) to model this heterogeneity through a0.

However, we do not have access to these likelihoods because we do not have access to
individual-level data in either of the two populations. In addition to the bias introduced through the
miss specification of model 3.1 we know that our GWAS summary statistics will differ in expec-
tation because of different LD structures. The expected value of the GWAS estimated effect sizes
depend on the pairwise correlation with all the variants times their multivariate effect size, this is

E[α̂j] = sj
m∑
i=1

rijβi/si. Where rij is the correlation between variant i and j and si is the variance

of the variant. Thus, if we want to use external data from a different population than the target, we
have to model LD to account for different sj’s and rij’s across populations.

Let D̃t = (σ̂t, α̂t, Ŝt, Rt), D̃e = (σ̂e, α̂e, Ŝe, Re) be the target and external summary statistics
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respectively. Instead of the multivariate likelihoods from model 3.1 we use the RSS likelihood 3.2.
Thus, the posterior distribution of β is conditional on the target and external summary statistics,
and the power parameter is:

P (βt|a0, D̃t, D̃e) = N(α̂t; θ̂tβ, η̂e)N(α̂e; θ̂eβ, η̂e)
a0N(β; 0, τI). (3.7)

where η̂t = (ŜtRtŜt)
−1, θt = ŜtRtŜ

−1
t , η̂e = (ŜeReŜe)

−1, and θe = ŜeReŜ
−1
e with their respective

population suffixes. We chose a ridge prior for β for two reasons. The first reason is that we want
to evaluate the method with the least influence of a prior possible, this is easily attainable with a
ridge prior with small τ . The second reason is that a ridge prior makes computation very efficient.
Here we denote Re, and Rt as known, which means they are calculated with the same data as the
GWAS. In practice, we can estimate R for each population with reference panels. Conditional on
a0 as in 3.7 we obtain an analytical expression for the posterior distribution, this is

P (β|a0, D̃t, D̃e) ∝ exp

(
−1

2

(
(α̂t − θtβ)

⊤ηt(α̂t − θtβ) + a0(α̂e − θeβ)
⊤ηe(α̂e − θeβ) + τβ⊤β

))
∝ exp

(
−1

2

(
β⊤(θtηtθt + a0θeηeθe + τI)β − 2β⊤(θtηtα̂t + a0θeηeα̂e)

))
∝ exp

(
−1

2

(
(β̂te − β)⊤ηte(β̂te − β)

))
, (3.8)

where νte = θtηtθt + a0θeηeθe + τI and β̂te = ν−1
te (θtηtα̂t + a0θeηeα̂e) the posterior mean (see

Appendix for an expression in terms of Ŝ and R). Finally, we construct a PRS as the standardized
predicted phenotype for the genetic information X∗

t , i.e. PRSi = X∗
i β̂te (see section 3.2.5).

3.2.4 Choice for the power parameter a0

The objective of the power parameter is to optimize the weight of the external information for the
prediction in the target population. From posterior 3.8 we obtained the posterior mean β̂te, as a
function of a0. The predicted value of the phenotype in the target population Ŷt(a0) = Xtβ̂te is
also a function of a0. Thus, we define f(a0) (mentioned above) as a metric of the prediction ability
of Ŷt(a0) to predict Yt. The final objective of this project is to propose f(a0) that do not depends
on having any individual level training data. Consider the following four candidates for f(a0).

1. Pearson correlation between phenotype and predicted phenotype.

f(a0;D
+
t ) = cor

(
Yt, Ŷt(a0)

)
(3.9)
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2. Sums of squares of the phenotype and predicted phenotype.

f(a0;D
+
t ) = ||Yt − Ŷt(a0)||22 (3.10)

3. Cross validation of mean square error with K folds

f(a0;D
+
t ) = CVK(||Yt − Ŷt(a0)||22) (3.11)

4. Pseudo correlation

f(a0) =
β̂⊤
tediag(X∗

t
⊤X∗

t )α̂t

β̂⊤
teX

∗
t
⊤X∗

t β̂te
(3.12)

Where D+
t is an individual level training data, and X∗

t is the reference panel of the target
population used to obtain β̂te. Note that f(a0) 1. and 2. will not provide the same estimate because
a0 appears in the mean and the variance of the posterior distribution.

In this project want to compare the performance of optimizing the pseudo correlation function
against the performance of optimizing any of the other three functions that depend on training data.
To measure performance we will use several metrics that are all related to prediction accuracy in
different ways. We use a testing data set Dtest = (Y test

t , X test
t ), to evaluate the performance.

The first metric is the relative concordance correlation between Ŷ test
t (a0) and Y test

t . Concordance
correlation of two vectors measures the linear agreement between them, this is a useful metric of
predictive ability for our simulations because the linear data generating mechanism. We divide
the concordance correlation of the prediction by the concordance correlation of the true genetic
contribution X test

t β.
We describe in more detail the expression for the Pseudo correlation objective function f(a0).

The intuition of the function is to write the correlation between the phenotype Yt and the predicted
phenotype Ŷt(a0) to find an expression that does not depend on individual-level data. First note
that since Yt is centered then

cor(Ŷt(a0), Yt) =
β̂⊤
teX

⊤
t Yt√

β̂⊤
teX

⊤
t Xtβ̂teY ⊤Yt

. (3.13)

(3.14)

Then note that diag(X⊤
t Xt)α̂t = X⊤

t Yt, which means that nt/ndiag(X
∗
t
⊤X∗

t )α̂t = X⊤
t Yt,

where n is the sample size of the reference panel (when the target GWAS data is not used as
reference panel) and nt is the sample size ofXt. Thus, optimizing f(a0) is equivalent to optimizing
3.13 because they are proportional in terms of a0.
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cor(Ŷt(a0), Yt) ∝
β̂⊤
tediag(X∗

t
⊤X∗

t )α̂t

β̂⊤
teX

∗
t
⊤X∗

t β̂te
(3.15)

3.2.5 Polygenic risk score with multivariate effect size estimates

Let D∗ = (Y ∗, X∗), be a testing data set of sample size n, and let β̂ be an estimate of the multi-
variate effect size of model 3.1. We use the standardized predicted value of the multivariate model
to construct the polygenic risk score (PRS). Thus, the PRS for the ith individual is

PRSi =
X∗

i β̂ − Ê[X∗β̂]√
V̂ ar(X∗β̂)

. (3.16)

We will compare four methods to construct PRS such as in Equation 3.16. Each method relies
on having an estimate of β that is plugged in Equation 3.16. Our proposed method is to use the
Power Prior estimate β̂te in Equation 3.16. The External method is to use the posterior mean
obtained with the RSS likelihood using exclusively the External data. The Target method is to use
the posterior mean obtain with the RSS likelihood using exclusively the target data, this coincides
with the Power Prior method at a0 = 0. The Full method is to fully combine the RSS likelihoods
from the external and target data without any weighting, which is equivalent to the Power Prior at
a0 = 1.

3.2.6 Simulations

We first simulate the target population in which we draw effect sizes from βt ∼ N(0,m/h2),
where h2 is the heritability, andm is the number of causal SNPs. Let ρ be the correlation of the true
effect sizes between the target and the external population. Thus, given βj the external population’s
effect sizes will be simulated from βej|βtj ∼ N(ρm/h2βtj, (h

2/m− ρ2m/h2)−1). We then select
different values of ρ to represent the heterogeneity of effect sizes across populations. If ρ = 1, the
effect sizes are the same in both populations. If 0 < ρ < 1, the effect sizes have the same sign
but different magnitude, this represents cases in which interactions with genes or environment are
different but in the same direction across populations. If 0 > ρ ≥ −1 the effect sizes have different
signs and magnitude, this represents cases in which interactions with genes or environment are
different in direction and magnitude across populations. We first describe how we simulate the
target population, and then we will describe how we simulate the external population in the three
scenarios.
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3.2.6.1 Target population

We select m causal variants from a set of variants with at least 0.005 MAF in both populations.
We use 1k Genome Project [4] haplotypes. For each causal variant j draw ψjt ∼ N(0,m/h2),
where h2 is the heritability of the phenotype. Define the genetic contribution with an additive

model Zt =
m∑
j=1

zjtψjt, where zjt is the dosage of causal variant j. Then we standardize it as Xt =

(Zt−Z̄t)h
sd(Zt)

to ensure to have variance equal to h2. Finally, simulate the environment contribution
as Et ∼ N(0, 1/(1 − h2)) and define the phenotype Yt = Xt + Et. True effect sizes are then

βt = ψt

√
m∑
j=1

var(zjt).

3.2.6.2 External population

Simulate βej|βtj ∼ N(ρm/h2βtj, h
2/m−ρ2m/h2) with the effect sizes from the target population

βj . Calculate the genetic contribution with Ze =
m∑
j=1

zjeβje and center it Xe = Ze − Z̄e. To ensure

the same effect sizes when ρ = 1, we do not standardize the genetic contribution Ze as we did in
the target population. Thus, the heritability in the external population will differ due to differences
in allele frequencies. However, that difference will cancel out on average when we perform the
simulations in several regions. The variance of the genetic component of the external population

is h2/m
m∑
j=1

vje, where vje is the variance of variant j in the external population.

To evaluate if the power prior has the potential to capture the heterogeneity of effect sizes, we
perform a simulation analysis in a 500-kilo base pair region from chromosome 22. We fix the
heritability at 0.001 for all simulations. We simulate a testing data set from the target population,
denotingD∗ = (Y ∗

t , X
∗
t ). Let βt be the effect sizes that generatedD∗, then we simulate an external

data set (sample size 100,000) using haplotypes of European ancestry as described in 3.2.6.1, we
denote βe the true effect sizes that generate the external data De = (Ye, Xe). We then simulate a
target data set Dt = (Yt, Xt) with sample size nt using βt. We choose the correlation between the
effect sizes as ρ = {1, 0.75, 0.25, 0.0,−0.25}, and the target sample size as nt = {1k, 5k, 10k}.

We set the ancestry of the target population as European to asses how well the method captures
the heterogeneity of true effect sizes. We then set the ancestry of the target population to African to
evaluate the ability of the method to capture differences in LD in combination with heterogeneity.
The metric to evaluate methods are the concordance correlation between the phenotype Y ∗

t and the
standardize predicted phenotype of the multivariate model X∗

t β̂.
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3.3 Results

3.3.1 Power parameter identifies best way to combine information

In Figure B.1 we show the heritability explained by the risk models built with the Power prior for
different values of the power parameter compared to risk models with no external data (Target), full
use of external data (Full), and ignoring target data (External). Different panels present different
configurations of target sample size (columns) and correlation of effect sizes between populations
(rows). The external population had a sample size of 100,000 in all cases. Power prior and the
Full method present the highest concordance correlation when the effect sizes in both populations
are the same (top row of panels). In this scenario, the improvement in concordance correlation by
joining two data sources is considerable when the ancestry of the target and the external data is
different compared to using any of the single data sources approaches. When ancestry is the same
in both populations, the improvement is negligible compared to using only the external data source.
The power prior method shows a plateau in the concordance correlation as values of the power
parameter increase and agrees in its performance with the full use of the external information. For
intermediate non-negative correlation values (second and third rows of panels), the Power prior
obtains a higher concordance correlation than all methods and ties with the Full method when the
correlation is 0.75. When correlation is 0.25 (3rd row), the approach of using only the target data
source outperforms the full use of the data source, though the Power prior is always better. When
the correlation with effect sizes is 0 or negative (fourth and fifth rows), the best approach is to
ignore the external data source. In that case, the Power prior collapses in that same approach as
the clear optimum is to choose the power parameter of 0.

In the Appendix B, we present the same plot for the explained heritability. The characteris-
tic curves are more challenging to interpret because the explained heritability is always positive.
For the positive correlations, the interpretation is the similar as for the concordance correlations.
However, for the non-positive correlations, the best method depends on which data source explains
heritability most. However, the Power prior is always tied with whichever is the best method. For
example, when the target data has the same ancestry as the external data (top plot) and the target
sample size is 1,000, the External method is best, so the optimal Power prior shifts to close to 1,
with a plateau in high values. When the target data have different ancestry than the external data
(bottom plot), and the target sample size is 5,000, the External method is better, so the optimal
Power prior shifts to close to 1, with a plateau in high values.
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Figure 3.1: We show the concordance correlation with different choices of the power parameter.
Color represents the four different methods. Both plots have an external population with European
ancestry. Panel columns indicate sample size of the target population and panel rows indicate
correlation of true effect sizes across populations.34



3.3.2 Comparison of the methods to construct risk models

We assess the different methods of using external information by taking the mean of the proportion
of heritability explained across 703 non-overlapping regions of 50 kilo-base pairs in chromosome
22, shown in Figure 3.2. The 703 different regions showed a large variability in the mean pro-
portion of heritability explained, ranging from 0.1 to 0.8 (see Appendix Figure B.2). The Power
prior with Regression with Summary Statistics (PP-RSS) has the highest proportion of heritability
explained for all sample sizes when the correlation of the effect sizes is positive (see Appendix for
results on selecting the objective function). When the correlation is zero or negative, the Target
method is the highest, with the PP-RSS method being very close. The External method has the
same proportion of heritability explained for low and null correlations, even for the negative cor-
relation. Nevertheless, when the correlation is negative, the proportion of heritability explained by
the Full method is notably less than the Target and PP-RSS. When the sample size of the target data
source is small, the PP-RSS has minimal improvement over the best among the remaining meth-
ods; however, when the sample size is 5,000 or 10,000, the improvement can be very significant
depending on the correlation of the effect sizes.

Another metric for the predictive ability of the risk model is the relative concordance corre-
lation. We define the relative concordance correlation as the concordance correlation of the PRS
based on the estimated multivariate effect size divided by the concordance correlation of the PRS
based on the true multivariate effect size. In Figure 3.3 we present the mean concordance correla-
tion of the four methods. The PP-RSS, in all cases the best or the second best method. Only when
the correlation is negative, and the sample size of the target population does the PP-RSS present
a negative concordance correlation. The PP-RSS improves the concordance correlation at least
twofold for high and moderate correlations compared to the Target method. When the correlation
is zero, the PP-RSS and the Target method have the same concordance correlation. As expected,
the External method concordance correlation declines rapidly as the correlation between effect
sizes decreases. Notably, the effect of the target sample size is different across correlations for
the Full method, in which the concordance correlation becomes lower than the External method
when the correlation is negative, and the target sample size is 1,000. The PP-RSS’s concordance
correlation is always parallel to the Target method regardless of the correlation, which implies that
the effect of sample size is weaker than the effect of heterogeneity for the PP-RSS.

We compare the four methods in their ability to estimate the effect size of the causal variants. In
Figure 3.4 we show the mean squared error (MSE) for the causal variants. As expected, when the
correlation is one, the Full method is far from best when the target population is European. In the
case of an African target population, the Target data source has a very similar MSE for a sample
size of 5,000 and perfect correlation. As the correlation between true effect sizes decreases, the
MSE of the External method increases rapidly up to two orders of magnitude. PP-RSS decreases
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Figure 3.2: We show the proportion of heritability explained by the four methods. Color represents
the four different methods: External is using an only external data source, Target is using an
only target data source, Full is combining external and target data sources with the full weight
of the external, and Power prior is the proposed method to weight differently the external data
source. Panels represent the different correlations between the effect sizes of the target and the
external population. The external population had European ancestry with a sample size of 100,000.
Finally, we compute the Power prior approach with the pseudo correlation objective function.
Panel columns indicate sample size of the target population.
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Figure 3.3: Mean relative concordance correlation for all four methods. Color represents the four
different methods: External is using an only external data source, Target is using an only target
data source, Full is combining external and target data sources with the full weight of the external,
and Power prior is the proposed method to weight differently the external data source. Panels
in columns represent the different correlations of effect sizes between the target and the external
population. The external population had European ancestry with a sample size of 100,000. We
computed the Power prior with the pseudo correlation objective function. Panel columns indicate
sample size of the target population.
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the MSE of the causal variants by one order of magnitude when the effect sizes’ correlation is
one compared to the Target method. When the number of causal variants is 1, the Target method
is best for low correlations and sample sizes of 5,000 and 10,000. The PP-RSS method is always
better when the number of causal variants is 2 or 3. The PP-RSS has the lowest MSE only when the
correlation is negative, and the number of causal variants per region is greater than 1. However, PP-
RSS is always close to the best method. The number of causal variants has a considerable influence
on the MSE. The difference in MSE when the correlation is 1 is up to 2 orders of magnitude when
there is one causal variant. However, this difference is less than one order of magnitude when the
number of causal variants is 3.

3.4 Calculate power parameter with only summary statistics
gives similar results than training data

We evaluate four methods to find a power parameter (see Methods for details). For the cross
validation method we used K = 5. The sample size of the training data for the correlation and
sums of squares methods is the same as the sample size of the target data source use to estimate
the risk model. Simulations are across 703 regions of 50 kilo base pairs in chromosome 22. In
Figure 3.5 we show the relative correlation concordance for different sample sizes of the target
study and correlation of true effect sizes. The concordance correlation increases as target sample
size or correlation between true effect sizes increases for all four methods. All four methods give
very similar results in all cases.
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Figure 3.4: Mean squared error in the effect size of causal variants by the four methods. Color
represents the four different methods. Panel columns indicate sample size of the target population.
Panels in rows are the number of causal variants per analyzed region. We compute the Power prior
with the pseudo correlation objective function.
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Figure 3.5: Relative concordance correlation is the correlation of phenotype and predicted pheno-
type divided by the correlation of the phenotype and the true genetic risk model. Color represents
the three different methods: correlation between phenotype and predicted phenotype, sums of
squares of difference of phenotype and predicted phenotype, and pseudo correlation of phenotype.
Panels indicate the correlation between the true effect sizes of target and external population.
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3.5 Discussion

We present a robust method called Power Prior with Regression Summary Statistics (PP-RSS) to
increase the predictive ability of a PRS in a target population by adaptively weighting GWAS sum-
mary statistics from an external population. The method has two components. The first component
assumes a common likelihood of the multivariate effect sizes conditional on univariate summary
statistics, called a Regression with Summary Statistics likelihood [85]. The underlying assump-
tion of the common likelihood is that the multivariate effect size is the same in both populations,
which is a restrictive assumption. In response to the common likelihood assumption, the second
component adaptively weights the likelihood of the external population to account for the hetero-
geneity of the true effect sizes between the populations. We perform adaptive weighting with a
power prior[33] with a fixed power parameter on the likelihood of the external population. We
propose to optimize a function of the power parameter that calculates the expected correlation of
the predicted phenotype and the true phenotype using only summary statistics to calculate the opti-
mal weight. We present simulations that show that our method increases a target population’s PRS
explained heritability, concordance correlation with the true phenotype, and reduces the MSE of
causal variants compared to combining both populations without accounting for heterogeneity.

In our simulations, we presented results for the case where the target population has different
LD than the external population and different levels of heterogeneity. However, different LD is
not the only possible aspect between two populations that may differ. Social determinants have
considerable impacts on health outcomes[68][81][20], Thus, even in genetically homogeneous
populations, we have to consider that those different environments will have a different impact on
the transferability of PRS. Our method assumes no specific reason for different effect sizes and
includes the same LD case. We show that when the LD structure is the same and effect sizes
are equal, the PP-RSS converges to fully use the external information and thus optimally uses
the external GWAS. However, whenever the effect size is different, the PP-RSS method improves
predictive ability and estimation compared to the full use of data in every scenario or even ignoring
the external data source. Thus, we can use the PP-RSS to leverage any external population to
improve the prediction and estimation of a target population.

We show that an adaptive weight is better than using all the external data or none in almost all
scenarios. In the first project, we showed that LD could have a meaningful impact on the transfer-
ability of PRS. We model LD to infer multivariate effect sizes from summary statistics; thus, the
inference is the same across different LD structures (assuming a shared multivariate model). We
show that in the case of different LD structure, our method identifies an optimal weight that differs
from using all the external data even when the multivariate effect sizes is the same. This result
shows the robustness of PP-RSS to jointly account for model miss specification and different cor-
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relation structures. Only when the direction of the effect sizes is opposite in each population using
an external population is detrimental. In this case, the PP-RSS converges to ignore the external
data in these cases, considerably reducing the detriment of using non-beneficial external data. Our
method generalizes cases when all the external data is valuable and when it is preferable to ignore
it.

We show the strength of modeling whole regions and adaptively weight the contribution of the
external data considering different LD. In the first project, we show that regions differ in how
much LD impacts the transferability of PRS. PP-RSS models regions independently to compute
a different power parameter for each analyzed region. In addition, complex diseases usually have
sets of causal variants in LD[3], which can make it particularly difficult to transfer PRS from
populations with different LD structures[22] When a region had one causal variant, the PP-RSS
method showed an inferior or similar performance in estimating causal variants, with either the
Full method or the Target being the better approach depending on the heterogeneity of the effect
sizes. However, when having multiple causal variants per region, our method is always the best in
reducing MSE, with a more clear reduction when LD differs.

The presented model has a fixed power parameter and a ridge prior that assumes all variants in
a region have a non-null effect size. Nevertheless, we can extend the proposed method in several
ways. The first possible extension is assuming a prior distribution for the power parameter. We
presented in the Appendix the conditional distribution of the power prior when the prior of the
effect size is the ridge prior. A prior distribution for the power parameter could be helpful when
the target sample size is minimal, which is the case in which our presented method was the least
robust. The second extension is to use a different prior for the multivariate effect size. The ridge-
prior distribution we assumed in this work implicitly assumes that all variants have a small true
effect size, which is an implausible assumption. We can use an extensive collection of priors to
analyze genetic data (see Zhou et al. [84]). For example, Zhu and Stephens [85] propose to use
a mixture of Normal distributions in their original paper on the RSS likelihood. The PP-RSS
has the flexibility to incorporate any prior, which can be adapted to suit several genetic models.
The third extension is to include several external populations. A simple way to achieve this is
to include a power parameter for each external population and repeat the analysis assuming all
external populations are independent analyses. Furthermore, we can acknowledge the correlation
across different external populations and model the power parameters with a prior distribution in
the power parameter with shared parameters.

We present a powerful and flexible family of models that can focus on improving PRS in a target
population. Most current multi-ethnic methods focus on creating a PRS with similar predictive
ability in all populations. Our approach is best suitable for studies that are interested in a specific
population but are limited in sample size. Increasing the predictive ability of PRS in such studies
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also improve equity in genetic research as it increases the utility of existing European GWAS
in non-European populations. This work presents an opportunity to develop methods using high
sample GWAS without diluting population-specific results.
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CHAPTER 4

Data Enriched Generalized Linear Regression

4.1 Introduction

In several biomedical settings, we are interested in predicting an outcome in a target population.
High-quality data (randomized clinical trials, probability sampling, etc.) has always been expen-
sive and complicated, nonetheless the gold standard in statistical analysis. Researchers have more
access to external biomedical data from observational sources like Electronic Health Records or
Bio Banks. These data sources are massive in sample size but usually do not represent the target
population of interest well. However, there is an argument that we can borrow information from
external data to increase prediction in the target population if we adequately model the differences
in both data sources.

There is a wide range of methods that account for differences in data sources. The multi-task
learning setting target the scenario in which several small tasks are integrated to infer the structure
of each of them[30][21]. Another example is transfer learning, which considers the setting of
several data sources that are rich in sample size from which we can obtain information for a target
source when they are ”close”[70][73]. There are several methods in the context of leveraging
external summary statistics on a subset of the covariates of the target data set to improve prediction
and estimation. [7][16][69][14].

In this chapter, we discuss the extension of the Data Enriched Linear Regression (DELR), pro-
posed by Chen, Owen, and Shi [15] to study the case of one external source to improve the pre-
diction of a target data source in the linear regression setting. Motivated by the DELR method,
Cheng[83] described an alternative approach for DELR in logistic regression based on finding an
optimal weight matrix that combines the single data source estimators. In this project, we extend
DELR to generalized linear models. Thus we called the extension Data Enriched Generalized Lin-
ear Regression (DEGLR). We use the package glmnet with a tailored cross-validation method to
fit the model. In principle, our approach works with all the link functions in the glmnet package,
which are: gaussian, binomial, poisson, multinomial, cox, and multi-response Gaussian.
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In the first section, we review the DELR proposed by Owen and Shi [83] and present some
valuable results for our extension. The second section of this work presents the extension to gen-
eralized linear regression in which we show that this problem is equivalent to the penalized gener-
alized linear regression from glmnet in R with some considerations. The third section presents two
simulations. The first simulation evaluates the equivalence of DEGLR with DELR in the continu-
ous outcome case. We show that we obtain the exact estimates as DELR with a mean concordance
correlation of 0.99 across multiple scenarios. In the second simulation, we show that DEGLR pre-
dictive ability is always greater than or equal to pooling or ignoring the external data. We showed
these scenarios where covariates have a high correlation and several predictors.

The fourth and final section presents a real data example in which we consider as target data
the Health and Retirement Study (https://hrs.isr.umich.edu/) as a target data source. This HRS is
a longitudinal panel study representing the American population over 50 in which participants are
surveyed on health-related issues. Due to the nature of the study, we consider this data a high-
quality data set that could potentially be used for prediction. We consider the Genes for Good
(GfG) study as the external study. This study consists of volunteers 18 years and older that answer
health-related questions through a Facebook app. Since this data is from volunteers that optionally
answer questionnaires, we consider this data a lower quality data. Both studies have genotype
data, which constructs the Polygenic Risk Score on Type 2 Diabetes (T2D). Due to selection bias
and non-transferability of PRS across ancestral populations, the GfG study is very likely to be
biased. Selection bias will arise because GfG represents a different population than HRS. The
transferability of PRS is essential in our analysis because GfG has 95% of non-Hispanic White
participants while HRS has 67% of non-Hispanic White participants. The data sources have a
similar sample size, which is not the assumption of DEGLR. We compared the predictive ability
of pooling GfG and DEGLR with a reduced sample size training HRS data source. We varied the
training sample size to evaluate how DEGLR adapts as the relative importance of GfG increases.
Our analysis shows that GfG has a limited predictive ability even for the case when the training
sample size is 13.3 times smaller than GfG. As the training sample size increases, the predictive
ability of DEGLR improves consistently, showing that the method adapts correctly to improve
prediction ability. In addition to our simulations, this analysis shows that our extension of the
DELR works as expected.
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4.2 Methods

Let Ye, Yt be outcomes vectors for the external population and the target population respectively,
let ne and nt denote sample size, Xe, Xt are p+ 1 are matrices that has p covariates and a column
of 1 for the intercept. We assume outcomes and covariates to be standardized. Finally, we assume
that ne > nt.

4.2.1 Data Enriched Linear Regression

Consider the following linear regression model for the target population.

Yt = Xtβ + ϵ (4.1)

where β ∈ Rp+1 and ϵ are independent errors with E[ϵ] = 0 and var(ϵ) = σ2
t . Now consider the

following for the external population

Ye = Xeα + ϵ (4.2)

where α = β + γ, γ ∈ Rp+1 is a vector of bias and ϵ are independent errors with E[ϵ] = 0 and
var(ϵ) = σ2

e .
The data enrichment approach is to fit a model that includes both data sources and a quadratic

penalty λ ∈ R+ on the prediction bias ||Xtγ||22. Thus, the DELR estimate is such that it minimizes
the following objective function.

f(β, γ;λ) = ||Yt −Xtβ||22 + ||Ye −Xe(β + γ)||22 + λ||Xtγ||22 (4.3)

Given a value of λ the function f is minimized by

β̂λ = Wλβ̂ + (I−Wλ)α̂, (4.4)

whereWλ = ((λ+1)Ve+λVt)
−1(Ve+λVt) (see Appendix C.1 for details on normal equations and

simplification of Wλ). From this expression it is easy to see that when λ = 0 then Wλ = I and thus
β̂λ = β̂. On the other hand when λ → ∞ then Wλ = (Ve + Vt)

−1Vt and I−Wλ = (Ve + Vt)
−1Ve

which means that β̂λ
λ→∞−−−→ goes to the estimator we would get by pooling the data from both

sources (details in the Appendix C.2). Thus the DELR estimate fluctuates between ignoring the
external data and using it fully depending on the amount of penalty we impose on the prediction
bias.
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Choosing a value for λ

We are interested in improving the prediction accuracy in the target population. Thus the DELR
uses the AICc of the target population to choose λ. To compute the AICc, we need to calculate
the model’s degrees of freedom. We define the degrees of freedom as the normalized covariance
between the predicted outcome and the outcome in the target population.

df(λ) =
1

σ2
t

tr(cov(Ŷ , Yt)). (4.5)

In the DELR case, Ŷ = Xtβ̂λ, thus obtaining a closed form of the degrees of freedom.

df(λ) =
1

σ2
t

tr(cov(Ŷ , Yt)) =
1

σ2
t

tr(cov(Xt(Wλβ̂ + (I−Wλ)α̂), Yt))

=
1

σ2
t

tr
(
cov(XtWλ(X

⊤
t Xt)

−1X⊤
t Yt, Yt)

)
=

1

σ2
t

tr(XtWλ(X
⊤
t Xt)

−1X⊤
t )σ

2
t

= tr(Wλ).

With an expression for the degrees of freedom, we can obtain the AICc as.

AIC(λ) = ntlog(σ̂
2
t (λ)) + nt

(
1 +

df(λ)

nt

)
/

(
1− df(λ) + 2

nt

)
, (4.6)

where σ̂2
t (λ) =

1
nt−p

||Yt −X⊤
t β̂λ||22. This is the Hurvich and Tsai AIC definition, which penal-

izes models that are not parsimonious relative to the sample size. With this conservative definition
of AIC we will tend to choose larger values of λ.

Algorithm to find λ

Note that df(0) = p because β̂λ = β̂ and from the alternative expression of df(λ) in the Appendix
C.3 we can see that d(∞) =

∑p
j=1

νj
1+νj

. We then exploit this monotonicity of df(λ) to define a
grid search of λ. Take a grid of df in the interval [df(∞), p] and find the correspondent λ for each.
Use λ such that minimizes 4.6 to construct the DELR estimate as in 4.4.

4.2.2 Extension to generalize linear models

Most outcomes in biomedical problems are not continuous, which limits DELR. A natural way to
extend the DELR to generalized linear models is to change the sums of squares from the objective
function 4.3 for negative log-likelihoods. The two unique components of DELR are kept the same
in our generalization; the first, we model the bias of the external population as a bias vector that
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is additive to the parameter of interest; the second, we add a penalty on the bias prediction in the
linear scale.

Consider the following model for the target data set.

η(E[Yt|Xt]) = Xtβ, (4.7)

and the following for the external data set

η(E[Ye|Xe]) = Xeα, (4.8)

where α = β+γ, and both models have the same link function η. Models 4.7 and 4.8 induce two
likelihoods, for model 4.7 and the target data we denote with lt(β;Xt, Yt) the log likelihood of β.
Similarly, for model 4.8 and the external data le(α;Xe, Ye) denotes the log likelihood of α = β+γ.
Thus the Data Enriched Generalized Linear Regression estimates minimize the following objective
function.

g(β, γ;λ) = −lt(β;Xt, Yt)− le(β + γ;Xe, Ye) + λ||Xtγ||22. (4.9)

This objective function is very similar to the objective function of the penalized regression. In
Appendix C.4 we show the connection with the penalize regression implementation of the glmnet

R package. Which means that for a fixed λ we can use standard software to obtain estimates of β.

4.2.3 Assumptions of the model

The DEGLR assumes that model 4.7 and model 4.8 are the same up to a difference in the effect
sizes in the covariates included in the model. This means that if we do not include covariates
correlated with the covariates included in the model, it will not impact the ability to distinguish
when the external data is valid. This is because this difference will be captured by γ, which is the
only parameter that impacts the penalty.

A vital characteristic of DEGLR is that it has assumptions about the distribution of Xt and
Xe. Both populations can have different distributions without impacting the method, which is the
desired assumption in our context. We assume we are unsure if the external information should
be used or to what extent we can trust it. DEGLR identifies the best way to use external data to
benefit the target data. Which is a difference from the data integration methods, for which similar
distribution of covariates is always a necessary assumption.

DEGLR assumes we have access to the same covariates in both populations. We can relax this
assumption by modifying the extended data used in the penalized regression. This is beneficial
if some inclusion/exclusion criteria for the target population are too restrictive for the external
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population. Then we assume that the conditional associations help increase prediction in the target
data. For example, the target data excludes young people but including them in the external data
might increase the sample size dramatically. We can include younger people from the external
population by adding a covariate that identifies them. By doing this, we assume that the conditional
association of the remaining covariates is still useful. We will not be able to distinguish between
β and γ for the covariate of young people, but we also do not care about it since is people we
excluded from the target population.

4.2.4 Finding the optimal λ∗ in non linear cases

The objective of the DEGLR method is to find an optimal way to combine external data with
target data to increase the prediction of the target data. Standard penalized regression methods
use cross-validation approaches that treat equally all observations in the training data would be
inappropriate. Thus, we have to tailor the cross-validation method to obtain an optimal λ∗ because
it will calculate the prediction error in the combined data set. However, an advantage of using
glmnet R package is that it calculates the whole path of β̂λ efficiently for a grid of values of λ. We
use K fold cross-validation to estimate the prediction error in the path and select the λ∗ that gives
the lowest prediction error in the target data. Since the target prediction error does not depend on
the external data, we do not partition the external data for cross-validation. In other words, the
estimate of the prediction error we obtain remains unbiased if we do not partition the external data.

In theory, we know that β̂λ converges to the target estimator when λ → 0 and converges to the
estimator using target and external data pooled when λ → ∞. But in practice there exist a range
for (λmin, λmax) such that β̂λmin

≈ β̂t and β̂λmax ≈ β̂pool. Thus, we will search for the best λ in a
grid on the log scale in such a grid. To find λmax, we take advantage of glmnet with the augmented
data searching for that same λ in their algorithm. Then we first use glmnet with the augmented
data and the largest λ from glmnet is λmax. We specify the minimum value of the grid of λ by
specifying a ratio between the maximum and the minimum prior, and we check for convergence
internally. We describe the algorithm in detail below.

Cross validation algorithm to find λ

1. Fit DEGLR using the glmnet. The result includes a grid of λ in which the maximum value
is λmax, i.e.β̂λmax ≈ β̂pool.

2. Set a grid of λ that is equally distant in the log scale setting λmin/λmax = r, with a predefined
r.
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3. With the complete target data compute L such that (L−1)⊤ is the Cholesky decomposition
of Vt.

4. Split the target data into K roughly equal parts.

5. Randomly select a subset of the external data of size ne(K − 1)/K so that the ratio

6. For each of the kth fit glmnet as in C.5 using the pre-computed L matrix from step 3, all the
external data, the other k − 1 parts of the target data, and the grid of λ from step 2.

7. Calculate CV (λ) = 1
nt

K∑
k=1

n
(k)
t∑

j=1

(Y
(k)
jt − f̂ (−k)(Xjt))

2, where f̂ (−k)(s) = s⊤β̂
(−k)
λ is the pre-

diction for s using model from fitted as in step 5 without the k data.

8. Find λoptim =
λ
CV (λ).

Two data exclusions stand out from the cross-validation algorithm proposed above. First, we
compute Lwith all the target data instead of computing L(−k) for each data split. This is because to
compute L we need Vt to be a positive definite matrix, which means that if nt ≤ p we cannot do it.
Thus, the DEGLR can only work in the nt < p scenario, which is more restrictive if we compute
L(−k) since we would need n(K − 1)/K < p. Furthermore, computing L would not create bias
in our estimate of the mean square error because L does not contain any information about Yt.
The second exclusion is that we do not partition Ye. Similarly, there is no information about Yt
in the external data; thus, this exclusion will not create bias in our estimate. An alternative would
be stratified cross-validation, in which we maintain the ratio between external and data sources in
each data split. However, this will increase the variance of our mean square error estimate without
any benefit in reducing bias.
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4.3 Simulations

We present two simulation studies. The first simulation aims to validate that DEGLR, which finds
the optimal λ through cross-validation, obtains the same β̂λ as the DELR that has a theoretical way
to define a search space of λ. The second simulation evaluates the DEGLR in a logistic regression
case.

4.3.1 Validation of relationship between DELR and glmnet with continuous
outcome

We verify Equation C.6 by comparing β̂λ from DELR and from glmnet in the linear case. To that
end, we simulate data from a target population using model 4.1 with sample size nt = 500 and
data from an external population using model 4.2 with sample size ne = 20, 000. We assumed
Xt and Xe had a multivariate Gaussian distribution with mean 0p and correlation matrix C with
a uniform structure in the covariates with ρ = 0, 0.05, 0.15, for the dimension of the covariates
let p = 3, 10, 50, target sample size nt = 500, and external sample size ne = 20, 000. Then
we simulated β from a uniform hypersphere of dimension p. We fixed the variance explained
r2 = 0.2 and calculated σ2

t = β⊤Cβ(1 − r2)/r2. We simulated Ye from a Gaussian distribution
with mean 0 and variance σ2

t . For the external population we first sample γ∗ from a uniform
hyper sphere of dimension p and then scaled it have a relative bias, thus γ =

√
κ/ntσ

2
t , with

κ = 0, 1, 2, 3, 4, 5, 6, 7. Then we calculated σ2
e = (β + γ)⊤C(β + γ)(1 − r2)/r2 to simulate Ye

from a Gaussian distribution with mean 0 and variance σ2
e . With this simulation mechanism, we

imply that σ2
e is larger than σ2

t , representing a lesser quality data source in the external population.
In addition, the variance explained by the covariates is the same within each population but the
variance explained by the external population covariates in the target population decreases as the
bias increases.

We compared the median λ∗ from DELR with the scale 2λ/(nt+ne) from DEGLR (see Methods
for details on this relationship) to observe the agreement on the penalty factor. From Figure 4.1,
when there is no bias, the DEGLR has a larger median penalty than the DELR, which means, in
this case, it is giving larger weight to the pooled estimate. However, the DELR has a larger penalty
for all the levels of bias, which means that DEGLR is more conservative in the presence of bias.

However, we found very little difference in the final estimates, which means that the difference
in penalty has very little influence on the final estimates. The median concordance correlation
across all the twelve scenarios was above 0.999 see Figure 4.2. When the dimension of the covari-
ates is 3, the distribution of the concordance correlation has a notably smaller variance. Apart from
this case, the distribution of the concordance correlation looks very similar in all the cases with no
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Figure 4.1: We present in black the median λ∗ in the log scale, and in red, we have the median
2λ/(ne + nt) in the log scale. We present this for twelve different scenarios of correlation in the
covariates, dimension of the covariates, and magnitude of bias of the external population.
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Figure 4.2: We present the concordance correlation between β̂λ obtained with DELR and with
DEGLR with the gaussian link function.

clear trend.

4.3.2 Simulations under the logistic case for the DEGLR

The second simulations assume the same data generating mechanism for the covariates as in the
linear case simulations; the sample size in the target is nt = 500 and the sample size in the external
data is ne = 5000. Similarly, in the linear case, we wanted to choose β and γ to imply that the
covariates had the same predictive ability of the outcome within data sources. In the linear case,
we have the variance parameter in the outcome that allowed us to regulate the predictive ability
of the covariates once we fixed β and γ. However, the mean and variance in a binary outcome
are not separable as in the linear case. In order to have the same covariate predictive ability within
populations we choose β and γ such that ||β||22 = ||β+γ||22 = 1. We first simulate β from a uniform
hypersphere of dimension p and then generate γ in a two-step procedure. Let Z be a matrix that
is 0 in the diagonal and c

p−1
and then define β∗ = β − Zβ. Note that β∗

j = βj − c
p−1

∑
i ̸=j

βi, which

means thatβ∗
j is shrinks βj changed by a factor c and the mean effect size ignoring βj . This means

that large (relative to the rest) effect sizes change less than small effect sizes and that we have c to
increase the overall change in effect sizes. The second step is to normalize β∗ to have norm 1 and
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let γ = β∗/||β∗||22−β. Thus ||β+γ||22 = ||β+β∗/||β∗||22−β||22 = 1. In our simulations we choose
c = (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3)p, we multiply by p to have the similar magnitude change in
the effect size across different p. To obtain λ for the DEGLR we use a K = 5 fold cross-validation
approach as described in Section 4.2.4.

In Figure 4.3, we see that as the relative bias increases then, the Brier score and the AUC of the
External method show a consistent loss of predictive ability. When there is little or no bias, the
External method has better predictive ability than the target data set. This is because the External
data set has a tenfold larger sample size for the no-bias case. As the relative bias increases, the
reduction of predictive ability is a trade-off between bias and variance. The same behavior is
observed for the pooling method, with better predictive ability than the External population in all
cases because of the influence of the Target data set. On the other hand, the DEGLR method
matches the predictive ability of the Pool/External methods for no bias. Similarly to Pool and
External methods, the predictive ability for the DEGLR method decreases as the relative bias
increases. The key difference is that the predictive ability of the DEGLR method is bounded by the
predictive ability to use only the Target data set. This means that the DEGLR is down-weighting
the external data information as the bias increases. For no bias, DEGLR is almost equivalent
to Pooling both data sources, and for large bias, DEGLR is equivalent to ignoring the external
data. Most importantly, in intermediate bias cases, DEGLR is the best method. Even for some of
the non-zero relative bias, the DEGLR improves predictive ability on the target population while
Pooling the data reduces the predictive ability. These cases can be seen for p = 50 and relative
bias larger than 0.2 with a correlation of 0.0.
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Figure 4.3: Relative Brier score and mean relative AUC of each method. Both metrics are relative
to analysis with only the target data. We show in black the proposed DEGLR method, in yellow the
estimate obtained with the external data, and in blue using the estimate obtained with the pooled
data.
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4.4 Real data example

As our target data, we obtained a sub-sample from the Health and Retirement Study (HRS)
(https://hrs.isr.umich.edu). The HRS data is a longitudinal panel representing peo-
ple over 50 years old who will retire or are already retired in the United States of America. This
study’s participants answer rigorous surveys on aging, health, cognition, and financial well-being.
Because of this, we consider the HRS as high quality. We consider the Genes for Good (GfG)
study for the target data source. GfG collects data from volunteers 18 years and older through a
Facebook app in which participants answer health-related questions. Therefore, we consider only
participants over 50 years old. Since the GfG’s participants are volunteers and the questionnaires
are answered optionally, we consider this a lower-quality data source than HRS.

The data consist of 2284 participants from the HRS and 1522 from the GfG for which we
have affected status for diabetes, race (non-Hispanic White, non-Hispanic Black), Gender, Born in
USA, BMI, Education (degree less than Bachelor), age (categorized in 5 groups). We also included
a Polygenic Risk Score for Type 2 Diabetes calculated with about 223,000 overlapping SNPs. Ta-
ble 4.1 presents the distribution across all covariates except PRS of both studies. The mean age,
education, gender, and race are different in both data sources. Only BMI and the proportion of US-
born participants are similar in both studies. We do not show the mean of the PRS because it was
mean-centered before we obtained the data. However, as previously discussed in this dissertation,
PRS have different predictive abilities across populations. It is mainly well studied that transfer-
ability from European to African populations is limited, which is essential in this analysis because
GfG has 95% of non-Hispanic White participants while HRS has 67% of non-Hispanic White par-
ticipants. Since the PRS are constructed with a different ancestral distribution of the samples, we
expect that the PRS will not be as predictive in HRS as in GfG. Thus, we consider two potential
sources of bias: the selection bias introduced through the non-probability sampling of GfG and
the bias in the PRS variable in the different studies. This presents an excellent opportunity for our
method to adjust for bias that could impact prediction ability if we pool both studies.

The DEGLR setting assumes that the external data is larger in sample size, which is not the case
for HRS and GfG. Because of this, if we apply DEGLR in this scenario, it would not be surprising
that there is very little to gain, and probably analyzing HRS by itself is the best route to follow.
However, we can still assess the performance of DEGLR by splitting the HRS data in training and
testing, keeping the testing sample size fixed, and systematically increasing the sample size of the
training data. For this, we randomly set apart 20% of the samples from the HRS data for testing.
Then we randomly select 20% samples for training to evaluate AUC with DEGLR, using only
HRS, GfG, and pooling HRS and GfG. Then we sample an additional 5% of samples from HRS
to the same training data (25% in total) and repeat. We continue adding groups of 5% samples
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Mean in HRS Mean in GfG
Diabetes 0.21 (0.19,0.23) 0.16 (0.14,0.18)
Born between ’24 - ’30 0.04 (0.029,0.05) 0.005 (0.002,0.009)
Born between ’31 - ’41 0.13 (0.11,0.14) 0.04 (0.03,0.05)
Born between ’42 - ’47 0.07 (0.06,0.08) 0.14 (0.12,0.16)
Born between ’48 - ’53 0.16 (0.14,0.17) 0.35 (0.32,0.37)
Born between ’54 - ’59 0.59 (0.57,0.61) 0.46 (0.43,0.49)
Less than Bachelor 0.33 (0.31,0.35) 0.51 (0.48,0.53)
Masculine 0.45 (0.43,0.47) 0.32 (0.29,0.34)
White 0.67 (0.65,0.69) 0.95 (0.94,0.96)
US-born 0.95 (0.94,0.96) 0.96 (0.95,0.97)
BMI 29.24 (28.97,29.51) 29.57 (29.22,29,92)

Table 4.1: Means of variables in the HRS and GfG. Confidence intervals are calculated with normal
approximation.

until we reach 80% of the sample size and thus use the complete data (80% for training and 20%
for testing). We repeat this analysis 1000 times to smooth results. Taking 10% of HRS’s sample
size, GfG is 6.7 times larger in sample size, which might not be large enough. We sample with
replacement from GfG to generate a synthetic larger version of GfG and use that larger version as
the external data. We use a K = 10 fold cross-validation as in Section 4.2.4 to obtain the λ for the
DEGLR. In Table 4.2 we observe that when analyzing the testing HRS data with the synthetic GfG
we obtain an AUC of 0.682. The AUC of the synthetic GfG is the same regardless of the training
sample size since it ignores the HRS data. The difference in AUC between GfG and HRS is only
0.003 when the GfG is 20.0 folds larger than the training sample size of HRS, which speaks to the
reduced predictive ability of GfG in comparison to HRS. When the ratio of GfG and HRS testing
sample size is larger than 8.00 folds, the DEGLR has the largest AUC, followed by Pool. This
shows that DEGLR is able to optimize prediction even when Pooling the GfG data would increase
prediction compared to only GfG. However, when GfG is ten times larger, Pool does not do better
than only HRS, this is also true for all smaller ratios. This speaks to the risks of pooling a larger
but biased data set. As the sample size of the training HRS increases, the AUC of all methods
(except GfG alone) increases as well, which is expected since all of them benefit from a larger
training sample size of HRS. The DEGLR is either best in all cases or extremely similar to the best
method, which is the desired behavior of the method.

In simulations, we can regulate bias and see how the DEGLR’s penalty changes. We showed
in simulations that this relationship is inverse, the larger the bias the smaller the penalty. In our
real data application is impossible to know or control the bias. Thus, in this analysis, we modify
the ratio between the target sample size (training HRS) and external (GfG) to assess the change
in the penalty. Increasing the training sample size should also have an inverse relationship with
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nGfG/ntrain ntrain/nHRS AUC Pool AUC HRS AUC DEGLR AUC GfG ||γ̂||2
20.0 0.10 0.690 0.677 0.692 0.681 1.16
13.3 0.15 0.694 0.691 0.697 0.681 1.22
10.0 0.20 0.696 0.697 0.699 0.681 1.38
8.00 0.25 0.697 0.701 0.702 0.681 1.55
6.66 0.30 0.699 0.704 0.704 0.681 1.64
5.71 0.35 0.700 0.707 0.706 0.681 1.79
5.00 0.40 0.702 0.708 0.708 0.681 1.93
4.44 0.45 0.703 0.709 0.709 0.681 2.07
4.00 0.50 0.704 0.710 0.710 0.681 2.18
3.63 0.55 0.704 0.711 0.711 0.681 2.28
3.33 0.60 0.705 0.712 0.712 0.681 2.33
3.08 0.65 0.706 0.713 0.712 0.681 2.43
2.86 0.70 0.707 0.713 0.713 0.681 2.47
2.67 0.75 0.707 0.714 0.713 0.681 2.55
2.50 0.80 0.708 0.714 0.714 0.681 2.57

Table 4.2: The first column is the ratio between the sample size of GfG and the training HRS. The
second column indicates the ratio between the sample size of the partition of HRS used to fit the
models and the complete sample size of the HRS data reserved for testing. The third, fourth, fifth,
and sixth columns have the AUC obtained with each of the four methods. The pooling method
uses HRS and GfG staked as one data source, HRS uses only HRS, DEGLR corresponds to the
Data Enriched Generalized Linear Regression, and GfG uses only the GfG data. The last column
has the norm of the bias γ.

the penalty. An interesting effect of observing is if the penalty decreased as the training sample
size increased. However, the magnitude of λ is not comparable across the training sample size,
making a direct comparison of the penalty impossible. On the other hand, we can conceptualize
a true value of γ. When λ → ∞ we expect that β̂λ is the same as the estimator from pooling
both data sources. For this case γ is unidentifiable and those the DEGLR estimates it as zero, thus
lim
λ→∞

E[γ̂λ] = 0. Following the same logic when λ → 0 the DEGLR converges to ignoring the
external data, which means the estimate for γ should be unbiased, thus lim

λ→0
E[γ̂λ] = γ. In Table

4.2 we see the norm of γ increases as the sample size ratio increases, which is what we expect.
Finally, in Figure C.1 in the appendix we show that the cross validation approach selects a λ that
attains a value of the AUC that is very close to the maximum possible in a testing data set.

The larger gamma the less we are using the external data for that covariate, because of this we
define a measure of relative weight of the external data as the norm of beta divided by the sum of
the norm of beta and gamma. In Figure

We assess if the maximum AUC is attained by the λ from the cross-validation from 4.2.4. In
Figure 4.4 we show the AUC for three of the ratio sample sizes of the analysis. The AUC of
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the predictor with the seleted λ is close to the maximum but is not the maximum in any of the
cases. This could be because the current algorithm does not takes into account that the sample size
ratio between external and target data is different in the complete training data that in the stratified
training data. In the panels the ratio of GfG over traing HRS is 20, 13.3, and 10. We used a
cross-validation with K = 10 folds which means that in each fold the sample size ratio is 22.2,
14.78, and 11.1, which is around 10% higher external weight. A higher value of K so that the
sample size ratios are more similar, or a modified version of the CV algorithm could improve the
attainability of the optimal value. However, it is notable that even under the unequal sample size
ratio the algorithm approximates the maximum well.

The larger the value of γ̂ the more we are ignoring the external information, this is shown in
Table 4.2 for this example. This poses the question the interpretation of the values of γ̂ for each
covariate. In Figure 4.5 we can see that the estimates of γ differ across covariates with some of
them being close to zero and others having sizable values. It is very interesting that all of the values,
except for Born between 1924 and 1930, are non decreasing. This is expected since we observed
that the norm of γ̂ was increasing. Nevertheless, there are two interesting cases for the values of
γ̂. The first is when the estimates increases considerably, which we interpret as covariates that
initially were useful for increasing the prediction but as the sample size of the target data increased
the emphasis on using the external information for those covariates decreased. The second case is
less intuitive, it is the case for covariates for which the value of γ̂ remained practically constant.
This could have two opposite interpretations. Either the external information of the covariate was
not useful to predict the target or that even with very similar sample sizes the information from the
external data is useful for the target data. To be able to choose which of these interpretations is
appropriate we can think about the magnitude of γ̂j for each covariate. Similar to deciding when
an effect size is clinically relevant, this will depend on the scale of the covariate. In Figure 4.5 all
covariates are standardize to the target population and so the interpretation of the effect sizes is the
change from the mean by one standard deviation. From these we can see that most of the covariates
have small and constant values for the bias effect size with only Born ’42-’47, Born ’48-’53, and
Born ’54-’59 have a large effect size and they increase. These suggest that most of the change in
prediction comes from ignoring the external data from these covariates.
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Figure 4.4: In the x-axis we present the value of the penalty λ in the log scale. In the y-axis is the
AUC of the HRS data using ŶHRS = XHRSβ̂DEGLR(λ) as a predictor. With a red dot we mark the
corresponding AUC of the predictor that uses the penalty from the cross validation.
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Figure 4.5: In the y-axis we see the γ̂ for each of the covariates in the real data analysis. In the
x-axis we see the sample size ratio of the synthetic GfG and the training HRS. For these analysis
all covariates are standardize so the scale of the effect size is change for one standard deviation.
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4.5 Discussion

We develop the Data Enriched Generalized Linear Regression (DEGLR) method in this work.
We show that DEGLR is equivalent to a penalized linear regression problem when we augment
the data to include a penalization on the target linear prediction bias with an appropriated cross-
validation method to select the penalty λ. Our equivalence results do not depend on the functional
form of the likelihood; thus, DEGLR can be fit through penalized linear regression for any model
with likelihood. The objective of DEGLR is to leverage external data to improve prediction in
target data. We use glmnet exclusively to obtain estimates of the DEGLR, and we propose a cross-
validation algorithm that finds the λ that regulates the amount of information to borrow from the
external data source. This is because penalized linear regression does not differentiate between
target and external information, so it has no mechanism to ignore the external data if we choose
the penalty λ as penalized regression would do. DEGLR chooses λ by cross-validation in the target
data, which means that the loss function in the cross-validation only depends on the target data.
Through simulations, we obtain the exact estimates as DELR across 12 different scenarios under
the linear model by appropriately scaling the penalty (median concordance correlation of 0.999).
Thus, DEGLR extends the Data Enriched Linear Regression (DELR) method from Chen, Owen,
and Shi [15] for binomial, poisson, multinomial, cox, and multi-response Gaussian links, and we
call it Data Enriched Generalized Linear Regression (DEGLR).

The DEGLR shines when pooling both data sources could harm more than benefit. How much
the external information can improve or decrease prediction ability ultimately depends on a bias-
variance trade-off. The DEGLR assumes a larger sample size in the external data source. If both
data sources have the same sample size, the external data source could be helpful only under a
very small bias. However, in this work, we focus on the case of having access to large studies with
lower-quality data. A method to solve a similar problem is presented by Boonstra [8]. However, the
difference is that this method assumes we have access to low-quality observations on all samples
for high-quality observations only on a subset of the samples. This would be equivalent to our
scenario if the target data set were a subset of the external data set.

In our real data analysis, we explored the utility of applying this method when one of the co-
variates is a PRS, and the ancestral distribution of the data is different. This is related to chapters
2 and 3 of this dissertation. As Chapter 2 shows the impact of the predictive ability of PRS in
non-European populations due to differences in LD, we expect this variable to have different pre-
dictive abilities in both data sources. This work relates to Chapter 3 because it attempts to address
the problem of transferability after the PRS has all predictive variants aggregated, and Chapter 3
focuses on the problem before summing the risk variants. In our real data analysis, we see that the
GfG has a lower AUC than HRS even when the sample size of GfG is 13.3 larger than the training
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sample of HRS. This is not surprising when considering the results from Chapters 2 and 3.
Chen, Owen, and Shi presented Stein-type results on the inadmissibility of using only the target

sample for a model with more than five predictors and more than 10 degrees of freedom. We did
not explore if such a type of result extends to other link functions. However, we believe this could
be interesting future work. Another interesting future work is to explore the method in the other
link functions that are available in the glmnet package. We provide code to implement DEGLR
that can include these other functions by only including the loss function associated with their
likelihoods. Thus, this work increases the reach of Data Enriched Linear Regression to several link
functions and provides a useful tool to improve prediction in a small sample with high-quality data
sets when there is a large data set with overlapping covariates.x
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CHAPTER 5

Discussion and Future Work

The driving topic of this dissertation is to study how different studies can be transferable or in-
tegrated. In Chapter 2, we studied the effect of LD on the transferability of European GWAS to
non-European populations through extensive simulations. In our simulations, we isolated the ef-
fect of LD by assuming the same effect size in all populations. Then we conducted a GWAS in
a European simulated data set and used the most significant variant (MS) as a predictor for the
trait. Under our scenario, the predictive ability of the MS variant is the same for all populations
if it is the true risk variant. The predictive ability of the MS variant when it is not causal is the
effect size of the causal variant time their correlation. Since LD structures are different across
populations, then the predictive ability of the MS variant will change across populations when it is
not the causal variant. We estimated the probability of this scenario and found it to be significantly
high even when the expected power is high. Thus our results suggest that increasing sample sizes
of European GWAS will not suffice to overcome the problem of reduced transferability, which
agrees with [35]. Thus, we estimated the correlation of the most significant variant with the true
underlying risk variant in high-powered GWAS as a transferability measure. By this measure, we
found a significant reduction in the predictive ability of a European MS variant in the African pop-
ulation and a mild reduction in Admixed American, East Asian, and South Asian populations due
exclusively to the differences in LD.

Other factors impact the transferability of PRS. GWAS fits a regression model to each variant,
adjusting for covariates. However, we do not account for all interactions of the variant with other
variants or relevant environmental factors. Thus, the marginal associations contain the mean effect
of the ignored interactions. As mean environmental exposure and allele frequencies are different
across populations, then the marginal associations are going to be different across populations[82].
An additional effect of different allele frequencies manifests through different proportions of vari-
ance explained by the same variant in different populations[37]. This is a much more complex
problem because environmental interactions ideally should be studied longitudinally, they are
highly complex as even within families members can vary significantly, and the impact of en-
vironmental exposures varies significantly across traits. Some methods estimate the genome-wide
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correlation of causal variant effect sizes at shared SNPs that account for different LD structures
[9][27]. However, none of these methods can quantify the effect of genetic and environmental in-
teractions separately. Patel et al. [57] developed a method to study how genetic interactions drive
the heterogeneity of causal effect sizes. Measuring the environment interaction by itself has proved
to be more challenging. Because of this, a better understanding of the impact of interactions on the
transferability of PRS is a potential area for future work that will help develop methods.

The genetic component of traits is exceptionally diverse. Some traits have a substantial genetic
component with few causal variants. Others have thousands of variants with small effects, which
could explain a large portion of the trait’s variance. In addition, genetics very often acts through
the environment. Some environments might be beneficial for one trait but detrimental for another.
With all the different possibilities for genetics to manifest in human traits, it is naive to overcome
transferability through one universal solution. Thus, there is a wide range of needs in method
development that has to be studied.

Currently, there are several projects exist that are very intentional in collecting sam-
ples from non-European populations [51][31][82][1]. However, increasing samples of under-
represented groups must be done through community inclusion [28] and protecting against
commodification[26]. Moreover, even after all the previously mentioned efforts, the over-
representation of European samples has not changed significantly up to 2021[23]. Thus, there
is a need for methods designed explicitly to improve the prediction and estimation of targeted pop-
ulations to empower researchers from these communities to leverage the existing data efficiently.

There are several methods that improve transferability of PRS across populations.[53] [47] [29]
[18] [80][63] However, these methods focus on constructing a PRS that could have similar predic-
tion ability across populations. This type of PRS might hinder population-specific discoveries in
underrepresented populations. Chapter 3 presents a Power Prior approach to model regions using
summary statistics. We show that it is robust to an unbalanced sample size and unequal correlation.
Also, the method works with only summary statistics, making it possible to use it with publicly
available data. However, the method only considers one external population, which is a limitation.
A first extension to the Power Prior from Chapter 3 would include more than one external pop-
ulation by adding their likelihoods with a power parameter. The concern of that approach is that
this assumes that all external populations are independent and have no overlap information. This
assumption can overestimate the external information about specific parameters making the opti-
mization of the power parameters inefficient and inaccurate. Thus, extending Chapter 3 to several
external populations is not a trivial problem and poses an exciting area for future work.

Leveraging research across studies is not limited to genetic studies. In recent years access
to observational data has increased dramatically. For example, electronic health records (EHR)
collect people’s medical history every time they attend a hospital. Researchers are interested in
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utilizing this massive information source to investigate health-related questions. This area of re-
search is highly active, with a strong focus on causal inference. One example is that due to inclu-
sion/exclusion criteria for RCT, often, their results are valid only for a subset of a population. On
the other hand, extensive observational studies represent a more significant portion of the popula-
tion but often have incomplete information on confounding variables. Thus, it is often of interest to
increase the transferability of randomized clinical trials (RCT) to broader populations by integrat-
ing RCT with observational studies, borrowing sample size strength from the observational study
and unbiased estimators from RCT. Another example is the multi-task learning scenario which
integrates several small studies. The objective is that each task benefits from the shared structure
and, at the same time, retains information that is task-specific[30][21]. Also, there is an extensive
literature on leveraging historical studies to increase estimation efficacy on current studies with a
larger set of covariates [7] [16] [69] [14]. Similarly, as we mentioned in the genetic setting, none
of these methods accounts for the case in which the interest resides in uplifting one population.

The setting for the DELR is to increase prediction in a target data set by leveraging a large
external study [15]. The downside of DELR is that it only applies to continuous outcomes with a
Gaussian error. Most biomedical outcomes do not follow this assumption, which significantly lim-
its DELR. Chapter 4 extends DELR to DEGLR. This extension leverages the connection between
the objective function of DEGLR and penalized linear regressions for using the existing software
glmnet. We implemented a tailor CV algorithm to find the optimal penalty to increase prediction
in the target population. With simulations and a real data example, we show that DEGLR can
increase prediction ability when an external data set has a low bias but continuously shifts the
weight of the external information as bias increases to eventually ignore it. Even though DEGLR
focuses on prediction, the equivalence with penalized regression makes an easy transition to use
the method for estimation by changing the penalty to the bias vector γ. The CV algorithm can
remain the same, only modifications on the loss function if desired.

An essential gain of using DEGLR for estimation is removing a limiting assumption. In the case
of prediction, we use the Cholesky decomposition of the matrix of sums of squares of the target
data. Cholesky decomposition applies to a positive definite matrix, implying that the target sample
size has to be less than the number of variables. An assumption that penalized regression not only
does not make but is one of the motivations for its development. Thus, DEGLR for estimation
also constitutes interesting future work as extensive literature on penalized regression is already
available.

There is always going to work to be done to help reduce disparities. Statistics, Data Science,
Computer Science, and other sciences involved in using data to develop prediction models have
unintentionally increased inequalities[55]. This dissertation develops two methods to intention-
ally uplift small data sets by safely utilizing large sample studies. The problem presents itself as
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something very similar to existing problems, but in this dissertation, we learned that there are some
specific challenges to this setting. A critical challenge of this setting is that the bias variance trade-
off plays an important role. When the external studies have a much larger relative sample size than
the target study, the gain in variance reduction can overwhelm bias. In principle, this is not a prob-
lem when prediction is the interest. However, in the case of estimation, this can make the methods
very unstable. For example, in the case of the Power Prior, the optimal power parameter would
most likely be close to the boundaries of the space parameter for this case. Further research on this
specific statistical setting is needed as it can help researchers from underrepresented populations
adequately use the massive amount of research done in better-studied populations.
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APPENDIX A

Supplemental material for Chapter 2

Simulating Case-Control Data Sets To maintain the LD structure around a causal variant, we
sample with replacement haplotypes from the 1000 Genome Project from the four super popula-
tions: African (AFR), Admixed American ( AMR), East Asian (EAS), European (EUR) and South
Asian (SAS). We will restrict our set of causal variants to those that have AF between 0.1 and 0.5
in the European population to ensure high power in the European GWAS. To simulate each data
set, we first simulate the cases by calculating the probability of being sampled for each haplotype.
Let Di be a binary variable that takes the value 1 when the individual is a case and 0 when is a
control, Gi be the dosage of the causal variant, β is the effect size in log odds ratio scale, and β0 is
the intercept that depends on the prevalence of the disease. Thus, Equation (1) is the probability of
sampling a haplotype with a dosage of Gi of the causal variant, conditional on disease status.

P (Hi = h|Di) = P (Di|Hi = h)
P (Hi = h)

P (Di)
(A.1)

P (Hi = h|Di) =

(
eβo+h⊤θ

1 + eβ0+h⊤θ

P (Hi = h)

P (Di)

)Di (
1

1 + eβ0+h⊤θ

P (Hi = h)

P (Di)

)1−Di

(A.2)

=

(
eβo+Gihβ

1 + eβ0+Gihβ

P (Hi = h)

P (Di)

)Di
(

1

1 + eβ0+Gihβ

P (Hi = h)

P (Di)

)1−Di

, (A.3)

where Gih is the dosage of the risk variant in haplotype h of individual i, and θ is a vector that is
zero for all non risk variants and β for the risk variant.

We first simulate the cases by fixing Di = 1, and then sample with replacement until we reach
the desired sample size. Then repeat the same for controls by fixingDi = 0 to get the probability of
being sampled for each haplotype. The code for the sampling by replacement procedure was done
with R and can be found here https://github.com/orozcodelpinopedro/MS.variant.simulations. We
will run the simulation pipeline one time per variant across all variants with an allele frequency
between 0.1 and 0.5 in the European population.
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Figure A.1: We show the distribution of the probability of the causal variant being most significant
for deciles of LD-score.
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Figure A.2: We show the distribution of the probability of the MS variant being causal for each
decile of LD-score for all simulated variants in chromosome 22. In red we present the mean
probability of the MS variant being the causal variant.
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Figure A.3: We sample from the distribution of ρ̂∗ to generate a PRS of 30 risk variants with same
effect size for all 30 variants and same true effect size across populations. We then calculated the
prevalence for different quantiles of the PRS distribution for all five populations.
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Number of
risk variants
in the PRS

Population Relative risk Normalized
relative risk

5*10 European 1.81 1.00
South Asian 1.76 0.97
Admixed American 1.76 0.97
East Asian 1.70 0.94
African 1.57 0.87

5*20 European 2.20 1.00
South Asian 2.13 0.97
Admixed American 2.13 0.97
East Asian 2.04 0.92
African 1.87 0.83

5*30 European 2.45 1.00
South Asian 2.37 0.97
Admixed American 2.36 0.96
East Asian 2.28 0.93
African 2.02 0.83

Table A.1: Estimated reduction in predictive ability of European based MS variants for different
number of risk variants in the PRS. The relative risk is calculated as the ratio of the prevalence
of the trait between individuals in the bottom 10% of the distribution of PRS and individuals in
the top 10% of the distribution of PRS. Normalized relative risk is the relative risk divided by the
European relative risk.

Impact of under estimating odds ratio on the predictive ability of a PRS
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Figure A.4: In the horizontal axis we plot the power of the European discovery GWAS. The vertical
axis has the mean correlation coefficient between the most significant variant and the causal variant.
The color is the allele frequency of the causal variant.
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APPENDIX B

Supplemental material for Chapter 3

B.1 Power prior model for a multivariate model

In this section we describe a model to apply at a locus level. We parametrize Gaussian distributions
with mean and precision, thus N(x;µ, τI) is the density of a Gaussian distribution with mean
vector µ, precision matrix τI evaluated at x. Consider genetic data in which data source refers to
genetic data sampled from individuals from the same ancestral population, thus we use data source
and population interchangeably. Let Ye ∈ Rne be the standardized phenotype from an external
population, Xe ∈ Rne×m a centered genotype matrix information from an external population at a
region with m variants. Consider the following multivariate regression model.

Ye = Xeβ + ϵ, (B.1)

where ϵ ∼ N(0, 1/τe) is a ne × 1 vector of independent errors and τe is a precision parameter.
Assuming known τe, the likelihood for β is L(β|Ye, Xe, τe) = N(Ye;Xeβ, τ

−1
e I). In addition with

the likelihood and a ridge prior π0(β|τ) = N(β; 0, τI) the power prior conditional on the external
population data, a0, and the ridge parameter τ is P (β|Ye, Xe, τe, a0, τ) = N(Ye;µe, νe), where
νe = a0τeX

⊤
e Xe + τI, and µe = ν−1

e a0τeX
⊤
e Ye. For a0 = 0 the power prior coincides with the

ridge prior. When a0 = 1 the power prior coincides with using the posterior distribution of the
external population with a ridge prior as a prior. A convenient result of having Gaussian priors is
that the power prior conditional on a0 remains as a Gaussian distribution for any prior π(a0|γ) (See
Appendix for details).

Let Yt ∈ Rnt be the standardized phenotype from a target population, Xt ∈ Rnt×m a centered
genotype matrix information from a target population at the same region as the external population
with m variants. Assume the same model as 4.1 but with a precision parameter τt. The power prior
posterior distribution conditional on a0, the target data, and the external data for a multivariate
model is

74



P (β|Xt, Yt, τt, Xe, Ye, τe, τ, a0) = N(Yt;Xtβ, τtI)N(µe; β, νe)

∝ exp

(
−1

2

(
τt(Yt −Xtβ)

⊤(Yt −Xtβ) + (µe − β)⊤νe(µe − β)
))

∝ exp

−1

2

β⊤(τtX
⊤
t Xt + νe)β − 2β⊤(τtX

⊤
t Yt + νeµe︸︷︷︸

a0τeX⊤
e Ye

)




= exp

(
−1

2

(
β⊤νteβ − 2β⊤νteν

−1
te (τtX

⊤
t Yt + a0τeX

⊤
e Ye)

))
∝ exp

(
−1

2

(
µte − β)⊤νte(µte − β

))
,

where νte = τtX
⊤
t Xt + a0τeX

⊤
e Xe + τI, and µe = ν−1

te (τtX
⊤
t Yt + a0τeX

⊤
e Ye). Thus the

posterior distribution of β conditional on the target data, the external data, and the power parameter
is N(µte; β, νte).

B.2 Power prior conditional on a0 is Gaussian

We calculate the normalizing constant c(a0)−1 =
∫
L(β|Ye, Xe, τe)

a0π0(β|τ)dβ

c(a0)
−1 =

∫
L(β|Ye, Xe, τe)

a0π0(β|τ)dβ

=

√
τme τ

(2π)(m+1)

∫
exp

(
−1

2

(
a0τe(Ye −Xeβ)

⊤(Ye −Xeβ) + τβ⊤β
))

dβ

=

√
τme τ

(2π)(m+1)

∫
exp

(
−1

2

(
a0τe(Y

⊤
e Ye − 2β⊤X⊤

e Ye + β⊤X⊤
e Xeβ) + τβ⊤β

))
dβ

=

√
τme τ

(2π)(m+1)

∫
exp

(
−1

2

(
β⊤(a0τeX

⊤
e Xe + τI)β − 2a0τeβ

⊤X⊤
e Ye + a0τeY

⊤
e Ye

))
dβ

=

√
τme τ

(2π)(m+1)
exp

(
−1

2

(
a0τeY

⊤
e Ye − µ⊤νµ

))∫
exp

(
−1

2

(
(µ− β)⊤ν(µ− β)

))
dβ︸ ︷︷ ︸

Kernel of N(µ;β,ν)

=

√
τme τ |ν−1|

2π
exp

(
−1

2
(a0τeY

⊤
e Ye − µ⊤νµ)

)
.

Thus, we can now see the conditional distribution of β given a0, τ , the external information
(Xe, Ye), and τe.
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π(β|a0, Xe, Ye, τe, τ) =L(β|Ye, Xe, τe)
a0π0(β|τ)c(a0)

=

√
τme τ

(2π)(m+1) exp
(
−1

2

(
a0τe(Ye −Xeβ)

⊤(Ye −Xeβ) + τβ⊤β
))√

τme τ |ν−1|
2π

exp
(
−1

2
(a0τeY ⊤

e Ye − µ⊤νµ)
)

=
1√

(2π)m|ν−1|
exp

(
−1

2
a0τeY

⊤
e Ye

)
exp

(
−1

2

(
β⊤νβ − 2β⊤νµ

))
exp

(
−1

2
(a0τeY ⊤

e Ye
)
exp

(
1
2
µ⊤νµ)

)
=

1√
(2π)m|ν−1|

exp

(
−1

2

(
µ− β)⊤ν(µ− β

))
=N(µ; β, ν).

Note that the resulting Gaussian is the same as the one when a0 was considered fixed.

B.3 Power prior with regression summary statistics posterior
mean in terms of S and R

From Equation 3.8 we obtain an analytic solution to the posterior mean of the PP-RSS method.
The expression depends on the matrix product θνθ, where θ = SRS−1 and ν = (SRS)−1. Here
are the calculations of θνθ in terms of S and R.

θνθ = SRS−1(SRS)−1SRS−1

= SRS−1S−1R−1S−1SRS−1

= SRS−3.

The other expression in the posterior mean is the product θν which in terms of S and R is θν =

SRS−2(RS)−1. Thus the posterior mean from Equation 3.8 in terms of S and R is.

β̂te = (StRtS
−3
t + a0SeReS

−3
e + τI)−1(StRtS

−2
t (RtSt)

−1β̃t + a0SeReS
−2
e (ReSe)

−1β̃e). (B.2)

B.4 Explained heritability with different power parameters
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Figure B.1: Explained heritability obtained with different choices of the power parameter. Color
represents the four different methods. Both plots have an external population with European an-
cestry.
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Figure B.2: Heritability explained by the Power Prior with pseudo correlation method in 100
simulations for the 703 regions (See Methods for details).
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APPENDIX C

Supplemental material for Chapter 4

C.1 Details on the DELR estimate

The DELR estimate is such that minimizes Equation 4.3. By deriving f with respect to β and γ
we can obtain the following normal equations.

(Vt + Ve)β̂λ = Vtβ̂ + Veα̂− Veγ̂λ (C.1)

(λVt + Ve)γ̂λ = Veα̂− Veβ̂λ (C.2)

We solve for γ̂λ in C.2 and plug it in C.1.

(Vt + Ve − Ve(λVt + Ve)
−1Ve)β̂λ = Vtβ̂ + Veα̂− Ve(λVt + Ve)

−1Veα̂ (C.3)

Let Ŵλ = (Vt + Ve − Ve(λVt + Ve)
−1Ve)

−1Vt, then

β̂λ = Ŵλβ̂ + ŴλV
−1
t (Veα̂− Ve(λVt + Ve)

−1Veα̂)

= Ŵλβ̂ + ŴλV
−1
t (V̂tα̂ + Veα̂− Ve(λVt + Ve)

−1Veα̂− V̂tα̂)

= Ŵλβ̂ + ŴλV
−1
t (V̂tα̂ + Veα̂− Ve(λVt + Ve)

−1Veα̂)− Ŵλα̂

= Ŵλβ̂ + ŴλV
−1
t (V̂t + Ve − Ve(λVt + Ve)

−1Ve)α̂− Ŵλα̂

= Ŵλβ̂ + α̂− Ŵλα̂

= Ŵλβ̂ + (I− Ŵλ)α̂

We now want to show that Wλ simplifies to [(λ+ 1)Ve + λVt]
−1(Ve + λVt).
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Ŵλ = (Vt + Ve − Ve(λVt + Ve)
−1Ve)

−1Vt

=
(
[(Vt + Ve)V

−1
e (λVt + Ve)− Ve](λVt + Ve)

−1Ve
)−1

Vt

= [(VtV
−1
e + I)(λVt + Ve)− Ve]

−1(λVt + Ve)V
−1
e Vt

= [λVtV
−1
e Vt + λVt + Vt + Ve − Ve]

−1(λVt + Ve)V
−1
e Vt

= [λVtV
−1
e + (λ+ 1)I]−1V −1

t (λVt + Ve)V
−1
e Vt

= [λVtV
−1
e + (λ+ 1)I]−1(λV −1

e + V −1
t )Vt

= [λVtV
−1
e + (λ+ 1)I]−1(λV −1

e Vt + I)

= [λVtV
−1
e + (λ+ 1)I]−1V −1

e (λVt + Ve)

= [λVt + (λ+ 1)Ve]
−1(λVt + Ve)

C.2 Limit of Wλ

To find the limits of Wλ when λ → ∞ it is best to express as the sum of two components Wλ =

[λVt + (λ + 1)Ve]
−1Ve + [λVt + (λ + 1)Ve]

−1λVt. It is trivial that λ ≈ λ + 1 for any big λ. Thus
[λVt + λVe]

−1Ve + [λVt + λVe]
−1λVt has the same limit as Wλ. Thus

lim
λ→∞

Wλ = lim
λ→∞

(
[λVt + λVe]

−1Ve + [λVt + λVe]
−1λVt

)
= lim

λ→∞

(
1

λ
[Vt + Ve]

−1Ve + [Vt + Ve]
−1Vt

)
= [Vt + Ve]

−1Vt

C.3 Degrees of freedom of DELR

Here we give a different expression of the degrees of freedom of Model 4.3 that is useful to under-
stand the monotonicity of the degrees of freedom ad a function of λ.

Let M = V
1/2
t V −1

e V
1/2
t , now let M = UDU⊤ be the eigen value decomposition of M . Then

we can write Wλ in terms of M .
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Wλ = [Ve + λVt + λVe]
−1(Ve + λVt)

= [Ve + λVt + λVe]
−1(V −1

e Vt)
−1(V −1

e Vt)(Ve + λVt)

= [Vt + λVtV
−1
e Vt + λVt]

−1(Vt + λVtV
−1
e Vt)

= [V
1/2
t (I+ λV

1/2
t V −1

e V
1/2
t + λI)V

1/2
t ]−1V

1/2
t (I+ λV

1/2
t V −1

e V
1/2
t )V

1/2
t

= [I+M + λI]−1(I+ λM)

Then tr (Wλ) = tr([I+M + λI]−1(I+ λM)), and thus another expression for the degrees of
freedom is

df(λ) =

p∑
j=1

1 + λνj
1 + λ+ λνj

, (C.4)

where ν = diag(D).

C.4 Relationship between DEGLR and the penalized regres-
sion implemented by glmnet

The objective function from Equation 4.9 is very similar to the objective function of the penalized
regression implementation from the package glmnet. For outcomes that are not continuous with
log likelihood l(θ;X, Y ) for θ, and data (X, Y ), where Y is the outcome, X are the covariates, and
N is the sample size the penalized regression objective function can be written as follows.

f(θ;λ∗) = −l(θ;X, Y )/N + λ∗/2||θ||22. (C.5)

Let Y ⊤ = (Y ⊤
t , Y

⊤
e ), θ = (β, γ∗), N = nt + ne, and X =

(
Xt 0p×p

Xe XeL

)
, where L will be

specified later. Then we can show that function C.5 is equivalent to function 4.9 when we put no
penalty on β and adjusting λ by a factor of ne + nt. Since we will do differential shrinkage so that
we do not impose any shrinkage on β, then from now on, we include only γ∗ in the penalty instead
of θ. Thus,
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f(θ;λ∗) = −l(θ;X, Y )/N + λ∗/2||γ∗||22

= −1/N
nt∑
i=1

l(θ;X⊤
i , Yi)− 1/N

ne+nt∑
i=nt+1

l(θ;X⊤
i , Yi) + λ∗/2||γ∗||22

= −1/N
nt∑
i=1

l(θ; (X⊤
ti , 01×p), Yti)− 1/N

ne∑
i=1

l(θ; (X⊤
ei , X

⊤
eiL), Yei) + λ∗/2||γ∗||22

= −1/N
nt∑
i=1

lt(β;Xti, Yti)− 1/N
ne∑
i=1

le(β + Lγ∗;Xei, Yei) + λ∗/2(||γ∗||22)

= −lt(β;Xt, Yt)− le(β + Lγ∗;Xe, Ye) + λ∗N/2γ∗⊤γ∗

Let γ = Lγ∗ then L−1γ = γ∗ which gives the following equivalence

f(θ;λ∗) = −lt(β;Xt, Yt)− le(β + γ;Xe, Ye) + λ∗N/2γ⊤(L−1)⊤Lγ

If we choose L such that (L−1)⊤ is the Cholesky decomposition of Vt, (i.e. (L−1)⊤L−1 = Vt

)then ||L−1γ||22 = γ⊤Vtγ = ||Xtγ||22 and thus

f(θ;λ∗) = −lt(β;Xt, Yt)− le(β + γ;Xe, Ye) + λ∗N/2||Xtγ||22
= g(β, γ;λ∗N/2). (C.6)

Because of this relationship with penalized regression and DEGLR we can use the glmnet Pack-
age to fit DEGLR for gaussian, binomial, poisson, multinomial, cox, and multi-response Gaussian.

C.5 Penalization obtained through cross validation

We assess if the selected λ with the cross validation approach from Section 4.2.4 attains the opti-
mum value in the real data analysis. In Figure C.1 we show that the cross validation method does
not obtains the optimal value in the testing data. However, it does attains a value of AUC that is
close to the maximum.
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Figure C.1: In the x axis is the log value of the penalty factor λ. With a red dot we indicate the
value of λ that the cross validation from section 4.2.4 selected as optimal using the training data of
HRS. In the y-axis we show the AUC in the test data of HRS for different values of λ. The panels
of the plot are three different sample size ratios between the GfG sample size and the training
sample size of HRS.
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