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Abstract 

 
 Heterogeneity is a ubiquitous feature of ecosystems and perhaps an important 

contributing factor to the oft noted difficulties associated with making generalizations in 

community ecology. Our answers to questions regarding the origins and consequences of various 

types of heterogeneity in ecological systems have long been met with contingencies and context 

dependency, highlighting the need to continually revisit our organizing metaphors. The work 

presented in this dissertation is concerned with these metaphors and especially those associated 

with the ecological processes that generate spatial heterogeneity in ecosystems. In eleven case 

studies, I attempt to understand the generation and subsequent implications of spatial 

heterogeneity for the assembly and functioning of ecological communities in agroecosystems.   

 I first address how ecological interactions create spatial pattern in Chapter 1 by 

presenting a novel demographic framework for understanding consumer-resource generated 

spatial patterns. I then explore how spatial heterogeneity influences ecological interactions in 

Chapter 2 and Chapter 3.  Whereas in the former I ask how basic ecological interactions are 

influenced by dynamic patterns of heterogeneity in ecosystems, in the later I ask how changes in 

spatial structure influences pathogen epidemics. Chapter 4 then empirically explores how 

dispersal differentially alters community structure in leaf-litter metacommunities and Chapter 5 

explores the use of coupled oscillators as a metaphor for ecological communities. These first five 

chapters represent an attempt to understand the feedbacks between ecological interactions that 

create spatial heterogeneity and how spatial heterogeneity structures ecological communities.  
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 The dissertation then shifts focus to a fungal pathogen of coffee, the coffee leaf rust, and 

uses its community of consumers as a model system to understand how spatial heterogeneity 

influences community structure and how community structure influences biological control of 

the pathogen. Chapter 6 gives a brief overview of the history and ecology of the pathogen and its 

community, and Chapters 7-9 explore the assembly and organization of these communities, 

highlighting their interactions with the pathogen as well as among themselves. Finally, Chapters 

10 and 11 are concerned with the structure of interaction networks associated with the coffee leaf 

rust and the provisioning of top-down control of the coffee leaf rust pathogen in both Mexico and 

Puerto Rico. Taken together, this dissertation contributes to our understanding of how ecological 

communities create and are impacted by the heterogeneous environments they occupy. 

Furthermore, this work attempts to highlight the importance of such concepts in an 

agroecological context where questions of community structure and population regulation have 

the potential for practical significance.  
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Introduction 

 Heterogeneity is a ubiquitous feature of most, if not all ecosystems in one form another. 

Spatial heterogeneity is an omnipresent and scale dependent reality that has to be considered to 

understand ecosystem dynamics (O’Neil et al., 1987; Koltier and Wiens 1990; Levin 1992). An 

accounting of spatial heterogeneity has demonstrated its importance in structuring a variety of 

ecosystem processes, from primary production (Pringle et al., 2010) to nutrient cycling 

(Schlesinger et al., 2196). In a community ecological context, spatial heterogeneity has long been 

an acknowledged factor in influencing the structure and function of communities (Hanski 1998; 

Hanski and Ovaskainen 2000; Liebold and Chase 2018; Vandermeer and Jackson 2018). While 

there are countless experiments and studies, both empirical and theoretical, which highlight the 

importance of spatial heterogeneity in structuring ecological interactions and thus ecological 

communities, below we note some of historical importance for our field. 

 Some of the most foundational experiments in ecology have highlighted the inadequacy 

of a reductionist approach that separates the ecological communities under study from the 

realities of the spatial heterogeneity they typically face in their ecosystems. Gause’s early 

experiments in 1934 on consumer-resource interactions highlighted this fact early on. Despite his 

success in reproducing the competitive dynamics predicted by the Lotka-Volterra competition 

equations, Gause found himself unable to at first reproduce, even qualitatively, the expected 

consumer-resource dynamics of oscillations experimentally (Gause 1934). He found consistently 

that Didinium nasutum over-exploited its resource Paramecium caudatum, resulting in the 

collapse of the system. It wasn’t until Gause had the idea to introduce immigrants of both D. 
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nasutum and P. caudatum that he could get the system to persist with oscillations thus 

corresponding qualitatively with the basic theory (Gause 1934; Gause et al., 1936; Luckinbill 

1973). This introduction of immigrants into his microcosm suggests the importance of an 

“outside” supply of organisms for the system to persist, something which was later verified for 

this same system (Luckinbill 1974). This necessity of immigration hinted at the fact that spatial 

structure and dispersal may be an important mechanism which structures even the most basic 

ecological interactions, a reality that is appreciated today by most all ecologists (Levin 1969; 

Leibold et al., 2004). Remarkably similar results were discovered approximately 25 years after 

Gause’s foundational experiments, when Carl Huffaker studied the predator-prey dynamics of 

two mite species in the laboratory. Like Gause, Huffaker found that his system would not persist 

unless placed into a spatially extended environment with heterogeneity which consisted of an 

array of oranges. Huffaker’s experiments highlighted the importance of heterogeneity in the 

environment, using various techniques to modify the dispersal capabilities of both predator and 

prey to demonstrate how spatial heterogeneity plays a role in stabilizing the ecological 

interaction. 

 An accounting of the impact that spatial heterogeneity has on community dynamics is 

essential and sets the stage for questions of how spatial heterogeneity emerges in ecosystems, 

given its importance in community ecology. While there are numerous frameworks to understand 

where spatial heterogeneity comes from, a useful first question may be to ask whether 

heterogeneity emerges from endogenous or exogenous factors. Exogenous explanations may 

include, for example, plants preferring particular soil-types, thus implicating the underlying 

geology of an area as a force determining the spatial distribution of a plant community. An 

endogenous driver of spatial heterogeneity may emerge from the network of competitive 
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interactions among plants in the community (Vandermeer and Yitbarek 2012), facilitation 

between organisms (Stump et al., 2018), or even consumer-resource interactions (Comins et al., 

1994). While it is likely the case that both exogenous and endogenous factors work in concert to 

determine the structure of spatial heterogeneity in ecological communities, understanding the 

relative contributions of these two classes of processes can be a useful way of understanding how 

they are structured (Yitbarek et al., 2011; Li et al., 2016).  

 In the early 1950’s Alan Turing proposed a framework for understanding the dynamics of 

endogenously generated spatial heterogeneity which has laid a foundation for ecologists to build 

upon (Turing 1952; Segel and Jackson 1972). Central to his framing was the idea of activator-

inhibitor systems, where activators grow by themselves and inhibitors emerge to control the 

activators, both diffusing in a spatial context. The key to pattern formation with this elegant 

insight is that activators and inhibitors need to be diffusing in space at different rates. When there 

is differential diffusion in space, typically with inhibitors diffusing faster than activators, pattern 

formation occurs. This process of unequal diffusion leading to pattern formation is sometimes 

referred to diffusive instability or Turing instability (Turing 1952). The qualitative elements of 

Turing’s insight have provided a mechanistic framework that has been applied with great success 

in ecology (Alonso et al., 2002; Rietkerk and Van de Koppel 2008; Rietkerk et al., 2021) 

 Although Turing’s mechanism for the generation of spatial heterogeneity is quite broad, 

it has largely been successful in terms of describing intraspecific species interactions in pattern 

formation, with what has been called scale-dependent feedbacks (Rietkerk and Van de Koppel 

2008; Pringle and Tarnita 2017). The basic idea is that positive feedbacks within a population 

dominates locally in space and negative feedbacks take over at larger distances (Rietkerk and 

Van de Koppel 2008), resulting in self-organized spatial structure. While multiple ecological 
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mechanisms may fit within the scale-dependent feedback framework, other interspecific 

ecological interactions which correspond to Turing’s activator-inhibitor framework such as 

consumer-resource interactions, are known to create spatial patterns (Comins et al., 1992; 

Hassell et al., 1994; Alonso et al., 2002).  

 An appreciation that spatial heterogeneity emerges from ecological processes, as has been 

demonstrated in the Turing framework, in conjunction with an understanding that spatial 

heterogeneity influences ecological interactions, suggests the potential for feedbacks between 

these two dynamic processes of pattern formation and ecological interactions. My PhD 

dissertation is concerned with this dynamic feedback between pattern formation and ecological 

interactions and attempts to understand not only this feedback process, but how it structures 

ecological communities and how that community structure subsequently influences ecological 

processes in agroecosystems. 

 

Figure I.1: Conceptual diagram of interrelated themes of my dissertation.  Bold phrases 
connected by arrows represent core themes that tie together the various chapters. Chapters are 
in italics preceded by their number. The chapters are positioned close to the themes (or 
relationship between themes) that they correspond to.  
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 Figure I.1 lays out the structure of the work contained in this dissertation, where there are 

four central themes of the work presented here. My first theme is how ecological interactions 

create spatial pattern and in Chapter 1 I present a framework for doing so with consumer-

resource systems. I then turn to the theme of how spatial patterns structure ecological 

interactions, and ask about the feedbacks between these first two themes in Chapter 2 by 

exploring how dynamic spatial heterogeneity feeds into the dynamics of host-parasitoid systems. 

In Chapter 3, I focus exclusively on the issue of how spatial structure influences pathogen 

dynamics using a modeling approach. In Chapter 4 I take an empirical approach and link the first 

two themes to the third theme of community assembly to ask how dispersal alters community 

structure in empirical metacommunities. Staying with the theme of community assembly and 

organization, Chapter 5 puts forth an alternative way of viewing community organization, 

through the lens of coupled oscillators.  

 Chapter 6 introduces the final theme of the dissertation, ecosystem services in 

agroecosystems, and focuses on the coffee leaf rust, where we introduce the basic history and 

ecology of the pathogen. In Chapter 7 I address the community assembly of natural enemies of 

the coffee leaf rust in two regions where coffee is cultivated and the coffee leaf rust pathogen has 

had dramatically different histories. Chapter 8 and Chapter 9 bridge the two themes of 

community assembly and ecosystem services to understand the details of community assembly 

of the coffee leaf rust natural enemy community in Puerto Rico, where I explore interactions 

within the community and the impact of the community on the coffee leaf rust. In Chapter 10 the 

focus turns to the influence of trophic interactions in structuring the control of the coffee leaf rust 

and finally Chapter 11 explores how the management of an intercrop structures ecological 
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interactions and biological control of the coffee leaf rust through a pathway of indirect and direct 

interactions.  
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Abstract 
	
Alan Turning’s proposed inhibitor-activator mechanism underlying spatial pattern formation has 

been successfully applied by many fields of science to explain a wide range of natural 

phenomena. In ecology, the inhibitor-activator mechanism is often abstracted as a consumer-

resource system, one of the most fundamental ecological modules in nature, and has been shown 

to generate a wealth of spatial patterns. Here we propose the existence of a fine scale 

demographic spatial pattern (DSP) that should be universal among spatially clustered consume-

resource pattern generating systems, and propose a series of hypotheses about how this DSP 

should structure ecological dynamics in space and time. Utilizing 13 years of large-scale 

spatially explicit data on the distributions of arboreal ants, we present an empirical method for 

detecting DSP in natural populations and confirm its existence. We then show how the DSP 

generates spatiotemporal patterns in consumer-resource dynamics as well as long term patterns 
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age-specific mortality rates that emerge from the spatial dynamics of the system. This work 

highlights how synthesizing the theoretical elegance of Turing’s hypothesis with ecological 

dynamics allows us to not only understand how ecological patterns are formed but also provides 

a mechanistic framework for studying the Turing mechanism consumer-resource systems.  

Turing and consumer-resource spatial patterns 
	
 The Turing activator/inhibitor mechanism provides for a qualitative understanding of 

self-organization of spatial patterns (Turing 1952; Nijhout 2018), as applied to many areas of 

science from chemistry (Winfree & Strogatz 1984), to cosmology (Nozakura & Ikeuchi 1984), 

and in biology, from the cell to the ecosystem (Kondo & Miura 2010, Kefi et al. 2007). 

Particularly in ecology, consumer-resource motifs provide a useful analogy to Turning’s 

conceptualization, with resources being activators, consumers inhibitors and both “diffusing” 

through space. As ecologists first began to explore spatially explicit consumer-resources models, 

it became clear that a variety of patterns, from traveling waves, stationary lattices, chaos and 

clustered distributions, were an inevitability of their spatial extension (Comins et al. 1992; 

Alonso et al. 2002; Baurmann et al. 2007; Bascompte et al. 1995). This theoretical inevitability 

of patterns emerging from such systems resulted in the frequent suggestion that this consumer-

resource motif may be responsible for many observed large-scale spatial patterns in ecosystems 

(Maron & Harrison 1997). While evidence for Turing-like mechanisms has been found to be 

operative in several empirical systems it has been rarely attributed to consumer-resource 

interactions but rather often abstracted to function in single-species scenarios in the form of 

scale-dependent feedbacks (Rietkerrk & Van De Koppel 2008; Schoelynck et al. 2012; Pringle & 

Tarnita 2017).  
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 We suggest that lack of empirical support for consumer-resource generated spatial 

patterns stems from a lack of clear hypotheses regarding the basic population dynamics of 

spatially explicit consumer-resource systems. Here we seek to develop an understanding of the 

critical features of such systems and propose several patterns that should be universal in their 

population dynamics to provide a framework that can be applied broadly to other systems. To 

explore such generality we distinguish between the large and fine scale structures of a spatial 

pattern, wherein the large-scale structure is the pattern across a landscape and the fine-scale 

structure is an inset of that large-scale pattern. Much attention has been paid to large-scale 

descriptions of spatial pattern (Klausmeier 1999; Pascual & Guichard 2005; Kefi et al 2014), and 

we propose that the fine-scale patterns in the constitutive elements of the larger scale spatial 

pattern may be informative in understanding the dynamics and mechanisms driving pattern 

formation, within the basic paradigm of the Turing process driven by a consumer-resource 

interaction. 

Demographic spatial patterns and clustered populations 
	
 One of the most common spatial patterns that emerges in both nature and a plethora of 

different ecological models, including consumer-resource models, is the clustered distribution of 

organisms. Most frequently these patterns are quantified at larger scales, with a nearest neighbor 

measure (e.g. Ripley’s K), analysis of power spectra (e.g. wavelet analysis) or a quantification of 

the cluster size frequency distribution (Pascual & Guichard 2005; Vandermeer et al. 2008; Kefi 

et al 2014). While studying spatial pattern at these larger scales have proven fruitful in 

developing our understanding of pattern formation, we propose to couple this large-scale 

approach with an interrogation of the fine-scale pattern embedded within these large-scale 

patterns. With clustered spatial patterns, this means “zooming in” to the scale of individual 
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clusters to understand how processes taking place locally feed up to influence the large-scale 

spatial pattern. Furthermore, by focusing on the demographics of fine-scale structure we propose 

that signals of the precise mechanism of both activation and inhibition of the Turing mechanism 

can be understood in detail. 

 The dynamics of local demography (the resource clusters) is almost certainly related to 

the mechanism of the spatial pattern formation at the larger scale. The simple fact that resource 

populations diffuse (dispersing locally) spatially suggests the existence of a “demographic spatial 

pattern” (here by referred to as DSP) where the oldest resources occur in the center of a cluster 

and youngest on the edge. This DSP should be apparent in any resource that is at least semi-

sessile and disperses locally (e.g. plants, bacteria, ant colonies, etc.), and provides a fine-scale 

spatial pattern embedded within the large-scale pattern that can be used to interrogate the spatial 

population dynamics of both resource (activator) and consumer (inhibitor). 

 Given the existence of DSP, inevitable from the spatial dynamics of the resource species 

alone, we expect that it will structure the larger scale spatial consumer-resource dynamics in two 

ways. First, while consumers diffuse through space between elements of the fine-scale structure 

they will first encounter the periphery of clusters where the youngest resources will be located, a 

basic feature of the DSP. Consequently, we expect the highest pressure from consumers to be 

usually found on these younger resources. Second, this pattern of consumers aggregating on 

younger resources should in turn result in higher age-specific mortality rates for younger 

resources, which again should be on the edges of clusters. Intuitively, the degree to which these 

two hypothesized patterns in the dynamics will be apparent should depend on the relative 

diffusion rates of both the resource and consumer populations, as the diffusion rates will 

structure the strength of the DSP in the resource clusters.  
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Diffusive instability and demographic patterns  
	
 In Turing’s initial conceptualization of pattern forming systems, the idea of diffusive 

instability (sometimes called Turing instability) was central. Qualitatively, diffusive instability 

refers to mechanism that drives pattern formation these systems, where activators and inhibitors 

diffuse at unequal rates with inhibitors typically diffusing faster than activators. One way to 

quantify this is by looking at the ratio of the resource (DR) and consumer diffusion rates (DC). If 

we constrain the system so that, DR ≤ DC, and define DDI = 	?@
?A

  , we can glean a picture of how 

the relative diffusion rates influence dynamics of DSP formation in consumer-resource systems.  

Given that, 0 ≤ DDI ≤ 1, we can explore how pattern formation dynamics are influence by 

where DDI lies.   We can see that when DDI is closer to 0, consumers are diffusing much faster 

than resources, which will result in a less pronounced DSP within resource clusters due to the 

inability of large resource clusters to form from arrival of highly mobile consumers and the 

subsequent elimination of the cluster. The closer DDI is to 1, the faster the resource populations 

diffuse relatively to the consumers which should create a more pronounced DSP in resource 

clusters. Thus, both the large-scale spatial pattern, as quantified by cluster size frequency 

distribution, and fine-scale spatial pattern, as quantified by the DSP, are influenced by the 

relative diffusion rates of consumers and resources. In a later section, we demonstrate how trends 

in demography which are structured by the DSP in resource clusters can be used to approximate 

the relative diffusion rates in consumer-resource systems  

 To demonstrate this hypothesized fine-scale demographic structure, we leverage the well-

studied consumer-resource system of a tree-nesting ant Azteca sericeasur, and its parasitoid 

predator, the phorid fly Pseudacteon spp. This empirical system’s dynamics contain the two 

features which correspond to the classic activator and repressor elements of Turing’s basic 
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equations.  Frist, the activation occurs through the budding of ant colonies – individual queens 

move with a group of workers to a neighboring tree, effectively a low “diffusion” rate, and the 

second element, repression, occurs via the parasitic fly consuming and destroying ant-nests. 

Thus, the budding of ant nests is the activator, which has a low diffusion rate (mainly from tree 

to nearby tree) while the attack of the fly is the repressor, which has a high diffusion rate (mainly 

from wind dispersal), setting up the appropriate conditions for diffusive instability (Segel & 

Jackson 1972; Segel and Levin 1976).  

 The data used to explore the hypothesized DSP and its implications come from a 45 Ha 

plot that was surveyed annually for the presence of Azteca ant nests from 2004-2016, providing 

an extensive spatially explicit time series for 13 years of resource distributions (Figure 1.). We 

use this empirical dataset to demonstrate our framework for detecting the DSP in nature and to 

quantify long-term patterns of age-specific mortality. This analysis is coupled with extensive 

field surveys that aim to quantify the strength of the consumer-resource interaction across the 

demography of the resource (Azteca ant nest ages). Finally, we present an individually based 

spatially explicit consumer-resource model to compare with our empirical system and understand 

how the feedbacks between spatial pattern and consumer-resource interactions structure observed 

dynamics of the system.  
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Figure 1.1: Map of the 45 hectare plot in Chiapas Mexico for year 2016. Grey points are trees 
that do not contain ant nests. All colored points are trees with Azteca sericeasur nests. The 
colors range from dark red (oldest nests) to light green (youngest nests). 

 
Uncovering DSP and its impact on empirical consumer-resource dynamics  
	
 To characterize the DSP, we first isolate all the ant nests that fall within a given radius (r) 

around nests of a given age class. For each focal nest age class, we performed a linear regression 

of the ages of satellite nests as a function of distance to focal nest (from the focal nest in the 

center to the maximum of r) (Figure 2a).  The regression coefficient of the ith age class (bi) is 

calculated across all the different nest age classes (Figure 2b). The qualitative pattern that is 

hypothesized given the existence of a DSP in the resource clusters is clear -- as we move away 

from older nests in any direction, the age of neighboring nests should decrease resulting in 

negative regression coefficients (bi) for older nests. The opposite is true for younger nests where 
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we would expect a more positive regression coefficients to emerge due to nest ages increasing as 

we move away from the focal nest (see Figure 2b).  

 If a DSP exists in our system, then we expect a systematic trend in the aforementioned 

regression coefficients (bi), such that they transition from negative for old nests to positive for 

young nests. This will result in a negative relationship between the focal age of nests and their 

corresponding regression coefficients (bi) (Figure 2c). This negative relationship between nest 

age classes their regression coefficients (bi) which describe nest ages of their neighborhood in 

space, can be used as a metric of the strength of the DSP in resource clusters. Here we take the 

existence (as defined here by a significant regression) of such a pattern in nest ages and 

regression coefficients as evidence of DSP. An overview of the quantification of the DSP in 

resource clusters is laid out in Figure 2.  
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Figure 1.2: Illustrating the calculation of the Demographic Spatial Pattern (DSP). a.) Clustered 
nest age distribution in space with older nests shaded black and less shade for younger and 
younger nests. b.) Relationship between nest age class and distance from centralized nest for old 
and young nest. c.) Linear regression coefficient (bi) as a function of the age of the focal nest.  
The coefficient from the regression in c.) is used to quantify the spatial demographic pattern of 
the nests (resources) in space. We refer to this regression coefficient as the Demographic Spatial 
Pattern (DSP). d.) illustrates how the same test was conducted across a range of spatial scales 
(r) to detect the scale of DSP in our system. 

 By implementing the procedure illustrated in Figure 2 to detect the DSP across various 

spatial scales (Figure 3d) for the nest distributions in 2016, we find a consistent signature of this 
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fine-scale DSP structure in the ant nests at the 12-25m scale (Figure 3). The slopes that result 

from of our measure of the DSP (Figure 3a) show that the DSP is apparent across a range of 

scales, which most likely a result of the range of cluster sizes observed in the resource 

population. Both the R2 value and p-values of our measure of the DSP illustrate the 12-25m 

range where the signature of the DSP is strongest and differs greatly from the randomized 

allocation of the resource ages (Figure 3 panels b and c). These results suggest that the ant nests 

(i.e. resource/activator) leaves a historical trail of its diffusion, where by older resources are in 

the center and expand out radially forming the DSP.  

	

Figure 1.3: Statistical results from 2016 data, showing the Demographic Spatial Pattern as a 
function of dmax, as described in Figure 2. At each spatial scale nests were randomly assigned to 
trees and the procedure for calculating DSP was performed on the randomized data, repeating 
the randomization 100 times. The test was performed across various scales (d) ranging from 0-
50m to estimate the scale at which pattern in nest age distribution emerges.  a.) Shows the 
estimate from the DSP test, b.) the coefficient of determination, R2 and c.) the corresponding p-
value (dotted red line at 0.05).  All three graphs suggest that at about 20 m the DSP is most 
apparent. This tells us the hypothesized pattern is observed and it also gives us a biologically 
relevant scale at which self-organized pattern formation is acting. 

 

 Given the existence of the DSP in the ant population, the second component of the Turing 

analogy is the repressor -- the parasitoid flies. Due to the DSP in the ant nest clusters, we expect 

to see diffusing parasitoids exerting higher pressure on the periphery of clusters (i.e. youngest 

Azteca nests). We surveyed the parasitic flies by disturbing Azteca nests of different ages and 

a.) b.) c.)
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measuring: 1) the time to appearance of the first fly, 2) the number of flies that arrived during a 

5-minute interval, and 3) the duration of the fly’s attack after disturbance. As nest age increases, 

the time until the first fly arrives increases (p = 0.019; Figure 4a.), the number of flies decreases 

(p=0.03; Figure 4b), and the duration of the fly attack decreases with the nest age (p= 0.02; 

Figure 4c). Thus, via three different measures of consumer pressure our surveys support the 

hypothesis that consumers should be concentrated on younger resources. Again, we suggest that 

this higher consumer pressure from consumers is an emergent pattern that results from a 

combination of the DSP in the resource population and the diffusion of consumers through space 

searching for resources.  

Demographics of resource clusters structure consumer dynamics 
	

	

Figure 1.4: Three related lines of evidence of that parasitism (via parasitic flies) is less intense 
for old nests (which are in the center of clusters) than young nests (which are on the edges of 
clusters). a.) shows the time until arrival, where at young nests flies arrive sooner than at older 
nests. b.) shows that more flies arrive at younger nests than older nests. c.) shows that as nests 
get older the duration of parasitoid attack decreases 

 Given that consumer pressure is structured by the DSP, we ask whether this pattern 

emerges in the average age-specific mortality in the long-term data set of Azteca nests. The data 

show a clear signal of decreasing age-specific mortality as nest age increases ( Fig 5), consistent 

with the expectation from the DSP. However, there is also a sharp deviation from that trend 

starting on six-year-old nests, where its age-specific mortality begins to increase. This pattern of 
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age-specific mortality emerges likely emerges from the dynamics of both the fine-scale and 

large-scale spatial structures of the system. We see that the DSP structures age-specific mortality 

for nests 1-5 years old where youngest nests buffer older nests on the periphery of clusters 

(Figure 5a) but there is a critical point for 6-year-old nests where the trend reveres with a greater 

likelihood of older nests dying (Figure 5b). This change in mortality dynamics for older nests 

potentially results from density-dependent dynamics of parasitoids on clusters. A pattern 

previously seen from field surveys is that larger clusters of ant nests are associated with higher 

pressure from parasitoids (Vandermeer et al. 2006), thus making it more likely for larger clusters 

to attract to parasitoids and become eliminated. 

	

Figure 1.5: Shows the average age-specific mortality for the empirical ant nest data plotted on a 
log-log plot. a.) (green) shows the contribution of the demographic spatial patterning (DSP) in 
the resource clusters to the age specific mortality of nests aged 1-5 years. b.) shows the deviation 
from this pattern that represents the density dependent attack of clusters.   

 
Diffusive instability, spatial pattern, and population dynamics 
	
 Given our hypothesis that the signal from the DSP should vary with the relative diffusion 

rates of the consumers and resources, we used a spatially extended consumer-resource model to 

explored a range of parameters that correspond to the diffusion (i.e. average distance moved) of 
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the consumers to understand how it structures the spatial pattern of the resource and how that 

subsequently leads to tends in age-specific mortality of resources (Details of the model can be 

found in the methods section below). Recall that we can conceptualize diffusion in the system as 

the ratio of diffusion between the resources and consumers ?B
?C
= DDE. For our simulations, the 

resource population stochastically diffuses to empty cells in their Moore-neighborhoods, 

effectively making DF = 1. By keeping DF	constant, we can vary DGto change the value of DDE 

and understand how it impacts the population dynamics of the system.  

  Our model could qualitatively recreate the previously reported clustered spatial 

distribution of similar systems (Vandermeer et al., 2008; Jackson et al., 2014; Li et al., 2016) as 

quantified by the frequency distribution of cluster sizes approximating a power-function. Figure 

6 shows characteristic snapshots after 1000 time steps of the model for increasing predator 

diffusion, and demonstrates how consumer diffusion impacts the DSP in the resource clusters. In 

short, relatively low consumer diffusion allows for larger clusters to build, note clear 

demographic structuring within clusters, while higher consumer diffusion rates reduce the overall 

size of the resource clusters and increase the frequency of small clusters (Figure 6 bottom row of 

panels). A analysis of exactly how those frequency distributions change with consumer diffusion 

is presented in the supplementary material (Figure S3). This scale free distribution of cluster size 

frequencies has been an essential feature of prior modeling attempts and our model corroborates 

previous qualitative assertions in that the explicit incorporation of the parasitic fly (repressor) 

into the model framework recreates the essence of these previous results.  Again, we want to 

highlight how the extent to which we see the DSP in our model depends on the degree to which 

resources have clustered distribution, which is associated with dispersal limitation (relatively low 

diffusion compared to the resource) of consumers. 
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Figure 1.6: Shows a snap-shot from the individual based model of consumer resource 
interactions. The resources range in color from bright-green to red, where bright-green 
represent young resources, and red old resources. The black circles on the top row represent the 
consumers in the model. Note that the DSP emerges in clusters, where old resources are at the 
center and young resources on the periphery (older = redder and younger = greener). Also, note 
that consumer diffusion between patches of resources will result in young resources being 
encountered first. The bottom row shows the frequency distributions of cluster sizes that 
correspond to the parameters of consumer diffusion above. Note that larger clusters form with 
low diffusion with relative few small clusters and this shifts to no large clusters and many small 
clusters under high consumer diffusion. 

 Given the dependence of DSP in the model on the diffusion rates of the consumers we 

also expect that the extent to which the DSP can structure age-specific mortality will be also be 

influenced by relative diffusion. The results from both our model and long-term survey data tell a 

consistent story. The hypothesized impact of the DSP in regards to youngest resources having 

higher mortality due to their spatial arrangement on the periphery of the clusters observed in our 

model as well as our data (Figure 7 panels a and b.). As predicted the signal of the DSP in the 

age specific mortality is highest when resources are most clustered in space (e.g. consumers are 

!" 	= 0.5 !" 	= 1.5 !" 	= 2.5

0 2 4 6 8 10
ln(Cluster size)

ln
(F
re
qu
en
cy
)

0

2

4

6

8

0 2 4 6 8 10
ln(Cluster size)

ln
(F
re
qu
en
cy
)

0

2

4

6

8

0 2 4 6 8 10
ln(Cluster size)

ln
(F
re
qu
en
cy
)

0

2

4

6

8



	 23	

dispersal limited – low diffusion), with the effect becoming less pronounced as consumer 

diffusion increases (Figure 7b). This is seen by looking at the rate in which age specific death 

rate decrease as function of nest age (Figure 7 panels a and b.). Here we attempt to isolate the 

role of the DSP in structuring resource death rates by focusing on the decreasing portion of age-

specific mortality (see Figure 5a). We use the slopes of the age-specific death rates (Figure 7 

panels a and b) to quantify the signal of where our model approximates observations from our 

empirical data (Figure 7c). We can approximate the same impact of the empirical DSP in our 

model occurring when consumer diffusion is around 2-2.5 times higher than resource diffusion 

(i.e.𝐷DE ≈ 0.5).  

	

Figure 1.7:	The death rate of specific age classes of resources (ant nests), in both the empirical 
data (a) and the model simulations (b). The data is plotted on a log-log plot to better quantify the 
relationship. The unlogged plots are in the supplementary material. (c) shows the slopes from the 
resource age vs death rate for the model (in black to red corresponding to Figure 6b, and the 
empirical data (dotted blue line). The data in (a) uses the empirical nest ages from 2016. Grey 
dots in (a) are excluded from the linear regression so we can see the scale at which the DSP 
impacts mortality (additional analysis in supplementary materials), and the dotted line on the 
oldest nest age signifies effectively infinite variance since we only have one data point. The 
colors in (b) and (c) show results from simulations with different diffusion parameters for the 
consumer, where consumer diffusion ranges from 0.5 (black) to 2.75 (bright red) by 0.25. Note 
that in both the model and empirical data we use relatively young nests, as older data induce 
noise due to their low abundance in addition with the termination of clusters 
 
 Given we can approximate the relative diffusion rate of our empirical system by using 

our model across a range of parameters, we can now see to what extent the spatial pattern 
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corresponds as well. By isolating the diffusion rate of 𝛻G = 2.25 that is estimated from the age 

specific mortality, we see that it approximates our empirical data at the spatial scale detected by 

our test for DSP (Figure 8). The essential feature of the spatial pattern, as measured by the 

frequency distribution of cluster sizes correspond striking well with the slopes of the log-log 

cluster size frequency distribution plot being a quantification of the pattern. For the empirical 

cluster size frequency distribution the slope of the spatial pattern is -1.26377 and for the 

simulation data at the scale detected in age specific mortality is -1.27166. This highlights the 

concordance between the age-specific mortality and the DSP which is closely related to the 

spatial pattern that emerges from the system. All of which is related to the essential idea of 

Turing’s initial conceptualization of diffusive instability.  

	

Figure 1.8: Shows the cluster size frequency distributions from empirical data at 20m cluster 
threshold (black) and for simulation data at 𝛻G = 2.25	(red). Note the concordance between the 
slopes for both empirical (-1.26377) and simulation (-1.27166) spatial patterns. 

Conclusions 
	
 The confounding nature of ecological processes acting at distinct and often interacting 

spatial scales is a significant and well-known challenge in ecology (Weins 1989 ; Kotliar & 

Weins 1990; Levin 1992; Viana & Chase 2019; Vandermeer & Jackson 2019). Here we have 
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attempted to confront a portion of this challenge by developing a multi-scale framework to 

understand pattern formation in consumer-resource systems, and by illustrating how the original 

spirit of Turing’s insights into activator-inhibitor systems and diffusive instability can be applied 

directly to ecological systems. Through multiple lines of evidence, we show how fine-scale 

demographic structures in clustered resource populations can lend insights into the dynamics that 

generate large-scale spatial patterns. We then proposed and verified the existence of a 

demographic spatial pattern (DSP) in resource populations which we show to structure the 

consumer-resource population dynamics across spatial and temporal scales. Finally, we 

demonstrated how to extract information on the diffusive instability of the system through a 

cross-scale analysis of fine-scale and large-scale spatial pattern and demographic dynamics. By 

focusing on basic assumptions that stem from the spatially explicit population dynamics of 

consumer-resource systems, we presented a framework that can be applied to other consumer-

resource pattern forming system in which there exists spatial time series data of resource 

populations.  

Methods 
Empirical Methodology 

Phoridae predation across Azteca demography  

 Nests were selected haphazardly from a dataset that gave all Azteca nest ages on the 45ha 

plot on a coffee agroecosystem in southern Mexico. Once a nest was identified in the database it 

was then located on the 45ha plot.  Once at the site of an Azteca nest, we slowly approached the 

tree containing the nest and attempted to identify where the majority of ant activity was prior to 

disturbing the nest. We subsequently killed 10 ants in an area of high activity by pressing them 

into the trunk of the tree. During this process, we used a stick or leaf to kill the ants and left it at 

the sight as to not carry Azteca pheromones between sites. Once the first ant was killed we 
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started a stopwatch to time how long it takes for the first Phoridae parasitoid-fly to arrive to the 

local site of the disturbance. Once a Phoridae was spotted we turned off one stopwatch and 

triggered another one to track the duration of the attack. While the Phoridae were present at a 

site we monitored the number of them, the number of successful attacks, and the duration of the 

total attack for up to five minutes. If the attack duration for a nest surpassed five minutes then it 

was not included in the analysis presented in Figure 4c. When including the data points where 

attack duration was greater than five minutes the linear regression is not significant (p=0.184). If 

there were no successful attacks for 1 minute then we counted that as the attack being done. All 

sites were surveyed together with the same two people as to keep methodology consistent.  

Long-term data collection of nest locations (2004-2016) 

 Each tree on a 45ha plot in a coffee agroecosystem in southern Mexico has been surveyed 

to look for the presence of Azteca nests since 2004. Data from this survey is used here from 2004 

through 2016, to pick sites for fieldwork and also to look for trends in Azteca nest demography.  

Analysis of long-term data 

 To calculate the age-specific mortality of the nests, we calculate the change in number of 

nests from one year to another divided by the number of nests in that age class. Doing this each 

year, we have the age-specific mortality on an annual basis. To understand long-term patterns in 

age-specific mortality we take the average values for each age class.   

Model Methodology:  

 The resource is modeled essentially as a probabilistic cellular automata where a single 

resource is fixed in discrete space and offspring diffuse to neighboring sites with a fixed 

probability. The consumer is modelled on the continuous space overlying the discrete lattice and 

moves randomly across continuous space. The joining of both discrete and continuous space in 
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our model here provides a unique way of modeling consumer-resource systems that reflects 

essential elements of the underlying biology of many systems where resources and sessile and 

consumers search for them. Furthermore, tracking the demographic data in our model resource 

allowed us to understand the implications of the DSP within the resources spatial distribution.  

Model implementation: The model was built entirely in NetLogo 6.0 (Wilensky 1999), and can 

be found as a .nlogo file in the supplementary material.  

 The host (ant) dynamics occur on a square torus in which each point represents a shade 

tree potentially containing an ant nest. At each iteration each established ant nest increases its 

‘nest-population’ by 1 and increases its ‘nest-age’ by 1. Each nest ”buds” with a fixed probability 

to one of their unoccupied Moore-neighbors (the surrounding 8 patches). If an ant nest 

successfully buds to one of its Moore-neighbors then the budding nest divides its population in 

half, giving half of its population to the new ant nest.  

 The consumers (parasitoid Phoridae flies) are represented in the model as a distinct 

agent. They are randomly initialized on a given proportion, beta, of ant-nests and randomly walk 

across the lattice with step lengths drawn from a Gaussian distribution with a mean of two and 

standard deviation of one. When a fly encounters an ant-nest, it stops walking and begins 

reducing the ant-nest-population by 𝛼 and converts it into fly-population via 𝛾. Once the ant-

nest-population reaches zero, the ant-nest dies and the fly continues to randomly walk the lattice. 

When a fly agent reaches a given threshold of fly-population, 𝜑, it then produces a new fly 

which takes Ω fraction of the mother population.  Flies also have an aging cost, 𝜀, and die when 

their fly-population reaches zero. An outline pseudo code is presented in Figure S7. and 

parameters for the simulations can be found in Table. 1 
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Figure 1.9: Schedule and pseudocode for agent-based model 

 

parameter value 

beta 1.5 

prob_of_buddding 5 

α 65 

γ 65 

φ 150 

ε 5 

Ω 8 

Table 1.1: Gives the parameter values of the model that were used in the simulations. Note that 
results in Figure 4 and Figure 3S only change the mean of the distribution Gaussian distribution 
used to pull consumer walks in the model. 

Ants-Nests:	Each	ant	has	an	integer	representing	Nest-population &	Nest-age	
Flies:	Each	fly	has	an	integer	representing	Fly-population	
Initial	conditions:		Randomly	seed	20%	of	the	lattice	with	Ant-Nests	then	randomly	seed	20%	of	Ant-Nests	with	Flies
Pseudo-code	for	model
1:	FOR	Ant-Nests	
2:	 Nest-population ←	Nest-population +	1

Nest-age ← Nest-age +	1
3:	 IF	rand_float <	prob_of_budding
4: randomly	select	cell	C in	Moore-neighborhood
5:	 IF C	is	unoccupied	
6:	 create	new	nest	in	C		with Nest-age ←	1	&	Nest-population ←	1

7:	 Nest-population ←
PQRSTUVUWXYSZV[

\
8:	 IF Fly	on	Ant-Nest
9:	 Nest-population ← Nest-population – `
10:	 IF Nest-population	=	0	
11:	 Ant-nest	removed	from	lattice
12:	FOR	Flies
13:	 IF Fly-population	>=		d
14:	 Fly-population	←

Fly−population
f

15:	 Create	new	Fly	in	same	coordinates
16:	 new	Fly	rotate	randomly	0-359	degrees	and	moves	forward	one
17:	 IF on	Ant-Nest	cell
18:	 Fly-population ←	Fly-population + g
19:	 IF not	on	Ant-Nest	cell
20:	 rotate	randomly	0-359	degrees	and	step	length	drawn	from	Gaussian	distribution	of	mean	0	sd of	2
21: Fly-population ← Fly-population	- i



	 29	

Model analysis 

 For purposes of this analysis the model was run for 1000 iterations. During the last 50 

iterations of each run the ‘ages’ of each Azteca nest patch is recorded in addition to the size of 

each cluster of Azteca nest patches. Clusters here are simply defined as a nest patches which are 

connected by their Moore neighborhood. All runs were conducted in NetLogo 6.0 (Wilensky 

1999) and ‘Behavior Space’ was used for parameter sweeps. Data was exported via ‘Behavior 

Space’ and analyzed in R. 
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Supplementary Material 

	

Figure 1.10: Shows the age class death rates for a.) the model simulations and b.) the empirical 
data. a.) shows the death rates for a range of parameters for the consumer diffusion rate. Red = 
2.75, dark red = 2.00, black = 1.25. 

	

	

Figure 1.11: Shows the age specific mortality of the Azteca nests. Note that this figure is the 
same as Figure 5a but includes all of the age specific mortalities in the linear regression to 
quantify the impact of the DSP on mortality. 
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Figure 1.12: Shows the cluster size frequency distributions from model simulations across 
different predator diffusion rates. The colors in the figure correspond to the colors in Figure 5 
panels b and c and the values used in Figure 5c. The first number in each panel is the slope (or 
coefficient) of the linear regression and the second is the R-squared. Note that the fit to a power 
function is done across the upper part of the distribution as is common practice when fitting 
power laws since the tail of the distribution is often under sampled.   
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of Host-Parasitoid Systems 
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Abstract 
	
Environmental heterogeneity, in one form another, is appreciated as being present in all 

ecosystems. Furthermore, environmental heterogeneity has been shown to be central in attempts 

to understand the empirical patterns across spatial and temporal scales in ecosystems. Here we 

explore how spatiotemporal heterogeneity in the environment influences the simplest of all 

community ecology modules, consumer-resource interactions. By using a spatially extended 

Nicholson-Bailey, host-parasitoid model, we explore how patchiness in the model, as reflected 

by dynamically changing patch quality, influences the dynamics of the system. We show that if 

the environmental pattern is static then the system will persist indefinitely, but when the 

environmental pattern is dynamic that the system is quickly destabilized. The host-parasitoid 

system can be stabilized again only with time lags in the change of the environmental pattern. 

Additionally, we show that the spatial structure itself of the environmental patchiness plays a 

role in the persistence of the system. We suggest that these results from this simple toy model 

may highlight essential features of how the dynamics of organisms and their environment can 

match or mismatch in space and time resulting in unforeseen dynamics.  
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Introduction 
	
 The fact that no ecosystem is fully mixed means that all living organisms are confronted 

with environmental heterogeneity in one form or another (Levins 1989). Not only is 

heterogeneity omnipresent in ecosystems, but this environmental heterogeneity is often dynamic 

and changing on timescales that are relevant to the ecological dynamics of the organisms 

interacting within them. Heterogeneity is most often appreciated as being operative across space 

or time, and has been shown to be an important aspect of how we consider empirical patterns 

across spatial and temporal scales. Although this fact is acknowledged and growing in 

appreciation amongst ecologists, no general frameworks for our understanding of how 

spatiotemporal heterogeneity interacts with our basic understanding of community ecology has 

emerged. Here we explore how this basic idea of spatiotemporal heterogeneity with the simplest 

of all community ecology modules, consumer-resource interactions. 

 When ecologists first begun to explore the spatial dynamics of consumer-resource 

interactions, it was found that several unexpected observations emerged. It is now understood 

that simply putting consumer-resource interactions in space, the organisms themselves become a 

source of spatiotemporal heterogeneity that alter the fundamental dynamics of the system (Gause 

1934; Huffaker 1958; Levin 1976). The classic theoretical example is that of the Nicholson-

Bailey host-parasitoid model that has globally unstable oscillations in its most basic formulation 

but when extended to space can persist indefinitely (Hassell et al. 1994). By simply incorporating 

space into the Nicholson-Bailey model, spatiotemporal heterogeneity in the distribution of the 

host and parasitoid populations allow for host refugia that make a locally unstable system stable 

globally across space (May 1978).    
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 Where suggest that in a broad sense, there are two ways in which heterogeneity can play 

a role in ecological systems. Frist, we can think of it has being imposed by some abiotic or 

environmental factor which may be conceived as impacting demographic rates of the organisms 

(Riolo et al. 2015). Second, the inclusion of space itself allows for the self-organizing spatial 

pattern of the interacting organisms. The first such case of a background pattern structuring the 

dynamics has been referred to as pilot pattern (Vandermeer and Jackson 2018), and can be 

thought of as being dynamic in space and time or static.  

 Here we attempt to gain an understanding of how these two forms of environmental 

heterogeneity in ecosystems interact in a simple model. The basic idea of an ecological pilot 

pattern has been explored by Vandermeer and Jackson (2018), and showed that the ratio of 

timescales between the dynamics of the pilot pattern and the ecological dynamics upon it can 

change the system from being stable to unstable. Here we explore a similar type of system but in 

a much simpler context than the cellular automata presented by Vandermeer and Jackson (2018), 

and use as simple spatially extended host-parasitoid model that plays out upon a dynamic 

environmental pattern. We first attempt to understand if the relationship of the disjoint 

timeframes between a pilot pattern and the host-parasitoid dynamics exists. We then explore the 

details of the underlying pilot pattern and ask how that impacts the host-parasitoid dynamics.,  

Methods 
	
Consumer-resource coupled map lattice  

 The basic formulation of the model follows Nicholson and Baileys original conception 

with the absence of density dependence on the host.  

 

𝐻QRS = 𝜆𝐻Q𝑒VWXY	 
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𝑃QRS = 𝐻Q(1 − 𝑒VWXY)	 

 

It is well known that this model in the absence of space produces unstable oscillations resulting 

in a collapse of the system. Here we make the simple modification to the model and put it on a 

coupled-map lattice.  

𝐻QRS 𝑘 = 𝜆𝐻Q 𝑘 𝑒VWXY _ + 𝐷a∇b	𝐻Q(𝑘) 

𝑃QRS 𝑘 = 𝐻Q 𝑘 1 − 𝑒VWXY _ + 𝐷X∇b𝑃Q(𝑘)		 

∇b𝐻Q 𝑟 = 𝐻Q 𝑗 − 𝑞
f

g

𝐻Q(𝑘) 

The simple inclusion of a diffusion operator, ∇b, where q = 4 are the four closes neighbors of the 

focal cell, otherwise known as a the Von Neumann neighborhood puts the model on the lattice. 

All of our simulations used periodic boundary conditions and we employed a threshold cutoff for 

survival of hosts and parasitoids, where if H(k) or P(k) < 1X10^-6 = 0.  

Spatiotemporal heterogeneity  

 By using a model developed by Vandermeer and Jackson (2015) we are able to not only 

study the impact of the dynamically changing environment but we also have the ability to 

quantify what that spatial pattern looks like and ask how that impacts the dynamics of the system 

itself. They made a simple cellular automaton that proposes the existence of a single population 

growing in space. The degree of density of dependence the population experiences is governed 

by the sum of the cells in its Moore neighborhood, 𝑁i 𝑖, 𝑗 , which is given by: 

 

𝑁i 𝑖, 𝑗 = 𝐵(𝑎, 𝑏)
opiRS

opiVS

qpiRS

qpiVS
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Where B is the operator that allows to us to sum the states surrounding or ith cell. Given the local 

density of the population around a focal cell, there is a probability that the cell will become 

occupied is given by: 

𝑃r = 	𝛼s + 𝛼𝑁i(𝑖, 𝑗) 

and a probability that the cell will die is given by: 

𝑃D = 	𝛾 + 𝛽𝑁i(𝑖, 𝑗) 

When 𝛼s = 0 and 𝛾 = 0, the whole system is governed by local dynamics only where death and 

birth are determined by the Moore Neighborhood densities. Thus,  𝛼s > 0 and 𝛾 > 0, model 

regional dispersal and stochastic death in the population. Further detail regarding the model can 

be found in Vandermeer and Jackson (2015).  

 Given a resultant spatial pattern which emerges from the Vandermeer-Jackson CA model, 

we use the same approach they do to quantify the spatial pattern. By using the frequency 

distribution of cluster sizes, as defined by cells connected via their Moore neighborhood, we can 

use the fit to a power function for a quantitative description of the pattern. Not only can we use 

the parameter of the power function, but we can all gleam information about the pattern by 

looking at deviations from the power law.  

 

Coupling the spatiotemporal heterogeneity with the coupled map lattice. 

 Although there are various ways to formulate the ways in which spatiotemporal 

heterogeneity might influence a consumer-resource interaction, here we start with the simple 

assumption that the host population’s underlying resource is of variable quality in space and 

time. Thus, we have a parameter,	𝛿, associated with each cell in the couple map lattice that gives 
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us a modification of the host growth rate, where for a given patch via, 𝜆 = 𝛿𝜆s. Where 𝜆	is the 

realized growth rate of the population and 𝜆sis the maximum growth rate. For all the simulations 

presented here, there are only two values of 𝛿	that are given by the state of N(i,j) of the 

Vandermeer/Jackson CA model. We are modeling the system as if high quality resources are 

dynamically patchy with low quality resource matrix, thus when N(I,j) = 1, 𝛿 = 1 and when 

N(I,j) = 0, 𝛿 < 1. This creates a system that effectively acts as if it were a metacommunity 

constrained to a self-organizing environment or high quality patches for hosts. Thus, the 

environmental pattern has it independent dynamics that largely constrain the host distribution 

when then constrains the parasitoid distribution. For all simulations presented here when N(I,j) = 

0, 𝛿 = 0.2.  

Results 
	
 Under the parameters used for the simulations here, the basic dynamics of similar models 

are relatively well know. Figure 1. Shows the spatially extended Nicholson-Bailey model for our 

parameters when there is a homogenous environment. The spiral patterns produced here are 

characteristic of similar models of host-parasitoid dynamics (Bascompte Sole Varlies 1995). 

Constraining the host-parasitoid system to a statically heterogeneous environment where patches 

are high-quality resource and matrix is low quality resource (as reflected in the growth rates of 

the host, 𝜆, in those environments), also allows the system to persist (Figure 1b). Although the 

characteristic spiral spatial pattern observed in homogenous space is no longer present, and both 

populations are at lower densities this seems to simply be a reflection of the number of high 

quality patches accessible. Note that both system have stable oscillatory attractors that seem to 

persist indefinitely (Figure 1).   
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Figure 2.1: (a) The dynamics of the spatially extended host-parasitoid system in the absence of 
spatial heterogeneity after 2000 runs with the parameters 𝐷X = 0.1, 𝐷a = 0.05, 𝜆 = 4, and 𝛼 =
4.25. (b) the dynamics of the model with a structured environment and the same parameters of 
(a) but with	𝛿 = 0.2. The background environmental pattern was obtained by 1000 runs of the 
Vandermeer & Jackson (2015) cellular automata.   

 Given this starting point of space, both homogenous and heterogeneous and static, can 

stabilize locally unstable host-parasitoid systems, we now ask to what extent can the system 

persist on an environment that has spatiotemporal heterogeneity. Our simulations show that with 

no time lag between the dynamics of the spatial pattern and the dynamics of the host-parasitoid 

system largely constrained to it, the system will always collapse (Figure 2). Observations from of 

these simulations suggests that this likely always happens because the parasitoid population goes 

extinct which in turn results in exponential growth of the host. The suggested importance of the 

disjoint timeframes between the dynamics of a background spatial pattern and the dynamics of 

the system upon it, was explored next to see if time lags associated with the self-organization of 

the spatial pattern have the ability to stabilize the system as found in other system (Vandermeer 

and Jackson 2018).  
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 We found that as the time lag (𝜏) increases the probability that the system will persist for 

more time, mirroring the result from Vandermeer and Jackson 2018 (Figure 2). Interestingly 

there is a relatively large amount of variability for a given value of tau in the dynamics of the 

environmental spatial pattern. The simulations presented here are constrained up to 2000 

iterations of the model, so the hard stop for 𝜏 = 4 in Figure 2 is a result of that.  

   

	

Figure 2.2: Shows the time until extinction of the host-parasitoid system with dynamic 
environmental pattern formation. Note that the cluster of points at 𝜏 = 4 emerges from the 
maximum number of iterations that were used in the simulations being 2000. 

 We suggest that the variability seen in Figure 2 as to how long the system will persist is 

dependent on the underlying spatial pattern that governs the host parasitoid system. As 

mentioned above, the system most frequently crashes due to the parasitoid metapopulation 

becoming extinct. Figure 3 shows the snapshots of characteristic model runs after 2000 time 

steps for different values of 𝜏. Note that as we increase Tao the basic dynamics of the model 

changes as well. Note that the host generally tracks the environmental background pattern quite 

well, where the environmental pattern almost fully constrained the spatial distribution of the 

host. Importantly, the hosts ability to track the underlying environment  increases with the time 
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lag between the dynamics. The panel with the parasitoid in Figure 3, show that the reason why 

the system is crashing at low tau is due to the parasitoids inability to track the host populations. 

Much like the host’s ability to track to the environment increases with time lags, as does the 

parasitoids ability to track the hosts spatial distribution.  

  

	

Figure 2.3: Illustrates the dynamics of the host-parasitoid model as 𝜏 increases. (a) shows the 
underlying spatial pattern of the environment where hosts can access resources of high quality 
(black squares) and where hosts cannot (white squares). The first column of panels is followed 
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by the host and parasitoids spatial distributions. (b) shows the phase space diagrams for the 
host-parasitoid population through time. 

 In order to understand how the underlying spatial distribution of the environment, which 

constrains all of the trophic levels built upon it, influences persistence of the system, we took a 

value of 𝜏 = 3 where extinctinos are inevible, but highly variable to explore the spatial pattern of 

the environment. By using the slope and fit to a power function we are provided an intuitive 

understanding of the spatial pattern present. Figure 4 Shows that the slope of the initial 

environmental pattern has no relationship with the time until extinction. Interesting there is a 

significant negative relationship with the time until extinction and the slope of the environmental 

pattern power law. This suggests that some high-quality habitat cluster distributions are more 

strongly associated with persistence of the system than others. In particular, we found that more 

negative slopes are associated with persistence. Somewhat counterintuitively, we find the 

opposite pattern with the fits to the power laws, where the initial fit has a negative relationship 

with the persistence but the final fit does not.  

	

Figure 2.4: Shows the time until extinction for the host-parasitoid system and the initial lope of 
the environmental heterogeneity and the final slope. Note that the initial Environmental 
heterogeneity power law slope had not relationship with the time until extinction, but the final 
slope had a significantly negative relationship. 
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Figure 2.5: Shows the relationship between the time until extinction and the fit R-squared fit to 
the power function of the initial environmental pattern and the final environmental pattern. Note 
a significant negative relationship between the initial fit to the power law and the time until 
extinction. 

Discussion 
	
 The inclusion of temporally static heterogeneity does not change the fundamental stable 

oscillatory dynamics of the host-parasitoid system, but as soon as the environmental 

heterogeneity, or the pilot pattern, becomes dynamic the system is quickly destabilized. Given 

strikingly similar patterns observed in more complicated models (Vandermeer and Jackson 

2018), this may suggest some type of generality in how structured environments constrain 

ecological interactions.  

 The longer the time lags in the dynamic spatial pattern of the environmental allows for 

the host parasitoid system which was constrained upon it to persist longer. Figure 3. Shows the 

qualitative dynamics of how the time lag impacts dynamics. Unlike Vandermeer and Jackson 

(2018) we did not calculate the critical value of 𝜏 in our model, although it does look like it 

maybe relevant to our system. Note that in Figure 1b, where we have a spatially heterogonous 

but temporally static environment, the system exhibits stable oscillations. This is in contrast to 

Figure 3b, where all of the dynamics show damped oscillations but approach the origin, 
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suggesting that the system may be on its way to extinction. Quite clearly, the analysis here needs 

to be revisited with much longer simulation times to see, first if the system is on its way to 

extinction for the parameters in Figure 3, and if so to see if a critical 𝜏 exists as it does for the 

Vandermeer Jackson model (2018). 

 In our model, it seemed as if the spatial distribution of the pilot pattern plays an important 

role in how long a system may persist. When the dynamics of the clustered environment, 

organizes itself in such a way where there are many small patches and very few large patches 

(more negative slows to the power law) then the system is more likely to persist. The slope of the 

power law used to describe the spatial patterning of the pilot pattern allows us to conceptually 

organize the types of patterns that emerge. With steeper slopes being characteristic of what some 

may describe as a metapopulation or many small patches and few if any larger patches and 

shallower slopes being more of a mainland-island type of spatial arrangement where very large 

clusters can act as sources for the populations (Jackson et al. 2014). Figure 4 and Figure 5 

suggest that having a power law distribution that approximates any power law well early on in its 

dynamics will likely go extinct soon, but if the environment self-organizes into a metapopulation 

type spatial arrangement it can persist longer. Figure 3 suggests that this metapopulation 

structure may be most important for the parasitoids which are constrained by the distribution of 

the hosts which are then constrained by the distribution of the resources in space. It may be that 

when we have more small patches the distance needed to traverse across the lattice is less 

allowing for effective dispersal of the parasitoids and thus persistence of the system.  

 Here we show that the often-assumed role of heterogeneity in allowing for the persistence 

of ecological systems is not often the case, and the timescales at which dynamics play out play a 

central role to the persistence of the system. Furthermore, we have shown that the underlying 
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pilot pattern that constrains ecological interactions can also impact the outcome of the system. 

Thus, it is both the spatial structure of heterogeneity as well as the time scales at which it is 

dynamic. This becomes an issue of practical importance when we consider how climate change 

will increases the variability of most of the worlds ecosystems. Understanding how that will 

these changes in the dynamics of the environment relative to the dynamics of the organisms 

embedded with them will be of the utmost importance for trying to anticipate the impacts of the 

climate change. The use of a simple toy model here, illustrates that the rate of environmental 

change relative to the rate of ecological dynamics is far from trivial. Analogous forms 

spatiotemporal heterogeneity in ecosystems which will be influenced by climate change include 

seasonality, which in turn determines the dynamics of phenology, precipitation, and temperature. 

Thus, many of the approaches being employed by ecologists today trying to predict range shifts 

and the like may be moot in light of the ecological dynamics. A consideration of elementary 

ecological dynamics in the presence of spatiotemporal heterogeneity in the environment may 

provide basic insights into modern day as well as future ecosystems.  
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Chapter 3 Emergent Spatial Structure and Pathogen Epidemics: The 

Influence of Management and Stochasticity in Agroecosystems 

Zachary Hajian-Forooshani and John Vandermeer 

Ecology and Evolutionary Biology, University of Michigan, Ann Arbor 

Abstract 
	
Organisms susceptible to disease, from humans to crops, inevitably have spatial geometry that 

influence disease dynamics. Understanding how spatial structure emerges through time in 

ecological systems and how that structure influences disease dynamics is of practical importance 

for natural and human management systems. Here we use the perennial crop, coffee, Coffea 

arabica, along with its pathogen, the coffee leaf rust, Hemileia vastrix, as a model system to 

understand how spatial structure is created in agroecosystems and its subsequent influence on the 

dynamics of the system. Here, we create a simple null model of the socio-ecological process of 

death and stochastic replanting of coffee plants on a plot. We then use spatial networks to 

quantify the spatial structures and make comparisons of our stochastic null model to empirically 

observed spatial distributions of coffee. We then present a simple model of pathogen spread on 

spatial networks across a range of spatial geometries emerging from our null model and show 

how both local and regional management of agroecosystems interact with space and time to alter 

disease dynamics. Our results suggest that our null model of evolving spatial structure can 

capture many critical features of how the spatial arrangement of plants changes through time in 
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coffee agroecosystems. Additionally, we find small changes in management factors that can 

influence the scale of pathogen transmission, such as shade tree removal, and result in a rapid 

transition to epidemics with lattice-like spatial arrangements but not with irregular planting 

geometries. The results presented here may have practical implications for farmers in Latin 

America who are in the process of replanting and overhauling management of their coffee farms 

in response to a coffee leaf rust epidemic in 2013. We suggest that shade reduction in 

conjunction with more lattice-like planting schemes may result in coffee being more prone to 

epidemic-like dynamics of the coffee leaf rust in the future. 

Introduction 
	

Organisms susceptible to disease, from humans to crops, inevitably have spatial 

geometry that influences disease dynamics. While it may be argued that spatial components of 

disease-host systems in mixed environments are less important (e.g. plankton), it is certainly true 

that most plants and animals have non-trivial spatial structure, whether exogenously imposed by 

abiotic environment (Gratzer et al. 2004) or emerging endogenously from ecological dynamics 

(Li et al 2016). It has been a standard epidemiological question to ask how disease propagates 

through space (Keeling et al. 1999; Park et al. 2002; Balcan et al. 2009; Craft et al. 2010), but 

less obvious is how the space is constructed in the first place and how that space influences 

subsequent disease dynamics. At one extreme, a feedback likely exists between host and disease, 

where hosts may alter their spatial distribution in response to the presence of disease, such 

systems may include humans (Levine & Levine 1994). On the other hand, there exist many 

hosts-pathogen systems where hosts do not alter their spatial distribution over the course of 

pathogen dynamics, such as plants.  
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The construction of spatial structure becomes complicated when considering human 

managed systems such as agroecosystems. The spatial arrangement of crops varies across 

agroecosystems due to a suite of interacting cultural, social, economic, and ecological factors. 

Here we focus our attention on perennial agroecosystems where plant mortality and replanting 

can occur iteratively, generating spatial distribution with a signature of the prior spatial 

arrangements, continuously inherited from one harvest to the next. This contrasts with annual 

systems which will be effectively fixed during the course of pathogen spread, due to the seasonal 

harvest/destruction and replanting of all plants. In perennial systems, the spatial arrangement is a 

consequence of farmer decisions about initial planting combined with continual replanting in 

spaces where individual plants had become damaged or die.  The initial planting frequently 

begins with a lattice-like structure consisting of ordered rows and semi-constant interplant 

distances, but evolves over time with the dynamics of replanting. Replanting can be understood 

as a response to thinning, from a variety of causes, including the pathogens themselves. 

Consequently, the pattern of disease occurrence in agroecosystems is conditioned first by the 

structure of the plant distributions (effectively a socioecological process) and second by the 

dynamics of transmission (mainly an ecological process).  

 The coffee agroecosystem and its most notorious pathogen, the coffee leaf rust, Hemileia 

vastatrix, provides a useful model system to interrogate the interaction of spatial pattern 

construction and its subsequent influence on pathogen dynamics. Coffee (both Coffea arabica 

and Coffea robusta) is a long-lived plant subject to a variety of management styles from 

intensive latticed monocultures to polycultures beneath the shade of forests (Mogul & Toledo 

1999). Transmission of the pathogen operates at two distinct spatial scales, locally, from coffee 

bush to coffee bush, and regionally, from farm to farm (Vandermeer et al. 2015; Vandermeer and 
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Rohani 2014). While regional pathogen dynamics is clearly important (Avelino et al. 2012), here 

we focus on the local dynamics in which the spatial distribution of coffee plants is evidently 

important to local transmission (Vandermeer et al. 2018). At this local scale, transmission likely 

results from a number of interacting factors, for example from plants being so densely planted 

that their leaves touch, or spore dispersal via air turbulence to neighboring plants, all of which 

are, in practice, influenced by management decisions such as how many and what kind of shade 

trees are incorporated in the system. 

 Prior work on coffee and the coffee leaf rust has employed a network approach to 

understanding spatial dynamics (Vandermeer et al. 2018), and here we build on that work.  By 

focusing on local transmission dynamics, an intuitive approach for modeling pathogen dynamics 

is evident. We presume there exists some critical distance (Dcrit) for which the pathogen is able to 

spread from plant to plant. We conceptualize the distribution of plants and the implied spread of 

the pathogen, as a network where the nodes consist of the plants and the edges are defined by the 

Dcrit. Figure 1 illustrates the approach on three 20x20m coffee plots from a coffee farm in 

southern Mexico and shows the clear interaction of the scale of transmission (Dcrit) and the 

underlying spatial arrangement of coffee plants. The sub-networks within a given plot show us 

the extent to which the pathogen could theoretically spread if any member of the sub-network 

were infected. In one case (Vandermeer et al. 2018) the emergent spatial sub-networks predict 

observed pathogen dynamics, showing that plant to plant pathogen transmission is more likely 

within a sub-network than between subnetworks, suggesting a utility in employing the 

subnetwork framework to more generally study pathogen dynamics. 

 Our proposed time-dependent process of spatial reorganization of plants via death and 

replanting within a plot is in part inspired by observations from the field with areas under 
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cultivation for different periods of time. The three plots in Figure 1 correspond to a one-year-old 

plot (Sandino), a four-year-old plot (Che), and a fifteen-year-old plot (Leon). Note how the 

youngest plot has a lattice-like spatial pattern and the distributions become more disorganized as 

the plots age. Exploring the mortality/replanting mechanism, we propose a null-model to 

simulate the socio-ecological processes of plant death and replanting. Initiating a perfect lattice 

arrangement of plants, we simulate stochastic death and replanting within a fixed radius of the 

plant’s prior position. The emergent spatial patterns are then compared to empirical spatial 

distributions (Figure 1.), and the range of spatial patterns from the null-model are used simulate 

pathogen spread to understand how the scale of pathogen transmission (Dcrit) interacts with the 

underlying spatial pattern. 
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Figure 3.1: The spatial distribution of coffee plants on three 20x20m plots in southern Mexico 
and the subsequent spatial networks that emerge from different spatial scales of pathogen 
transmission (Dcrit), illustrating how the underlying spatial distribution of plots changes through 
time where Sandino is a one-year-old plot, Che is a four-year-old plot, and Leon is a 15 year-old 
plot. The spatial pattern moves from highly organzed lattice-like (1 year old plot - Sandino) to 
disorganized spatial structure (15 year old plot - Leon). We suggest that this gradient of 
organization emerges from the mortality/replanting phenomenon. 

Figure 1.  

Methods 
	
Model of Spread on Spatial Networks 

 Given that the intensity of pathogen infection is empirically correlated with the sub-

network structure (Vandermeer et al. 2018), we stipulate 𝐷z{iQ , the maximum distance the 
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pathogen can spread to neighboring plants (the spatial scale of transmission) and create a 

community of sub-networks for which dynamics are simulated (see Figure 1, which illustrates 

how 𝐷z{iQ creates sub-networks). Given the coordinates of each plant, as they emerge from the 

simulations from the plot spatial evolution, a spatial scale of pathogen transmission is stipulated 

via particular values of 𝐷z{iQ which in turn creates a collection of spatial sub-networks 

(frequently referred to as “connected components”), called 𝐶, 

𝐶	 = {𝐶S, 𝐶b, 𝐶~ …𝐶�}  

Where m is the number of sub-networks in the system. Note that each subnetwork in	𝐶 contains a 

unique collection of plants corresponding to a given scale of pathogen transmission 𝐷z{iQ.	For 

example, from a collection of 𝑛 plants we might obtain,  

𝐶	 = { 𝑝S, 𝑝b , 𝑝~,𝑝�, 𝑝� , 𝑝� , … {𝑝q, 𝑝o, 𝑝z, … 𝑝�}} 

for a particular 𝐷z{iQ. Note that the indices for each plant, p, are unique across all subsets within 

C, and come from the set P, 

𝑃 = {𝑝S, 𝑝b, 𝑝~ …𝑝�} 

Where 𝑛	represents the total number of plants in the system. 

In the model, we keep track of all the infected plants with the set 𝐼, which is initialized as an 

empty set. 

𝐼 = {} 

For each time step in the model we iterate through all nodes (plants) in 𝑃, and there is a fixed 

probability, 𝛽, that a given plant becomes infected. If 𝑃i (the 𝑖Q�plant in 𝑃) becomes infected via  

𝑝i𝜆(𝛽) 

Where 

𝜆 𝛽 = 0, 𝛽 ≥ 𝒰(0,1)
1, 𝛽 < 𝒰(0,1) 
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then the whole cluster, 𝐶g, which is a subset of 𝐶 and contains 𝑝i, is join in union with 𝐼. This is 

done for all 𝑝’s where 𝜆 𝛽 = 1 (i.e. when there is a successful infection).  

𝐼 𝑡 + 1 = 𝐼 𝑡 ∪ 𝐶g 

 Conceptually, each sub-network represents the extent to which the pathogen 

instantaneously spreads from a single infected plant to all plants in that sub-network. We use the 

inevitability of the spread within a sub-network as a simplifying assumption and assume that all 

plants that fall within the sub-network denoted by the scale of the spread, 𝐷z{iQ, become infected 

instantaneously. This abstraction simplifies the system and provides for a focus on the interplay 

of pathogen dynamics and the spatial geometry. With the assumption of instantaneous spread 

within a sub-network, our model only has one parameter associated with the epidemic process, 

the probability of a random plant in the plot being infected 𝛽, which can be thought of as being a 

measure of the regional pathogen propagule density.  

 When simulating pathogen spread, we allowed simulations to proceed until 90% of the 

plants became infected to quantify the time to epidemic of the pathogen on the spatial geometries 

arising from the null model. To account for the inherent stochasticity of the null model and the 

spreading process we replicated time step snapshots from the null model five times with 

subsequent ten replicate simulations of the spreading process for the 𝐷z{iQranging from 0 to 3. 

We then used the mean time until 90% infected hosts. 

Null model of evolving plant spatial geometry 

Despite the fact that coffee bushes are often planted with the intention of a strict lattice 

structure (planted in rows), the real distribution of coffee plants on a farm rarely reflects 

perfectly that initial intent. As time goes by, some coffee bushes die and usually are replanted, 

but rarely in precisely the same location, leading eventually to a loss of the initial planting 



	 60	

pattern. To the farmer these small deviations may not seem consequential for the dynamics of 

pathogens and pests, yet they can accumulate significantly to change the basic spatial pattern 

(e.g., Figure 1.).  Although a host of complicated local factors are involved in planting decisions, 

we initially approach the problem with a null model of planting spatial evolution. 

 We begin with plants arranged in a lattice bound within a 𝑥 and 𝑦 coordinate range and 

modify the structure over time. The simple model simulates stochastic death and replanting 

within an area of relatively proximity of the prior plant position. The coordinates change over 

time according to, 

𝑥i(𝑡 + 1) = 𝑥i(𝑡) + 𝜉 𝜙 𝒟 𝛼  

𝑦i(𝑡 + 1) = 𝑦i(𝑡) + 𝜉 𝜙 𝒟 𝛼  

Where 

𝜉 𝜙 = 0, 𝜙 ≥ 𝒰(0,1)
1, 𝜙 < 𝒰(0,1) 

and 𝑥i(𝑡) and 𝑦i(𝑡) represent the two coordinates corresponding the position of plant 𝑖 at time 𝑡.  

𝜉 𝜙  is the death/replanting rate and 𝜙 is the mortality probability for plant i.  𝒰(𝑎, 𝑏) is a 

uniformly distributed random variable with range (0,1) and D α  is a random variable drawn 

from a uniform distribution with mean 𝛼, that stipulates the “replanting radius” of the new plant. 

For all simulations, 𝜙 = 0.05 and 𝛼 = 0.25. The simulations were run iteratively for each plant 

in the plot 100 times.  

To understand how our null model approximates the planting arrangements of real 

agroecosystems, we use an empirical data set of three 20x20 m plots on an organic coffee farm in 

the Soconusco region of Chiapas, Mexico. Each of the three plots have different ages (time since 

the area had all plants removed and replanted) corresponding to approximately one year, four 

years and fifteen years (Figure 1.). They represent what we propose to be the progression of 
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spatial structure across the lifecycle of an area in cultivation. Given these three 20x20m plots 

with differing numbers of plants, for each comparison, the simulated evolution of spatial 

structure was done with the same planting density as the real plot it was intended to simulate. 

Our empirical plots have 177, 147 and 140 plants. To approximate the lattice-like initial 

conditions of each of these plots we used 12x15, 15x10, and 14x10 planting arrangements for the 

simulated plots. By controlling for the planting density, our null model of plot spatial evolution 

allows us to make comparisons with our empirical 20x20m plots and understand to what extent 

our null model approximates the empirical spatial geometry across the ontogeny of the plots 

through time. 

Quantification of spatial structure  

 Similar to modeling the spread of the pathogen in space as described in the previous 

section, to quantify the spatial pattern of a plot we focus again on the sub-networks that emerge 

from imposing 𝐷z{iQ. By looking at a range of 𝐷z{iQ for a given spatial pattern we quantify how 

the number of sub-networks changes across spatial scales and can subsequently make 

comparisons to our empirical spatial patterns. Figure 1. illustrates how different spatial patterns 

give rise to varying numbers of sub-networks for a single 𝐷z{iQ. The variability in the number of 

sub-networks reflects the clustering and over-dispersion and various spatial scales within a 

particular plot. The number of sub-networks not only uses the same tools for modeling pathogen 

spread, but also provides biologically relevant information for the dynamics of the pathogen that 

the use of a traditional dispersal kernel does not. For example, a given distribution of sub-

networks for a 𝐷z{iQ	gives us the minimum number of outside infections needed to infect a total 

area in cultivation. 
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 To understand the extent to which the simulations approximate the empirical patterns, we 

use Δ�, or the difference in the number of sub-networks in the empirical spatial patterns minus 

the number of sub-networks in the simulated spatial patterns. For a perfect spatial approximation 

in terms of number of subgraphs we expect a Δ�= 0. Importantly, we are interested in Δ�	across a 

relatively wide range of 𝐷z{iQ to quantify the spatial pattern, although we are constrained at the 

low end where no plants are connected and the high end where the whole plot is connected. For 

each simulation, we extracted the pattern at the first step and subsequently every 10 steps 

through 100 rounds of replanting. For our analyses, we used 𝐷z{iQ that ranges from 0 to 3m to 

quantify the spatial structure.  

Results 
	
Plot evolution and approximations of empirical structure 
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Figure 3.2: Three 20 x 20M plots illustrating the position of all coffee plants. a. a one-year old 
plot, b. a 4 year old plot, c. approximately a 15 year old plot d, simulated plot after 25 time units, 
e. simulated plot after 50 time units, f. simulated plot after 100 time units. 

 Considering the pattern of sub-network emergence as a function of 𝐷z{iQ, we expect that 

as time advances (iterations in the model), early iterations will approximate the younger 

empirical plots and later interactions of the model will approximate the older empirical plots (as 

is evident in Figure 2). Data for the three empirical plots are roughly approximated by the null 

model for various spatial scales (values of 𝐷z{iQ), and the range of colors in Figure 3. show the 

variation in plot evolution, where light grey is the lattice and dark red is after 100 rounds of 

replanting. It is apparent that simulations start far from the empirical distributions and move 

towards them (i.e., Δ�,=0) with continued plant death and replanting.  

 The largest deviations Δ�) are typically found at the distance that separates rows of the 

lattice, which ranges from 1.3-1.6m. This suggests that the empirical planting geometries are 

Empirical Simulated
a.)

b.)

c.)

d.)

e.)

f.)
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more clustered and over dispersed at scales that the model cannot approximate. For example, the 

empirical plot in Figure 3a. shows the model consistently unable to approximate at 𝐷z{iQ	from 

1.3-2m, and we see in the empirical data that this likely emerges from irregularities within row 

structure. It is evident from Figure 3a. that the deviation from the lattice emerges from missing 

plants and clustered plants but within the row structure itself. While simulations move plants 

away from the lattice structure randomly, the empirical data suggest that attempts to maintain 

semblance of row structure results in plants being replanting within the row but in an over 

dispersed or clustered fashion. Similar deviations are found between the empirical plots and 

simulations in Figure 3b and c and are consistent prior to the scale that join rows of the lattice, as 

denoted by the lite grey line from the simulations. These deviations occur because the simulated 

plots are more clustered at these smaller distances as shown by the approximations being below 

the zero line. 
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Figure 3.3: (a-c) 𝛥�as a function of the critical distance (parameter a in equation set 1), at 
various stages in the evolution of plot structure using the null model.  Shading goes from light 
(the first stage in the simulation) to dark red (final step of simulation). Note that the dashed 
horizontal line corresponds to a 1:1 approximation of the model to the empirical plots. Note that 
the y-axes differ for each of the sub-network comparison plots. 

  

Modeling pathogen spread on spatial networks  

Using time to reach 90% infection as a state variable, we illustrate its response to the 

two variables of interest, “plot evolution time” which is to say the time the null model is 

permitted to run, and the 𝐷z{iQ	parameter which stipulates the threshold scale of transmission 

between plants. In Figure 4., we summarize the general dynamics of the system from a two-

dimensional parameter sweep of, 1) the scale of the pathogen transmission (𝐷z{iQ), 2) the time 

steps involved in the plot evolution simulation, and 3) the state variable, time to epidemic (time 

to reach 90% of the trees infected). A pathogen spreading across the different plot geometries 

(represented by plot evolution time) reaches epidemic status regardless of spatial geometries due 
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to the fixed probability of outside infection of plants	𝛽. At low transmission levels, it is apparent 

that plants become more clustered as the plot geometry evolves away from a lattice-like structure 

resulting in a small but detectable difference in the time to epidemic. At large scales there are 

few differences in the dynamics pathogen transmission due to almost the entire plot being 

connected resulting instantaneously infection once a colonizing infection reaches the plot.  

 It is intuitive that at very large transmission values, the pathogen will move quickly to 

infect the whole plot and at smaller scales it will move slowly, with little effect of the planting 

geometry. It is at intermediate transmission levels that we find non-obvious interactions with the 

geometry of plants. For these intermediate scales of transmission we find that lattice-like 

geometries are sensitive to small increases in transmission and generate a drastic jump in 

pathogen dynamics where the time to epidemic shows a pattern similar to that of a critical 

transition (Figure 4.). As the plot becomes less lattice-like through stochastic plant death and 

replanting this critical transition-like dynamic becomes less pronounced. At the two extremes of 

plant geometries, we see critical transition-like behavior for highly organized lattice-like 

arrangements and a gradual change in time to epidemic for more unorganized pseudorandom 

arrangements as the scale of pathogen transmission changes. These results suggest that a more 

random-like pattern of the plants buffers drastic changes in the overall dynamics of the pathogen. 
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Figure 3.4: Shows the time until 90% infection across a range of scales of pathogen transmission 
(Dcrit) as well as planting geometries generated by the plot evolution model. Plots along the two 
axes are to illustrate the changing spatial network structure along scale of spread and the 
changing panting geometry in the plot evolution model. Note that the regional infection 
probability, 𝛽 = 0.1. 

 Given the basic biology of most pathogens, it makes sense to think about not only the 

dynamics within a plot but also how the regional dynamics impact the system. Our model results 

suggest that the dynamics of the spatial host-pathogen system changes as the probability of 

plants being infected from outside of the plot increases (Figure 5.). As the regional infection 
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probability increases, the interaction between the spatial geometries of the plants and scale of 

pathogen transmission becomes less pronounced. The critical transition-like behavior observed 

for relatively low regional infection probabilities is buffered as the regional infection probability 

increases, suggesting that under epidemic levels of a pathogen in the environment, the spatial 

arrangement of plants on a given farm becomes less important for the overall dynamics of the 

system. 

	

Figure 3.5: Shows how the pathogen dynamics change as the regional infection probability 
increases. The first figure is 𝛽 = 0.1, then 𝛽 = 0.2 then 𝛽 = 0.5. 

Discussion 
	
 The management practices that create the spatial geometries of plants in agroecosystems 

emerge from socioecological processes structured by a number of influences, from cultural 

practices to the economic position of the farmer among other factors. Our approach here has 

been to try and recreate the range of observed spatial planting geometries by using a simple null 

model that strips away most of these real-world complexities. We show that a simple process of 

stochastic plant death and replanting within a small radius surrounding the dead plant can 

recreate many of the features observed in the real distribution of planting geometry. Furthermore, 

we suggest that the observed spatial geometries in agroecosystem can be the result of different 

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

Plot Evolution (Time)
Scale of Transmission (Dcrit)

Tim
e To E

pidem
ic

! − #$%&'()*	&(,$-.&'(	/0'1)1&*&.2



	 69	

snapshots in time of this dynamic process (Figure 2.). The comparisons between our model and 

empirical data (Figure 3.) provides support for the idea that at least for the sampled plots, the 

distributions of plants fall along different times of this stochastic death and replanting process. 

For the most lattice-like geometry of our empirical plot (Figure 3a.) the model passes through the 

1:1 approximation of our empirical data for a wide range of spatial scales, suggesting that early 

stages in the simulations that move away from the lattice approximate it better than later more 

unorganized steps in the model. Furthermore, our simulations pass that same 1:1 approximation 

but at a much later time in the simulations for our plot of intermediate lattice structure (Figure 

3.b), while our plot farthest from the lattice structure (Figure 3c.) is never well approximated by 

our model across the full range of 𝐷z{iQ.  

 The interaction of spatial structure and spatial transmission of the pathogen suggests that 

they interact in a non-linear way. We observe that there is a critical transition-like behavior that 

emerges from the interaction of both the scale of pathogen transmission and the underlying 

spatial pattern of the hosts. Relatively small changes in pathogen transmission (𝐷z{iQ) with 

lattice-like spatial geometry can lead to a dramatic jump in dynamics of the pathogen (Figure 4.). 

Thus, with lattice-like planting, the pathogen may be held at relatively low densities, but a small 

change in management that may influence of scale of pathogen spread (discussed below) can 

result in a devastating shift in dynamics.  The uniform nature of the lattice creates conditions 

such that, once the threshold that connects rows is met, the whole plot becomes a connected 

network on which the pathogen can spread across. As the death and replanting process moves the 

spatial pattern away from a lattice planting geometry, it disrupts row structures and subsequently 

buffers the critical transition-like jump in pathogen dynamics. Thus it might be expected that 

uniform lattice-like planting geometries are far more sensitive to small changes in the scale of 
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transmission of the pathogen and even a relatively small amount of disruption from the highly 

organized state can buffer against variability in pathogen spread. As we move away from the 

lattice-like geometry, there may be higher pathogen infection at low transmission due to some 

clusters of plants, but that same geometry ultimately prevents the pathogen from spreading 

through the whole area. Furthermore, as the regional infection probability increases the 

qualitative results of the model stay the same however they are damped, and the critical 

transition-like behavior is almost non-existent for high regional infection probabilities.  

The results presented here have practical significance for the management of pathogens 

in agricultural systems, and in particular for the system which inspired the study, the coffee leaf 

rust (CLR). The CLR propagates both as a random propagule rain, spores arriving from the 

regional pool of spores in the environment, and from plant to plant on a local level through local 

wind current instabilities, branch-branch-contact, and splashing (Vandermeer et al. 2017, 

Avelino et al. 2015). Our model simulations mainly focused on the local level transmission and 

how that interacts with the planting geometry of the agroecosystem. There are a number of 

management factors within coffee agroecosystems that have the potential to influence parameters 

associated with the scale of the CLR transmission (Avelino et al. 2004). Shade is one of the most 

commonly managed aspects of coffee agroecosystems and its impact on the dynamics of the 

CLR has been contentious with some reporting beneficial impacts of shade reducing CLR (Soto-

Pinto et al, 2002), and others reporting the opposite (Lopez-Bravo et al. 2012). The classic 

recommendation has been to reduce shade to manage the CLR, as the microclimatic implications 

of shade such as increasing humidity could potentially be beneficial to the germination of spores 

(Staver et al. 2001), but it is important to understanding that the transmission of spores and the 

viability of spores are two different forces that need to be simultaneously managed. Bourot et al. 



	 71	

(2016) provided evidence that shade within coffee agroecosystems reduces the spread of spores, 

thus providing support for the idea that shade trees within a coffee plantation act as a wind 

breaks and prevent local dispersal. In Avelino et al. (2012) the surrounding landscape of pasture 

land was correlated with the CLR on individual farms. Shade is a single management factor that 

has the potential to influence the local scale of pathogen transmission and probability of the 

pathogen establishing infection. In the context of the analysis presented here, we suggest that the 

amount of shade locally will modify 𝐷z{iQby creating wind breaks which reduce the plant to plant 

(local) transmission. 

 While the question of what initially caused the outbreak of the CLR in 2013 in Latin 

America is still unclear, it set up the necessary conditions to overhaul many coffee 

agroecosystems throughout the region. Due to the prevalence of plant death from the epidemic 

itself, in conjunction with the promotion of resistant varieties, most farmers throughout Latin 

America are likely replanting whole farms now. This is particularly important moment in the 

dynamics of the CLR in Latin America, as following classical agronomical recommendations for 

combating the CLR would mean a reduction in shade, thus potenitally increasing the scale of 

CLR transmission locally, as well as replanting with resistant varieties, will likely lead to 

planting geometries that are more lattice-like when the whole system is replanted. Studies have 

found that this process is already underway in parts of Central America (Valencia et al. 2018), 

and as this study shows, the combination of shade reduction and moving towards a uniform 

planting structure, increases the likelihood of the critical transition-like epidemic dynamics 

observed in our model.  
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Supplementary material  

	

Figure 3.6: 𝛥� (the different in the number of sub-graphs/sub-networks) as a function of the 
critical distance (parameter a in equation set 1), at various stages in the evolution of plot 
structure using the null model.  Shading goes from light (the first stage in the simulation) to dark 
red (final step of simulation). Note that the dashed horizontal line corresponds to a 1:1 
approximation of the model to the empirical plots. Note that the y-axes differ for each of the sub-
network comparison plots. Rows correspond to the three empirical plots, and the columns show 
different probability distributions, 𝒟 𝛼 	,used for the replanting. Note that alpha is equal to 
0.05, consistent with the simulations in the main manuscript.   
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Abstract 
	
The metacommunity, as it evolved from Levins’s metapopulation, provides a framework to 

consider the spatial organization of species interactions. A defining feature of metapopulations 

and metacommunities is that organisms (populations or communities) are connected via 

migration. An important result from Levins’s metapopulation work—that increasing migration 

lowers regional extinction probability—is often incorporated into conceptions of 

metacommunities; however, this may not hold true for multiple interacting metapopulations 

(metacommunities). We report results from a metacommunity field experiment conducted with a 

tropical terrestrial leaf litter macro-arthropod community. We show that migration induces 

regional extinctions of predators without changing the predator community composition. For 

non-predators we found no evidence of regional extinctions, but a significant change in 

community composition.  Our result corroborates the findings of a prior similar metacommunity 

experiment with a temperate forest leaf litter community. The concordance between these 
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experiments, even with vastly different communities, highlights the importance of considering 

trophic and non-trophic community structure to understand metacommunity dynamics, and 

suggests a potential connection between migration rates and trophic-specific responses in 

ecological communities.    

Introduction 
	

The theory of metapopulations has become a standard way of thinking about simple 

population dynamics, and its success has stimulated a seemingly obvious extension, the 

metacommunity (Levins 1969; Wilson 1992). As originally envisioned, a metacommunity is a 

collection of interacting populations of different species in which extinction and migration occur 

on a regular basis. This results in patchiness that creates subcommunities, which may be distinct 

in species composition. It might be argued that MacArthur and Wilson’s theory of island 

biogeography was the first metacommunity theory, and perhaps the most elegant, in which 

patchiness is provided by the existence of islands (MacArthur and Wilson 1964).  From these 

formulations, an important conclusion of metapopulation theory has been tacitly incorporated as 

an obvious corollary of metacommunity theory—that increasing migration lowers overall 

extinction probability. While it may be a reasonable proposition at first glance, further reflection 

on the assumption suggests that the expectation of lowered extinction is not universal in the 

metacommunity context (Vandermeer et al. 1980; Caswell and Cohen 1991). 

         Huffaker’s classic experiment might be thought of as a canonical case study that supports 

a link between increasing inter-patch migration and lower extinction. When isolated to a small 

feeding area, both predator and prey mites go extinct (predator eats prey to extinction then itself 

goes locally extinct)--yet when many smaller feeding areas were arranged to facilitate local 

dispersal of prey (but not predators), apparently stable oscillations result (Huffaker 1958). A 
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similar experimental set-up that yielded stable oscillations also included predator-focused 

dispersal limitations (Huffaker 1958). A similar pattern was also observed in Gause’s 

experimental system of protozoans twenty years prior (Gause et al. 1936). In these examples, 

migration appears to decrease the probability of extinction.  

Alternatively, it is not difficult to imagine the reverse outcome in other systems: a case in 

which migration might increase extinction probability. For example, in a two-predator one-prey 

situation in which spatial structure allows for a segregation of the two predators in space, 

increasing the predator migration rate could increase intraguild antagonism, leading to one of the 

predators dominating, and a reduction of total species diversity from three to two. Even in cases 

without intraguild competition, the simple dispersal of any intermediate predator can 

theoretically cause trophic instabilities due to more lag in population dynamics (Jansen 1995). 

Thus, elevated migration rates could result in either increased or decreased species diversity, 

depending on the strength or timescale of antagonistic (or even facilitative) interactions across 

ecological guilds (Guzman et al. 2019). The simple migration-extinction equilibrium of island 

biogeography and metapopulation theory may yield predictions that are not generalizable for 

more complex community structures. 

         The role of migration in rescuing unstable populations has been highlighted so often that  

it is usually taken for granted, but that result is not theoretically inevitable (Simberloff and Cox 

1987). The ability to simulate a wide range of metacommunity dynamics suggests the need for an 

empirical approach.  One of the key shortfalls of much of the experimental metacommunity work 

lies in its simplification of community interactions (Polis et al. 1989), where studies often only 

consider a subset of species with simple trophic structure (e.g. consumer-resource pairs) Warren 

1996; Shurin 2001; Kneitel and Miller 2003; Cadotte 2006; Fox et al. 2017). Although there are 
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some notable experiments which attempt to include some of the trophic and non-trophic realism 

of communities (Neill 1974; Vandermeer et al. 1980), surprisingly few experimental studies have 

focused on empirically realistic metacommunities. 

         One of the early attempts to study the role of migration in empirical metacommunities 

used leaf litter macro-arthropod communities and found that the predator guild (defined 

taxonomically) decreased in richness when random migration was induced, while non-predator 

richness was unaffected by migration (Vandermeer et al. 1980). These results suggest that 

conclusions about metacommunity structure may, at least in some contexts, be trophic-specific. 

The dependence of community dynamics on trophic structure has been noted in some well-

known debates, for example, in considering whether communities tend to be controlled primarily 

by consumers (top-down) or producers (bottom-up) (Hairston et al. 1960), and why trophic 

cascades operate differently in aquatic versus terrestrial systems (Strong 1992). Clearly, a wide 

range of ecological processes interact with migration in real metacommunities, including higher-

order interactions (or trait-mediated indirect interactions), which recent work suggests may be 

more determinant of community structure than the more direct, lower-order or pairwise species 

interactions (Werner and Peacor 2003; Bairey et al. 2016; Grilli et al. 2017; Terry et al. 2017).  

         The empirical result that experimental migrations make a difference in metacommunity 

structure for predators, but not for non-predators (Vandermeer et al. 1980), was found in a 

species-poor temperate deciduous forest (Michigan, USA). Here we revisit the experiment 

conducted by Vandermeer et al. (1980) in a more speciose montane tropical agroecosystem. We 

considered that in the tropics, the hypothesized stability-preserving aspect of high biodiversity 

(McCann 2000) could overwhelm any special effect of a strongly antagonistic predator species, 

which was proposed to explain the results of the earlier temperate zone study.  Accordingly, we 
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sought to investigate how migration affects leaf litter community richness and composition, 

focusing especially on the effects at different trophic levels. Based on underlying assumptions 

about the importance of migration in maintaining biodiversity, we hypothesized that curtailing 

local migration would reduce local species diversity, and that this effect would be observed at all 

trophic levels. 

Methods 
	
Study region and design 

This study was conducted at Finca Irlanda, an organic shaded coffee agroecosystem in 

the Soconusco region of Chiapas, Mexico. The study site was on a subset of land recently 

transitioned from rustic coffee production to a forested reserve. The experimental set-up was 

positioned adjacent to a patch of invasive golden bamboo, the litter of which created a uniform 

mat. 

Leaf litter was collected from a well-forested area of the reserve, homogenized, and 

separated into 10 mesocosms, each of which were 0.5 m2 in area and separated from one another 

by 1 meter. Five mesocosms were positioned on either side of a walking trail. No physical 

barriers prevented migration between mesocosms. Inter-patch migration was therefore possible, 

but we assumed it was sufficiently infrequent such that it could be ignored. We assumed 

organisms would not prefer to leave a mesocosm of leaf litter of the same composition from 

which they were originally collected to migrate across a relatively inhospitable mat of dried litter 

from an invasive bamboo species. 

Half of the mesocosms were assigned as controls and half as treatments. To simulate 

migration among treatments, one-quarter of the litter in each mesocosm was removed and 

replaced with the same amount of litter from a different mesocosm. The transfer schedule was set 
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so that a different quarter of the mesocosm was migrated during each transfer event, and the 

replacement pattern was randomized so that each mesocosm received and contributed litter to a 

different, randomly assigned mesocosm. Transfers were done every 4 days for 16 days. 

Migration was not manipulated among control mesocosms, though one-quarter of the litter was 

lifted, agitated, and replaced in the same mesocosm every four days to control for the disturbance 

of the litter transfers between treatment mesocosms. All mesocosms were harvested on day 20. 

This time scale is comparable to Vandermeer et al.’s 1980 experiment which ran for 30 days.  

After harvesting, the litter was sieved using 3-mm meshes to remove coarse detritus. 

Each sample was searched by four people for 20 minutes, and all encountered organisms were 

individually removed and placed in alcohol. This technique did not likely capture all organisms 

found within the mesocosms, but we expect that any bias toward certain groups of organisms 

was standardized across all samples, which we assured by blinding the sample labels throughout 

the sorting process. Individuals were sorted into orders or families and identified to 

morphospecies. Morphospecies were then classified as either predators or non-predators, where 

predators included spiders, Staphylinidae beetle larvae, pseudo-scorpions and centipedes. 

Statistical methods 

To compare the number of species in our control and migration treatments, individual-

based rarefaction curves were calculated for the whole dataset and for each trophic group 

(predators and non-predators) separately.  Rarefactions followed the now standard methodology 

of resampling the list of species observations with replacement at increasing numbers of 

individuals (Gotelli and Colwell 2001). 100 resamples were conducted for each level of 

individuals sampled, and the mean number of species for a given density of individuals was 

calculated.  
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While there are standard methods to extrapolate the number of species (Colwell and 

Coddington 1994; Chao et al. 2014) and compare the overall shape of rarefaction curves 

(Cayuela et al. 2015), we were interested in the statistical differences between our rarefaction 

curves across the range of resampled levels. To assess differences between the control and 

migration treatments, we conducted a bootstrapping procedure to compare the difference in the 

mean number of species at every re-sampling level, 𝑥i, along the rarefaction curves. For a given 

𝑥i,100 random draws from the observed datasets for the control and migration, 𝐷z and 𝐷�, were 

used to calculate the mean observed number of species,𝑆z and 𝑆�, for sampling level 𝑥i.These 

values were used to calculate the observed difference in the number of species, 𝑆z − 𝑆� = ∆r��  

for resampling level  𝑥i. The observed data, 𝐷z and 𝐷�, were then pooled together to create 𝐷�, 

which was then randomly partitioned into null data sets 100 times for the control and migration 

treatments, 𝑁z and 𝑁�. 𝑁z and 𝑁� were then randomly sampled 100 times at 𝑥i sampling level 

to calculate mean number of species, 𝑆�� and 𝑆�� , sampled at 𝑥i for both null data sets. These 

values were then used to calculate the null difference in the mean number of species sampled, 

𝑆��- 𝑆�� = ∆����. This gives us a distribution of ∆���� which was then compared to ∆r�� to 

calculate the probability of observing ∆r��  for a given 𝑥i if 𝐷z and 𝐷�come from the same 

statistical population. The probability, 𝑝, is calculated by 𝑝 = S
�

𝑞 where 𝑞 is the number of 

times that ∆r��	≥ 	∆���� and 𝑛 is the number of ∆���� values in the distribution. This procedure 

was repeated for every value of 𝑥iwhere the rarefactions of both treatments overlap. The 

supplementary material contains a graphical walkthrough of the statistical test (Figure S1) and a 

link to a repository with the R code for the test. 

To look at patterns in community composition for both treatments (increased migration 

and control) we used both Bray-Curtis and Jaccard distances as measures of dissimilarity at the 
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patch scale. This allowed us to look at the data as weighted by abundance of morpho-species (Bray-

Curtis) as well as just looking at the presence-absence (Jaccard). Analysis of Similarity tests 

(ANOSIM) were used to calculate statistical differences in community composition for both 

dissimilarity measures between our control and migration treatment. The NMDS plots, ANOSIM 

tests, and calculations of dissimilarity measures were implemented with the ‘vegan’ package 

(Oksanen et al. 2010) in R (R Core Team 2019). The ‘anosim()’ function of the ‘vegan’ package 

used with 5000 permutations to calculate the R statistic and the p-values. For the Bray-Curtis 

distance ANOSIM we created a community matrix where the rows are the separate patches, the 

columns are morpho-species, and the entries are the number of morpho-species for a given patch. 

With the Jaccard distance ANOSIM we created a similar matrix, but where the entries are the 

presence (1) or absence (0) of morpho-species.  

To quantify the impact of migration in the communities across treatments we infer the local 

extinctions dynamics in our experiment by using the distribution of rare species across treatments. 

Given that the leaf-litter substrate was homogenized prior to the experimental set-up we assume 

that observed differences result from the dynamics in different treatments. We defined rare species 

in two ways here. First, by being a singleton (i.e. having an abundance of 1 in a single patch) across 

all patches (control and migration), and second by having an abundance that is less than the mean 

morpho-species abundance in the community (“relatively rare species”) (5.12 for predator 

community and 4.44 for non-predator community). This comparison of ‘rare’ morpho-species is 

done with both the community of predators and non-predators separately to understand how 

dynamics differ across trophic position across treatments. 

Results 
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         While there was no statistically significant difference between the control and migration 

treatments for the whole community (Figure 1A) or the non-predator community (Figure 1C), we 

did observe a significant difference in species richness between the control and migration 

treatments within the predator community (Figure 1B). This difference between control and 

migration treatments for the predators starts at just nine individuals sampled and remains 

significant for the rest of the overlap between the two curves. 

 

	

Figure 4.1: (A-C) Individual-based rarefaction curves for A.) whole community (green), B.) 
predators (red), and C.) non-predators (blue). Treatments are shown in lighter colors (control) 
and darker colors (migration). One standard deviation (based on the 1000 random draws) is 
plotted in the shaded areas around the curves. The vertical dashes above the curves in in B.) 
represent a statistically significant (p < 0.05) difference in the number of species for a given 
number of individuals sampled between the control and migration treatments. 

Community analysis 

Analysis of similarity (ANOSIM) showed no differences between the community 

composition for the predators for both Bray-Curtis (R=0.12, p=0.182) and Jaccard distance 

(R=0.16, p=0.081), while the non-predator community showed significant differences for both 

Bray-Curtis (R=0.478, p=0.0172) and Jaccard distance (R=0.332, p=0.0523) (Figure 2). The 

amount of species overlap between control and migration treatments was 51% for predators and 

40% for non-predators. Additionally, we see that rare morpho-species, as defined by being 
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singletons and less abundant than the mean morpho-species abundance in the community are 

more common the non-migration treatment for predators with no apparent difference in the non-

predator community Table 1. This suggests that relatively rare morpho-species in the predator 

community are more prone to local extinctions than rare morpho-species in the non-predator 

community when migration occurs.   
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Figure 4.2: NMDS plots for predator community and non-predator community. a.) and b.) are 
made using Bray-Curtis dissimilarity and c.) and d.) are using Jaccard. ANOSIM showed no 
differences between control and migration treatments for the predators (Bray-Curtis R=0.12; 
p=0.182 & Jaccard R=0.16 p=0.081) and significant differences between control and migration 
treatments for non-predators (Bray-Curtis R=0.478; p=0.0172 & Jaccard R=0.332, p=0.0523). 
The same analysis was conducted using Jaccard distance and is reported in the results section. 
C1-C5 refer to the control patches while M1-M5 refer to the migration patches. 

 

-0.4 -0.2 0.0 0.2

-0
.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3

C4

C5

M1

M2

M3M4

M5

NMDS1

N
M
D
S
2

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3
C4

C5

M1

M2

M3

M4

M5

NMDS1

N
M
D
S
2

-0.4 -0.2 0.0 0.2

-0
.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3

C4

C5

M1

M2

M3M4

M5

NMDS1

N
M
D
S
2

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3
C4

C5

M1

M2

M3

M4

M5

NMDS1
N
M
D
S
2

-0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3C4
C5

M1

M2

M3

M4
M5

NMDS1

N
M
D
S
2

-0.2 0.0 0.2 0.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3
C4

C5

M1

M2

M3 M4

M5

NMDS1

N
M
D
S
2

-0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3C4
C5

M1

M2

M3

M4
M5

NMDS1

N
M
D
S
2

-0.2 0.0 0.2 0.4

-0
.2

0.
0

0.
2

0.
4

C1

C2

C3
C4

C5

M1

M2

M3 M4

M5

NMDS1

N
M
D
S
2

Predator Community Non-Predator Community

Ja
cc

ar
d

Br
ay

-C
ur

tis

a.) b.)

c.) d.)



	 87	

Predator Community % 

Non-Predator 

Community % 

Singletons   Singletons   

Control 69 Control 49 

Migration 31 Migration 51 

Relatively Rare Relatively Rare 

Control 75 Control 56 

Migration 24 Migration 44 

Table 4.1 :Shows the percentage of rare species in the predator and non-predator communities 
for the control and migration treatment of the experiment. Two definitions of “rare” are used 
here: first, a morpho-species as a singleton in the dataset (top-half) and second, a given morpho-
species as less abundant than the mean abundance of all morpho-species in the community 
(“relatively rare”). 

	
Discussion 
	

Our results showed that, even after scaling up the biodiversity background to a tropical 

leaf litter community with over 100 species, predator guild species diversity decreased 

significantly with migration. It is notable that even the coarsest distinction of trophic complexity 

(predators and non-predators) provides insights that do not emerge when analyzing the 

community as a whole. These findings echo those of the earlier study (Vandermeer et al. 1980) 

which was done with a lower-biodiversity temperate leaf litter community. Results from both 

this and the earlier study seemingly contradict a main conclusion of basic metacommunity 

theory: that migration increases species’ persistence, and thus also regional richness. While 

theoretical treatments of metacommunities acknowledge the potential complexity of community 

structure and its effect on migration (Caswell and Cohen 1991; Mouquet and Loreau 2002; 

Economo and Keitt 2008), it remains that simplified metacommunity theory generates the 
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prediction that migration will tend to cause species diversity to increase, a result in concordance 

with the original MacArthur-Wilson, Levins-Heatwole framework (Heatwole and Levins 1972; 

1973; Levins et al. 1973). Importantly, there is also no evidence, to our knowledge, that suggests 

that leaf litter communities in the temperate or tropical zones are organized in such a way that 

predisposes them to the results of both of these studies. These consistent results with distinct 

communities in distinct regions suggest that there may be some generality in the way that 

migration impacts trophic guilds. 

While it is of particular interest that effects of migration fall along the lines that delineate 

trophic position in the community, that does not necessarily imply a trophic mechanism to 

explain the observed dynamics. The type of detailed observations of community interactions that 

would be necessary to understand the mechanisms that generated our experimental results were 

not feasible in our study; we could only look at patterns of community richness and composition 

to attempt to shed light on potential mechanisms at play. The two key findings are that first, 

predator richness decreased significantly with migration, but community structure did not 

significantly change, and secondly, while non-predator richness did not change significantly, 

community structure did (Figure 1 & Figure 2). For the predator community, this suggests that 

although there is a reduction in the number of morpho-species, the relative abundance and 

presence in the rest of the community was not significantly impacted by migration. This 

indicates that migration may have had a very species-specific impact within the predator guild, 

the effects of which then rippled through the non-predator community. We suggest that a highly 

antagonistic and relatively rare (possibly initially isolated to only a single patch) predator may be 

shaping the community when dispersed among patches, as was suggested in Vandermeer et al. 

(1980). Support for this hypothesis is in the higher percentage of rare predator morpho-species in 
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the treatment with no migration (Table 1.). Non-significant compositional changes in the 

predator community may be the result of the extinction of relatively rare predator morpho-

species, an effect not present in the non-predator community. While rare predators are impacted 

by migration, rare non-predators are not. The R statistics reported from the ANOSIM tests 

suggest a similar story, where the larger R for the Jaccard index compared to Bray-Curtis 

observed in the predator community suggest targeted species specific changes to the 

communities. 

Based on patterns in community richness and composition, we suggest that an antagonist 

and relatively rare predator may be shaping these leaf litter communities, but it remains that both 

trophic and non-trophic mechanisms acting within and between guilds could be drawn upon to 

explain these results. Intraguild effects among predator communities are common and may 

manifest in the form of indirect competition among predators or intraguild predation. Impacts of 

predators on community structure are often hypothesized as acting through lower trophic levels 

such as predator-mediated coexistence or keystone predation (Shurin and Allen 2002). It is also 

possible that the changes observed resulted from non-trophic interactions such as trait-mediated 

indirect interactions (Werner and Peacor 2003; Bairey et al. 2016; Grilli et al. 2017; Terry et al. 

2017), which may be acting within or between trophic levels. As is widely documented in 

ecological communities, the addition of new species (i.e. by migration) can result in local 

changes to the magnitude, and even sign, of other species’ pairwise direct interactions, often 

caused by behavioral changes. For example, the mere presence of a predator at a low density can 

decrease the maximum observed foraging activity and thus fitness of a prey (Werner and Peacor 

2003). In a metacommunity context, higher-order anti-predator effects have also been shown to 

shape metacommunity dynamics when migration is induced in simple experimental systems 
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(Kneitel and Miller 2003;  Hauzy et al. 2007; Howeth and Leibold 2010). If there are differences 

in the structure of indirect interactions within trophic levels, we may predict different dynamics 

for each trophic level. For instance, there may be more strong negative indirect interactions 

among predators in a system, but weaker positive indirect effects among prey; this could cause 

more exclusion and lower richness among predators, yet little to no change in prey richness. 

Ultimately, a myriad of trophic and non-trophic mechanisms may be important in shaping 

metacommunity dynamics, and we emphasize their consideration in developing modern 

metacommunity theory (Guzman et al. 2019) .  

Community organization, which encompasses the ways in which trophic levels are 

connected across scales also mediates the ways in which predators shape metacommunity 

dynamics (Shurin 2001, Shurin and Allen 2001, CadotteCodetta and Fukami 2005). The context 

dependency associated with metacommunity dynamics is likely a reflection of the complex ways 

in which communities can be organized trophically and non-trophically. The ability to account 

for the true distribution of interactions in ecosystems is likely limited in natural systems, but will 

further our understanding of the plethora of theoretical and empirical results regarding 

trophically specific roles in metacommunities (Shurin 2001; Kneitel and Miller; Caswell 1978; 

Caswell and Cohen 1991). Most frequently, experimentalists look at the impacts of predators on 

the overall diversity of the metacommunity, and have found examples of predators increasing 

regional diversity (Shurin 2001) as well as decreasing it (Codette and Fukami 2005). What has 

been less frequently explored is the impact of migration on the predator and non-predator guilds 

separately. Most hypotheses associated with trophic guilds and metacommunities are related to 

the rate of migration in the system or simply the presence of predators (Kneitel and Miller 2003). 

Regarding our study system, the relatively small literature on the community ecology of 
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terrestrial leaf litter arthropod communities makes it difficult to narrow potential mechanisms 

that may explain our results.  

In our experiment, we manipulated migration rates such that there were equivalent 

potential migration rates for predators and non-predators. This could be an important caveat to 

our study’s generalizability, given the potential differences in the realized predator and non-

predator migration rates. Migration should increase diversity initially, as homogenization occurs, 

but trophic and non-trophic interactions can act to increase or decrease diversity after this initial 

homogenization. Our result of lower predator richness with migration runs counter to this  

expectation of increased diversity with homogenization, and thus indicates that our  experimental 

time frame was appropriate to assess changes in these communities. We found no change in the 

richness of non-predators, but have no reason to suspect that homogenization effects would 

operate on a different time scale for predators and non-predators in the leaf litter community, 

particularly given that we manipulated the potential migration rates to be equal across trophic 

levels.  

The work reported herein sits comfortably with the current enthusiasm for 

metacommunities, a framework originally suggested by Wilson (1992). It is substantially similar 

to the framework of MacArthur and Wilson’s original offering, in which 1) ecological dynamics 

occur locally, with species interactions (of various forms) determining which species will survive 

and which will locally perish, while 2) the more regional process of migration continually feeds 

these local communities, countering local extinctions with regional migrations to provide the 

expected equilibrium (MacArthur and Wilson 1964). Eschewing some recent complexities 

(Leibold et al. 2004), we consider a metacommunity as structured in the original sense of Wilson 

(1992), wherein ecological dynamics occur at a local level, but local patches affect one another 



	 92	

through dispersal. Our experiment interrogates the consequences of migration, but more 

specifically explores the interaction between community structure and the dynamics of 

migration. Our results highlight the importance of considering trophic and non-trophic structure 

when evaluating metacommunity dynamics.  
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Supplementary Material 
	

	

Figure 4.3: This figure presents a graphical walkthrough of the statistical test to compare the 
rarefaction curves. a.) shows the observed list of species incidences from the control and 
migration datasets. b.) each one of the datasets (𝐷z and 𝐷�) are respectively sampled 100 times 
to calculate a sample mean for a given level of x individuals sampled (𝑥i).  The difference 
between those samples give us our observed statistic. c.) pooled data (𝐷�) from 𝐷z and 𝐷�are 
then randomly partitioned and the procedure in b.) I then repeated 100 times to create a null 
distribution d.) where the probability of finding our observed statistic can be calculated. Note 
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that the random partitioning of data and resampling done in c.) is done 100 times for a given 𝑥i 
which then creates the null distribution. R code for statistical test can be found at 
https://github.com/ZHAJIANF/Hajian-Forooshani_Oikos_2019_rarefaction_test 
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Chapter 5 Viewing Communities as Coupled Oscillators: Elementary Forms 

from Lotka and Volterra to Kuramoto  

Zachary Hajian-Forooshani and John Vandermeer 
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Abstract 
	
Ecosystems and their embedded ecological communities are almost always by definition 

collections of oscillating populations. This is apparent given the qualitative reality that 

oscillations emerge from consumer-resource interactions, which are the elementary building 

blocks for ecological communities. It is also likely always the case that oscillatory consumer-

resource pairs will be connected to one another via trophic cross-feeding with shared resources 

or via competitive interactions among resources. Thus, one approach to understanding the 

dynamics of communities conceptualizes them as collections of oscillators coupled in various 

arrangements. Here we look to the pioneering work of Kuramoto on coupled oscillators and ask 

to what extent can his insights and approaches be translated to ecological systems. We explore 

the four ecologically significant coupling arrangements of the simple case of three oscillator 

systems with both the Kuramoto model and with the classical Lotka-Volterra equations. Our 

results show that the six-dimensional analogous Lotka-Volterra systems behave strikingly 

similarly to that of the corresponding Kuramoto systems across all possible coupling 

combinations. This qualitative similarity in the results between these two approaches suggests 
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that a vast literature on coupled oscillators that has largely been ignored by ecologists may in fact 

be relevant in furthering our understanding of ecosystem and community organization. 

Introduction 

 Interacting species assemblages are composed of consumers and their resources. If pairs 

of consumer-resource systems are persistent in a given community, then the fundamentals of 

ecological theory suggest that these communities are, in principle, assemblages of oscillators. To 

the extent that the consumers tend to overlap in their diets, or the resources interact with one 

another, ecological communities may be thought of as systems of coupled oscillators.  Although 

ecologists have long been interested in understanding large assemblages of interacting species, 

relatively little research in community ecology has drawn on the body of theory associated with 

coupled oscillators to conceptualize such systems. In many branches of science, coupled 

oscillators have been used as a key metaphor for developing general theory, from electronics to 

neurobiology (Norton et al., 2018; Laing, 2017; Fukuyama, and Okugawa, 2017). Here we 

suggest that consumer-resource oscillators can be thought of as the building blocks of ecological 

communities and the analogy of coupled oscillators can potentially be used as an abstraction for 

community ecology.  

 The inevitability of oscillatory dynamics in ecological systems stems from one of 

ecology’s most foundational models of consumer-resource interactions, where the simplest 

assumptions of one population consuming another generates persistent oscillations (Lotka 1926; 

Volterra 1926). Adding Holling’s functional response (Holling, 1959), this basic framework can 

generate persistent oscillations in the form of stable limit cycles, a form that could be considered 

as a starting point for envisioning ecological communities, which is to say, as coupled oscillators 

(Vandermeer, 1993; 1994; 2004; 2006). Restricting the analysis to the parameter space within 
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which limit cycle solutions exist, while limiting from a complete ecological point of view, is 

potentially a useful simplification explored here.   

 In this work we deal with three oscillators, which means three consumers and three 

resources. Since there are six variables with the only necessary restriction that resources get 

consumed by consumers, the number of ways one could couple the variables together is large.  

Conceptualizing the system as three oscillators (a consumer and one of the resources) restricts 

the possible combinations, but there are still many. Yet there is a way in which some ecological 

assumptions can make the landscape simpler and perhaps more intuitive. Suppose that oscillatory 

consumer-resource pairs function in two distinct and ecologically relevant ways (Vandermeer, 

2004). First, when two consumers share two resources they can be thought of as coupled with 

one another via trophic cross-feeding, the case of resource competition between the two 

consumers. Second, resources that are in direct competition with one another can be thought of 

as being coupled via competition for some external resource. Here we refer to these two 

qualitatively distinct forms as trophic-coupling and resource-coupling respectively. When 

coupling is weak, surprising generalizations emerge in the phase dynamics for these 

arrangements. For weak trophic-coupling, the oscillators converge on a pattern of relative in-

phase synchrony, and for weak resource-coupling the oscillator pairs will converge on a pattern 

of relative anti-phase synchrony (Vandermeer, 2004) (Figure 1). It is almost certainly the case 

that consumer-resource pairs are not exclusively resource-coupled or trophic-coupled in nature, 

and incorporating both coupling types can lead to complicated dynamics such as chaotic 

oscillations (Vandermeer, 2004).  Even given these complications, Benicà et al. (2009) 

demonstrated that the insights from these particular forms of coupled oscillators can be 

successfully applied to complex empirical communities.  
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Figure 5.1: The two qualitatively distinct coupling arrangements for consumer-resource 
oscillators and their dynamic outcomes (Vandermeer, 2004). Resource coupling (competition 
between resources) leads to asynchrony and trophic coupling (cross-feeding) leads to synchrony. 
Circles represent negative effects, arrows positive effects, and dotted lines oscillator coupling. 

 

 Although oscillations emerge from many nonlinear systems, oscillators themselves have 

been the focus of understanding systems. One elegant perspective on coupled oscillators is the 

abstraction of Yoshiki Kuramoto (1975; 1984), which was partially inspired by the pioneering 

work by Arthur Winfree on biological oscillators (1967). Kuramoto envisioned collections of 

coupled oscillators as weakly-coupled limit cycles on the circle and the oscillator conditions 

indicated as the angle Θ made by the point of resource and consumer on the unit circle, taken to 

represent the limit cycle of the oscillator. Presuming that synchronization will occur, Kuramoto 

writes; 
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 Q
= 	𝜔i +	
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�

sin( Θig −	Θg)          (1) 

where 𝜔i is the intrinsic frequency of oscillator i (the rate of advancement on the circle dictated 

by the inherent oscillations), K is the intensity of coupling, and N is the number of oscillators. 
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Clearly the intent of the model is to view the phase of the oscillations (not the amplitude) as the 

key dynamical variable. All oscillators are identical (with the possible exception of the intrinsic 

frequency) and couplings are taken to be universal (all to all). A rather remarkable result emerges 

from this simple model -- with random initiations, no synchrony occurs when coupling strengths 

are small, but a critical point of coupling intensity is reached where rapid attainment of 

synchrony of all oscillators is achieved. There is now a large technical literature on this model, as 

well as a long history, both of which are summarized in a reader-friendly way by Strogatz 

(2000). 

 In an ecological context, Kuramoto’s limit-cycle oscillators could be thought of as 

resource-consumer pairs in the parameter regimes that generate limit-cycle behavior .  Although 

it is apparent to ecologists that oscillations are an essential feature that results from the most 

elementary of ecological interactions, approaches used in the field of complex systems, like 

those pioneered by Kuramoto, have gained relatively little traction in the field of ecology. It is 

most frequently the practice in ecology, especially in the food web literature, to couple together 

large networks of ordinary differential equations (e.g. Lotka-Volterra) representing individual 

populations of consumers and resources. Although this approach has been fruitful, it sometimes 

leads to unwieldy parameterization, limiting analytical questions to those amenable to linear 

stability analyses. To explore the potential usefulness of employing approaches such as those of 

Kuramoto, we here study the concordance between his model and the classical Lotka-Volterra 

models used in ecology, for the most elementary formulation of an ecological community.  

 

Methods 
Modifying Kuramoto’s model, we write: 

 ¡¢
 Q
= 	𝜔i +	

¤
�

Γi,gsin(Θig −	Θg)                   (2) 
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where Kuramoto’s mean field approach has been disaggregated with the adjacency matrix Γ 

stipulating the coupling of each pair of oscillators. Note that Γ i,j  > 0 indicates the oscillators i 

and j will synchronize “in phase” while Γ i,j  < 0 indicates they will synchronize “anti-phase.”  If 

we stipulate that |	Γ i,j |= 1.0, the sum of the upper triangle of the adjacency matrix [= 

S
b
∑(Γi,g)]	can be -3, -1, 1, or 3 for a three oscillator system. Figure 2 illustrates the basic 

combinations of a three oscillator system with expected outcomes of oscillator phases based on 

coupling.  

 Taking the classic Lotka-Volterra consumer resource equations we write: 

 G¢
 Q
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− 𝑚𝐶i                                                       (3a) 
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                                     (3b) 

Where 𝐶 and 𝑅 denote “consumers” and “resources” respectively and 𝑖 ranges from 1 to 3. The 

basic parameters of the model are: 𝑎 = the attack rate of the consumers, 𝑚 = the mortality rate of 

the consumers, ℎ = the functional response term of the consumer, 𝑏 = the birth rate of the 

resource, 𝛼 ij = the competitive effect of resource j on resource i (note, 𝛼 ii = 1), and 𝛽 ij = the 

strength of cross feeding (note, 𝛽 ij = 1). The parameter 𝛼 represents the strength of competition 

(resource coupling) between resources and 𝛽 represents the strength of cross-feeding (trophic 

coupling).  

 In the spirit of Kuramoto’s model, we first located parameter space where individual 

consumer-resource pairs oscillate in limit cycles (equation set 3). Given a persistent oscillator in 

the Lotka-Volterra formulation, we then couple them in four paradigmatic combinations outlined 

in Figure 2, where trophic-coupling implies eventual synchrony and resource-coupling implies 

asynchrony. Manipulating 𝛼 ij and 𝛽 ij in equation set 3, we create the parameter states for all 
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four coupling arrangements depicted in Figure 2 (See appendix for long form equations for each 

coupling scenario). For all simulations presented here we used low values of coupling 

coefficients (𝛼 =0.01 and	𝛽 =0.1). 

	

Figure 5.2: Diagrammatic representation of the analogous forms of Lotka-Volterra and 
Kuramoto for three oscillator communities. Lotka-Volterra diagram: Illustrates the core idea of 
three consumer/resource coupled oscillators, Ci is the biomass of the ith consumer and Ri is the 
biomass of the ith resource. Connectors indicate a positive effect with an arrowhead and a 
negative effect with a closed circle. Kuramoto diagram: illustrates the three oscillators as nodes 
in a graph and their connections, edges, with the elements of the adjacency matrix (+=1 or - = -
1) indicated near the edges. 𝟏

𝟐
𝛤 shows the sum of the elements of half of the adjacency matrix 

to simply represent the four unique coupling arrangements. Note that the coloring scheme of the 
oscillators is consistent throughout the article. 

Results 
 Employing the Kuramoto model (equation 2) if  S

b
Γi,g = 3	, the system synchronizes in-

phase (i.e., all oscillators are effectively on the same point in circle space, as in Fig. 3d), if it is -3 
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the system synchronizes precisely anti-phase (each oscillator separated from each other by 2	Θ /3 

radians, as in Fig. 3c), if it is -1 two oscillators are in-phase and the third is anti-phase against the 

two in-phase oscillators (Fig. 3b). However, if the sum is 1 an intransitive situation emerges in 

which oscillator 3 is in-phase synchrony with oscillator 1, oscillator 1 is in-phase synchrony with 

oscillator 2, while oscillator 2 is anti-phase synchronous with oscillator 3, but, qualitatively 

stable. The three oscillators are separated from one another by Θ 1,2 = Θ 1,3 = Π/3 and Π 23 = 4	Π /3 

(Fig. 3a). In all four cases (Fig. 3), while all oscillators retain the same relative position with 

respect to one another, they all together progress around the state space according to the intrinsic 

frequency. 

 Employing the LV model (equations 3), typical time series results of all four ODE 

simulations are presented in Figure 3.  It is clear that the L-V predictions for all four qualitatively 

distinct cases (Figure 2) are precisely what we get from the simpler Kuramoto approach. It is 

worth noting that the LV simulations are quite robust as long as the coupling is not strong.  As 

reported elsewhere (Vandermeer, 1993; 1994; 2004; 2006) as coupling becomes stronger, 

frequently complicated behavior, including chaos and quasiperiodicity, typically emerge from 

these structures. Regarding the Kuramoto simulations, the results are seemingly completely 

robust in that we found no examples of coupling (in the range 0 – 1) that did not yield the same 

qualitative results as visualized in Figure 3.  
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Figure 5.3: Time series from the four separate coupling configurations of the three dimensional 
Kuramoto and six dimensional Lotka-Volterra systems. a)-d) show the oscillator phases from the 
Kuramoto systems and the time series for the analogous six dimensional Lotka-Volterra systems. 
The clear concordance between the Lotka-Volterra time series and the Kuramoto oscillator 
phases is evident by the end of the Lotka-Volterra time series plots. Note that only the consumers 
are plotted in the time series to more clearly illustrate the correspondence in oscillatory 
dynamics between LV and Kuramoto. The parameters and initial conditions for all Lotka-
Volterra simulations are found in appendix. For the Kuramoto model simulations K=0.01, 𝜔 
=.01, and the model was run for 200 time steps. 

	
Discussion 
	
 The ubiquity of oscillatory dynamics in ecology has long been appreciated (Platt and 

Denman, 1975; Huisman and Weissing, 2001; Blasius et al., 2020). Empirically, across a range 

of spatiotemporal scales from large scale dynamics of the hare-lynx system (Blasius et al., 1999) 

to the microcosm experiments of Huffaker (1958), and theoretically emerging from the simplest 
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conceptualizations of consumer-resource interactions (Lotka, 1928; Volterra, 1926), 

synchronization of coupled consumer-resource oscillators is well-known, both from an implied 

spatial coupling ( e.g., predator or prey migrating among habitat patches (Koelle and 

Vandermeer, 2005)) and direct energy transfer [e.g.,  different predators coupling among 

different prey in the same habitat (Vandermeer, 2006)]. Here we demonstrate that for the four 

most obvious qualitatively distinct yet ecologically significant coupling patterns in a six-species 

community (three oscillators), weak coupling leads to precisely the pattern predicted by 

Kuramoto’s phase coupled system. These results suggest a wholly distinct vision of ecological 

communities in which the “agents” are not population densities, but rather oscillators.  

 There are evident limitations in the analysis as presented here, but, we argue, those 

limitations suggest that the approach holds much potential. For example, the introduction of 

dissipating oscillators into the mix is an evident expansion of the system, one that has not been 

examined, at least not in the context of the Lotka/Volterra and Kuramoto connection. Another 

important element is the possibility of studying coupled chaotic oscillators with the Kuramoto 

framework, certainly a challenging possibility.  Blasius and colleagues (1999) have already 

indirectly entered this topic with their UPCA pattern (uniform phase chaotic amplitude), which 

is, in a sense, putting chaotic dynamics in a Kuramoto-like framing (although chaotic, the 

lynx/hare cycle synchronizes phases across Canada).  Contrarily, one might ask what a UACP 

pattern (uniform amplitude, chaotic phase) would look like and how it could be generated, 

perhaps a more direct application of the Kuramoto metaphor since amplitudes are fixed and the 

interest is in the dynamics of the phases.  On the other hand, the existence of chimeric elements 

(individual oscillators that refuse to synchronize in any way with synchronous groups of 
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oscillators) may already be examples of chaos or chaos-like behavior in the Kuramoto framing 

(Kotwal et al., 2017; Laing, 2009). 

 There is a rich and diverse literature on synchronization, popularly summarized for a 

generalist audience by Steven Strogatz in his book “Sync.” (2012).  Ecological applications are 

less common but the field is growing.  For example, some authors have examined correlations 

with external forcing, either regular or stochastic (Vasseur, and Fox, 2007; Reuman et al., 2008) 

in driving or sometimes quenching synchronized systems, and spectral analysis (Vasseur and 

Gaedke, 2007) recalls the original insights of Platt and Denman (1975).  And, of course, it has 

long been acknowledged that a metapopulation in which subpopulations oscillate in sync are far 

more likely to undergo global extinction (Matter, 2001). 

 By reorienting the focus of ecological analogy from individual populations to collections 

of oscillators, the dynamical nature of the system becomes the central focus rather than questions 

of stability or persistence. As in other sciences, the collective dynamics of coupled oscillators 

can provide a useful heuristic for exploring the general properties of large and complex systems 

of the sort that ecologists have long cited with awe (Hutchinson, 1961; Lawton, 1999; Vellend, 

2010). Furthermore, by highlighting the ability to move between classical models in ecology and 

classical models in the coupled oscillator literature, we suggest that both approaches can be used 

in tandem and exploited for their strengths. Approaches á la Kuramoto effectively increase the 

tractability of large complex systems by halving the dimensionality and providing an elegant and 

intuitive way to visualize the oscillatory dynamics, while approaches á la Lotka-Volterra permit 

investigation of how basic biological parameters influence dynamics. The most obvious utility of 

such an approach is where synchronous dynamics are the focus of investigation (e.g. Earn et 

al.,1998; Blasius et al., 1999; Liebhold et al., 2004 ), and may have practical implications for the 
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management of fisheries (Kaemingk et al., 2018), the planning complex biological control 

systems in agroecosystems (Vandermeer et al., 2019), or conservation (Earn et al., 2000). 

 The once popular idea that ecosystems are at, or moving towards, Lyapunov stability is 

considered passé (e.g., Morozov et al., 2019). The growing appreciation amongst ecologists that 

ecosystems and communities are dominated by nonlinear processes often outside of equilibrium  

(DeAngelis & Waterhouse ,1987) suggests that our tool kits to understand ecosystems need to 

evolve along with our analogies of them, as suggested long ago (Platt and Denman, 1975). We 

suggest that networks of oscillators, rather than networks of populations, represent a potentially 

new paradigm for the examination of ecological communities. 
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Supplementary Material 
	
Appendix 

 S
b

𝚪 = 1	for the Lotka-Volterra system of ordinary differential equations has C1 with trophic-

coupling on R2 and R3, C2 with trophic-coupling on R1, C3 with trophic-coupling on R1, and 

R2 and R3 resource coupled. Initial conditions and parameters for Figure 3 are: 

𝑅S=0.38,	𝑅b=0.16,	𝑅~=0.12,	𝐶S=0.39,	𝐶b=0.17,	𝐶~=0.13,	𝛽=0.01, 𝛼=0.21 

 

𝑅S = 𝑏𝑅S 1 − 𝑅S − qFªGª
SR�(FªR¦ F³RF¨ )

− ¦qFªG³
SR�(F³R¦Fª)

− ¦qFªG¨
SR�(F¨R¦Fª)

    (eq. 

4a) 

𝐶S = −𝑚𝐶S +
qFªGªR¦qF³GªR¦qF¨Gª
SR�(FªR¦ F³RF¨ )

     (eq. 4b) 

 

𝑅b = 𝑏𝑅b 1 − 𝑅b − 𝛼𝑅~ − qF³G³
SR�(F³R¦Fª)

− ¦qF³Gª
SR�(FªR¦ F³RF¨ )

    (eq. 4c) 

𝐶b = −𝑚𝐶b +
qF³G³R¦qFªG³
SR�(F³R¦Fª)

      (eq. 4d) 
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𝑅~ = 𝑏𝑅~ 1 − 𝑅~ − 𝛼𝑅b − qF¨G¨
SR�(F¨R¦Fª)

− ¦qF¨Gª
SR�(FªR¦ F³RF¨ )

    (eq. 4e) 

𝐶~ = −𝑚𝐶~ +
qF¨G¨R¦qFªG¨
SR�(F¨R¦Fª)

     (eq. 4f) 

 

for S
b

𝚪 = −1	for the Lotka-Volterra system of ordinary differential equations has C1 with 

trophic-coupling on R2, C2 with trophic-coupling on R1, R2 and R3 with resource-coupling and 

R1 and R3 with resource-coupling. Initial conditions and parameters for Figure 3 are: 

𝑅S=0.69,	𝑅b=0.40,	𝑅~=0.16,	𝐶S=0.70,	𝐶b=0.41,	𝐶~=0.17,	𝛽=0.06, 𝛼=0.09 

 

 𝑅S = 𝑏𝑅S 1 − 𝑅S − 𝛼𝑅~ − qFªGª
SR�(FªR¦F³)

− ¦qFªG³
SR�(F³R¦Fª)

    (eq. 5a) 

𝐶S = −𝑚𝐶S +
qFªGªR¦qF³Gª
SR�(FªR¦F³)

      (eq. 5b) 

 

𝑅b = 𝑏𝑅b 1 − 𝑅b − 𝛼𝑅~ − qF³G³
SR�(F³R¦Fª)

− ¦qF³Gª
SR�(FªR¦F³)

    (eq. 5c) 

𝐶b = −𝑚𝐶b +
qF³G³R¦qFªG³
SR�(F³R¦Fª)

      (eq. 5d) 

 

𝑅~ = 𝑏𝑅~ 1 − 𝑅~ − 𝛼𝑅b − 𝛼𝑅S − qF¨G¨
SR�F¨

     (eq. 5e) 

𝐶~ = −𝑚𝐶~ +
qF¨G¨
SR�F¨

       (eq. 5f) 

 



	 118	

for S
b

𝚪 = −3	has pairwise resource-coupling between all resources and no trophic-coupling.  

Initial conditions and parameters for Figure 3 are: 

𝑅S=0.10,	𝑅b=0.39,	𝑅~=0.21,	𝐶S=0.11,	𝐶b=0.40,	𝐶~=0.22, 𝛼=0.09 

 

𝑅S = 𝑏𝑅S 1 − 𝑅S − 𝛼𝑅b	 − 𝛼𝑅~ − qFªGª
SR�Fª

     (eq. 6a) 

𝐶S = −m𝐶S +
qFªGª
SR�Fª

      (eq. 6b) 

 

𝑅b = 𝑏𝑅b 1 − 𝑅b − 𝛼𝑅S	 − 𝛼𝑅~ − qF³G³
SR�F³

     (eq. 6c) 

𝐶b = −m𝐶b +
qF³G³
SR�F³

       (eq. 6d) 

 

𝑅~ = 𝑏𝑅~ 1 − 𝑅~ − 𝛼𝑅S	 − 𝛼𝑅b − qF¨G¨
SR�F¨

     (eq. 6e) 

𝐶~ = −m𝐶~ +
qF¨G¨
SR�F¨

       (eq. 6f) 

 

for S
b

𝚪 = 3	has pairwise trophic-coupling between all consumers and resources and no 

resource-coupling. Initial conditions and parameters for Figure 3 are: 

𝑅S=0.29,	𝑅b=0.59,	𝑅~=0.09,	𝐶S=0.30,	𝐶b=0.60,	𝐶~=0.10,	𝛽=0.02 

𝑅S = 𝑏𝑅S 1 − 𝑅S − qFªGª
SR�(FªR¦(F³RF¨))

− ¦qFªG³
SR�(F³R¦(FªRF¨))

	− ¦qFªG¨
SR�(F¨R¦(FªRF³))

   

 (eq. 7a) 

𝐶S = −𝑚𝐶S +
qFªGªR¦qF³GªR¦qF¨Gª

SR�(FªR¦(F³RF¨)
     (eq. 7b) 
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𝑅b = 𝑏𝑅b 1 − 𝑅b − qF³G³
SR�(F³R¦(FªRF¨))

− ¦qF³Gª
SR�(FªR¦(F³RF¨))

− ¦qF³G¨
SR�(F¨R¦(FªRF³))

    

 (eq. 7c) 

𝐶b = −𝑚𝐶b +
qF³G³R¦qFªG³R¦qF¨G³
SR�(F³R¦(FªRF¨))

     (eq. 7d) 

 

𝑅~ = 𝑏𝑅~ 1 − 𝑅~ − qF¨G¨
SR�(F¨R¦(FªRF³))

− ¦qF¨Gª
SR�(FªR¦(F³RF¨))

− ¦qF¨G³
SR�(F³R¦(FªRF¨))

   

 (eq. 7e)  

𝐶~ = −𝑚𝐶~ +
qF¨G¨R¦qFªG¨R¦qF³G¨
SR�(F¨R¦(FªRF³))

      (eq. 7f) 
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Chapter 6 Ecological Perspectives on the Coffee Leaf Rust  

Zachary Hajian-Forooshani and John Vandermeer 

Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 

Introduction 
	
 The yellow blotches spotted on coffee leaves in Ceylon (Sri Lanka) in 1869 turned out to 

be a symptom of what would become one of the most devastating diseases of one of the most 

important crops in the world. British authorities rushed one of their most brilliant pathologists, 

Henry Marshall Ward, to one of their most intensively planned agroecosystems in one of their 

most profitable colonies, to solve what was correctly seen as the tip of a disease iceberg. A keen 

observer of natural history, Ward determined the cause to be a fungus and meticulously worked 

out the details of its natural history, most of which remain the central core of our biological 

understanding yet today. As much as the current authors regard Ward as a hero, British 

authorities of the nineteenth century regarded his work as worthless, since he failed to find a 

solution to the problem. Providing detailed information on the underlying biology and ecology of 

the disease was regarded by the plant pathologists of the day as rather unimportant if such 

information did not lead to immediate solutions, reflective of nineteenth century British imperial 

attitudes about their empire. 

 The rolling appearance of the coffee leaf rust (CLR) coupled with its devastating impact 

on local coffee economies, as told brilliantly by historian Stuart McCook in his recent book 

“Coffee is not forever” (2019) is remarkable for its qualitative predictability – if you have coffee, 
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CLR will come, if the rust comes, your economy will be devastated. From the mid nineteenth 

century in Ceylon, to the beginning of the twentieth century in East Africa, to the middle of the 

twentieth century in West Africa to the end of the twentieth century in the Americas, much like 

other species invasions, a plant invades a new area and prospers initially (coffee), followed by 

one or more natural enemies (CLR), which stifle its initial prosperity. The only difference here is 

the interest generated among the individuals of the species Homo sapiens, due to its propensity 

for drug addiction. 

 The Americas represent something special. As documented in great deal by McCook, the 

so-called “Great Rust” occurred sort of without warning in 2012/2013.  Having arrived in Brazil 

in 1970, coffee farmers throughout the Americas, cognizant of what had happened in Sri Lanka 

and elsewhere, panicked. Warnings with admonitions to do everything from pruning coffee 

bushes, to increase fertilization, to reducing or eliminating shade, to prophylactic spraying of 

fungicides were common throughout the area for the next 30 or 40 years. Yet as time wore on, 

farmers began to realize that the rust was here to stay, never did cause the sort of devastation the 

nineteenth century epidemic in Sri Lanka caused, and was effectively treated as just one more of 

the yield-reducing nuisances they had learned to live with. Major problems with the disease were 

periodically reported in isolated areas throughout the Americas, but all seemed local and 

temporary.  Then quite suddenly, the Great Rust hit them with devastating force. Walking 

through a coffee field in December of 2012 one’s clothes would become yellow with the 

incredible abundance of rust spores seeking new victims (Lopez-Bautista, personal 

communication). 

 The history of research on the disease (see McCook, 2019) seems oriented much like the 

original British establishment who judged Ward a failure. Genetics and chemistry seem to be the 
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reining discourses where the ultimate solution will be found.  Ward’s careful consideration of 

biological and ecological factors are acknowledged, to be sure, but a reading of the disease’s 

history cannot help but suggest that a sort of technocentric or instrumentalist, as the philosophers 

say (Dear, 2008), point of view has prevailed. The search continues for genetic solutions, which 

is to say resistant varieties, as well as chemical ones, which is to say fungicides. Less common, 

albeit important, is an approach the philosophers would call intelligibility (Dear, 2008), seeking 

the underlying mechanisms as to why, for example, open landscapes seem to favor the rust 

(Avelino et al., 2012), or fungicides are effective only when fine-tuned at a local level (de Souza, 

et al., 2011). The technocrat (instrumentalist) might say, if moisture favors the rust, reduce 

moisture. The ecologist, interested in the intelligibility of nature, would ask what is it about the 

natural history of the rust that results in its rapid growth when moisture is high? This latter 

approach, the ecological, we feel should represent an important compliment to the more direct 

search for technological solutions.  

 In this chapter, we attempt to at least in part refocus an ecological approach to the 

problem of CLR. First we provide a brief overview of the research which has stemmed from a 

more technocentric approach to understanding and subsequently control CLR. We intentionally 

keep this section brief, but try to highlight areas which are of potential ecological and 

evolutionary interest within this thread of research. This technocentric approach has been the 

main line of inquiry regarding CLR and there are various resources available which provide in-

depth information for ongoing research on these topics for interested readers (see section on 

Further Readings). Next we synthesize and discuss the sparsely available information about the 

community ecology and natural enemies of CLR around the world. We then present two case 
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studies about CLR which we feel represent a more ecological (i.e. intelligible) approach to 

understanding the pathogen.  

 

Technocentrism and control of the coffee leaf rust 

 The prevailing wisdom on control of CLR has long considered fungicides and resistant 

coffee varieties to be the two main factors to be explored, with the tacit assumptions that these 

two strategies will be the most effective (Talhinhas et al., 2017). There is a long history of 

developing and deploying fungicides with mixed results due to a variety of reasons ranging from 

the relatively fast evolution of resistance (Avelino et al. 1999), incorrect application technique 

(Belan et a., 2015), the economic costs to producers (Narayana, 2014) and environmental health 

concerns (Loland & Singh 2004). While fungicides have been shown to be an important 

component of pathogen management under certain circumstances (Virginio Filho, 2017), it is 

almost certain that application impacts non-target organisms that occur in coffee agroecosystems 

communities, such as mycoparasitic fungi that attack CLR (Vandermeer et al., 2009; Pico 

Rosado 2014). The extent to which fungicide application may have unintended consequences 

such as inhibiting biological control of CLR by fungal mycoparasites is not fully appreciated but 

preliminary evidence suggests this may be the case (Carrión & Rico-Gray 2002; Pico Rosado 

2014). Apart from potentially interfering with biological control of CLR, there are examples of 

fungicide application benefiting other devastating pests of coffee, such as reports from Kenya 

that a popular triazol used to control CLR, resulted in promoting the Coffee Berry Disease 

(CBD) (Kushalappa and Eskes 1989, 100). A consideration of the ecology of the agroecosystem 

will be prerequisite to understanding how non-target effects of fungicide applications impact 

other pests as well as biological control agents in coffee agroecosystems.  
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 In addition to the fungicides, the development of resistant coffee varieties has been 

thought to be an effective way of controlling CLR (Silva et al., 2006, McCook and Vandermeer, 

2015).  The history of this approach is long and complex, beginning with coffee’s evolution 

under domestication. As a tetraploid, Coffea arabica is likely of hybrid origin from two diploid 

species, one perhaps similar to the other commercially important Coffea species, C. canephora 

(popularly known as Robusta coffee and a main source for instant coffee today).  Prehistoric 

Arab traders brought C. arabica to Yemen from where it made its way, through international 

commerce, to south India, Sri Lanka and Java in the 1690s. Most modern varieties stem from 

two sources, the variety “Typica” transferred from Java to the botanical garden in Amsterdam by 

the Dutch in 1706, and variety the “Bourbon” taken from Yemen to Reunion Island and then on 

to South America by the French. Thus, only two original accessions, historically, provide a rather 

narrow genetic basis for further evolution under domestication (Ferwerda, 1976). One of the 

most popular modern varieties, extremely susceptible to CLR and planted extensively before 

arrival of CLR is “Caturra,” derived as a single dwarf mutant in Brazil, from Bourbon stock.  

By the 1930s, it was acknowledged that variety of coffee had implications for the severity of 

CLR infection, and that there was also substantial genetic diversity of the CLR which could be 

classified into different strains or races. The CIFC rapidly identified several dozen CLR strains 

of varying virulence, and today more than 50 races of the pathogen are recognized (Talhinhas, et 

al, 2017). With the discovery that both the variety of coffee as well as the strain of CLR impact 

the outcome of CLR infection, a number of efforts spawned focusing on breeding of resistant 

varieties, and exist to this day.  

 Unfortunately, as early as resistant breeding programs arose, so did the observation that 

CLR can eventually overcome resistance (Mayne 1932). Although breeding programs have 
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undoubtedly become more sophisticated through time, the loss of resistance for most and if not 

all varieties seems inevitable due to the relatively rapid evolution of CLR in response to selective 

pressures from varieties. The recent breakdown in resistance of the Lempira variety in Honduras 

in 2017, following almost 20 years of widespread use, illustrates how rapidly resistance can be 

overcome and the dangers of relying on a small number of varieties (Morales & Yonis 2018; 

Avelino & Records 2018). Although widely documented, the evolution of resistance presented 

somewhat of a paradox for biologists working on the CLR as the pathogen was long thought to 

clonally reproduce (Gouveia et al. 2005; Caralho et al. 2011), suggesting that the genetic 

variability needed to evolve the ability overcome resistance should be relatively difficult to 

attain. There have been a number of hypotheses proposed to explain CLR genetic variability, 

from cryptosexuality, based on evidence of meiosis in urediniospores (Caralho et al. 2011), to 

hybridization of different ancestral lineages of CLR that attack different species of Coffea 

species (Silva et al. 2018). While an active area of research, there seems to be an emerging 

picture that mechanisms of reproduction are likely not homogenous everywhere CLR is present 

(Ramírez-Camejo et al. 2021). The complex picture of the population genetics of the CLR 

around the world suggests the need for a regionally specific approach to understanding the 

dynamics of different CLR strains with different coffee varieties.  

The community ecology of coffee leaf rust  
	
 The community of organisms associated with CLR has largely been considered a 

question of natural history curiosity rather than one of practical importance, something illustrated 

by the relatively small body of literature on this topic when compared to classical or 

technocentric research briefly described above. Rust fungi, evolutionarily a very ancient group, 

are known to have communities of organisms which regularly consume them (Anikster & Wahl 
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1979; Henke et al. 2011). Currently little is known about the general ecology of these 

assemblages of natural enemies of rust fungi and what, if any, impact they have on the dynamics 

of the pathogen. Better understanding these communities of natural enemies will likely have 

practical implications for our understanding of how rust fungi are controlled in both “natural” 

and agricultural settings. The context in which organisms are regulated in their native 

environment undoubtedly lends insight into the dynamics of how they escape control when 

exported elsewhere, something that has been long appreciated with classical programs in 

biological control. Understanding how and why pests and pathogens are released from control by 

natural enemies is an area of active research (Keane & Crawley 2002; Liu & Stiling 2006; 

Horrocks et al., 2020), but with regard to CLR little is known. We suggest that understanding the 

dynamics of CLR in the regions where it has been and remains “under control” can potentially 

shed light on how exactly it has escaped control historically in regions such as Sri Lanka and 

more recently in Central America, and where it might escape control in the future. 

 A growing body of work conducted in coffee’s native range in Ethiopia sheds some light 

on the community ecology of CLR in its native range. With regard to CLR’s natural enemies, 

Zewdie et al., (2021) collected three years of data on CLR and its fungal mycoparasite, L. lecanii 

and showed that there is a signature of top-down control of CLR. It was found that L. lecanii was 

most abundant in the wet season, and that its intensity in the wet season was negatively 

associated growth of CLR in the subsequent dry season, which is when CLR typically reaches its 

peak. Another recent study by Stüber et al., (2021) found that arboreal nesting Crematogaster sp. 

ants throughout parts of the coffee producing region of Ethiopia were associated with lower 

amounts of CLR. These studies provide to our knowledge the first reports of the community 

ecology of coffee and CLR in its native range.  
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Similar relationships with CLR, L. lecanii and arboreal ants are known from Mexico, and 

have been extensively studied, revealing a complex network of direct and indirect ecological 

interactions (see Vandermeer et al, 2009; Vandermeer et al., 2010; Jackson et al., 2012; 

Vandermeer et al., 2019). The similarities between these systems that have vastly different 

ecological and evolutionary histories suggests that generalities in interaction structures may exist 

and that interactions networks may assemble in introduced areas of coffee production that mirror 

those in the native range, as suggested earlier in a different context (Perfecto & Vandermeer 

2015). Although similar work is sparse around the world, the little information that is available 

suggests potentially informative connections that span across novel ecological communities 

assembled in coffee agroecosystems.  

 While much remains to be understood about the community ecology of coffee 

agroecosystems in coffee’s native range, much also remains to be discovered in the many regions 

around the world where coffee has been introduced and cultivated. As noted above, each 

introduction into a new region results in the assembly of a novel community with its own distinct 

assemblage of organisms and subsequent ecological dynamics. Simply documenting these 

communities could help piece together gaps in our understanding and serve as a basis to form 

hypotheses about the potential for control by natural enemies. Coffee researchers generally 

acknowledge the existence of these complex communities, but for a variety of reasons they are 

rarely reported in the literature. For example, Cecidomyidae consuming CLR in Latin America 

was not reported until 2016 (Hajian-Forooshani et al., 2016), although we have heard anecdotal 

reports of researchers having observed it for years in the region. It is likely the case that many 

more such ecological interactions are observed regularly but go unreported. Although potentially 

very important, creating incentives to report this type of information in the literature will likely 
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be difficult, as documentation of natural history is seemingly less and less valued in the 

ecological literature and without direct practical application this information is similarly not 

highly valued in the agronomic literature.  

 As more information is accumulated about the organisms associated with CLR and their 

potential impact on the pathogen’s dynamics, determining how environmental factors and 

management interact with this community of natural enemies will be exceedingly important. 

Given that CLR is a resource for its natural enemies, the first step is to understand how these 

factors impact the dynamics of CLR itself since that will constrain the natural enemy 

community. In short, although regionally variable, some generalities have emerged in our 

understanding of environmental factors and management impacts on CLR. For example, the 

negative relationship between attitude and CLR has been widely documented (Bock 1962; 

Avelino et al., 2006; Belachew et al., 2020; Zewdie et al., 2021). Various climatic factors such a 

participation and temperature are known to impact the development of the CLR as well (Brown 

et al., 1995; Avelino et al., 2015). Due to the interaction of temperature and precipitation on 

CLR, management factors which impact these variables have been proposed to be important for 

explaining realized CLR dynamics although there remains considerable controversy surrounding 

the topic. One of the most well-known examples of management in coffee agroecosystems is that 

of shade trees, which have shown variable effects in different systems with some finding positive 

impacts (Lopez-Bravo et al., 2012), others negative impacts on CLR dynamics (Soto-Pinto et al., 

2002; Zewdie et al., 2020), and some finding an interaction of shade effects depending on 

context (Pico Rosado 2014). Shade trees in coffee agroecosystems present a variety of plausible 

pathways to impact CLR from increasing germination through microclimatic modifications 
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(Lopez-Bravo et al., 2012), decreasing wind speeds in coffee farms (Orozco & Jaramillo 1978), 

to modifying rain-drop kinetics below shade trees (Avelino et al., 2020).  

 While a nuanced and growing literature carefully teases apart these effects on the CLR 

itself, there is some information emerging as to how these same factors may impact natural 

enemies, and in particular attention has been paid to fungal mycoparasites such as L. lecanii. 

Recently Zewdie et al., (2021) found that higher levels of shade are associated with an increase 

in L. lecanii and Pico Rosado (2014) found similar results with shade favoring L. lecanii. Pico 

Rosado’s (2014) results suggest that natural enemy control by L. lecanii is more effective than 

the fungicide application and that fungicides inhibit L. lecanii ability to grow in the field. With 

regard to other natural enemies, there is currently little known about how environmental factors 

or management may impact their distribution or ability to control CLR. Basic ecological theory 

suggests that in systems where there are multiple natural enemies consuming the same resource 

there will likely to be competition for that resource. In Puerto Rico gastropods have been 

documented as consuming CLR both in the field and laboratory settings, and the invasive snail, 

Bradybaena similaris, was also shown to consume L. lecanii infected lesions of CLR. The extent 

to which resource competition and intrigued predation between natural enemies in the field 

shapes ecological dynamics remains to be explored in detail although preliminary observations 

suggests they are important factors for the natural enemy communities Puerto Rico (Personal 

observations).  

The natural enemy community of coffee leaf rust  
	
 Here we focus on summarizing the relatively small body of literature on the communities 

of organisms which are known to interact with CLR in various parts of the world.   

Cecidomyidae 
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 The first notes on what we might call the community ecology of CLR’s natural enemies 

were published by H.F. Barnes when describing the species of Cecidomyidae associated with 

coffee (Barnes 1939). Barnes provides a taxonomic description of both the larvae and adult of 

Mycodiplosis hemileiae which lives among and feeds on CLR urediniospores in what is today 

Tanzania and Madagascar. Barnes also published notes from A.H. Ritchie on the ecology of M. 

hemileiae dated June 4th 1935 from the Boos’ Plantation, Kaboia District, Bukoba, Tanganyika 

Territory. Ritchie provides a brief description of the life-cycle, noting patterns in pupation and 

population densities that reach as high as 25 to 30 larvae per leaf. He also gives some insight into 

the community of organisms indirectly associated with the coffee rust through interactions with 

M. hemiliea, describing a fungus that attacks larvae just prior to pupation which arrests 

development and results in the desiccation of the larvae. This unknown fungus is said to 

sporulate in the pupal webbing and sign of past attack is noted by the fawn to brownish color in 

the larvae. Mention of this fungus attacking M. hemiliea is absent from all subsequent literature, 

and has not been observed by the authors in Mexico or Puerto Rico. In addition to M. hemiliea 

being attacked by fungi, Barnes describes another Cecidomyidae, Lestodiplosis sp., which he 

suggests is predaceous on M. hemiliea. Predation of M. hemiliea by Lestodiplosis sp. was not 

mentioned by Richie in his notes.  

 After Richie’s initial observations of M. hemiliea in Tanzania and Madagascar, two 

Cecidomyidae, Lestodiplosis sp. and Mycodiplosis sp., were reported to be commonly found in 

CLR pustules eating urediniospores in Kenya, (Crowe 1963), although it is unclear if these two 

species are the same as observed by Richie. It seems unlikely that Lestodiplosis is a fungus 

feeder given that most reports of species in the genus describe it to be an arthropod predator. In 

addition to noting these two natural enemies of CLR, Crowe makes note of two parasitoids that 
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attack both species of Cecidomyidae larvae, Leptacis kivuensis Risbec and Synopeas sp. 

(Hymenoptera: Platygasteridae), and suggests that these parasitoids may be vectors of long 

range dispersal of CLR urediniospores. Crowe describes observations of the searching behavior 

of parasitoids within and around pustules with coffee rust and documents the accumulation of 

CLR urediniospores on their bodies. He found an average of 37 spores per individual and 

estimated the population of the parasitoids to be approximately 20,000 per acre. The next 

mention of Cecidomyidae associated with CLR came again from Kenya by D.L. Miline in 1975, 

where he notes relatively low densities of M. hemiliea (seven or eight per leaf), completely 

clearing leaves of rust spores (Miline 1975). Miline speculated that under certain conditions the 

larvae may play a role in controlling CLR stating: 

 “The coffee rust fungus unfortunately produces spores on such a prolific scale that even 

 under conditions favorable for infestation by this midge, it is doubted whether the insect 

 could ever be considered as more than a contributory factor to rust control. However in 

 areas where rust infections are light, it is possible that M. hemileiae could play quite an 

 important role in reducing the spore load.“ 

Given the potential for a Cecidomyidae community to contribute to the control of CLR, it is 

somewhat surprising that no subsequent work was done to understand the impact of these 

organisms on CLR dynamics. It took over forty years until Cecidomyidae associated with the 

coffee rust were mentioned again in the scientific literature, when they were noted in Southern 

Mexico and Puerto Rico (Hajian-Forooshani et al. 2016), although CLR researchers seem aware 

of its existence and potential to consume CLR. While the realized distribution of Cecidomyidae 

that consume CLR is unclear, it seems likely that in areas where they have been described 

(Mexico and Puerto Rico) they have likely been co-introduced with CLR. Analyses have shown 
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that Mycodiplosis genera overwhelming tends to be rust species specific (Henk et al. 2011). This 

suggests that although there are likely native Mycodiplosis or other Cecidomyidae in both 

regions feeding on native rust fungi, the organisms found feeding on CLR are likely non-native. 

Work on both the molecular identification and population genetics of CLR-feeding 

Cecidomyidae could help elucidate their origins and potential as biological control agents. 

Thrips 
 In Richie’s summary published by Barnes (1939), there are brief notes on a number of 

thrips associated with coffee, but he makes particular mention of Physothrips xanthoceros 

feeding in CLR pustules. Since Richie’s notes, various thrips associated with and potentially 

feeding on CLR have been mentioned sporadically throughout the literature of the 20th century 

(see references in Kushalappa & Eskes p. 163-164), but largely dismissed, seemingly in absence 

of detailed observational or experimental work. Knowledge of the ranges and occurrences of 

thrips associated with CLR mainly come from taxonomic descriptions. Interestingly some of 

these thrip species seem to be relatively widespread and associated with CLR. Two African 

species Craspedothrips antennatus and C. xanthocerus have been found in  Uganda, Kenya, 

Tanzania, and Angola (Mound 2012). Additionally another thrips, Megaphysothrips subramanii, 

was recently observed in Timor Leste and was said to be found exclusively in pustules of CLR 

and not exploring any other portions of the coffee leaf (Mound 2018).  M. subramanii was found 

to be covered in CLR urediniospores and it is suggested that M. subramanii consumes CLR  to 

complete its life cycle while not causing feeding damage to coffee leaves themselves.  

Mites 
 Coffee is known to host a community of mites that are likely facilitated by the presence 

of acadomatia on some coffee leaves. While these mites have a variety of life histories, some of 

them are associated with CLR. Flechtmann (1976) first suggested that the mite Ricoseius 
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loxocheles feeds on CLR, and recently a detailed study of its biology and behavior was reported 

by Oliveira et al. (2014), including the important observation that for the females to oviposit, 

they need to be fed a diet that includes CLR rust urediniospores. Once eggs are ovipoisted in 

pustules of CLR urediniospores, they are covered in additional CLR urediniospores and take 

about nine days to develop from egg to adult. It is suggested that R. loxocheles is a specialist on 

CLR, given it would not consume alternative food sources common to predatory mites 

(specifically Oligonychus ilicis). It was additionally noted that R. loxocheles exhibited the 

behavior of carrying CLR urediniospores on its body.  

 It is unclear how widespread R. loxocheles is in coffee producing regions around the 

world. While the only published data we are aware of comes from Brazil, we have personally 

made observations of mites associated with CLR both in southern Mexico and throughout the 

central coffee producing region of Puerto Rico. While we have not identified the species of mite, 

the description of behavior from both Flechtmann (1976) and Oliveira et al. (2014) suggest it is 

likely R. loxocheles. The behavior of laying eggs and aggregating in pustules of CLR 

urediniospores as well as coating their bodies in urediniospores has been observed numerous 

times in both regions. In Puerto Rico, these mites are widespread across the island and quite 

commonly found on rust infected leaves (personal observations). While seemingly the same 

mites occur in Southern Mexico they are less common than in Puerto Rico.  

Gastropods 
 Although gastropods are not widely known to consume rust fungi (although see Ramsell 

and Paul 1990) , both field surveys and laboratory experiments have recently shown gastropods 

to consume CLR in Puerto Rico (Hajian-Forooshani et al. 2020). Bright orange excrement left 

behind on leaves was found to be associated with leaves cleaned of urediniospores and were 

identified as being from gastropods consuming CLR. Laboratory experiments conducted with 
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Bradybaena similaris showed that the snail consumes CLR as well as the mycoparasitic fungus 

L. lecanii, approximately halving the percentage of the coffee leaf covered in CLR 

urediniospores in 24 hours as well as reducing the L.lecanii coverage. B. similaris as well as 

other unidentified gastropods (see Hajian-Forooshani et al. 2020 for photographs), are 

widespread across the coffee producing region in Puerto Rico (personal observations), but it is 

currently unknown if or to what extent they may be altering the dynamics of CLR on the island.  

 Notably, B. similaris is a non-native species that has been introduced to Puerto Rico as 

well as a number of other coffee producing regions and is often considered a pest in various 

forms of agriculture (Idris and Abdullah 1997). Many questions remain unanswered regarding 

the impact that B. similaris and other gastropods may have in other parts of the world. Given its 

widespread distribution it seems likely that they may consume CLR in other parts of the world, 

although thus far no other reports are in the literature. Additionally, and of potential importance, 

it is unclear if spores are viable after passing through the digestive system of these gastropods.  

Mycoparsitic fungi 
 The first report of mycoparasitic fungi attacking CLR came from Stanleyville Congo in 

1929 (Seyert 1930). Seyert notes that when strolling through coffee plantations near the railroad 

they were examining CLR on plants (he notes that coffee rust was rare in the region) and noticed 

a blackish (noirâtre) mass in the center of CLR lesion. Upon examination under the microscope 

they discovered that the mycelia was not in the host plant tissue but surrounding the 

urediniospores of CLR. Seyert denotes a new species, Cladosporium Hemileiae n.sp. (now 

Digitopodium hemileiae see Heuchert et al. 2005) and notes that this first record of a 

mycoparasite of CLR could very well contribute to efforts to control the pathogen (Seyert 1930). 

Since this initial documentation, there is growing appreciation of a highly diverse and 

widespread community of CLR fungal mycoparasites occurring across the globe which likely has 
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the potential to impact coffee rust dynamics (Pirozynski 1977; Lim & Nik 1983; Shaw 1988; 

Kushalappa & Eskes 1989; Carrión & Rico-Gray 2002; James et al. 2016; Gómez-De La Cruz et 

al. 2018; Colmán et al. 2021).  

 Given that over 15 fungal mycoparasites of CLR have been documented (see references 

above), to what extent they may contribute to control of the coffee rust has been a point of 

inquiry for many researchers and practitioners. Within coffee’s native range, the well-known 

mycoparasite L. lecanii is widespread (Zewdie et al., 2021), as in the Central African Republic 

(Kushalappa & Eskes 1989 p.163). Outside of coffee’s native range, many fungal mycoparsites 

have been documented. Carrión and Rico-Gray (2002) note that the region in Mexico where they 

documented six mycoparastic fungi, does not use fungicides for CLR due to its low prevalence in 

the region. They speculate that this community of fungal antagonists may play a role in 

controlling CLR in the region. Furthermore, Carrión (1989) compared the attack by L.lecanii in 

two states in Mexico, Veracruz and Chiapas, and found that Veracruz which had less CLR had 

21.2% attack by L. lecanii as compared to Chiapas which only had 2.9% attack. A similar 

comparative study was done with Mexico and Puerto Rico and found similarly that regions with 

lower CLR had a higher attack rate by L .lecanii (Hajian-Forooshani et al. 2016). Aside from 

observational studies there is mixed evidence that this mycoparasitic community of fungi could 

be manipulated to control CLR in the field. Laboratory experiments show that CLR 

urediniospores can be inoculated with L.lecanii, but with mixed results (Carrión & Ruíz-Belin 

1988). Some field trials have successfully demonstrated the efficacy of L.lecanii (Carion 1988), 

while others showed mixed to no results from field applications of L.lecanii and Vertucillium 

leptobactrum (Kushalappa & Eskes 1989 p.165-167).  
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 Mixed results in field and laboratory manipulations may be a result of isolating this 

mycoparasitic community from the context of the interactions in which it is typically embedded. 

Research in southern Mexico emphasized the fact that L. lecanii is a natural enemy not only of 

CLR, but also of the green coffee scale (Coccus viridis), suggesting the potential for complicated 

indirect effects, where the scale insect might provide a reservoir of L. lecanii that would attack 

the coffee rust (Vandermeer et al. 2009; Vandermeer, et al., 2012; Jackson et al., 2012; Galvão 

and Bettiol, 2014). The community of alternate hosts of L.lecanii in particular is widely 

acknowledged (Jackson et al., 2012), and understanding the dynamics of host utilization under 

different biotic and abiotic conditions will likely shed light on the potential for mycoparasites to 

control CLR. In addition to insects as alternative hosts for L. lecanii, the mycoparasite, 

Digitopodium tectonae, discovered in 1930 by Seyert, has been reported attacking an alternative 

rust host  Olivea tectonae in Brazil (Colmán et al. 2021).  

 It is clear that a complicating factor in most field studies of CLR mycoparasites is a lack 

of certainty in their identification. For example, Carrión & Rico-Gray (2002) document five 

fungal mycoparasites of coffee and note that all of them are white to some extent when cultured. 

One notable expectation from the white colored fungal mycoparasites is Cladosporium 

hemileiae, described as olive brown by Kushalappa & Eskes (1989 p.163), and blackish by 

Seyert (1930). James et al. (2016), highlighting the inadequacy of visual identification of 

mycoparasites in the field, used molecular methods to identify fungal communities from samples 

of rust lesions that contained apparent mycoparasites in Mexico and Puerto Rico, finding 15 

species of fungi belonging to clades that contained at least one species of known mycoparasite. 

In James et al. (2016) sampling material was simply collected from CLR lesions that had white 

fungal growth on them. These results suggest that the true identities of fungal mycoparasites are 
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likely obfuscated from simple field identification, and what often looks like a single white 

mycoparasite is in fact harboring a cryptic community of which we know relatively little. 

Microscopic structural and morphological characterizations of these fungal mycoparasites may 

also offer little hope of elucidating the true diversity given what seems to be convergent 

evolution of structures (Colmán 2021). While documentation of the fungal communities 

associated with Coffea is ongoing (see Vega et al. 2009; James et al. 2016), it is clear that much 

remains unknown about these communities and their potential impacts on the dynamics of CLR 

around the globe. Approaches that prioritize not only identification but also elucidation of the 

ecology of these fungal communities will be particularly informative.    

 

Case studies of ecological complexity and the coffee leaf rust 
 

The regionally distinct ecological communities of Puerto Rico and Mexico 
	
 Almost all forms of agriculture involve the construction of a novel ecosystem to some 

extent (Perfecto and Vandermeer, 2015a). One of the most common ways to construct an 

agroecosystem, involves the transplanting of a plant or animal away from the context in which it 

evolved and placing it into a new ecological region. Coffee provides an example of one such 

system where the plants evolved in Eastern and Central Africa, and were subsequently 

transplanted for cultivation throughout the tropics and sub-tropics, where it resides in new 

ecological contexts. From an ecologist’s perspective, any attempt to understand the dynamics of 

agroecosystems should be an attempt to understand the dynamics of how new interactions 

develop and play out through time in novel ecological settings. An appreciation of this is seen in 

both the ecological and agronomic literature, although cross fertilization between these two 

bodies of work is rare. The ecologist, Donald Strong, illustrated how quickly new interactions 
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develop in agroecosystems through a series of papers in the 1970’s which analyzed the 

accumulation of herbivores through time in several agroecosystems (Strong 1974; Strong et al. 

1977; Strong 1979). He failed to find a signature of “time since introduction” of different crops 

on the number of herbivores reported feeding on them. Rather, the area in cultivation was the 

main predictor of the number of novel herbivores. These studies highlighted just how quickly 

agroecosystems can assemble themselves when introduced species (crops) interact with the 

surrounding biodiversity in which they are embedded. In addition to Strong’s work, there is a 

growing understanding of how rapidly new interactions can form in ecological time (Agosta 

2006; Agosta & Klemens 2008; Agosta et al. 2010; Nylin et al. 2018). We suggest that the 

dramatic differences in the dynamics of agroecosystems around the world may have more to do 

with the ecological context in which they are imbedded than is traditionally appreciated.  

 The apparent difference in the dynamics of the CLR in Mexico and Puerto Rico provides 

an example of the idiosyncratic dynamics of this pathogen in different parts of the world. These 

two locations were met with vastly different fates in recent times, where Mexico (along with 

other counties in Mesoamerica) experienced the epidemic of “the Great Rust” but Puerto Rico 

has been largely unscathed by island-wide outbreaks. This simple observation raises the obvious 

question of what is responsible for these vastly different outcomes? One may be inclined to focus 

on possible distinctiveness in abiotic conditions, searching for correlations in rainfall, humidity, 

and temperature to explain the apparent differences. While these factors have been extensively 

studied (Avelino et al. 2015), there is mixed evidence for their effect and no definitive smoking 

gun that explains why we see such drastic differences in the recent dynamics of the pathogen in 

one region but not the other. In fact, one recent study by Bebber et al. (2016) suggests that 

climate factors alone are insufficient to explain CLR dynamics. While we acknowledge that 
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approaches that prioritize investigation of abiotic factors are important, we argue that a 

community ecological perspective which focuses on differences in the ecological communities of 

natural enemies between different regions may lend additional insight into the variable dynamics 

of CLR around the world. 

 Strong’s original analyses illustrated how distinct agroecosystems can be assembled 

depending the local ecological communities, tropical crops such as coffee tend to be cultivated in 

some of the most biodiverse regions of the world, suggesting that there is potential for a large 

number of novel interactions to arise quickly in areas of cultivation. There is now extensive 

documentation of the ecological communities in coffee agroecosystems in Mexico and Puerto 

Rico (Perfecto and Vandermeer, 2015; Vandermeer et al., 2019), including natural enemies of 

CLR. This documentation permits study and speculation on how these uniquely assembled 

ecological communities and interaction networks may be impacting regional dynamics of CLR 

(Figure 1.).  
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Figure 6.1: The regionally distinct communities associated with the coffee leaf rust in Mexico 
and Puerto Rico. Links between organisms denote interactions, with triangles showing positive 
effects and circles negative effects. Note that interaction networks are constructed from personal 
observations by the authors in both field and laboratory settings. 

 In a comparative study between coffee farms in Puerto Rico and Southern Mexico it was 

found that the attack rates, (or the proportion of each natural enemy to CLR lesions on leaves), 

was 3.8% in Mexico and 32.2% in Puerto Rico for Mycodiplosis sp., and for L. lecanii, 8.7% in 

Mexico and 61% in Puerto Rico (Hajian-Forooshani et al. 2016; 2022). Early work in Mexico, 

suggested that attack of L. lecanii on CLR may be mediated by indirect interactions with a 

dominant arboreal ant, Azteca sericeasur (Jackson et al., 2009; Jackson et al., 2012). Another 

coffee pest, the green coffee scale insect (Coccus viridis), has a mutualistic association with this 

arboreal ant and can reach high local population densities when under ant protection 

(Vandermeer at al. 2010). As with many other pathogens, when a host population becomes 

sufficiently large, epidemic outbreaks become more probable, and this is the case with the green 

coffee scale and L. lecanii (Vandermeer and Perfecto, 2019). Studies in Mexico demonstrate that 
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in sites where the A. sericeasur nests are present, L. lecanii attack on CLR is more common the 

following year, likely a consequence of L. lecanii building up on the green coffee scale 

populations and spilling over to attack CLR (Jackson et al. 2012a). Additionally, laboratory 

experiments suggest that L. lecanii can be dispersed by A. seriseasur (Jackson et al. 2012b). 

Thus, though various indirect and complex interactions, a native ant in Mesoamerica has a 

positive impact on a biological control of a pathogen which is presumably from eastern Africa. 

An additional complication is that although A. sericeasur has a positive impact on L. lecanii it 

seems to have a negative impact on the abundance of M. hemileiae (Hajian-Forooshani et al., 

2016). It was found that coffee plants around trees where A. sericeasur was nesting had fewer M. 

hemileiae but interestingly no difference in the amount of CLR on plants. These results illustrate 

how the ecological contexts in which crops and their natural enemies are embedded influence 

them differentially and may have the potential to shape pathogen dynamics, such as those of 

CLR.  

 Coffee farms in both Mexico and Puerto Rico largely share the same suite of natural 

enemies, although there are some exceptions (see Hajian-Forooshani et al., 2020), yet the relative 

abundances of the various organisms are dramatically different. Years of personal observations 

in both systems from 2013-2021 suggests that L. lecanii and the CLR-dwelling mites R. 

loxocheles tend to be far more common in Puerto Rico than Mexico while M. hemileiae tends to 

be more common in Mexico. It is likely that these realized differences in abundances emerge 

from their interactions not only with their resource(s) (including CLR) but also from the plethora 

of interactions they take part in with the associated biodiversity within the coffee 

agroecosystems. From our experience, many interactions have been noted in the field although 

not yet formally reported in the literature which include parasitism of M. hemileiae by 
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unidentified parasitoids in Mexico and Puerto Rico, predation of M. hemileiae by a neuropteran 

larvae in Mexico, and predation of M. hemileiae by a number of ants in Mexico and Puerto Rico. 

While the extent which these interactions impact the population dynamics of these potential 

biological control agents is currently unknown, it seems plausible that the accumulated impact of 

these diverse interactions could have consequences for the dynamics of CLR 

Theoretical perspectives on space and environmental forces 
	
 Classic ecological models highlight how a consideration of space can fundamentally alter 

our understanding and intuition about the dynamics of ecological systems (Tilman & Kareiva 

1997), and this is especially true for disease ecology where space can take a central role in 

governing disease dynamics. Relatively little has been done to understand the spatial ecology of 

CLR outside of understanding its modes of transmission, although there is a growing 

appreciation that space plays a central role in CLR dynamics (Rosas et al., 2021; de Carvalho et 

al., 2009). Given that coffee plants often have characteristic spatial arrangements and that several 

management factors are understood to interact with transmission (e.g. shade), focusing on the 

spatial ecology of the CLR can potentially lead to insights on how to better manage coffee 

agroecosystems with regard to the pathogen. Here we highlight some theoretical approaches to 

understanding the dynamics of CLR and highlight findings about the spatial ecology of CLR. We 

suggest that additional theoretical work on understanding the dynamics of CLR in space may be 

fruitful path forward to understand how the pathogen operates locally, within landscapes, and at 

a regional scale.   

 When considering CLR, some ecologists have abstracted the pathogen as operating at 

two distinct but interacting spatial scales. Perhaps most evidently, the pathogen spreads at a local 

scale from plant to plant within a given area, but in addition to this neighbor-to-neighbor spread, 
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it can disperse large distances in wind currents. Avelino et al. (2012) highlighted how larger 

scale regional transmission can be related to management of surrounding landscape of coffee 

production. They found that the amount of pasture in the surrounding landscape was associated 

with higher CLR within farms. Exploring the often-non-intuitive implications of both the local 

and regional scale transmissions interacting has been a focus of recent theoretical explorations of 

CLR.  

 Vandermeer & Rohani (2014) used an understanding of the two scales of pathogen 

transmission to model the CLR. The basic idea behind their dynamical model is that there is an 

interaction between pathogen spore reservoirs at regional and local scales. CLR is modeled as 

building up within farms through the local transmission dynamics of rain splash and plant-to-

plant contact, and as the reservoir of pathogen spores builds on a farm it feeds into the regional 

atmospheric environment’s reservoir of spores which can be transmitted larger distances and 

“rain down” to infect other farms in the region. Using a modified patch-occupancy approach, 

they model both the portion of bushes infected within a farm and the proportion of farms infected 

within a region. Their results suggest three qualitative possibilities exist for the dynamics of the 

CLR which depend on the underlying parameters of the model which include: the bush-to-bush 

infection rate, the recovery rate of bushes, and the infection rate of farms. Depending on these 

parameters they find that the regional dynamics CLR can either be persistently absent, 

persistently epidemic, or a combination of absent and at intermediate infection levels depending 

on the initial conditions of the system. Furthermore, they explore how socioeconomic drivers 

that influence the number of farms within a region (e.g. the international market price of coffee) 

impact the overall dynamics of the CLR and find that evidence of tipping-point behavior 

regardless of different dispersal environments (i.e. high or low dispersal environments). This 
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tipping-point or catastrophic transition behavior seems to robustly emerge from the interaction of 

the two scales of transmission as was illustrated by Vandermeer, Rohani and Perfecto (2015) 

who incorporated the additional effect of shade on modifying local dispersal of the CLR.  

 While the above studies employed a spatially implicit approach to understanding how 

multi-scale transmission impacts CLR dynamics, there have also been spatially explicit 

approaches to understanding CLR dynamics. Vandermeer et al. (2018) first used spatial networks 

to empirically infer the local transmission dynamics of CLR in Mexico. Hajian-Forooshani and 

Vandermeer (2021) employed spatial networks to explore the dynamic process of how spatial 

pattern is created in coffee agroecosystems and subsequently how that spatial pattern influences 

the pathogen dynamics. Beginning with the abstraction of a local area of coffee production with 

plants arranged in a approximate lattice formation, they allowed for stochastic death of plants, 

followed by imperfect replanting in a local neighborhood of the recently killed plant. The simple 

model of stochastic plant death and replanting created a range of spatial patterns that resembled 

the range of observed empirical spatial distributions of coffee plots on a farm in Mexico. They 

found that the empirical plots show a similar time-dependence of the spatial organization as 

observed in the model, where newly planted areas on the farm are better approximated by a 

lattice-like spatial distribution and older areas have more random-like distributions of plants. To 

understand the impact of different spatial patterning of plants on the dynamics of the CLR they 

modeled pathogen spread on the spatial patterns that emerged from the death and replanting 

model. By exploring a wide range of parameters combinations, they found that more lattice-like 

spatial patterns are susceptible to small changes in the spatial scale of CLR transmission, 

resulting in pathogen epidemics. It is suggested that these small changes in transmission scale 
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can emerge from changes to management practices that interact with transmission, such as the 

amount of shade in a system.  

	

Figure 6.2: The network approach adopted by Vandermeer et al., (2018) and Hajian-Forooshani 
et al., (2021) to spatially explicitly model CLR. Black points show the distribution of coffee 
plants from a 20mx20m plot in southern Mexico. The red lines connecting the black points are 
stipulated by Dcrit (denoting critical distance) and illustrate theoretical connections between 
plants, and thus tendency for local pathogen spread. This network approach has been used to 
estimate CLR transmission distance (Dcrit) in empirical data (see Vandermeer et al. 2018 for 
details) and provides information such as the number of “outside infections” necessary to infect 
an area and the speed of pathogen spread across an area (see Hajian-Forooshani et al. 2021 for 
details). 

 Another recent spatially explicit modeling approach by Beasley et al., (2020) focused on 

the regional dynamics of CLR. They use a stochastic cellular automata approach to model the 

dynamics of CLR across heterogeneous landscapes. By incorporating different habitat types in 

the landscape to simulate the known impact of pasture land on CLR dynamics (Avellino et al. 

2012), they explore how regional landscape composition interacts with the local dynamics of the 

pathogen. They found that the clustering of coffee plants at a local scale is one of the most 

important factors in the model, but that this interacts with the spatial distribution of deforestation 

in the landscape. Areas in the model where deforestation is more clustered resulted in more 

severe epidemics than when deforestation was more uniform across the landscape. This larger 

scale and spatially explicit approach to modeling the CLR highlights the importance of not only 

Dcrit=1.25m Dcrit=1.5m Dcrit=1.75m
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local dynamics but also how both coffee producing and non-producing areas together have 

implications for CLR.  

Further reading 
	
 The scope of this chapter has been made intentionally narrow as to focus on what the 

authors consider to be potentially fruitful areas of research which they hope to bring attention to 

the larger community of coffee researchers as well as other agroecologists. Below we briefly 

recommend resources for more in-depth presentations on various aspects of CLR research and 

point readers in the direction of various researchers and research groups working with CLR 

which the authors find their approaches particularly informative.  

 Kushalappa and Eskes provided a comprehensive reference text on CLR with their 1989 

monograph Coffee Rust: Epidemiology, Resistance, and Management. Various aspects of the 

biology of CLR can be found there as well as a wealth of information regarding control strategies 

among other topics. For a more recent and succinct treatment of CLR, readers should be aware of 

Prevention and control of coffee leaf rust: Handbook of best practices for extension agents and 

facilitators by Elias de Melo Virginio Filho and Carlos Astorga Domain (2019) from CATIE, 

which details more recent information regarding the ecology of the CLR (including some 

information on fungal mycoparasites) and best practices for management.  For an excellent 

analysis of the history of the coffee rust see Stuart McCook’s 2019 book Coffee is Not Forever. 

The ongoing work of Jacques Avelino and his research group has been cited throughout this 

chapter and his bibliography offers several insights in CLR’s ecology. Ongoing work in 

Ethiopian coffee agroecosystems by Kristoffer Hylander and Ayco Tack’s research groups at 

Stockholm University provide a unique ecological perspective on CLR in its native range. The 
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authors feel that continued work by these two groups in Ethiopian coffee could particularly 

informative in developing a more ecological approach to understanding CLR.  
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Abstract 
	
Ecological principles are frequently leveraged when considering the control of animal pests of 

crops. Still, pathogens have not generated similar research despite the current interest in the field 

of disease ecology. Here we use the most economically significant pathogen of coffee, the coffee 

leaf rust, Hemileia vastatrix, to understand the role of top-down control in its regulation. Large-

scale sampling of the pathogen and its natural enemy community in Puerto Rico and Mexico 

reveal striking differences in the potential for biological control. Four main natural enemies are 

identified, a fungal parasite, a dipteran fungivore, a mite fungivore, and a snail generalist in 

Puerto Rico, with only two occurring frequently in Mexico. We suggest that the community of 

natural enemies is potentially an important mechanism contributing to the maintenance of the 

pathogen at relatively benign levels in Puerto Rico. We provide evidence that management is a 

contributing factor and is perhaps operative in part through its effect on the natural enemies of 

the pathogen. This work has applied significance not only for coffee production in Puerto Rico 
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but also for understanding how this pathogen may be controlled in areas where it has been, and 

potentially will be, at epidemic status.  

 

Introduction 
	
 Both pests and pathogens continue plaguing agriculture. Insect pests, especially, have 

generated a host of narratives concerning the complexity of their long-term control (Vandermeer 

et al. 2010; Vandermeer et al. 2019), frequently emphasizing the complex nature of their biology 

and the consequent need to develop control strategies that acknowledge ecological principles 

(Lewis et al., 1997). A rich history of biological control undergirds this position (Heimpel and 

Cock, 2018). Curiously, plant pathogens, likewise devastating for agriculture, have not generated 

such strong opinions regarding the importance of ecological principles, despite the currently 

intense interest in the field of disease ecology. When dealing with insect pests, issues such as 

biological control are front and center in the minds of entomologists seeking control, while plant 

pathologists, on the other hand, seem quick to rely on developing resistant varieties of the crop. 

Basic ecological reasoning is not well-positioned to explain this distinction, apparently an 

anthropogenic vestige. Here we argue that ignoring higher trophic level potential (e.g., biological 

control) is a missed opportunity and may be counterproductive. We use the distribution of the 

coffee leaf rust (CLR) in the Americas as an example. 

 The CLR, caused by the fungus Hemileia vastatrix, has a history of devastation in the 

world’s coffee production systems, from Sri Lanka in the nineteenth century to Mesoamerica in 

the twenty-first (McCook, 2019; Avelino and Anzueto, 2020; Avelino et al., 2004; 2006; 2015; 

2020). Yet, its effect on coffee production is variable, likely responding to local and regional 

contingencies.  From the plant itself (coffee) to its “pest,” the CLR fungus, to the enemies of that 
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pest, the system falls within the increasingly popular ecological topic of novel ecosystems 

(Hobbs et al., 2009; 2013; Perfecto and Vandermeer, 2015).  It is, we propose, the ecological 

context in which the components of novel agricultural communities are embedded that will 

determine what makes a pathogen a minor nuisance in one region, but a crippling epidemic in 

another. The case of the 1869 CLR epidemic in Sri Lanka could ultimately have been the result 

of CLR escaping the natural enemies which presumably controlled it in its native region of 

Equatorial Africa, a pattern that is likely to repeat itself. Here, we provide evidence that suggests 

the difference between its recent catastrophic impact on coffee in Mexico and its relatively 

benign nature in Puerto Rico can be tied to the relative importance of distinct novel communities, 

and in particular, an assemblage of natural enemies that is more diverse and abundant in Puerto 

Rico than in Mexico.  

 The basic ecological principles involved in this interpretation are central in the extensive 

literature on invasive species, which suggest that the absence of natural enemies in a new 

location can sometimes explain the notable success of the invasive species (Roy et al., 2011; 

Yitbarek et al., 2017). When similar ecological reasoning is applied in an agricultural setting, the 

same forces should be at play. Corresponding to basic ecological/evolutionary principles, crop 

pests emerge from two sources: hitchhikers from the introduced species' natural range (the crop), 

or as evolutionary adaptations or preadaptations from local fauna and flora (Strong et al., 1977). 

Such fundamental principles should also apply to higher trophic levels, which is to say, the 

natural enemies of the pests. And importantly, there is no scientific reason to expect that such 

fundamental ecological dynamics should be absent from host/pathogen systems, as evidenced by, 

for example, early enthusiasm for research on phage therapy in human disease systems 

(Chanishvili, 2012).  
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 The CLR has been devastating Mesoamerica for nearly ten years, causing significant 

damage to the production of one of the world’s most important internationally traded agricultural 

commodities (Avelino et al., 2015). As for the crop itself, it is difficult to exaggerate the social 

and economic importance of coffee, not only for consumers worldwide, but also as the major 

export of many countries, and the basis of sustenance for millions of farmers worldwide 

(Pendergrast, 2010; Perfecto and Vandermeer, 2015). The devastating losses due to CLR have 

understandably received widespread attention (McCook and Vandermeer, 2015). While solutions 

are imagined mainly in the form of resistant varieties and fungicides, relatively little attention 

has focused on the well-known fact that CLR has been “under control” for some time in most 

areas around the world. While the dynamics of CLR have been mainly studied in areas where the 

pathogen is epidemic, for a good reason, we suggest that insight can be gleaned from studying 

the dynamics of the pathogen in places where it remains at relatively low levels, as in Puerto 

Rico. In particular, we propose that focusing on the novel assembly of the pathogen’s natural 

enemy community can lend insight as to why the pathogen remains under control regionally.  

 Here we report on a series of long-term surveys in both Mexico and Puerto Rico 

regarding the CLR and its community of natural enemies. Our hypothesis (Hajian-Forooshani et 

al., 2016) is that the community of natural enemies, especially the mycoparasitic Lecanicillium 

lecanii, are the main factors that maintain the disease relatively benign in Puerto Rico and fail to 

do so in Mexico.  We provide evidence that management, especially with respect to intercropped 

species, is also a factor and perhaps operative in part through its effect on the natural enemies of 

the pathogen. 

Methods 
	
The study sites 
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 The study was conducted in the Cordillera Central of Puerto Rico, the main coffee-

growing region on the island, and in the Sierra Madre de Chiapas in Mexico, also a major coffee-

growing region. Twenty-five locations were sampled in Puerto Rico ranging in elevations from 

344m AMSL to 887m AMSL, while in the six sites in Mexico elevation ranges from 900m 

AMSL to 1150m AMSL. Management characteristics were variable with a sharp distinction 

between organic shade and non-organic sun production in Mexico, versus non-organic and 

highly variable management in Puerto Rico. Other background conditions are discussed 

elsewhere, for the Mexico site (Philpott and Foster, 2005) and the Puerto Rico site (Perfecto and 

Vandermeer, 2020).  

 The communities of natural enemies at both sites stem from a combination of the 

aforementioned processes of co-introduction and recruitment from the associated biodiversity in 

the agroecosystems and surrounding forests. In both regions, the dipteran larvae Mycodiplosis 

hemileiae has been presumably co-introduced from eastern Africa with coffee. The genus tends 

to contain species that are specialists on the various species of rust fungi and thus it is not likely 

to have any alternate hosts in Mexico or Puerto Rico (Nelson, 2013). M. hemileiae larvae were 

first reported in the scientific literature in the Americas (Mexico and Puerto Rico) in 2014 

although it remains unclear how long the species has been present (Hajian-Forooshani et al. 

2016). A second natural enemy occurring in both regions is the fungus, Lecanicillium lecanii, 

whose biological control potential for the coffee leaf rust has been previously noted (Jackson et 

al., 2012; 2012a; Vandermeer et al., 2009; 2014; Hajian-Forooshani, 2016; Gomez-de La Cruz et 

al., 2018), and is common in Ethiopia, the native range of Coffea arabica (Zewdie et al., 2021). 

The third natural enemy is a species of mite (Ricoseius loxocheles) which is known to consume 

CLR spores and complete its lifecycle in patches of CLR spores (Oliveira et al., 2014). R. 
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loxocheles is present in both Mexico and Puerto Rico, but with distinct relative abundances, 

being very common in Puerto Rico but too rare in Mexico to collect any meaningful data 

(authors observations). Finally, Bradybaena similaris, is a well-known invasive species around 

the globe which, along with other unidentified gastropods, has recently been identified as a 

consumer of CLR spores (Hajian-Forooshani et al., 2020). Notably, B. similaris occurs 

throughout Puerto Rico and, although present in Mexico (Naranjo-Garcia and Castillo-

Rodriguez, 2017) the authors have never seen it or the characteristic orange excrement left 

behind from gastropods consuming of CLR spores in the Mexican coffee farms sampled in this 

study.  

 

Surveys of the rust and natural enemies 

 In Puerto Rico, monthly surveys were done on 25 farms from Aug 2018 to July 2019.  On 

each farm a central area 10x10 m was established in an area that qualitatively appeared much 

like the rest of the farm, and 20 coffee plants were selected randomly within each of the plots. 

Surveys recorded the number of leaves containing CLR on the whole plant, and the number of 

M. hemileiae larvae, the proportion of CLR lesions that had evident covering of the mycoparasite 

(L. lecanii), the number of CLR lesions that contained populations of the mite (R. loxocheles), 

and the number of leaves containing gastropod feces with CLR spores (presumably from B. 

similaris and other gastropods; see Hajian-Forooshani et al. 2020) on 25 of the leaves that had 

rust lesions. 

 Due to large amounts of variability in the amount of CLR on farms throughout Puerto 

Rico (see below), we chose a farm that had the highest incidence of CLR for a more detailed 

study which included a larger sampling area, more plants sampled, and a greater sampling 



	 164	

frequency.  On that farm (code UTUA2) we established three 20x20 m plots and marked and 

georeferenced each coffee bush on the plot.  Every two weeks the plots were sampled for CLR 

and all four natural enemies. Comparative work in Mexico was concentrated in two large coffee 

farms, one with considerable shade and a second with much less shade, approaching what is 

popularly referred to as sun coffee (Philpott and Foster, 2005).  In each of these landscapes we 

established three 20x20 m plots, using the same methodology as in Puerto Rico, including 

biweekly samples of the CLR and its natural enemies over a 12-month period.  

 The disparity in sampling schemes between Mexico and Puerto, with 25 10x10m plots in 

Puerto Rico along with three 20x20 plots on a single farm, and six 20x20 plots on two farms 

(three plots on each farm) in Mexico is the result of a confluence of factors. First, personal 

observations from previous work in these regions (citation) have noted important regional 

differences in the complexity of the natural enemy communities, where they happen to be more 

diverse in Puerto Rico (4 commonly occurring natural enemies) than in Mexico (2 natural 

enemies, both only seasonable present). Consequently, a larger-scale sampling scheme seemed 

justified in Puerto Rico where relatively little is known about the CLR compared to the region of 

Mexico where the study took place. Second, personal observations suggested the variability in 

farm management is much greater in Puerto Rico than in the various large-scale plantations in 

the study sites in Mexico. In Puerto Rico, a variety of crops are grown in conjunction with coffee 

in several different shade management contexts, from coffee-citrus intercrops to sun coffee to 

rustic coffee. Capturing the extent of this farm-to-farm variability, although not directly 

quantified for this study, was a motivating factor for a more spatially extensive sampling scheme 

in Puerto Rico. The more restrictive sampling of six plots across two farms each in Mexico is in 

part due to the large scale of the farms (approximately 300ha each in comparison to 
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approximately 10ha average in Puerto Rico) and the more restrictive range of management in the 

region which includes predominately sun coffee or shaded polyculture, which we captured with 

our sampling. 

Results 
	
 In Puerto Rico, the dynamics of CLR as well as its natural enemy community have 

remained largely unknown due to the relatively benign status of the pathogen as compared to 

other regions in the Americas (Rodriguez and Monroig, 1991; and personal observations). One 

of its most striking features is its geographic variability, with some sites being heavily impacted 

while others remain almost CLR-free, with no clear spatial signature (Fig. 1). Eight of the 25 

sites had barely detectable rust and ten had significant quantities (Fig. 2). Furthermore, there was 

no evident geographic pattern for either CLR or any of the natural enemies (Fig. 1). The natural 

enemy community is clearly dominated by the presence of the mycoparasitic fungi L. lecanii 

(Figs. 1 & 2) invariably present across the whole coffee-producing region wherever CLR is 

present. In addition to L. lecanii, the dipteran larvae, M. hemeliae, is also a common feature, 

consistently the second most abundant natural enemy. The other two natural enemies, the CLR-

mite and CLR-snail tend to be more sporadically distributed (Figs. 1 & 2). 
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Figure 7.1: Abundance of coffee leaf rust (CLR) and the community of its main natural enemies, 
across the region in Puerto Rico, where the size of the circles is proportional to the average 
amount of CLR from a 12-month cycle of collected data. The fills of the circles represent the 
average composition of natural enemy communities throughout the 12-month cycles. Red – 
Mycodiplosis (M. hemileiae); grey – L. lecanii; gold – CLR-mite (R. loxocheles) and green – 
CLR-snail (B. similaris and other CLR consuming gastropods) 
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Figure 7.2: Distribution of the coffee leaf rust (CLR) and its community of natural enemies 
across 25 farms in Puerto Rico. On each of the 25 farms surveyed, 20 individual plants were 
monitored for a year. Each plot shows the proportion of the 20 plants infected with CLR and the 
proportion of CLR-infected plants with natural enemies present. The y-axis ranges from 0-1 and 
the x-axis represents each of the 12 months from the survey ranging from August 2018-July 
2019. 

 Time series from the 20x20 m plots illustrate the complex nature of the dynamics of CLR 

and the natural enemies in both Mexico and Puerto Rico (Fig. 3). Two patterns are of particular 

importance. First and most obviously, the occurrence and diversity of the natural enemy 

community is far more pronounced in Puerto Rico than in Mexico, with Puerto Rico having four 

natural enemies that are relatively common throughout the study period compared to only two in 

Mexico, Mycodiplosis and L. lecanii, both of which occur at lower densities than in Puerto Rico. 

Also of note are differences in the incidence of the natural enemies between regions: in Mexico 
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there tends to be a single population burst, whereas in Puerto Rico there is a sustained incidence 

of all four natural enemies. In Puerto Rico, at least 30% of all plants that have CLR have L. 

lecanii throughout the whole growing cycle (Fig. 3). For one plot, the percentage of plants with 

L. lecanii is above 65% all year long (Fig. 3), in contrast to Mexico where the incidence of the 

natural enemies never surpasses 40% even at the peak of CLR.  

 

	

Figure 7.3: Data from fine scale surveys (20x20m plots surveyed biweekly) in Mexico and 
Puerto Rico. Each point represents the proportion of plants that have CLR (orange), 
Mycodiplosis hemiliea. (red), Asian tramp snail (green), the CLR-mites (gold), and L. lecanii 
(grey). Note that the farm in Puerto Rico was chosen (out of the 25 sampled) for this detailed 
study because it was the farm with the highest incidence of CLR.  
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 An additional pattern is evident from the time series on the 20x20m plots (Fig. 3). Within 

the plots in Mexico, it is evident that the two management styles (sun versus shade) are strongly 

correlated with the infection rate of CLR. In the shade coffee system, CLR never surpasses 60% 

and is usually below 40%, whereas in the sun coffee system it never falls below 60%. Making 

the same comparison in Puerto Rico is difficult since the shade management there is far more 

complex than in the Mexico site and measurements of shade from farm to farm do not suggest 

any relationship at all with respect to the rust (see supplementary material). Recall that the 

particular farm this fine-scaled study was accomplished was chosen because it was the farm with 

the highest incidence of coffee rust of the 25 sampled farms.  

Discussion 
	
 Both large-scale sampling of CLR and its natural enemy community in Puerto Rico as 

well as the fine-scale detailed bi-weekly sampling at nine 20x20m coffee plots at both sites, 

illustrate some striking distinctions between a region where the pathogen is in epidemic 

proportions versus a region where the pathogen is relatively benign. Most notable is the 

abundance of natural enemies in both regions. The widespread distribution and frequent 

occurrence of the natural enemies in Puerto Rico, even when CLR is relatively rare, is in stark 

contrast to the dynamics of the natural enemies in Mexico where they exhibit a seemingly strong 

seasonal dynamic. We suggest that the widespread distribution and high incidence of these 

natural enemies in Puerto Rico may contribute to the benign nature of the rust there. 

Furthermore, we propose that L. lecanii is likely the main controlling factor in Puerto Rico. Both 

the island-wide surveys as well as the finer-scale data show L. lecanii occurring at high rates 

even when CLR is at low densities. Its high occurrence in addition to the apparent consumer-

resource oscillations that emerge island-wide (Fig. 4.) suggests that L. lecanii may be a 
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controlling agent of the CLR in Puerto Rico but is likely not so in Mexico. The question then 

arises, if the same natural enemy is present in both Mexico and Puerto Rico, why does it 

seemingly control the pathogen in Puerto Rico and not Mexico?  

 

	

Figure 7.4: Consumer-resource phase diagrams of the coffee leaf rust (CLR) and its natural 
enemies throughout Puerto Rico. Each point represents a monthly mean across the 25 sampled 
farms and colors represent the progression of time, with grey being August 2018 and bright red 
July 2019. a.) is the mean number of leaves with L.lecanii, b.) the mean number of leaves with 
Mycodiplosis larvae, c.) the mean number of leaves with CLR-mites (R. loxocheles), and d.) the 
mean number of leaves with CLR-snail (B. similaris) excrement. Note that panel a.) with CLR-
L.lecanii exhibits a counter-clockwise oscillation as expected from a consumer-resource 
interaction.  
 

 Specifically in Puerto Rico, CLR appears to present itself in two categories, sites where 

CLR is persistent throughout the year and sites where the rust never gains enough momentum to 

take hold (Fig. 2). The same pattern is seen in the natural enemy community to some extent as 

well, although the dynamics are notably different, where evident fluctuations occur irrespective 
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of the abundance of CLR (Fig. 2). While there is variability across the landscape, a clear pattern 

emerges of the densities of CLR and its natural enemies co-varying through time, especially 

obvious in the case of L. lecanii with apparent consumer-resource oscillations (Fig.4a), and 

importantly this oscillatory pattern is absent from the other natural enemies of the CLR (Fig. 4b-

d).  

 Prior work conducted with L. lecanii and CLR suggests a potential mechanism for the 

importance of L. lecanii in Puerto Rico compared to Mexico (Hajian-Forooshani et al., 2016). L. 

lecanii is both a mycoparasite as well as an entomopathogenic fungus that attacks a wide range 

of insects, but notably sap-feeding hemipterans such as scale insects. It has been demonstrated 

that L. lecanii’s attack on CLR can be facilitated by large population densities of scale insects in 

coffee agroecosystems, where the mycoparasite spills over to CLR (Vandermeer et al., 2009; 

Jackson et al., 2012; Vandermeer et al., 2014). Throughout the coffee-producing region of Puerto 

Rico, scale insects, and in particular the green coffee scale (Coccus viridis), is a widespread and 

sometimes a nuisance pest. The green coffee scale occurs not only on coffee plants but is also a 

common and potentially damaging pest of citrus which is widely cultivated, and often 

intercropped with coffee. Given that the green coffee scale is an intermediary that allows L. 

lecanii to attack coffee rust (Vandermeer et al., 2009; 2014), we surveyed populations of green 

coffee scale on coffee plants throughout the yearly cycle across the 25 sites where the rust was 

surveyed in Puerto Rico. We found that sites that have low coffee rust, as defined by having 20% 

or fewer of the plants infected with coffee rust for most of the year, have higher densities of 

green coffee scale and green coffee scale infected with L. lecanii (High rust: mean GCS = 0.5875 

± 0.0314, N=14; Low rust: mean GCS = 0.9568 ± 0.04831, N = 11. High rust: mean L. lecanii 

GCS = 1.086 ± 0.0419, N= 14; Low rust mean L. lecanii GCS mean = 1.41 ± 0.0543, N= 11). 
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Thus, a higher density of green coffee scale is associated with low CLR sites throughout the 

coffee-producing region of Puerto Rico suggesting a similar spillover effect may be taking place 

in which the attack of L. lecanii on CLR is facilitated through its attack on the green coffee scale, 

which is especially abundant where citrus trees are present. 

 Given the clear importance of natural enemies in Puerto Rico and the evident relationship 

to shade in Mexico, hypotheses involving shade management and its effect on natural enemies 

may be warranted. While most investigations on shade’s impact on CLR have mainly 

emphasized the effect of shade on physical factors, like wind and humidity, that may affect the 

transmission and germination of the fungus itself (Vandermeer et al., 2019), we find that 

qualitative observations on the relationship between CLR, the green coffee scale, the L. lecanii 

fungus, and citrus as an intercrop, suggest a complex of management style and natural enemy 

dynamics that ultimately contributes to the management of this important pathogen. While 

follow-up work will be necessary to elucidate the exact mechanisms that explain the patterns 

reported here, we propose that shifting focus to the forces that shape the assembly of the 

ecological communities in these agroecosystems may help explain regional differences observed 

in agroecosystems around the globe.  
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Supplementary Material  
 

	

Figure 7.5: Relationship between shade measurements and amount of coffee leaf rust on a farm. 
Two different measures of shade were taken across the 25 farms used in the study. Panel a.) 
shows cover calculated with a spherical densiometer at breast height and b.) shade cover 
calculated above the coffee plants with a spherical densitometer. Both a.) and b.) show no 
significant linear relationship with the mean amount of coffee leaf rust found on the farms (a. p 
=0.457, b. p=0.300). c.) shows the relationship between both measures of shade cover on farms. 
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Abstract 
	
Spatial scale has long been a confounding factor in ecologists attempt to understand both 

ecosystem processes and community dynamics. Here we use a fungal pathogen and its 

community of four consumers in an attempt to understand how ecological communities respond 

to and interact within hierarchically nested patches in ecosystems. We employ three distinct 

hierarchical levels of analysis to understand the relevant scales for determining the dynamics of 

community assembly and organization in this system. By using two separate periods in the 

epidemic cycle of the pathogen, we capture the community assembly dynamics when the 

pathogen is at relatively low densities in the early infection period, then capture signatures of 

community interactions during the mid-infection period when the pathogen densities are higher 

and the community competes for their resource. We show how the community of consumers 

depletes the pathogen spores throughout the epidemic cycle representing an important dynamic 

feedback in the system where consumer activity modifies the patch distribution they consume. 

Introduction 
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Spatial scale has long been a confounding factor for ecologists attempt to understand 

ecosystem and community processes and dynamics (Allen and Starr 1986, O’Neil et al 1986, 

Wiens 1989, Kotliar and Wiens 1992). Conflicting conclusions about the processes operative 

within ecological systems have been shown to be due at least in part to the various spatial scales 

in which they are under study, with both empirical (Levin 1992; Koliter and Weins 1992; Weins 

1989) and theoretical examples (Viana and Chase 2019) highlighting the importance of taking a 

multi-scale approach in ecology, since organisms and processes may be scale dependent and 

even interact across scales (Johnson et al, 1992; Lin & Pennings 2017; Kotlier & Wiens 1990).  

 While there exist a variety of organizing metaphors for incorporating space (and therefore 

scale) into ecological theory, a discrete, patch-like framework for understanding the spatial 

organization of environments and the organisms which occupy them has been common in 

ecology and has arguably led to most of the dominant paradigms in the field (Levins 1969; 

Wilson 1992; Wiens et al. 1993; Leibold et al 2004; Leibold & Chase 2018). Although patch-like 

frameworks are common, a strict definition of what should be considered a patch in some 

systems isn’t entirely clear.  As noted by Weins (1976), what an ecologist considered a patch 

should necessarily be defined from the perspective of the organism which utilizes it. In 

ecological communities, which are composed of multiple interacting organisms, the question of 

patch definition then becomes even less clear. Additionally, the scale-dependent ecology of 

different organisms in communities complicate matters further.     

 The joint consideration of spatial scale and a patch-like framework has been abstracted as 

patches nested inside other patches in a hierarchical fashion (Kotlier and Wiens 1990). In the 

Kotliar and Wiens framework, the embedding of nested patches in others is referred to as 

“levels” and can be distributed across a range of continuous spatial scales. Understanding how 
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communities respond to and interact across these levels and scale within this hierarchical patch 

framework is relatively poorly understood and not frequently addressed in the literature despite 

the various ecosystems and communities which naturally lend themselves to this framework. 

One such system that illustrates the hierarchical spatial organization of patches, is the structure 

of plants, where they can be abstracted discrete entities hierarchically embedded at multiple 

spatial scales, where discrete leaves are distributed within discrete plants which are distributed 

with an area in space. 

Here we use a fungal pathogen that attacks plant leaves and its community of four 

consumers which have to navigate the heterogeneous pathogen distribution across hierarchical 

levels, to attempt to understand how ecological communities respond to and interact within 

hierarchically nested patches. Our model system of the coffee leaf rust (hereafter referred to as 

CLR), Hemleia vastarix, and its community of consumers in Puerto Rico is particularly well-

suited to the study of the role of spatial scale and hierarchy in governing the dynamics of 

ecological communities due to the variety of natural histories encompassed within the 

community. The community is comprised of the Dipteran, Mycodiplosis hemealiea, whose larval 

stage is a specialist in CLR spores (Barnes 1939; Milne 1975), the parasitic fungus, 

Lecanicillium lecanii, a generalist fungal parasite that attacks both fungi and insects 

(Vandermeer et al, 2010; Jackson et al, 2012), the mite, Ricoseius loxocheles (referred to here as 

the CLR-mite), which consumers and completes its life-cycle in lesions of CLR but also utilizes 

other resources such as pollen (Flechtmann 1976; Oliveira et al., 2014; Ajilaet al., 2018), and 

finally a community of gastropods (including Bradybaena similaris) which are likely 

opportunistically consuming CLR (Hajian-Forooshani et al, 2020).  
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The interactions between the CLR and its associated community of consumers are 

necessarily realized at the scale of an individual leaf where the consumer ultimately encounters 

its resource. Although this is a truism of all consumer-resource interactions, the community of 

consumers is presented with the challenge of locating suitable patches in space. Given that the 

community of consumers described above represent a wide range of potential natural histories 

and physiological constraints, the ways in which they are able to locate their resources in space 

likely vary across the community with respect to both time and spatial scale. Factors influencing 

the consumer’s ability to locate patches potentially include: duration of life-cycle, mobility 

throughout development, and diet breadth among other factors. For the community of CLR 

consumers the cues they use locate the CLR will likely be quite different considering they 

encompass four distinct Classes (Gastropoda, Arachnida, Insecta, Sordariomycetes 

(Ascomycota)), likely resulting in distinct scales of response to CLR patches. 

Here we use three distinct hierarchical levels of analysis to understand the relevant scales 

for determining the dynamics of community assembly and organization in this system. By using 

two separate periods in the epidemic cycle of CLR, we capture the community assembly 

dynamics when the pathogen is at relatively low densities in the early infection period, then 

capture signatures of community interactions during the mid-infection period where CLR 

densities are higher and the community competes for its resource. Furthermore, we show how the 

community of consumers depletes the CLR spores throughout the cycle of the CLR representing 

an important dynamic feedback in the system where consumer activity modifies the patch 

distribution they consume.   

Methods 
	
Survey Methods 
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The study was conducted in the central coffee producing region of Puerto Rico, see 

Perfecto et al. (2019) for a description of the farms and coffee producing landscape. By talking to 

farmers at each of the 12 farms included in the study we identified regions within each farm that 

were impacted CLR. Once an area was located, plants were then haphazardly selected to be 

surveyed. The minimum distances between plants surveyed were five meters in each farm. Once 

a plant was selected via looking for multiple branches with lesions of the CLR, individual leaves 

were surveyed.  

On each leaf the percentage of the leaf covered in CLR was estimated. Then the leaf was 

inspected for the presence of each of the community of natural enemies. The Mycodiplosis were 

found by visually scanning the leaf and recording the number of them present. Each lesion of the 

CLR on the leaf was inspected for the presence of mites. The number of lesions with mites 

(sometimes a single mite, other times a small group of mites and brood) was recorded. To survey 

CLR-gastropods, we noted the number of orange excrements, which has been shown 

experimentally to be a sign of gastropods consuming the CLR (Hajian-Forooshani et al. 2020). 

All surveys were conducted by a single individual to control any variation that may have existed 

in the quantification of leaf infection percentages.  

Data was collected across two years which represented two distinct regimes of the 

infection cycle of the CLR. Our first surveys were conducted on five farms in late July 2017, and 

here we refer to this survey as taking place in the mid-infection period of the CLR dynamics in 

Puerto Rico. Our second survey was the subsequent year in 2018 and conducted in late-June on 

seven coffee farms. This second survey period is referred to as the early infection period. The 

differences in the distribution of CLR corresponding to the different time periods of infection can 

be seen below (Figure 1). 
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Statistical analysis  

For the leaf scale analysis, we used the raw data of the percentage of leaf covered in 

CLR. For the plant scale analysis, we calculated the percentage of leaf infection for a given plant 

averaged over all plants sampled, and for the farm scale analysis we calculated the average 

percentage leaf infection across the farm (zack;  this seems to imply that farm scale and plant 

scale are identical). Differences in the amount of infection across the three spatial scales were 

significantly different between the sampling periods with a Wilcoxon rank-sum test (p < 0.05).  

To understand the colonization dynamics of the consumer community to the CLR we 

used binomial regressions to see how the presence/absence of a consumer responds to the 

varying amount of CLR infection across the three distinct hierarchical levels. The same approach 

with binomial regressions was used to infer how varying densities of consumers impacted each 

other’s colonization dynamics, as well as for understanding how multiple consumers influence 

the probability of encountering spores across hierarchical levels.  

In order to understand the probabilities of co-occurrence given the underlying distribution 

of our consumers in both survey time periods, we conducted randomizations of our data and 

calculated co-occurrence metrics. The randomizations were repeated 100 times and the 95% 

confidence intervals were calculated to compare to the observed co-occurrence dynamics of our 

consumers though time.  

Results 
	

Percentage infection: 

Our two surveys periods present two distinct points in the infection dynamics of the CLR. 

The two distinct regimes in CLR infection can be seen in Figure 2, where the early infection 

distribution at the scale of the leaf shows a strong skewed distribution dominated by low levels 
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of infection. This contrasts with the mid-infection frequency distribution at the leaf scale where a 

concentration of infection intensity of approximately 75% is apparent in the tail of the 

distribution. We found a significant increase in the infection intensity across leaf (W = 235862, 

p-value < 2.2e-16), plant; (W = 2318, p-value = 1.572e-06), and farm (W = 3, p-value = 

0.01768) spatial scales, with an increase of approximately 12% in the average infection load 

across all three spatial scales. Conducting surveys at these two times provides a snap shot into 

not only the dynamics of community assembly, but also how the interactions amongst the 

community play out over the duration of the seasonal dynamics of the CLR.  

	

Figure 8.1: Shows the frequency distributions of percentage of infection on the leaf, plant, and 
farm scale for both survey periods and combined. Note the lower mean CLR at both leaf and 
plant scales for the early-infection period compared to the later-infection period. The dotted 
lines on the plant and leaf scale frequency distributions illustrates the mean values of CLR for 
the survey periods. 

Consumer community response CLR density across scale  

 All CLR-consumers have significant positive responses to increasing CLR concentration 

at the leaf (Fig 2a) and plant (Fig 2b) plant scales during the early infection period, but not to the 
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farm scale (supplementary materials). This ubiquitous positive response disappears during the 

mid-infection period, where the CLR-mites no longer respond at the (what) level and 

Mycodiplosis no longer responds at the leaf or plant level. In addition to simply affirming that 

the consumers respond to their resource, several notable patterns emerge from Figure 2 that lend 

insight into the ecology of the consumer community. First we note that Mycodiplosis’s response 

to the CLR changes dramatically from early to mid-infection where it has significant responses at 

first but this effect disappears later. We suggest that this change in colonization across infection 

periods emerges from the basic natural history of the Mycodiplosis and its need to find it’s 

resource early, while at relatively low density as compared to the other consumers in the 

community. We further note that Mycodiplosis responds most strongly in the community to low 

densities of CLR at the plant scale during the early infection period as evidenced by the 

relatively high y-intercept of the logistic regression (Fig 2b Mycodiplosis top panel). This 

suggests that Mycodiplosis is colonizing plants with relatively low average infection intensity, 

likely a result of it being a specialist on this resource and needing it to complete it life-cycle.  

 Regarding the colonization at low levels of resource across hierarchical levels, L. lecanii 

and CLR-mites share similar colonization dynamics at the plant scale, where they tend not to 

colonize plants with low infection in the early period but tend to do so more frequently in the 

mid-infection period, as is evidenced by the intercepts of the logistic regression (Fig2b). We also 

note an interesting pattern for L. lecanii at the leaf scale between early and mid-infection periods 

where we see L. lecanii is far more prone to colonize leaves with low CLR infection during the 

mid-infection period but not the early period. We propose that this is due in part to the local 

build-up of L. lecanii in the environment as the infection of CLR progresses throughout its 
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epidemic cycle. Thus the higher concentration of L. lecanii in the environment allows it to 

colonize leaves with relatively low infection.  

 The CLR-gastropods show relatively consistent response across the early and late 

infection periods on the leaf and plant scales, where the probably of colonization increases as 

CLR infection increases. We suggest this may be due in part to the opportunistic utilization of 

CLR as a resource for gastropods and probably only utilize it as a food source when the 

pathogens density is sufficiently high. 

	

Figure 8.2: CLR consumer community’s colonization dynamics in response a.) the percent of 
CLR on a coffee leaf and b.) the average % CLR leaf on the coffee plant. Black line shows 
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statistically significant logistic regressions. First row of a.) and b.) show the early infection 
period and the second row shows the mid-infection period. 

Interspecific community interactions across resource dynamics  

 While in the above section we look to see how the consumer community responds to the 

amount of CLR at difference hierarchical levels, here we explore the relationships among the 

consumers. By focusing on how the colonization (presence) of natural enemies is moderated by 

the abundance of others in the community we can shed some light on how the interactions 

amongst the community play out through time as their resource increases. Here we comment on 

the significant interactions between members of the community and present the full pairwise 

analysis of natural enemies across all levels (leaves, plants, and farms) in the supplementary 

material.  

 First we note the colonization dynamics of the CLR-mite with respect to other members 

of the consumer community. We see no significant relationship with the colonization of CLR-

mites with respect to the density of CLR-gastropods (see supplementary material), but such a 

relationship is evident with Mycodiplosis and L. lecanii. The CLR-mites show a higher 

probability of colonization at the leaf level as the density of Mycodiplosis on a leaf increases 

during the early infection period (Fig 4a). Interestingly this pattern is reversed during the mid-

infection period where the probability of finding CLR-mites on the leaf decreases with 

increasing Mycodiplosis (Fig 4a). We suggest that these opposing effects of Mycodiplosis on the 

CLR-mite’s colonization probabilities result from both natural enemies likely attempting to 

locate similar plants early in the dynamics of the CLR cycle, but as time passes competitive 

interactions structure the communities and competitive exclusion takes place. Note that the 

opposite effect of increasing CLR-mites driving a reduction in the probability of Mycodiplosis 

colonization is observed for the same period (see supplementary material). Regarding L. lecanii’s 
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impact on the colonization probability of CLR-mites, we see a consistent positive effect of 

increasing L. lecanii on CLR-mites (Fig. 4). 

	

Figure 8.3: Colonization dynamics of CLR-mites in response to Mycodiplosis and L.lecanii 
densities on the leaf and plant scale. a.) shows CLR-mite responses to the leaf scale for early 
infection and mid-infection surveys. b.) shows CLR-mite responses to the plant scale for early 
and mid-infection surveys. Solid lines represent statistically significant logistic regressions. 

 The colonization dynamics of L. lecanii is related to the abundance of other consumers in 

the community. We find that the probability of colonization of L.lecanii consistently increases 

with increasing density of CLR-mites on both the leaf and plant scales (Fig. 5).  This reciprocal 

effect of CLR-mites increasing the colonization probability of L. lecanii and L. lecanii increasing 

the colonization probability of CLR-mites seems to suggest some type of direct or indirect 

facultative interaction between these two consumers. The other significant effect we see is an 

increase in L. lecanii, resulting in a decreasing probability of L. lecanii presence during the mid-

infection period. This negative association supports prior findings of antagonism between L. 

lecanii and CLR-gastropods (Hajian-Forooshani et al. 2020).  
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Figure 8.4: Colonization dynamics of L. lecanii in response to CLR-mites and CLR-gastropods 
densities on the leaf and plant scale. a.) shows L. lecanii responses to the leaf scale for early 
infection and mid-infection surveys. b.) shows L. lecanii responses to the plant scale for early 
and mid-infection surveys. Solid lines represent statistically significant logistic regressions 

 An analysis of co-occurrence patterns of the community highlights scale dependent 

patterns in how the consumers overlap with each other at distinct hierarchical levels through time 

(Fig 6).  At the farm level, we only see significant deviations from the randomizations for co-

occurrence of Mycodiplosis and CLR-gastropods, where in the early infection period they co-

occur more frequently than is expected by change and in the mid-infection period they co-occur 

less frequently than expected by change.   

 At the plant and leaf levels, the co-occurrence dynamics become considerably more 

complicated with patterns at one hierarchical level flipping when considering the other. The 

general qualitative pattern that emerges is that consumers tend to co-occur more frequently than 

expected by chance at the plant scale and less frequently than chance at the leaf scale, with this 

pattern holding for L.lecanii and CLR-gastropods, CLR-mites and CLR-gastropods, 

Mycodiplosis and L.lecanii and Mycodiplosis CLR-mites (Fig 6.). One of the strongest consistent 
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effects across hierarchical levels is that of L. lecanii and CLR-mites co-occurring more 

frequently than chance at the plant and leaf levels across both early and mid-infection periods.  

	

Figure 8.5: Shows the co-occurrence of consumers at three discrete hierarchical patch scales. 
Circles correspond to observed co-occurrence and the triangles to the co-occurrence 
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probabilities of 100 data randomizations. Errors bars represent 95% CI. Orange shows the early 
infection period and dark red the mid-infection period. 

Consumer community impact on CLR spores  

 During surveys of CLR and the consumer community, the presence or absence of spores 

on the leaves were noted. Given that all the consumers consume these spores, we are left with a 

record of lesions in which the spores have been removed, presumably through the action of the 

consumers in the community. An analysis of the presence/absence of the spores shows 

significant patterns that would be expected if there were impacts of the consumers in reducing 

the presence of spores aa the leaf and plant level (Fig 7). The consistent pattern, apart from the 

CLR-gastropods, is that in the early infection period the probability of finding spores on leaves 

was significantly higher when the natural enemies were present than when they were absent. 

This pattern then changes in the mid-infection period where the probability of finding spores on 

leaves is lower when the natural enemies are present. We interpret these results to mean that 

early in the cycle of the CLR natural enemies are attached to leaves with spores and by the mid-

season the leaves have been cleared of spores, presumably due to the activity of these natural 

enemies.  
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Figure 8.6: Show the change in average presence of CLR spores in the early infection and mid-
infection periods. Black dots and lines show where the natural enemies were present and red 
dots and lines show where they were absent. 

 We see a similar pattern between the early infection and mid-infection period regarding 

spores and consumers when considering the co-occurrence of consumers at the leaf and plant 

scale (Fig. 8). The probability of finding spores at the leaf and plant scale increases with 

increasing consumer co-occurrence, and the probability of finding spores at both scales decreases 

at both scales for the mid-infection period.  
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Figure 8.7: The impact of then number of consumers on the incidence of CLR spores at the leaf 
scale and plant scale. For plant scale analysis, average incidence of spores was used. Solid lines 
show significant binomial regressions and the dashed line shows marginally significant results 
(p<= 0.1) 

Discussion 
	
 Here we used hierarchically distributed patches of a fungal pathogen to understand how a 

community of consumers responds to patch quality (amount of pathogen) across multiple 

hierarchical levels ranging from individual leaves to the dispersed farms which host the plants. 

We detect signatures of how the community interacts within this heterogeneous patch hierarchy 

and show scale-specific signals of antagonism and facilitation amongst various members of the 

community. We then asked about how this community feeds back to modify this underlying 

patch distribution through consumption of the pathogen’s fungal spores and show that while they 

seem to consume the pathogen in isolation the effect is elevated when co-occurring, suggesting 

possible synergies amongst the community elements, as they engage in pathogen control. 

Consumers response to hierarchical patch levels  
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During the early part of the CLR infection, community assembly is driven largely by the 

amount of CLR infection (i.e. patch quality) at the leaf and plant scale, where all members of the 

consumer community’s colonization probabilities are positively associated with amount of CLR 

infection on a plant. This suggests that although assembly is realized at the scale of an individual 

leaf, the cue for resource detection also emerges at the scale of the plant. Notably almost no 

signature of response to the farm scale was detected in this analysis, apart from some co-

occurrence patterns (see supplementary material for full farm scale analyses). Interestingly we 

detect qualitatively distinct dynamics for colonization between what we think to be specialist and 

more generalist consumers of CLR in this community, where specialists had higher probabilities 

of colonizing patches lower densities of CLR than the generalists (Fig 1).  

The one clearly obligate consumer in the community, Mycodiplosis, only responds to the 

amount of CLR in the early infection period for both the leaf and plant scales (Fig. 2). 

Furthermore, we see that Mycodiplosis has the strongest response to relatively low densities of 

CLR at the plant scale for the early infection period (Fig 2). This suggests that when compared to 

the other consumers in the community, Mycodiplosis is locating and colonizing the plants at 

relatively low resource density, likely due in part to its specialist nature. We see similar 

dynamics at the leaf scale with the CLR-mites, where there is a positive effect of increasing CLR 

on colonization in the early infection period that disappears in the mid-infection period. 

Although questions remain about the natural history of these mites (see Ajila et al., 2018) their 

oviposition on lesions of CLR suggest a tight relationship between the CLR and their fitness, 

similar to Mycodiplosis.   

The generalist fungal parasite, L.lecanii, which is known to be a mycoparasite as well as 

an entomoparasite, showed a consistent increase in colonization probability with increasing CLR 
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at the leaf and plant scale, although there are some notable differences between early and mid-

infection periods. As one would expect given the natural history of L.lecanii, the L.lecanii 

colonizes both leaves and plants at lower CLR densities in the mid-infection period compared to 

the early infection period. This is likely due to buildup of the fungal parasite in the environment 

over the course of the CLR dynamic, resulting in a more saturated environment as the epidemic 

cycle progresses. In addition to consistent colonization dynamics with increasing resource 

density, we also note a strong response of L.lecanii to the average CLR infection at the plant 

scale, where when the average leaf infection on a plant exceeds approximately 40% there is 

almost a 100% probability of finding L.lecanii on a plant. This pattern of consumer colonization 

at lower plant level patch quality is consistent not only in L.lecanii but with all other consumers 

apart from the CLR-gastropods. We suspect this lack of pattern with CLR-gastropods is due in 

large part to the opportunistic nature in which they utilize the CLR only when found in high 

quantities.  

Community organization across scale  

 While the early infection period allows us to explore how the consumers navigate the 

heterogeneous patch hierarchy of their resource, the mid-infection period allow us to ask how the 

community organizes itself as time elapses and patches of their resource is more plentiful and of 

higher quality. We find some consistent effects that occur across the hierarchical levels, but also 

note scale dependency in the organization of the community. Analysis of co-occurrence patterns 

across the hierarchical patch levels shows that while some combinations of consumers occur 

more likely than expected by chance at the plant scale that they then occur less often than 

expected by chance at the leaf scale (Fig 6). This pattern is observed qualitatively with a large 

portion of the community and includes the co-occurrence combinations of, CLR-
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gastropods/CLR-mites, CLR-gastropods/L.lecanii, Mycodiplosis/L.lecanii, Mycodiplosis/CLR-

mites and Mycodiplosis/CLR-gastropods at one or both of the survey periods. We interpret this 

scale dependence to at least be in part due to the joint response of multiple consumers to the 

plant scale and subsequent segregation amongst the leaves of plants.  

 In addition to the scale-dependent co-occurrence patterns observed in Figure 6, we also 

note the pattern of larger deviations from the random expectation of co-occurrence corresponds 

to the mid-infection period of CLR dynamics. This further suggests that while colonization is 

likely prioritized in the early period of the CLR increase, community organization plays out in 

large part during the mid-infection periods. Changes in direction of co-occurrence was also 

found to change from the early to mid-infection period, where for example Mycodiplosis/CLR-

gastropods are found co-occurring more than expected at the farm and plant scale in the early 

infection but less than expected in the mid-infection period. Similar patterns are found for 

Mycodiplosis/CLR-mites Mycodiplosis/L.lecanii and CLR-mites/CLR-gastropods all at the plant 

scale (Fig 6).  

In addition to the co-occurrence of members of the community, we also find signatures of 

consumers influencing the colonization dynamics of each other through time. Most notable is the 

consistent and reciprocal positive impact of CLR-mites and L. lecanii on each other, both in 

terms of colonization (Fig 4 & Fig 5) and co-occurrence (Fig 6) across the patch hierarchy, 

which suggests facilitation between these two members of the community. Given this clear and 

persistent pattern of apparent facilitation in our data, we hypothesize that L.lecanii may also 

serve as an alternative food source for the CLR-mites. The CLR-mites have been shown to 

complete their lifecycle in CLR but also other several pollen species (Ajila et al., 2018), showing 

a level of generalization in their diet breath and also an affinity for fungi, which makes L.lecanii 
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a potential candidate resource. Furthermore, observations from the CLR-mites in our system as 

well as others (Oliveria et al., 2014) show that they frequently carry CLR-spores on their bodies 

and thus are likely dispersing it locally. We propose that CLR-mites may not be only consuming 

the L.lecanii but also dispersing across leaves as well as plants in this system. Such an interaction 

between the two consumers would explain the patterns found in our data. 

Although there are consistent patterns suggesting consumers’ effects on each other’s 

colonization dynamics, there is also scale-dependence and signal shifts through time. For 

example, we find a positive effect of Mycodiplosis density on the colonization of CLR-mites 

during the early infection period at the leaf scale, but the opposite pattern in the mid-infection 

period. This pattern would be observed if both consumers prioritize similar patches early, when 

patch quality is relatively low followed by subsequent competitive exclusion as time progresses. 

Another pattern shift from early to mid-infection period is the impact of increasing CLR-

gastropods on the incidence of L.lecanii at the leaf scale, where we see no effect in the early 

period of CLR dynamics but then increasing CLR-gastropods reducing the probability of 

L.lecanii incidence on leaves.  This result confirms previous laboratory experiments that showed 

one of the known gastropods that consumers CLR, Bradybaena similaris, consumes L.lecanii in 

addition to CLR (Hajian-Forooshani et al., 2020). 

Consumer feedbacks into patch quality and implications for biological control 

 One interesting aspect of the CLR system is that once leaves become infected and the 

characteristic spores have emerged creating a lesion of the leaf, the spores disappear from the 

leaf but the yellow-orange lesions remain. This allows us to detect the past action of the 

consumers in this system. Our analysis of CLR spore incidence shows that the presence of 

Mycodiplosis, CLR-mites, and L.lecanii is associated with higher probabilities of finding spores 
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in the early infection period and with lower probabilities of finding spores in the mid-infection 

period (Fig 7). This suggests that the consumers are locating CLR patches, at both the leaf and 

plant scale, in the early infection and depleting them in the mid-infection period. Additionally, 

we find that as the number of consumers increase at the leaf scale, we find a higher probability of 

spore incidence during the early infection period and the opposite effect during the mid-infection 

period (Fig 8). This further illustrates how multiple consumers seem to be colonizing high 

quality patches in the early phase, and shows the implications for this with the elimination of 

spore load later during the mid-infection period. The same qualitative pattern holds at the plant 

scale, although not as strongly as at the leaf scale. This community of consumers has recently 

been noted for their potential role in providing autonomous biological control (Hajian-

Forooshani et al., 2016; Hajian-Forooshani et al., 2020), and results from this analysis lend 

additional support to this hypothesis. Not only do we find evidence that suggest consumers are 

individually reducing the spore load of CLR at multiple spatial scales, but also that synergies 

with multiple consumers seem to exist in the system. 

Conclusions 

Here we link concepts in community assembly and consumer-resource dynamics with 

hierarchical patch distributions across scales to understand how a community of consumers 

navigate a hierarchical patch distribution to find their resource patches in space but also interact 

with each other and segregate themselves in space.  This work highlights the importance of 

considering multiple spatial scales in understanding not only how communities assemble but 

how interspecific interactions structure communities across spatial scales and hierarchical levels. 

Furthermore, our system of the CLR is the most devastating pest of coffee around the world, and 

this work furthers our understanding of a natural enemy community that may have important 
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implications for control of the CLR around the world. Understanding how this community 

assembles in space and time in other coffee agroecosystems where CLR is present is of potential 

importance to coffee producers concerned with the current and future status of the devastating 

pathogen.  
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Background 
	
Agroecosystems are almost always by definition composed of novel assemblages of organisms 

from various parts of the world (Perfecto and Vandermeer 2015). As ecologists, we have little 

ability to predict a priori how interactions within these novel assemblages will organize 

themselves and what their impacts will be within and adjacent to agricultural production. While 

it may be possible to make coarse predictions about well-studied organisms, as with natural 

enemy release in non-native ranges, it is less often the case that we are able to predict the 

development of novel interactions which result from host shifts in new ecological contexts 

(Agosta 2006; Nylin et al. 2018). This is an issue highlighted by the study of invasive species as 

well as the many disastrous attempts at classical biological control (Simberloff & Stiling 1996). 

Here we highlight this unpredictability of agroecosystems by reporting on a widely distributed 

invasive snail described as being an herbivore, apparently shifting its diet to consume a globally 

important fungal pathogen of coffee (McCook & Vandermeer 2015), the coffee leaf rust (CLR), 

Hemliea vastatrix. Both field observations and laboratory experiments show that the widespread 
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invasive snail, Bradybaena similaris, along with other members of the gastropod community in 

Puerto Rico, are consuming CLR uredospores (here simply referred to as spores) (Fig. 1). 

Importantly, CLR lesions that produce these spores are characteristic of “mature” infections on 

leaves and are the transmissible stage of the pathogen (Talhinhas et al. 2017). Additionally, 

laboratory experiments show that B. similaris also consumes a known biological control agent of 

CLR, the mycoparasitic fungus, Lecanicillium lecanii (Vandermeer et al. 2009; Jackson et al. 

2012). 

	

Figure 9.1: A.) B. similaris on coffee leaf with CLR and small white patches of L.lecanii circled 
in black. Note that some CLR lesions have spores (bright orange and textured) and others do not 
(drab orange with smooth texture), B.) the characteristic orange excrement that led to the idea 
that gastropods could be consuming CLR, and C.) & D.) two unidentified gastropods with their 
guts full of what appear to be CLR spores in addition to the orange excrement on leaves from the 
field. 

 Initial field observations in 2016 of brightly orange colored snail excrement on the 

undersurface of coffee leaves (Fig. 1, panels B and D) on various farms in the central 

mountainous region of Puerto Rico led to the insight that there may be a snail consuming spores 
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of the coffee leaf rust. Later that summer, hundreds of the invasive B. similaris and a native 

Carribbean snail, Bulimulus guadalupensis, were found on the Estación Experimental Agrícola 

Adjuntas along with the characteristic orange excrement. To explore which of the snails was 

consuming CLR, both species were collected along with leaves containing CLR and preliminary 

experiments showed that after 24 hours B. similaris cleared the coffee leaves of CLR spores 

while B. guadalupensi failed to consume any CLR.  

Laboratory Experiments 
	
 After the observations in 2016, we returned to collect B. similaris at the same location to 

conduct more extensive laboratory trials the following year. Given the high incidence of the 

mycoparasite L. lecanii growing on CLR lesions in the region, we sought to determine whether 

B. similaris consumes it in addition to CLR. Coffee leaves were collected from various farms in 

the region, and the percentage of a leaf covered in CLR lesions with spores was estimated along 

with the number of L. lecanii patches. A single coffee leaf and a single B. similaris were placed 

together in dark containers for 24 hours after which the percentage of CLR and number of L. 

lecanii patches were again quantified. After exposure to the snail for 24 hours there was an 

average reduction of 30 + 4 percentage of CLR and 17.4 + 3.8 in the number of L. lecanii 

patches (Fig. 2A). We also corroborated that the orange excrement we observed in the field is 

associated with the consumption of CLR spores (p-value =0.001, R2=0.53, slope=-0.07 ± 0.017) 

and also its mycoparasite L. lecanii (p-value = 0.003, R2=0.47, slope= -0.07 ± 0.02) (Fig. 2B). 

Additionally, laboratory results suggest density-independent consumption rates of the CLR by B. 

similaris. The linear regression is not significant when considering all the data (p-value =0.11, 

R2=0.17, slope= -0.39 ± 0.23), but there is a clear trend in the data when removing the single 

point where B. similaris consumed no CLR at all (p-value = 0.01, R2=0.40, slope= -0.52 ± 0.18) 
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(Fig. 2C). Furthermore, our experiments suggest that B. similaris consumes more CLR when a 

given leaf has more L. lecanii (Fig. 2D). Although this relationship is only significant when we 

remove an outlying point of very high number of L. lecanii patches (all data: p-value = 0.37, 

R2=0.06, slope= -0.16 ± 0.18; outlier removed: p-value = 0.014, R2=0.38, slope= -0.59 ± 0.21), it 

suggests that there may be non-linearities in how B. similaris consumes CLR when L. lecanii is 

present on a leaf. The exact mechanism driving this pattern is not clear due to the strong 

relationship between the amount of CLR on a leaf and the number of L. lecanii patches (p-value 

= 0.01, R2=0.37, slope= -0.83 ± 0.29).  

 Our experiments and field observations confirm that the invasive B. similaris is one of 

the spore predators of CLR in Puerto Rico. Interestingly, even though B. similaris has been 

described as one of the most widely distributed invasive land snails, it has never been described 

as consuming other than plant material. In fact, there appears to be only one case in the literature 

of mollusks specifically consuming rust fungi, which found that the black slug, Arion ater, 

preferentially grazed on leaves infected by a rust fungus (Ramsell & Paul 1990). This is distinct 

from what we are observing in this system, as the gastropods do not seem to be consuming any 

plant material, but only the rust fungus and its mycoparasite. The irony of B. similaris consuming 

CLR in Puerto Rico is that it has been described as a severe agricultural pest of many crops in 

various regions around the world (Idris and Abdullah 1997). In fact, B. similaris has been shown 

to be resistant to a number of control methods implemented in agricultural systems.  

Field observations 
	
 Following our experiments, our research team began to pay closer attention in surveys of 

CLR around the central mountainous region of Puerto Rico as part of ongoing research, and 

made note of other gastropods apparently consuming CLR spores (Fig. 1, panels C and D). It can 
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be seen from these photos that they are on leaves that show spores having been cleared off 

portions of the leaves in addition to their guts being full of presumed bright orange CLR spores. 

Fig. 1C shows a snail in the process of defecating brightly colored orange excrement, and Fig. 

1D shows orange excrement in the lower right hand portion of the photo. While these gastropods 

have not yet been identified, they do not bear resemblance to any of the known native 

gastropods. 

 These observations and experiments give rise to a number of interesting questions from 

both a scientific perspective and as having potentially important implications for the production 

of coffee. Further work is needed to understand the potential trade-offs B. similaris and other 

gastropods may provide to coffee agroecosystems given our understanding of other elements 

within the system. For example, L. lecnaii is a well-studied biological control agent of CLR 

(Vandermeer et al. 2009; Jackson et al. 2012; Hajian-Forooshani et al. 2016), and the effect of B. 

similaris (and potentially other gastropods) consuming it along with CLR needs to be understood 

especially in light of results suggestive of B. similaris consuming more CLR when L. lecanii is 

present. Related theoretical work suggests that when an herbivore is consumed by both a 

predator and a pathogen which exhibit intraguild predation, the intraguild predation (i.e. the 

predator eating prey infected with the pathogen) can be a stabilizing force that could prevent the 

outbreak of the herbivore (Ong and Vandermeer 2015). In short, there are non-obvious but 

potentially consequential implications which stem from these observations. The work 

summarized here provides evidence that the orange excrement observed in the field is indeed 

representative of consumption of CLR (Fig 2B).  
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Figure 9.2: 2017 laboratory experiments exposing leaves with CLR and L. lecanii to B. similaris 
for 24 hours. A.) Percentage of CLR spores and the number of L. lecanii patches on a leaf pre 
and post exposure to B. similaris. B.) The number of snail excrement associated with the change 
in both the % CLR and the number of L. lecanii patches. C.) The change in CLR and the initial 
amount of CLR on a leaf. The dark red line shows the regression including all points and the 
orange line excludes the one outlying point where no CLR was consumed. D.) The change in 
CLR associated with the initial number of L. lecanii patches on a leaf. The black point indicates 
the particularly high density outlier. The grey regression line includes all points; the black 
regression line excludes the outlier. 

Conclusions 
	
 CLR is the most economically significant pest in coffee around the world, and has been 

introduced in nearly every coffee producing country worldwide. Here we present what is, to our 

knowledge, the first case of gastropods feeding on CLR, thus shedding light on a potentially 

important element of autonomous biological control in coffee agroecosystems (Vandermeer et al. 

2010). This work highlights how the ecological theater in which interactions play out turns an 

agricultural pest in one system to a biological control agent in another. The extent to which B. 

similaris consumes CLR in its native regions, or other introduced regions of the world where 

-50 -40 -30 -20 -10 0

0

1

2

3

4

5

Post-Pre Snail Exposure

# 
S

na
il 

E
xc

re
m

en
t

% CLR
L. lecanii

20 30 40 50 60 70
Initial % CLR

C
ha

ng
e 

in
 %

 C
LR

-50

-40

-30

-20

-10

0

20 40 60 80 100
Initial # L .lecan i i

C
ha

ng
e 

in
 %

 C
LR

-50

-40

-30

-20

-10

0

A.)

B.) C.) D.)

CLR pre CLR post L. lecanii pre L. lecanii post

20

30

40

50

20

30

40

50

%
 C

LR

# 
L
.le
ca
ni
i p

at
ch

es



	 207	

coffee is cultivated, is currently unknown. Undoubtedly part of the unpredictability of 

agroecosystems results from the particular combinations of native and introduced biodiversity, 

and we suggest that understanding the ecology of these systems will provide key insights in how 

to manage them. In many agroecosystems technocentric approaches are becoming the norm, 

where efforts to control supersede efforts to understand the basic ecology. It is our hope that 

more agronomists start making observations like the ones presented here and that more 

ecologists leverage their perspectives to help find solutions to issues confronting farmers in 

agroecosystems around the globe.  
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Abstract  
	
1.) Complex interactions are a key feature of many ecological systems, both “natural” and human 

influenced. Understanding the implications of complex and indirect interactions on the dynamics 

of ecological systems is especially important when considering agroecosystems where questions 

of population regulation via top-down control is often a primary concern.  

2.) Here we explore how the large-scale dynamics of the coffee leaf rust (CLR), caused by the 

fungal pathogen of coffee, Hemileia vastatrix, are influenced by cascading interactions from a 

dominant ant, Azteca seriaceacur, in a coffee agroecosystem. Prior work has shown an indirect 

negative impact of Azteca on CLR, mediated through a generalist natural enemy of CLR, 

Lecanicillium lecanii and a positive impact of Azteca an the specialist natural enemy of CLR, 

Mycodiplosis hemileia (referred to here as the CLR-midge). 
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3.) We utilize over seven-years of CLR survey data from a 45ha plot, in an organic coffee farm 

in Chiapas Mexico. Across the 45ha plot we use sites with and without Azteca nests present to 

understand how Azteca influences CLR dynamics. We also utilize laboratory experiments to 

understand the impact of Azteca on a specialist natural enemy of the CLR-midge.  

4.) Results from the survey data show that sites with Azteca nests tend to have higher amounts of 

CLR seasonally, the opposite of what was predicted given what was known about the indirection 

relationship between Azteca and CLR mediated through L. lecanii. Our laboratory experiments 

found a negative impact of Azteca on the CLR-midge, thus offering a potential explanation of 

large-scale positive effect of Azteca on the CLR via Azteca reducing the top-down control by 

CLR-midges.  

5.) Understanding the dynamics of predominately top-down controlled systems such as pests and 

pathogens in agriculture within the context of the contingencies of the communities in which 

control agents are embedded, presents a challenge for both farmers and ecologists alike. Here we 

provide evidence for a trophic cascade that results in the release of the most important pathogen 

of coffee, highlighting that it is not enough to only understand the consumer-resource dynamics 

of such systems but how they fit into the community. 

 

Introduction 
	
Understanding the forces that structure population dynamics has a long history in ecology and 

has taken many forms (Andrewartha & Birch 1954; Hariston et al. 1960; Murdoch 1966; Turchin 

1995; Hixon et al. 2002). In an attempt to understand the dynamics of any particular population, 

the question has often been framed as understanding if it is structured via “top-down” or 

“bottom-up” forces, referring to the adjacent trophic levels within a given community. While 
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there are well known examples that caricature each class of population regulation, a more 

nuanced understanding has emerged suggesting that often it can be a combination of both 

mechanisms in concert (Hunter & Price 1992; Meserve et al. 2003). It is appreciated that an 

attempt to truly understand the dynamics of populations will most likely necessitate looking at it 

from a community context where more complex interaction structures can emerge, such as trait-

mediated indirect interactions (Werner & Peacor 2003) or indirect interactions such as trophic 

cascades (Estes et al. 1998; Knight et al. 2005). Questions about what structures population 

dynamics are not only of interest from a theoretical standpoint, but also have practical 

implications for how humans construct and modify ecosystems around the world.  

 One such constructed ecosystem is the agroecosystem, the question of population 

regulation looms large when considering pests of the crops and becomes a question of practical 

significance. One of the peculiarities of the agroecosystem is that consumers (insects, pathogens, 

etc.) of crops are infrequently controlled from the bottom-up (although one might argue that 

phytochemical defenses pose some class of bottom-up control), and when they are, the 

agroecosystem itself is effectively collapsed through depletion of the crop itself. Thus, a practical 

option in agroecosystems is to facilitate or simulate control from above. The application of 

pesticides can be thought of as the simulation of top-down control, where the intention of 

pesticide application is to effectively do the job of natural enemies. The facilitation of top-down 

regulation is often referred to as biological control and exists in a number of forms, from 

classical biological control, where species are intentionally introduced into the system,  to what 

some call autonomous biological control where the community interactions in the agroecosystem 

provide regulation without direct intervention (Murdoch et al. 1985; Vandermeer et al. 2010; 

Vandermeer et al. 2019). This latter approach seeks to allow these usually highly managed 
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systems to self-regulate by taking advantage of the community of natural enemies and the 

network of interactions in which they are imbedded (Vandermeer et al. 2010; Cruz-Rodríguez 

2016). Utilizing naturally occurring interactions for pest control usually entails conserving 

biodiversity within the agroecosystem, which can simultaneously maximize both biodiversity 

and ecosystem services.  

One often-cited example that illustrates the complex interaction networks in 

agroecosystems is that of ant-hemipteran mutualisms wherein the apparent negative effect on the 

plant (from ants protecting the herbivorous hemipterans) is ultimately compensated by the 

indirect negative effects that ants bring to other (often more harmful) herbivores in the system 

(Wang et al. 2021). A well-studied and yet more complicated indirect variant on this classic 

system, the relationship between an ant (A. seriaceacur) and one of its hemipteran mutualists 

(Coccus viridis), is remarkable for its indirect effect on the fungal pathogen, the coffee leaf rust 

(CLR) (Hemileia vastatrix).  The scale (C. viridis) itself, when at very high local population 

densities falls victim to the fungal parasite L. lecanii, which is also a pathogen of CLR. The 

importance of L. lecanii as a natural enemy of CLR has long been established, and its complex 

ecology has been studied in detail (Jackson et al. 2009; Vandermeer et al. 2009; Jackson et al. 

2012a; Jackson et al. 2012b; Jackson et al, 2014). Those studies have demonstrated the pathway 

of interactions between L. lecanii, C. viridis and A. cericeasur that effectuate a top-down control 

on CLR in Mexico coffee agroecosystems. A number of complexities emerge as being operative 

in the system such as spatial pattern formation (Vandermeer et al., 2008) and time-lags 

(Vandermeer and Perfecto, 2019), suggesting a whole system approach to unravel the complexity 

of top-down control in these complex systems will be necessary. 
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Recent studies on the community ecology of CLR has shed light on a community of 

natural of enemies whose ecology and impact on the dynamics of CLR are not well understood 

(Hajian-Forooshani & Vandermeer (accepted book chapter)). A less understood, but potentially 

important, natural enemy of CLR is the midge M. hemileia, (referred to as CLR-midge) (Barnes 

1939) (Figure 1). While this midge is known to consume CLR spores, relative little is known 

about its biology and overall impact it might have on the dynamics of the coffee rust. Earlier 

accounts in its presumed native rage where coffee is endemic dismissed its potential for 

impacting the dynamics of CLR, although recorded observations noted its ability to clear leaves 

of the CLR spores when their densities are high (Miline 1975). In contrast to L. lecanii, field 

survey data show that CLR-midges are negatively associated with areas where Azteca forages 

(Hajian-Forooshani et al. 2016). The two proposed mechanisms for this observed pattern were 

either Azteca directly removing and or consuming CLR-midges, as it is known to do with a 

number of other insects on coffee plants, or a trait-mediated indirect interaction where Azteca 

disrupts oviposition behavior of the CLR-midge adults. The contrasting impact of Azteca on 

these two natural enemies, positive on L. lecanii and negative on CLR-midges, creates a situation 

where the net effect of Azteca’s interactions could go in either direction depending on the details 

of the natural enemies impact on the CLR dynamics.  

Here we attempt to understand how Azteca’s interactions within the coffee 

agroecosystem cascade down to CLR and ask if it has an impact on CLR dynamics at the 

landscape scale. Given prior research in the system we hypothesized that Azteca would have a 

negative indirect impact on the CLR. Although several correlational studies documented the 

indirect effect of Azteca on CLR mediated through L. lecanii prior to the “great rust” of 2012 

(Vandermeer et al., 2009; Jackson et al., 2012), there has been no work on this dynamic 
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subsequent to the rust epidemic. Furthermore, there have not been any studies exploring how a 

seemingly positive impact on one natural enemy (L.lecanii) and negative impact on another 

(CLR-midge) scales up to the dynamics of CLR.  Here we present results from a seven-year 

systematic survey of CLR on 128 sampling sites over a 45ha permanent plot in a Mexico coffee 

agroecosystem. Naturally, some sites are centered on trees that contained nests of Azteca while 

others do not, creating a situation where we can evaluate the net impact of Azteca on the 

dynamics of the CLR across the coffee landscape. We also present results from laboratory 

experiments designed to understand the effect of Azteca on the CLR-midge and help explain our 

results from the 45ha plot surveys.  

Methods 
	
 Field surveys  

All field surveys were conducted on a 45 ha plot within an organic coffee farm in Mexico (see 

Vandermeer et al. 2006; Vandermeer et al. 2010; Vandermeer et al. 2019 for details of study 

system). Each hectare was subdivided into four 25X25 hectare sub plots. Eliminating all the plots 

along the edges of the 45-ha plot left a total of 128 sites (a quarter of hectare plots) that were 

used to monitored the CLR and its natural enemies from 2013 to 2020. At each of the 128 sites, a 

focal shade tree was selected that was located closest to the center of the plot, and the nearest 

five coffee bushes were surveyed. Each month, the total number of leaves on each of the plants 

was estimated, and the number of leaves with coffee rust were counted. Each focal tree was 

examined for nests of A. sericeasur, and classified as an Azteca or a not-Azteca tree.  If an ant 

nest was present in the focal tree, there is a high probability that the surrounding coffee bushes 

were being tended by the ant (Perfecto & Vandermere 2006; Vandermeer & Perfecto 2019).  

Field Survey Analysis  



	 216	

 Generalized linear mixed effect models were used to test for Azteca’s impact on the 

amount of CLR throughout our time series data. Using the presence of Azteca as a categorical 

variable, the survey month, year, as well as quadrat of the sampling were all used as random 

effects in the model with a Poisson distribution. A non-parametric bootstrap test for differences 

in the amount of CLR infect at sites with and without Azteca nests was used to look for 

significant differences throughout the time series. For each survey period, the data was split into 

sites that contained Azteca nests and sites that did not. The observed difference in the means was 

calculated then the data was resampled with replacement while maintaining the sample sizes for 

the groups and the resampled random differences between the groups was calculated 10000 

times. The p-values were calculated by comparing the resampled differences with the observed 

differences for each sampling month.  

Laboratory experiment  

 Coffee leaves infected with coffee leaf rust and CLR-midge larvae were haphazardly 

collected within the 45Ha plot avoiding the plants used for the CLR surveys. In the laboratory, 

the number of CLR-midge on the leaves was quantified under a dissection scope. When two 

leaves had equal numbers of CLR-midge they were randomly designated for control and ant-

exposure treatment. If we were unable to find two leaves with the same number of CLR-midge 

naturally occurring on leaves, some larvae were removed to have equal quantities. Preliminary 

observation in the laboratory highlighted the difficulty of manipulating CLR-midge larvae on 

leaves, and in particular, any attempts to add to larvae to leaves resulted in the larvae rapidly 

moving off the leaf. Due to this, we were only able to take CLR-midge larvae off of leaves. 

 To contain the Azteca ants in the laboratory, an approximately 10x10cm piece of Azteca 

carton nest was placed in to a 50x30x20cm plastic container with Tanglefoot surrounding the top 
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edge and inter-perimeter. Prior to all experimental treatments the ants were given 24 hours to 

acclimate to the container. After the initial acclimation period, a coffee leaf with CLR-midges 

was placed in the container with the ants, and another coffee leaf with the same number of CLR-

midges was placed outside of the container. A total of 56 paired trials were run from June 26-

July 8, 2017. 

Laboratory experiment  

 To understand if the presence of Azteca has an impact on the number of CLR-midge on 

leaves in our experiment we compared the two treatments in our experiment.  First, we used a 

bootstrapping procedure to calculate the probability of observing the difference in means 

between the control and ant exposed treatment. In short, all data was pooled together and 56 data 

points were drawn at random without replacement from the total of 112 points (56 from control 

and 56 from ant treatment) and the difference in means was calculated. This procedure was 

repeated 10,000 times and the probability of observing our measured difference in means (or a 

greater difference) was calculated. We also used the Wilcoxon Rank-Sum to compare the two 

groups as well.  

 In our experiment, we also used varying densities of CLR-midges on leaves to understand 

if there is a density dependent effect from Azteca on the CLR-midge. To look for density 

dependence of the impact of Azteca on CLR-midges we conducted linear regressions using the 

difference of the proportional change in CLR-midges between control and treatment and their 

initial density. Details of this analysis as well as the results can be found in the supplementary 

material. All code was written and statistical tests performed in R 4.1.1. 
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Figure 10.1 Illustrates the impact the CLR-midge has on the distribution of spores on a leaf after 
approximately 24-hours of feeding in the laboratory setting. Inset B.) shows a typical lesion of 
CLR having not been foraged on by the larvae. A.) Shows the state of a lesion after CLR-midge 
larvae have fed on it. Note that the spores are seemingly reduced in density as well as more 
clumped together. This is presumably due to the larvae pushing spores around as it feeds, but 
also possibly part of the excrement from the larvae. C.) shows three CLR-midge larvae feeding 
on a region of the leaf. Note in the early stages of feeding on an area the foraging trails are 
apparent and one is outlined with the dotted line there. 

Results 
	
 Results from the more than 7-year survey of the CLR on a 45ha plot suggest that sites 

which centered on Azteca ant nests tend to have more severe infections than sites without the 

ants (GLMM; estimate =-0.04± 0.003. p <0.0001) (Fig. 2). The dynamics of the CLR are 

seasonal and thus inherently oscillatory in nature as seen in the data from figure 2. Interestingly 

the effect of Azteca on the dynamics of the CLR is also seasonal, where we see a positive effect 

of Azteca on CLR during the crescendo of the seasonal cycle. This pattern is relatively robust 

and is observable on six of the eight rising phases of the CLR cycle (Fig. 2). Additionally, a 
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pattern of Azteca having negative association with the CLR also exists in the data and tends to 

occur in the declining phase of the CLR seasonal cycle.  

	

Figure 10.2: Results from the seven-year sampling of the coffee rust on a 45ha plot show the 
pattern of higher intensity of infection at sites which are centered on Azteca nests. Red points are 
sites centered on a tree with an Azteca ant nest and black points are sites without ant nests. The 
yellow points show the proportion of sites (out of the 128) that are centered on an Azteca nest. 
The vertical dashed lines show survey dates where there is a significant difference between 
Azteca and non-Azteca sites. Red dashed lines mean there was significantly higher % CLR 
infection on Azteca sites when compared to non-Azteca sites and black dashed lines suggest the 
opposite.  
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 Experiments on the CLR-midge were preceded by extensive observations on the natural 

history of the midge. As illustrated in figure 1, lesions of CLR where the larvae had not yet 

visited were characteristically uniform with uredinia scattered across the entire lesion. After the 

CLR-midge larvae attack, the spores are typically at lower density and present a more clustered 

appearance, mainly from the midge having created feeding routes as it proceeded through the 

lesion.  Frequently it is evident where a feeding trail has been laid (Fig. 1c). The probability of 

observing the difference in mean change in CLR-midges on leaves between our control and ant 

treatment was significant (p=0.0013) through the bootstrap procedure described above, which 

was also supported by a the Wilcoxon rank sum test (W= 2027, p=0.00735) (Fig. 3). The mean 

change in CLR-midges for the control was -1.07 and -4.80 for the ant treatment, showing more 

than a 4 times reduction in the number of CLR-midges on a leaf after 24 hours in the presence of 

the ants.  

	

Figure 10.3: Shows the change in CLR-midge larvae in the control and ant treatments after 24 
hours. Lighter colors in the background show the individual paired trial points connected by 
dotted lines and darker points in the foreground show the means and 95% confidence intervals. 
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Discussion  
	
 Here we present results from experiments with long-term and large-scale data that 

suggest that a top-down trophic-cascade has the potential to influence the most economically 

significant fungal pathogen in coffee agroecosystems. Contrary to our initial expectations, the 

general 7-year pattern of CLR does not reveal a top down control of CLR from the Azteca which 

was hypothesized to be operative though indirect interactions with L.lecanii. Indeed, the effect 

seems to be the reverse, with Azteca positively associated with the CLR (Fig. 2).  Although we 

do not have direct measurements of the CLR-midges to accompany the 45ha survey data, the 

negative association between the CLR-midges and Azteca has been established in the field in this 

same system (Hajian-Forooshani et al. 2016) as well as in the laboratory as presented here (Fig. 

3). It is, we propose, likely that Aztecas’ negative effect on the CLR-midge in the laboratory 

translates into the field and explains the positive seasonal relationship between Azteca and CLR.  

Understanding the consequences of this positive impact of Azteca on CLR is complicated 

by the community context of natural enemies of CLR, and in particular both L. lecanii and CLR-

midge. Azteca is known to have several facultative mutualistic associations with different 

hemipterans in the coffee agroecosystem in Mexico (Jackson et al. 2012a; Livingston et al. 2014; 

Rivera-Salinas et al. 2018; Vandermeer & Perfecto 2019). In areas where Azteca tends green 

coffee scales, local populations of L. lecanii build up dramatically, and it has been shown that L. 

lecanii can effectively spill over at these sites resulting in greater attack on the CLR (Jackson et 

al. 2012a). Effectively Azteca has a positive impact on L. lecanii mediated thorough hemipterans 

which has been shown as an indirect negative association between Azteca and the CLR (Jackson 

et al. 2012a). Here, an emerging image of the complicated and indirect ways Azteca impacts the 

natural enemies is coming to light, where it has a positive association with one natural enemy, L. 
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lecanii, and a negative association with another, the CLR-midge. Our results here suggest the 

relative importance of the understudied CLR-midge in comparison to L. lecanii in terms of 

providing control of the CLR. If the indirect negative association between Azteca and CLR was 

mediated though L. lecanii, the expectation would be the opposite of the pattern observed in 

Figure 2. Clearly this long-term data shows that, while the Azteca-mediated L. lecanii control of 

the rust may be operative under certain circumstances, it does not scale up to the larger spatial 

scales that data was collected. One possible explanation for the apparent discrepancy between the 

results presented here and the prior studies (Vandermeer et al. 2009; Jackson et al. 2012a), is that 

the densities of both L. lecanii and coffee hemipterans have been noticeably lower since the 

onset of the CLR epidemic in 2012 (Personal observations of the authors).  

  Interestingly, the positive effect of Azteca on the CLR was largely constrained to the 

increasing periods of the CLR’s seasonal oscillations. Again, if Azteca was promoting local 

densities of L. lecanii, we would expect precisely the opposite result, where sites with Azteca 

would have slower growth and overall less CLR. Contrarily we suggest that Azteca’s disruption 

of CLR consumption by the CLR-midge can explain our observed results. Our laboratory 

experiments show that the presence of the Azteca ant significantly reduces the CLR-midge larvae 

densities on coffee leaves. These results correspond to earlier published results showing a 

negative association with the CLR-midges and this Azteca ant in the field (Hajian-Forooshani et 

al. 2016), and suggest that this relationship likely comes from a direct interaction between the 

two organisms. While relatively little is known about the natural history of the CLR-midge, we 

know that there is unsurprisingly a positive correlation between it and what is presumably its 

only resource, the CLR (Hajian-Forooshani et al. 2016; other paper from Mexico). Additionally, 

we know that in this region the populations of the CLR-midge peak right about the same time as 
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the CLR does (Fig. S2. Supplementary material). The fact that CLR-midge population growth 

corresponds with the seasonal increase in CLR helps make sense of the punctuated impact of 

Azteca on CLR as seen across the 45ha plot data. If top-down control of CLR from the CLR-

midge is greatest during this seasonal increasing phase in CLR, it makes sense that this is 

precisely when we would expect to see an indirect effect of Azteca.  

 Although this effect of Azteca on the CLR-midge is apparent in the field (Hajian-

Forooshani et al. 2016) and lab (Fig. 2), the exact mechanism that causes the reduction in CLR-

midges in the presence of the ant is not completely understood. One possibility is that Azteca is 

actively foraging and removing larvae from the coffee leaves. It is well established that when 

Azteca is foraging on coffee it can remove different insects from the coffee plants and can thus 

have either a consumptive or non-consumptive effect (Jiménez-Soto et al. 2013). The other 

possibility is that the CLR-midge larvae are leaving the leaf due to being disrupted by Azteca’s 

foraging. As mentioned above, observations in the laboratory suggest that when the CLR-midge 

are disturbed or moved on a leaf they will often flee the leaf. The extent of their mobility in the 

field is largely unknown currently and even though they can crawl off of leaves and around 

containers in the laboratory, it is not clear if they may be moving from leaf to leaf on coffee 

plants in the field. Whether the decrease is due to active removal by Azteca or by the CLR-midge 

actively leaving the leaf in the presence of Azteca, the effect is more pronounced where there are 

more CLR-midges on the leaf. This density dependent change in the number of the CLR-midges 

only in the presence of the ants suggests that the most likely explanation has to do with foraging 

behavior of the ant. Effectively a high density of CLR-midges would reduce the encounter time 

and result in increased recruitment and subsequent removal of larvae from the leaves.  
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 A plausible alternative hypothesis for the observed patterns in the time series of figure 2. 

could be that the Azteca ants spread the fungal pathogen on coffee plants around their nest. 

Given that other insects have been shown to carry spores on their bodies and have been 

suggested as long-distance vectors (Crowe 1963), it is not outside the realm of possibility that 

these ants could contribute to the local spread of the pathogen. If Azteca were directly 

responsible for this observed pattern of higher pathogen at sites where they are present by 

spreading it on plants, one would expect that this pattern would be approximately consistent 

throughout the time series.   

 Understanding the dynamics of predominately top-down controlled systems such as pests 

in agriculture within the context of the contingences of the communities in which control agents 

are embedded, presents a challenge for both farmers and ecologists alike. Here we provide 

evidence for a trophic cascade that results in the release of the most important pathogen of 

coffee, highlighting that it is not enough to only understand the consumer-resource dynamics of 

such systems but how they fit into the community. While the appearance of this trophic cascade 

is seemingly only operative when the natural enemy of the system is at relatively high densities, 

the effect was most pronounced during the height of the epidemic which is precisely when 

effective top-down control is most critical for coffee farmers. Given that coffee agroecosystems 

such as the one studied here are replicated similarly around the world with many of the same 

organisms transplanted into the regionally specific ecologies of their regions, opportunities for 

natural experiments to gain understanding of how similar trophic motifs interact in different 

ecological communities can provide a useful tool for ecologists to further our understanding of 

population regulation.  
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Supplementary Material 
 

Exploring the data for a density dependence effect of Azteca on CLR-midge 

The laboratory experiment was conducted using a range of initial densities of CLR-midge that 

were matched on the control and Azteca-exposed treatment. Data were analyzed in attempt to 

detected any signature of a density-dependent effect of Azteca on the CLR-midges. To do this, 

we looked at the change in the number of CLR-midges on leaves on both treatments after 24 

hours divided by the initial number of CLR-midges to control for densities. Figure S1. Shows the 

fractional change in CLR-midge for paired control and Azteca-treatment data.   

	

Figure 10.4: Shows the fractional change in CLR-midge for control and Azteca-treatment 
against the initial number of CLR-midge. Red points are the Azteca-treatment and grey points 
are the control treatment. Black lines connecting points show the paired treatments. Grey and 
red lines show the linear regressions of each treatment. 
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0.005+-0.003, p=0.117, R2 = 0.027), suggesting the initial density of CLR-midges on the leaf do 

not interact with the effect of Azteca ( Figure S2.) 

 

	

Figure 10.5: Shows the absolute value for the difference between control and Azteca-treamtnet 
change in CLR-midge to look for an effect of density dependence in Azteca’s removal of CLR-
midges. 

 

The population dynamics of CLR-midge in relation to CLR in Mexico 

 Smaller scale surveys were conducted on three 20mx20m plots to understand the 

dynamics of the natural enemies L.lecanii and the CLR-midge. The number of leaves with CLR, 

L. lecanii and CLR-midges were surveyed every other week on each plant that fell within the 

20mx20m area of the plots. We suggest that the data from the 20x20m plot surveys lend clues as 

to why we see a seasonal impact of Azteca on CLR dynamics. Note in Figure 2 that populations 

of the CLR-midge strongly track the seasonal dynamic of the CLR and peak just prior. This 

suggests that the population growth of the CLR-midge is greatest leading up to the peak of CLR, 

and thus its ability to provide top-down pressure on the pathogen will be greatest in the phase of 

the CLR cycle. Given the previously reported negative association between Azteca and CLR-
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midge, it is possible the results from the 45ha survey can be explained by Azteca distributing 

top-down control by CLR-midges.  

 

	

Figure 10.6: Data from the three 20x20m plots showing the average number of leaves on the 
leaves with CLR (orange), CLR-midge (red), and L.lecanii (grey) for a year cycle of CLR 
infection. The vertical dashed lines correspond to the time of peak infection for each organism. 
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Each panel of the plot shows the dynamics of a different 20x20m plot on the same farm. Note 
that Azteca nests were not present in any of the plots here 
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Abstract 
	
In agroecosystems, the question of population regulation is of particular interest for practitioners 

of agriculture when considering pests and pathogens. Understanding the forces that shape the 

dynamics of pest regulation is of importance, especially in regard to management practices that 

may influence ecological processes. Here we explore how the management of inter-cropping 

citrus with coffee rewires complex networks of ecological interactions which include invasive 

ants, their mutualists, and pathogens. We show, through large scale surveys across the coffee 

producing region of Puerto Rico, that the inter-cropping of citrus influences the ant communities 

found on coffee farms as well as the density of their Hemipteran mutualist partners. We also find 

that the fungal pathogen of coffee, the coffee leaf rust (CLR), experiences higher levels of attach 

by a parasitic fungi, L.lecanii, when citrus is present. Using fine scale surveys of ants, 

Hemipterans and coffee leaf rust we show supporting evidence for the supporting hypotheses 

that citrus promote elevated hemipteran densities on coffee which in turn results in higher levels 



	 234	

of parasitism of L.lecaniii on coffee leaf rust through an indirect network of interactions. These 

findings have potentially significant implications for the management of the coffee leaf rust.  

 

Introduction 
	
 Attempts to understand the operative forces that structure ecological populations have a 

long and varied history in ecology (Andrewartha & Birch 1954; Hairston et al. 1960; Murdoch 

1966; Turchin 1995; Hixon et al. 2002). In agroecosystems, the question of population regulation 

is of particular interest for practitioners of agriculture when considering pests and pathogens. 

While population regulation may take many forms, there is growing interest in leveraging 

ecological processes to provision the ecosystem service of biological control. By taking 

advantage of the community of natural enemies and the network of interactions with 

agroecosystems, it has been proposed that pests and pathogens may be regulated without 

frequent intervention (Murdoch et al. 1985; Lewis et al. 1997; Vandermeer et al. 2010; 2019; 

Cruz-Rodríguez 2016).  

 Here we aim to understand how the assembly of novel ecological communities within 

agroecosystems impact the dynamics of ecological processes and the subsequent provisioning of 

the ecosystem services of biological control.  We use the coffee agroecosystem and a widespread 

and devastating pathogen of coffee, the coffee leaf rust (CLR), Hemileia vastrix as a model 

system in Puerto Rico. In coffee agroecosystems, the potential for autonomous top-down control 

of what is the most economically devastating pest of coffee, the CLR, has become a point of 

theoretical and practical inquiry since it reached epidemic status in Central America in 2013 

(Hajian-Forooshani et al. 2016; 2020; Vandermeer et al. 2019). Understanding the ecological 

factors operative in some regions of coffee production where the CLR pathogen is kept under 
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control versus others where it is at epidemic status, has practical implications for coffee 

producers around the world.  

 While there are multiple natural enemies of the CLR whose community ecology is 

relatively poorly understood at this point, work done to date suggests that communities of fungal 

mycoparasites may be important for controlling the CLR in various regions of production 

(Carrión and Rico-Gray 1987; Jackson et al., 2012; Hajian-Forooshani et al., 2016; James et al., 

2017; Zewdie et al., 2021). In particular prior work conducted with L. lecanii and CLR suggests 

a potential mechanism for the importance of L. lecanii in Puerto Rico compared to Mexico 

(Hajian-Forooshani et al., 2016), where it was found to have higher attack rates on CLR. L. 

lecanii is both mycoparasitic as well as an entomopathogenic fungus which attacks a wide range 

of insects, but notably sap-feeding Hemipterans such as scale insects (Jackson et al. 2012). It has 

been demonstrated that L. lecanii’s attack of CLR can be facilitated by large population densities 

of scale insects in coffee agroecosystems, where the mycoparasite spills over to CLR 

(Vandermeer et al., 2009; Jackson et al., 2012). 

 An important component of the interaction network which leads L.lecanii to attack CLR, 

at least in Mexico (Jackson et al., 2012; Vandermeer 2010), is the presence and tending of 

Hemipterans by ants in the agroecosystem. Jackson et al., (2012) found that the dominant 

arboreal ant, Azteca serisur, helps build populations of the green coffee scale (GCS), Coccus 

viridis, which then create local concentrations of L.lecanii in space that are negatively associated 

with CLR. Given that GCS (and Hemipterans more generally), L.lecanii and CLR and present in 

many coffee producing regions around the world in conjunction with Hempiteran tending ants, 

the possibility for a similar type of interaction network to exist elsewhere is plausible. One such 

region includes Puerto Rico, where throughout the coffee producing region of Puerto Rico, scale 
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insects, and in particular, the green coffee scale (GCS) (Coccus viridis), is widespread (Perfecto 

et al. 2018). It occurs not only on coffee plants, but is also a common pest of citrus, which is 

widely cultivated and intercropped with coffee (Smith et al., 2004). 

 The community of ants throughout the coffee producing region of Puerto Rico has 

recently come under study by Perfecto and Vandermeer (2020), who discovered that three 

invasive ant species on the island, Wasmannia auropunctata, Solenopsis invicita, and 

Monomorium floricola (hereby just referenced as their genus names) are the most dominant in 

coffee farms surveyed. While signatures of competition (especially between Wasmannia and 

Solenopsis) were detected in structuring the ant communities realized distributions, management 

factors were also found to be associated with variable distribution of these important invasive 

species. In particular, it was found that Wasmannia was more abundant on shaded coffee farms, 

while Solenopsis more abundant on farms with little shade. One unexplored aspect of this system 

is how the widespread cultivation of citrus may impact the distribution of these ants, given that 

citrus is a shade providing tree in these agroecosystems and potentially harbors communities 

Hemipterans that may serve as an important resource for both Solenopsis and Wasmannia. 

Furthermore, the possible higher incidence of Hemipterans may result in higher levels of 

L.lecanii locally on farms resulting in more parasitism of CLR by L.lecanii, setting the stage for 

an important cascade of ecological interactions that could have implications for this important 

pathogen of coffee.    

 Here, our central hypothesis is that the community of natural enemies, and especially 

fungal mycoparasites, which include Lecanicillium lecanii, are the main controlling agents that 

keep the CLR pathogen at relatively benign levels in regions such as Puerto Rico. Additionally, 

we hypothesize that the widespread cultivation of citrus with coffee in Puerto Rico promotes the 
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community of fungal parasites that control the CLR by harboring populations of Hemipterans 

which are alternate hosts for fungal parasites such as L.lecanii. Here we explore these 

interactions across the coffee producing region of Puerto Rico and further seek to understand 

how the dominant invasive ants across the region may shape this interaction network.  

Methods 
	
26 farm analysis  

 Monthly surveys were conducted on the 26 farms to monitor populations of GCS, CLR 

and attack of CLR by L.lecanii. Each farm had a 10x10m meter plot where 20 coffee plants were 

monitored each month. Data presented here for GCS, CLR, L.lecanii use the average values per 

plant across a whole year of surveying each month from Aug 2018-July 2019. Ant surveys were 

conducted on the same farms using the same coffee plants for the pests. A detailed description of 

the farms used in the study as well as the methodology of the ant survey can be found in Perfecto 

and Vandermeer (2020).  

 To understand the potential impact of citrus-coffee intercrop management on the 

community of ants, we conducted ordination in the form of non-metric multidimensional scaling 

analysis (NMDS). Both Bray-Curtis and Jaccard dissimilarity weights were used for the data. 

Bray-Curtis to understand compositional changes that include abundance and Jaccard to look at 

the presence and absence of species on the farms. We tested for significance differences between 

citrus-coffee farms and coffee farms with analysis of similarity (ANOSIM) statistical test 

implemented from the vegan package in R.  

Citrus farm survey 

 To understand how the populations of Hemipterans correspond to ant community, we 

measured the number of out of 10 randomly branches on each plant coffee for incidence of green 
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coffee scale, helmet scales, and mealy bugs. The presence or absence on a branch was noted and 

the number of branches with each Hemipteran was used in our analysis. For surveys of the coffee 

leaf rust, five leaves representing the most heavily infected with CLR on the plants were selected 

haphazardly on each plant. The percentage of the leaf covered in CLR was estimated along with 

the percentage of CLR covered with L.lecanii.  

Results 
	
Landscape dynamics of CLR community and the influence of coffee-citrus intercropping 

 A more general analysis of the same dataset can be found in Perfecto & Vandermeer 

(2020), and for our purposes we will focus on how the dominant ant community relates to the 

intercropping of coffee and citrus and the CLR. Throughout the coffee producing landscape 

where surveys were conducted, we had ten farms where citrus was intercropped with coffee, and 

sixteen farms where only coffee was grown. Broadly we find evidence to support the hypothesis 

that the management of citrus in coffee farms in the region influences the ant community 

dynamics in the system. We see a marginal significance in the divergence in the ant communities 

though ordination analysis using the Bray-Curtis dissimilarity measurements (p = 0.055) (Fig. 1), 

but no significance difference was noted when using the Jaccard dissimilarity (p=0.43). These 

results taken together suggests that while the identities of the ant species present on the 

communities is not significantly difference on coffee-citrus intercrops versus coffee monocrops 

(Jaccard), that the relative abundances of the species (Bray-Curtis) trend toward diverging based 

on this management factor (Fig 1).   
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Figure 11.1: Non-metric multidimensional scaling analysis of ant communities across the 25 
coffee farms surveyed in Puerto Rico. Left panel shows ordination with Bray-Curtis dissimilarity 
(p=0.055) and right panel with Jaccard dissimilarity (p=0.43).  
 

 While we note a trend towards differences in the composition of the ant communities 

across the landscape with respect to management of citrus, we do not see any difference in the 

average number of species or the average abundance of the ant community based on citrus 

management (Fig 2). These results taken together with the ordination suggests that very targeted, 

and possibly species specific differences in the ant communities are realized when farms are 

managed for citrus-coffee intercrops.  

	

Figure 11.2: Shows no impact of citrus-coffee inter-crop management on the ant abundance 
(number of baits occupied) across the 25 farms and no impact on the number of ant species 
found on the farms. 
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 When considering the three most dominant ants on coffee farms surveyed in the region, 

Wasmannia, Solenopsis, and Monomorium (see Perfecto and Vandermeer 2020), we find 

significant impacts of coffee-citrus intercrop management on the dominance of the ants. The 

largest effect is with Wasmannia, where they occupy on average approximately 4 times as many 

baits on citrus-coffee intercrop farms than farms that solely grow coffee (Fig 3). For 

Monomorium we find a significant difference between citrus-coffee intercrop and coffee 

monocrop but in the opposite direction as Wasmannia, where they tend to be more abundant on 

monocropped coffee farms. As for Solenopsis, we see no effect of the citrus-intercrop on their 

dominance of those farms.  

	

Figure 11.3: shows the relative dominance (as measure by the # of baits occupied on average for 
a farm) Wasmannia auropunctata, Solenopsis invicta, and Monomorium floricola 

 In addition to the citrus-coffee intercrop influencing the structure of the ant community, 

we also note differences in the CLR, GCS and attack of CLR by L.lecanii. First we note that 

citrus-coffee farms have significantly less CLR infection than farms with solely coffee (Fig 4a). 

In addition to the lower quantities of CLR, we also find higher attack rates of L.lecanii on CLR 
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on citrus-coffee farms. Although this effect is relatively small (approximately 3% difference in 

attack rate), it is statistically significant. Finally, we also note a statistically significant difference 

in the amount of GCS, where they are more abundant on citrus-coffee farms than only coffee 

farms.  

	

Figure 11.4: relationship between citrus-coffee intercrop and a.) the average amount of CLR on 
those farms, b.) the amount of green coffee scale on coffee plants, and c.) the % of CLR leaves 
attacked by the mycoparasite L.lecanii . p-values < 0.05 for all plots 

Local dynamics of CLR community and dominant ants 

 Our surveys of the spatial distribution of the ant community, scale insect community and 

CLR community suggests evidence for influence of ants on the dynamics of the CLR through a 

network of direct and indirect interactions. Figures 5 and 6 together suggest differential overlap 

between the two most dominant ants on the plot, Wasmannia and Solenopsis, with regards to the 

GCS and CLR. Notably, Monomorium, who is one of the most dominant ants in the region, is not 

very common on this plot. Analysis of Monomorium can be found in supplementary material. 

The realized spatial distribution of Wasmannia and Solenopsis has been hypothesized to be 

driven largely by interspecific competition between three dominant ant species in this region (see 

Perfecto and Vandermeer 2020). We note that Wasmannia is largely constrained to the left-hand 

side of the plot in a largely clustered distribution (Fig 5) while Solenopsis more homogeneously 

across the plot (Fig 6). We find the relatively strong relationship between the distribution of 
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Wasmannia and GCS, while no such relationships exists with Solenopsis and GCS. Furthermore, 

we note strong overlap with the distribution of Wasmannia and the distribution of L.lecanii, both 

on GCS and CLR (Fig 5). We see similar patterns with regards to L.lecanii on both CLR and 

GCS and Solenopsis (Fig 6), where dense concentrations of Solenopsis are associated with high 

amounts of L.lecanii on CLR and GCS, although this pattern is more varied due to their 

dominance across the plot.  

 

	

Figure 11.5: The spatial distribution of CLR and GCS both without (left panels) and with (right 
panels) L.lecanii parasitism in relationship to the spatial distribution of Wasmannia. The spatial 
distribution of Wasmannia is in light green, while GCS is in dark green, CLR is in orange, 
L.lecanii on GCS is in dark grey and L.lecanii on CLR is in lighter grey. 
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Figure 11.6: The spatial distribution of CLR and GCS both without (left panels) and with (right 
panels) L.lecanii parasitism in relationship to the spatial distribution of Solenopsis. The spatial 
distribution of Solenopsis is in red, while GCS is in dark green, CLR is in orange, L.lecanii on 
GCS is in dark grey and L.lecanii on CLR is in lighter grey. 

 The spatial distributions from the plots above translate into statistically significant 

relationships between these two dominant ants and Hemipteran-CLR community. First, we find a 

significant increase in the amount of GCS attacked by L.lecanii as the dominance of Solenopsis 

(Estimate: 0.23 +- 0.049, p< 0.001) and Wasmannia (Estimate: 0.23 +- 0.052, p< 0.001) increase 

(Fig. 7). Showing, somewhat unsurprisingly that as the ants become more abundant on a plant, 

they increase the populations the GCS and thus the GCS’s pathogen becomes more abundant. 

Next, we find no relationships between increasing dominance of Solenopsis and attack of 

L.lecanii on CLR. In contrast, we note a significant increase in the average amount of L.lecanii 

parasitism of CLR as the dominance of Wasmannia increases on coffee plants (Fig. 8). 
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Figure 11.7: The abundance of Solenopsis and Wasmannia and their relation to the parasitism 
of GCS with L.lecanii. Note significant increase in L.lecanii on GCS as the number of baits 
occupied by Solenopsis and Wasmannia increases. Note that points are randomly perturbed on 
the x and y axes to better illustrate the underlying distribution of the data on the plot. 

	

Figure 11.8: Relationship between increasing dominance of (a) Solenopsis and (b) Wasmannia 
and how the parasitism of CLR is related. No significant relationship between an increase in 
Solenopsis and L.lecanii on CLR (p = 0.45), while a significant positive effect of Wasmannia on 
L.lecanii parasitism of CLR is seen (p= 0.0149). Note that points are randomly perturbed on the 
x and y axes to better illustrate the underlying distribution of data on the plot.   

 We found strong evidence for non-linear relationships between the dominance of both 

Solenopsis and Wasmannia and the Hemipteran communities (Fig 9). In particular, we see that at 

low dominance of both ants that there is no difference in amount of healthy and infected 

Hemipterans on a coffee plant. When either ant is at intermediate dominance (2-3 baits occupied 
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out of the 5 placed on the plant) we see significantly more healthy Hemipterans than 

Hemipterans infected with L.lecanii. Interestingly, when either ant becomes more dominant 

(more than 3 baits out of 5 occupied on the coffee plant) then we see the relationship flip and 

there are significantly more Hemipterans infected with L.lecanii than uninfected. This non-

linearity in ant abundance with the parasitism of L.lecanii on scales suggests density dependent 

dynamics that have been suggested elsewhere with relationship to ants and similar hemipteran 

communities (Vandermeer & Perfecto 2019). 

	

Figure 11.9: The average incidence of healthy and infected hemipterans on coffee as they related 
to the dominance of Wasmannia and Solenopsis. Black points and lines represent healthy 
hemipterans and red infected by L.lecanii. 

 Given the positive significant impact of both Solenopsis and Wasmannia on the amount 

of GCS infected with L.lecanii in conjunction with significant effect of increasing Wasmannia 

dominance on the attack of L.lecanii on CLR, we tested to see if there was a relationships 

between the amount of L.lecanii on GCS and L.lecanii on CLR on coffee plants. We discovered 

that there is indeed significant positive relationship between increasing GCS with L.lecanii  and 

CLR with L.lecanii. 
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Figure 11.10: Relationship between increasing GCS infected with L.lecanii on a coffee plant and 
percentage of L.lecanii covering CLR on coffee leaves. Note significant linear increase in 
L.lecanii on CLR as L.lecanii infected GCS increase (p<0.001). 

Discussion 
	
 There is an emerging understanding that diverse and regionally specific communities of 

natural enemies of CLR are present in different regions of coffee production (Hajian-Forooshani 

& Vandermeer 2016). Prior work in coffee agroecosystems in Puerto Rico and Mexico has 

shown how the composition of the communities differ between regions (Hajian-Forooshani et al. 

2020), and, even when members of the natural enemy communities overlap, their population 

dynamics differ dramatically between regions (Hajian-Forooshani et al. 2016). Our analysis here 

lends support to the hypothesis that this observed difference in natural enemy communities is at 

least in some part linked to both the management of the agroecosystems but also the local 

ecological communities in which the natural enemy – CLR subsystem is embedded. 

 Here we build on prior analysis by Perfecto and Vandermeer (2020) of the ant 

communities within the coffee producing region of Puerto Rico. We find support for the idea that 
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citrus is at least in part contributing to the structure of the competitive ant communities 

throughout the farms surveyed. While changes in species identity do not seem evident, the 

relative dominance of the common ants in the region changes in accordance to whether the farm 

is inter-cropping citrus with coffee (Fig 1). While this shift in the ant communities do not emerge 

from the overall number of species and the overall ant abundance (Fig 2), we find evidence for 

species specific impacts of the citrus-coffee intercrop. In particular, we find strong evidence that 

the most dominant ants throughout the region being influenced by this management factor. 

 More than other ants in the community, Wasmannia is strongly associated with the 

cultivation of citrus on coffee farms, where they tend to be approximately 4x more abundant on 

citrus-coffee intercrops than on coffee monocrop farms (Fig 3). Given prior results suggesting 

that Wasmannia is more dominant on more shaded farms (Perfecto and Vandermeer 2020), the 

relationships with citrus further supports this trend.  In contrast, to Wasmannia we find that 

Monomorium was less abundant on citrus-coffee intercrops than coffee only farms, and no 

significant effect of Solenopsis abundance (Fig 3). While the distribution of Solenospsis-

dominated verses Wasmannia-dominated farms has been previously noted (Perfecto and 

Vandermeer 2020), as well as their competitive interactions, the precise competitive mechanisms 

which result in the observed data remained unknown. We suggest that one potential mechanism 

to explain these results is that the presence of citrus alters the competitive interactions between 

Solenopsis and Wasmannia. We hypothesize that the widespread incidence of Hemipterans in 

citrus offers an important resource for Wasmannia on intercropped farms that allow them to 

thrive and become more abundant. While Solenopsis does forage on and nest near citrus 

(personal observations), they predominantly forage and are competitively dominant on the 
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ground where they build their nests. This is in contrast to Wasmannia which actively nests and 

forages both on the ground and arboreally (Yitbarek et al. 2017) 

 Our analysis suggests that the underlying dynamics of the ant community across the 

landscape interacts with the management of citrus and forces the CLR-GCS-L.lecanii dynamics 

throughout the region. With respect to GCS populations across the landscape, we find that coffee 

farms which are intercropped with citrus have significant more GCS on coffee plants. 

Additionally, we find higher proportion of CLR leaves with L.lecanii and overall less CLR on 

these citrus intercropped farms (Fig 4) These results taken together are consistent with the 

hypothesis that citrus promotes populations of GCS who then increase the density of the CLR 

mycoparasites, such as L.lecanii, that spill over and result in the control of CLR. Importantly we 

propose that the promotion of GCS populations at the landscape scale is driven by the ant 

community and in particular the action of Wasmannia who is found in higher abundance, along 

with their mutualists, GCS, on citrus-coffee intercropped farms.  

 While analysis of the 26 farms give us a course picture into the general dynamics of how 

this subset of the ecological community interactions with intercrop management, our detailed 

surveys of the ant community and Hemipteran community on a single citrus farm lends insight 

into the mechanisms driving the large-scale patterns described above. First we note a strong 

signal of spatial overlap between the distribution of Wasmannia on the plot and the incidence of 

L.lecanii attack both on GCS and CLR (Fig 5 and 6). This manifests as significant relationships 

with both dominant ants on the farm, Wasmannia and Solenopsis having significant relationships 

with the amount of uninfected GCS found on coffee plants. Although the signal is stronger for 

Wasmannia than Solenopsis, it is apparent for both species (Fig 7). While we generally see a 

signal of increase, the pattern is more nuanced when considering the average amount of healthy 
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and infected hemipteran populations at the plant level. Interestingly, we find that the relationship 

between ant dominance of a coffee plant and the amount of healthy and L.lecanii infected GCS is 

strikingly non-linear in nature (Fig 9). We see clear signal of the basic ecology of the host-

pathogen system being forced by the dominant ants in the agroecosystem. The lack of difference 

between healthy and infected GCS when ants are low densities show the baseline of GCS-

L.lecanii interaction, but when the dominant ants become more abundant we see healthy scales 

are more abundant than L.lecanii infected scales. Interestingly we find that this patter reverses 

for both species when they become highly dominant on a single plant (at least 4 baits occupied 

by the ant) (Fig 9). This represents the basic ecology of host-pathogen systems that has been 

noted between ants, Hemipterans and L.lecanii in other systems (Vandermeer and Perfecto 

2019), where a critical population threshold leads to the sudden onset of a disease outbreak.   

  Given the clear signal for the interaction between Solenopsis and Wasmannia driving 

L.lecanii outbreaks in Hemipteran populations, the question is now if and to what extent this 

L.lecanii outbreak on GCS in coffee plants leads to higher parasitism of L.lecanii on CLR. We 

find that increasing amounts of GCS with L.lecanii on coffee plants is associated with increasing 

amount of CLR parasitized with L.lecanii (Fig 10). This provides supporting evidence for the 

hypothesis that L.lecanii “spills-over” from infected Hemipteran populations to CLR, consistent 

with other ant-hemipteran-L.lecanii-CLR systems (Jackson et al., 2012). Interestingly we find no 

signal of plants dominated by Solenopsis translating to having higher amounts of L.lecanii on 

CLR, but we do find a significant relationship between Wasmannia and CLR parasitism by 

L.lecanii (Fig 8). Although both dominant ant species are associated with higher amounts of 

GCS, the cascading effect which results in more L.lecanii on CLR is only apparent for 
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Wasmannia, possibly due to in part to the higher absolute densities of the healthy and infected 

GCS on Wasmannia dominated plants (Fig 9). 

 Intercropping is known to provide synergies in agroecosystems such as facilitation (Li et 

al., 2014) and natural enemy attraction (Cook et al., 2007). Here we show how through a series 

of direct and indirect interactions that’s citrus-intercrop facilitates the attack of an important 

fungal pathogen by mycoparasites. Citrus harbors Hemipteran communities which we suggest 

promotes dominant ants whom create a positive feedback through their mutualistic association 

leading to high Hemipteran populations not only on citrus but also on the coffee grown alongside 

it. This elevated Hemipteran population subsequently leads to higher amounts of their 

mycoparasites which also attack the fungal pathogen of coffee, CLR. This demonstration of how 

management of an intercrop forces feedbacks within the interaction networks of ecological 

communities in agroecosystems leading to pest control can serve as a template for uncovering 

similar complex interaction networks within agroecosystems.  

 

References  
	
 Andrewartha, H. G., & Birch, L. C. (1954). The distribution and abundance of animals (No. 

Edn 1). University of Chicago press. 

 Carrión L, G., & Rico-Gray, V. (2002). Mycoparasites on the coffee rust in Mexico. Fungal 

Diversity, 11, 49-60. 

 Cruz-Rodríguez, J. A., González-Machorro, E., Villegas González, A. A., Rodríguez Ramírez, 

M. L., & Mejía Lara, F. (2016). Autonomous biological control of Dactylopius opuntiae 

(Hemiptera: Dactyliiopidae) in a prickly pear plantation with ecological management. 

Environmental Entomology, 45(3), 642-648. 



	 251	

Cook, S. M., Khan, Z. R., & Pickett, J. A. (2007). The use of push-pull strategies in integrated 

pest management. Annu. Rev. Entomol., 52, 375-400. 

 Hajian-Forooshani, Z., Rivera Salinas, I.S., Jiménez-Soto, E., Perfecto, I. and Vandermeer, J., 

2016. Impact of regionally distinct agroecosystem communities on the potential for 

autonomous control of the coffee leaf rust. Journal of Environmental Entomology, 

p.nvw125. 

Hajian-Forooshani, Z., Vandermeer, J. and Perfecto, I., 2020. Insights from excrement: invasive 

gastropods shift diet to consume the coffee leaf rust and its mycoparasite. Ecology, 

101(5), p.e02966. 

Hajian-Forooshani, Z., Vandermeer, J. “Ecological perspectives on the coffee leaf rust” Book 

chapter for Climate-smart production of coffee: Achieving sustainability and ecosystem 

services (ed. Prof. Reinhold Muschler). In review 

Jackson, D., Skillman, J., & Vandermeer, J. (2012a). Indirect biological control of the coffee leaf 

rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex 

coffee agroecosystem. Biological Control, 61(1), 89-97. 

James, T. Y., Marino, J. A., Perfecto, I., & Vandermeer, J. (2016). Identification of putative 

coffee rust mycoparasites via single-molecule DNA sequencing of infected pustules. 

Applied and Environmental Microbiology, 82(2), 631-639. 

Lewis, W.J., Van Lenteren, J.C., Phatak, S.C. and Tumlinson, J.H., 1997. A total system 

approach to sustainable pest management. Proceedings of the National Academy of 

Sciences, 94(23), pp.12243-12248. 



	 252	

Li, L., Tilman, D., Lambers, H., & Zhang, F. S. (2014). Plant diversity and overyielding: insights 

from belowground facilitation of intercropping in agriculture. New phytologist, 203(1), 

63-69. 

Murdoch, W. W., Chesson, J., & Chesson, P. L. (1985). Biological control in theory and 

practice. The American Naturalist, 125(3), 344-366. 

Perfecto, I., & Vandermeer, J. (2020). The assembly and importance of a novel ecosystem: The 

ant community of coffee farms in Puerto Rico. Ecology and evolution, 10(23), 12650-

12662. 

Smith, D., Papacek, D., & Neale, C. (2004). The successful introduction to Australia 

of'Diversinervus' sp. near'Stramineus' Compere (Hymenoptera: Encyrtidae), Kenyan 

parasitoid of green coffee scale. General and Applied Entomology: The Journal of the 

Entomological Society of New South Wales, 33, 33-39. 

 

Tsai, J. W., Vanderford, N. L., & Muindi, F. (2018). Optimizing the utility of the individual 

development plan for trainees in the biosciences. Nature biotechnology, 36(6), 552-553. 

 

Vandermeer, J., Perfecto, I., & Liere, H. (2009). Evidence for hyperparasitism of coffee rust 

(Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a 

complex ecological web. Plant Pathology, 58(4), 636-641. 

Vandermeer, J., Perfecto, I., & Philpott, S. (2010). Ecological complexity and pest control in 

organic coffee production: uncovering an autonomous ecosystem service. BioScience, 

60(7), 527-537. 



	 253	

Vandermeer, J., & Perfecto, I. (2019). Hysteresis and critical transitions in a coffee 

agroecosystem. Proceedings of the National Academy of Sciences, 116(30), 15074-

15079. 

Vandermeer, J., Jackson, D., & Perfecto, I. (2014). Qualitative dynamics of the coffee rust 

epidemic: educating intuition with theoretical ecology. BioScience, 64(3), 210-218. 

Vandermeer, J., Armbrecht, I., de la Mora, A., Ennis, K.K., Fitch, G., Gonthier, D. J., Hajian-

Forooshani, Z., Hsun-Yi, H., Iverson, A., Jackson, D., Jha, S., Jiménez-Soto, E., Lopez-

Bautista, G., Larsen, A., Li, K., Liere, H., MacDonald, A., Marin, L., Mathis, K. A., 

Monagan, I., Morris, J. R., Ong, T., Pardee, G. L., Saraeny Rivera-Salinas, I., Vaiyda, C., 

Williams-Guillen, K., Yitbarek, S., Uno, S., Zeminick, A., Philpott, S. M., Perfecto, I., 

2019. The community ecology of herbivore regulation in an agroecosystem: Lessons 

from Complex Systems. BioScience, 69(12), pp.974-996. 

Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, 

Arnold AE. Fungal endophyte diversity in coffee plants from Colombia, Hawai'i, Mexico 

and Puerto Rico. fungal ecology. 2010 Aug 1;3(3):122-38. 

Yitbarek, S., Vandermeer, J. H., & Perfecto, I. (2017). From insinuator to dominator: Foraging 

switching by an exotic ant. Diversity and Distributions, 23(7), 820-827. 

Zewdie, B., Tack, A.J., Ayalew, B., Adugna, G., Nemomissa, S. and Hylander, K., 2021. 

Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across 

a landscape in Arabica coffee’s native range. Agriculture, Ecosystems & Environment, 

311, p.107297. 



	 254	

 

Conclusions 

 In Chapter 1, we addressed the issue of how ecological interactions result in the creation 

of dynamic spatial patterns in ecosystems. By developing a mechanistic framework based on the 

demographics of both consumer and resource in the system, we demonstrated the feedback of 

how interactions create spatial pattern and how spatial pattern structures ecological interactions 

in our system of an arboreal ant and its parasitoid which occur on a coffee farm in southern 

Mexico. Importantly, this chapter provides a framework for the study of consumer-resource 

induced spatial patterns, something which has empirically been lagging behind work on 

intraspecific mechanisms (Rietkerk and Van de Koppel 2008). It is our hope that this 

mechanistic approach, based on the demography, sheds light on the mechanism of pattern 

formation in other ecosystems. Chapter 2 builds on Chapter 1 by asking how a dynamic spatial 

pattern constrains basic ecological interactions in space and through time. By using the idea of a 

pilot pattern (Vandermeer and Jackson 2018), we explore a coupled-map lattice of the 

Nicholson-Bailey system where the host has high-quality patches of resource interspersed in a 

matrix of low-quality resources. We ask how the dynamics of this heterogeneous resource 

background structures the host-parasitoid dynamics in the system, showing how the speed of 

change in environmental heterogeneity constrains the interactions. 

 Next in Chapter 3, we ask how spatial structure emerges in agroecosystems, as well as 

how that spatial structure may influence processes which are constrained to it. Using the coffee 

leaf rust system as inspiration, we develop a spatial model to recreate the distribution of coffee 
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plants in coffee agroecosystems and then show the planting arrangement can influence the 

dynamics of pathogens in the system. We find that under certain conditions, small changes in the 

underlying spatial distribution of the hosts can cause large catastrophic shifts in the pathogen 

dynamics. Chapter 4 asks how migration in metacommunities influences community structure. 

Although there exist a variety of experiments in laboratory microcosms and theoretical 

explorations, we approach this questions by using a system of intermediate complexity in the 

form of the leaf litter arthropod community found in a coffee agroecosystem in Mexico. We 

experimentally manipulate the system and show that migration differentially structures different 

trophic levels of the community.  

 Chapter 5 continues the theme of community organization and asks how various 

couplings of multiple predator-prey systems influence the synchrony dynamics of communities 

as well as if multiple models of communities may correspond to each other. Given that a 

multitude of ecological communities exhibit overlap in resource consumption (cross-feeding) as 

well as resource competition, we showed how community dynamics modeled by Lotka-Volterra 

system can be approximated by the Kuramoto model when the focus of investigation is 

understanding the dynamics of synchrony (Vandermeer 2004; Vandermeer 2006). This work 

provides an alternative way to conceptualize ecological communities, where dynamics take front 

and center in opposition to questions of coexistence and stability (Vandermeer et al., 2021).  

 Following some theoretical explorations of community structure, the dissertation turns 

towards the empirical system of the coffee leaf rust (CLR) and explores the community ecology 

of the pathogen along with its community of natural enemies. Chapter 6 offers an overview of 

our empirical study system, exploring some of the history of the pathogen and reframing much of 

the agronomical focus which has dominated research on the pathogen towards a community 
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ecological perspective. We synthesized the literature on the natural history and ecology of the 

system and point towards future research directions that will both further our understanding of 

ecological systems as well as the important fungal pathogen.  

 With an introduction of ecological community associated with the coffee leaf rust, 

Chapter 7 explored regional differences in the CLR communities in Mexico and Puerto Rico. 

The notable differences in the regions are that in Mexico the pathogen had recently been at 

epidemic status, while it has never been so in Puerto Rico. We found that Puerto Rico harbors a 

more diverse community of natural enemies than Mexico and suggest that the novel assemble of 

natural enemies in Puerto Rico may in part contribute to the benign nature of the pathogen on the 

island. Following-up on the dynamics of the CLR community in Puerto Rico, Chapter 8 explored 

how the community assembles and organizes itself through time in the CLR seasonal cycle. We 

found that different members of the natural enemy community had drastically different 

responses, with evidence of both facilitative and antagonistic interactions operative within the 

community. Importantly, we also note evidence that supports the hypothesis that members of the 

natural enemy community reduce the spore loads of CLR. Chapter 9 continues to explore 

antagonistic interactions within the natural enemy community and find evidence of intraguild 

predation in the community.  

 In Chapter 10, we link the pattern forming consumer-resource system to the system of the 

CLR. We demonstrated that the dominant spatially clustered ant, Azteca, has an indirect positive 

impact on the CLR, increasing the pathogen load on plants where present. We demonstrate that 

while there are conflicting indirect effects from Azteca on two natural enemies, L.lecanii and 

Mycodiplosis, that the direct negative effect of Azteca on Mycodiplosis is possibly the causative 

agent of the observed effect. Finally, in Chapter 11, we continue to explore how dominant ants 
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interact with the community of the CLR, but this time in Puerto Rico. We find support for the 

hypothesis that the intercropping of citrus in coffee agroecosystems in Puerto Rico promotes the 

abundance of Wasmannia, an important invasive ant on the island, and thus leads to a cascade of 

interactions which results in the mycoparasite, L.lecanii, attacking CLR more frequently on 

citrus-coffee intercropped farms.  

  Taken together this dissertation offers several case studies of how heterogeneity emerges 

in ecological systems and how that heterogeneity alters community structure and subsequent 

provisioning of ecosystem services such as biological control. I feel confident that the empirical 

portions of this dissertation could have very well been written with the focus being on a 

community other than the ones described here. The general concepts and processes presented 

here for this system should be operative in a variety of other ecological communities embedded 

in a variety of agroecosystems. It is my hope that these basic questions about the emergence and 

consequences of spatial heterogeneity in ecosystems are seen not as only an academic curiosity, 

but also appreciated for their potential importance in our understanding of agroecosystems. The 

heterogeneity in and around agroecosystems has the potential to interact with issues which are 

currently of great concern such as the loss and preservation of biodiversity as well as the 

emergence and suppression of pests and pathogens around the world (Perfecto et al., 1996; 

Vandermeer et al., 2019). Fully leveraging ecology in all its complexity and nuance to better 

understand and manage agroecosystems is a struggle I am looking forward to continue engaging 

with and hope this dissertation positively contributes to in some way, however insignificantly.  
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