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ABSTRACT

Designing and implementing distributed systems correctly is a very challenging task. Tradition-
ally, people use tests to find and resolve bugs in their systems. But this approach doesn’t scale to
complex large systems, as there are too many possible interleaving of components. As a result, we
still leave bugs in our systems.

To build systems with strong correctness guarantees, formal verification has been successfully
used to prove the correctness of distributed systems. Although some approaches successfully
applied formal verification to distributed systems and proved the implementation correct, writing a
proof for a complex distributed system still requires an ultimate understanding of both the system
and the formal method. And these approaches take years of manual effort to write a proof. Thus,
formal verification is still not ready for real-world distributed applications.

In this dissertation, I aim to make formal verification more practical by reducing the manual
effort required in writing a proof. I’ll first show how I can leverage the power of model checking to
automatically verify a distributed protocol in I4. After that, we propose the use of encapsulation
in Sift to combine the automation from I4 with refinement to scale automation to verification of
real distributed implementations. Finally, to make our verified system more practical, I move my
focus to high-performance implementations and propose Cruiser to automatically generate such an
implementation and its refinement proof to simplify the effort for developers.

ix



CHAPTER I

Introduction

For more than 50 years, the systems community and industry have been relying on testing to
increase their confidence in the correctness of software [CDE08, GKS05, SMA05, BEL75, Kin76].
As the availability demands start to increase, however, testing can fall short, since it is impractical to
exhaustively test a program. Consequently, testing is bound to occasionally miss a bug, which may
manifest during production, resulting in loss of availability, revenue, and company reputation [Tea08,
The04, CVE17, YCSS12]. This has led many researchers and companies to look for alternative
ways to develop software with strong correctness guarantees.

Thankfully, the increasing need for availability has been paralleled by an increase in the
capabilities of formal verification techniques. Over the last decade, a number of techniques and
tools have been built to formally verify the correctness of complex systems software [KEH+09,
HHL+14, HHK+15, CZC+15, CCK+17, RUIMI16, NSZ+17]. The promise of formal verification—
to eliminate all bugs by construction—is particularly attractive for distributed systems, which are
notoriously hard to design and implement correctly.

Unfortunately, existing approaches to formally verifying complex systems have a major scal-
ability bottleneck, rendering them not ready for real-world applications. Some techniques use
interactive and automated theorem provers [dt, NWP02, Lei10, PMP+16, SCF+11] to dispatch a
number of proof obligations, thereby simplifying the proof. But this process still heavily relies on
human intuition and understanding of the system. As a result, the most powerful techniques, such
as IronFleet [HHK+15] and Verdi [WWP+15], rely on refinement proofs [AL91, GL00, Lam94] to
reason about complex systems and verify real implementations. Alas, the power of those techniques
comes at a high cost: performing these refinement proofs manually requires large amounts of manual
effort. In an attempt to reduce the manual verification effort, the Ivy tool [PMP+16] proposes to
express distributed protocols using decidable—and thus simpler to verify—reasoning [PdMB10].
The Ivy tool achieves remarkable automation, but still requires significant human effort to complete
the proof.

In this dissertation, we target the automation in the verification of distributed systems. We
first present how to leverage the power of model checking to automatically infer the inductive
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invariant for monolithic protocols with I4. After that, we combine the automation from monolithic
provers like I4 with refinement to scale such automation to multi-layer systems, and even real
implementation. Finally, we show how to push the boundary of automated verification to more
realistic high-performance systems.

1.1 Finding Inductive Invariant

At the heart of all proofs of distributed systems, lies a critical process that existing approaches
do not automate: finding an inductive invariant. An invariant of a state transition system is a
predicate on the states that holds for all states that are reachable from the initial state(s); it is any
set of states that includes all reachable states. An invariant is inductive if it is closed under the
transition relation, i.e., the next state of every state in this set is also a member of this set. Proving
a safety property P—i.e., showing that P always holds for any execution started from the initial
state(s)—amounts to showing either a) that P is an inductive invariant, or b) that P is an invariant
that can be strengthened to become inductive.

Inductive invariants are tightly linked to the correctness of distributed systems. Proving the
correctness of such a system is typically split into two parts: proving the correctness of the distributed
protocol by finding an inductive invariant; and showing that the implementation follows the protocol,
which typically does not require inductive reasoning [HHK+15].

While there are simple centralized programs for which inductive invariants are not required, we
have found that all but the most trivial distributed protocols require an inductive invariant in order to
prove a reasonable safety property. In non-trivial verification cases, the required safety property P

is an invariant but not an inductive one, and completing the verification proof entails the derivation
of additional invariants that are used to constrain P until it becomes inductive. These additional
invariants are viewed as strengthening assertions that remove those parts of P that are not closed
under the system’s transition relation. In most cases, finding these assertions is the hardest part
of the proof. Most crucially, even for simple systems, these assertions can be very complicated,
and as system complexity increases, these assertions—and the resulting inductive invariants—grow
proportionally more complex.

As a result, finding an inductive invariant for a distributed protocol is usually the hardest part
of the proof. During the IronFleet project [HHK+15], the authors spent about one week trying to
identify the inductive invariant for a very simple distributed protocol, where nodes pass around a
token in a ring. After careful thought and long discussions, they identified an invariant that included
5 separate clauses which, when combined, were sufficient to support an inductive proof. It is
perhaps not surprising then, that when they attempted to find the inductive invariant of a real-world
system—i.e., the Paxos protocol [Lam98]—the required effort was on the order of months.
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Proving the correctness of protocols has a lot of practical value. Major companies are using
formal verification to prove their designs and protocols correct, even when their implementa-
tions are unverified. For example, Amazon uses TLA+ to verify the correctness of its system
designs [NRZ+14]. Similarly, Microsoft uses the IronFleet methodology to verify some of its
protocols without going down to the implementation level. Even when the implementation must be
verified, IronFleet showed that protocol-level verification is an integral part of the process.

In Chapter II, we introduce an automated way of finding inductive invariants for distributed
protocols, one that does not rely on human intuition. The core insight that drives this new approach
is that the basic elements of these invariants are independent of the size of the system, and that
they can therefore be inferred from small, finite instances. For example, the inductive invariant of
the token ring mentioned above states that only the last node in a sequence of token owners can
hold the token. This must be true regardless of the number of nodes on the ring. Similarly, the
inductive invariant of Paxos states that any two quorums of acceptors must overlap in at least one
node; this must hold for any number of participating acceptors. This work has been published in
HotOS’19 [MGJ+19b] and SOSP’19 [MGJ+19a].

1.2 Scaling Automation to Refinement

Approaches like I4 leverage model checking and SMT solvers to automate the most challenging
part of proving the correctness of distributed protocols: finding an inductive invariant. Alas, this
automation comes at the expense of expressiveness and applicability, because tools like I4 were
designed to prove properties of monolithic protocols which consist of a single layer. As such, they
cannot prove refinement.

Refinement [AL91, GL00, Lam94], however, is an essential concept in proving the correctness
of real, complex systems. It allows us to prove the correctness of a system by showing that it is
equivalent to a simpler, more abstract version of that system. The power of refinement comes in
many forms:

Concise specification As Lamport has argued [Lam02] and as IronFleet demonstrated, specifi-
cations should be written as simple, abstract state machines. Consider the specification of a
Paxos-based State Machine Replication in IronFleet, where the goal is to prove that the entire
service is linearizable. Expressing linearizability as a set of properties on the requests and responses
is daunting and will likely yield a complex specification. Using refinement, the task is simple:
just show that the entire service is equivalent to a single machine executing requests one at a time.
Similarly, the sharded key-value store in IronFleet was simply proven equivalent to an abstract,
logically centralized key-value store; i.e., a map.

Scaling to complex systems As IronFleet and Verdi demonstrated, the key to dealing with the
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complexity of a real system is to take a modular approach: split the proof into multiple layers
and show that each layer refines the one above it. This is especially true when verifying actual
implementations, as these tend to be much more complex than abstract protocols. In the absence
of refinement, we are left with the task of reasoning about a single, monolithic system, whose
complexity now becomes a limiting factor for both manual and automated approaches.

Dealing with undecidability Even when one only cares about proving the correctness of the
protocol, and not of the implementation, being unable to split a monolithic system into multiple
layers can be a showstopper for automation. As Padon et al. demonstrated [PLSS17], some
protocols may be undecidable by construction and thus not amenable to the automation of I4 and
IC3PO. In these cases, one can use refinement to split the protocol into two layers, each of which
is separately decidable [TLM+18].

We aim to get the best of what are currently two distinct worlds: the power of refinement

(i.e. IronFleet-style proofs) but with only a fraction of the manual effort (i.e. using the automation
of monolithic provers like I4 [MGJ+19b, MGJ+19a], IC3PO [GS21], SWISS [HHMP21], and
DistAI [YTG+21]). This combination allows us to not only achieve simple, concise specifications,
but also to scale our proofs to more complicated distributed protocols, and even to distributed
implementations.

In Chapter III, we introduce Sift to achieve this goal. Sift is a two-tier methodology that combines
automated verification with a small amount of manual effort to push the boundary on the kinds of
systems that can benefit from proof automation. Sift has been published in ATC’22 [MAG+22].

1.3 Generating Efficient Implementation

Even with the scalability of Sift, we found that it still raises many restrictions for the imple-
mentation. As a result, the developer can hardly optimize the executable code and achieve better
performance.

However, in real-world systems, performance is critical. For Amazon, every 100ms latency
penalty causes a 1% sales loss [LIN]. It is the same case for Google: experiments demonstrate that
increasing web search latency 100 to 400 ms reduces the daily number of searches per user by 0.2%
to 0.6% [Bru09]. Throughput, on the other hand, helps to serve more users within given resources.

From our study of the performance gap between Ivy and Dafny, we found that the decidability
that Ivy pursues sometimes conflicts with performance optimizations. For example, Ivy models all
variables static in the heap, which makes it impossible to implement some dynamic data structures
such as a tree of a hash map.

For all previously existing approaches, unfortunately, the developer needs to choose either
implementing their whole system within Ivy and decidable logic, with strict restrictions about how
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the implementation can be generated; or adopt the freedom and incompleteness of theorem provers
like Dafny, and implement all details of the proof manually.

In Chapter IV, we work on more practical systems. We found that if the developer can model
their protocol in a specific way, even in undecidable theorem provers, it is possible to generate
a high-performance implementation. We introduce Cruiser, a new approach to guide the devel-
oper to implement a function-style protocol layer proof, and then generate a heap-based efficient
implementation along with its refinement proof.
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CHAPTER II

Verifying Distributed Protocols

As we have seen in Chapter I, despite the complexity in a protocol, distributed protocols exhibit
a lot of regularity. The behavior of a protocol doesn’t fundamentally change from a small instance
to a large scale. As a result, the inductive invariants can therefore be inferred from small, finite
instances.

We leverage this insight to automate the process of identifying inductive invariants for distributed
systems. We propose a new proof technique and tool called Incremental Inference of Inductive

Invariants (I4). The key idea behind I4 is to first identify the inductive invariant of a small instance
of the system and then to use that instance-specific invariant to infer a generalized invariant that
holds for all instances.

The key requirement for I4 is automatically identifying the inductive invariant for a small
instance of the system. To that end, I4 uses decades of progress made by the model checking
community. Model checking is typically considered inadequate [HHK+15, BDH07, WWP+15] for
proving the correctness of real-world distributed systems, as the state space it must explore grows
exponentially. While this state space explosion certainly happens in generic distributed systems,
model checking is powerful enough to prove the correctness of small, finite instances. In particular,
the IC3 model checker [Bra11] has shown that it is possible, given a finite and moderately complex
system instance, to either compute an inductive invariant which implies the desired safety property;
or to produce a counterexample if the system is not correct. I4 harvests this power as a means to an
end: not to prove the correctness of those small instances, but to infer an inductive invariant that
holds for all instances.

Overall, we make the following contributions:

• We propose a new approach to the verification of distributed protocols. Instead of manu-
ally and painstakingly identifying an inductive invariant, we can draw inspiration from the
inductive invariants of small, finite instances of these protocols.

• We propose I4, an algorithm that implements this new approach by combining the power of
model checking and automated theorem provers. I4 creates a finite instance of a distributed
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protocol and leverages model checking to find an inductive invariant specific to that instance.
I4 then uses this invariant as a starting point to identify a generalized inductive invariant that
holds for all instances of the protocol.

• We evaluate the effectiveness of I4 and find that it can prove the correctness of a number of
interesting distributed protocols—e.g., Two-Phase Commit, Chord, Transaction Chains—with
little to no manual effort, and without us providing any insight into the subtleties of these
protocols (in fact, we didn’t fully understand how some of these protocols work).

The details of this methodology are explained in this Chapter as follows: Section 2.1 shows a
concrete example of how the inductive invariants of small, finite instances can help us discover a
generalized inductive invariant that holds for all instances. Section 2.2 gives an overview of the
I4 approach, while the next two sections present the details of the two main components of the
approach: generating an inductive invariant for a finite instance (Section 2.3) and generalizing that
invariant to one that holds for all instances (Section 2.4). Section 2.5 presents our experiences
applying I4 to real distributed protocols and Section 2.6 discusses the limitations of our approach
and some open research problems. Section 2.7 concludes this chapter.

2.1 A New Perspective

Verification of distributed systems has so far relied heavily on human intellect: to prove the
correctness of a distributed system, one must first understand it well. One can then attempt to write
a formal proof of correctness, by demonstrating the existence of an inductive invariant. Inductive
invariants are typically much more complex than the desired safety property and finding them
requires an intimate understanding of the internal mechanics of the protocol.

In an attempt to facilitate this process, Padon et al. recently developed Ivy [PMP+16]. Ivy
takes as input a protocol description and a safety property, and guides the user, through a series of
interactive steps and visual counterexamples-to-induction, to discover an inductive invariant. Ivy
still fundamentally relies on human intellect for identifying such an inductive invariant; but once
that invariant is found, Ivy automatically checks that it is indeed inductive.

In this chapter, we propose a new approach for finding such inductive invariants that does not
rely on a deep understanding of the system. The key insight of our approach is that the behavior of
most distributed protocols does not fundamentally change as their size increases. This initial insight
led us to ask the question: is it possible to infer the inductive invariant of a distributed protocol by

observing a small instance of the protocol?

Our experience so far indicates that the answer to this question is typically “yes”. Distributed
protocols exhibit a high degree of regularity: what is true for a small instance of four nodes is also
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Algorithm 1 Lock Server
after init {

semaphore(Y) := true;
link(X, Y) := false;

}
action connect(c: client, s: server) = {

require semaphore(s);
link(c, s) := true;
semaphore(s) := false;

}
action disconnect(c: client, s: server) = {

require link(c, s);
link(c, s) := false;
semaphore(s) := true;

}

true for a large instance of 1000 nodes. We will demonstrate this regularity using a simple lock
server protocol [WWP+15, PMP+16] with N servers and M clients.

Case study: lock server

Algorithm 1 shows the lock server protocol description, written in Ivy. In this protocol, every
server S maintains a lock and the server’s state is a boolean semaphore(S) indicating whether it
currently holds its lock. Every client-server pair is associated with a boolean link(C, S) which
denotes whether client C holds the lock of server S. Initially every server holds its own lock and all
client-server links are set to false.

There are two possible actions in this protocol. A client may send a lock request to a server and
acquire that server’s lock if the server currently holds its lock. A client may also release a lock,
handing it back to the server. The safety property of this protocol is simple: “no two clients can
have a link to (i.e., hold the lock of) the same server at the same time”:

∀C1, C2, S. link(C1, S) ∧ link(C2, S) =⇒ (C1 = C2)

Let us now consider the inductive invariants of small instances of this protocol. Section 2.3
describes how we can automatically generate these instances and their inductive invariants. For now,
we are only interested in what these inductive invariants are.

The smallest non-trivial instance consists of one server and two clients. The inductive invariant
to prove the correctness of that instance is:
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¬(semaphore(S0) ∧ link(C0, S0)) ∧
¬(semaphore(S0) ∧ link(C1, S0)) ∧
¬(link(C0, S0) ∧ link(C1, S0)) (Safety Property)

If we consider a larger instance with more clients—say four—the inductive invariant becomes
bigger, but remains essentially the same:

¬(semaphore(S0) ∧ link(C0, S0)) ∧
¬(semaphore(S0) ∧ link(C1, S0)) ∧
¬(semaphore(S0) ∧ link(C2, S0)) ∧
¬(semaphore(S0) ∧ link(C3, S0)) ∧
Safety Property

When we further consider instances with multiple servers, the invariant again increases in size
but not in complexity. For example, the inductive invariant for an instance with two servers and four
clients is:

¬(semaphore(S0) ∧ link(C0, S0)) ∧
¬(semaphore(S0) ∧ link(C1, S0)) ∧
¬(semaphore(S0) ∧ link(C2, S0)) ∧
¬(semaphore(S0) ∧ link(C3, S0)) ∧
¬(semaphore(S1) ∧ link(C0, S1)) ∧
¬(semaphore(S1) ∧ link(C1, S1)) ∧
¬(semaphore(S1) ∧ link(C2, S1)) ∧
¬(semaphore(S1) ∧ link(C3, S1)) ∧
Safety Property

Given the above instances, it does not take much ingenuity to manually come up with an
inductive invariant that works for all instances of this protocol:

∀C, S.¬(semaphore(S) ∧ link(C, S)) ∧
Safety Property

Of course, this protocol is rather simple and its inductive invariant is quite small. But the
principle still applies to more complicated protocols: we can use the inductive invariant of a small
instance to infer a generalized inductive invariant that works for all instances of the protocol.

2.2 Overview of I4

The ultimate goal of I4 is simple: given a protocol description and a safety property, it tries to
prove the correctness of the protocol by identifying an inductive invariant that implies the safety
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Figure II.1: Flow of I4. White boxes are fully automated, while gray boxes denote manual effort.

property. As we mentioned in Section 2.1, the hardest part of any correctness proof is finding such
an invariant. Once we have a candidate invariant for a finite instance, we generalize it and use the
Ivy tool [PMP+16] to check whether it is inductive for an arbitrarily-sized instance.

Figure II.1 shows an overview of the I4 flow. Given a protocol description—written in Ivy—and
an initial size, I4 first generates a finite instance of that protocol with a given initial size. For
example, given the lock server protocol of the previous section and an initial size of (1, 2), I4 will
generate a finite instance of the protocol with one server and two clients. It then uses the Averroes
model checker [GS19b] to either generate an inductive invariant that proves the correctness of the
protocol for that particular instance, or produce a counterexample demonstrating how the protocol
can be violated and which can be used to debug the protocol [Eng12, GGK+18].

If the protocol is too complex, the model checker may fail to produce an answer within a
reasonable amount of time or it may run out of memory. If this occurs, the finite encoding is
simplified—using a concretization technique—to further constrain it and make it easier for the
model checker to run to completion. This step is currently done manually but is easily automatable.
Section 2.3 describes the above steps in more detail (steps 1 , 2 , 3 and 4 of Figure II.1).

Once an inductive invariant has been identified, I4 generalizes it to apply not only to the finite
instance that produced it, but also to all instances of the protocol. This process (steps 5 , 6 and 7 )
is described in detail in Section 2.4.

2.3 Invariant generation on a finite instance

The core idea of I4 is to leverage advances in model-checking techniques to generate an inductive
invariant on a small finite instance of the protocol, then generalize this invariant to the full protocol.
This section details the instantiation of the protocol to a finite instance to allow for automated
model checking. Given a distributed protocol description in Ivy, I4 automatically creates a finite
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instance of the protocol in the VMT format [CGT21], an extension of the SMT-LIB format [BFT16]
to represent state-transition systems. I4 then calls the Averroes model-checking tool [GS19b] to
generate an inductive invariant of this finite instance.

2.3.1 Leveraging the power of model checking

Model checking algorithms have had significant success on verification problems with bounded
domains. Unbounded domains, however, continue to pose a serious challenge: an unbounded
number of objects creates an unbounded number of interactions that are harder to reason about. As
a result, automated reasoning on unbounded domain protocols generally employs quantifiers and
performs complex, expensive—and often undecidable—quantifier-based reasoning. On the other
hand, model checking for finite-state transition systems can be done quantifier-free, is much more
mature, and has been successfully applied to many real-world finite systems [Bra11, EMB11, LS14,
CGMT14, GS19a, GS19b]. I4 leverages the strength and maturity of model checking on a finite
instance of the problem, before generalizing the invariant to the general protocol.

One of the key simplifications offered by reasoning on a finite instance is the ability to reason on
quantifier-free formulas. For example, the assertion ∀E (zero ≤ E) can be translated in the finite
domain where E ∈ {e0, e1, e2, e3} as

(zero ≤ e0) ∧ (zero ≤ e1) ∧ (zero ≤ e2) ∧ (zero ≤ e3).

This translation is always possible, even for complicated assertions involving two or more alternating
quantifiers. For example, in the unbounded domain of nodes N , the assertion ∀X∈N ∃Y ∈N s(X, Y ),
can be simply expanded and translated to a finite 3-node domain {n0, n1, n2} as:

(s(n0, n0) ∨ s(n0, n1) ∨ s(n0, n2)) ∧

(s(n1, n0) ∨ s(n1, n1) ∨ s(n1, n2)) ∧

(s(n2, n0) ∨ s(n2, n1) ∨ s(n2, n2))

In general, in a finite domain any formula in first-order logic can be expanded into a quantifier-free
formula, typically at the price of a growth in the size of the formula. In general, this does not scale
but proves very useful for applying model checking on small, finite instances.

A typical definition of a distributed protocol involves different elements ranging over domains.
Domains are typically unbounded. Examples of domains include the domain of nodes, clients,
servers, epochs, rounds, transactions, etc. For example, the lock server protocol we described
in Section 2.1 includes two unbounded domains: Dserver representing the servers, and Dclient

representing the clients. Some domains such as epochs, rounds or transactions may have a natural
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ordering. This ordering can be modelled in Ivy by adding axioms to the original protocol.
Creating a finite instance of a protocol consists of making each domain size bounded by an

explicit value. The explicit bound enables the simplification of the expressions of the protocol, that
can now be expressed without quantifiers. This, in turn, allows the finite protocol to be efficiently
verified using model checking algorithms.

2.3.2 Picking a size for the finite instance

A crucial aspect of creating a finite instance is picking the right size for each domain of the finite
instance. The instance must be large enough to exhibit some pattern that can then be generalized
to the full protocol, but also small enough so that the finite instance of the problem is tractable for
automatic model checking. Our current prototype relies on the user to provide an initial size of the
finite instance. I4 will create an instance of that size; but we may later realize (see Section 2.4.2 for
details) that this instance was too small. In that case, we pick one of the variables in the instance,
increase its size by one, and repeat the process (step 8 in Figure II.1). This approach is akin to an
iterative deepening search algorithm, starting with a small size or depth and growing it as needed.

The initial size of the problem is an educated guess based on a response to the question: at least

how many nodes, clients, servers or epochs are needed to exercise interesting actions and properties

of the protocol? For example, if clients are sharing a lock, at least two clients are needed to show
possible violations (lock server protocol); if epochs are totally ordered, at least three epochs are
needed for transitivity of the order to be interesting; if a special zero epoch is further needed, at
least four epochs are needed to exercise meaningful interactions of zero and the order transitivity
(distributed lock protocol). In the lock server protocol, for example, we set the initial size to one
server and two clients, i.e., |Dserver| = 1 and |Dclient| = 2.

2.3.3 Translation from unbounded to finite domain

Once a size has been picked for each domain, I4 translates the Ivy implementation to the desired
finite VMT instance (step 1 ). The first step is to define an explicit set of the right size for each
domain. In the translation of the lock server presented in Figure II.2, we define Dserver = {S0} and
Dclient = {C0, C1}. Relations are then expanded to a number of boolean variables representing each
possible instantiation. In this example, the relation link : Dclient×Dserver → Bool is expanded into
two boolean variables link C0 S0 and link C1 S0. Function definitions are similarly expanded:
a function f : Dclient → Dclient would be translated to two variables f C0, f C1 ∈ {C0, C1},
respectively representing f(C0) and f(C1). Note that we only handle relations and functions with
finite (or finitized) domains and codomains. From there on the translation is purely syntactic and
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; Initial state formula
(define-fun .init () Bool (!
(and (= semaphore_S0 true)

(= link_C0_S0   false)
(= link_C1_S0   false)) :init true))

after init
{

semaphore(Y) := true;
link(X, Y)   := false;

}

; Define types and their domains
(define-sort client_type () (_ BitVec 2))
(define-sort server_type () (_ BitVec 3))
(define-fun C0 () client_type (_ bv0 2))
(define-fun C1 () client_type (_ bv1 2))
(define-fun S0 () server_type (_ bv0 3))

type client

type server

; Define state elements
(declare-fun semaphore_S0 () Bool)
(declare-fun link_C0_S0   () Bool)
(declare-fun link_C1_S0   () Bool)

. . .

relation semaphore(X: server)

relation link(X: client, 
Y: server)

; Declare actions
(define-sort action_type ()             (_ BitVec 4))
(define-fun connect      () action_type (_ bv0 4))
(define-fun disconnect   () action_type (_ bv1 4))

export connect
export disconnect

; Action connect
(define-fun connect_fun ((c client_type) (s server_type)) Bool
(and (or (= c C0) (= c C1))

(= s S0)
(= semaphore_S0 true)
(= link_C0_S0_next   (ite (and (= s S0)(= c C0)) true link_C0_S0))
(= link_C1_S0_next   (ite (and (= s S0)(= c C1)) true link_C1_S0))
(= semaphore_S0_next (ite (= s S0) false semaphore_S0))))

; Action disconnect
. . .

; Transition relation
(declare-fun action       () action_type)
(declare-fun connect_c () client_type)
(declare-fun connect_s () server_type)
(declare-fun disconnect_c () client_type)
(declare-fun disconnect_s () server_type)
(define-fun .trans () Bool (!
(and (=> (= action connect)    (connect_fun connect_c connect_s)) 

(=> (= action disconnect) (disconnect_fun disconnect_c disconnect_s))
(=> (not (or (= action connect) (= action disconnect))) 

(and (= link_C0_S0_next   link_C0_S0) 
(= link_C1_S0_next   link_C1_S0) 
(= semaphore_S0_next semaphore_S0)))) :trans true))

action connect(c: client, 
s: server) =

{
require semaphore(s);
link(c, s)   := true;
semaphore(s) := false;

}

action disconnect(c: client,
s: server) =

{
require link(c, s);
link(c, s)   := false;
semaphore(s) := true;

}

; Safety property
(define-fun .prop () Bool (!
(=> (and link_C0_S0 link_C1_S0) (= C0 C1)) :invar-property 0))

invariant forall C1, C2: client, 
S: server. 

link(C1, S) & link(C2, S)
-> C1 = C2

Figure II.2: Translation of lock server in Ivy to a finite instance (1 server / 2 clients) in VMT. Note
that our VMT representation uses different vector sizes (1 for boolean, 2 for clients, 3 for servers)
as an easy way to ensure that the model-checker does not try to compare values of different types.
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straightforward (Figure II.2). For instance, the property expression

∀C1,C2,S link(C1, S) ∧ link(C2, S) =⇒ (C1 = C2)

is translated into a conjunction of 4 instances with C1 ∈ {C0, C1}, C2 ∈ {C0, C1} and S ∈
{S0}. For example, one instance where (C1, C2, S) = (C0, C1, S0) becomes link C0 S0 ∧
link C1 S0 =⇒ (C0 = C1).

2.3.4 Overcoming the limitations of model checking

In some cases, the finite instance may still be intractable for the model checker. In such cases,
we manually concretize the values of certain variables to make the problem easier to solve, and to
compute a more concise finite inductive invariant. For example, a finite, totally ordered domain
of epochs Depoch = {E0, E1, E2, E3} can be concretized by explicitly imposing the domain axiom
(E0 ≤ E1 ≤ E2 ≤ E3). This reduces the search space and allows the model checker to only consider
states where epochs are following this specific order. Other examples of useful concretizations
include fixing special elements as constants in the VMT instantiation, for example fixing the smallest
epoch zero to E0, explicitly specifying which node initially holds a lock, etc. Note that concretizing
the finite instance results in limiting the scope of the finite inductive invariant we produce, i.e., the
finite inductive invariant is only valid for the given concretized finite instance. But this does not
hinder the invariant generalization presented in Section 2.4, as long as the concretizing information
is included in the invariant generalization procedure.

There are, however, a few subtleties to pay attention to when solving finite instances instead of
the original problem. First, the finite instance cannot capture interactions involving elements in a
higher domain space. For example, with |Dclient| = 2, the finite instance cannot capture interactions
that involve at least 3 distinct clients. I4 handles this by increasing the size of the finite instance
when it fails to generalize the invariant. Second, the finite instance may introduce special clauses
that are not present in the original, unbounded protocol. For example, for the domain of epochs with
(E0 ≤ E1 ≤ E2 ≤ E3), epoch E3 is inherently special in the finite space since there does not exist
any epoch larger than E3. The finite inductive invariant may thus include special clauses involving
E3, which may no longer be useful for the unbounded case. We call such clauses instance-specific

clauses. Section 2.4 discusses how these are pruned during invariant generalization. Note, finally,
that concretization is not a panacea. It is a manual and error-prone process and should therefore be
used only when necessary to overcome the limitations of model-checking.
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2.3.5 Invariant generation on the finite instance

After creating a finite VMT instance, I4 passes it on to the Averroes v2.0 tool [GS19b] (AVR) to
perform model checking. If AVR finds that the finite instance does not uphold the safety property, it
produces a counterexample, which can then be used to debug the protocol [Eng12, GGK+18]. If the
safety property holds, AVR generates an inductive invariant for the finite instance; minimizes the
invariant by removing redundant clauses; and then passes it on to the next step to be generalized.

2.4 Invariant generalization

Once AVR finds an inductive invariant for the finite instance, I4 will use that inductive invariant
as a starting point to identify a generalized inductive invariant that works for all instances of the
protocol. While performing this generalization, however, we must guard against the following two
dangers:

• Too-small finite instance If the finite instance we have chosen is too small, its inductive
invariant may not contain enough information to be generalizable to all instances. Consider,
for example, what would happen if we started with an instance of the lock server protocol that
had only one server and one client. Since the safety property of the protocol is trivially true
in this case, the safety property is actually an inductive invariant for this particular instance.
This means that the inductive invariant from this particular instance does not give us any
information about the generalized inductive invariant that holds for all instances. In this case,
the algorithm should eventually realize that this finite instance is not helpful and move on to a
larger instance, eventually finding an instance that is large enough to be generalizable.

• Instance-specific clauses As we discussed in Section 2.3.4, even after we have identified
an instance that is large enough to contain all the information required to put together a
generalized inductive invariant, it is possible that the inductive invariant of the finite instance
includes additional clauses that only hold for that specific instance and are thus not easily
generalizable. Our generalization algorithm should therefore identify and prune such clauses.

The rest of this section describes the steps that I4 takes to identify this generalized inductive
invariant (steps 5 , 6 and 7 in Figure II.1).

2.4.1 Initial generalization

The first step is to generalize the finite invariant to instances of arbitrary size in step 5 by
universally quantifying the strengthening assertions (clauses) produced by AVR. Consider, for
example, the clause P (N1), where P denotes an arbitrary predicate and N1 is one of the nodes in

15



Algorithm 2 Generalization
1: function GENERALIZATION(clause, relations)
2: weakenings← relations.conjunction()
3: for var1 ∈ clause do
4: for var2 ∈ clause do
5: if var1 ̸= var2 & var1.type = var2.type then
6: weakenings.add(var1 ̸= var2)
7: end if
8: end for
9: end for

10: for const ∈ concrete consts do
11: for var ∈ clause do
12: if var.type = const.type then
13: if var.value = const.value then
14: weakenings.add(var = const)
15: else
16: weakenings.add(var ̸= const)
17: end if
18: end if
19: end for
20: end for
21: return ∀var ∈ clause. weakenings =⇒ clause
22: end function

the finite instance of the protocol. In step 5 , I4 generalizes this clause to apply for all nodes; i.e.,
∀N1. P (N1) (line 21 of Algorithm 2). This is the simplest form of clause generalization, where the
clause applies universally to all nodes.

There are two cases, however, where clauses do not apply universally and require a slightly more
complex generalization. The first case (lines 3-9 in Algorithm 2) is when a clause involves different
variables of the same type. In this case, we weaken the universally quantified clause to only apply
to distinct elements of that type. For example, a clause such as P (N1) ∧ Q(N2) is generalized to
∀N1, N2. (N1 ̸= N2) =⇒ P (N1) ∧Q(N2).

The second case (lines 2 and 10-20 in Algorithm 2) is a result of the (optional) concretization
procedure we described in Section 2.3.4. During this procedure, we reduce the search space of the
model checking problem by assigning concrete values to some of the state variables of the protocol.
In our distributed lock protocol, for example, one of the nodes—called first—is special in that it is the
one initially holding the lock. During concretization, we can assign N0 = first, to limit the model
checking problem to only consider the case where N0 is that node. Any such concrete assignments—
in the form of generic relations or simple constant assignments—must be taken into account when
performing generalization. For example, if we used N0 = first as our concretization, we would
generalize clause P (N0) to ∀N0. (N0 = first) =⇒ P (N0). Similarly, we would generalize clause
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P (N0)∧Q(N1) as ∀N0, N1. (N0 ̸= N1)∧ (N0 = first)∧ (N1 ̸= first) =⇒ P (N0)∧Q(N1). In
addition to such constant assignments, our concretization process may include additional information
about this finite instance, in the form of generic relations defined in the original Ivy protocol. For
example, our concretization can produce the clause btw(N0, N1, N2), denoting that node N1 is
between nodes N0 and N2 in a ring topology. The conjunction of all such concretizations is given as
input to our generalization algorithm and is applied as a weakening to all invariant clauses (lines
1,2,21 of Algorithm 2).

2.4.2 Invariant pruning

After all clauses are generalized, they are added to the original protocol and are passed on to
Ivy (step 6 ), which checks if they are sufficient to prove the correctness of the protocol. Ivy will
check if the conjunction of all clauses is inductive. In particular, it tries to answer the following
question (separately for each clause A, including the safety property). Given an arbitrary state s

where the invariant holds, is there a valid transition to a state s′ where A does not hold? There are
three possible outcomes:

1. The generalized clauses are inductive and Ivy successfully proves the correctness of the
protocol.

2. Ivy fails to prove the safety property on s′. This happens if the finite instance that led to the
generalized clauses was too small to capture all behaviors of the distributed protocol. In this
case, we need to create an instance with a larger size (e.g., more nodes) and repeat the process
(step 8 ).

3. Ivy fails to prove one or more of the generalized clauses on s′. There are two possible
reasons for this failure. First, it is possible that the finite instance we are considering is
“large enough”—i.e., its inductive invariant covers all interesting behaviors of the unbounded
protocol—but it additionally includes some instance-specific clauses. These clauses do not
generalize to all instances and thus their universally quantified form is too strong and will fail
Ivy’s check. I4 removes these clauses from the inductive invariant (step 7 ) and retries the
Ivy verification.

The second reason why some assertion may not be inductive is that the entire invariant (i.e.,
the conjunction of the safety property and all strengthening clauses) is not inductive. This can
happen when the finite instance is too small. Note that we do not have a way to distinguish
this case from the case above—where the invariant was too strong, rather than too weak. We
will therefore start pruning clauses one by one, until the invariant is too weak to support the

17



safety property (case (2) above), which will lead I4 to abandon the attempt on this finite
instance and repeat the process with a larger one.

2.5 Evaluation

We evaluate the ability of I4 to infer inductive invariants by testing it on seven distributed proto-
cols: a lock server (Section 2.5.1), a leader election algorithm (Section 2.5.2), a distributed lock

protocol (Section 2.5.3), a Chord ring [SMLN+03] (Section 2.5.4), a learning switch (Section 2.5.5),
a database chain consistency protocol (Section 2.5.6), and a two-phase commit protocol [Gra78]
(Section 2.5.7). For the first six protocols, we verified the correctness of existing Ivy implementa-
tions using the safety properties specified in [PMP+16]; we cover all examples originally presented
in [PMP+16], albeit with a much higher degree of automation. We implemented two-phase commit

and specified its safety property based on its original description [Gra78]. Finally, Section 2.5.8 eval-
uates our I4 prototype in terms of how long it takes to verify each protocol. All our implementations
and artifacts can be found in GitHub [MGJ+].

We also tried the I4 approach on Paxos, but we have not found an inductive invariant. This
is because the Averroes model-checker runs out of memory even on small, finite instances of the
Paxos protocol. This is not too surprising, since Averroes was originally designed for hardware
model-checking and not for distributed systems. We therefore do not think that this is a fundamental
roadblock and are currently exploring ways to leverage the inherent regularity of distributed systems
to facilitate the model-checker’s job.

We used the first three protocols (lock server, leader election and distributed lock) to develop
and refine the I4 approach. We were then able to apply the I4 approach with no modification on
the last four protocols (Chord ring, learning switch, database chain consistency and two-phase
commit), and prove their safety property fully automatically—except for the simple manually-added
concretization in Chord, which required a cursory inspection of about one minute—without even
fully understanding each protocol.

Table II.1 presents some relevant parameters for each protocol and for its finite instantiation, such
as the number of domains and variables it uses, the size of the finite instance and the complexity of
the resulting invariant. Note that our concretization phase—where needed—is relatively low-effort,
requiring at most one assignment in all cases.

2.5.1 Lock Server

Our first case study is a simple lock server, our running example from Section 2.1. Since the
safety property of the lock server is trivially satisfied with only one client, we instantiate this protocol
with one server and two clients. I4 generates the generalized inductive invariant for this protocol by
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Table II.1: Various parameters for creating finite instances for our seven distributed protocols. Var
is the number of state variables and SMT calls is the number of SMT [BFT16] calls required to find
the inductive invariant of the finite instance.
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going through its generalization (step 4 in Fig. II.1), where it places universal quantifiers before
every strengthening assertion. The generalized inductive invariant below passes Ivy’s verification
with no manual effort.

∀S0, C0. ¬(semaphore(S0) ∧ link(C0, S0)) ∧
Safety Property

2.5.2 Leader Election

Our second case study is a leader election protocol on a ring [CR79, PMP+16]. Given a ring of
an unbounded number of nodes, each with its own unique ID, the goal of the protocol is to elect
the node with the highest ID to be the leader. A node can either (a) send its ID to the next node; or
(b) forward a message from the previous node, if the ID in the message is larger than its own ID.
When a node receives its own ID, the protocol determines that no other ID is larger than the node’s
own ID, and this node becomes the leader.

This protocol uses two domains node and id, respectively for nodes and IDs, and the ID of node
N is idn(N). The ring structure is modelled using a relation btw(N1, N2, N3) indicating whether
node N2 is between nodes N1 and N3, and includes axioms to build a ring topology, where each
node can only communicate with its two neighbors [PMP+16]. The protocol also instantiates a total
order le(ID1, ID2) to compare any two IDs. A relation pending(ID,N) is used to indicate that
there is a message ID to node N pending in the network. As the network may delay or duplicate
any message, the protocol never discards any sent message.

The safety property of leader election is defined as “there cannot be two distinct leaders”:

∀N1, N2. leader(N1) ∧ leader(N2) =⇒ (N1 = N2)

Since a meaningful ring modeled with btw involves at least three nodes, we generate the
inductive invariant on a three-node finite instance, with domain of nodes {N0, N1, N2} and domain of
IDs {ID0, ID1, ID2}. AVR finds an invariant on this finite instance, but we are not able to generalize
it to the full protocol. We further find that if we increase the size to four nodes, AVR runs out of
memory without finding an inductive invariant on the final instance. This is where our concretization

technique proves its usefulness: by manually assigning concrete values to the three-node protocol—
i.e., by adding axioms idn(N0) = ID0, idn(N1) = ID1 and idn(N2) = ID2—we facilitate AVR
to find a finite-instance invariant (shown in Table II.2) that I4 can generalize to the full protocol
(shown in Table II.3) and pass Ivy’s verification. Since we make no assumption on the order of ID0,
ID1 and ID2, those axioms have no impact on the generality of the proof.

Note that, as part of concretization, a universally-quantified conjunction of the concretization
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¬(¬pending ID0 N0 ∧ leader N0) ∧
¬(¬pending ID1 N1 ∧ leader N1) ∧
¬(¬pending ID1 N2 ∧ pending ID1 N1) ∧
¬(¬pending ID1 N2 ∧ btw N0 N1 N2 ∧ pending ID1 N0) ∧
¬(le ID0 ID1 ∧ pending ID0 N0) ∧
¬(le ID0 ID1 ∧ btw N0 N1 N2 ∧ pending ID0 N2) ∧
¬(le ID0 ID2 ∧ pending ID0 N0) ∧
¬(le ID0 ID2 ∧ btw N1 N0 N2 ∧ pending ID0 N1) ∧
¬(le ID1 ID0 ∧ pending ID1 N1) ∧
¬(le ID1 ID0 ∧ btw N1 N0 N2 ∧ pending ID1 N2) ∧
¬(le ID1 ID2 ∧ pending ID1 N1) ∧
¬(le ID1 ID2 ∧ btw N0 N1 N2 ∧ pending ID1 N0) ∧
¬(le ID2 ID0 ∧ leader N2) ∧
¬(le ID2 ID0 ∧ pending ID2 N2) ∧
¬(le ID2 ID0 ∧ btw N0 N1 N2 ∧ pending ID2 N1) ∧
¬(le ID2 ID1 ∧ leader N2) ∧
¬(le ID2 ID1 ∧ pending ID2 N2) ∧
¬(le ID2 ID1 ∧ btw N1 N0 N2 ∧ pending ID2 N0) ∧
Safety Property

Table II.2: Instance of invariant of Leader Election.

axiom

∀N0 ̸= N1 ̸= N2, ID0 ̸= ID1 ̸= ID2.

(idn(N0) = ID0) ∧ (idn(N1) = ID1) ∧ (idn(N2) = ID2)

is passed on to the generalization algorithm, which adds it as a weakening to all clauses in the general
invariant. For example, the clause ¬(¬pending ID0 N0 ∧ leader N0) (highlighed in Table II.2) is
generalized into (highlighted in Table II.3, slightly edited for readability):

∀N0, ID0. (idn(N0) =ID0) =⇒

¬(¬pending(ID0, N0) ∧ leader(N0))

I4 applies a similar strategy to all clauses of the finite-instance invariant and obtains the inductive
invariant shown (simplified for readability) in Table II.3. This generalized inductive invariant passes
Ivy’s verification, thus proving the correctness of the protocol.
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∀N0, ID0. (idn(N0) = ID0) =⇒ ¬(¬(pending(ID0, N0)) ∧ leader(N0)) ∧
∀N0, N1, N2, ID1. (idn(N1) = ID1) ∧ (N0 ̸= N1) ∧ (N0 ̸= N2) ∧ (N1 ̸= N2)

=⇒ ¬(¬(pending(ID1, N2)) ∧ btw(N0, N1, N2) ∧ pending(ID1, N0)) ∧
∀N0, N1, ID0, ID1. (idn(N0) = ID0) ∧ (idn(N1) = ID1) ∧ (ID0 ̸= ID1)

=⇒ ¬(le(ID0, ID1) ∧ pending(ID0, N0)) ∧
∀N0, N1, N2, ID0, ID1. (idn(N0) = ID0) ∧ (idn(N1) = ID1) ∧ (ID0 ̸= ID1)

∧ (N0 ̸= N1) ∧ (N0 ̸= N2) ∧ (N1 ̸= N2)
=⇒ ¬(le(ID0, ID1) ∧ btw(N0, N1, N2) ∧ pending(ID0, N2)) ∧

Safety Property

Table II.3: Generalized invariant of Leader Election (slightly edited for readability).

2.5.3 Distributed lock

Our third case study is a distributed lock protocol [HHK+15, PMP+16]. This protocol models
an unbounded number of nodes that transfer the ownership of a lock among themselves. Nodes
transfer locks by sending and receiving messages in an unreliable network that can drop or duplicate
messages. The ownership of a lock is associated with an ever increasing epoch, to allow detection
of stale messages.

If a node N holds the lock at epoch ep(N), N can pass the lock to any node N ′ in the system
at epoch E > ep(N) by sending it a transfer(E,N ′) message. When a node N ′ at epoch ep(N ′)

receives a transfer(E,N ′) message with epoch E > ep(N ′), node N ′ accepts the lock at epoch
E, and sends a message locked(E,N ′) to denote that N ′ holds the lock at epoch E ′, and update
ep(N ′) = E. Otherwise, if E ′ ≤ ep(N ′), N ′ ignores this stale message. As the network may delay
or duplicate any message, the protocol never discards any sent transfer message.

The safety property of the protocol is “no two distinct nodes can hold the lock at the same time”:

∀N1, N2, E. locked(E,N1) ∧ locked(E,N2) =⇒ (N1 = N2)

This protocol involves two sources of infinity: the number of nodes and the number of epochs.
Therefore a finite instance of the protocol bounds not only the number of nodes, but also the number
of epochs. Unlike previous protocols, even an instance with just two nodes is enough to generate
an unbounded number of messages by passing the lock between them with ever-increasing epoch
numbers. I4 is able to prove the correctness of the protocol based on a finite instance with just two
nodes and four epochs.

During our experiments, we found that AVR runs out of memory due to the large search space.
To simplify the problem, we manually concretize the special epoch zero to E0 (as discussed in
Section 2.3.4), facilitating AVR’s task.

Given the inductive invariant for this finite instance, I4 still needs two iterations of invariant
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pruning to get rid of instance-specific clauses, after which it produces an inductive invariant which
passes Ivy’s verification.

2.5.4 Chord Ring

Our next case study is a Chord Ring [SMLN+03], a popular distributed hash table approach in
peer-to-peer systems. In the Chord protocol, nodes are organized in a ring, and each node stores
part of the hash table. Additionally, nodes may join or leave the ring at any time, prompting a
re-arranging of the ring. The safety property of interest is that the ring remains connected under
certain assumptions about failures.

We use the Chord protocol description in Ivy [PMP+16], which models the protocol in Ivy
with each node maintaining two pointers: one to its successor and one to its successor’s successor.
Those two pointers are implemented as two relations over the nodes, s1(N1, N2) when N2 is N1’s
successor, and s2(N1, N3) when N3 is N1’s successor’s successor. Even if some nodes fail, the
safety property remains true as long as every live node still has a pointer to at least one other live
node. The failure of a node is modelled as a normal transition. A test transition is used to check
whether a given node can access another given node, and sets an error flag to true if that is not the
case. The safety property is simply expressed as the error flag never being true.

Part of the protocol was first proved by Zave [Zav17], including an informal, intuitive proof
as well as a formal proof in Alloy [Jac02]. The protocol was later implemented in Ivy [PMP+16],
formally proving (with manual effort) the primary safety property. We adopted a slightly modified
version of the Ivy implementation, and were able to prove the same safety property based on a finite
instance with 4 nodes, and by concretizing a special node, org = N0.

2.5.5 Learning Switch

Learning switches maintain a table that maps MAC addresses to ports where the incoming
frames will be forwarded. When a frame is received, a learning switch will check to see if the source
MAC address is already in the table, and if not, it will insert a (Source MAC Address, Port Number)
entry into the table. The switch will then check the destination MAC address of the incoming frame
in the table. If there is an entry mapping the destination MAC address to port number, the switch
will forward the frame to that port. Otherwise, the switch will send the packet to all its ports except
the port where the frame was received from (otherwise known as flooding).

We use the existing implementation of the learning switch protocol in Ivy, by simply updating it
to the latest Ivy syntax, and feeding it to I4. The safety property states that there does not exist any
forwarding cycles, where an incoming frame would be forwarded to the same port that it arrived
from. We instantiated this protocol with 4 nodes and 2 packets since forwarding cycles can possibly
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form in such a small setup.
Given the inductive invariant for the finite instance with 4 nodes and 2 packets, I4 can infer

the general inductive invariant and pass Ivy’s verification with no manual effort. Later, we found
that even 3 nodes with only a single packet is sufficient for I4 to infer the generalizable inductive
invariant for this protocol.

2.5.6 Database Chain Consistency

Database chain consistency is the last protocol we evaluated from the protocol suite found in the
Ivy paper. This protocol provides traditional database safety guarantees of atomicity, serializability,
and isolation for distributed databases. In this distributed setting, a chain transaction is split into
subtransactions that operate sequentially on data that is sharded across multiple nodes. In order for
the chain transaction to commit, each subtransaction should also commit. If any subtransaction
aborts, then the entire chain transaction is also aborted.

Using I4, we successfully verified the safety properties defined by the Ivy authors. We started
with an instance of 4 transactions, 5 operations, 2 keys and 2 nodes. That initial instance was large
enough to be generalizable. We later found that even a smaller instance with 3 transactions, 3
operations, 1 key and 2 nodes is generalizable.

2.5.7 Two-Phase Commit

We implemented two-phase commit in Ivy. We proved that our implementation satisfies the
traditional Atomic Commit safety properties: (a) all processes that reach a decision reach the same
one, (b) the Commit decision can only be reached if all processes vote Yes, and (c) if there are no
failures and all processes vote Yes, then the decision must be Commit. We started with an initial
size of 4 nodes, and kept increasing the instance size by one. We finally proved the correctness of
the protocol with 6 nodes.

Protocol F M G total
Lock server 0.02 0.0 0.8 0.8
Leader election in ring 4.0 0.1 2.0 6.1
Distributed lock protocol 30.6 53.3 75.5 159.5
Chord ring maintenance 386.1 218.5 24.3 628.9
Learning switch 2.9 0.8 6.9 10.7
Database chain replication 4.2 2.3 6.2 12.6
Two-Phase Commit 2.6 0.1 1.6 4.3

Table II.4: Runtime results (in seconds). F is the time required to find the finite inductive invariant;
M is the time is takes to minimize the finite inductive invariant; and G is the time to generalize the
clauses and perform invariant pruning.
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Figure II.3: Runtime break down for each of the seven protocols we verified using I4.

2.5.8 Runtime Breakdown of I4’s Verification

Table II.4 and Figure II.3 show the runtime of various phases of the I4 algorithm. For clarity,
we omit the time it takes to generate the finite instances, as it was negligible and almost identical
among all protocols (∼0.3 seconds). In most cases, I4 can prove the correctness of these protocols
within a few tens of seconds, with the worst case being that one has to wait for 10.5 minutes.

2.6 Limitations and future directions

This chapter takes the first step in a new direction—proving the correctness of distributed
protocols based on the inductive invariants of small, finite instances. Our experience applying this
approach to real protocols is thus far encouraging: we have been able to prove the correctness of
a number of interesting protocols, with little to no manual effort. For all its successes heretofore,
we believe that there are several more steps to be taken in this research direction. We list below
a number of limitations of our current approach and prototype in the hope that they will serve as
inspiration for future research.

• Choosing an instance size When instantiating a protocol, we need to use an instance that is
large enough to exhibit all the interesting properties of an arbitrarily-sized instance. Currently,
we incrementally increase the size of the instance to guarantee we will eventually consider an
instance that is large enough. In our experiments, we manually select an initial size to speed
this process up.
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• Existential quantifiers Our generalization algorithm adds universal quantifiers to generalize
finite inductive invariants. We currently do not support inductive invariants that include
existential quantifiers. Our experience so far suggests that existential quantifiers are not very
common, but supporting them would increase the generality of our approach. For example,
we were careful to write the two-phase commit protocol so that it would not use any existential
quantifiers, but doing so required human intervention, which we try to avoid as much as
possible.

• Verifying implementations I4 focuses on verifying distributed protocols, rather than imple-
mentations. Automating the proof of a full distributed implementation is much harder, as it
usually requires reasoning about undecidable fragments of logic, which are notoriously hard
to verify automatically. Also, our current prototype does not support some of Ivy’s features,
such as objects, translation to concrete imperative code, arbitrary assumptions, etc.

• Optimizing model checking for distributed systems We are currently relying on existing,
unmodified model checkers to find the inductive invariants of finite instances. While these
tools have come a long way in recent years, they may still not scale even for small instances
of some complex protocols. Our concretization technique helps mitigate this problem to a
certain degree, but we believe this is only the first step in a line of optimizations that will
customize model checking algorithms to deal with the particular requirements of distributed
systems. Specifically, the high-level structure of a protocol can be used by the model checker
to identify compact strengthening assertions that, in some sense, respect that structure and
exhibit its inherent regularity.

2.7 Conclusion

This chapter presents I4, a new approach for verifying the correctness of distributed protocols,
with little to no manual effort and without relying on human intuition. I4 is based on a simple
intuition: an inductive invariant of a small, finite instance can be used to infer a generalized inductive
invariant that holds for all instances of the protocol. I4 leverages the power of model checking to
automatically find an inductive invariant for a small instance of the protocol and then generalizes that
invariant to instances of arbitrary size. Our evaluation shows that I4 is successful in automatically
proving the correctness of a number of interesting distributed protocols, even ones whose subtleties
and internal workings were unknown to us.
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CHAPTER III

Refinement-guided Automation

So far, we have seen how we can automatically identify an inductive invariant of a distributed
protocol. Unfortunately, all such automation only works in a single layer, but not refinement proofs.
In this Chapter, we aim to get the best of two worlds: the power of refinement but with only a

fraction of the manual effort. To achieve this goal, we introduce Sift, a two-tier methodology that
combines automated verification with a small amount of manual effort to push the boundary of
the kinds of systems that can benefit from proof automation. Just like IronFleet before it, Sift is
a methodology, not a tool. Its contribution is a way of structuring refinement proofs in order to
leverage the automation of existing tools. Similar to how IronFleet guided developers to manually
construct proofs based on the existing tools (TLA+ and Dafny), so does Sift show developers how
to construct proofs that leverage the automation of more recent tools, like IC3PO and Ivy.

The first tier of Sift introduces a new technique, called refinement-guided automation, which
leverages the automation of monolithic provers in the context of a refinement proof. At the
high level, this technique enables the automation of refinement proofs between two layers by
encapsulating the state of the upper, more abstract, layer into the state of the lower, more concrete
layer. This encapsulation allows us to transform a two-layer refinement proof into a single-layer,
monolithic proof that provers like I4 [MGJ+19b, MGJ+19a], IC3PO [GS21], SWISS [HHMP21],
and DistAI [YTG+21] can perform.

Leveraging automation to prove refinement is not always enough, though. Monolithic provers
have their limits and thus some refinement proofs are just too complex to prove automatically.
When that happens, we provide developers with an escape hatch. The second tier of the Sift
methodology describes a divide-and-conquer technique for introducing intermediate layers, thus
splitting a complex proof into chunks that are small enough for the prover to handle.

The Sift methodology applies refinement-guided automation within each refinement step and
uses our divide-and-conquer technique to split a refinement step into smaller, more manageable
steps. As a result, Sift allows us to apply, for the first time, automation to refinement-based proofs
and scale to much harder problems than was previously possible. We use Sift to automate the
verification of four distributed implementations, whose proof required minimal manual effort (less
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than five minutes, in most cases).
We further use our divide-and-conquer technique to prove the correctness of an implementation

of Raft [OO14] and an implementation of MultiPaxos [Lam98, Lam01] — a feat that was only
possible before by providing a fully manual proof of correctness. Using Sift, we were able to
automate most of the proof for both Raft and MultiPaxos. The manual effort required to complete
the proof with Sift is not only significantly less than that of previous approaches, it is also much
less reliant on having expertise in formal verification.

Overall, this chapter makes the following contributions:
• We introduce refinement-guided automation, a technique that leverages the automation of

monolithic-oriented tools to perform more complex, refinement-based proofs.
• We present a divide-and-conquer technique for splitting a complex refinement proof into

smaller pieces, such that each piece is amenable to automated verification.
• We introduce Sift, a methodology that incorporates refinement-guided automation and our

divide-and-conquer technique. We evaluate Sift on six distributed implementations and find
that it allows us to prove their correctness in a mostly automated manner which drastically
reduces the manual effort required compared to previous refinement-based approaches.

We present the specifics of this work in this chapter. Section 3.1 discusses the tradeoff between
automation and refinement. Section 3.2 recaps some background material, while Section 3.3 gives an
overview of Sift. Section 3.4 introduces refinement-guided automation and Section 3.5 shows how
to introduce intermediate refinement layers when needed. Section 3.6 evaluates the effectiveness
of using Sift to automate the verification of a number of distributed implementations. Section 3.7
presents the limitations of Sift and discusses future work, and Section 3.8 concludes.

3.1 The Price of Automation

As discussed earlier, there are currently two approaches for verifying the correctness of dis-
tributed systems. The first is the powerful but manual approach of IronFleet and Verdi [HHK+15,
HHK+17, WWP+15], where the developer uses refinement to show that a complex implementation
is equivalent—through a series of layers or transformations—to an abstract specification.

The second approach is that of I4 [MGJ+19a], IC3PO [GS21], SWISS [HHMP21] and Dis-
tAI [YTG+21] which leverage the power of model-checking and SMT solving [BFT16] to automat-
ically prove the correctness of abstract system descriptions at the protocol level. These approaches
aim to prove that a given safety property holds for the protocol at hand, by automatically identifying
an inductive invariant that implies this safety property.

While such automation is undoubtedly a desirable property, it comes at a heavy price. In
particular, I4, IC3PO, SWISS and DistAI can only perform monolithic proofs: they can prove that a
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protocol—defined as a single layer—satisfies a given safety property. As we described, this not only
limits the type of specifications we can use, but also severely limits the scalability of the approach.

Most importantly, the scalability limitation is not an artifact of the implementation of monolithic

provers—like I4, IC3PO, SWISS and DistAI—but rather inherent in their design. By asking the
underlying solver to find an inductive invariant that supports the desired safety property, they
essentially adopt an all-or-nothing approach: either the solver is powerful enough to find an
inductive invariant or it is not. If we consider more and more complex systems, we soon reach a
point where the solver is simply not powerful enough to find an inductive invariant.

In fact, a similar dichotomy presents itself when the protocol description has elements outside
the decidable fragment of logic [Lew80, PLSS17]. In several of these cases, the solver struggles
considerably, even when it is trivial for a human to split the problem into decidable sub-problems.
Without the ability to split this monolithic proof into multiple pieces, there is no middle ground.
For example, I4 simply fails when the problem lies outside the decidable fragment, even though it
is still possible to use refinement to split the protocol into two layers, each of which is separately
decidable [TLM+18].

In this chapter, we show that there exists a middle ground between the fully manual approaches
that support refinement, like IronFleet and Verdi; and the automated-but-monolithic approaches,
like I4, IC3PO, SWISS and DistAI. This middle ground, enabled by our novel Sift methodology,
allows for refinement-based reasoning—and thus allows us to prove the correctness of complex
distributed implementations—while making heavy use of automation to drastically reduce the
amount of manual effort required compared to IronFleet and Verdi.

3.2 Background

3.2.1 Multi-Layer Refinement

Sift is heavily based on the notion of refinement. We will therefore first recap the notion of
refinement and how it can be used to prove the correctness of complex systems.

A system P refines another system Q if the observable outputs produced by any execution of P
can also be produced by some execution of Q. In the case of distributed systems, the only outputs
that are visible to external observers are the messages produced by these systems.

In the simplest application of refinement, the developer writes two layers: a specification and an
implementation. The specification is written as a simple, logically centralized state machine. In the
case of a sharded key-value store, for example, the specification is a simple map, where the only
possible actions are to put something to the map, or to get something from the map [HHK+15,
HHK+17]. The developer then shows that the implementation refines the specification, thus proving
the correctness of the implementation.
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In more complex systems, directly proving refinement from the implementation to the specifica-
tion can be difficult [HHK+15, HHK+17, WWP+15]. In that case, the developer must insert one or
more increasingly complex layers between the implementation and specification, thus creating a
multi-layer structure, where each layer must be proven to refine the one above it. We explain how to
design and insert intermediate layers in Section 3.5.

3.2.2 Automated Reasoning and Monolithic Provers

Traditional verification languages [Lei10, BBC+97] rely on the developer to write a full proof,
including a large number of manual annotations. As a result, approaches like IronFleet [HHK+15,
HHK+17] and Verdi [WWP+15] incur a high proof-to-code ratio. To reduce this manual effort,
Ivy [PMP+16] uses decidable logic to guarantee completeness. With Ivy, the developer only needs
to find an inductive invariant—an invariant which is closed (inductive) under the system transitions—
and the prover can automatically identify if this inductive invariant is correct. Ivy significantly
simplifies the effort of proving the correctness of distributed systems, but finding such inductive
invariants is still a non-trivial task that relies on human intuition and an intimate understanding of
the system at hand.

To push the automation a step further, I4 [MGJ+19a] leverages the regularity of distributed
protocols, so that the inductive invariant can be automatically inferred from a small, finite instance.
Unfortunately, such a strategy only applies to monolithic protocols, not refinement proofs. Thus, I4
doesn’t scale well when the system has a large state space and complex transitions. More recent
tools [GS21, HHMP21, YTG+21] have followed the direction of using finite instances to guide the
verification of distributed protocols. All these tools, however, apply only to monolithic proofs and
cannot support refinement. We call such tools monolithic provers.

3.2.3 IC3PO: Our Monolithic Prover of Choice

The design of Sift does not rely on the internals of the monolithic prover that it uses. The
refinement-guided automation technique of Sift can leverage any tool designed for automating
monolithic, single-layer proofs. In fact, we previously tried I4 as the monolithic prover in Sift, but
later found that IC3PO performs better. Our experience so far shows that IC3PO also outperforms
SWISS and DistAI. As new and more powerful monolithic provers become available, Sift can adopt
them to perform even larger refinement steps to further reduce manual effort. The next paragraph
gives a short overview of IC3PO.

IC3PO [GS21, GS] is a recently-developed prover that uses the synergistic relationship between
symmetry and quantification to prove the safety of distributed protocols fully automatically, by
inferring compact inductive invariants with both universal and existential quantifiers. At its core,
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Figure III.1: Summary of the Sift methodology. White boxes are fully automated, gray boxes
indicate a trivial syntax change, and black boxes denote manual effort.

IC3PO exploits the inherent regularity present in distributed protocols to significantly scale up
IC3/PDR-style verification [Bra11, EMB11] over finite instances of the protocol. Starting with an
initial instance size, IC3PO systematically computes quantified inductive invariants over protocol
instances of increasing sizes, until protocol behaviors saturate, concluding with an inductive proof
that works for all instances of the protocol.

3.3 Overview of Sift

This chapter introduces Sift, a methodology that allows reasoning about complex systems while
still using a large degree of automation in proofs. Sift accomplishes this by employing a small
amount of manual effort, when needed, to split the system into a number of layers, where each layer
can be shown to refine the layer above it.

Figure III.1 shows an overview of the Sift methodology. Initially, the developer starts with an
implementation of the system, along with a specification, both written in the Ivy language [PMP+16].
If one were to use the Ivy prover, they would have to provide a manual proof of refinement between
the specification and implementation. Sift, instead, introduces our encapsulation technique to merge
the two layers into a single proof that our monolithic prover can attempt to solve.

Indeed, the first step of the Sift methodology is to attempt to prove refinement directly between
the implementation and specification layers. If this proof is too much for the prover to handle, the
developer adds an additional layer of refinement and tries again. Each additional layer of refinement
splits the proof into smaller pieces that are more amenable to automation; but, of course, this comes
at the cost of some manual effort, as the developer must manually introduce the new layer.

31



Algorithm 3 Specification of the Sharded Hash Table (SHT)
1 function requests(R : request) : bool
2 function replies(R : reply) : bool
3 function map(K : key) : value
4 initialization {
5 ∀R. requests(R)← false
6 ∀R. replies(R)← false
7 ∀K. map(K)← 0
8 }
9 action commit(req : request, rep : reply) = {

10 require rep.type = req.type
11 require rep.src = req.src
12 require rep.key = req.key
13 require req.type = read⇒ rep.data = map(req.key)
14 if ¬requests(req) { ▷ require ¬requests(req)
15 if req.type = write {
16 map(req.key)← req.data
17 };
18 requests(req)← true;
19 replies(rep)← true;
20 }
21 }

In the next two sections, we describe the Sift methodology in more detail. Section 3.4 describes
how we can use the automation of a monolithic prover to perform a refinement proof between two
layers (steps 1 - 4 in Figure III.1). Section 3.5 presents the methodology for adding intermediate
layers to the refinement structure (step 5 ).

Case Study: Sharded Hash Table Throughout this chapter, we use the example of a Sharded
Hash Table application (SHT) [HHK+15] to illustrate the Sift methodology. SHT implements a
distributed key-value store, and consists of two layers, a specification layer and an implementation
layer. As shown in Algorithm 3, the specification layer describes a key-value store as a simple
map from keys to values. It maintains two local sets (modeled as boolean-valued functions, lines 1
and 2) to keep track of which messages (requests and replies) have been sent. Initially, all keys
are mapped to 0, and no messages have been sent. Requests can either be read requests or write
requests. The only transition allowed by this specification is to commit a request req and its reply
rep: i.e., perform the update (if this is a write request) and mark the corresponding messages as
sent by setting requests(req) and replies(rep) to true. The specification layer consists of 32 lines
of Ivy code. In the implementation layer, every node contains a local hash table containing some
subset of the total keys in the system and a delegation map. The node uses the delegation map to
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Figure III.2: Encapsulation: to enable automatic refinement proofs, the state of the upper layer (A,
B, C) is encapsulated inside the state of the lower layer (1, 2, 3, 4) refining it.

maintain its knowledge of where keys are stored on remote nodes. Each node can service a request
using get and set actions for the keys that are locally stored, or use the delegation map to look
up and forward requests to the appropriate node in the system if the requested key is not local.
Nodes at the implementation layer can dynamically exchange sets of keys they are responsible
for, by exchanging delegate messages (each carrying a key-value pair) among themselves. The
implementation layer consists of 127 lines of Ivy code.

We aim to show that the implementation layer refines the specification, i.e., that any observable
output produced by any execution of the implementation layer can also be produced by some
execution of the specification. A key property is that for every key owned by a node at the
implementation layer, the data matches the value stored in the specification. Additionally, every key
is either owned by exactly one node in the system, or part of an in-flight delegate message.

3.4 Refinement-Guided Automation

We first explain the key high-level idea behind automating refinement proofs (step 4 in Fig. III.1,
Section 3.4.1). We then present what modifications Sift makes to the layers of a target system
description to ensure that the correspondences between the layers are correctly represented before a
proof is attempted (steps 1 - 3 in Fig. III.1, Section 3.4.2).

3.4.1 From Monolithic Proofs to Refinement

A key feature of Sift is that it uses the automation of monolithic provers to perform more
complex, refinement-based proofs. As we explained in Section 3.1, monolithic (i.e. single-layer)
proofs do not scale to complex systems, either due to complexity or undecidability. Yet, monolithic
proofs are the only type of proof supported by these provers. The first innovation of Sift is that it
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Algorithm 4 Example of encapsulation in SHT
1 action set(req : request) = {
2 require req.type = write
3 owner ← delegation.get owner(req.key)
4 if owner = me {
5 hash(req.k)← req.v
6 rep← create reply(req)
7 call spec.commit(req, rep)
8 call network.send reply(rep)
9 } else {

10 call network.forward request(req, owner)
11 }
12 }

converts a refinement proof between two layers into a monolithic proof which can be given as input
to any monolithic prover.

We perform this transformation using our encapsulation technique, depicted in Figure III.2. The
idea of encapsulation is simple: if we want to show that a lower layer L refines an upper layer U ,
then we augment the state of L with the state of U . Additionally, whenever the state machine L

makes a transition, the encapsulated U state also makes an upper-layer transition. In practice, this
is expressed as a function call in Ivy, where the lower layer invokes a transition on its encapsulated
state. For example, in the SHT application, the lower layer includes an encapsulated spec object (see
Algorithm 3) and a lower-layer transition calls spec.commit() if it refines the commit transition of
the upper layer.

Such calls require a little manual effort to be inserted into the lower layer. But such effort is
reasonable because when implementing these layers, most developers have intuition on how the
upper layer takes a transition. Also, there can be multiple places to place such a call, so the proof is
not very sensitive to this choice, and the monolithic prover can provide a counter-example to guide
the developer if this call is placed incorrectly.

Encapsulating the upper-layer state into the lower layer effectively creates a single, augmented

lower layer that can be used to reason about the relation between the upper and lower layer.
Most importantly, we can now leverage traditional single-layer provers to show whether a certain
property—the refinement property—holds for this augmented lower layer.

Case study: refinement proof for the SHT Algorithm 4 shows a simple example of encapsulation
at the implementation layer of SHT. To perform this encapsulation, the implementation layer imports
(in Ivy) the specification layer. In this example of handling a set request, the program checks if this
node (me) is the owner of the key in the request (line 4). If it is the owner, the implementation layer
internally makes a call (line 7) to spec.commit (shown in Algorithm 3). This transition corresponds
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to the transition from state 1 to state 2 in Figure III.2: the implementation layer transitions from state
1 to state 2, while each of these states encapsulates the corresponding upper layer state, indicating a
transition from state A to state B at the upper layer.

If this node is not the owner, it simply redirects the request to the owner. Such an implemen-
tation layer transition does not entail a specification layer transition and so the code does not call
spec.commit or any specification-level function. This is usually called a “stutterring” step of the
specification layer—essentially a no-op—and corresponds to the transition from state 2 to state 3 in
Figure III.2.

To prove that the implementation refines the specification, we ask our monolithic prover to
prove a simple property:

∀R : reply,N : node. net.replied(R,N) =⇒ spec.replies(R)

This property says that any reply R sent to any node N at the network (implementation level) can
only be present if the same reply R is present at the specification level. Since replies are the only
observable outputs of the system, it ensures that every output of the implementation is also an output
of the specification, thus ensuring that the implementation is indeed a refinement of the specification.
Note that the reply message at the implementation layer is part of the network and thus modeled as
net.replied(M,N).

3.4.2 Enforcing pre- and postconditions across layers

When calling functions from a lower layer to an upper layer, an upper-layer transition’s pre-
condition must be met. The preconditions of the callee (in the upper layer) become postconditions
(assertions) for the caller (in the lower layer) to check. For example, on line 13 of SHT’s specifica-
tion (Algorithm 3), before committing a request, the precondition concerning the request, req, and
the corresponding reply, rep, must be met:

req.type = read =⇒ rep.data = map(req.key)

This precondition ensures that every time a read request is committed, the data contained in the
response must correspond to the data in the abstract map. Since it is the caller’s responsibility to
guarantee that this precondition is met before committing the request, this precondition is effectively
an assertion that needs to be checked by the monolithic prover. Unfortunately, the current state-of-
the-art monolithic provers do not support checking these kinds of assertions, and can only find an
inductive invariant for a safety property.

If we attempt to ignore this assertion check and let the monolithic prover prove the refinement
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property as is, the result could be unsound—i.e., the proof may go through even if the implementation
is buggy. For example, let us consider again the refinement property for SHT:

∀R : reply,D : node. net.replied(R,D) =⇒ spec.replies(R)

Without precondition checks, a buggy implementation can send a bogus reply message and call
commit at the encapsulated specification layer. This would make the refinement property trivially
inductive—since the commit call adds the message to the replies—without guaranteeing that
contents of that message are correct.

To avoid this problem, Sift needs to consider the assertions in function calls to maintain
soundness in automated refinement proofs. In the rest of this section, we explain how we transform
the assertions to either conditionals (if/else) or invariants that the monolithic prover can reason
about.

3.4.2.1 Converting Assertions to Conditionals

A straightforward approach to model assertions in function calls is to convert the callee to an
always-enabled action using a conditional if/else block [HHK+17]. The developer can manually
rewrite an assertion P as follows: if P holds, take the transition; otherwise, do nothing. In this
context, the entire if/else block is always-enabled, in that it has no preconditions and can always be
taken.

For example, the original SHT specification had a precondition ¬requests(req) in the speci-
fication of the commit action, which we convert to an if-statement (Algorithm 3, line 14). This
precondition ensures that the specification can never execute the same request twice.

The benefit of this approach is that it does not rely on any understanding of the system, which
makes it very easy to implement. It has, however, two downsides. First, adding an if/else block
in place of a precondition makes the proof a little harder for monolithic provers, since it is harder
to find an inductive invariant for a weaker problem. Second, if the if-statement refers to ghost
state—i.e., proof-related state that is not compiled to an executable—such as the sets corresponding
to network messages, these if-statements are not compiled directly to executable code. Therefore,
if there are any assertions that refer to ghost states at the implementation layer, we cannot rely on
the approach of converting assertions to conditionals. In these cases, we need to convert them to
invariants, as we describe below.

3.4.2.2 Converting Assertions to Invariants

A second, more involved approach to the problem is to convert these assertions into invariants.
Doing so requires human intuition but reduces the difficulty for the monolithic prover. For every
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assertion that needs to be checked, there must be an invariant to support its proof. The key idea is
simple: a programmer can trace backward through a function call from the upper layer (the callee)
to the lower layer (the caller) to find the enabling precondition. For the SHT precondition example
above, we observe that only the node who owns the key can commit the reply. Leveraging this
observation, we can construct an invariant that if node N thinks it is the owner of key K, the local
value for key K at node N , which forms the reply, must match the value in the spec:

∀N : node,K : key. server(N).delmap(K,N) =⇒

server(N).hash(K) = spec.map(K)

where server(N).delmap(K,N) indicates that from the perspective of server N , the owner of key
K is N (delmap stands for the delegation map). By maintaining this invariant, Sift can ensure
the associated assertion will never be violated during the execution of the system. Note that the
invariant is not necessarily inductive, but Sift leverages the automation of the monolithic prover to
complete the proof.

Case study: converting assertions for the SHT The manual effort involved in the SHT proof
requires converting seven assertions into two if-statements and five invariants. The assertion
¬requests(r1) is converted from an assertion to an if-statement, as described in Section 3.4.2.1.
On the other hand, the first three assertions (lines 10 to 12 in Algorithm 3) are already enforced by
the implementation layer and do not need to be converted. We could further use the methodology
described above in Section 3.4.2.2 to convert the fourth assertion (line 13) to an invariant, but it
turns out that monolithic provers are powerful enough to complete the proof even if we simply
convert it to a if-statement.

3.5 Introducing Intermediate Layers

We have discussed how to use automation to prove refinement between two layers. However,
sometimes, the automation provided by the monolithic prover is not powerful enough to prove the
desired refinement. This can happen either due to the complexity of the proof, or the presence of
undecidable reasoning. When faced with such complex proofs, monolithic provers will either time
out or run out of memory.

To perform such complex proofs, the solution is to introduce an intermediate layer (step 5

in Figure III.1), thereby splitting the proof into two simpler refinement proofs: one refinement
proof from the original lower layer to the intermediate layer, and another refinement proof from the
intermediate layer to the original upper layer. By repeatedly using this proof-splitting technique
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until every refinement proof is automated, we effectively execute a divide-and-conquer strategy that
allows us to tackle complicated refinements.

This idea is similar to IronFleet’s methodology of introducing an intermediate protocol layer
to simplify the proof. In IronFleet, however, the developer needed to both write an intermediate
layer and manually prove it correct. By contrast, Sift uses the automation of monolithic provers to
dispense with most of the latter manual effort of writing the proof, and only requires the user to
write intermediate layers—a much smaller effort than coming up with manual proofs.

Thankfully for developers, introducing an additional layer is done incrementally. The new layer
is essentially a variation of the layer above or below it: either a more detailed version of the layer
above it or a more abstract version of the layer below it. This helps keep the manual effort needed
to introduce such layers small.

In the rest of this section, we discuss the strategies that we have developed and used to introduce
intermediate layers, and walk through the process on a MultiPaxos example.

3.5.1 Intermediate Layers for Complexity

In most cases, the biggest challenge for a monolithic prover to automatically prove a refinement
is its complexity. If the system is too complex, the prover either times out or runs out of memory.
When this happens, we can split the refinement proof into two simpler refinement proofs by
introducing an intermediate layer. We list here a number of ways in which such a split can simplify
the proof burden. This list is extracted from our experience adding intermediate layers to facilitate
refinement, and is not meant to be a complete enumeration of all possible layer-splitting strategies.

Abstract Away Messages Not Needed for Safety. Some of the messages used in the implemen-
tation may only be needed for liveness or performance, but not for safety. When trying to prove
safety, those messages can be abstracted away in an intermediate layer: they are removed from the
intermediate layer but kept in the implementation layer—itself proven to be a refinement of the
intermediate layer.

For example, in MultiPaxos the current leader needs to periodically broadcast a heartbeat
message to indicate that it is still alive. This message is not needed for safety and can therefore be
removed in an intermediate layer—though it is preserved in the implementation layer. The resulting
intermediate layer is now simpler and thus easier to prove equivalent to the specification.

Merge Multiple Transitions into One Abstract Transition. Sometimes, the intermediate layer
can take an abstract transition which is broken into multiple transitions in the low-level implementa-
tion.
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For example, in MultiPaxos the learner can only receive one vote (two b message) from an
acceptor at a time. But what the learner really needs is a quorum of messages to learn a value. In
this case we can merge multiple transitions of receiving each message separately into one abstract
transition of receiving a quorum, and remove local variables for temporary results. This significantly
simplifies the intermediate layer, with fewer state variables and simpler transitions.

Simplify Local State and Requirements for Transitions. Implementation layers have to take
into account implementation constraints: for example, a node can only read its local state when
taking a transition; and it cannot access messages sitting in the network. But intermediate layers are
essentially proof constructs and thus do not need to respect such implementation constraints.

For example, in MultiPaxos, a node needs to maintain an explicit local history of previous
two b votes to construct its one b promise to a new leader, since a promise message depends on
previous votes. In an intermediate layer however, a node can directly access all sent messages in the
network, thus eliminating the need for this local history. Moreover, in an implementation a node
can only read its local history, thus requiring a proof that the local history is consistent with sent
messages. In the intermediate layer, since the node has access to all sent messages, it can directly
check that the one b promise is consistent with the vote messages, thus eliminating the need for
this proof. As a result, we can introduce a middle layer which reads the sent messages instead of
its local history. This layer is more abstract than the implementation, but more concrete than the
specification. Thus, the refinement from the implementation to the specification can be broken into
two simpler refinements.

3.5.2 Intermediate Layers for Decidability

When the verifier returns an explicit decidability error, it means our refinement is not in the
EPR decidable logic [Lew80] and may take forever to check. Such an issue is typically resolved by
introducing an intermediate layer and a ghost state (also known as a derived relation [PLSS17]) to
hide the existential quantifier creating the undecidability [PLSS17, TLM+18]. We apply a similar
technique in Sift.

For example, in MultiPaxos an acceptor needs to send its last votes for different slots in a one b

message to a new leader to decide what value to propose. When a proposer becomes a leader, it
needs to have a quorum of one b messages, resulting in the following ∀Round ∃V otes alternation:

∀N : Node,R : Round. quorum of(R).contains(N)

=⇒ ∃V : votes. one b(N,R, V )

The alternation of the ∀ and ∃ quantifiers, along with the inductive invariant, means that this
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proposition is outside the decidable logic of EPR. We leverage results from a followup work on
Ivy [TLM+18], and introduce an intermediate layer to abstract away the payload (previous votes),
thereby breaking the quantifier alternation. In this case, we only need an intermediate-layer state
joined round(N,R) to represent ∃V. one b(N,R, V ).

3.6 Evaluation

System Proof
Effort Refinement # of types Solution to

Preconditions
# of Clauses
in Invariant

Time
(sec)

Memory
(MB)

Leader Election < 5 min spec to impl 2 1 if-statement 6 196 1744
Distributed Lock < 5 min spec to impl 2 1 if-statement 8 111 425

Two-Phase Commit < 5 min spec to impl 4 3 if-statements 12 613 815

SHT < 30 min spec to impl 7
5 invariants,

2 if-statements 13 1021 856

Raft 1 person-
month

spec to layer 0 6 manual
layer 0 to layer 1 6 15 invariants 22 787 4178

layer 1 to impl 10
15 invariants,
1 if-statement 17 1239 2981

MultiPaxos

Previously
proved spec to layer 0 9 manual

3 person-
weeks

layer 0 to layer 1 9
7 invariants,

2 if-statements 12 49 249

layer 1 to layer 2 11
8 invariants,

8 if-statements 21 258 719

layer 2 to layer 3 11 19 invariants 28 841 1935
layer 3 to impl 14 19 invariants 25 196 398

Table III.1: Summary of our six distributed systems; “spec” stands for specification, “impl” stands
for implementation, and “layer i” represents intermediate layers. The number of different types that
are needed to express the state transition illustrates the complexity of different system.

We evaluate Sift by using it to formally verify the correctness of six implementations of
distributed systems: a leader election protocol (Section 3.6.1), a distributed lock protocol (Sec-
tion 3.6.2), a two-phase commit protocol (Section 3.6.3), a sharded hash table (SHT, Section 3.6.4),
and two consensus protocols: Raft (Section 3.6.5) and MultiPaxos (Section 3.6.6). We use Ivy to
implement these systems, and extract the executable code to C++ using Ivy’s built-in translator.
For the more complex systems (SHT, Raft and MultiPaxos), we also perform a performance evalua-
tion (Section 3.6.7) to demonstrate our automated approach does not impact the performance of
implementations.

For all systems in our evaluation, we consider crash failures and an asynchronous network,
which can arbitrarily delay, drop, or duplicate messages. Both of these can be easily implemented
in Ivy. Note that since Sift (like all its predecessors that also target automation) does not support
liveness proofs, it does not need to explicitly reason about crash failures—a crash results in a
machine no longer taking any steps and thus has no effect on safety properties.

40



We find that we are able to prove these complex systems with little manual effort within a
reasonable memory and time budget, using IC3PO [GS21] as our monolithic prover. Our verification
results are in Table III.1. The complexity of different systems is illustrated by the number of different
types that are needed to express state transitions for a given system. For example, for the leader
election protocol, there are just two types: node and id. In contrast, MultiPaxos contains 14 different
types, e.g., round, inst, value, time, node, etc.

We now give details about the proofs of the aforementioned systems, followed with a perfor-
mance evaluation (Section 3.6.7) of three of the more complex resulting implementations (i.e., SHT,
Raft and Paxos). We ran our performance experiments on a cluster where nodes have a 16-core
Intel Xeon E5-2667 v4 @3.20 GHz processor and are connected with a 10 GB Ethernet connection
running Ubuntu 16.04. All our implementations and artifacts can be found in GitHub [MAG+].

3.6.1 Leader Election

The leader election protocol aims to elect a unique leader from a ring with an unbounded
number of nodes with unique integer IDs [CR79, PMP+16, MGJ+19a]. The specification layer
dictates a single action the system can take: elect a node as the leader, under the condition that no
other node is already the leader. This layer contains 13 lines of Ivy code.

In the implementation layer, the nodes are totally ordered in a ring so that every node has a next
node. A node n has two valid actions: (a) periodically send its ID idn(n) to the next node in the
ring; or (b) forward an ID i received from its predecessor if i > idn(n). Once n receives its idn(n),
it knows that no other node in the system has a larger ID, and can now safely become the leader.
The implementation layer consists of 28 lines of Ivy code.

To prove refinement between the implementation and the specification layers, we ensure that
when a message stating that a leader is elected is sent in the implementation, the destination of the
message should correspond to the leader node in the specification.

We perform a manual, albeit trivial, syntactic change to the specification layer to convert one
precondition into an if-statement, which takes less than 5 minutes. We then simply use Sift’s
encapsulation technique to convert the refinement between the implementation and specification
layers into a monolithic proof that is proven automatically by IC3PO.

3.6.2 Distributed Lock

The distributed lock protocol [HHK+15, PMP+16, MGJ+19a] models an unbounded number
of nodes that transfer the ownership of a single lock. In this system, the ownership of a lock is
associated with an ever-increasing epoch: only one node can own the lock at each epoch. This
makes for a concise specification layer—12 lines of Ivy code—that only contains a lock history to
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indicate which node holds the lock at every epoch.
In the implementation layer, there are two possible transitions for a node: (a) transfer the lock if

it holds the lock; or (b) accept the lock and jump to a higher epoch by sending a locked message to
indicate ownership. This implementation has 35 lines of Ivy code.

The refinement property in this system is that all locked messages should have a corresponding
node in the specification layer’s lock history.

The only manual effort involved in this proof is converting one precondition to an if-statement
in the specification layer, which takes less than 5 minutes. After this transformation, we can use
the encapsulation technique from Sift to convert the refinement between the implementation and
specification layers into a monolithic proof, and prove the locked message is equivalent to the lock
history.

3.6.3 Two-Phase Commit

The two-phase commit protocol [Gra78] is used by a group of nodes, known as resource
managers (RMs), to coordinate the decision on whether to abort or commit a transaction. The RMs
vote to either commit or abort the proposed transaction and a transaction manager (TM) node is in
charge of coordinating the decision-making procedure.

The specification layer of this system uses the Transaction Commit protocol by Lamport [GL06,
Sec. 2] translated from TLA+ [Lam02] to Ivy. The safety property does not allow a node to commit
if another node aborts. The specification contains 54 lines of Ivy code.

The implementation of this system is an Ivy translation inspired by the TLA+ specification of
Two-Phase Commit [GL06, Sec. 3]. This layer introduces a special TM node, which coordinates
all RMs. An RM can send a Prepared message to the TM when transiting into the prepared state,
or unilaterally decide to abort. Upon receiving a Prepared message from every RM, the TM can
decide to commit, broadcasting a Commit message to every RM node. The receipt of a Commit

message from the TM allows an RM to decide to commit the transaction. This implementation of
two-phase commit has 110 lines of code.

The refinement property between the implementation and specification ensures that all RMs
commit or abort at the same time between the implementation and the specification.

After a trivial syntactic change converting preconditions to three if-statements in the specification
layer, this refinement property is proven automatically.

3.6.4 Sharded Hash Table (SHT)

The Sharded Hash Table protocol was previously introduced as a running example in Section 3.3.
Its specification is a simple key-value map processing read and write requests. We can automatically
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prove the refinement from the implementation to the specification, after converting preconditions
to five invariants and two if-statements to guide IC3PO, as detailed in Section 3.4.2. Compared to
IronKV (IronFleet’s implementation of SHT), we simplify the delegate messages by transferring
one key at a time. Transferring intervals of keys would require a loop iterating over keys and a loop
invariant [YRW+20, RWY+20], which cannot be found automatically by IC3PO.

The network interface for SHT is more complex than that of other systems. In particular, SHT’s
network interface requires that messages are not delivered twice, so that requests can only be
committed once and only one node at a time can own a key. As this is not part of refinement, we
leverage an existing proof [McM] for these requirements.

3.6.5 Raft

Raft [OO14] implements a shared log among nodes, which can be used to implement a fault-
tolerant distributed service. The log is maintained as a set of (index, value) pairs.

Raft is a term-based protocol. In each term, a node can be elected as the leader, append values
to the log, and replicate its log to other nodes by sending an append message. For safety, each node
maintains its own log and only votes for a leader whose log is not earlier than its own. When the
leader receives reply messages for its append message from a majority of nodes , the leader can
consider all previous log entries committed. This strategy ensures that all future leaders contain the
committed log.

At the specification layer, Raft can commit a prefix to an index in the leader’s log and ensure
that only one value is committed at each index. The refinement property from the implementation
to the specification ensures that they have the same log.

3.6.5.1 Intermediate Layers and Proof Effort

Our Raft implementation is similar to the previous Ivy implementation of Raft [TLM+18] with
212 lines of code. Due to undecidability, we could not refine the implementation to the specification
directly. Instead, we build a first intermediate layer—layer 0—to separate the quantifier alternation
(as outlined in Section 3.5.2). We tried to prove the refinement from specification to layer 0
automatically, but the inductive invariant contains complex quantifier alternations, which IC3PO
was unable to handle. As a result, we manually prove the refinement from specification to layer 0.
The refinement from spec to layer 0 took two person-weeks (including understanding the protocol).
Layer 0 contains 143 lines of code.

From layer 0, the implementation is still too complex to refine directly using IC3PO. We
introduce another intermediate layer, layer 1, to help IC3PO automatically prove the refinement.
To write layer 1, we follow the strategies presented in Section 3.5, specifically by merging actions
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into one abstract action. In the abstract action a node can receive a quorum of messages at once,
rather than receiving each of them individually in separate transitions. Layer 1 changes 57 lines
from layer 0. We spent another two person-weeks to identify this intermediate layer and debug our
implementation.

Overall, we were able to complete the proof of Raft in one person month, which compares
favorably to the three person months needed by the original proof [TLM+18] written in Ivy. This
reduction was the result of using a much higher degree of automation, by splitting the proof into
layers and leveraging the power of IC3PO to prove each refinement between consecutive layers.

3.6.6 MultiPaxos

MultiPaxos [Lam98, Lam01] is a common consensus protocol that is widely used in industry
(e.g., Chubby [Bur06], Megastore [BBC+11], and Spanner [CDE+12]). However, MultiPaxos is
notoriously complex and difficult to verify.

At the specification level, MultiPaxos maintains an array of values; some that have been decided
(i.e., agreed upon and finalized) and some that are empty. The only possible transition in the
specification is to add a new decided value to this array. Similar to Raft, our refinement ensures that
the implementation maintains the same values as the array in the specification.

The implementation of MultiPaxos is very similar to that of Raft but uses different strategies to
ensure safety. In Raft, the leader can only be a node with the most up-to-date logs, while MultiPaxos
relies on the messages from other nodes to generate an up-to-date log for the new leader.

3.6.6.1 Intermediate Layers and Proof Effort

Our design of the MultiPaxos protocol is inspired by previous work on expressing Paxos and
MultiPaxos in the EPR decidable logic [PLSS17, TLM+18]. Our evaluation uses the MultiPaxos
implementation from [TLM+18], removing certain re-transmissions that are unnecessary for safety
to simplify the refinement.

Since proving refinement directly between the implementation layer and the specification layer
would introduce undecidability (see Section 3.5.2), we initially introduce a single intermediate layer,
layer 0, to circumvent this undecidability. Moreover, as the refinement from the specification to
layer 0 contains complex quantifier alternations that are too hard for IC3PO to prove automatically,
we borrow the existing manual proof from Ivy. Layer 0 contains 88 lines of Ivy code.

After addressing undecidability concerns through layer 0, we found that a direct refinement
from the implementation to layer 0 remains infeasible for IC3PO. Using our divide-and-conquer
technique, we added three additional intermediate layers to simplify this refinement. Following the
strategies outlined in Section 3.5.1, we first added a layer 1 that abstracts away liveness messages
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and merges transitions to receive a quorum of messages. We augmented this by introducing a layer
2 that uses a local variable to track the current round, receives one two b message, and keeps track
of when a valid quorum can be formed. We then introduced a final intermediate layer that more
closely resembles the implementation by using an array to track previous voted values for acceptors,
and restricting a node to only receive one message during a transition.

With the addition of the four intermediate layers, Sift splits the complex refinement proof
into manageable pieces, where each refinement between layers is amenable to automated verifi-
cation. Producing the three intermediate layers (layers 1, 2, and 3) and converting the necessary
preconditions to invariants is still a non-trivial task which takes about two person-weeks. About
one third of the time is spent waiting for IC3PO to run out of time or memory, which indicates
that another layer is needed (step 5 in Figure III.1). While non-negligible, this manual effort is
significantly less than the original attempt in Ivy, which was two person-months to refine layer 0 to
the implementation [TLM+18].

3.6.7 Performance Evaluation

3.6.7.1 SHT Performance

Figure III.3: Sift SHT performance evaluation

We compare the throughput and latency of our verified Sift implementation of SHT with
IronKV [HHK+15], as shown in Figure III.3. IronKV is the closest verified implementation of a
SHT that we could compare against. The SHT cluster was preloaded with 1,000 keys delegated
evenly across the three nodes and serviced requests from an increasing number of clients in a closed
loop. In one experiment, client processes send an even 50/50 mix of randomized GET and SET
requests. We further increase the percentage of GET requests to 90%. IronKV scales about 25%
better than our version of SHT. The disparity in performance between these two systems can be
attributed to both unoptimized generated C++ from Ivy and design choices made in IronKV, which
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added extra manual proof complexity for the sake of performance purposes, such as an efficient
delegation map data structure that each node maintains and consists of 833 lines of Dafny code.

3.6.7.2 Raft and MultiPaxos Performance

Figure III.4: Sift Raft and MultiPaxos performance evaluation

We evaluated the performance of the verified Sift implementations of Raft and MultiPaxos by
varying the load of each system with an increasing number of clients submitting requests in a closed
loop, as shown in Figure III.4. For both systems, the experimental setup consists of three replicas
on separate machines, with a fourth machine containing the client processes.

We tried to compare the performance of these systems with IronRSL, IronFleet’s verified
Paxos-based replicated state machine library, but the performance results of IronRSL were not
reproducible for a direct comparison. By re-running the original implementation from the Iron-
Fleet paper [HHK+15], we found the performance for IronRSL to be lower than originally re-
ported [HHK+15, Sec. 7]1. The performance of our implementation of MultiPaxos, which does not
support batching, is comparable to the results reported for IronRSL in non-batch mode [HHK+15,
Fig. 13].

We do compare both Raft and MultiPaxos with the Ivy-based manually-verified implementa-
tions [TLM+18]. The performance of Raft is almost identical to the version of Raft, but we find
that our MultiPaxos system exceeds the performance of MultiPaxos from that work. We think the
main reason is that we simplified some unnecessary transitions, such as periodical retransmit of
previous two a messages for undecided slots. These results show that the automation and reduced
proof effort gained by using Sift has no negative impact on the performance of either system.

1Even after close discussions with two of the IronFleet authors, this discrepancy was not resolved. They attributed
this to possible code changes between what was originally evaluated and the currently available code.
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3.7 Limitations and Future Directions

Our experience with Sift suggests that it advances what is possible in the realm of automated
verification of complex systems. For all of its successes, however, there are still more steps to be
taken in this direction.

• Automating simple transformations. While Sift greatly increases the automation of complex
refinement proofs, parts of the methodology still require manual effort that could potentially be
automated, such as converting assertions to if-statements and transforming to invariants through
automatic computation of weakest preconditions [Dij75].
• Loop invariants. Certain complex systems, such as SHT, may require loop invariants to prove

optimizations that are added to enhance the performance of executable code. Loop invariants
are similar to regular inductive invariants, in that both are inductive under some transitions. As
described in Sections 3.6.4 and 3.6.6.1, any loop invariant in Sift must currently be written manually.
In the future, we hope to add support for automatic deriviation of loop invariants in Sift, by building
further on the existing literature [YRW+20, RWY+20].
• Leveraging multiple monolithic provers. As shown in recent works [GS21, HHMP21,

YTG+21], different monolithic provers show complementary strengths in different scenarios. Since
the design of Sift is independent of the choice of monolithic prover, we plan to employ a portfolio
of monolithic provers in parallel to derive refinement proofs with even higher scalability.

3.8 Conclusion

This chapter introduces Sift, a novel two-tier methodology that combines the power of re-
finement with the ability to automate proofs. Sift decomposes the proofs of complex distributed
implementations into a number of refinement steps, each of which is amenable to automation.
We use Sift to prove the correctness of six distributed implementations—including the notorious
MultiPaxos—none of which had an automated proof before. Our evaluation shows that this combi-
nation of refinement and automation lets us verify complex distributed implementations with little
manual effort.
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CHAPTER IV

Automated Verification of Efficient Implementations

With refinement proofs in Sift, more complex systems can benefit from proof automation with a
small amount of manual effort. But this approach still relies on Ivy to generate the executable C++
code from the implementation. To provide more freedom for the developer implementing a verified
distributed system, Cruiser introduces automation into traditional theorem provers to verify complex
distributed systems. Comparing to existing verification approaches, Cruiser identifies which part
of the implementation requires human knowledge from the developer, and asks the developer to
provide only the necessary information at the protocol layer. After that, Cruiser can automatically
generate a heap-based efficient implementation from such a protocol layer.

Compared to the predecessor, IronFleet, Cruiser requires the developer to spend a little more
effort to specify the function to generate the next state from the current state at the protocol layer.
However, introducing such a protocol layer can benefit the verification of a distributed system in
multiple ways. First, such a protocol layer is very close to the model under Sift (with the help
of decidable logic from Ivy), which means we can leverage the refinement proof from Sift to
simplify the effort needed to verify the safety of such a protocol. Also, once the developer models
all protocol transitions in functions, Cruiser is now capable of generating an efficient heap-based
implementation automatically. Even more, the implementation Cruiser generates is very close to the
functions the developer implements at the protocol layer. Thus, the developer can easily understand
the implementation and even apply further optimizations.

Overall, we make the following contributions in this chapter:
• We introduce a new verification framework with a function-style protocol layer, which guides

the developer to implement and prove their protocol.
• Under the new verification framework, we present a novel approach to automatically generate

an efficient heap-based implementation and its refinement proof.
• We implemented our algorithm in Cruiser, and evaluated its effectiveness with three distributed

implementations. We found that it allows us to prove the correctness with less manual effort,
and the generated implementations reach good performance.

In this chapter, we explain the details of this methodology. Section 4.1 tells why decidable logic

48



is inefficient, and Section 4.2 provides some background for our baseline system. Section 4.3 gives
an overview of Cruiser. Section 4.4 introduces the new protocol layer in our verification framework
of Cruiser and Section 4.5 shows how to generate the implementation from our function-styled
protocol layer. Section 4.6 evaluates the effectiveness of using Cruiser to verify a number of
distributed implementations. Section 4.7 presents the limitations of Cruiser and discusses future
work, and Section 4.8 concludes this chapter.

4.1 Decidable Logic Is Not Enough

A lot of research focuses on making automation for formal verification. Ivy uses an extension of
EPR [PdMB10] to reduce the manual effort when writing the inductive proof. I4 and Sift also follow
this principle and use Ivy and decidable logic to automate the process of verifying a distributed
system. Unfortunately, such automation can restrict the developer from performance for a number
of reasons.

First of all, decidable logic has poor support for the heap. Real programs perform complex heap
manipulation for the sake of performance. Such programs are commonly modeled by separation
logic [Rey02]. Unfortunately, how to use decidable logic with separation logic is still an open
problem. Although some research combines linked-list with decidable logic to automate the
verification [BCO04, PWZ13], with existing tools, we don’t know how to use heap to optimize the
performance of arbitrary systems with automation from decidable logic.

To use efficient heap data structures, Ivy chose to use trusted interfaces for C++ classes. In that
design, the developer can specify the functionality of an interface, and trust the implementation
matches that specification. This is an efficient design for simple systems. But when it goes to even
moderate systems with real data stored, the trusted specification becomes a hidden bomb for the
safety of the whole system. For example, when we were using a native vector from C++ STL, the
Ivy trusted interface didn’t model the update correctly, and that ended up with an incorrect proof for
both Raft and MultiPaxos. A potential solution to this could be a model checker to validate that the
C++ implementation matches the Ivy specification. But implementing such a model checker for
C++ STL, or even arbitrary user-defined classes can still be challenging, and increases the trusted
computing base for the proof. As the system becomes more complex, the chance of introducing an
incorrect specification of trusted data structure would be larger, and the correctness of the whole
proof becomes undermined.

Besides the trade-off between the heap data structure and the size of the trusted computing base,
EPR does a poor job with arithmetic. In Ivy, it’s really hard to model any operation of integers:
such an operation would result in a function from integer to integer, which causes a self-loop, and
breaks the decidability. To bypass this problem, Ivy provides a relation to get the successor of an
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integer. For more complex arithmetic, such as multiplication and division, it’s really hard to model
them in Ivy.

Finally, automation from tools like Ivy can also be a limitation for some convenient coding
styles. To automate the process of reasoning about a function call, Ivy automatically inlines the
callee into the caller. In this way, the developer doesn’t need to specify any pre- and post-conditions
for a function, thus reducing the task when writing a proof. But this eliminates the possibility
of recursion completely, which is common when implementing a system efficiently, because Ivy
couldn’t inline a function to itself. Sometimes, the developer can use a while loop to simulate the
stack and perform the recursion. But some algorithms, such as the depth-first search, can be difficult
to implement with a loop. This solution contradicts the intention of reducing manual effort.

As a result, we found that the implementation from Ivy usually shows lower performance
comparing with manual proofs like IronFleet (as shown in Figure III.3). And this performance gap
couldn’t be easily filled by manual optimizations and proof. Optimizing the heap to store either the
delegation or the actual hash table requires trusting a new data structure.

When we turn our eyes to the successful verification of highly optimized implementation,
IronFleet [HHK+15, HHK+17], we noticed that they use a three-layer structure to prove their
high-performance implementation in Dafny, which still relies on the developer the provide the
whole proof. They insert a protocol layer between the implementation and the specification, where
the protocol uses a functional manner and immutable data structures so that the developer can easily
reason about the inductive invariant and refine the state to the specification. After that, they show
that the implementation meets the protocol.

We noticed that the first refinement is very similar to Sift, where everything is modeled with
the immutable datatype. Thus, we can transform our approach and inductive invariant from Sift to
IronFleet. However, the second part is still an open problem. There are not any existing research
answers on how we can automate the process of refining an efficient implementation into an abstract
protocol. Even worse, there is even no clear guidance about how we should build such a protocol
layer.

To simplify the task of verifying complex implementations, we propose a new framework,
Cruiser, to generate the implementation and its proof in Dafny. In Cruiser, we specify how the
developer should implement the protocol layer with the help of immutable datatype, and then
generate a heap-based implementation along with its proof automatically.

4.2 Background: IronFleet Style Refinement

In this section, we introduce our predecessor, IronFleet style refinement, which uses Dafny to
verify a high-performance distributed system.
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IronFleet uses a three-layer refinement to show that the implementation is equivalent to a
specification. At the specification layer, the developer defines a centralized state machine with two
predicates: its initialization ServiceInit(s, servers) and transition ServiceNext(s, s’). ServiceInit(s,

servers) returns true when state s is a valid initial state under a given set of servers, and ServiceNext(s,

s’) is true when current state s has a valid transition to a next state s’.

Algorithm 5 Implementation definition in IronFleet
1 type HostState
2 predicate HostInit(s:HostState, config:seq⟨EndPoint⟩, id:EndPoint)
3 predicate HostNext(s:HostState, s’:HostState, ios:seq⟨NetEvent⟩)

4 method HostInitImpl(ghost env:HostEnvironment, netc:NetClient, config:Config)
5 returns (ok:bool, s:HostState)
6 requires ...
7 ensures ok =⇒ HostInit(s, config, netc.myID)
8 ensures ...

9 method HostNextImpl(ghost env:HostEnvironment, s:HostState)
10 returns (ok:bool, s’:HostState. ghost ios:seq⟨NetEvent⟩)
11 requires ...
12 ensures ok =⇒ HostNext(s, s’, ios)
13 ensures ...

To perform an end-to-end refinement for the implementation, IronFleet defines the refinement
property as the message correspondence directly from the implementation to the specification,
the service layer. Thus, IronFleet only provides a framework for the implementation, but not the
protocol layer. In the implementation layer, IronFleet separates the proof predicate from the actual
execution method. As shown in Algorithm 5, The developer first define the initialization HostInit(s,

config, id) and the transition HostNext(s, s’, IOs) as the predicates used in the proof, and then shows
that the implementation HostInitImpl and HostNextImpl satisfies these predicates.

To refine the implementation layer to the specification layer, IronFleet defines the ServiceCorre-

spondence predicate to validate the correspondence between the network packets and the service
state. More specifically, IronFleet proves that given a valid behavior of the system state, there is a
corresponding behavior of the service state (Algorithm 6). To prove such a refinement, IronFleet
first extracts the implementation layer into a protocol layer. Such a protocol layer needs to be
simple and abstract, which can be easily proved. For example, IronFleet protocol uses unbounded
mathematical integers, immutable types, etc. Within this protocol layer, IronFleet performs an
inductive proof: using a set of inductive invariants to show that the protocol messages match the
specification. Once the ServiceCorrespondence between the real packets and the specification can
be proven, there is no need to trust the protocol layer.
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Algorithm 6 Refinement proof in IronFleet
1 lemma RefinementProof(servers: seq⟨EndPoint⟩, dp: seq⟨DState⟩)
2 returns (sb: seq⟨ServiceState⟩)
3 requires |dp| > 0
4 requires ProtocolInit(dp[0], servers)
5 requires ∀ i. 0 ≤ i < |dp| - 1 =⇒ ProtocolNext(dp[i], dp[i+1])

6 ensures |dp| == |sb|
7 ensures ServiceInit(sb[0], servers)
8 ensures ∀ i. 0 ≤ i < |sb| - 1 =⇒ sb[i] == sb[i+1] ∨ ServiceNext(sb[i], sb[i+1])
9 ensures ∀ i. 0 ≤ i < |sb| =⇒ ServiceCorrespondence(dp[i].sentPackets, sb[i])

Besides the safety property (the refinement from the implementation to the specification),
IronFleet also provides a liveness proof of the system. More specifically, IronFleet proves that if
a client sends a request, and the service is running correctly, eventually there will be a reply for
the request. Such a proof requires a combination of TLA behavior and fairness assumption with
always-enabled actions. As a result, all these liveness proof operates on the untrusted protocol layer.

Despite the satisfying properties IronFleet can prove, IronFleet heavily relies on the developer
to complete all the proof, which requires a lot of manual effort.

4.3 Overview of Cruiser

To simplify the effort in proving a high-performance implementation like IronFleet, Cruiser first
provides a new protocol layer to specify and implement the protocol in functions. The developer
needs to manually specify the protocol layer, and prove the refinement from the protocol to the
specification. After that, Cruiser can generate the implementation for the protocol automatically,
along with the refinement proof.

For the first part, Cruiser introduces a protocol layer into the verification framework. As
IronFleet performs the end-to-end refinement from the implementation to the specification, there is
not a clear framework on implementing the protocol layer in between. With Cruiser, our refinement
goes from the protocol to the specification. Thus, we added a new environment for the protocol layer,
constructing a distributed state machine, which can be refined to the specification state machine.
For the simplicity of the proof, we leave all states in the protocol as immutable datatypes.

After the developer has proved the refinement from the protocol to the specification, Cruiser
can automatically generate an efficient implementation and its proof. Here, we reused the network
abstraction and the implementation model from IronFleet. As we don’t want the developer to
have an ultimate understanding about all the details of the implementation and its relation to the
protocol, Cruiser automatically generates the correspondence relation between the implementation
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and the protocol. We prove that for all messages in the real implementation, the protocol also
contains the abstracted message; for all messages in the protocol, there exists a message in the
real network which can be abstracted to it. In this way, the only thing that needs to be trusted in
the implementation is simply the abstract function from the network packets to abstract protocol
packets.

4.4 Adding the Protocol Layer

From Section 4.3, we’ve had a glance at how to use Cruiser to generate and verify a distributed
implementation. In this section, we’ll introduce the design principle of our protocol layer and how
to write a proof for it under the new framework.

4.4.1 Refinement from Protocol to Specification

The first and manual step in Cruiser is to prove the refinement from the protocol to the spec-
ification. To show this, the developer needs to implement two state machines: a simple, concise
state machine for the specification of the target system, and a detailed state machine for the protocol
layer. Our specification layer is the same as IronFleet. The developer defines the service state, the
initialization of the state machine (ServiceInit(s, servers)) given the set of server addresses and the
transition (ServiceNext(s, s’)) between the current state s and the next state s′.

Similar to IronFleet and Sift, Cruiser uses the outgoing messages to define the refinement
property, so that the developer doesn’t need to trust the refinement function to lift the state of
the lower layer to the upper layer. In the refinement from the protocol to the specification, as
the ServiceState doesn’t use the network to generate observable outputs, the refinement property
(ServiceCorrespondence(set⟨abstractPkt⟩, serviceState)) becomes a relation between the set of
packets at the protocol layer and the service state.

After defining the specification of the target system, Cruiser provides a framework for the
developer to implement the protocol layer in a function manner. Algorithm 7 shows the interfaces
at the protocol level.

The developer first defines the state in each host in a datatype Node at line 1 and a predicate
NodeValid to validate the wellformedness of the state in line 2. Such validation could simplify some
implementation checks. For example, we can ensure that all values in the hash table would not
exceed the length restriction. After that, the developer provides how to initialize such a valid state
from a Config in line 3. Such initialization function requires the config to be valid, and ensures the
initialized return node to be valid.

After the initialization, the developer defines the state transition for the node in line 7. Such
transition takes four parameters: a constant Config, the current state s, an optional recv packet, and
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Algorithm 7 Protocol definition in Cruiser
1 type Node
2 predicate NodeValid(config: Config, s:Node)

3 function NodeInit(config: Config) : (ret: Node)
4 requires ConfigValid(config)
5 ensures NodeValid(ret)

6 predicate ValidTransition(s:Node,
recv: Option⟨LPacket⟨EndPoint, Message⟩⟩,
clock: Option⟨uint64⟩)

7 function NodeNext(config: Config,
s: Node,
recv: Option⟨LPacket⟨EndPoint, Message⟩⟩,
clock: Option⟨uint64⟩)

returns (s’ : Node,
outgoingPkts : seq⟨LPacket⟨EndPoint, Message⟩⟩)

8 requires ConfigValid(config)
9 requires NodeValid(config, s)

10 requires ValidTransition(s, recv, clock)

11 ensures NodeValid(config, s’)
12 ensures ∀ pkt ∈ outgoingPkts. pkt.src == config.myEndPoint
13 ensures ∀ pkt ∈ outgoingPkts. MarshallableMessage(pkt.msg)

an optional clock. In such transitions, we only allow the developer to receive at most one packet and
read the clock at most once. The restriction about receiving packets comes from the implementation.
In the implementation, a node can only receive one packet and then takes the transitions. If it wants
to wait for the next, the unreliable network may never deliver that packet. As for the clock, reading
the clock is a non-mover in reduction, which means it can not commute with any other execution in
remote processes. Thus, reading the clock twice violates the reduction proof, and the transition is
not atomic anymore.

Typically, an implementation doesn’t always rely on an incoming packet and the clock to take
the transition. To be compatible with both cases, we chose optional values to present the received
packet and the clock. If this transition receives the packet, there is a packet in recv, otherwise, there
is no value in it. The same applies to clock. However, this model requires the developer to explicitly
specify when there is a value in recv or clock. We provide a predicate ValidTransition to do that.

There are other restrictions to ensure the transition is valid. First, the starting state, s, must
be a valid node. As a result, the end state, s’, should also be a valid state. Also, the provided
constants config should be a valid config. For the outgoing messages pkts, there are two main
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constraints. First, all outgoing packets should have the same source as the myEndPoint in the config.
Such restriction ensures that a node can never “pretend” to be another node and send a message,
which is also required in the implementation. Another restriction comes from the implementation
directly: all outgoing messages must be marshallable. As we need to marshal such messages in the
implementation, all outgoing messages need to be marshaled to an array of bytes, which can be sent
through the network. Thus, we have some constraints, mostly the constraint about the size of the
message, to ensure this packet can be marshaled and sent to the real network.

To show the refinement from the protocol to the specification, we need to make such protocol
implementation distributed to multiple machines and interact with each other. Here, we follow the
idea of IronFleet to create a global view of the system. In this global protocol state, we have a map
from each node to their config and node state. Also, we maintain an environment to keep track of
the clock time and all network messages. At each step, the hosts can pick one host and perform the
transition. However, the host may not always take a transition specified by NodeNext, as the receive
event may not always return a packet. Sometimes, the node may still try to receive a packet, but
there may not be any packet to receive. In this case, the node can not perform a normal transition.
Instead, we model a special transition when receive timeout happens. In that case, the node can
simply stay in the previous state and do nothing.

Now that we have implemented the two state machines for the specification and the protocol.
Cruiser still relies on the developer to prove the refinement from the protocol to the specification
manually. We use a similar lemma as IronFleet in Algorithm 6 to show that given a random
execution of the protocol, it finds an execution of the service state such that the correspondence
holds between the protocol packets and the service state.

This refinement proof is the most challenging part of writing a proof. As we mentioned in
Section 4.1, such refinement proof is very similar to Sift. As a result, the developer can leverage
some automation from Sift to simplify the work. More specifically, we noticed that all inductive
invariants from Sift also work in Cruiser, and these invariants are mostly inductive. We only need to
add several Dafny-specific invariants to maintain the data structure to make it inductive. Although
the inductive invariant is not difficult to find, Dafny can not automatically validate these invariants.
As a result, we still spend manual effort writing lemmas to prove each invariant is inductive.

4.4.2 Refinement from Implementation to Protocol

Once we have a proven correct protocol in Cruiser, the next thing is to automatically generate
the implementation and the proof. In this section, we focus on the proof part and how we show our
generated implementation is provably correct.

The implementation model is also similar to the existing framework in IronFleet (Algorithm 5).
We separated the executable implementation (HostInitImpl and HostNextImpl) from the proof model
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Algorithm 8 Implementation refinement proof in Cruiser
1 predicate ProtocolCorrespondence(concretePkts:set⟨NetPacket⟩,

abstractPkts:set⟨LPacket⟨EndPoint, Message⟩⟩)
2 {
3 (∀ cmsg ∈ concretePkts. AbstractifyNetPacket(cmsg) ∈ abstractPkts)
4 ∧ (∀ amsg ∈ abstractPkts. ∃ cmsg ∈ concretePkts. AbstractifyNetPacket(cmsg) == amsg)
5 }

6 lemma RefinementProof(servers: seq⟨EndPoint⟩, db: seq⟨ImplState⟩)
7 returns (pb: seq⟨ProtocolState⟩)
8 requires ...

9 ensures ...
10 ensures ∀ i. 0 ≤ i < |pb| - 1 =⇒ ProtocolNext(pb[i], pb[i+1])
11 ensures ∀ i. 0 ≤ i < |pb| =⇒ ProtocolCorrespondence(db[i].sentPackets,

pb[i].sentPackets)

(HostInit and HostNext). Instead, the implementation proves shows that these predicates hold as the
postcondition.

Similar to the protocol layer, we also need to define a global view of states to keep track of all
hosts in this system, the set of all sent messages, and the clock time in the implementation. With
this global state, we can define the correspondence and the refinement proof in Algorithm 8. As
this is an automatically generated proof, we couldn’t pick which messages are outgoing replies and
which messages are incoming requests. Thus, we chose to show that no matter which messages are
in the implementation, the protocol has the same message (in the abstracted style). For all messages
in the protocol, there exists the same message in the implementation. This leads to the last manual
part of Cruiser: a trusted function to abstractify the NetPacket into Messages.

Abstracting a Message from real NetPacket relies on the design and implementation of the
message marshalling strategy. For now, Cruiser still relies on the developer to provide such strategy
and implementation to marshall messages and abstract messages from real NetPacket. More
specifically, the developer provides a set of trusted functions to parse a NetPacket into a Message,
and then implements two methods. For the marshall method, the return NetPacket must be parsed to
the input Message. For the parse method, the return Message must equal the result of the trusted
parse function. We used existing marshalling libraries from IronFleet to implement our marshalling.

Given such a correspondence relation for packets, the refinement proof (line 6) from the
implementation to the protocol can be introduced. Similar to the refinement proof from the protocol
to the specification (Algorithm 6), this lemma takes a valid implementation execution behavior
and generates a corresponding protocol execution. Comparing to the protocol refinement proof,
this refinement proof has two differences. First, the correspondence between the implementation
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and the protocol is the given ProtocolCorrespondence between the set of network packets in the
implementation and the set of abstract packets in the protocol. Second, the generated protocol state
is a one-to-one mapping to the implementation state, which means the implementation would not
have a stutter step in the transition.

Such one-to-one mapping eliminates the potential violation of the liveness proof. Recall that
IronFleet liveness proof operates on the untrusted protocol layer, there is no guarantee that the
implementation corresponds to the protocol. Even if the implementation refines the protocol, the
liveness can still be broken without this one-to-one mapping. For example, if the implementation
can take a transition, but this transition doesn’t change the corresponding protocol state, the
implementation can take this transition infinitely times, but the protocol state stays the same, and
makes no progress. As a result, the liveness in the protocol layer doesn’t guarantee the liveness
of the implementation. With the one-to-one mapping in Cruiser, once the developer has proved
the liveness of the protocol, the implementation is guaranteed to closely follow the progress of the
protocol and make progress.

4.5 Implementation Generation

We have built the proof framework for both the protocol and the implementation in Section 4.4.
In this section, we introduce more details on how we can automatically generate the heap-based
implementation from a protocol.

4.5.1 Making the Protocol Implementable

The main problem we’re thinking about during the design of Cruiser is how to guide the
developer in writing an implementable protocol. We found that writing the protocol in functions
for transition is better than a simple predicate for the current and the next state, which is used in
IronFleet. This is analogous to the P versus NP problem. In the implementation, the host needs
to know how to find a valid next state from the given existing state, which is similar to finding a
solution to a given problem. However, if the developer uses predicates to specify this transition,
this problem becomes providing two states, and how to validate it is a valid succeeding state. For
example, the developer can define the state transition as integer factorization: starting from an
integer, a valid succeeding state contains two integers whose multiplication must equal the integer
in the previous state, but we don’t know how to efficiently generate an implementation for such
a transition. It is clear it’s an NP problem, so the developer can implement a predicate to define
such transitions. But there is no efficient P solution to find the answer, thus we don’t know how to
generate the implementation.

As a result, Cruiser asks the developer to specify all transitions in functions to simplify this
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problem. For example, the NodeNext transition (Algorithm 7 line 7) can be a function of current
state, network input, and returns the next state and network output. The developer needs to specify
clearly how to use the current state to generate the next state. Thus, we can further optimize this
implementation with heap and in-place updates.

4.5.2 Overflow Protections

Another important design in Cruiser is to ask the developer to explicitly handle overflow with
correct data types. In most implementations, the behavior when an overflow happens is undefined.
Thus, the implementation Cruiser generates needs to avoid any overflow in the system. Thus, the
protocol needs to use the same types for the implementation to specify the state in each node. If the
protocol is still using the mathematical integers, which do never overflow, Cruiser can only generate
an implementation with BigInteger, which also doesn’t overflow. Otherwise, if Cruiser uses a sized
integer, the implementation couldn’t automatically infer how to handle such overflows.

Comparing to IronFleet using mathematical integers which never overflow, Cruiser may require
the developer to take extra effort to handle the overflow manually. However, we found this is
still a reasonable amount of effort. Although IronFleet claims it is useful to simplify the state
to mathematical integers which never overflow, we found they still handle overflow explicitly
when they design their protocol. The reason is that such overflow protection is necessary for the
implementation to use efficient-sized integers, and the liveness proof relies on a one-to-one mapping
from the implementation to the protocol. If the protocol doesn’t handle overflow explicitly, and
there is an overflow in the implementation, there is no corresponding transition in the protocol. If
the implementation decides to take a no-op, the new state refines to the origional protocol state,
which violates the one-to-one mapping, and may break the liveness proof.

4.5.3 Making IOs Capable With Implementation

The protocol layer and the implementation layer have a different model for all their IOs, which
needs to be taken care of. In the protocol layer, all IOs are given as input parameters, thus the
function can just read such an IO sequence and find necessary receive and clock events. However,
the implementation doesn’t have such a sequence. Instead, all IOs happen through a NetClient,
which provides trusted C# functions. Such NetClient contains a history of all IOs the implementation
performs.

The main problem in connecting the implementation IOs and the protocol IOs is that the
protocol may access the IO at any point in the program, but accessing IO in implementation takes
the NetClient. If we simply take the NetClient everywhere in the implementation and perform the
IO lazily, there is no corresponding transition if there is no packet to receive (i.e. receive timeout).
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An alternative solution is to perform the IO at the beginning of the transition. Thus, it is guaranteed
that there will be a packet, and a clock time to process, and the timeout can be caught before
any transition happens. But this solution performs too many unnecessary IOs, thus significantly
influencing the performance.

As discussed in Section 4.4.1, we choose to use optional value to solve this problem. At the
protocol level, the developer can use optional packet as recv and optional integer as clock. If they
need to use such a value in a transition, the developer can access its value. To match the receive
timeout behavior specified in the protocol, we need to ensure that a timeout check could happen
before any state transition. More specifically, we check each if-branch to see if recv or clock is used
in this branch. If it is, we can perform IO accordingly, and check if there is a receive timeout at the
beginning of this branch.

After the state transition, the NodeNext function (Algorithm 7 line 7) returns a sequence of
outgoing packets to be sent. The implementation would also capture such a sequence of packets. As
they are abstract packets, the implementation needs to marshal them into network packets and send
these packets one by one.

4.5.4 Generating Corresponding Implementation

Given a protocol layer with Cruiser framework, the next step is to automatically translate such
implementation into heap-based implementation for higher performance.

The first problem in such a translation is related to the proof. To refine the implementation to
the protocol, the proof framework requires an execution trace of all execution states. However,
we’re aiming for a high-performance heap-based implementation, where all updates happen just
in place. To solve this problem, we follow the idea in IronFleet, introducing a ghost state with a
copy of all fields in the implementation to keep a record of all executions in the execution. Such
ghost states are exactly what’s used in the protocol state, as all field in the implementation has a
corresponding field in the protocol Node. Thus, we can just have a ghost copy of the protocol state
in the implementation for the proof of refinement. This copy of protocol state also makes the proof
model, HostInit (ALgorighm 5 line 2) and HostNext (Algorithm 5 line 3), easy to implement – they
performs the same transition as NodeInit (ALgorighm 7 line 3) and NodeNext (ALgorighm 7 line 7).

Now, we can translate the protocol state to a class, which can be efficiently updated. This trans-
lation is mostly mechanical. For example, in distributed lock protocol mentioned in section 2.5.3
and 3.6.2, each node only keeps two local variables: a Boolean held indicating whether this node
holds the lock, and an integer epoch for the largest epoch it has ever seen. Thus, we only need to
have corresponding held and epoch in the class as shown in Figure IV.1. To simplify the transitions
at the implementation level, the class also takes a copy of the constant Config and the NetClient as
the IO interface. We also use a ghost variable Repr for the heap representation of the class, so that
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class CNode {
var held: bool;
var epoch: uint64;
var config: Config;
var netClient: NetClient;

ghost var Repr: set<object>;

function method Abstractify() : Node
reads this

{
Node(held, epoch)

}
}

datatype Node = Node(held: bool, epoch: uint64)

Figure IV.1: Translation of distributed lock from immutable datatype into class

the transitions in the implementation can modify these states.
After converting the state of the implementation, we convert the NodeInit to the constructor

of the class. Figure IV.2 shows how to perform such a mechanical translation. We copy the
assignment of all fields from the protocol state and maintain an implementation copy of Config and
NetClient. After this construction, we can prove that if we extract the ghost copy of the state from
the implementation, it’s exactly the same as the result from NodeInit. Thus, the proof for HostInit

becomes trivial.
Now, we need to convert the state transition for the system. Here, we treat the entrance function

NodeNext separately from other functions, as this function deals with IO directly. Figure IV.3 shows
how to convert such an entrance function. First, we define a local variable to keep track of outgoing
packets generated by each function. After that, we convert the if-expression into an if-statement.
For the first case, where the node holds the lock, it will grant the lock to the next node. We noticed
that this is the end of this branch, which means this branch doesn’t receive any packets or read
the clock. Thus, we first assign recv and clock to none value, and then call the implementation of
NodeGrant. Otherwise, the node needs to receive a message from the network. In that case, the
implementation can simply call ReceivePacket to get a packet. But this doesn’t always succeed. If
the network environment fails (ok becomes false), or clock gets a receive timeout, the state s takes
no transition, and exit. Once we get a packet in r pkt, we can call the implementation of NodeAccept

to get the outgoing packets. Finally, after all state transition for local state s, we send all outgoing
packets with SendPacketSeq.

With this design, we can convert the entrance function, NodeNext into an executable method,
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constructor(c: Config, nc: NetClient)
ensures abstractify(this) == NodeInit(c)

{
held  := c.my_index == 0;
epoch := if c.my_index == 0 then 1 else 0;

config := c;
netClient := nc;
Repr := {this};

}

function NodeInit(config: Config) : Node
{

Node(held  := config.my_index == 0,
epoch := if config.my_index == 0 then 1 else 0)

}

Figure IV.2: Translation of distributed lock from function initialization to class constructor

and hide the IO details for other methods to simplify the task for the translation of other functions.
The proof target for this method is that after this state transition, the extracted ghost copy of the
state s and the sends events are exactly as the transition of NodeNext. we leverage a special keyword
old in Dafny to talk about the state at the beginning of the method, which can be used to track the
previous state of this transition.

During the process of translation, we keep a list of callee functions to determine which function
needs to be translated. For example, our program would automatically detect NodeGrant and
NodeAccept are used in this implementation, and thus requires translation.

The next step is to translate all other used functions into methods. Figure IV.4 shows how to
translate the state transition for NodeGrant. Similar to NodeNext, we need to convert the expression
in the function to statements to perform updates. Here, we take extra care for the return value, as
this becomes an in-place update in the implementation.

When translating the update of the local state, Cruiser compares all the fields in the new state
with the value in the old state. Sometimes the new state uses the same value as the old state, e.g.
epoch := s.epoch in figure IV.4. In this case, Cruiser ignores such updates and leave the value as
the old one.

The last thing to take care of is the order of assignments. To perform an in-place update, we
lost the value of the previous state. Thus, we construct the packet before we make any updates
for the node to ensure that the packet can always get the correct value from the local state. As for
the updates from the implementation, one solution is to analyze the data dependencies to order the
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method CNodeNext(s: CNode)
returns (ok: bool,

ghost recv: Option<NetEvent>,
clock: Option<NetEvent>,
ghost sends: seq<NetEvent>)

ensures ok ==>
(abstractify(s), abstractify(sends)) ==

NodeNext(s.config,
old(abstractify(s)),
abstractify(recv),
abstractify(clock))

{
var pkts: seq<LPacket<EndPoint, Message>>;
if s.held
{

recv := None();
clock := None();

pkts := CNodeGrant(s.config, s);
}
else
{

var r_pkt;
ok, r_pkt, recv, clock := ReceivePacket(s.netClient);
if (!ok || clock.Some?) {

sends := [];
return;

}

pkts := CNodeAccept(s.config, s, r_pkt);
}

ok, sends := SendPacketSeq(s.netClient, pkts);
}

function NodeNext(config: Config,
s: Node,
recv: Option<LPacket<EndPoint, Message>>,
clock: Option<uint64>) :

(Node, seq<LPacket<EndPoint, Message>>)
{

if s.held then
NodeGrant(config, s)

else NodeAccept(config, s, recv.v)
}

Figure IV.3: Translation of state transition entrance for distributed lock
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method CNodeGrant(c: Config, s: CNode)
returns (ret: (seq<LPacket<EndPoint, Message>>))
ensures (Abstractify(s), ret) == NodeGrant(c, old(Abstractify(s)))

{
if s.epoch < 0xFFFF_FFFF_FFFF_FFFF {

ret := [LPacket(
dst := c.servers[(c.my_index + 1) % (|c.servers| as uint64)],
src := c.servers[c.my_index],
msg := Transfer(s.epoch + 1)

)
];

s.held := false;
}
else
{

ret := [];
}

}

function NodeGrant(config: Config, s: Node) :
(Node, seq<LPacket<EndPoint, Message>>)

{
if s.epoch < 0xFFFF_FFFF_FFFF_FFFF then

(Node(held := false, epoch := s.epoch),
[LPacket(

dst := c.servers[(c.my_index + 1) % (|c.servers| as uint64)],
src := c.servers[c.my_index],
msg := Transfer(s.epoch + 1)

)
]

)
else

(s, [])
}

Figure IV.4: Translation of general state transition for distributed lock
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assignment. But this solution does not always work, as there may be circular dependencies in the
assignment. Breaking this circle efficient can be challenging, as this relies on the analysis of the
cost of copying each field. Thus, we leave this problem to the developer: they can use a temporary
value to store some values needed in the assignment, and then use the temporary value to update the
state. If the developer forgets to use such a local variable, our implementation proof can capture
this error and provide a hint.

All these steps to generate a corresponding implementation are performed automatically by
Cruiser. Thus, the developer doesn’t need to spend any time optimizing their implementation or
proving the refinement from the implementation to the protocol.

4.6 Evaluation

To evaluate the power of Cruiser, we focus on two questions. First, how can Cruiser reduce the
manual effort in verifying the implementation of a distributed system? Also, we want to see what
performance our generated system gets.

To answer the first question, we used 3 different distributed systems: leader election in a ring (in-
troduced in Section 2.5.2 and Section 3.6.1), a distributed lock protocol (introduced in Section 2.5.3
and Section 3.6.2) and a sharded hash table (introduced in Section 3.6.4). We implemented all
Cruiser proof in Dafny [Lei10], and implemented Cruiser implementation generation in C#, based
on existing source code in GitHub.

For all systems in our evaluation, we consider crash failures and an asynchronous network,
which can arbitrarily delay, drop, or duplicate messages. We used a similar environment assumption
as IronFleet, thus these failures are easy to model. For now, we’re just focusing on the safety proof,
but we believe the developer can also verify the liveness of the systems at the protocol layer with a
reasonable amount of effort.

4.6.1 Proof Effort

We found that our verification framework reduces the manual effort in verifying a distributed
implementation. Comparing to IronFleet, our function style protocol layer doesn’t really introduce
significant more effort in verification. Table IV.1 collects the total number of lines of code in the
protocol layer.

As we can see, for two protocols that appear both in Cruiser and IronFleet, distributed lock
and sharded hash table, the size of specification for both systems is similar. As for the protocol
layer, Cruiser provides a more concise protocol layer comparing to IronFleet. The main reason is
that IronFleet uses predicates to modularize transitions, which loses all context of the transition.
Thus, there are many repetitive clauses in predicates from IronFleet. For example, when a node
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Cruiser IronFleet
layer lines of code proof effort lines of code

Distributed Lock
spec 83

3 person days
65

protocol 198 394
impl 747 - 1524

Sharded Hash Table
spec 159

3 person weeks1 260
protocol 2131 4724

impl 1592 - 4277

Leader Election2

spec 66
2 person weeks

-
protocol 721 -

impl 770 - -
1 We leveraged some state transition design from IronKV.
2 This proof is done by a Master student who is unfamiliar with formal methods.

Table IV.1: Summary of proof size and effort in Cruiser

receive a SingleMessage, it may sends an ACK. But IronFleet checks if this is a single message in
multiple places, like deciding the receiving behavior, checking the sequence number, checking the
ack number, etc. All these redundant checks introduce more code in the protocol layer. In contrast,
Cruiser uses functions to model the state transition: after checking the type of received message at
the beginning, there is no need to check it everywhere.

As for the implementation layer, Cruiser elaborately designed the state in each host and how
to perform a state transition. As a result, the generated implementation is relatively concise
and efficient. From all lines of generated implementation code, we have 578 lines of common
implementations, including the network wrapper, host proof model, and the generated refinement
proof. The code size for the generated state translation is relatively similar to the code size in the
protocol. As we can see from the table, the implementation can sometimes have fewer lines of code
than the protocol layer. The main reason is that the protocol layer performs a complex inductive
proof, and that takes many lines for complex systems.

Another thing we noticed is that when Cruiser generates the implementation, the control flow
is very close to the protocol functions. As Cruiser also keeps the name for local variables, the
implementation can be easily understood by the developer. Actually, we applied a manual patch to
fix a proof problem in the sharded hash table.

Manual Patch in SHT One problem we found in SHT is that when we iterate over a set or a
map, Dafny couldn’t guarantee that the implementation gets the same order as the protocol. As a
result, when we try to retransmit all unACKed messages in SHT, it is difficult to generate the same
sequence of messages between the implementation and the protocol. However, we don’t really care
about the actual order in this iteration. Thus, we used a trusted module. We provide a function
to iterate over a set and its corresponding implementation method. Once the protocol uses this
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Figure IV.5: Cruiser SHT performance evaluation

function, our generation automatically chooses its corresponding implementation. In this way, we
can finish the refinement proof.

As for the leader election, a master student implemented the proof independently. She is
unfamiliar with formal methods so this proof takes a relatively long time. From her experience,
we found that the inductive invariant from Sift can also be used in this proof, which simplifies the
protocol refinement proof. After that, Cruiser can generate the implementation automatically.

4.6.2 Performance of Verified Implementations

We also compared the performance of our generated implementation with IronFleet, a hand-
written implementation in Dafny. We run our experiment on AWS EC2. Each machine has 4 virtual
CPUs and 8 GB of memory, running Windows Server 2019. Nodes are connected with a 10 GB
network.

We first evaluated the throughput of the distributed lock with two hosts on two different machines.
We found that both Cruiser and IronFleet reach exactly 64 epochs every second. We guess that this
application has a very simple local state, and the network becomes the bottleneck. This could be a
restriction from AWS.

We also evaluated the sharded hash table with two different workloads. As shown in Figure IV.5,
The performance of our generated implementation is slightly better than IronKV. We used 1,000
keys in a single server and serviced requests from an increasing number of clients (8 - 1024) in a
closed loop. We choose 64-bit integers (8 bytes) as the keys. The value is an array of bytes, and we
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use 1,000 bytes in this evaluation. We used two typical workloads. One is a write-heavy workload,
with 50% of read and 50% of write. The other is a read-heavy workload, with 90% of read and
10% write. As we can see from the figure, the performance of Cruiser implementation is very close
to IronFleet. We believe this is the benefit from the heap-based implementation. In IronFleet, the
implementation state is immutable. Thus, there are many redundant copies in a state transition.
With Cruiser, the transition only performs necessary updates and leaves other fields unchanged.
This evaluation result shows that our automatically generated implementation has similar or even
better performance than manually optimized implementations.

4.7 Limitations and future directions

Our experience with Cruiser helps us to verify a real heap-based distributed system. For all of
its success, however, we found some directions to further optimize the system in the future.

• Better Heap Analysis. While Cruiser can analyze the heap allocation for the state, some
complex data structures can still be challenging. For example, when it comes to multiple layers of
objects, the heap layout can be difficult to analyze. Sometimes, a class can even change its heap
representation, as a dynamic vector, which influences all its parent objects. How to better analyze
the heap allocation for the state and generate the proof leaves an open question to the research
community.
• Generating Loops. As Cruiser requires the developer to implement the protocol in functions,

there is no loop allowed. Instead, we use recursion to perform iterative operations. Thus, Cruiser
can only generate a recursive implementation, but not a loop. Sometimes, implementing a recursive
implementation efficiently raises a larger challenge for both the developer and compiler to optimize.
Although proving the correctness of a loop relies on a loop invariant, the pre-and post-condition of
that function can be a hint for us to generate the loop invariant. We hope that in the future version
of Cruiser, we can automatically convert some recursions into loops to optimize the invariant.
• Generating Packet Parsing Automatically. Currently, Cruiser relies on the developer to

implement the trusted parsing functions, and implement the marshaling and parsing methods.
However, some existing research, such as EverParse [RDLF+19], shows how to automatically
generate efficient and provable correct parsers and serializers. It is possible to adopt such a
methodology to simplify the message marshaling in Cruiser.
• Supporting More Complex Message Sending Model. Currently, Cruiser assumes that outgoing

messages are sent one by one. Thus, we use a sequence to model the outgoing messages. But
this model turns out to be limited. From our example of the sharded hash table, we need to inject
a trusted method to convert a set into a sequence to iterate, and the implementation can get the
same sequence as the function. If we change the message model into a set, the order doesn’t
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matter anymore. Also, a sequence of messages requires a marshaling price for every message to be
sent. This is not efficient for multi-cast, which is commonly used in distributed systems. In that
case, the implementation only needs to marshal the message once and send it to all destinations.
We can introduce a new type of outgoing packet, MultiCast, to incorporate multi-cast into our
message-sending model.
• Adding Verified Built-in Libraries. All Dafny built-in libraries are inefficient immutable data

structures. To implement an efficient system, the developer needs to either use a trusted library
from C#, or verify every library they want to use. With Cruiser, we can automatically generate the
implementation. At the same time, Cruiser can also introduce some verified built-in libraries when
possible, to optimize the performance of the implementation.

4.8 Conclusion

This chapter presents Cruiser, a new framework to automate the verification of efficient dis-
tributed implementations. Cruiser introduces a function-style protocol layer, which requires a little
more effort from the developer. From that protocol layer, Cruiser benefits from the invariant finding
from Sift to simplify the verification of the protocol layer and automatically generate an efficient
implementation. Our evaluation shows that Cruiser can reduce the effort needed to verify distributed
systems, and also generate high-performance implementations.

68



CHAPTER V

Related Work

In this chapter, we discuss existing approaches in distributed system verification, finding
inductive invariants and automated verification.

5.1 Verification of Systems

Formal verification is gaining popularity in the systems community as an alternative to testing.
Much effort has gone to verifying real systems, including OS kernels [KEH+09, MPX+13, GSC+16,
CWS+16], file, and storage systems [CCK+17, ZDD+19, CTKZ19]. These works provide strong
guarantees of correctness, but at the cost of extensive manual effort; Sift and Cruiser, by contrast,
require little manual proof effort while verifying systems of considerable complexity, such as SHT
and MultiPaxos.

The significance of formal verification is particularly pronounced within the realm of distributed
systems, as they are notoriously subtle and complex. Lamport’s TLA+ [Lam02] has mostly
been used to prove the correctness of abstract protocols, as it is not really designed for actual
implementations. The first practical verified implementations of distributed systems came with
IronFleet [HHK+15, HHK+17] and Verdi [WWP+15]. IronFleet uses a combination of refinement
and reduction [Lip75] to facilitate the verification of distributed systems. Verdi, on the other hand,
uses a series of system transformers. It starts by proving the correctness of the system under a
very strong model and uses the transformers to prove refinement to increasingly weaker models.
Both Verdi and IronFleet rely on significant manual effort to identify the inductive invariants of the
system—and thus prove its correctness.

Ivy [PMP+16] is another approach to verify distributed systems. With Ivy, the developer needs
to iteratively refine an invariant until an inductive invariant is identified. Although easier than
IronFleet and Verdi, this approach still relies on considerable amounts of manual effort (in the order
of person months) to complete a proof of correctness.

A recent work proposed pretend synchrony [vGKB+19], an approach that aims to simplify the
reasoning behind distributed protocols. The idea behind pretend synchrony is that one can transform
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an asynchronous distributed protocol into an equivalent synchronous protocol, thus making it easier
to reason about. Ideas like this can be used in conjunction with I4: by simplifying the problem, we
may be able to increase the scalability of the underlying model checking and thus automate the
proof of more complex protocols.

Pnueli et al. [PRZ01] proposed that verifying a parameterized distributed system consisting
of n identical interacting processes can be accomplished by verifying a relatively small finite
instantiation. The basic idea is that a system of n > n0 processes can be verified by checking an
instance with just n0 processes, where n0 is linear in the number of local state variables of a single
process. This idea is the inspiration behind I4. I4, however, is fundamentally different from the
approach of Pnueli et al. First, this approach does not actually find any inductive invariants. They
merely show that proving the correctness of a system with n0 processes is sufficient to prove its
correctness for any n > n0. Moreover, this only works when each process has a finite state (n0

depends linearly on the state size of each process, so it would be infinite otherwise). As such,
this approach doesn’t apply to today’s distributed systems, whose state space is unbounded. This
is exactly the innovation of I4: finitizing the problem and generalizing the result to infinite-state
protocols. The approach of Pnueli et al. relies solely on model checking, precisely because it
assumes that the only source of infinity is the number of nodes in the system.

More recently, Armada [LCK+20], a tool designed to verify concurrent programs, was proposed.
While Armada has some superficial similarities to Sift and Cruiser—namely the use of refinement
and automation—it is in fact drastically different. It operates in an environment almost diametrically
opposed to ours: single-machine, multi-threaded code where communication happens via shared
memory, as opposed to a sequential execution on a distributed system where communication happens
via message passing. Additionally, while Armada makes heavy use of automation to generate proofs,
it still requires its users to write significant parts of the proof—hundreds of lines of code—manually.

5.2 Inductive Invariants

To overcome the challenge of finding an inductive invariant, previous work has taken a number
of approaches for both finite- and infinite-state programs. Many works have focused on identifying
loop invariants. Proof planning [IS97] uses failed proof attempts to find loop invariants, while
Flanagan and Qadeer [FQ02] use a technique called predicate abstraction. Furia and Meyer [FM10]
use heuristics from postconditions to synthesize loop invariants. Daikon [ECGN00] was proposed
in 2000 to learn possible program invariants, followed by Houdini [FL01] which learns conjunctive
inductive invariants. IC3 [Bra11] and PDR [EMB11] can automatically find inductive invariants
for finite state machines, and were later extended to certain systems with infinite-domain vari-
ables [HB12, CG12]. For list-manipulating programs, Property-Directed Shape Analysis [IBR+14]
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and UPDR [KBI+17] have shown effective results, though the approach doesn’t guarantee termi-
nation. Grebenshchikov et al. [GLPR12] show that a Horn clause is the most common pattern in
program verification, and the ICE learning model [GLMN14, DEG+17] uses this result to syn-
thesize invariants. Although some of these techniques can deal with a finite number of variables
with infinite domains (e.g., strings or infinite integers), they cannot effectively deal with distributed
systems, whose state typically contains an unbounded number of variables (e.g., an unbounded set
of sent messages, and unbounded copies of a state variable in different nodes).

5.3 Automated Verification

With the advancements in automated reasoning [HJS+, BT18, DMB08] and abstraction tech-
niques [BCLR04, GS97, CGJ+00], automatically verifying correctness through model check-
ing [CE81, QS82] has significantly improved in different domains, both for hardware [Bra11,
EMB11, SG17, GS19b, BFP] and software [BCLR04, JM09, BK11, KT14, Bey21]. However,
model checking still does not scale well to large complex systems, due to state-space explo-
sion [DLS06, CKNZ12].

Bedrock [Chl11] is a framework for automatically generating proofs for first-class code pointers.
Bedrock uses mostly-automated discharge of verification conditions inspired by separation logic.
Using a computational approach coupled with functional programming, Bedrock avoids quantifiers
almost entirely, and achieves mostly-automated verification.

Yggdrasil [SBTW16] and Hyperkernel [NSZ+17] are two recent approaches that aim to min-
imize the human effort required to perform formal verification. Yggdrasil [SBTW16] presents a
formally verified file system using the notion of crash refinement. It automatically verifies that, even
in the presence of nondeterministic events like crashes and reordering, a correct implementation
will still produce the same disk state as its specification. Yggdrasil uses a finite domain to guarantee
decidable SMT queries. Hyperkernel [NSZ+17] is a formally verified OS kernel. Similar to Yg-
gdrasil, Hyperkernel also finitizes kernel interfaces to keep SMT queries decidable. I4 has a similar
goal—push-button verification—but for distributed systems. The key difference is that distributed
systems have infinite domains, which lead to undecidable SMT queries. To sidestep this problem,
I4 uses a unique combination of finite protocol instances (via model checking) and decidable SMT
queries in the infinite domain (via Ivy).

After I4 is published, there are many follow-up works automating the inference of induc-
tive invariants for distributed systems. For example, DistAI [YTG+21] and primal-dual Hou-
dini [PWK+22] provide a better termination guarantee on finding the inductive invariant. Some
other approaches, SWISS [HHMP21], IC3PO [GS21], DuoAI [YTGN22] take existential quantifier
into consideration, and even scale invariant inference to complex protocols such as Paxos.
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All the aforementioned techniques [KBI+17, FWSS19, MGJ+19a, KPIA20, GS21, HHMP21,
YTG+21], however, target monolithic, single-layer verification, primarily at the protocol level, and
cannot scale to detailed system implementations. Our Sift and Cruiser combines these monolithic
provers with the well-founded concepts of refinement [AL91, GL00, Lam94] to scale verification
all the way to complex executable implementations.
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CHAPTER VI

Conclusion

Verification is getting more and more attention for its promising future in building safe systems.
In this dissertation, we focus on the automation of the verification process, reducing the effort
needed in writing a proof. In particular, we start from the best automation can get, with little to no
manual effort to prove monolithic distributed protocols. After that, we push the boundary on the
kinds of systems that can benefit from proof automation to complex refinement proofs and even
efficient heap-based implementations. In this dissertation, we make the following contributions.

In Chapter II, we introduce I4, a new approach for verifying the correctness of distributed
protocols, with little to no manual effort and without relying on human intuition. I4 is based on
a simple insight: distributed protocols exhibit a lot of regularity, which means that the system’s
behavior doesn’t fundamentally change from a small instance to a large scale. Thus, we can
use an inductive invariant from a small, finite instance to infer a generalized inductive invariant
that holds for all instances. With this hypothesis, I4 leverages the power of model checking to
automatically identify the inductive invariant of a small, finite instance of the protocol. And then, I4
can generalize that invariant to instances of arbitrary size. The evaluation shows that I4 is successful
in automatically proving the correctness of a number of interesting distributed protocols, even ones
whose subtleties and internal workings were unknown to us.

In Chapter III we introduce Sift to scale automation to more complex systems. Sift is a novel
two-tier methodology that combines the power of refinement with automation from monolithic
provers like I4 and IC3PO. Within each refinement proof, Sift introduces an encapsulation technique
to convert the refinement proof involving two layers into an encapsulated layer, which is amenable
to prove by monolithic provers. If that proof fails, Sift decomposes the proofs of complex distributed
implementations into a number of refinement steps, each of which is amenable to automation. We use
Sift to prove the correctness of six distributed implementations, including the notorious MultiPaxos.
Our proof effort is significantly less than previous attempts. Our performance evaluation shows that
our verified system has comparable performance with previous manual implementation.

In Chapter IV, we further optimize the performance of verified systems with heap. We found
that a function-based protocol layer can be efficiently translated into a heap-based implementation.
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Thus, we introduce Cruiser, an approach that combines implementation generation with refinement
proof generation to automatically generate efficient heap-based distributed systems. Comparing to
previous work, Cruiser extends automation to undecidable logic, which provides more freedom for
the developer to perform complex optimizations. Our evaluation shows Cruiser reduces the effort
needed to generate a high-performance implementation.

Throughout this dissertation, we pushed the boundary of how distributed systems can be
verified automatically, and made it all the way from a simple protocol down to a real, complex
implementation. But still, verification of systems requires extra effort, which can be simplified.
This challenge is hard, but it can potentially benefits the safety of all critical systems.
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and David Costanzo. CertiKOS: an extensible architecture for building certified
concurrent OS kernels. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16, page 653–669, USA, 2016. USENIX
Association.
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