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Abstract 
 

Datasets often reflect complex and nuanced relationships which can be difficult to detect 

or fully represent with traditional epidemiological methods. This may be problematic as it can 

hinder further analyses, or give the investigator an incomplete picture of the outcome being 

studied. In this dissertation I explored three analytic contexts in which important relationships 

can go undetected and examined several methods that can be used to ascertain hidden or latent 

relationships in the data, drawing from meta-regression, latent class analysis, network analysis, 

and transmission modeling.  

In Aim 1, we used meta-regression to ascertain how the association between individual 

wealth, country level wealth, and Human Immunodeficiency Virus (HIV) burden has changed 

over time across a set of Sub-Saharan African (SSA) Countries. It has been assumed that like, 

The West, HIV is also a disease of poverty in SSA. However newer research suggests that this 

assumption may not be true. Here, we show that HIV may be positively associated with wealth in 

urban but not rural contexts, and that this association has waned over time.  

Aim 2 identifies patterns of sexual behavior and substance use across the life course, and 

examines the association between these patterns and sexually transmitted infection risk. Risk 

factors for sexually transmitted infections have proven challenging to study due to their tendency 

to be highly correlated or even collinear with one another. This collinearity is problematic 

because it inhibits the ability of statistical software to detect the effect of covariates in a 

regression model, rendering the coefficients of the variables uninformative. Consequently, 



 xviii 

alternative approaches are needed in order to identify behaviors that put individuals at risk for 

infection. This aim uses Latent Class Analysis which, unlike regression, uses collinearity to its 

advantage to identify response patterns. Our results reveal the existence of 5 archetypes that 

serve as the basis for the profiles present across our four age strata. However, the exact 

composition of each strata’s profiles varies in the magnitude that particular behaviors are 

endorsed, which we attribute to a combination of age, period, and cohort effects. 

Aim 3 constitutes the first part of a two-part analysis that uses network methodology to 

characterize and quantify patient movement and disease transmission.  In this aim, a descriptive 

analysis of network structure was undertaken to describe the underlying interrelationship 

between hospital units and patient movement, using patient transfer data from the University 

Hospital at Michigan Medicine. We then characterized the resulting network to understand key 

structural features, including node centrality, graph centralization, degree distributions, and 

community structure. As a network, University Hospital is decentralized but highly transitivity .  

In Aim 4 we used an SEIR compartmental model to simulate COVID-19 in a hospital 

setting, to examine the relationship between the hospital network structure and disease 

transmission dynamics. The purpose of this analysis was to illustrate how the network 

relationship between locations can be an underlying structure that informs transmission 

dynamics within the hospital.  

In summary, the chapters of this dissertation illustrate contexts in which latent variable 

associations exist in data and provide tools researchers can use to extract them. It is our hope that 

this work provokes thought and sparks new lines of inquiry.  



 1 

1 Introduction 
Sometimes an otherwise quotidian dataset may contain complex and nuanced relationships 

that are undetectable with traditional epidemiological methods. Depending on the questions 

being asked, these hidden relationships may be problematic as they can hinder further analyses 

or give the investigator an incomplete picture of the outcome being studied. In this dissertation, I 

provide three analytic contexts in which important relationships can go undetected, and I 

demonstrate methods that can be used to ascertain this “hidden” information. In the first aim, I 

use meta-regression to reexamine commonly held assertions about the relationship between HIV 

and wealth in sub-Saharan Africa. In the second aim, I use latent class analysis to circumvent 

issues with collinearity and identify inter-generational differences in sexually transmitted 

infection risk factors. In the third and fourth aims, I use network analysis to capture the meta-

effects a hospital’s layout and movement of patients throughout the structure drive infectious 

disease transmission. 

 

1.1 Aim 1: Has the Relationship Between Wealth and HIV risk in Sub-Saharan Africa 

Changed over time? A Temporal, Gendered, and Hierarchical Analysis. 

Historically it has been canon that Human Immunodeficiency Virus (HIV) is associated with 

poverty and marginalization.1–4 It has been assumed that since HIV is a disease of poverty in 

wealthier western countries, then it must be a disease of poverty in Low- and Middle-Income 

Countries, with poorer countries often assumed to be at higher risk of HIV.2,3 However, this 

rationale implicitly assumes that markers of country level wealth are sufficient to reflect the 
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burden of disease amongst individuals, and is thus ecologically fallacious.  Indeed, recent 

research suggests that this long held assumption may not be true for Sub-Saharan African 

Countries.5–9 Instead, these new data propose that HIV may be positively associated with 

individual and country-level wealth. Aim 1 re-investigates this relationship, to uncover how the 

masked association between wealth, and HIV burden has changed over time in Sub-Saharan 

Africa. 5–9 

Specifically, this aim re-analyzes the relationship between country level wealth, individual level 

wealth and HIV positivity in sub-Saharan Africa. Drawing upon insights gleaned from recent 

studies we employ meta-regression in a novel context to separate the effects of individual level 

wealth from country level wealth on HIV prevalence. Doing so counters an occurrence of the 

ecological fallacy that has historically impacted prior analyses . 5–9 

1.1.1 Meta-regression 

Meta-regression is an analytic technique traditionally used to combine findings from 

multiple studies to obtain an overall or “meta” effect measurement.10–12  Meta-regression is  

multi-level modeling technique, and as such can account for fixed and mixed effects. 10–12  The 

first level represents the individual findings from each study individually, and the second level 

uses the effect measures from the first level to find an overall effect measure for all of the studies 

survey. 10–12  However, meta-regression differs from traditional multi-level models in that meta-

regression includes an additional error term that can account for between cluster variance, also 

known as cluster heterogeneity. 10–12  Simply put, traditional multi-level models assume that the 

effect across all clusters is the same, whereas meta-regression doesn’t hold this assumption; 

assuming instead that a distribution of effect sizes exists across clusters. 10–12    
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In the context of this aim, the first step modeled the univariate relationship between HIV, 

and gender, urbanicity and wealth for each of the 29 countries, individually. In the second step, 

aggregated effect measures and standard errors from step one were combined into a single 

dataset then used to estimate the relationship between country level economic indicators and 

HIV burden, as well as the country level HIV burden over time. 

Since this methodology models individual level and country level data separately, the 

individual effect sizes and variances of each country can be accounted for in the second level 

model; as opposed to a multi-level model that would use the mean of all 29 countries in the 

second level. As a result, we avoid the additional pitfalls encountered by prior analyses that 

assume the relationship between HIV and wealth is the same across Sub-Saharan Africa, and we 

can increase precision of our estimates by accounting for the individual variances of each 

country. In short, this aim uses meta-regression to tease apart the individual relationships 

between HIV, individual level wealth and population wealth that heretofore have remained 

intertwined. 

1.1.2 Economic measures: 

Country-level economic indicators were used to reflect the effects of country level wealth 

in our analyses.. We elected to use four economic measures. 

1.1.2.1 Gini Index: 

Named after Italian economist Carrado Gini, the Gini Index measures the extent to which 

the distribution of income across individuals in an economy deviates from an equal 

distribution.13,14 The basis of the Gini Index is the Lorenz curve of an economic model, that first 

splits an economy’s population into quantiles then plots the cumulative income of an economy 
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against the cumulative population quantiles.13,15 As a control/comparator this curve is plotted 

next to a 45-degree line that represents perfect income parity.13,15,16 The Gini Index is defined by 

the area between the Lorenz curve and the 45-degree line.13,16 Thus, a Gini Index of 0 would 

indicate an economy with no wealth inequality, while a Gini index of 100 indicates maximum 

wealth inequality. 13  

1.1.2.2 Human Development Index (HDI):  

The Human Development Index is a composite measure of three indices.17 The first 

dimension is “health” and is measured by a population’s life expectancy at birth.17 The second 

dimension is “education” and is measured in two ways. First by the average amount of schooling 

in years, adults 25 and over have received, and second by the expected years of schooling for 

school age children.17 The final dimension is “standard of living” which is measured by the gross 

national income purchasing power parity. 17To calculate the HDI, these indices are normalized, 

then the geometric mean of the three is calculated.17  

1.1.2.3 Gross Domestic Product (GDP):  

A country’s gross domestic product is the total revenue added to a country’s economy 

from the sale of goods manufactured domestically.13 Revenue includes taxes but does not include 

product subsidies.13 This analysis considered both a countries total GDP, as well as the 

proportion of the GDP attributable to health care spending. 

1.2 Aim 2: Latent Class Analysis of Generational Trends In STI Risk Factors 

Historically, sexuality and STI research has focused on younger populations, and as a 

consequence there is a paucity of research on sexual health in older adults or across the life 

course.18 This is problematic because STIs continue to be an issue across all age groups.18–20  
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It is known that substance use and sexual activity are risk factors for STI positivity.21–24 

However, these behaviors are heavily influenced by externalities such as socio-cultural norms, 

responsibilities, and age effects, leading one to question if it is safe to assume that the effects of 

sexual activity and substance use are the same across age groups? To complicate things further 

there is no one standard way to operationalize these constructs, and regardless of 

operationalization these constructs can be highly collinear. 

Such collinearity is problematic because it inhibits the ability of statistical software to 

detect the effect of covariates in a regression model, rendering the coefficients of the variables 

uninformative.  Consequently, alternative approaches are needed in order to identify behaviors 

that put individuals at risk for infection. This aim uses one such approach called Latent Class 

Analysis (LCA). Unlike regression, LCA uses collinearity to its advantage to identify response 

patterns that might otherwise remain undetected by regression. 

1.2.1 What is latent class analysis? 

At its core, latent class analysis is a form of unsupervised machine learning that can detect 

hidden or “latent” heterogeneous subgroups or “classes” in seemingly homogeneous data.25–27 In 

order to detect a specific number of latent classes, LCA uses measured categorical variables, or 

“manifest variables”, as proxies for the different characteristics of the latent classes [FIGURE 

1.1]. Whereas regression systematically analyzes the outcome measure with each coefficient 

individually, LCA takes a more holistic approach. First the data are analyzed for recurrent 

configurations of variables, irrespective of an individual’s particular response pattern.28 These 

recurrent configurations represent the characteristics of each latent class. 28 Once the latent 

classes have been identified, individual observations are binned into the class they have the 
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highest probability of belonging to. 28What results are classes defined by the probability that a 

member of the class will have a certain response to one of the manifest variables. 28 

 

 

Figure 1-1 A Latent Variable is Expressed as Dimensions of Manifest Variable
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1.3 Aim 3: Characterization of Network Structure and Patient Volume at Michigan 

Medicine - University Hospital  

Understanding how infections spread through physical space is essential for day-to-day 

infection control and can aid in planning for future epidemics. However, the self-contained 

nature of units or wards in a hospital can pose challenges for traditional mathematical models. 

This is because typical compartmental models assume that people in a population mix uniformly 

and randomly. While this assumption may hold for individual wards, it is not necessarily true for 

movement between units. 

One solution is to render the hospital as a network of units connected by patient traffic. 

The benefits of doing this are twofold. Not only can a network accommodate within and between 

unit movement, but networks come with a set of statistics which can help us identify potential 

hotspots, describe the interconnectivity of units,  and identify clusters of units that share a 

common patient base. 

Aim 3 constitutes the first part of a two-part analysis that uses network methodology to 

characterize and quantify patient movement and disease transmission within University Hospital 

at Michigan Medicine. In this aim, a descriptive analysis of network structure is undertaken to 

identify and describe the underlying interrelationship between hospital units and patient 

movement. Since network terminology may be unfamiliar to some, a short glossary of terms is 

included below, as well as a description of the centrality measures used in this aim. 

 

Network Terminology 

The terms below are presented in alphabetical order. 

1.3.1 Attribute:  
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A characteristic or feature of a node or edge.29–31 

1.3.2 Degree:  

The number of edges connecting a node to other nodes.29,30 For a directed graph (see 

definition below), in-degree of a node is defined as the number of incoming edges from other 

nodes, and out-degree of a node is defined as the number of outgoing edges directed toward 

other nodes. Similarly, for a weighted graph, the weighted degree (or weighted in/out degree) of 

a node is the sum of the edge weights for each edge connected to the given node (or in/outgoing 

weights respectively). 

1.3.3 Directed Graph:  

A network in which edges indicate the direction of movement.29,30  The hospital network 

developed for this aim has directed edges. We differentiate between transfers from Node A to 

Node B and transfers from Node B to Node A. In an undirected graph these transfers would be 

combined and represented as one link instead of two. 

1.3.4 Edge:  

The link between two nodes.29  In this analysis the edges represent number of people 

being moved from one unit to another. 

1.3.5 Network:  

A group of points linked together by lines.29 Sometimes also termed a graph. 

1.3.6 Node/Vertex:  

Point or object in a network (i.e. one of the objects connected by edges).29  Nodes can 

represent myriad things: computers connected through internet, children in a peer group, or 
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checkpoints on a marathon course. In this analysis the hospital units comprise our network’s 

nodes. 

1.3.7 Weighted Graph:  

A network in which edges indicate the strength of connection.29–31  The network for this 

aim is a weighted network. Edges have the added attribute size, which is visually represented by 

the thickness of the links and is scaled to match the number of people moving from one unit to 

another. In unweighted graphs edges do not have such a component. Instead, they are present if a 

connection exists between two nodes, or are absent if a connection does not exist. 

1.3.8 Centrality: 

Centrality is a characteristic of nodes that quantifies how central, connected or important 

that node is relative to other nodes. There are numerous methods for calculating centrality, all of 

which define importance in a distinct way. In this aim we used three of the more general and 

commonly used centrality measures, described below.29–31 

1.3.9 Betweenness Centrality:  

A form of centrality that assess a node’s importance by the frequency with which it lies 

on the shortest path connecting two other nodes. 29–31The number of times a node is found to lie 

on the shortest path between two others represents the non-normalized betweenness centrality of 

the node. 29–31This score can be normalized by dividing it by the theoretically highest score a 

graph with the same number of nodes could have.29–31 Normalized values can take a range of 

[0,1], with 0 indicating low betweenness centrality, and 1 indicating high betweenness 

centrality.30 
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1.3.10 Closeness Centrality: 

A form of centrality that uses a node’s proximity to other nodes as an indicator of its 

importance. Closeness is calculated by first identifying the shortest paths between a node and all 

other nodes.29 The number of edges on each path are summed, if the graph is unweighed each 

edge has a value of 1, otherwise their value is equal to their weight. Then, the mean length is 

taken by dividing this sum by the number of nodes.29 Finally, to aid interpretability the inverse of 

this mean is taken so that low values represent low centrality and high values represent high 

centrality.29–31 Closeness Centrality values range from [0,1].  

1.3.11 Degree Centrality:   

A form of centrality that uses the node’s degree as a measure of its importance. Nodes with 

a low degree are considered less central or less important compared to those with a high degree. 

Degree centrality values range from [0,¥) (or for a network with N nodes, [0,N) ).29–31 

1.3.12  Modularity:  

A measure of the strength of a given proposed community structure for a network. For a 

proposed set of communities on a network, modularity measures the extent to which nodes 

within a community tend to be connected to other nodes within their community vs. to nodes 

outside their community, compared to a network in which the edges are assigned randomly. 

Higher modularity tends to indicate a better proposed community structure, and although finding 

the true maximum modularity is an NP-hard problem, community detection algorithms exist 

which have been shown to perform well in practice on most networks.29 

1.3.13 Neighbor/Neighborhood: 
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The neighborhood of a node is defined as the set of all nodes which are directly 

connected to the given node. Nodes within the neighborhood of a node n are known as neighbors 

of n. 

1.3.14  Transitivity: 

A measure of the interconnectedness of nodes, also known as the global clustering 

coefficient.29 Transitivity is defined as the number of triangles in the network (i.e. situations in 

which two neighbors of a node are themselves neighbors, a measure of clustering), divided by 

the total number of possible triangles in the network. Transitivity ranges from 0 to 1.  

1.3.15 Centralization: 

This is the extent to which the nodes in a graph are centered around a common node or 

hub, and can be conceptually thought of as graph level centrality. Centralization is obtained by 

first summing the differences in centrality measures between a node and all of the other nodes in 

a graph, then dividing this sum by highest possible centrality value for a graph with the same 

number of nodes. Thus, centralization is the ratio between the summed differences in centrality 

between nodes, and the highest theoretically possible centrality value for a node given a graph of 

the same size. Values of centralization will range from [0,1], with 0 indicating no centralization 

and 1 high centralization.32,33 

1.4 Aim 4: Simulation of Respiratory Virus Outbreak on a Network 

In the second part of this two-part analysis, disease outbreaks were simulated on the 

network built in Aim 3. Since the motivation for this study was to explore COVID-19 

transmission, an SEIR compartmental model was used to capture both asymptomatic and 

symptomatic carriers. The purpose of this analysis is to show how the existing meta spatial 
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relationship between locations can provide additional structure that shapes the transmission of an 

infectious agent.  

1.4.1 SEIR Compartmental Model 

A compartmental model is a type of model that uses subgroups or “compartments” to 

simulate population level transitions between tangible or conceptual states. 34 They have wide 

application, and in epidemiology are used to study the dynamics of an infection as it passes 

through a population. Here, the compartment represents the states one experiences when catching 

an infection, falling ill, and then recovering. The “S” compartment represents the state of being 

“Susceptible” to an illness.34 Most of the population in a simulation will begin here. The  

“E” compartment represents being “Exposed” to a pathogen (traditionally termed “exposed”, but 

perhaps more accurately capturing latent infection) but not being able to transmit it to others.34 

This compartment may not be needed in other types of infections. The “I” compartment 

represents the state of being “Infectious” and able to transmit the pathogen to other people.34 

Finally, the “R” compartment represents “Recovered” (or in some cases, “Removed” if this class 

includes individuals who are deceased due to the disease).34 This is the category individuals pass 

to once they are no longer infectious and no longer showing signs or symptoms. Movement 

between these compartments is governed by rates that are typically either estimated from data or 

pulled from the literature.  

When put together, the compartments, rates and the process they simulate can be 

expressed as a series of ordinary differential equations.34 Where S,E,I, and R represent the 

number of people in that compartment at any given time point. 𝛽 represents the probability (or in 

the differential equation setting, rate) of two people coming into effective contact with one 

another (i.e. a contact of sufficient closeness so as to transmit the illness if one is susceptible and 
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the other is infectious), and marks the transition from “Susceptible” to “Exposed”.34 𝛿 represents 

the transition from “Exposed” to “Infected” and implies that a person is now able to spread the 

illness to others.34 𝛾 represents the transition from Infected to Recovered and is typically 

estimated using the inverse of the mean duration of illness.34 For instance, if we assume that it 

takes a mean of 14 days to recover from COVID-19 then 𝛾 would equal 1/14 or 0.071. 34  

Equations for the standard SEIR model are given below: 

𝑑𝑆/𝑑𝑡 = −𝛽𝑆𝐼	

𝑑𝐸/𝑑𝑡 = 𝛽𝑆𝐼 − 𝛿𝐸	

𝑑𝐼/𝑑𝑡 = 𝛿𝐸 − 𝛾𝑅	

𝑑𝑅/𝑑𝑡 = 𝛾𝑅 

 

Note that the transition from Susceptible to Exposed is controlled by an interaction term. This is 

to reflect that transmission can only happen when a susceptible person and an infected person 

come into contact with one another.34 

In this aim, we give each node of our network their own set of these equations to track the 

number of susceptible, exposed, infected, and recovered individual are in each unit at any given 

time. Then we use transition rates between units, given by the inverse of the mean waiting time 

for transition from one unit to another, to model the gross movement of people between 

compartments. 
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2 Has the Relationship Between Wealth and HIV risk in Sub-Saharan Africa Changed 
over time? A Temporal, Gendered, and Hierarchical Analysis. 

 

2.1 Introduction 

At a global level, HIV is widely understood to be a disease of inequality in which poorer 

individuals experience disproportionate morbidity and mortality from HIV infection 1–4. This 

association has often been assumed to be consistent across social and geographic contexts, with 

poorer individuals in poorer countries at greatest risk of HIV infection 2.  However, it is now 

well established that in Sub-Saharan Africa (SSA), both wealthier individuals and wealthier 

countries have higher HIV prevalence than their poorer counterparts (Gillespie et al., 2007; 

Hajizadeh et al., 2014).  

The relative vulnerability of wealthier people runs contrary to findings from North 

America and Western Europe over the last two decades, where wealth is often strongly 

protective against infectious disease 2,3,36–39.  

A positive relationship between wealth and HIV risk also appears to violate key 

understandings of how health disparities are generated and maintained. For example, Link and 

Phelan’s fundamental cause framework suggests that as knowledge and the availability of new 

tools for treatment and prevention of HIV have developed, wealthier individuals and countries 

should be able to better avoid illness and prevent death compared to poorer individuals and 

countries 36,39,40. One potential explanation for this paradox is that the wealthy and educated may 
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feel insulated from the risk of HIV infection and therefore do not take the same precautions 

others do 2,31.  

Similarly, despite most residents of SSA living in rural rather than urban settings, when 

HIV prevalence is stratified by urbanicity urban areas have a higher prevalence of HIV than rural 

ones 41. This suggests that HIV prevalence cannot be fully explained by differences in urbanicity 

1–9,42–44.  

 Lastly, it has also been observed that women in SSA experience a greater risk of HIV 

infection compared to men. This is again, a mirror image of results from North America and 

Western Europe and has been attributed to greater biological vulnerability to acquisition 45–47 as 

well as the greater presence of quid-pro-quo sexual relationships in which wealthy men have 

multiple female partners 5,7,43,48,49.   

In this analysis, we advance the literature in several directions: Existing individual-level 

studies of HIV, gender and wealth have typically employed data from a specific year for a single 

nation or a small subset of SSA nations 2,3,5–9,50. Further, although these studies enable between-

country comparisons for a particular year, such analyses do not allow for an assessment of how 

this relationship varies across time. However, there have been important changes over the last 

two decades which have likely affected this relationship. The widespread roll-out of free anti-

retroviral therapy across the continent has both improved survival of especially poorer people 

with HIV who may not have had prior access, as well as lowered HIV incidence by reducing the 

national viral load, and thus reducing the likelihood of new acquisition among new cohorts of 

individuals 51,52.  Additionally, over the last two decades, knowledge about HIV prevention has 

increased along with HIV testing and condom use, especially among young women and men 53–
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58. The achievement of gender parity in education in many African countries 59–62 may also have 

increased women’s leverage to demand safe sex in relationships, thereby changing the rate at 

which women acquire HIV from their male partners 63,64.  Finally, the percentage of sub-Saharan 

Africans living in urban environments has dramatically increased, from a mean of 27.3% in 1990 

to a mean 40.7% in 2019 41.   Overall, these studies suggest that drivers of the long-established 

relationship between wealth and HIV in Africa have shifted.   

In this study, we draw on DHS and AIS data from 27 sub-Saharan countries to investigate 

whether and how the relationship between wealth, gender and urbanicity has changed over time.  

We also account for hierarchical dimensions of wealth, examining both individual wealth and 

country level wealth, and assessing how these relationships have changed across time. 

2.2 Methods 

2.2.1  Data  

We performed a secondary data analysis on a secondary de-identified dataset from 43 

nationally representative cross-sectional Demographic and Health Surveys (DHS) and AIDS 

Indicator Surveys (AIS), covering 27 countries with linked HIV test results 65.  

These data spanned 14 years; from 2003-2016 (Table 1)65.  Although data were available, 

Burkina Faso 2003, Sierra Leone 2013, Guinea 2005 & 2012, Niger 2006, Togo 2013, Mali 

2012, Zimbabwe 2005 & 2015, but not Zimbabwe 2010, were dropped from this analysis due to 

low or 0 cell counts for HIV positivity when stratified by wealth tertiles and urbanicity. 

To obtain nationally representative statistics DHS and AIS follow a two-cluster sampling 

design. Countries are first broken into enumeration areas based on national census data. An effort 

is made to use existing census enumeration areas if they are available. A subset of these 
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enumeration areas is then selected with a probability proportional to their population size 65. 

Within these areas, households are randomly selected to participate 65.  

 
Table 2-1 Weighted Statistics of Study Population by Country. Weighted Population, Weighted HIV Prevalence 
Weighted Proportion of Men 

 

 
Country with 
Abbreviation 

HIV Positive 
(%) 

Women 
(%) 

Urban 
(%) 

eSwatini (SZ) 25.88 54.03 27.38 
Lesotho (LS) 23.66 54.48 29.61 

South Africa (SA) 20.98 49.26 67.95 
Zimbabwe (ZW) 15.69 52.76 35.59 

Namibia (NM) 14.33 53.51 54.62 
Zambia (ZM) 13.68 50.7 45.19 

Malawi (MW) 10.25 51.56 18.89 
Kenya (KE) 6.52 51.84 24.68 

Uganda (UG) 6.37 55.24 14.36 
Tanzania (TZ) 5.36 54.7 25.57 

Cameroon (CM) 4.68 50.62 55.05 
Gabon (GA) 4.24 49.67 87.65 

Côte D’Ivoire (CI) 3.97 50 51.26 
Rwanda (RW) 3.05 52.85 17.34 

Ghana (GH) 2.1 51.77 49.63 
Angola (AO) 1.95 54.22 70.79 

Gambia (GM) 1.95 52.63 58.74 
Liberia (LB) 1.83 54.08 48.81 

Tchad (TD) 1.56 52.73 25.74 
São Tomé & 
Príncipe (ST) 1.54 50.49 52.15 

Sierra Leone (SL) 1.47 53.26 36.04 
Burundi (BU) 1.43 52.78 12.55 

Mali (ML) 1.34 52.48 35.39 
Ethiopia (ET) 1.19 51.5 22.04 

D.R. Congo (CD) 1.17 51.67 39.6 
Burkina Faso (BF) 1.02 53.96 27.78 

Senegal (SN) 0.69 54.31 52.6 
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2.2.2 Informed Consent and Data Privacy 

Survey procedures and questionnaires were reviewed by both the ICF Institutional 

Review Board (IRB) and an IRB within the country being surveyed 66. The ICF review ensured 

that protocols were compliant with US regulations on human subjects research, and the within 

country IRB review ensured that the survey complied with the country’s laws 66. Prior to 

participation in the survey and biomarker sampling, adult respondents underwent an informed 

consent process that emphasized the voluntary nature of the survey 66.  

Identification numbers that included enumeration areas and household, were used in lieu 

of names on surveys and biospecimens 66. Once survey data processing was completed, the 

section of the survey containing this number was destroyed and the enumeration area and house 

number codes were randomized and reassigned 66. All survey and biomarker data was strictly 

confidential 66. More detailed information can be found in the Methodology Section of the DHS 

website 66. 

2.2.3  Variables  

In our analysis, we investigated the relationships between three variables – wealth, 

gender, and urbanicity – and HIV infection. 

2.2.3.1 HIV. 

 HIV infection status at the time of the survey was operationalized to a binary variable, 

‘infected’ or ‘not infected’. ‘Infected’ status reflects a positive test result for HIV-1, HIV-2, or 

both, while “not infected” reflects an individual with a negative result for all HIV types. 

Individuals with ‘invalid” or “indeterminate” test results were dropped from the study. These 
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observations comprised less that 1 percent of the data. HIV specific weights calculated by DHS 

were used to estimate measurements of association for the entire population.  

 

2.2.3.2 Individual Wealth. 

  An individual’s wealth was quantified using the DHS Wealth index. The Wealth Index is 

a composite measure of an individual’s assets. These include money, livestock, transportation 

(bicycles, cars, motorbikes), and home appliances (radios, refrigerators), among other items 67. 

The index is mean-centered, with zero representing the mean level of wealth within a country 

during a survey period 67. This makes the wealth index a more useful tool for understanding how 

differences in relative socioeconomic position within each country relate to within-country 

differences in HIV risk rather than for understanding the impact of country-independent absolute 

differences in wealth. These are instead captured by the relationship between national GDP and 

country-level average incidence (see below). To facilitate interpretation of the wealth index in 

these terms, we collapsed the continuous wealth score in the survey data into lower, middle, and 

upper wealth index tertiles for each year and country combination in an approach similar to 

Magadi and colleagues (Magadi et al 2017).2 

It is important to note that this standardized measure is contextual. A potential drawback 

is that an individual within the lower wealth tertile of one country, may fall into the middle or 

upper wealth tertile of another country. This may thus limit comparability across countries. 

However, the relative nature of this measure could also be a benefit. The wealth tertiles become a 

proxy for the relative lived experience and access to resources afforded to someone based upon 

 
2 We elected to create tertiles instead of using the quintiles calculated by DHS, for parsimony and because the DHS 
indicates that this measure is amenable to recategorization into different quantiles. 
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their wealth within a given country, instead of a mere categorization of the assets they have. This 

allows us to get at the experience of being in the lower, middle, and upper wealth tertile of each 

country, independent of the total value of one’s assets.  

2.2.3.3 Country-Level Wealth.  

We used three measures of wealth and inequality at the country level downloaded from 

the World Bank’s online data portal at https://databank.worldbank.org/ 41: the GINI coefficient, 

which measures wealth disparity; the human development index (HDI) which is a composite 

measure of a country’s gross domestic product (GDP) per Capita, life expectancy and education 

level, 69,70; and health expenditures as a percentage of gross domestic product, which is a 

measure of the amount of money a country is spending on health care. These country-level 

economic metrics were used to ascertain if a relationship exists between a country’s economic 

strength and its HIV prevalence. 

2.2.3.4 Gender.  

Since DHS data does not have a discrete variable representing gender identity, the 

biological sex of each survey participant was used as a proxy.  

2.2.3.5 Urbanicity.  

Urban or rural designation is assigned to an individual based upon the location of an 

individual’s de facto residence. There is no standard definition of what constitutes an urban 

versus rural area. Instead, these designations are assigned based upon the country’s particular 

characteristics. Country-specific definitions can be found via Integrated Public Use Microdata 

Series DHS website 71.  
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2.3 Statistical Analysis 

To estimate gendered, temporal, and hierarchical risks of HIV infection while accounting 

for variation in the magnitude and direction of these effects across settings, we employed a two-

step modeling approach, often used in meta-analyses10.  

2.3.1  Step 1- Individual data 

In the first step, we modeled the odds of HIV infection for each country/year combination 

using a logistic regression model adjusted for wealth and gender. For each country/year 

combination, the effect of living in a rural vs. urban setting on overall prevalence as well as the 

impact of wealth and gender was captured by stratifying by setting. Step 1 analysis was 

completed using the survey package in R 3.5, which allowed us to include DHS-provided sample 

weights to obtain population-level inferences from DHS’s complex survey data 72,73. 

 Once effect measures for gender and wealth on HIV infection by urbanicity were 

obtained in Step 1, in Step 2 we employed a meta-regression model to measure relationships 

between country-level measures and HIV infection risks associated with being in the middle and 

upper wealth tertiles or being a woman across all the countries in our analysis.  
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Figure 2-1 Odds Ratios of HIV infection by Middle Wealth Tertile per Country and Survey Year, With Meta-Regression Trend Overlay 
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Figure 2-2 Odds Ratios of HIV infection by Upper Wealth Tertile per Country and Survey Year, With Meta-Regression Trend Overlay 
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Figure 2-3 Odds Ratios of HIV infection by Gender per Country and Survey Year, With Meta-Regression Trend Overlay 
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2.3.2 Step 2- Country-Level data  

The objective of the second step was to assess if a country’s GDP, HDI, or GINI was 

predictive of HIV burden in either an urban or rural setting for the groups mentioned above. 

Since these economic measures capture different dimensions of wealth distribution and 

economic robustness, statistically significant relationships between them and HIV infection 

might offer insight into why certain groups have a higher burden of disease compared to others. 

To do this, a mixed-effects meta-regression model was fit using the parameter estimates 

and confidence intervals from the Step 1 analysis 74. Meta-regression was specifically used in 

this context as it can adjust the parameter results to account for any uncertainty in the effect 

estimates obtained from the models in Step 1. A mixed-effects model was used to account for 

residual between-country and survey\ variability not captured by included covariates 74. An 

additional benefit of using a mixed-effects model is that it does not assume that covariate effects 

are uniform across countries 74. Meta-regression analyses were implemented with the Metafor 

package for R 75.  

2.4 Results 

2.4.1 Descriptive Statistics 

2.4.1.1 HIV.  

The prevalence of HIV across the countries analyzed ranged from 0.69% in Senegal, to 

25.88% in eSwatini. 6 other countries had an HIV prevalence of greater than 10%: Lesotho, 

23.66%; Malawi, 10.25%; Namibia, 14.33%; South Africa, 20.98%; Zambia, 13.68%; 
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Zimbabwe, 15.69%.  All other countries had an HIV prevalence of greater than 1% but less than 

10% (Table 2.1). 

2.4.1.2 Urbanicity.  

The urban populations within the countries studied range from 12.6% in Burundi to 

87.7% in Gabon. Seven other countries had an urban population greater than 50%: Angola, 

70.8%; Cote D’Ivoire, 51.3; Cameroon, 55.1%; Gambia, 58.7%; Namibia, 54.6%; Senegal 

52.6%; Sāo Tomé & Príncipe, 52.2%; and South Africa, 68% (Table 2.1). 

2.4.1.3 Gender. 

 The proportion of women in each survey varied from 49% to 55.25%. South Africa had 

the lowest proportion at 49.26%, and Uganda, the greatest with 55.24%. The median proportion 

of women in each country is 52.7% (Table 2.1). 

2.4.2 Wealth  

After stratifying by urbanicity and controlling for gender we found that, similar to prior 

stratified findings, those living in urban settings were at greater risk of infection compared to 

those in the same wealth tertile living in a rural setting (Figure 2.1 A, B, 2.2 A,B)8,9,35. In 20 of 

27 countries, urban dwellers in the middle wealth tertile had a higher odds of HIV infection 

compared to their rural counterparts. Of these, urban dwellers in 14 of these 20 countries had 

50% greater odds of infection than rural dwellers. Congo 2011 was the only survey in which 

urban dwellers in the upper tertile’s odds of HIV was 50% than that of rural upper tertile 

dwellers. (Figure 2.1 A,B). Likewise, when comparing urban and rural individuals in the upper 

wealth tertile, we also found that the odds of HIV were higher for those in urban vs. rural settings 
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in 19 countries, with urban odds ratios that were at least 50% greater than their rural counterparts 

in 10 countries. (Figure 2.1 A,B). 

2.4.2.1  Meta-analysis of urban strata over time 

Results of our cross-country meta-model indicate that, on average, the odds of HIV 

decreased by 3.4% per year for the urban middle versus the urban lowest wealth tertile, and by 

7.1% per year for urban upper versus the urban lowest wealth tertile (Figures 2.1,2.2 A). Both 

meta regression lines and their confidence intervals began and remained above the null for 

several years. This suggests that within our data, the odds of HIV infection seen in the urban 

middle tertile or urban upper wealth tertile were significantly greater than those of the reference 

group. As suggested by the slope these relationships have attenuated over time. From 2008 

onward the lower confidence bound for the urban upper wealth tertile estimate included the null 

(Figure 2.1A). Likewise, from 2011 onward the lower confidence bound for the urban middle 

wealth tertile included the null (Figure 2.2A). These findings suggest that over time, the 

association between wealth and HIV infection has weakened over time in urban areas. 

2.4.2.2 Meta-analysis of rural strata over time 

   Similarly, results of our cross-country meta-model indicate that, on average, the odds of 

HIV decreased by 2.2% per year for the middle versus the lowest wealth tertile and by 7.6 % per 

year for the upper versus lower wealth tertiles (Figures 2.1 B, 2.2 B). The meta regression line 

and confidence intervals for the middle wealth tertile odds ratios remain above the null between 

the years of 2003- 2008. This finding suggests that within our data those individuals in the 

middle tertile had significantly higher odds of HIV infection compared to the reference group 

during the 2003-2008 time interval. From 2008 onward, however, the two groups had similar 



 28 

odds of HIV infection. Conversely, the regression confidence intervals for the upper wealth 

tertile included the null for all years analyzed. This suggests that within our study population, 

wealth has weakened as a predictor of HIV infection amongst rural populations in a manner that 

is similar to what has occurred in more-urban areas. Finally, the prevalence of HIV amongst the 

rural poor and the urban poor has remained largely unchanged over the years surveyed, with the 

urban poor bearing a higher burden of disease compared to the rural poor overall. Likewise, the 

ratio of these two prevalence has also remained fairly constant over time.    

The meta-regression findings suggest that the relationship between wealth and HIV may 

be starting to move in the direction typically observed outside of SSA, where an inverse 

relationship is seen between assets and the risk of HIV infection. We found a decreasing odds of 

HIV among middle and upper tertile Africans, regardless of urbanicity, with the wealthiest SSA 

residents experiencing the largest declines.  While one may conclude that this relationship is 

simply the result of survival bias, wealthier individuals in SSA are less likely to die from AIDS, 

even when anti-retroviral therapy is freely available, suggesting that these declines are unlikely 

to be explained by this mechanism alone. 9,76. 

2.4.3 Gender  

Figures 2.3 A and 2.3 B illustrate the odds ratios of HIV for women compared to men 

across time and country by urbanicity. Overall women typically had a higher HIV burden than 

men (>1 odds ratios), and urban women had a greater burden relative to rural women. 19 of the 

27 countries surveyed had a higher odds of HIV infection among urban women compared to 

rural women. In 6 out of 19 countries, the odds of infection for urban women were at least 50% 

greater than that of rural women.  
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 Our regression results indicate that women across all countries in our analysis 

experienced greater odds of HIV infection compared to men after controlling for wealth.  The 

odds of HIV among rural women were 52% greater than the odds of HIV infection in rural men. 

Similarly, the odds of HIV for urban women are 73% greater than for urban-dwelling men. 

These finding are consistent with those of Lakew, Barankanira and Hajizedah 5–7.  The change in 

odds of HIV infection in women versus men in both urban and rural areas, across the surveys 

used in this analysis, was less than 1% per year. This may indicate that across Sub-Saharan 

African countries, the relative odds of HIV infection in women, regardless of environment has 

remained unchanged over the last decade. 

2.4.4  Effect Modification and Confounding 

When we compare the results from our analysis stratified on urbanicity to the results of 

an unstratified analysis, we see evidence of effect modification or confounding by urbanicity 

depending on the variable. Effect modification is indicated by a crude odds ratio falling between 

the two stratified odds ratios, while confounding is indicated by a crude odds ratio that is higher 

or lower than both stratified odds ratios 77.  Following these criteria, urbanicity appears to modify 

the effect of gender on HIV infection, but confound the relationship between wealth and HIV 

infection. (Figures 2.4-6). 
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Figure 2-4 Comparison of Urban 
v Rural Odds Ratios for Upper 
Wealth Tertile. Orange 
Confidence intervals reflect 
unstratified odds ratios. Black 
confidence intervals reflect Urban 
ORs, Grey reflect Rural ORs  
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Figure 2-5 Comparison of 
Urban v Rural Odds Ratios for 
Middle Wealth Tertile Orange 
Confidence intervals reflect 
unstratified odds ratios. Black 
confidence intervals reflect 
Urban ORs, Grey reflect Rural 
ORs. 
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Figure 2-6 Comparison of Urban v 
Rural Odds Ratios for Gender Orange 
Confidence intervals reflect 
unstratified odds ratios. Black 
confidence intervals reflect Urban 
ORs, Grey reflect Rural ORs. 
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Meta-Regression Results for the Middle Wealth Tertile    
     

Metrics Odds Ratio 
95% 

Confidence 
Interval 

Change in Odds of HIV Infection per 
Decile Increase of Metric 

GDP per 
Capita 0.6 0.32,1.14 40% Decrease 

GINI 1.02 0.69,1.5 2% Increase 
HDI 0.8 0.50,1.28 20% Decrease 

HE.GDP 0.67 0.45,0.99 33% Decrease 
Table 2-2 Predicted Change in the Odds Ratio of HIV in the Middle Wealth Tertile Given World Bank Metric 

Table 2-3 Predicted Change in the Odds Ratio of HIV by Upper Wealth Tertile Given World Bank Metric 

Meta-Regression Results for Gender   
           

Metrics Odds Ratio 
95% 

Confidence 
Interval 

Change in Odds of HIV Infection per 
Decile Increase of Metric 

GDP per 
Capita 0.87 0.59,1.28 13% Decrease 

GINI 0.86 0.59,1.06 14% Decrease 
HDI 0.85 0.66,1.09 15% Decrease 

HE.GDP 0.93 0.75,1.15 7% Decrease 
Table 2-4 Predicted Change in the Odds Ratio of HIV by Gender Given World Bank Metri

 
Meta-Regression Results for the Upper Wealth Tertile  

Metrics Odds Ratio 
95% 

Confidence 
Interval 

Change in Odds of HIV 
Infection per Decile Increase 

of Metric 

GDP per Capita 0.33 0.10,1.07 67% Decrease 
GINI 0.4 0.20,0.81 50% Decrease 
HDI 0.2 0.09,0.45 80% Decrease 

HE.GDP 0.3 0.14,0.62 71% Decrease 
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2.4.5 Country-level inequality in wealth and gender risks 

The results of our analyses can be found in Tables 2.2 through 2.4. These tables depict 

how the country-level economic metrics predicted the odds of HIV infection amongst those 

across Sub-Saharan Africa in the middle wealth tertile for their country compared to those 

individuals across Sub-Saharan Africa that are in the lowest wealth tertile for their country. For 

example, those individuals within the Middle wealth tertile for their country will experience a 

40% decrease in the odds of HIV infection, compared to those who are in the lowest wealth 

tertile, for every decile increase in their country's GDP per Capita. Table 2.3 repeats the findings 

of Table 2.2, except that these reflect how country level economic metrics predict HIV infection 

in those individuals that fall into the upper wealth tertile for their country of residence, compared 

to those who fall into the poorest wealth tertile for their country of residence. Table 2.4, reflects 

the change in the odds of HIV infection predicted by the economic metrics for all women in Sub-

Saharan Africa versus all men in Sub-Saharan Africa. 

Our findings suggest that a country’s development as well as the amount of money spent 

on health expenditures also have a significant impact on the relationship between wealth and 

HIV, however this is only for those in the upper wealth tertile. We did not find a significant 

relationship between gender or middle wealth tertile status and the country level metrics used 

here. 

 Two metrics were associated with lower HIV risk for the upper wealth tertile relative to 

the lowest: HDI and the percentage of the GDP attributed to health expenditures. A 1 unit 

increase in HDI was associated with a 94% decrease, (95% Confidence Interval (CI): 69%, 

99%), in HIV in the upper wealth tertile as opposed to the lowest wealth tertile. A 1% increase in 
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the percent of the GDP directed to health expenditures was associated with a 16.2% decrease 

(95% CI: 3%, 28%) in HIV among the upper wealth tertile compared to the lowest wealth tertile. 

 

2.5 Discussion 

This study sought to examine gendered, temporal and hierarchical dimensions of the 

relationship between wealth and HIV over time in sub-Saharan Africa. Our analyses revealed 

three overall findings: First, we found that while wealthier Africans continue to experience 

higher odds of HIV infection compared to poorer individuals, the risk of HIV infection among 

middle and wealthier individuals has reduced over time relative to the poor in both urban and 

rural areas, with the wealthiest experiencing the largest declines. Second, we found that women 

continue to have higher odds of HIV infection relative to men, even after accounting for wealth 

and urbanicity, and there has been little change in this relationship over time. Third, we found 

that country level GDP, its HDI, and its expenditures on health care reduced the relative risk of 

HIV infection, but only for the wealthiest Africans in their respective countries.   

 Our results confirm Magadi’s finding that the risk of HIV infection is higher in those 

living in an urban setting compared to individuals living in a rural setting, although our results 

regarding wealth and HIV conflict with her findings. This is potentially due to our use of wealth 

index tertiles as opposed to splitting the wealth index at the median 8. Our findings regarding 

wealth are consistent with those by Mishra et. al., and Gillespie et. al; namely that wealthier 

individuals in SSA continue to experience higher odds of infection compared to poorer 

individuals, and that relative wealth not poverty predict one’s risk of HIV infection  9,35.  

Our investigation of temporal trends indicates that the disparity in HIV infection risk 

between wealth tertiles has been declining over time in both urban and rural areas. Our findings 
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note that the overall average decline in HIV infection risk amongst individuals in the upper 

wealth tertiles is steeper than the decline in HIV in the middle wealth tertile,  

despite increasing availability of free antiretroviral therapy across SSA 51,78 (Figure 2.1,2.2 A-B).  

There are several potential explanations for our findings. First, since wealthier 

individuals are less likely to die from AIDS 76,79–83, these results may suggest a shift in the 

composition of the HIV-positive population, with wealthier adults who acquired HIV earlier in 

the epidemic surviving longer, combined with declining incidence among adults who have 

accumulated wealth as they age, potentially due to higher uptake of HIV preventive practices. In 

this case, as time progresses, fewer wealthy SSA residents would be HIV positive. However, 

since the relationship between wealth and HIV is typically examined in relative terms, this could 

also reflect compositional shifts among the poor, who have benefited relatively more from freely 

available ART than wealthier Africans, and are now increasingly able to survive and age with 

HIV 84–86. In addition, ART contributes to reduced community viral loads for both the wealthy 

and poor, providing indirect protection that lowers incidence across the population 51. In 

combination, this would result in both the poor and the wealthy trending towards each other over 

time, potentially blunting the effect of poverty or wealth on HIV outcomes. 

Our findings should also be interpreted in light of several limitations. First, there are a 

varying number of observations in each survey, and a varying number of surveys for any given 

year. Consequently, our temporal trend estimates are vulnerable to bias due to data sparseness. 

However, these inconsistencies are unlikely to drastically bias our overall temporal trend 

estimates because meta-regression uses the standard errors of each point estimate to account for 

uncertainty.  
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Not all SSA countries are included in our DHS dataset, which lacks key countries like 

Botswana; our results about between-country variation and change over time should be 

interpreted in light of this missing information. While the exclusion of some countries would not 

affect the individual level estimates of other countries, it may impact temporal trends we 

observed if these countries are systematically different from those included in our analysis. 

Finally, we were unable to control directly for the specific phase (acceleration, peak, 

deceleration) each country’s HIV epidemic was in at the time of each survey. This shortcoming 

is unlikely to bias our results greatly, as most included countries have shown a decline or plateau 

of cases over the study period, with only a handful increasing. Consequently, any bias in our 

projections would result in an attenuation towards the null and provide a conservative estimate of 

the temporal trends. 

2.5.1 Conclusion 

Taken together, our findings indicate that over the last decade, across a large number of 

SSA countries, the odds of HIV amongst wealthier individuals have decreased relative to poorer 

individuals. This suggests that the relationship between wealth and HIV in these countries may 

be converging towards the global norm in which poverty is predictive of increased HIV risk. We 

found that the relative difference between those living in urban vs. rural contexts was stable, and 

that both contexts were largely subject to the same temporal trends in the impact of wealth on 

HIV risk.  Our analyses also confirm the stability of previous findings:  HIV continues to be 

more prevalent in the wealthiest group of individuals compared to the middle or lower wealth 

tertiles, and more prevalent in women compared to men.  

  Next, our study identifies a set of metrics that allow us to disentangle the impact of 

country-level vs. individual attributes on HIV risk. Specifically, increases in health spending as a 
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fraction of GDP, and HDI are all associated with a decrease in HIV amongst the upper wealth 

tertile compared to the middle or lower wealth tertiles. Taken together, these trends suggest that 

wealthier countries have a lower overall burden of disease, but that the wealthiest individuals in 

these countries remain at higher risk of HIV compared to those at the lower end of the wealth 

distribution. 

Finally, our findings hint at a potential mechanism through which urbanicity affects the 

relationship between HIV infection, and wealth or gender: urbanicity modifies the effect of 

gender on HIV infection risk but confounds the relationship between wealth and HIV infection 

risk. In other words, urbanicity is predictive of wealth and of HIV infection status separately, and 

as such it must be controlled for if one is to investigate the effect wealth has on HIV infection. 

However, residing in an urban environment increases a woman’s vulnerability to HIV infection. 

 Our results also point the way to future analyses examining the roles played by wealth 

and gender on patterns of HIV infection in SSA. In particular, more research should examine the 

mechanistic drivers of reduced HIV vulnerability among the wealthiest Africans in different 

countries, the stubbornness of the gender disparity in women’s HIV risk, and the positive 

association between individual wealth on HIV burden.  
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3 Latent Class Analysis of Generational Trends In STI Risk Factors 

3.1 Introduction 

Nationally, one-in-five individuals have had a sexually transmitted infection (STI), and 

more than 26 million new STIs were estimated to have occurred in 2018 alone.87 While most of 

these infections were likely mild or asymptomatic, many are important causes of morbidity and 

mortality. For instance, congenital syphilis has reemerged as public health concern. Reported 

cases of congenital syphilis in the US have increased by 261% between 2013-2018 in the US, 

and 6.8% of cases reported in 2019 resulted in either stillbirth or infant death.87,88 Similarly, 

reported cases of gonorrhea have increases from 309,341 in 2010, to 583,405 in 2018.20 

STIs aren’t exclusive to young people.19,20 According to the CDC, reported cases of 

primary and secondary syphilis amongst those 55 years or older rose from 600 in 2010 to 3,092 

in 2020, likewise reported cases of gonorrhea rose from 2,714 in 2010 to 16,333 in 2019.20 

Indeed, other age brackets have seen a similar increase STI cases as well.20 STI positivity 

impacts more than just physical health. STIs are often stigmatized, particularly amongst older 

age groups, which can lead to feelings of disenfranchisement and isolation among cases. 89–94  

 It is understood that an interrelationship between sexual behaviors, substance use, and 

sexually transmitted infection positivity exists.21,22,24,95,96 However the continuity of these 

relationships between birth cohorts and across the life course remains less clear. Personal 

attitudes regarding sex or substance use are influenced by our family and community.21,97,98 

Social mores and stigma can change over time and vary between generations;89–93 and the 

frequency with which people engage in these behaviors changes over the life course, as 



 40 

well.92,93,99–101 To complicate things further, many specific risk factors or variables measuring 

sexual behavior and substance use can be highly collinear in some populations, rendering 

traditional statistical methods less effective at estimating the individual effects of substance use 

or sexual behaviors have on STI infection risk.91,102 Indeed, given the many variables that can be 

used to measure sexual behavior and substance use, there is a need to develop a framework to 

integrate these different variables in a way that can be used to understand behavioral and STI risk 

patterns. It is particularly important to understand how these profiles may change over the life 

course because people of all ages are at risk of contracting and transmitting sexually transmitted 

infections.19,20 

Latent class analysis is an alternative approach to understanding an individual’s risk, that 

views individual behaviors or characteristics as expressions of an unmeasurable, underlying risk 

profile.26,103 In brief, LCA moves away from estimating the effects attributable to individual sex 

acts or other risk factors.26,103  Instead, LCA exploits variable correlation, by comparing 

variations in the overall response patterns within the data to create a specified number of 

classes.28,104 Next, it calculates an individual’s probability of belonging to each class, and assigns 

individuals the class with the highest probability.28,104 Results are reported as the probability of 

an individual in a given class endorsing a particular trait.28,104 With a sufficiently large 

population, the probabilities can be interpreted as the estimated prevalence of a trait within its 

class, amongst the population surveyed.   

While this approach may be less informative for targeting specific behaviors for 

intervention, it better identifies the holistic risk to an individual instead of accounting of their 

risk as a product of their specific behaviors. LCA’s goal then, is not to estimate the direct effect 

of any specific risk factors. Instead, it is to identify recurrent response patterns across our 
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observed behavior variables (often termed ‘manifest variables’) in order to identify subgroups 

that represent different classes or profiles. 

In this analysis, we endeavored to characterize such common response patterns, or 

profiles, of substance use and sexual activity, and to examine how these profiles change across 

the life course, represented as decadal age groups. Additionally, while we explored how these 

profiles predicted the risk of any STI, both overall and by age group. To do this, we performed 

latent class analysis on a set of substance use and sexual behavior variables take from the 2015-

2016 wave of the National Health and Nutrition Examination Survey (NHANES).  

3.2 Methods  

3.2.1 Data Overview 

We used the 2015 to 2016 wave of the National Health and Nutrition Examination 

Survey (NHANES), as the basis for our analyses. NHANES is nationally representative, biennial 

survey that assesses a range of health behaviors and outcomes via questionnaire and biospecimen 

collection. These data contained responses from participants ages 18-59. The 2015-2016 wave 

was the most recent wave to screen for an array of STIs. These data are de-identified and made 

available for public access online.105 This study did not require IRB approval.  

3.2.2 Conceptual Model Building and Approach 

Our latent variable represents an individual’s profile as defined by correlates of STI 

infection. Levels of our latent variable represented different profiles detected in our population. 

28,103,106  These profiles were composed of 5 constructs: “never, non-current, or current use of 

alcohol”, “never, non-current, or current use of cigarettes”, “never, non-current, or current use of 
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marijuana”, “number of oral sex partners in the last year”, “number of vaginal sex partners in the 

last year”.  

Although NHANES did offer a “number of anal sex partners in the last year” variable, 

this question was only asked to men and had a 1.3% response rate amongst the entire population 

of 4843 participants surveyed. Consequently, we elected not to include this as an indicator in our 

analysis. Since LCA requires that all variables be categorical, we recoded count variables as 

categorical variables.72,107,108  

The three level operationalizations of alcohol, tobacco, and marijuana use were chosen to 

assess use history and frequency, while also maintaining model parsimony.21,22,109  On the other 

hand, sexual partner count can be directly associated with STI positivity, and as such the 

increased complexity of our model due to these polychotomous variables is offset by the amount 

of information gained from their inclusion. 110–112 Lastly, yearly partner counts were chosen 

because they capture behavioral changes in the rate of unique sexual partnerships over the life 

course. Indeed, it has been observed that substance consumption and sexual activity peak in early 

adulthood, then taper off over time.99,100,113 However, as a sensitivity analysis, we have also 

included a version using cumulative lifetime partner counts (see Supplementary Information), 

with broadly similar results.  

3.2.3 Latent class analysis:   

All latent class analyses were conducted using Mplus Version 8.4.104 We began by 

obtaining fit criteria for the 2 class through 9 class solutions.106 To obtain solutions for a 

nationally representative population, the NHANES survey weights were incorporated via Mplus’ 

“WEIGHTS” call.104 We used the Bayesian Information Criterion to identify the number of 

classes that best describes our latent variable. BIC was elected over the other information criteria 
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because it has been shown by Nylund et. al. to accurately detect the optimal solution, across a 

wide range of samples sizes.106  

After first conducting an LCA on the entire, unstratified dataset, we wanted to assess if 

profiles changed with age. The initial dataset was stratified into 4 decadal age groups, 18-29 

which at the time the data were collect consisted of "Gen Z", 30-39 or “Millenials”,40-49 or 

“Gen X” , 50-59 who, at the time of data collection, were known as “Baby Boomers”. The 

analysis described above was repeated on these individual strata, with the exception that the 

largest number of classes tested were 6, not 9.  

3.2.4 Measurement Invariance: 

When making across group comparisons it can be helpful to test if the classes within each 

age group measure the same construct: in epidemiological terms, do the classes have internal 

validity?  In multi-group LCA this property is known as measurement invariance. Mplus offers a 

way to check for this property via the “KNOWNGROUP” command, and does so by comparing 

a model without constraints to one with constraints.28,104 First a “null” model is run. Here, the 

number of groups in the data and classes sought are specified, but the proportions of each 

indicator variable are allowed to vary between groups.28 Next, an adjusted model is constructed 

that constrains the indicator variable probabilities for a given class across groups.28 A likelihood 

ratio test is conducted using fit statistics from these two models. If the adjusted model fits the 

data as well as the null model, then one can assert that a class in one group measures the same 

construct as the corresponding class in a second group.28 If the adjusted model does not fit the 

data as well, then one can conclude that item invariance doesn’t hold, and that the underlying 

construct measured by a class is not the same between groups.28 (See Supplement B for 

Calculation).28 
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3.2.5 Regression Analysis:   

2015-2016 laboratory results were obtained for chlamydia, trichomonas, herpes simplex 

virus 1 & 2, oral human papilloma virus, genital human papilloma virus, and HIV tests. We then 

used the results to derive our outcome: the presence of any STI. The “Any STI” variable was 

positive if any of the STI tests returned a positive result. Participant class assignments were 

merged with this composite variable. The lme4 package in R was used to conduct univariate 

logistic regression, in the stratified and unstratified data sets. Class assignments served as the 

exposure, and “Any STI” served as the outcome. Odds ratios with Class 1 as the reference group 

were calculated for each latent class .114,115  

3.3 Results 

Table 3.1 shows the unweighted prevalences of the NHANES variables used in this 

analysis, both by age group and overall.  A weighted table of prevalences can be found in 

Appendix C. 
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Table 3-1 Unweighted Prevalence of NHANES Variables by Age Group 

 

 
ALL 18-29 30-39 40-49 50-59  

N % N % N % N % N % 
Alcohol Consumption                     

Never 624 0.16 257 0.22 116 0.12 138 0.15 113 0.13 

Current 2411 0.61 699 0.59 600 0.64 547 0.6 565 0.64 

Non-Current 454 0.12 113 0.09 93 0.1 128 0.14 120 0.14 

Did Not Respond 437 0.11 123 0.1 124 0.13 100 0.11 90 0.1 

Cigarette Use                     
Never 2513 0.64 888 0.74 564 0.6 604 0.66 457 0.51 

Current 802 0.2 202 0.17 215 0.23 170 0.19 215 0.24 
Non-Current 608 0.15 101 0.08 152 0.16 139 0.15 216 0.24 

Did Not Respond 3 0 1 0 2 0 0 0 0 0 
Marijuana Use                     

Never 1707 0.43 460 0.39 399 0.43 470 0.51 378 0.43 

Current 466 0.12 233 0.2 112 0.12 56 0.06 65 0.07 

Non-Current 1249 0.32 361 0.3 288 0.31 270 0.3 330 0.37 

Did Not Respond 504 0.13 138 0.12 134 0.14 117 0.13 115 0.13 

Oral Sex Partners Past Year                     
0 1867 0.48 499 0.42 389 0.42 417 0.46 562 0.63 

1 1718 0.44 518 0.43 469 0.5 440 0.48 291 0.33 
2 to 4 283 0.07 150 0.13 60 0.06 47 0.05 26 0.03 

5 to 9 37 0.01 17 0.01 10 0.01 5 0.01 5 0.01 

10 + 17 0 8 0.01 3 0 4 0 2 0 
Did Not Respond 4 0 0 0 2 0 0 0 2 0 

Vaginal Sex Partners Past Year                     
0 1187 0.3 383 0.32 231 0.25 224 0.25 349 0.39 
1 2227 0.57 558 0.47 597 0.64 592 0.65 480 0.54 

2 to 4 391 0.1 190 0.16 83 0.09 79 0.09 39 0.04 

5 to 9 72 0.02 43 0.04 11 0.01 5 0.01 13 0.01 

10 + 45 0.01 17 0.01 11 0.01 10 0.01 7 0.01 

Did Not Respond 4 0 1 0 0 0 3 0 0 0 
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3.3.1 Unstratified Descriptive Latent Class Analysis 

A six class solution fit the unstratified dataset the best, and showed an escalation of both 

substance usage and sexual partnerships. (FIGURE 3.1) Class 1, which represented 29.7% of the 

population, is titled “Inactive Cigarette Smokers”, as the defining features of this class are no 

endorsement of sexual partnerships in the last year, and present but relatively low endorsement 

of cigarette use along with a high probability of refusing to answer questions about alcohol and 

marijuana consumption. Class 2, accounting for 10.5% of the total population, was titled “Semi-

Active Alcohol Drinkers” as this class is defined by current or non-current alcohol consumption 

(but little tobacco use), and some vaginal sex partnerships, but not oral sex partnerships. Class 3, 

which accounted for 25.9% of the population, was titled “Semi-Active Substance Users” as we 

see endorsement of current or non-current alcohol, cigarette and marijuana consumption, and 

some vaginal sex partnerships, but very low endorsement of oral sex partnerships. Class 4 which 

represented 10.1% of the population, was titled “Monogamous Alcohol Drinkers” and is distinct 

from “Semi-Active Alcohol Drinkers” in that this class has a high probability of endorsing one 

oral sex and vaginal sex partnership in the last year. Class 5, which accounted for 12.8% of 

individuals, was named “Monogamous Substance Users” because like the prior class, people in 

this class have a high probability of endorsing 1 oral sex and vaginal sex partnership in the last 

year. Finally, class 6 which accounted for 11.1% of the individuals in our population, was named 

“Non-Monogamous Substance Users” as they have a high probability of endorsing current or 

non-current substance use and having more than 1 oral and vaginal sex partnership in the last 

year. (FIGURE 3.1) 
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Figure 3-1 6 Class LCA Solution for Unstratified Data 
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3.3.2 Stratified Descriptive Latent Class Analysis 

The five-class solution fit each of the age strata best. The general composition of the 5 

classes was broadly consistent across the “18 to 29”, “30 to 39”, “40 to 49”, and “50 to 59” age 

groups. Class 1 represented individuals with 0 sexual partnerships in the last year who endorse 

some tobacco use, here called “Inactive Cigarette Smokers”. Class 2 composed of people with 

low probability of having at least one sexual partnership in the last year, and who endorse current 

alcohol consumption, or “Inactive Alcohol Drinkers”; Class 3 members were dubbed 

“Monogamous Drinkers”, as they had a very high probability of endorsing having 1 relationship 

in the last year and endorsing current alcohol consumption.  and Class 4 represented 

“Monogamous Substance Users” as these individuals also tended to endorse having 1 sexual 

partnership in the last year, but unlike “Monogamous Drinkers” also endorsed current tobacco 

and marijuana usage. The last class given the title “Non-Monogamous Substance Users” as these 

individuals also had a high probability of endorsing current substance use but had a low 

probability of having one or no sexual partnerships in the last year. Figure 3.2 is a conceptual 

diagram comparing the intensity of risk behaviors by class and age group. Figures 3.3-3.6 show 

the composition of classes within an age group.  (Figures 3.2 – 3.6) Note that both substance use 

and sexual behavior can be represented using multiple variables, so this diagram is a low-

dimensional simplification, but captures the basic conceptual relationships between substance 

use and sexual behavior seen in the classes. 

With exception of Inactive Alcohol drinkers, individuals in the 18-29 age group had a higher 

probability of endorsing current marijuana using than members of the same class in the other age 

groups. This may reflect changing attitudes towards marijuana consumption, and/or an age effect 

on marijuana consumption. 



 49 

 

 

Figure 3-2 Conceptual Diagram Showing the Estimated Intensity of Risk Behaviors by Class and Age Group. 
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Figure 3-3 5 Class LCA Solution for 18-29 Year Olds 
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Figure 3-4 5 Class LCA Solution for 30-39 Year Olds 
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Figure 3-5 5 Class LCA Solution for 40-49 Year Olds 
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      Figure 3-6 5 Class LCA Solution for 50-59 Year Old 

s

0.06
0.05

0.88

0.61

0.2

0.19

1 1 1

0.01

0.93

0.06

0.43

0.2

0.36

0.22

0.12

0.66

0.13

0.87

0.03

0.96

0.01

0.91

0.09

0.15

0.47

0.38

0.16

0.15

0.68

0.01

0.96

0.010.01

0.63

0.33

0.020.02

0.1

0.75

0.15

0.68

0.3

0.02

0.25

0.01

0.74

0.07

0.28

0.57

0.09

0.07
0.02

0.82

0.09

0.36

0.39

0.25

0.94

0.06

0.97

0.03

0.74

0.24

0.02

0.39

0.59

0.010.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

Categories
Never Used/0 Partners
Current User/1 Partner
Former User/2−4 Partners
5−9 Partners
10+ Partners
Don't Know/Not Answered

NHANES: 50−59

Monogamous Substance Users

Inactive Cigarette Smokers Inactive Alcohol Drinkers Monogamous Alcohol Drinkers

Non-monogamous Substance Users

C
on

su
m

es
 A

lc
oh

ol

U
se

s 
C

ig
ar

et
te

s

U
se

s 
M

ar
iju

an
a

O
ra

l S
ex

 P
ar

tn
er

s

Va
gi

na
l S

ex
 P

ar
tn

er
s

C
on

su
m

es
 A

lc
oh

ol

U
se

s 
C

ig
ar

et
te

s

U
se

s 
M

ar
iju

an
a

O
ra

l S
ex

 P
ar

tn
er

s

Va
gi

na
l S

ex
 P

ar
tn

er
s

C
on

su
m

es
 A

lc
oh

ol

U
se

s 
C

ig
ar

et
te

s

U
se

s 
M

ar
iju

an
a

O
ra

l S
ex

 P
ar

tn
er

s

Va
gi

na
l S

ex
 P

ar
tn

er
s



 54 

3.3.2.1 Inactive Cigarette Smokers 

The probabilities of endorsing sexual partnerships in the last year or endorsing marijuana 

consumption were largely the same across all 4 age groups. The endorsement of never, current 

and non-current cigarette consumption was largely similar across all age groups, and there 

doesn’t appear to be a trend by age group. 18-29 year olds, and 50-59 year olds had a low 

probability of also endorsing current alcohol usage while 30-39 & 40-49 year olds did not. 

3.3.2.2 Inactive Alcohol Drinkers 

This class is characterized by a low probability of endorsing one or more oral or vaginal 

sex partnerships in the last year, and a higher probability of endorsing current alcohol 

consumption over any tobacco or marijuana use. If members did endorse tobacco or cannabis use 

it was mostly likely to be prior, non-current use. 50-59 year olds had the highest probability of 

endorsing non-current tobacco or marijuana use, across the 4 age groups. 18-29 and 50–59 year 

olds had a higher probability of endorsing at least 1 vaginal sex partnership within the last year, 

than 30-39 and 40-49 year old. The overall probability of endorsing one or more oral sex 

partnerships in the last year was similar across all age groups, with 30-39 year olds having the 

highest probability of 5 or more oral sex partners in the last year, and 40-49 year olds having the 

highest probability of endorsing 10 or more partnerships in the last year. 

3.3.2.3 Monogamous Alcohol Drinkers 

Similar to the prior class, this profile is defined by a greater probability of endorsing 

current alcohol consumption over any tobacco or marijuana use. Likewise, if members of this 

class did endorse any tobacco or marijuana use it is likely to be non-current use. 18-29 year olds 
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had the highest probability of endorsing any marijuana usage across the 4 age groups. (Figures 

3.3) 

 The characteristic that differentiated this class from the previous one is the high 

probability that classes member had 1 oral or vaginal sex partnership in the last year. This 

probability was highest amongst 18-29 year olds, and lowest in 50-59 year olds. Interestingly, 

the 30-39 and 40-49 age categories had profiles that were nearly the same.  

3.3.2.4 Monogamous Substance Users 

This class of individuals is similar to the prior class in that the profiles indicate that 

members have the highest probability of endorsing 1 oral or vaginal sexual partnership within the 

last year. This being said, there is still a low probability that class members will endorse having 2 

or more sex partners within the last year. This probability is highest in 18-29 year olds. 

 The profile differs from the prior group in that they have higher probabilities of endorsing 

tobacco or marijuana usage. Of the age groups 18-29 year olds in this class have the highest 

probabilities of endorsing current tobacco or marijuana use. Across the 30-39 and 40-49 year old 

age groups endorsement of non-current tobacco and marijuana use increases as endorsement of 

current marijuana and tobacco use decline. 50-59 year olds in this category have the highest 

probabilities of denying any tobacco or marijuana use.  

3.3.2.5 Non-Monogamous Substance Users 

This class has substance use profiles similar to the prior class. Current alcohol 

consumption is the most endorsed substance use, followed by tobacco use. Interestingly, 

compared to the other age groups. 50-59 year olds in this class have a higher probability of 

denying ever using tobacco than endorsing non-current use. 18-29 year old class members have 
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the highest probability of endorsing current marijuana use, while the other three classes are more 

likely to endorse non-current marijuana use.  

This class has the highest proportion of people endorsing at least 2 sexual partnerships in 

the last year. Of these 18-29 year olds have the highest probability of endorsing 5 or more 

vaginal sex partnerships in the last year. Interestingly, 40-49 year old have the highest 

probability of endorsing 5 or more oral sex partnerships within the last year. 50-59 year olds in 

this class are unique relative to the other age groups in that they have a 0.28 probability of 

endorsing one oral sex partnership and a 0.02 probability of endorsing one vaginal sex 

partnership within the last year. (Figures 3.3-3.6) 

3.3.2.6 Measurement Invariance 

A multigroup analysis of the 4 decadal groups indicated that a class in one group does not 

measure the same construct as its corresponding class in a different group, which is to say that 

corresponding classes are not internally valid. In other words, the experience or state of being an 

18-29 year old “Inactive Alcohol Drinker” is not the same as the experience or state of being a 

30-39 year old “Inactive Alcohol Drinker”. These two classes, although similar, are influenced 

by differing external forces, and dispose class members to potentially different risks. 

This lack of exchangeability is further evidenced when a latent class analysis is run on 

the unstratified data (Figure 3.1). If matching classes across age groups measured the same 

construct, we would expect to see a five class solution in the unstratified data that was 

comparable to the solutions seen in the age group stratified datasets. Instead, our fit statistics 

found that the six class results was the best for the unstratified dataset. Further, when an 

individual’s decadal class was mapped to their unstratified class, via Sankey diagrams, we see 

class crossover. (Figure 3.7)  For all age strata those people who were in the lowest class in the 
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stratified analysis, remained in the class endorsing the lowest number of behaviors in the 

unstratified analysis. This potentially speaks to the continuity and robustness of this profile time 

across the life course. Likewise, we find that individuals who were in the highest class remained 

in the highest class when mapped to their unstratified class assignment. The other classes show 

flux, via the extent to which they cross between classes. This could be an indication that while 

profiles containing extreme behaviors remain constant, the profiles amongst 30-39, and 40-49 are 

more susceptible to the external pressures of one’s environment. 
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Figure 3-7 Sankey Diagram Showing Sorting of Class Assignments Between Stratified and Unstratified LC. Numbers in the columns reflect class size. 
Percentages refer to the proportion of individuals from the stratified class that map to the unstratified class at the end of the ribbon 

.
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3.3.2.7 Logistic Regression 

In the unstratified dataset, the odds of infection from ‘Any STI’ were higher in the Semi-

active Substance Users through Non-Monogamous Substance Users relative to Inactive Cigarette 

Smokers; however not all odds ratios were statistically significant. Monogamous Substance 

Users report an odds of infection that is 1.43 (95% CI 1.08, 1.90) times greater than that of 

Inactive Cigarette Users, while Non-monogamous Substance Users shows an 2.36 (95% CI 1.65, 

3.37) times greater infection relative to Inactive Cigarette Users (Table 3.2). 

Age 
Strata 

Semi-Active 
Alcohol 

Drinkers 

Semi-Active 
Substance 

Users 

Monogamous 
Alcohol 

Drinkers 

Monogamous 
Substance Users 

Non-Monogamous 
Substance Users 

18-59 0.90 
(0.65,1.24) 

1.02 
(0.74,1.41) 

1.27 
(0.95,1.68) 

1.43 
(1.08,1.90) 

2.36 
(1.65,3.37) 

Table 3-2 Unstratified Logistic Regression Results . Odds Ratio of  ”Any STI” for  each class with “Inactive 
Cigarette Smoker” as reference Bold indicates statistically significant with alpha = 0.05, italics indicates 
statistically significant with alpha = 0.10 

 

The age group stratified analyses indicate that the odds ratios comparing STI infection in 

Non-monogamous Substances Users to Inactive Cigarette Smokers were largest and statistically 

significant, across all 4 age strata (OR 2.64, 95% CI 1.39, 5.02), (OR 3.56, 95% CI 1.18, 10.77), 

(OR 6.82, 95% CI 1.37,33.96), and (OR 3.74, 95% CI 1.22, 11.54) respectively.  In Inactive 

Alcohol Drinkers, the odd of “Any STI” positivity were 0.46 times as great at the reference 

amongst of the 18-29 age group (OR 0.46, 95% CI 0.27,0.77), while Inactive Alcohol Drinkers 

in the 50-59 age category had 2.55 times greater odds of STI positivity compared to the reference 

group OR 2.55, 95% CI 1.32,4.93). Monogamous Alcohol Drinkers were nominally protective 

and significant in the 30-39 age strata (OR 0.92, 95% CI 0.53, 1.59) while Monogamous 

Substance Users were nominally significant in both the 18-29 age group and the 40-49 age group 

(OR 1.60, 95% CI 0.92, 2.77) and (OR 1.83, 95% CI 0.91, 3.68). 
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Age 
Strata 

Inactive 
Alcohol 

Drinkers  

Monogamous 
Alcohol 

Drinkers 

Monogamous 
Substance Users Non-Monogamous Substance Users 

18-29 
0.46 

(0.27,0.77
) 

0.98 
(0.59,1.63) 

1.60 
(0.92,2.77) 

2.64 
(1.39,5.02) 

30-39 
1.81 

(0.82,3.99
) 

0.92 
(0.53,1.59) 

1.79 
(1.01,3.18) 

3.56 
(1.18,10.77) 

40-49 
1.18 

(0.49,2.84
) 

1.44 
(0.72,2.86) 

1.83 
(0.91,3.68) 

6.82 
(1.37,33.96) 

50-59 
2.55 

(1.32,4.93
) 

1.18 
(0.59,2.36) 

1.60 
(0.84,3.07) 

3.74 
(1.22,11.45) 

Table 3-3 Stratified Logistic Regression Results. Odds Ratio of ”Any STI” for  each class with “Inactive Cigarette 
Smoker” as reference Bold indicates statistically significant with alpha = 0.05, italics indicates statistically 
significant with alpha = 0.10 

3.4 Discussion 

Sexually transmitted infections continue to be a public health problem for all age groups 

within the United States.19,20,87,88 While it is understood that substance use and sexual activity are 

known risk factors for STI positivity, integrating the many different measures of sexual activity 

and substance use into a coherent set of profiles or patterns has been a challenge, and little is 

known about how these factors interact across generations and over the life course.21,22,24,92,93,95  

This is problematic because older individuals are growing more vulnerable to substance use 

disorders and sexually transmitted infections.18,19,116,117 Identifying profiles composed of STI risk 

factors, and comparing their composition across age groups can help us understand the structure 

of the combined profile of sexual and substance use activity, and how it changes with age—

enabling us to shed light on how one’s risk for STIs changes with age. It also allows us identify 

differences caused by age and birth cohort. This study presents avenues for future investigation 

that may fill this literature gap, helps to fill this gap by using latent class analysis to understand 

how substance use and sexual partnership profiles compare between 4 decadal age groups. 
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Latent class analysis of each age group yielded 5 profiles, whose overall compositions 

remained similar between the age groups. This finding is perhaps unexpected as one might 

anticipate each age group (or at least some age groups) would have their own unique set of 

profiles given the broad changes that occur over the life course. The presence of recurring 

profiles may be reflective of a consistent set of underlying culture specific archetypes that have 

their own unique trajectories and that can describe substance use and sexual partnerships 

amongst Americans. Given the similarities in composition of the profiles across age groups, it is 

somewhat surprising that the profiles were not exchangeable under a multigroup analysis. 

However, this is consistent with the larger number of classes/profiles observed in the overall 

unstratified analysis. The non-equivalence of the classes across age groups raises the possibility 

that the differences in these profiles may be reflective of Age-Period-Cohort based trends, 

wherein while the classes appear similar across age groups, there are distinct features that vary as 

a function of birth cohort or period (e.g. differences in marijuana use endorsement) reflecting 

changing social mores. 

Indeed, we see elements of the variance in trajectories and possible Age-Period-Cohort 

trends when we compare similar classes across age groups.118,119 For instance, when comparing 

“Inactive Cigarette Smokers” and “Inactive Alcohol Drinkers” in the 18-29 strata against those 

in the other age strata, we see a marked increase in substance usage. When comparing 

“Monogamous Alcohol Drinkers” the 18-29 group to those in other age groups, we see a decline 

in current substance use, and an increase in non-current cigarette use between 18-29 and 30-39, 

followed by a leveling off in the remaining age classes. Similarly, in this class we find that 

current alcohol consumption and the probability of having more than 1 oral sex steadily 

decreases across these age groups while the probability of being a non-current drinker increases.  
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We find a similar decline in the probability of having 2 or more sexual partners in the 

“Monogamous Substance Users” group. Likewise, a peak in current use followed by a decline in 

substance use can be found when comparing current alcohol consumption and tobacco use 

profiles in the “Non-monogamous Substance Users” class. In short, although the five archetypes 

appear in each of the age groups, what it means to belong to one of these classes changes across 

age. 

These results are in accordance with other findings from other studies. Using data from 

the Key Substance Use and Mental Health Indicators in the United States: Results from the 2015 

National Survey on Drug Use and Health report, Lee and Sher found that substance use peaks 

during early adulthood, then tapers off over the remaining life span.99,120 Likewise, Windle found 

similar trajectories when assessing cigarette, alcohol and marijuana use data taken from a 

longitudinal study that followed participants from the ages of 18 to 33.100 

Citing research by others, Sher and Lee posit that the emergence of parenthood & 

marriage, or the added responsibilities of adulthood may be mechanisms behind “maturing out” 

of substance use. 99,116,121–124 These things too may also explain the increase in zero or singleton 

sexual partnerships, and relative stability in profiles observed in the 30-39 and 40-49 age strata.  

Finally, some of the characteristics of the 50-59 year old profiles may be signatures of 

this particular birth cohort. Yang and Andrade note that due to increased exposure during 

childhood, those born from 1946-1964, tend to have a more lenient view of alcohol, tobacco and 

illicit drug use, relative to younger generations. 117 They posit that this attitude coupled with 

longer lifespans, partner loss, access to pain medication, and other life stressors, maybe 

responsible for an ongoing increase in substance abuse in elders.18,117 This may explain the 

elevated number of current and prior substance user amongst the “Inactive Alcohol Drinkers”. 
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Likewise, Schick et. al.  note that women 50 and older are twice as likely as men of the same age 

to be single, and that 5% of people 50 and older report dating one or more person.116 Schick et al 

point to partner loss due to death, divorce, or hospitalization as the motivation behind new sexual 

partnerships for those 50 and older.116 These changes may explain why we find an uptick in 1 or 

more sexual partnerships amongst “Inactive Alcohol Drinkers” , “Monogamous Alcohol 

Drinkers”, “Monogamous Substance Users”, and “Non-monogamous Substance Users”. 

That our regression results revealed high odds of infection amongst the classes with the 

highest substance use and number of sexual partnerships is not surprising. Nor is it surprising to 

see monotonically increasing odds ratios across the classes as behaviors and substance use 

escalate. These findings corroborate the utility and veracity of using latent classes as regression 

parameters in situations wherein collinearity makes it challenging to study variables individually.  

It was unexpected to find that the odds of “Any STI” infection in 50-59 year old “Inactive 

Alcohol Drinkers” was statistically significant while the middle two classes were not. It is 

possible that this finding is related to class size and power, although it may also be a marker of 

better partitioning between “Inactive Alcohol Drinkers” and the other classes.  

Likewise, it was also surprising to find that “Inactive Alcohol Drinkers” in the 18-29 year 

old age group experienced a significant, protective effect relative to Inactive cigarette smokers, 

because 18-29 “Inactive Alcohol Drinkers” endorse low probabilities of sexual partnerships 

while 18-29 “Inactive Cigarette Smokers” do not endorse any sexual behavior.  This difference 

may be explained by reporting or social desirability bias- i.e., those in the “Inactive Cigarette 

Smoker” class are more inclined to deny sexual activity for personal or cultural reasons, 

compared to those individuals in other groups. More investigation is needed in order to explain 

this finding.  
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While this study focused on understanding sexual and substance use behavior profiles to 

understand the changing dynamics of STI risk over the life course, these combined sexual and 

substance use behavior profiles may be useful for understand a range of health outcomes—from 

mental health and wellbeing to alcohol-related harms, among others. 125–130 LCA and similar 

types of clustering analysis methods can illuminate the underlying intertwined structure of sexual 

and substance use behavior, which may be particularly useful for understanding mental health 

and wellbeing outcomes, as these may be likely to draw more heavily from the overall risk factor 

patterns than from any single risk factor alone.  

Our study was supported by the nationally representative data in NHANES. However, we 

were limited by some aspects of the data collection. First, most participants were not asked or 

didn’t answer questions about anal sex partnerships, hindering our ability to incorporate an 

important aspect of sexual behavior. The omission of anal sex partnerships data could result in 

poor class separation, yielding profiles that do not fully articulate differences between latent 

classes. This may not be an issue in this analysis, however. Given that sexual behaviors are 

strongly collinear, vaginal sex and oral sex partnerships may potentially redundantly describe 

many of the same latent constructs anal sex partnerships address. Further studies using a 

different data set (ideally one designed to understand sexual behavior) to explore this question 

would be warranted to further address this question.  

Next, current/non-current/never alcohol and tobacco consumption were operationalized 

differently than current/non-current/never marijuana usage. The first two establish a threshold of 

use and thus filter out one-off or experimental usage. The third variable doesn’t offer such 

screening and instead accounts for any and all instances, including single, experimental 

instances.  
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However, given the ubiquity and affordability of alcohol and tobacco products relative to 

marijuana, the “current/non-current/never” operationalization of marijuana consumption may be 

sufficient to discern risk profiles. The greater number of restrictions placed on marijuana access 

may serve a similar function as the “thresholds” used to assess alcohol and tobacco consumption. 

Thus “current/non-current/never” marijuana usage as a manifest variable maybe sufficient to 

separate classes. 

Despite these shortcomings, we were able to demonstrate the ability of latent class 

analysis to describe and differentiate trends in substance use and sexual partnership behaviors 

across age groups. Indeed, the results of our regression echo similar findings from the literature. 

The public health significance of this analysis lies in its use of a person-oriented approach 

to identify commonly followed patterns in sexual and substance use behavior, which can then be 

explored over the life course using the nationally representative data available in NHANES. 

These patterns/profiles can then be used to understand risk factors for sexually transmitted 

infections. To the best of our knowledge, this work appears to be one of the first studies to use 

latent class analysis to compare STI risk profiles between generations, across the life course. 

Previous analyses of infection risk type have largely studied the effect single variables have on 

infection risk (potentially in multivariate models or with interaction terms, but still largely as 

individual variables included in a model). Our methodology on the other hand is more holistic, 

taking in the sum of personal attributes to generate a risk profile, instead of isolating single 

variables an assessing their effect. These profiles give us a picture of what an average high-risk 

person may look like, and allow us to capture, quantify, and describe the concomitant nature of 

sexual activity variables that is typically unattainable in more classical analyses. The resulting 

profiles may help to provide guidance to public health and policy officials in developing targeted 
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screening programs and will generate insight into which risk factors or factor groups appear to 

the most associated with infection. 
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4 Characterization of Network Structure and Patient Volume at Michigan Medicine - 
University Hospital  

4.1 Introduction 

Hospital Acquired Respiratory Viral Infections (HA-RVI) account for approximately 

19,000 nosocomial infections per year. Of these nosocomial infections, approximately 20% of 

hospital acquired pneumonia cases are due to viral infections, although this figure is thought to 

be an underestimate.131,132 The transmission characteristics of viral respiratory pathogens make 

them adept at spreading broadly. Respiratory viruses can be transmitted through a variety of 

modes, however bioaerosol transmission is of particular importance. Because of their fine size, 

bioaerosols allow virus to remain suspended in the air for long durations thereby facilitating their 

movement farther through the surrounding space.133–137 The COVID-19 pandemic has drawn 

attention to the transmissibility of respiratory viruses, and has heightened the use of preventative 

measures, particularly in healthcare spaces, where, as of 2022 masking in hospitals continues to 

be broadly required. Indeed, as cases increased many hospitals saw some degree of infection 

spread and transmission events within hospital spaces.138,139 In spite of this, that hospital 

transmission has been relatively limited during the pandemic speaks to the importance of the 

different measures that hospital settings have implemented to prevent nosocomial spread.140,141 

However, to understand hospital transmission of respiratory viruses, in is important to 

consider how the structure of hospital units and patient flow may impact transmission patterns. 

One strategy used in the past to account for these types of distinct, ordered interactions has been 

to model the relationships as a network. Indeed, contact tracing and contact networks have long 
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been a tool used by epidemiologists to investigate outbreaks.142,143 Likewise, synthetic networks 

have proven useful at understanding the transmission of infections transmitted through close-

contact, like HIV, amongst homogeneous and heterogeneous populations.144–147  

As it stands, there is an existing body of work investigating patient movement networks 

that use locations rather than individuals as the nodes.148,149 However, these analyses considered 

patient movement between hospitals, leaving a paucity of literature on patient movement within 

a hospital.150 Since it is amenable to network analysis, we will conceptualize within-hospital 

patient movement as a network in which hospital units are nodes and the mean daily number of 

patients transferred between units constitutes the edges. When represented this way, we are able 

to use network methodology to describe the volume of movement between units, identify clusters 

of units, and describe structural properties of the network like the interconnectivity of units. 

In short, it is the intention of this analysis is to understand the network structure of hospital 

flow patterns, and in doing so to address this literature gap. We begin by characterizing the 

network structure of a Michigan hospital via centralization, degree distributions and community 

detection. Then we investigate the relationship between unit centrality and the volume of patient 

movement. The information gleaned from this study will be used as the basis of future analyses 

simulating disease outbreaks and interventions within a healthcare setting. 

4.2 Methods 

4.2.1 Hospital data and patient volume measures. 

 Deidentified patient transfer data and unit occupancy data from the University Hospital 

at the Michigan Medicine Health System were obtained for January 1, 2019 through December 

31, 2019 via Michigan Medicine’s Data Direct service. Patient transfer data consisted of a unique 

encounter number, the time and date the transfer took place, and the origin and destination of the 
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transfer. Transfers were aggregated by their respective in-patient floors or specialty units, and 

then the daily mean for each transfer dyad was calculated. Admissions and discharges were not 

included in this analysis, as we wanted to consider the dynamics of the hospital in isolation.  

Similarly, unit occupancy data from Data Direct for January 1, 2019 through December 

31, 2019 was aggregated to each unit, and the mean daily occupancy was calculated. This 

measure was not used to construct the network, but was used in conjunction with mean daily out 

transfers in the statistical analyses. Due to the range of values for mean daily out transfers and 

mean daily occupancy, these volume measures were log transformed for our analysis.   

4.2.2 Network generation and descriptive analysis.  

The Igraph package from R was used to create a weighted, directed graph from the 

between unit transfer data. 30,151 The floors and specialty units at the University Hospital 

functioned as the nodes of our network. The mean daily in-node and out-node transfers were 

used to weight the directed edges of our graph. From here, betweenness, undirected closeness, 

and undirected degree centrality were obtained via Igraph functions and were able to account for 

edge weights. For definitions of the metrics used in this analysis please refer to Chapter 1 

Section 3.  

Community detection was performed on the hospital network. Seven separate weighted 

clustering methods were performed on the network: Louvain, Edge-Betweenness, Walktrap, 

Spinglass, and Eigenvalue Clustering Algorithms and integer programming. 29,152 The results 

with the highest modularity score are presented here. Analyses were conducted in Igraph using 

specific functions for each algorithm. 

Igraph was also used to obtain node and graph level descriptive statistics like diameter, a 

measure of the longest route that gets from one node to another efficiently; transitivity, or a 
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measure of how tightly interconnected a network is; and degree distributions, or the degree 

values (number of edges each node has), represented in distribution form (Table 4.1).30 The 

Chorddiag Package in R was used to render images of patient transfers between units (Figure 

4.1, Table 4.1).153  

Because mean daily unit out-transfers  and mean daily occupancy each varied by orders 

of magnitude, these measures were log transformed for analytic purposes. Ggplot2 was used to 

generate scatterplots comparing log transformed mean daily unit out-transfers (a proxy for 

between node movement) to our three centrality measures; and log transformed mean daily 

occupancy to our centrality measures.154 The Stats package was used to calculate Pearson’s 

Correlation Coefficient between log transformed mean daily unit out-transfers (LOT) and 

centrality, and log transformed mean daily unit occupancy (LOC) and centrality.114 
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Unit or Floor Abbreviation 
Mean 

Daily Out 
Transfers 

Mean Daily 
Unit 

Occupancy 

Degree 
Centrality 

Closeness 
Centrality 

Betweenness 
Centrality Function 

Adult Emergency Services AES 73.53 41.24 16 0.88 15.69 Adult Emergency Medicine 

Burn Acute Care BURNS 3.79 6.56 17 0.71 0 Burn Unit 
Electroconvulsive 

Therapy ECT 1.73 1.48 8 0.58 38.5 Electroconvulsive Therapy 

Medical Short Stay Unit 
Maize MSSU MAIZE 9.01 12.52 14 0.71 0.13 Treats patients expected to stay 

less than 48 hours 

In-patient Floor 4  FL 4 MAIN 26.39 23.47 22 0.79 3.25 Neurosurgery Intensive 
Care/Patient Rooms 

In-patient floor 4 South 
Wing FL 4 SOUTH 1.72 4.54 17 0.71 0 Palliative Care/ Acute Stroke 

Recovery 

In-patient Floor 5  FL 5 33.46 26.34 22 0.79 3.25 Surgical Intensive Care/ Patient 
Rooms 

In-patient Floor 6 FL 6 21.04 26 24 0.88 27.71 Critical Care Medical Unit/ 
Patient Rooms 

In-patient Floor 7 FL 7 23.48 26.03 23 0.88 16.05 Cardiac Intensive 
Care/Dialysis/Patient Rooms 

In-patient Floor 8 FL 8 25.36 27.06 23 0.88 16.05 Adult Intermediate Care Unit/ 
Patient Rooms 

In-patient Floor 9 FL 9 4.09 21.67 3 0.41 14 Psychiatric Clinic/Psychiatric 
Patient Rooms 

Medical Short Stay Unit 
Blue MSSU BLUE 8.74 18.79 18 0.75 0.13 Treats patients expected to stay 

less than 48 hours 
Operating Room OPERRM 37.2 17.29 24 0.79 14.87 Operating Rooms 

Psychiatric Emergency 
Services PES 3.7 2.31 2 0.54 1.5 Psychiatric Emergency Services 

Radiology RAD 9.68 2.36 24 0.79 14.87 Radiology 

Surgical Short Stay Unit SSU 7.45 8.47 11 0.68 0 Treats surgical patients expected 
to stay less than 48 hours 

Table 4-1 Description of Hospital Units, Their Function, Patient Volume, and Centrality 
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Figure 4-1 Chord Diagram Showing Mean Daily Internal Transfers 
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4.3 Results 

4.3.1  Descriptive statistics 

Centralization ranges from 0.14 to 0.32, depending on method used. These scores are 

considered “low” and thus indicate that the hospital isn’t strongly centered around any particular 

unit. The unweighted and weighted diameters of the graph are 5 and 4.03 respectively. The units 

on the unweighted diameter path are Psychiatric Emergency Services (PES), FL 9, Electro-

convulsive Therapy (ECT), FL  6, The Operating Room (OPERRM), and the Surgical Short Stay 

Unit (SSU). Interestingly, despite being shorter, the weighted diameter has more nodes along its 

path: PES, FL 9, ECT, FL 8, FL 4 SOUTH, OPERRM, Radiology (RAD), SSU. The network’s 

mean unweighted degree is 16.75 and its mean weighted degree is 18.49. Perhaps counter to 

expectations given the pervasiveness of scale-free networks in the literature around human 

movement and contact patterns, the weighted and particularly the unweighted degree 

distributions do not follow a power-law trend (nonlinear on a log-log scale) and therefore 

indicate that the hospital is likely not a scale-free network (Figures 4.2,4.3). The weighted degree 

distributions were somewhat more similar to a scale free network, although for the most part they 

appeared visually to be more lognormal (or similar unimodal skewed distribution) than power-

law distributed (although the network is likely too small to be able to fully distinguish an 

underlying distribution). Finally, the network’s transitivity is 0.89. This metric suggests that the 

units within the hospital are highly connected with one another (Table 4.2).   

4.3.2 Community detection 

The weighted Louvain algorithm produced the highest modularity score, 0.28. 3 distinct 

communities were detected (Figure 4.2). Community one consisted of Burns, FL 4 Main, FL 
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5,OPERRM,SSU. Community two contained AES, FLs ,4 South, 6,7,8,MSSUs Blue Maize. 

Community three contained PES,ECT FL 9. 
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Unit or Floor In Degree 
(Unweighted) 

Out Degree 
(Unweighted) 

Total Degree  
(Unweighted) 

In Degree 
(Weighted) 

Out Degree 
(Weighted) 

Total 
Degree  

(Weighted) 
Transitivity 

Adult Emergency Services 3 13 16 0.08 68.4 68.48 0.78 

Burn Acute Care 8 9 17 2.82 2.11 4.93 1 
Electroconvulsive 

Therapy 4 4 8 1.21 1.21 2.42 0.5 

Medical Short Stay Unit 
Maize 6 8 14 8.46 0.96 9.42 0.98 

In-patient Floor 4  12 10 22 14.92 3.81 18.73 0.92 
In-patient floor 4 South 

Wing 10 7 17 1.69 0.66 2.35 1 

In-patient Floor 5  12 10 22 28.58 7.58 36.16 0.92 

In-patient Floor 6 13 11 24 15.15 5.05 20.2 0.81 

In-patient Floor 7 13 10 23 15.35 2.23 17.58 0.81 

In-patient Floor 8 13 10 23 15.15 5.39 20.54 0.81 

In-patient Floor 9 2 1 3 3.67 1.16 4.83 0 
Medical Short Stay Unit 

Blue 10 8 18 8.29 0.7 8.99 0.96 

Operating Room 12 12 24 12.01 35.88 47.89 0.92 
Psychiatric Emergency 

Services 1 1 2 0 2.15 2.15 0 

Radiology 12 12 24 7.73 9.12 16.85 0.92 

Surgical Short Stay Unit 3 8 11 7.01 1.16 8.17 1 

Average 8.38 8.38 16.75 8.88 9.22 18.11 0.77 
Table 4-2 Weighted and Unweighted Degree, Node-level Transitivity (Local Clustering Coefficient) 
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Figure 4-2 Unweighted Total Degree Histogram  
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Figure 4-3 Unweighted In-Degree Histogram 
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Figure 4-4 Unweighted Out-Degree Histogram 
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Figure 4-5 Weighted Total Degree Histogram 
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Figure 4-6 Weighted In-Degree Histogram 
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Figure 4-7 Weighted Out-Degree Histogram 
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Figure 4-8 Communities Detected by Weighted Louvain Algorithm 
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4.3.3 Centrality 

Of our three centrality measures, degree centrality and closeness centrality had the 

strongest associations with log transformed mean daily unit out-transfers (LOT) and log 

transformed mean daily unit occupancy (LOC) (Tables 4.3, Figures 4.10-11, 4.13-14). Of our 

two patient volume measures LOT had a stronger association with centrality compared to LOC. 

These four trends were positive, and with the exception of LOC and betweenness centrality, 

statistically significant to an alpha < 0.05. Betweenness centrality showed a u-shaped 

relationship with LOC, and no association with LOT (Figures 4.9, 4.12). 

When plotted against each other, LOT and closeness centrality had a Pearson’s 

correlation coefficient of 0.74 (95% CI 0.38,0.90, p-value = 0.001). We found that Adult 

Emergency Services (AES) and long-stay in-patient floors 6, 7, and 8 (FL6, FL7, FL8) had the 

highest LOT (21.04,23.48,25.36 respectively) and closeness centrality values (24,23,23. Given 

the liminal nature of emergency departments, this association is likely due to individuals being 

transferred to in-patient care floors after arriving to AES with medical emergencies. Within 

Floors 6,7, and 8, this association is likely due to patients visiting units like radiology (RAD) or 

the operating room (OPERRM) for procedures, or due to patients being transferred to step down 

units before being discharged.  

Likewise, we found that the Electro-Convulsive Therapy Unit (ECT) and Psychiatric 

Emergency Services (PES) have low volumes of LOT (1.37 and 3.7 respectively), and low 

closeness centrality scores (0.58 and 0.54 respectively). These findings suggest that patients 

admitted to these units remain localized to a smaller group of units, a possible signature of the 

specialty care provide. 
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Table 4-3 Log Transformed Mean Daily Out-Transfers v Centrality 

  r 95% CI P-value 
Degree 0.63 0.2,0.86 0.009 
Closeness 0.74 0.38,0.90 0.001 
Betweenness  0.07 -0.44,0.55 0.79 

 

Table 4-4 Log Transformed Mean Daily Unit Occupancy v Centrality 

  r 95% CI P-value 
Degree 0.43 -0.08,0.76 0.009 
Closeness 0.5 0.001,0.8 0.001 
Betweenness  -0.08 -0.44,0.55 0.786 



 85 

 

Figure 4-9 Relationship Between Mean Daily Internal Out Transfers and Unit Betweenness Centrality 
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Figure 4-10 Relationship Between Mean Daily Internal Out Transfers and Unit Closeness Centrality 
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Figure 4-11 Relationship Between Mean Daily Internal Out Transfers and Unit Degree Centrality 
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Figure 4-12 Relationship Between Mean Daily Occupancy and Unit Betweenness Centrality 
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Figure 4-13 Relationship Between Mean Daily Occupancy and Unit Closeness Centrality 
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Figure 4-14 Relationship Between Mean Daily Occupancy and Unit Degree Centrality 
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Short term in-patient units like Floor 1 (FL 1), Short Stay Unit (SSU) and Medical Short 

Stay Unit- Blue (MSSU Blue) appear to fall in the middle, having lower closeness centralities, 

and between unit movement than the long-term in-patient floors, but more than ECT and PES. 

In-patient Floor 9 (FL9) is a possible outlier, with a very low closeness centrality score 

(0.41) and a lower volume of daily out-patient transfers (4.09). As with PES and ECT, this 

indicates that FL 9 may have a very low volume of between unit transfers. 

The relationship between LOT and degree centrality were similar to that of LOT and 

closeness centrality, and had a Pearson’s correlation coefficient of 0.63 (95% CI 0.20,0.86, p-

value = 0.009). In-patient Floors 6,7, and 8 had high degree centrality (24,23,23 respectively) 

and a high volume of out-transfers as described previously. ECT had the low degree centrality 

(8) and the lowest volume of transfers (1.73 per day), and the short stay units fell somewhere in 

between.  These results reiterated the finding that units with higher patient volume tend to share 

the same patient base.  

When plotted against each other LOC and closeness centrality had a Pearson’s correlation 

coefficient of 0.5 (95% CI 0.01, 0.80, p-value = 0.048). We found that a high number of 

occupancies from in-patient floors 6,7, and 8 and Adult Emergency Services were positively 

associated with high closeness centrality. This may suggest that units with high closeness 

centrality may share the same patients.  Similarly, ECT and PES had smaller patient populations 

and low closeness centrality. As with the prior results, this could be due to the highly specialized 

treatment they render.  

We found two outliers, FL 9, which had a mean daily occupancy of 21.67 but only a 

closeness centrality score of 0.41 and Radiology (RAD), which had lower mean daily occupancy 
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2.36, but a higher closeness centrality of 0.79. FL 9’s statistics suggest a possible specialty unit 

that sees a high volume of very specific patients. Conversely radiology’s statistics suggest that 

this unit sees fewer patients but has stronger connections with a wider array of units. 

LOC and degree centrality had a Pearson’s correlation coefficient of 0.43 (95% CI -

0.08,0.76, p-value = 0.095). As with LOC and closeness centrality, most in-patient floors had a 

greater number of direct connections to other units (0.88 for all three floors), while ECT and PES 

have fewer direct connections to other units.  A unit with high LOC with high degree centrality 

suggests that this unit shares its patients with other units, while a unit with low LOC and low 

degree centrality could indicate a unit that treats a specific or rare condition. 

Additionally, RAD and FL9 remain outliers. FL9’s relative position remained unchanged, 

but RAD’s relative position increased in tandem with OPERRM. From these graphs alone we 

cannot conclude if a relationship exists between OPERRM and RAD. We can conclude, 

however, that RAD also sees a lower volume of people that are from a broader range of units. 

4.4 Discussion 

Although there are studies analyzing between-hospital health care system networks, there 

is a paucity of research on within-hospitals networks of wards and units. Research filling this gap 

is important because network analysis gives us tools to analyze patient volume and movement, 

and to identify the locations that render hospital staff and patients most vulnerable to respiratory 

illness transmission. The objectives of this analysis were to describe the network structure of 

University Hospital at the University of Michigan and to characterize the relationship between 

unit centrality and patient volume, with the greater goal of understand how a respiratory 

infection may travel throughout a hospital.  
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Our descriptive statistics reveal a non-scale free decentralized yet interconnected structure. 

Any given node shares a directed edge with approximately half of the remaining nodes, and the 

longest unweighted path consisted of 5 or 31% of the existing nodes. Despite the high 

transitivity, the Louvain community detection algorithm yielded a modularity score 0.28 and was 

able to identify 3 distinct communities on the weighted network. This finding indicates the 

presence of distinct unit groups on the network and potentially indicates the importance of edge 

direction and weight on the structure of this graph. Our network is decentralized with high 

interconnectivity and thus unlikely to follow a power law distribution characteristic of scale free 

graphs. Indeed, it is commonly assumed that real-world networks are scale free, however, Broido 

and Clauset have argued that scale free networks are rarer than expected, and thus this finding is 

unremarkable.155 

We considered three centrality measures: betweenness, undirected closeness, and 

undirected degree centrality; and two patient volume measures: the log mean daily transfers out 

of a unit, and the log mean daily unit occupancy. We assessed the strength of these relationships 

via Pearson’s correlation coefficient. Of our centrality measures, undirected closeness and 

undirected degree centrality had the strongest correlation with patient volume, and when taken 

together may provide insight into the function or behavior of a particular unit. 

There were commonalities between the closeness and degree centrality plots for both log 

mean daily out-transfers and log mean daily occupancy. In-Patient Floors 6,7, and 8 had among 

the highest closeness and degree centrality, as well as high log transformed mean daily out-

transfers and mean daily occupancy. Electroconvulsive Therapy, on the other hand, had the 

among the lowest of all four.  A combination of high closeness and degree centrality suggests 

that the destinations patients from FL6, FL7, FL8 travel to overlap with each other, while a high-
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volume of patient transfers and occupancy speaks to the probability of patients from these units 

crossing paths. 

Likewise, low closeness, degree centrality, patient transfers and unit occupancy, as seen in 

ECT, suggest that nodes of this configuration remain largely self-contained. This configuration 

may be characteristic of a highly specialized unit like ECT, although the inverse cannot be said 

about high centrality high patient volume units.  

Further the discordance marked by the change in relative position of AES, PES, RAD and 

OPERRM, between the closeness centrality and degree centrality plots can tell us about the 

character of these unit. The drop in relative degree centrality compared to relative closeness 

centrality suggests that AES and PES have fewer direct connections with other units. Similarly, 

the increase in relative degree centrality versus closeness centrality implies that these units are 

connected with a wider array of units. 

AES and OPERRM maintain a high volume of transfers and occupancies which could 

suggest that patients from these units are more likely to move throughout the hospital and 

increase the risk that a pathogen spreads. Conversely, the lower volume of transfers and 

occupancies seen in PES suggests that this unit is at lower risk of being a source of an outbreak.  

This analysis had shortcomings. First, we were not able to track patients’ entire movement 

during their admission. This inhibited us identifying common paths, and high traffic loops that 

could serve as infection hotspots. Next, this analysis features data from only one hospital. We 

cannot make claims about the universality of our findings, and more investigation is needed. 

Finally, we did not model the movement of health care workers. Despite these limitations, these 

analyses provided contributions to the literature: It is, to our knowledge, one of the first to use 

network analysis on units within a hospital.  
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This analysis has laid the foundation for future outbreak simulations and containment 

strategy testing at the University Hospital which will prove essential for identifying locations 

where risks of infection are highest. These analyses may also be beneficial during the planning, 

construction, or reorganization of a hospital building. They also offer insight into the network 

characteristics of a large hospital that may prove useful to others desiring to conduct similar 

analyses.  

We found that University Hospital is largely decentralized and interconnected (transitive), 

and has degree distributions that do not follow a power-law distribution and are not scale free in 

nature. Additionally, we found a strong positive association between closeness centrality and 

patient movement, a potential indication that patient volume and centrality measures speak to a 

unit’s function and the diversity of patients it sees. This positive correlation also speaks to 

increased potential for infection risk for a unit, as the network thus contains units which have 

both high numbers of patients who could potentially transmit/become infected (occupancy) and 

high levels of connection within the network (centrality). While this analysis provides one 

example of a hospital network structure, more work is needed to understand how (if at all), the 

network structure of hospitals varies. 
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5 Simulation of Respiratory Virus Outbreak on the University Hospital Network  

5.1 Introduction 

Hospital Acquired Respiratory Viral Infections (HA-RVI) account for approximately 

19,000 nosocomial infections per year.1,2 HA-RVI can be transmitted through multiple modes, 

including bioaerosols, fomites and direct contact. It is estimated that HA-RVI is responsible for 

approximately 20% hospital acquired pneumonia, although this may be an underestimate.1,2 

The COVID-19 pandemic has reified existing vulnerabilities to HA-RVI.138,156,157 At the 

beginning of the pandemic, hospitals had to rapidly decide on how to room patients, assign 

infection control precautions, and ration personal protective equipment, while still grappling with 

large uncertainty in the scientific literature about the transmission pathways and needed 

protective procedures for SARS-CoV-2 (e.g. the likelihood of aerosol vs. droplet transmission, 

potential for fomite transmission). To assist in decision-making in the presence of vulnerability 

and uncertainty in the future, identifying the units most susceptible or integral to the spread of 

infection is necessary to inform decision making.  

Compartmental transmission models are a commonly used approach to evaluate potential 

for transmission and alternative containment and prevention strategies, in part because they are 

effective at recording the changes at the population level as individuals pass through the phases 

of an illness.34 However, given the discrete units and separated populations within a hospital, a 

single compartmental model (such as one Susceptible-Infectious-Recovered or SIR model for the 

entire hospital population) may not be ideal for simulating transmission, as it assumes equal and 

random mixing of individuals.  
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One way to improve the accuracy of the compartmental model then, is to account for the 

distinct unit structure and patient flow within the hospital. This can be achieved by treating a 

hospital as a network of wards or units with distinct, homogenous populations in which random 

mixing does occur. Doing so allows one to capture the isolation between unit populations and the 

movement of patients between units, while still accounting for disease transmission at the unit 

level. 

In this study, we simulated and tracked the trajectory of an HA-RVI throughout a hospital 

by conceptualizing the hospital as a network of units interconnected by patient transfers. We then 

nested a compartmental transmission model within each node of the network to simulate HA-

RVI transmission and connected these nodes with rates based on the patient transfer data. Using 

this model, our goal is to ascertain each unit’s burden of infection of a range of model 

parameters, and to then to ascertain characteristics that increase a unit’s risk of a disease 

outbreak. 
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5.2 Methods 

5.2.1 Conceptual Model 

To simulate infection transmission between units within a hospital, we constructed a 

nested model. The first level represented the hospital structure rendered as a directed network. 

Individual units or hospital floors were treated as nodes, and the inverse of the mean time a 

patient spent in a unit before being transferred to a second unit, was used to create the edges of 

the network. This level allowed us to simulate the contained environments of hospital units, and 

capture the discrete between-unit patient movement. 

The second level consisted of separate Susceptible-Exposed-Infected-Recovered 

compartmental models for each unit, each structured as: 

 
𝑑𝑆/𝑑𝑡 = −𝛽𝑆𝐼	

𝑑𝐸/𝑑𝑡 = 𝛽𝑆𝐼 − 𝛿𝐸	

𝑑𝐼/𝑑𝑡 = 𝛿𝐸 − 𝛾𝑅	

𝑑𝑅/𝑑𝑡 = 𝛾𝑅 

 

These models allowed us to simulate within-unit infection transmission, wherein it was 

assumed that mixing was random and homogenous. The overall final differential equations 

combined the above base SEIR model with linear movement rates representing patient transfers, 

where the model moved patients between units using the rates described above, assuming no 

difference in movement rate between the S, E, I, and R classes (perhaps not realistic for COVID-

19 currently, but we assumed the simulated outbreak was early on before infection control 

procedures were in place).  

5.2.2 Model Parameters: Between Unit Movement Rates 
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The between unit patient movement rates were derived from deidentified, patient 

occupancy and transfer data. These data were collected from January 1, 2019 through December 

31, 2019 for University Hospital, via Michigan Medicine’s Data Direct service. For these 

analyses patient movement was defined as one over the median time in hours a patient spent in a 

unit before being transferred to a separate unit.   

To obtain these values, patient transfer data was first aggregated into directed, “Start”- 

“End” unit dyads. Then, the median occupancy duration for the patients in the “Start” node of the 

dyad was calculated. The rate was obtained by finding the reciprocal of this value. Admissions 

and discharges were denoted in the patient movement data as originating from or terminating 

“outside”. [TABLE1] 
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Start End Rate 
(hr-1) 

 Start End Rate (hr-1)  Start End Rate (hr-1)  Start End Rate (hr-1) 

aes burns 0.2464  fl4main burns 0.1705  fl7 fl4south 0.0048  operrm fl4south 0.1754 
aes fl4main 0.0988  fl4main fl4south 0.0257  fl7 burns 0.0080  operrm aes 0.4082 
aes fl4south 0.1519  fl4main fl5 0.0320  fl7 ect 0.0160  operrm burns 0.2542 
aes fl5 0.1011  fl4main fl6 0.0175  fl7 fl4main 0.0143  operrm fl4main 0.1085 
aes fl6 0.0656  fl4main fl7 0.0185  fl7 fl5 0.0215  operrm fl5 0.1185 
aes fl7 0.0925  fl4main fl8 0.0204  fl7 fl6 0.0198  operrm fl6 0.2346 
aes fl8 0.0723  fl4main mssublue 0.0102  fl7 fl8 0.0152  operrm fl7 0.2400 
aes mssublue 0.1268  fl4main mssumaize 0.4839  fl7 mssublue 0.0047  operrm fl8 0.1576 
aes mssumaize 0.1407  fl4main operrm 0.0220  fl7 operrm 0.0144  operrm mssublue 0.1796 
aes operrm 0.1441  fl4main out 0.0172  fl7 out 0.0147  operrm mssumaize 0.2260 
aes out 0.0525  fl4main rad 0.0121  fl7 rad 0.0112  operrm out 0.1667 
aes pes 0.0861  fl4south fl4main 0.0157  fl8 fl4south 0.0164  operrm rad 1.3187 
aes rad 0.0921  fl4south fl5 0.0201  fl8 burns 0.0351  operrm ssu 0.1307 
aes ssu 0.0968  fl4south fl6 0.0267  fl8 ect 0.0151  pes fl9 0.1188 

burns fl4main 0.0218  fl4south fl7 0.0130  fl8 fl4main 0.0330  pes out 0.1345 
burns fl4south 0.0200  fl4south fl8 0.0222  fl8 fl5 0.0236  rad fl4south 0.2752 
burns fl5 0.0213  fl4south operrm 0.0474  fl8 fl6 0.0187  rad aes 0.2214 
burns fl6 0.0109  fl4south out 0.0255  fl8 fl7 0.0171  rad burns 0.5139 
burns fl7 0.0299  fl4south rad 0.0172  fl8 mssublue 0.0142  rad fl4main 0.4589 
burns fl8 0.0242  fl5 burns 0.0233  fl8 operrm 0.0194  rad fl5 0.4428 
burns mssublue 0.0125  fl5 fl4main 0.0199  fl8 out 0.0144  rad fl6 0.4152 
burns operrm 0.0224  fl5 fl4south 0.0250  fl8 rad 0.0151  rad fl7 0.4054 
burns out 0.0163  fl5 fl6 0.0215  fl9 ect 0.0208  rad fl8 0.4174 
burns rad 0.0153  fl5 fl7 0.0175  fl9 out 0.0079  rad mssublue 0.3604 

ect fl6 0.4839  fl5 fl8 0.0190  mssublue fl4south 0.0259  rad mssumaize 0.1917 
ect fl7 0.4348  fl5 mssublue 0.0127  mssublue fl4main 0.0182  rad operrm 0.3301 
ect fl8 0.3399  fl5 mssumaize 0.0367  mssublue fl5 0.0237  rad out 0.5240 
ect fl9 0.4959  fl5 operrm 0.0378  mssublue fl6 0.0271  rad ssu 0.4286 
ect out 0.4412  fl5 out 0.0162  mssublue fl7 0.0236  ssu fl4main 0.0415 

entry aes 3.0571  fl5 rad 0.0174  mssublue fl8 0.0138  ssu fl5 0.0435 
entry burns 0.0122  fl6 aes 3.2432  mssublue operrm 0.0185  ssu fl6 0.0300 
entry fl4main 0.0873  fl6 burns 0.0120  mssublue out 0.0263  ssu fl7 0.0216 
entry fl4south 0.0006  fl6 ect 0.0172  mssublue rad 0.0203  ssu fl8 0.0541 
entry fl5 0.1057  fl6 fl4main 0.0178  mssumaize fl4main 0.0454  ssu mssumaize 0.4412 
entry fl6 0.1587  fl6 fl4south 0.0419  mssumaize fl5 0.0247  ssu operrm 0.0762 
entry fl7 0.1108  fl6 fl5 0.0227  mssumaize fl6 0.0315  ssu out 0.0494 
entry fl8 0.1265  fl6 fl7 0.0230  mssumaize fl7 0.0263  ssu rad 0.0659 
entry fl9 0.0175  fl6 fl8 0.0217  mssumaize fl8 0.0172     
entry mssublue 0.0064  fl6 mssublue 0.0120  mssumaize mssublue 0.0230     
entry operrm 1.0700  fl6 operrm 0.0183  mssumaize operrm 0.0245     
entry pes 0.1539  fl6 out 0.0141  mssumaize out 0.0416     
entry rad 0.0611  fl6 rad 0.0146  mssumaize rad 0.0522     
entry ssu 0.0001             

Table 5-1 Network Level Between Unit Patient Movement Rates
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Parameter Value 
Beta  (0.01,0.02,0.04,0.08,0.1) 

Gamma 0.0069 
Delta 0.0139 
N 22 

 Table 5-2 SEIR Parameters 

 

 

 

 

 

 

 

      Table 5-3 SEIR ODE Model  Initital Conditions for Units When Not Used as Outbreak Source 

 

Unit Model Initial 
Conditions 

ssu 3 
aes 42 
pes 2 
fl 4 south 7 
fl 5 28 
fl 6 28 
fl 7 29 
fl 8 29 
fl 9 22 
burns 7 
operrm 16 
mssublue 19 
mssumaize 14 
rad 2 
ect 1 
fl 4 main 24 
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5.2.3 Model Parameters: SEIR Compartmental Rates 

Beta, the per capita effective contact rate was swept across a range of values: 0.01, 

0.02,0.04,0.08,0.1 (roughly equivalent to an R0 of 3.69 to 37 using a single compartmental 

model without unit structure).  Since we do not overtly capture staff patient interactions within 

the model, and because unit size varies, a range was chosen over a single value to account for a 

range of rates that could be influenced by outside factors. All other compartmental rates were 

based on SARS-CoV-2 Omicron transmission dynamics (although the model is not specifically 

intended to model SARS-CoV-2 Omicron.  Delta, the transition rate between exposed and 

infected states, was set to 1/72 hours, using the estimate of 3 days provided by the CDC.158 

Gamma, the recovery rate, was set to 1/144 hours, using the estimate of 6-day duration of 

infectiousness published by the CDC.158 

5.2.4 Initial conditions for occupancies 

The median occupancy for each unit was obtained from the January 1, 2019 through 

December 31, 2019 patient movement data. These values were used as the initial conditions for 

the susceptible compartments in our model. [TABLE 5.3]. The model was initialized with no 

exposed or recovered individuals as we wanted to assess the outcome in a strictly naïve 

population, to explore how the network structure affects how a newly introduced infection might 

spread.  

Outbreaks of 5 patients were initialized in one of three compartments, Adult Emergency 

Services, the Operating Room, and Electroconvulsive Therapy. Adult Emergency Services and 

the Operating Room were chosen because most patients enter the hospital through these two 

units. Electroconvulsive therapy was chosen as it serves as a bridge between Floor 9 and 



 103 

Psychiatric Emergency Services and the rest of the hospital and is the primary entry route into 

these two units, and a higher volume of people enter Floor 9 through this unit rather than 

Psychiatric Emergency Services. (Figure 5.1) 
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Figure 5-1 Chord Diagram Showing Mean Daily Patient Movement 
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5.2.5 Measures: 

Maximum number of infected, proportion of the unit population that is infected and mean stay of 

infected patients in person time were used in conjunction with movement rates and centrality to 

understand the scope and speed of infection transmission.  

Unit population at the time of first infection represents the total number of people within 

a unit at the timestep when the first infection occurs. Maximum number of infected participants 

refers to the time point with the largest population of infected individuals. This measure was 

used along with the population at the time point of maximum infections to obtain the proportion 

of maximum infecteds.  

5.2.6 Software: 

All analyses were conducted in R.114 The compartmental model was run using the deSolve 

package.159 Igraph was used to visualize the network. Stats was used to calculate correlation and 

run the Pearson product-moment correlation test.114 

5.3 Results 

5.3.1 Infected as counts and proportions 

Floors 4 South, 5 ,8, 7 and 9, Burns, MSSU Blue, MSSU Maize consistently had one or 

more infected patients for the range of beta values, regardless of where the outbreak was 

initialized. Floors 7 and 9 consistently the highest number of infected patients at each beta value, 

and the lowest out flow rates of the units. Floor 4 main had one or more infected patients at beta 

values 0.4 and above. All other units did not acquire one or more infected patients. (Figure 5.2, 

Supplement D for remaining catalogue of figures). 
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The proportion of infected patients in each unit was not impacted by the location of the 

initial outbreak. At a beta of 0.02 and above, the proportion of infected patients in each unit 

remained stable for betas 0.02 to 0.1 (Figure 5.3). At a beta of 0.01, the proportion of infected 

patients in a unit was approximately 5 points lower than at beta 0.02 and above. Person-Time did 

not appear to be strongly correlated with measures of centrality. (Figures 5.4-5.6). Even still, 

some crude trends can be captured. There does appear to be an inverse relationship between 

degree and closeness centrality and stay length among some units. However, stay in person-time 

did positively correspond to a unit’s disease burden. 
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Figure 5-2 Network Nodes Colored by Maximum number of Infected. Nodes Show Unit Name, Max Count of 
Infected People, Total Unit Population 

Beta 0.02 Outbreak Starting at aes: Maximum Count Infected

AES
5
47

FL 4 MAIN
0.87

4.988

OPERRM
0.22

1.564

RAD
0.19
1.19

BURNS
4.24

23.138

FL 5
3.33

17.583

FL 6
0.24
1.387

FL 7
5.91

28.375

FL 8
3.46

17.902

MSSU BLUE
2.53

13.829

FL 9
6.65

20.678

FL 4 SOUTH
3.33

17.611

ECT
0.13
0.54

MSSU MAIZE
2.76

15.382

PES
0.22
2.467

SSU
0.64

4.029
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Figure 5-3 Number of Infected Over Time with Infection Starting in AES, Beta=0.02 Dashed Line Demarcates Unit 
were Infection Began 
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Figure 5-4 Relationship Between Mean Unit Stay in Person-Time of Infected People and Unit Betweenness 
Centrality 
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Figure 5-5 Relationship Between Unit Stay in Person-Time of Infected People and Unit Closeness Centrality 
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Figure 5-6 Relationship Between Unit Stay in Person-Time and Unit Degree Centrality 
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5.3.2 Correlates of Infection 

Centrality does not appear to be significantly correlated with a unit’s maximum number 

of infected. Likewise, with the exception of an infection beginning in AES at a beta of 0.01 the 

rate of patient movement into a unit does not show such a trend. Instead, it tends to be weakly 

correlated with a unit’s maximum number of infected. (Table 5.4). 
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UNIT IN RATE OUT RATE IN RATE OUT RATE IN RATE OUT RATE IN RATE OUT RATE IN RATE OUT RATE

AES
r: 0.55
p-val: 0.026

-0.59
0.016

0.34
0.203

-0.69
0.003

0.24
0.376

-0.73
0.001

0.19
0.481

-0.74
0.001

0.18
0.50

-0.74
0.001

ECT
-0.22
0.408

-0.15
0.584

-0.23
0.385

-0.36
0.168

-0.23
0.385

-0.45
0.083

-0.23
0.385

-0.49
0.056

-0.233
0.385

-0.49
0.052

OPERRM
-0.16
0.564

-0.36
0.172

-0.19
0.487

-0.52
0.037

-0.19
0.47

-0.59
0.017

-0.198
0.463

-0.61
0.011

-0.20
0.461

-0.62
0.011

0.01 0.02 0.04 0.08 0.1

Table 5-4 Correlation Coefficient and P-values for the Relationship between Unit In or Out-Rate and Infected Patients, By Unit of Outbreak Initiation, Across a 
Range of Betas 
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The rate at which people exit a unit on the other hand, does appear to be moderately to 

strongly inversely correlated with a unit’s maximum number of infected, for infections beginning 

in AES and OPERRM. Interestingly, at betas less than 0.02, outbreaks beginning in ECT appear 

to be weakly inversely correlated with a unit’s maximum number of infected individuals. At 

betas of 0.04 and 0.08 this correlation strengthens somewhat. For outbreaks that began in ECT, 

the relationship between unit-outflow and a unit’s maximum number of infect patients becomes 

strongly inversely correlated. The correlation coefficients and their p-values can be found in 

Table 5-4. 

5.3.3 Rate Threshold 

There is evidence of a threshold for the unit-out rates. At beta values of 0.01 and 0.02, 

units with an out-rate of 0.032, (equivalent to a stay of 31.25 hours) or lower acquire one or more 

infected patients. At betas 0.04 and above units with an out-rate of 0.075 (equivalent to a stay of 

13.3 hours) or below acquire one or more infected patients.  

5.3.4 Discussion 

The COVID-19 pandemic has illuminated existing weaknesses in the outbreak 

preparedness protocols of many hospitals. At the start of the pandemic hospitals were required to 

make rapid decisions on resource allocation, staffing, and patient isolation procedures with little 

guidance from existing literature. In an effort to assist such decisions in the future, data are 

needed to identify the characteristics that make hospital units most vulnerable to an outbreak. In 

this analysis we used a combination of SEIR compartmental models, and network analysis to 

identify aspects of patient movement that increase a unit’s susceptibility to an outbreak.  
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We found that the rate at which patients leave a unit had a strong inverse correlation with 

the maximum number of infected patients in a unit. This finding was bolstered by the 

observation of a positive association between unit stay in person-time and maximum number of 

infections. Furthermore, rate seemed to elicit a modest threshold effect depending upon the per 

capita rate of effective contacts occurring in the population. Specifically, we found that for our 

model parameters, a patient stay of at least 13.3 hour was needed in order for at least one 

infected person to appear in a unit. This finding counters our expectation that a susceptible unit’s 

centrality would drive an outbreak, or that susceptible units with high patient turnover would be 

most vulnerable to infection outbreaks.   

Likewise, we found that outbreaks originating in ECT had the weakest correlation between 

a unit’s outrate and their maximum number infected. This observation maybe due to the lower 

population size of ECT relative to AES or OPERRM, or it may be due to ECT’s lower overall 

centrality compared to AES and OPERRM. More research is needed to understand what factors 

contribute to this finding. 

 This analysis has several shortcomings. First, staff were not included in our simulations, 

as we were unable to obtain information on staff numbers or movement patterns for each unit. 

This is problematic because in an in-patient hospital setting, patients spend most of their time 

stationary, having limited interactions with other patients. Staff on the other hand do move 

around more and interact with other patients. We were able to mitigate some of the impact of this 

by tuning beta through a range of values, which can implicitly capture some of the impact of 

staff and patient interactions on transmission rates. Likewise, staff are likely to be more 

compliant with infection prevention measures, and so the role they may play in infection 

transmission could be much lower than that of patients.  Furthermore, future analysis should also 
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include model simulations wherein the mean wait time between units (rather than median) is 

used to define the rates, or where the full distribution of wait times is sampled from within the 

simulation. Additionally, given the relatively small population size of each unit, future work 

should use a stochastic rather than deterministic compartmental model, which would enable us to 

capture the distribution of outcomes rather than just the mean trajectory examined here. 

Similarly, this analysis assessed a narrow range of model parameters. While we did tune beta, we 

left the rate at which people become infectious, and the rate at which the recover constant. 

Consequently, these findings may only be generalizable to diseases with a similar set of 

transmission parameters. However, these finding do still indicate that the nested compartmental-

network model used here is a useful tool for modeling outbreak hotspots in a hospital setting. 

Finally, to evaluate the role the network structure plays in the infection dynamics, future work 

should include a comparison of the infection spread when the network structure is included in the 

model, versus when the model (for example) collapses the entire population into a single 

randomly mixing group. 

Despite these shortcomings, this analysis contributes to the literature in several ways. It 

demonstrates that a nested compartmental-network model is a useful tool for simulating 

outbreaks in highly separated spaces. It identifies factors that influence a hospital unit’s 

susceptibility to an outbreak; and it uses a network framework to characterize patient movement. 

More investigation is needed to understand how changes in model parameters influence how 

outbreaks spread throughout a health care setting. Lastly, a major advantage and new 

contribution of this study is that we consider patient movement and transmission using an 

explicit, data-driven patient flow network—this type of network data is not commonly available 
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at such small spatial scales (e.g. unlike population flow networks using mobility or air travel 

data), and allows for network-generated insight into transmission patterns. 
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6 Conclusion 
 

Sometimes traditional applications of our usual kit of analytic tools are not enough to 

analyze complex or large data. Canonical methods may not be able to detect important effects or 

interrelationships which in turn may influence data interpretation, and the application of findings. 

This dissertation explored three contexts across four aims in which such hidden relationships 

existed, and it tested methodologies that uncovered these relationships. 

Aim 1 re-examined multiyear and multi-country survey data, and used a novel 

application of a standard tool. Motivated by recent findings that have challenged long held 

assumptions, we used meta-regression and 43 surveys worth of data to re-evaluate the 

association between wealth and HIV in Sub-Saharan Africa.  Our findings reveal a complicated 

country specific relationship between country-level wealth, individual wealth, built environment, 

and HIV positivity; findings that are contrary to the long held belief that HIV burden in Sub-

Saharan Africa is uniformly, inversely, and monotonically associated with country and 

individual wealth.   

Beyond illustrating the utility of meta-regression, and supporting newer findings, this aim 

encourages introspection. Meta-regression is not a new tool, and earlier analyses were not 

limited because it had not been developed. As such, we are left to reflect on the hold of power 

assumptions and how seemingly minor analytic decisions can influence policy, and shape  
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the way investigators approach future analyses. Beyond highlighting the flexibility of meta-

regression, it may be that this aim serves as a cautionary tale about the powers of assumptions. 

The second analytic context featured data with variables that are strongly, and 

dynamically interrelated. Aim 2 illustrated how latent relationships can be utilized to both 

circumvent analytic issues caused by temporal and collinear data, and to tease apart associations 

that have become muddled by external factors. This aim begins by reflecting on the complexity 

temporal trends and socio-cultural factors can bring to an epidemiologic analysis. Next, it offers 

an analytic solution that exploits this complexity. Using emergent characteristics of correlated 

covariates, we were able to define and enumerate a set of latent variables that were used to 

intergenerational changes in behaviors associated with increased risk of a contracting sexually 

transmitted infection; specifically number of oral and vaginal sex partners in the last year, and 

usage of marijuana, alcohol, and tobacco. 

The final analytic context investigated nested, enmeshed systems, and reflected on the 

importance of scale and external influence in mathematical models.  Aims 3 & 4 framed a 

hospital in terms of a network of units connected by patient traffic. They investigated how this 

structure, which serves as a proxy the physical space patients and staff move though, exerted an 

influence on the volume of patient movement and the dissemination of an infectious pathogen 

after an outbreak. Like Aim 1, these aims illustrated the importance of considering if and how 

macro-scale factors influence mezzo and micro-scale phenomena. Unlike Aim 1 these aims 

considered how these external influences impacted the functioning of dynamical systems. While 

model parsimony is often sought by modelers, these aims asked us to reflect on our assumptions 

carefully and to consider what we stand to lose for the sake of model simplicity. 
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 At its heart this dissertation is introspective and philosophical in nature. On its face it 

offers practical solutions for problems and complexity encountered in data analysis. However, in 

the broader scheme it asks readers to reflect on and challenge analytic assumptions. In doing so it 

encourages readers to evaluate alternative perspectives that may change the how data are used, 

and to consider how existing tools can be extended to solve novel problems.  
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Appendices 
 

Appendix A Chapter 2 Sensitivity Analysis 

We conducted a sensitivity analysis to ensure that our qualitative findings were not an artifact of 

survivor bias related to increasing AIDS mortality positively associated with age. Specifically,  

we compared the odds ratio estimates for the wealth tertiles and gender obtained from the total 

population to those obtained from a sub-population of individuals 25 years of age and younger. 

Due to low cell counts in some country/year datasets resulting from restricting our analysis to 

only the youngest individuals, we were unable to stratify these data on urbanicity; as such these 

results were compared to those from an unstratified version of the complete dataset. If survivor 

bias was present, we expected to find lower odds of HIV in the total population compared to 

those 25 years of age and younger, as older individuals with HIV would likely have passed away 

by the time the survey was administered and thus would not be counted among those with HIV 

infection. 

Results 

Wealth 

The results of our sensitivity analyses suggested that survivor bias was unlikely to impact our 

qualitative conclusions. We found that in many surveys, those 25 years old and under had lower 

or approximately equal odds of HIV infection compared to the total population. After controlling 

for gender, we found that in 23 out of 30 countries the odds in the total population of HIV 

infection in the middle wealth tertile were equal to or greater than that of the younger population.  



 140 

Within the upper wealth tertile we found that in 26 out of 30 countries the total population were 

equal to or greater than those in the younger population. 

 

Gender 

Interestingly, in our sensitivity analyses, we did not find that gender had the same relationship to 

HIV trends as wealth did. Whereas over three-quarters of the countries surveyed showed a higher 

odds of HIV in the total population compared to those 25 and under, only 5 countries indicated 

higher odds of HIV in the total population compared to the younger population: Burkina Faso, 

Côte D’Ivoire, Liberia, Mali, and Senegal. These conflicting results may suggest an interaction 

between wealth, gender, and age, which warrants further investigation. 
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Figure A-1 Sensitivity Analysis Second Wealth Tertile, Urban v Rural. Black confidence intervals reflect the Odds Ratios and confidence Intervals for the Cunstratified population. Grey represent the Odds Ratios and Confidence Intervals for data solely from those 25 years old or younger.
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unstratified population. Grey represent the Odds Ratios and Confidence Intervals for data solely from those 25 years old or younger.
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Figure A-3 Sensitivity Analysis for Gender, Urban v Rural. Black confidence intervals reflect the Odds Ratios and Confidence Intervals for the unstratified 
population. Grey represents the Odds Ratios and Confidence Intervals for data solely from those 25 years old or younger.
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Appendix B Chapter 3 Test for Measurement Invariance Calculation 

Log-likelihood value from unconstrained (simplified) model: -21106.791,  

Unconstrained model free parameters: 387 

Log-likelihood value from constrained (adjusted) model: -21048.227 

Constrained model free parameters: 399 

Log-likelihood ratio test: 2*(-21048.227 --21106.791)= 117.128 

Degrees of Freedom = 399-387 = 12 

Probability Chi-Squared (117.128,12) 

P-Value from Chi-Squared =<0.005 
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Appendix C Chapter 3 Weighted Prevalence of LCA Variables by Age Group 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ALL 18-29 30-39 40-49 50-59  

N % N % N % N % N % 
Alcohol Consumption 

          

Never 19931487 0.12 7948514.02 0.17 4161938.39 0.11 4105972.47 0.1 3715062.43 0.09 
Current 117144586 0.7 31580849.8 0.67 27286906.3 0.69 28443858.4 0.71 29832971.2 0.72 

Non-Current 15674983 0.09 3542994.96 0.07 3320457.45 0.08 4524276.18 0.11 4287254.56 0.1 
Did Not Respond 15403276 0.09 4231596.15 0.09 4741364.87 0.12 2744034.46 0.07 3686280.63 0.09 

Cigarette Use           
Never 101587861 0.6 33169440.7 0.7 22874854.2 0.58 24791856.3 0.62 20751709.3 0.5 

Current 34412802.3 0.2 8814157.92 0.19 8919332.13 0.23 7179673 0.18 9499639.29 0.23 
Non-Current 32079657.9 0.19 5298092.22 0.11 7664733.23 0.19 7846612.25 0.2 11270220.2 0.27 

Did Not Respond 74011.52 0 22264.07 0 51747.45 0 0 0 0 0 
Marijuana Use           

Never 64258170 0.38 16781039 0.35 15283410.1 0.39 17980836.1 0.45 14212884.6 0.34 
Current 19706896 0.12 9385459.69 0.2 4361032.28 0.11 2425468.48 0.06 3534935.8 0.09 

Non-Current 66474119 0.4 16012213.6 0.34 14824979.2 0.38 16152609.4 0.41 19484316.7 0.47 
Did Not Respond 17715147 0.11 5125242.75 0.11 5041245.44 0.13 3259227.52 0.08 4289431.72 0.1 

Oral Sex Partners 
Past Year 

          

0 68324383.7 0.41 17154541 0.36 14453981.9 0.37 14508126.6 0.36 22207734.2 0.53 
1 84933157 0.51 22786314.3 0.48 21947922.6 0.56 22481148.5 0.56 17717771.6 0.43 

2 to 4 12160399.6 0.07 6022288.74 0.13 2649921.6 0.07 2261666.56 0.06 1226522.64 0.03 
5 to 9 1850797.61 0.01 910481.08 0.02 338954.91 0.01 319213.75 0.01 282147.87 0.01 
10 + 797880.54 0 430329.81 0.01 72022.98 0 247986.07 0.01 47541.69 0 

Did Not Respond 87713.83 0 0 0 47862.98 0 0 0 39850.84 0 
Vaginal Sex Partners 
Past Year  

          

0 43758363.5 0.26 13474223.1 0.28 8489176.61 0.21 7659676.99 0.19 14135286.8 0.34 
1 104128481 0.62 24127452 0.51 26697605.7 0.68 28182821.9 0.71 25120601.1 0.61 

2 to 4 15571621 0.09 7056292.96 0.15 3619499.65 0.09 3303156.08 0.08 1592672.33 0.04 
5 to 9 2876797.4 0.02 1831818.78 0.04 377240.86 0.01 239699.7 0.01 428038.08 0.01 
10 + 1631995.1 0.01 705288.01 0.01 327144.19 0.01 354592.5 0.01 244970.43 0.01 

Did Not Respond 187074.4 0 108880.04 0 0 0 78194.36 0 0 0 

Table C-1 Chapter 3 Weighted Prevalence of LCA Variables by Age Group
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Appendix D Maximum Infected in Counts, by Unit, Across Betas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

Beta 0.01 Outbreak Starting at aes: Maximum Count Infected

AES
5
47

FL 4 MAIN
0.53
4.94

OPERRM
0.14
1.549

RAD
0.12

1.177

BURNS
2.59

22.932

FL 5
2.03

17.424

FL 6
0.15

1.371

FL 7
3.67

28.081

FL 8
2.13

17.724

MSSU BLUE
1.54

13.702

FL 9
5

19.858

FL 4 SOUTH
2.03

17.452

ECT
0.09

0.526

MSSU MAIZE
1.68

15.256

PES
0.2

5.036

SSU
0.39
3.993

Beta 0.1 Outbreak Starting at aes: Maximum Count Infected

AES
5

47

FL 4 MAIN
1.27
5.373

OPERRM
0.32

1.673

RAD
0.28

1.274

BURNS
6.2

25.022

FL 5
4.87

19.08

FL 6
0.35
1.497

FL 7
8.43

30.988

FL 8
5.03

19.441

MSSU BLUE
3.74

14.969

FL 9
8.07

22.014

FL 4 SOUTH
4.88

19.111

ECT
0.18

0.578

MSSU MAIZE
4.06

16.672

PES
0.34
2.569

SSU
0.95

4.334

Beta 0.08 Outbreak Starting at aes: Maximum Count Infected

AES
5
47

FL 4 MAIN
1.24
5.35

OPERRM
0.32
1.66

RAD
0.27

1.262

BURNS
6.04

24.801

FL 5
4.74

18.904

FL 6
0.34

1.487

FL 7
8.23

30.612

FL 8
4.9

19.219

MSSU BLUE
3.64

14.803

FL 9
7.97

21.944

FL 4 SOUTH
4.76

18.935

ECT
0.17

0.573

MSSU MAIZE
3.96

16.486

PES
0.33

2.565

SSU
0.92

4.298

Beta 0.02 Outbreak Starting at aes: Maximum Count Infected

AES
5

47

FL 4 MAIN
0.87
4.988

OPERRM
0.22

1.564

RAD
0.19
1.19

BURNS
4.24

23.138

FL 5
3.33

17.583

FL 6
0.24
1.387

FL 7
5.91

28.375

FL 8
3.46

17.902

MSSU BLUE
2.53

13.829

FL 9
6.65

20.678

FL 4 SOUTH
3.33

17.611

ECT
0.13
0.54

MSSU MAIZE
2.76

15.382

PES
0.22
2.467

SSU
0.64
4.029

Beta 0.04 Outbreak Starting at aes: Maximum Count Infected

AES
5
47

FL 4 MAIN
1.1

5.158

OPERRM
0.28
1.609

RAD
0.24
1.23

BURNS
5.35

23.897

FL 5
4.2

18.209

FL 6
0.3

1.427

FL 7
7.36

29.435

FL 8
4.35

18.546

MSSU BLUE
3.21

14.319

FL 9
7.52

21.44

FL 4 SOUTH
4.21

18.217

ECT
0.16

0.556

MSSU MAIZE
3.49

15.909

PES
0.29
2.508

SSU
0.81
4.155

Figure D-1 Maximum Infected in Counts, by Unit, Across Betas, with Infection Starting in AES
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Figure D-2 Maximum Infected in Counts, by Unit, Across Betas, with Infection Starting in ECT
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Beta 0.01 Outbreak Starting at operrm: Maximum Count Infected
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Beta 0.08 Outbreak Starting at operrm: Maximum Count Infected
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Beta 0.04 Outbreak Starting at operrm: Maximum Count Infected
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Figure D-3 Maximum Infected in Counts, by Unit, Across Betas, with Infection Starting in OPERRM


