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Abstract 

 

Image-based soil characterization methods are proven to be rapid, accurate, clean, lower-

cost, and (semi-)automated procedures for determining the particle size distribution (PSD) of 

coarse-grained materials. A PSD is used to classify a soil as well as provide an initial estimate for 

various properties including its compressibility, permeability, and unit weight. Soil PSDs are 

utilized extensively throughout geotechnical, environmental, and construction engineering; earth 

sciences; and related industries. The traditional method for determining a soil’s PSD is by sieving, 

a time-, resource-, and energy-intensive procedure. Therefore, there has been an increased demand 

for determining soil PSDs using image-based methods as an alternative to sieving.  

One such image-based method was developed in 2014 and is called “SedImaging.” Short 

for “sediment imaging,” SedImaging captures an image of a soil specimen that has sedimented 

through a water column. The photographed soil assembly is analyzed by a sieve-calibrated 

mathematical wavelet method. The results are a PSD with excellent agreement to sieving without 

any of the procedural disadvantages of sieving. This dissertation details two SedImaging hardware 

systems, “FieldSed” (2017) and “Sed360” (2020) which were developed by the author to expand 

upon the advantages of the original 2014 SedImaging method. These newer systems have different 

applications; the FieldSed is a field-portable device that was used in a large-scale soil 

characterization project for the Kalamazoo River, and the Sed360 is a largely automated test that 

has expanded the range of testable soils by SedImaging by over a factor of 2.5. The image analysis 

method used with the original SedImaging system has also undergone a major transformation that 

is described within this dissertation. When used with the Sed360, this new autoadaptive image 
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analysis method can correctly size soil particles across the entire sand size range (as defined by 

the Unified Soil Classification System), as well as accurately generate soil PSDs for a range of 

gradations, including gap-graded specimens. The SedImaging hardware and image analysis 

advancements detailed in this dissertation transform this sieving alternative into a nearly fully 

automated, low cost, rapid, and robust soil characterization technique.  

Image-based soil characterization methods can also be combined with existing 

geotechnical testing systems to enhance the original system’s capabilities. An example of this is 

with the popular cone penetrometer (CPT). A CPT was fitted with cameras that were used to 

photograph passing soil layers during CPT advance. Known as the “VisCPT” (short for the “vision 

cone penetrometer”), this newer system refines CPT soil layer delineation and is capable of even 

detecting thin (several centimeter thick) soil layers that are missed by CPT results. To do so, 

textural indices are determined for VisCPT soil images. These textural indices have been 

correlated to soil particle size. The latest research involving the VisCPT is presented in this 

dissertation. This includes replacing the multiple cameras required in the earlier VisCPT 

generations with a single high-resolution camera and recalibrating the textural indices analysis 

method. This dissertation also details exploratory research on combining the textural indices and 

the mathematical wavelet method (previously used mainly with SedImaging) to expand the 

application of both the VisCPT and SedImaging. The results of this research will be used with the 

latest VisCPT system to detect thin soil layers in scheduled calibration chamber testing and in 

earthquake prone regions of the world.  
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Chapter 1 Introduction 

 

A soil’s particle size distribution (PSD) is an essential index property in geomechanics, 

geotechnical engineering, and related fields for classifying coarse-grained soils. The PSD, along 

with particle shape and relative density, also provide an initial estimate of soil properties such as 

compressibility, the angle of internal friction, and soil unit weight. There is also a continual need 

for determining numerous, repetitive, rapid, low energy, and low cost PSDs. The applications of 

these PSDs for sands include filtration, beach nourishment, roadwork, hydro-fracking, foundry 

casting, concrete making, sandblasting, manufacturing of abrasives, glass-making, quarrying 

operations, and others.  

The traditional method for determining a soil’s PSD is through sieving. Sieving is a 

standardized (ASTM C136/C136M-19) laboratory procedure that uses a stack of wire meshes with 

various-sized openings. The sieves are stacked with the largest opening mesh on the top of the 

stack, with progressively smaller opening meshes farther down. Six sieves with different mesh 

sizes typically form a sieve stack. At the base of the stack is a pan. Figure 1.1 shows a sieve stack 

ready for testing. Sieves can have a variety of dimensions, but the ones shown in Fig. 1.1 have a 

diameter of 20.3cm (8in). Table 1.1 lists a selection of standard sieves and their mesh opening 

sizes. The table also includes soil particle types defined by the sieve openings (e.g. gravel, sand, 

silt etc.) according to the Unified Soil Classification System (USCS) (ASTM D2487-17ε1).  
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Figure 1-1. Sieve stack. 

 

Table 1-1. Selection of standard sieves and their mesh openings. 

Standard Sieve 

Number 

Mesh Opening 

[mm] 

Mesh Opening 

[in] 
Soil Particle Type Retained on Sieves a 

3” 75 3 Cobbles and boulders are coarser than 3” sieve  

2 ½”   63 2.5 

Coarse Gravel 1” 25 1 

¾”  19 0.75 

¼” 6.3 0.25 
Fine Gravel 

No. 4 4.75 0.19 

No. 8 2.36 0.09 
Coarse Sand 

No. 10 2.0 0.08 

No. 20 0.85 0.03 

Medium Sand No. 30 0.6 0.024 

No. 40 0.425 0.017 

No. 50 0.3 0.012 

Fine Sand No. 100 0.15 5.9 x 10-3 

No. 200 0.075 2.95 x 10-3 

 Silts and clays are finer than No. 200 sieve 
a According to the Unified Soil Classification System (USCS) 
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To determine a coarse-grained soil’s PSD by sieving, the soil is first oven-dried. It is then 

poured into the top of the sieve stack and the whole system (sieves, soil, and pan) are covered and 

placed into a device that mechanically shakes the systems for a fixed amount of time. A sieve stack 

in a sieve shaker is pictured in Fig. 1.2.  

The shaking causes the soil particles to fall through the various mesh openings. A soil 

particle naturally rests on top of the sieve that has a mesh opening smaller than an intermediate 

dimension across a diagonal of the soil particle. Through this process, the soil specimen will sort 

by particle size; larger soil particles will be retained on the sieves located at the top of the sieve 

stack (which have larger mesh size openings), and smaller particles will eventually rest on lower 

sieves (with smaller mesh openings). Any soil particles that are finer than all of the mesh sizes in 

the sieve stack are retained in the pan at the bottom of the stack.  

 

 

Figure 1-2. Sieve stack loaded into sieve shaker. 
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After the shaking is complete, the sieve stack is removed, and the portion (by weight) of 

the soil specimen that is retained on each of the sieves is recorded. From there, the soil’s weight-

based PSD is calculated. With this PSD, the soil can be classified using a number of standardized 

classification systems, the USCS (ASTM D2487-17ε1) being common in the field of civil 

engineering. A soil’s classification provides an initial estimate of soil behavior for infrastructure 

design decisions, such as building foundation design, roadway construction, slope stability, and 

tunnel engineering. An example PSD of a sand is plotted in Fig. 1.3. Based on USCS soil particle 

size classifications, over 50% of the soil particles in this example specimen fall within the medium 

sand range, therefore classifying this specimen as a medium sand. 

 

Figure 1-3. Example Particle Size Distribution (PSD) for a medium sand (according to the USCS). 
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Despite its simplicity, sieving is costly and time-consuming, as will be discussed in Section 

1.1 (and later in Chapter 3). The many shortcomings of sieving are tipping the scales toward more 

advanced and less expensive methods for PSD determination. Because of rapid advances in camera 

technology and analysis methods, image-based methods are leading the way among alternatives to 

sieving. While there is still no single test that can size particles spanning the many orders of 

magnitude of particle sizes in soils (cobbles, gravels, sands, etc.), image based methods (Chapter 

2) hold the promise of doing so. One such method was developed by Ohm and Hryciw (2014) and 

is called SedImaging. SedImaging and its evolution is one of the two main areas of focus for 

this dissertation. 

*** 

Though most image-based soil characterizations are typically performed ex-situ in a 

laboratory setting (including SedImaging, as will be discussed in Section 1.1), in-situ methods are 

also available. In-situ image-based characterization methods often provide less detailed, though 

still useful, results than those performed ex-situ. For instance, a medium sand’s complete PSD 

cannot be determined by an in-situ method, but the in-situ method can differentiate this sand from 

the other soil layers in the strata, such as finer sands or clays. This type of soil profile delineation 

was previously possible with traditional (non image-based) in-situ methods, but is now enhanced 

by introducing image-based methods into the existing testing procedures.  

An example of this involves the cone penetration test (CPT). Developed in the early to 

mid-20th century, the CPT is an accurate (though not image-based) in-situ soil test that generates 

nearly continuous soil profiles through correlations between the device’s tip resistance, side 

friction, and pore pressure with soil types (Robertson et al. 1986, Kulhawy and Mayne 1990, 

Schneider et al. 2008, Abbaszadeh Shahri et al. 2015). The CPT test pushes a slender circular rod 
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with a circular cone tip at a fixed rate (typically 2cm/s, 0.79in/s) vertically through a soil profile 

while recording the aforementioned data (tip resistance, side friction, and pore pressure). The CPT 

cone tip can come in a variety of dimensions, but 10cm2 (1.55in2) and 15cm2 (2.33in2) are the most 

common cone cross sections. A schematic of a CPT is shown in Fig. 1.4.  

The CPT holds many advantages (Shin 2005) over another common in-situ (non image-

based) testing method known as the Standard Penetration Test (SPT), which correlates the 

mechanical properties of a soil to the number of hammer blows required to incrementally advance 

a cylindrical sampler through it. However, the SPT does afford the ability to gather soil samples 

for laboratory testing, something that is not possible with the CPT. In response to this, the Vision 

CPT (known as the “VisCPT”) was created. The VisCPT equips a traditional CPT with camera(s) 

to obtain video and images of in-situ soil during CPT advance. Image analysis is performed on the 

continuous stream of images. This analysis is able to detect thin soil strata not revealed in 

traditional CPT logs (Ghalib et al. 2000, Hryciw et al. 2009). The VisCPT and its evolution is 

the second of the two main areas of focus for this dissertation. 
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Figure 1-4. Cone penetration test (CPT) (americangeoservices.org) 

1.1 Motivation 

Although sieving is the industry standard for determining PSDs of coarse-grained 

materials, the test is time- and energy-intensive. Soils need to be fully oven-dried before being 

sieved, adding to the testing time of this procedure. Sieves require constant cleaning between tests, 

and even with regular maintenance, the wire meshes can easily become clogged and torn. 

Replacing a sieve costs $70 to over $250 per sieve, depending on the sieve diameter and mesh 

opening. The sieve shaker is loud and can cause fine soil particles to become airborne, leading to 

an unhealthy testing environment. The sieve test also requires electricity for both oven drying and 

running the sieve shaker. This limits the sieve test to a laboratory environment. Sieving also 

requires user intervention throughout the testing procedure, from loading a soil specimen into the 

sieve stack, to weighing each sieve after testing, to cleaning the individual sieves. Ohm et al. (2013) 

details these and other disadvantages of sieving.  

Ohm and Hryciw (2014) developed “SedImaging” (short for sediment imaging) in response 

to the disadvantages of sieving. The original SedImaging system (referred to throughout this 
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dissertation as “LabSed” to differentiate it from its successor systems) is a laboratory device used 

to determine PSDs of coarse-grained soils. The LabSed was developed as a clean and rapid 

alternative to sieving. The test involves releasing a soil specimen into a tall column of water. When 

soil particles settle through water, they naturally sort by size. The particles deposit in an assembly 

with the coarsest grains at the bottom and progressively finer particles grading to the top. The 

settled soil assembly is photographed through a glass viewing window. Ohm and Hryciw (2014) 

showed that image analysis of such a sorted soil can produce the soil’s PSD. To do so, a 

SedImaging soil assembly image is incrementally analyzed using a mathematical analysis called 

the Haar (1910) Wavelet Transform (HWT).  

Wavelet analysis has become a powerful tool in various civil engineering disciplines and 

related fields including tunneling (Ding et al. 2011), constitutive modeling of soils (Ohkami et al. 

2006), structural dynamics (Chatterjee 2015), geophysics (Pang et al. 2020), seismology (Vassiliou 

and Makris 2011, Mollaioli and Bosi 2011), seismic exploration (Cabrera-Navarrete et al. 2019), 

site characterization (Ching et al. 2015), sedimentary geology (Prokoph and Patterson 2004), and 

soil particle characterization (Sudarsan et al. 2018, and Shin and Hryciw 2004).  

Chapter 4 discusses the HWT-based image analysis method used with SedImaging, but an 

overview of the method is introduced here. The analysis method developed by Ohm and Hryciw 

(2014) utilizes the HWT to produce hundreds of data points for a SedImaging PSD. Each data 

point comes from a small (originally 128 pixel by 128 pixel) “analysis square” section of the 

captured image. There are hundreds of such squares in a grid pattern covering the entire captured 

image. Since porosities in the sedimented soil column have been shown to be relatively uniform 

(Hryciw and Jung 2008), each analysis square represents the same volume percentage of the 

specimen’s soil solids.  
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The HWT-based method does not determine the actual size of individual particles. Instead, 

it utilizes the image’s grayscale distribution to yield one data point representing the size of the 

particles within each analysis area. For each analysis square, an HWT index calibrated to a sieve-

defined particle size is calculated. Because of this calibration, there is overall excellent agreement 

between sieve and SedImaging PSDs. Previous publications have documented this success 

(Hryciw et al. 2015, Ohm and Hryciw 2014, Ventola and Hryciw 2019, Ventola et al. 2020b), 

including a detailed report published by the Michigan Department of Transportation (MDOT) that 

compares SedImaging to sieving results on a rigorous statistical basis (Hryciw and Ohm 2012). 

The HWT method requires that an analysis square be small enough that the particles 

contained within it are approximately the same size. (This is why soil specimens are sedimented 

through a tall water column as part of SedImaging testing.) At the same time, the analysis square 

must be large enough so that it contains a statistically significant number of particles for the 

grayscale analysis. Because of this, the range of testable soils for the original LabSed was limited 

to medium and fine sands (2.0mm to 0.075mm or between the US standard No. 10 and No. 200 

sieves).  

 Unlike sieving, SedImaging does not require soil specimens to be oven dried prior to 

testing. As such, SedImaging can be performed in a fraction of the time to run a sieve test. 

SedImaging is low noise, cleaner, and requires less maintenance than sieves. SedImaging PSDs 

are formed from hundreds of data points, while those from sieving are often formed from only six 

to 10 data points. Therefore, SedImaging PSDs are able to capture more detail in a soil’s gradation 

than is realistically possible with sieving PSDs.  

However, SedImaging via LabSed is not without its own set of limitations, as will be 

outlined in Chapters 3 and 4. In addition to the aforementioned limited size range of testable soils 
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for LabSed, the system consists of large, heavy hardware, which restricts the system to a laboratory 

environment. Also, similar to sieving, analyzing a soil via the LabSed requires user intervention 

throughout the testing procedure. These three LabSed limitations (limited range of testable soils, 

cumbersome hardware, and non-automated testing) form the crux of the SedImaging research 

motivations presented within this dissertation. The outcome is two new SedImaging systems, the 

FieldSed and the Sed360, as well as a reformulated HWT-based image analysis method to use with 

SedImaging. Section 1.2 introduces these research areas.  

*** 

This dissertation’s research motivations for SedImaging, its evolution, and its HWT-based 

image analysis method are evident when discussing the pitfalls of sieving and the limitations of 

LabSed. However, the motivations involving the VisCPT have to be discussed with less specificity 

because of this system’s originality. The VisCPT takes an existing system, the CPT, and transforms 

it into a device with a new set of applications. By equipping a CPT with camera(s), the system can 

now be used to detect thin (several centimeters thick) soil layers that go unnoticed by SPT and 

CPT methods. This is particularly useful when these thin layers are liquefiable and in earthquake-

prone regions (see future work in Section 6.2). The VisCPT can also be used to observe in-situ soil 

migration and soil piping susceptibility (Hryciw and Ohm 2013, Zheng and Hryciw 2014), as well 

as characterizing the effects an advancing probe has on soil layer interfaces (Shin 2005, Hryciw et 

al. 2005).  

The first generation of the VisCPT was developed in 1997 and the second generation in 

2005. Both VisCPT generations were the centerpiece of numerous successful laboratory and in-

situ testing programs (Hryciw et al. 1998, Ghalib et al. 2000, Hryciw et al. 2005). Physically 

smaller and higher resolution camera technology drove the development of the third generation 
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VisCPT. The geotechnical engineering firm ConeTec Investigations Ltd. fabricated a prototype of 

the third generation VisCPT in 2019, and the final system in 2022. Research involving both the 

prototype and the final third generation VisCPT device is presented within this dissertation and is 

foundational for propelling this powerful in-situ geotechnical tool into full-scale use in the future. 

The research presented within this dissertation involving the third generation VisCPT is introduced 

in Section 1.2. 

1.2 Objectives 

 In response to the limitations of LabSed, two additional SedImaging systems have been 

developed by the author. The first is a field-portable system known as “FieldSed” (Section 3.2). 

Created in 2017, the FieldSed is similar in operation as the LabSed. However several of the main 

hardware components have been redesigned using smaller and lightweight materials. As a result, 

the FieldSed holds several powerful advantages over LabSed. The newer system is portable and 

can be cleaned easily and quickly. SedImaging via FieldSed can be performed for a smaller soil 

specimen (85 ± 15g) than is required for both LabSed and sieving (250 to 500g for fine and 

medium sands), all while still providing a statistically-valid PSD. Table 1.2 summarizes some of 

the key advantages of FieldSed over LabSed and sieving; Chapter 3 discusses these advantages in 

depth.  

While developing the FieldSed, the author also created a prewashing procedure used before 

testing a soil in the FieldSed. Using this procedure, the percentage of fines (and of material coarser 

than the soil particle testing range of FieldSed) of a sand specimen is determined. The prewashing 

procedure is adaptable for use with any SedImaging system. The procedure expands the range of 

application for soil characterization using SedImaging. The FieldSed and the prewashing 

procedure were the cornerstones of a 2017 large-scale characterization program of river sediments. 
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Section 3.2.2 details the prewashing testing procedure. The riverbed characterization project is 

documented in Section 3.2.4. 

 The second SedImaging system developed by the author is the Sed360. Created in 2020, 

the Sed360 is a nearly fully-automated SedImaging test. The Sed360 uses low cost, lightweight 

hardware like the FieldSed. Additionally, Sed360 hardware and procedural changes (discussed in 

Section 3.3) have reduced the amount of user-intervention during Sed360 testing, nearly fully 

automating SedImaging testing by this newest system. Table 1.2 includes key advantages of 

Sed360 over sieving while also comparing Sed60 to the other SedImaging systems. The 

equipment, testing, and analysis details of the SedImaging items in Table 1.2 will be discussed in 

Chapters 3 and 4.  
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Table 1-2. Comparing SedImaging systems and sieving. 

Item Sieving 

SedImaging Systems 

LabSed (2014) FieldSed (2017) Sed360 (2020) 

Required oven-

dried soil prior to 

testing [Y/N] 

Y N N N 

 

Testable particle 

size range (per 

USCS) 

 

Gravels and 

entire sand range 

 

Medium and fine sand 

and gravel/coarse sand 

& fines percentages a  

 

Medium and fine sand 

and gravel/coarse sand 

& fines percentages a 

 

Entire sand range and 

gravel & fines 

percentages a 

 

Required soil 

specimen size 

 

250 to 500 g b  

 

250 to 500 g 

 

85 g ± 15 g 

 

85 g ± 15 g 

 

Testing time 

[min] 

 

10 b, plus time 

for oven-drying 

and sieve 

cleaning  

 

< 10 minutes (well-

graded sands), and < 5 

(clean, poorly-graded 

medium sands)  

 

< 10 minutes (well-

graded sands), and < 5 

(clean, poorly-graded 

medium sands) 

 

< 10 minutes (well-

graded sands), and < 5 

(clean, poorly-graded 

medium sands) 

Automated 

testing [Y/N] 

N N N Y 

 

Number of data 

points for PSD 

 

Approximately 5 

to 15 (typ. 6) 

 

Hundreds  

 

Hundreds 

 

Hundreds 

 

Field portable 

[Y/N] 

 

N 

 

N 

 

Y 

 

Y 

 

Parallel testing 

multiple 

specimens using 

one testing 

system [Y/N] 

 

N 

 

N 

 

Y 

 

Y 

 

Noise pollution 

[Y/N] 

 

Y 

 

N 

 

N 

 

N 

 

Estimated 

equipment costs  

(as of 2022) 

 

$800 (six sieves  

     lid, and pan) 

$1500 (sieve  

    shaker) 

$750 (laboratory  

    oven) 
 

TOTAL: $3,050 

 

$30 (aluminum tubing  

     for water column) 

$700 (Nikon camera    

     and lens) 

 

 
 

TOTAL: $730 

 

$10 (acrylic tubing  

     for water column) 

$700 (Nikon camera  

     and lens) 

 

 
 

TOTAL: $710 

 

$10 (acrylic tubing  

     for water column) 

$700 (Nikon camera  

     and lens) 

$1400 (rotation stage)  

 
 

TOTAL: $2,110 

a Via prewashing procedure (Section 3.2.2)  
b For fine and medium sands per ASTM C136/C136M-19 
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In addition to testing automation, the Sed360 expands the range of testable soil particle 

sizes by SedImaging (Table 1.2). For the first time with any SedImaging system, soil particles 

across the entire sand range, as defined by the Unified Soil Classification System (4.75mm to 

0.075mm or between the US standard No. 4 and No. 200 sieves), can be accurately tested with the 

Sed360. When combined with the prewashing procedure, the Sed360 can classify any sand, as well 

as its percentage of gravel and fines. This particle size expansion widens the applications of using 

SedImaging as a rapid, accurate, and low cost alternative to sieving.  

The particle size expansion made possible by the Sed360 necessitated a reexamination of 

the existing HWT-based image analysis method used with SedImaging. In order to accurately size 

the entire sand particle size range, a major redesign of the existing HWT-based image analysis 

method was completed. Chapter 4 documents the existing and the redesigned HWT-based image 

analysis methods used with SedImaging. The chapter also presents PSD results of a variety of sand 

gradations tested in the Sed360 and analyzed with the new HWT-based method. This method is 

not only successful in accurately sizing the entire range of sand particles, but it can also be used to 

characterize unique soil gradations, such as gap-graded sands. The PSD results of an engineered 

gap-graded sand are also included in Chapter 4.  

*** 

 Detailed in Chapter 5, extensive benchtop calibration research with both the prototype and 

the final version of the third generation Vision Cone Penetrometer (VisCPT) has been conducted. 

As part of this work, a wide range of soil particles of various sizes, colors, transparency, and shapes 

were photographed by the VisCPT (see Fig. 5.13). These soils were first analyzed using the 

original image analysis method of the two previous VisCPT generations. This method is based 

upon the Spatial Gray Level Dependence Method (SGLDM) proposed by Haralick et al. (1973). 
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The SGLDM and its application with the VisCPT are presented in Section 5.3. These VisCPT 

images were also analyzed using the HWT-based analysis method that is mainly used with 

SedImaging. In doing so, this preliminary research will be used to expand the application of both 

the VisCPT and SedImaging systems to more accurately characterize a wide variety of soil particle 

types. This research is also part of the foundational work for future calibration chamber and in-

situ thin soil layer detection using the third generation VisCPT (Section 6.2).  

1.3 Tasks and organization 

This dissertation is organized into six chapters: 

 

Chapter 1 introduces the motivation and objectives for the research that forms this dissertation. 

Embedded in this discussion is a broad overview of the two main systems of this dissertation: 

SedImaging and the Vision Cone Penetrometer (VisCPT). 

 

Chapter 2 is a literature review of existing image-based grain sizing methods, and how 

SedImaging and the VisCPT fall within this broader area of research.  

 

Chapter 3 details the evolution of SedImaging and its three hardware systems: the LabSed, and 

the two newer systems developed by the author, the FieldSed and the Sed360. This chapter also 

details an extensive 2017 characterization program of riverbed sediments that utilized the 

FieldSed.  

 

Chapter 4 is dedicated to a comprehensive discussion of the image analysis method used (mainly) 

with the SedImaging system. Referred throughout this dissertation as the “Haar Wavelet 
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Transform (HWT)-based analysis method”, this approach has undergone a foundational redesign 

since the method’s first application with the LabSed. The necessity for this redesign, its details, as 

well as its research impact is discussed within this chapter.   

 

Chapter 5 presents the evolution of the VisCPT through its three generations of hardware systems. 

The chapter also details the image analysis method that has been used with the VisCPT since its 

inception. The method uses several image textural indices from Haralick et al. (1973)’s Spatial 

Gray Level Dependence Method (SGLDM). The research with the third generation VisCPT and a 

variety of soil types is presented. Concluding this chapter is a discussion of the burgeoning ongoing 

work of using both the Haralick textural indices from the SGLDM and SedImaging’s HWT-based 

analysis method to expand the application and accuracy of both the VisCPT and SedImaging.  

 

Chapter 6 summarizes the research presented in this dissertation, and outlines future research 

avenues for the VisCPT and SedImaging. 
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Chapter 2 Literature Review 

 

Image-based soil characterization methods can be grouped into three categories: (1) those 

that analyze images of individual particles placed along a one-dimensional line (Pan and 

Tutumluer 2005, White 2003), (2) methods that analyze images of particles on a two-dimensional 

plane (Altuhafi et al. 2013, Zhang et al. 2012, Abhik et al. 2016, Ohm and Hryciw 2013, Zheng 

and Hryciw 2016, Koh et al. 2009, Coban et al. 2020), and (3) methods that analyze images of 

three-dimensional particle assemblies (Ventola et al. 2020a, Chávez et al. 2015, Kozakiewicz 

2018, Graham et al. 2005a, Graham et al. 2005b, Black et al. 2014, Buscombe et al. 2010, Detert 

and Weitbrecht 2012, Detert and Weitbrecht 2013, Nie et al. 2015, Ohm and Hryciw 2014, Ventola 

and Hryciw 2019, Ventola et al. 2022a). The one-dimensional line methods will be referred to as 

“line”, the two-dimensional methods as “plane”, and the three-dimensional as “assembly”. 

Within these three categories, the image analysis methods are further categorized. The soil 

particles can either be stationary (“static”) or moving (“dynamic”) at the time of image capture. 

Particles can be in contact (“contacting”) with other particles or physically separated (“dispersed”). 

Additionally, the particles can be sorted or non-sorted by size upon image capture. Figure 2.1 

illustrates the different types of image-based soil characterization methods. The figure includes 

eight schematics showing the (non-)movement, (non-)sorting, and (non-)contact of the soil 

particles (represented as brown circles in Fig. 2.1) relative to one another at the time of image 

capture. Table 2.1 lists the different types of image-based soil characterization methods as well as 

select examples of each method. These examples were chosen to illustrate the wide range of 
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Figure 2-1. Illustrations of soil particle at the time of image capture for image-based soil characterization methods. 

(a) Line, dispersed, dynamic, non-sorted, (b) Plane, dispersed, dynamic, non-sorted, (c) Plane, dispersed, static, 

non-sorted, (d) Plane, dispersed, static, sorted, (e) Plane, contacting, static, non-sorted, (f) Plane, contacting, static, 

sorted, (g) Assembly, contacting, static, non-sorted, (h) Assembly, contacting, static, sorted.  
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Table 2-1. Types of image-based soil characterization methods with selected examples. 

Approach 
Particle 

Contact 

Particle 

Motion 

Particle 

Size 

Sorting 

Visualization of 

Soil Particles 

(from Fig. 2.1) 

Examples 

Line Dispersed Dynamic Non-sorted a 

Single Particle Optical Sizer (SPOS) 

(White 2003) 
 

Univ. of Illinois Aggregate Image 

Analyzer (UIAIA) (Pan and Tutumluer 

2005) 

Plane 

Dispersed Dynamic Non-sorted b 

CAMSIZER® 
 

QICPIC Imaging System by Sympatec 

(Altuhafi et al. 2013) 

Dispersed Static Non-sorted c 

Improved Mass Model (Zhang et al. 

2012) 
 

Mass Model (Abhik et al. 2016) 

Dispersed Static Sorted d 
Translucent Segregation Table (TST) 

(Ohm and Hryciw 2013) 

Contacting Static Non-sorted e 

Modified Watershed Analysis (Zheng 

and Hryciw 2015) 
 

Shanthi et al. (2014) 
 

Multi-Flash Imaging (MFI) (Koh et al. 

2009) 

Contacting Static Sorted f 
Translucent Segregation Table (TST) 

(Ohm and Hryciw 2013) 

Assembly 
Contacting Static Non-sorted g 

Vision Cone Penetrometer (VisCPT) 
 

Particle Detection and Measurement 

(PADM) (Kozakiewicz 2018)a 
 

Automated Grain Sizing (AGS) method 

(Graham et al. 2005a 2005b)a 
 

BASEGRAIN (Detert and Weitbrecht 

2012, 2013)a 
 

Semisupervised Affinity Propagation 

Model (SAPM) (Nie et al. 2015)a 

 

OPTGRAN-CS (Chávez et al. 2015)a 

 

Buscombe et al. (2010)b 

 

Black et al. (2014)b 

 

Buscombe and Masselink (2009) 

(discusses several statistical spatial 

methods, not included in Section 2.2) 

Contacting Static Sorted h SedImaging  

a Discussed in Section 2.1 
b Discussed in Section 2.2  
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applications, limitations, required user knowledge, automation, and ease of use of these methods.  

The one- and two-dimensional image-based soil sizing methods are time-, cost-, and labor-

intensive. They either require costly equipment, such as the QICPIC imaging system (Altuhafi et 

al. 2013), or require users to manually separate soil particles before photographing (Abhik et al.  

2016). By contrast, the methods that analyze images of three-dimensional soil assemblies require 

less user-interaction prior to photographing and less specialized equipment. The two systems that 

are the focus of this dissertation, SedImaging and VisCPT, fall within this final category.  

Some image-based, three-dimensional particle assembly analysis methods 

deterministically characterize a soil (namely its PSD) by segmenting and sizing individual particles 

in an image (Chávez et al. 2015, Kozakiewicz 2018, Graham et al. 2005a, Graham et al. 2005b, 

Detert and Weitbrecht 2012, Detert and Weitbrecht 2013, Nie et al. 2015). Others, including the 

methods used with SedImaging and the VisCPT, as well those by Buscombe et al. (2010) and 

Black et al. (2014), do not size soil particles individually. Instead, they characterize a soil by 

analyzing the spatial distribution of pixel color or grayscale intensities of the photographed soil 

assembly. Individual soil particles are not counted or analyzed using these spatial methods. These 

pixel intensity spatial methods eliminate the need for user-defined thresholds for deterministic 

segmentation analysis, and are less computationally-intensive than deterministic approaches.  

The three-dimensional assembly examples (deterministic and spatial) in Table 2.1 are 

worth deeper descriptions. Section 2.1 includes examples of the deterministic method, and Section 

2.2 describes the pixel intensity spatial methods. The methods are compared to one another, as 

well as to the methods used with SedImaging and VisCPT. Each example has its own set of 

limitations, some of which are discussed in this Chapter. The SedImaging and VisCPT methods 

also have their own limitations. However these are not discussed as part of this Chapter; instead, 
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they are included within Chapters 3, 4, and 5 alongside the deeper discussions of these two 

systems. The one- and two-dimensional image-based soil sizing methods in Table 2.1 are not 

discussed further.  

2.1 Soil assembly image-based characterization: deterministic methods 

The Particle Detection and Measurement (PADM) method was introduced by 

Kozakiewicz (2018). The PADM can determine particle size distributions using photographs of 

soil samples with non-uniform, inconsistent lighting. This ability is not possible among all 

assembly grain size characterization methods. The PADM method determines grain size 

distributions of soil images taken on the ground surface. The method first passes a computing filter 

over a soil image to remove noise and background information. The filter is either a common top-

hat transform (in cases when soil samples are brighter than the background) or a bottom-hat 

transform (when the soil is darker than the surroundings) using a disk-shaped structuring element. 

Once the filtering is complete, grain detection and sizing can begin. The PADM method considers 

several image analysis segmentation techniques for contacting soil particles: binarization, edge 

detection, and the watershed method. Kozakiewicz (2018) notes that the type of technique selected 

for use with an image depends on the specific lighting and sizing conditions of the soil particles. 

After the image is segmented, the PADM method estimates the size of each particle as the diameter 

of a disk that has the same equivalent area.   

The largest limitation of the PADM method is its required user-defined thresholds. The 

filtering procedure of the PADM requires a user to set a grayscale threshold value separating the 

soil particles from the background; this value changes depending on the image content (i.e. darker 

soil particles with a lighter background, larger soil particles with a multi-colored, textured 

background etc.). There are several other thresholds throughout the PADM method that need to be 
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set by users, such as selecting the threshold between which pixels become a 0 or a 1 in the 

binarization process, and determining the size of the kernel used in the Gaussian filtering during 

the watershed procedure. These thresholds influence the final grain sizing in the PADM method. 

Kozakiewicz (2018) also does not specify what type of soil images work best for the various 

segmentation methods; instead, all of the methods are utilized on soil assemblies, and no 

conclusion is made as to which method should be used for a given soil. This leaves the selection 

to users. Thus, the PADM method requires users to have a strong knowledge of image analysis 

techniques. Additionally, Kozakiewicz (2018) notes that the number of detected soil particles 

varies between each of the segmentation methods, and manual corrections for this particle count 

discrepancy are recommended. By comparison, the SedImaging and VisCPT image-based analysis 

methods are automated and do not require users to select threshold values in order to perform tests.  

The Automated Grain Sizing (AGS) method was originally proposed by Graham et al. 

(2005a) and is widely referenced by other researchers, including Strom et al. (2010). Similar to the 

PADM method, AGS can be used to analyze ground surface soil assemblies. The AGS method is 

an automated procedure, like those used with SedImaging and the VisCPT. The method requires 

that an approximately 1m by 0.75m (3.3ft by 2.5ft) oversized frame be placed around a soil 

assembly in order to outline the testing area. Figure 2.2 shows an illustration of the required set up 

for the AGS method. An overhead photograph is taken of the area. Graham et al. (2005a, 2005b) 

uses the AGS method to test riverbed gravels, but the image analysis techniques can be applied at 

a reduced scale for smaller soil particles.  
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Figure 2-2. Set up used for the Automated Grain Sizing (AGS) Method. (Graham et al. 2005b) 

 

After the photo is captured, a smoothing computing filter is passed over the image to 

remove noise and preserve particle edges. Similar to the PADM method, a bottom-hat transform 

is later applied. Next, particle edges are defined using a watershed segmentation algorithm. The 

AGS method does not require user-specified threshold values, and instead defines the values for 

its watershed method in terms of “percentiles in the image-intensity frequency distribution,” thus 

reducing threshold-induced errors acknowledged by Kozakiewicz (2018) in the PADM method. 

After segmenting the particles, the AGS method fits each particle with an ellipse. The minor axes 

of the ellipses are recorded as the estimated particle sizes, and a grain size distribution for the 

image is generated. Similar to the calibration equation used in the HWT-based analysis for 

SedImaging (Chapter 4), the AGS method has a sieve-correction factor that is used to correlate the 

method’s estimated PSD to sieve-derived data.  

As with the PADM method, the AGS method is susceptible to errors due to the watershed 

procedure. The procedure can either over- or under-count the number of particles in an image. 

However, the more significant concern of the AGS method involves the size of the oversized frame 

(Fig. 2.2) relative to that of the photographed particles. As the size of the soil particles increases, 
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the number of particles fully inside the framed area decreases, and the accuracy of the grain size 

distribution decreases; more particles that lie partially within the framed photographed area are 

miscounted as smaller particles. Another source of error with the AGS method involves non-

uniform lighting. Graham et al. (2005b) notes that the AGS method is sensitive to “irreducible 

random errors” when non-uniform lighting is present during image capture. 

BASEGRAIN was first introduced by Detert and Weibrecht (2012, 2013) and later 

analyzed by Stahly et al. (2017), among others. Like the PADM and AGS methods, BASEGRAIN 

is an image-based analysis method used for ground surface soil assemblies. This approach follows 

a similar algorithm as AGS: a bottom-hat transform is applied to a soil image, followed by the 

watershed segmentation process. Eventually, equivalent particle sizes are determined by fitting 

identified particles with ellipses. However, BASEGRAIN has two key features that distinguish it 

from AGS. Unlike AGS, BASEGRAIN does not require an oversized frame to take a photo of a 

sample. Instead, BASEGRAIN users simply need to include a scale of known length within the 

photo, as seen in the BASEGRAIN screenshot in Fig. 2.3. This is a powerful improvement from 

the AGS method. In the AGS method, the particle size range of testable soils was limited by the 

edge effects of the system’s oversized frame; this is not a limitation of BASEGRAIN. Like 

SedImaging’s image analysis and PADM (and unlike AGS), BASEGRAIN can be utilized with a 

range of camera magnifications.  

The second useful feature of BASEGRAIN that neither the PADM nor the AGS methods 

possess is its accessibility and usability. BASEGRAIN is a MATLAB-based software that is free 

to download and access by the public. In addition, there are extensive resources and tutorials on 

how to successfully use this method. Though the industry awareness of BASEGRAIN is not a 

scientific advantage of this method over AGS or PADM, it is a noteworthy feature. 
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Figure 2-3. Screenshot of BASEGRAIN where a known scale (white and red pole located at the top of the image) is 

used to establish the image magnification. (BASEGRAIN 2013) 

 

Since BASEGRAIN utilizes a similar image analysis procedure as AGS, this method still 

holds the inherent level of inaccuracy and error stemming from the procedure that was described 

with AGS. BASEGRAIN is also not an automatic method; there are a number of steps in the 

process that are user-specified. While these afford the ability to tailor BASEGRAIN for each 

specific application, it does slow down the computational time considerably.  

The Semisupervised Affinity Propagation Model (SAPM) was introduced by Nie et al. 

(2015). SAPM is a drastically different approach to image-based grain sizing than the 

aforementioned methods. SAPM utilizes both image processing and machine learning techniques 

to determine the grain sizes of particles within a photographed soil. The model extends the fully-

automated Affinity Propagation clustering algorithm of Frey and Dueck (2007) into the application 

of grain size distributions. The details of machine learning are beyond the scope of this chapter. In 

general terms, the SAPM method first processes a soil image using similar computational filtering 
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techniques utilized by PADM, AGS, and BASEGRAIN. Then, SAPM uses a set of test soil images 

and a set of training soil images. The grain size distributions of the training images are already 

known and are used to determine those of the larger test soil image set. The process of gathering 

training soil images for a variety of soil types, sizes, and colors is an arduous process – one that is 

not needed with the SedImaging, VisCPT, PADM, AGS, or BASEGAIN methods. Furthermore, 

the SAPM requires significant user-interaction, and thus requires users to have a high level of 

machine learning knowledge.  

Chávez et al. (2015) developed OPTGRAN-CS, a granulometric optical method that uses 

stereological methods to size individual soil particles within a three-dimensional assembly. 

According to Chávez et al. (2015) the method “provides optical granulometry from an [Entropy-

Controlled Quadratic Markov Measure Field Model] ECQMMF-based segmentation” that was 

developed by Rivera and Dalmau (2012). A soil assembly is photographed and analyzed by the 

free, downloadable QPTGRAN-CS software. The method consists of three main phases. The first 

phase enhances the image’s contrast by histogram equalization. Then, like the PADM and AGS 

methods, a smoothing computing function is passed over the entire specimen image. The second 

phase segments the assembly into individual soil particles given user-defined parameters and 

creates a binary image of the soil particle edges. At this stage, users can choose to manually correct 

or adjust the automatic particle segmentation. Though this additional manual step increases the 

accuracy of the OPTGRAN-CS grain sizing, it also compromises on testing throughput. The final 

phase of the method is to apply the intercept-counting method of Rosiwal (1898) to size the 

particles in the binary image. The final result is a PSD of the soil assembly.  

The greatest strength of the OPTGRAN-CS method is its flexibility. The method was tested 

on images of various particle sizes and colors, from cobbles and gravels down to the silt range. It 
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was also tested using cameras with a range of magnifications (a 15 Megapixel DSLR camera, a 5 

Megapixel tablet, and a 3.2 Megapixel wireless camera phone). All three cameras yielded some 

success, with the highest magnification camera being able to correctly size the largest range of soil 

particles.  

The largest limitation of the OPTGRAN-CS method is the required user involvement in 

both defining parameters at the start of the test, and the optional, (but recommended step), to 

manually adjust the automatic binary image of the soil assembly. The first point, similar to the 

PADM’s requirement for user-defined parameters, requires (or assumes) a level of knowledge in 

their users to select the appropriate parameters for their specific use. Less knowledgeable users 

may not be aware of the (possibly negative) consequences selecting one parameter over another 

has on their soil assembly’s outputted PSD.  

The manual step of correcting the soil assembly’s automatically-created binary image in 

the second phase of the OPTGRAN-CS method can be time-intensive. Chávez et al. (2015) 

provides an example where manual correction of the binary image was required. Shown in Fig. 

2.3, the photographed soil assembly (Fig. 2.3[a]) was first converted to an automatically-generated 

binary image (Fig. 2.3[b]). Chávez et al. (2015) acknowledges that the automatic image did not 

correctly segment all of the soil particles. Localized examples of this are the blackened areas 

circled in red in Fig. 2.3(b). The manual correction of the binary image is in Fig. 2.3(c). Depending 

of the level of manual correction needed for a given soil image, as well as the size of the image 

itself, this correction process can be tedious and time-intensive. This compromises the time 

benefits of adopting this image-based grain sizing method over traditional testing such as sieving. 

A final limitation of the OPTGRAN-CS method pointed out by Chávez et al. (2015) is similar to 

other image-based analysis methods (including the ones used with SedImaging and the VisCPT). 
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Shadows, non-uniform lighting, and soils with uniform coloring are challenging to accurately size 

by the OPTGRAN-CS method.   

 

 

Figure 2-4. Example of necessary manual correction during the OPTGRAN-CS method. (a) Original soil image, (b) 

Automatically-generated soil segmentation, (c) Manually-corrected soil segmentation (Adapted from Chávez et al. 

2015).  

 

2.2 Soil assembly image-based characterization: pixel intensity spatial methods 

The final two examples of image-based soil assembly characterizations are similar to the 

method used with SedImaging and the VisCPT. These methods do not deterministically size each 

individual soil particle. Instead, they use pixel intensity spatial methods to establish particle size. 

The first example is Buscombe et al. (2010), which uses a two-dimensional spectral 

decomposition of a soil image to provide a statistical estimate of the mean particle size of the 

assembly. The method is highly adaptable. It does not require any calibration, and can be used for 

all cohesionless particle sizes down to a 0.1mm diameter in a variety of lighting conditions (natural 

and artificial lighting, direct and diffuse lighting, etc.). The system is fully automated, does not 

involve any user-defined parameters, and only requires the image magnification prior to an 

analysis. Additionally, the method can be used for images captured both on land and underwater. 

The method’s two-dimensional special decomposition occurs in the frequency domain as opposed 
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to the spatial domain (where SedImaging and VisCPT image analysis methods reside). A 

normalization procedure also occurs in the process, which is why Buscombe et al. (2010)’s method 

“[removes] the dependency on calibration.” However Buscombe et al. (2010) acknowledge that 

calibration may be necessary when dealing with soils of unique packing. 

The technical procedure of the Buscombe et al. (2010) method extend beyond the scope of 

this chapter, but in general terms, the process utilizes a two-dimensional autocorrelation function 

and determines the average radius of a single fitted ellipse. This radius is linearly related to the 

estimated average particle size of a photographed soil assembly. The Buscombe et al. (2010) 

method was successfully tested on over 400 soil specimens of varying sizes, shapes, colors, and 

testing environments (different lighting, land, underwater etc.) Furthermore, the method was also 

performed on computer-generated soil bedforms using different sizes of tessellations, with similar 

results.  

Despite its impressive list of advantages as an image-based grain sizing method, there are 

two main limitations of the Buscombe et al. (2010) method. The first is the high-level technical 

language used to describe the details of this method. A deep knowledge of both statistics and image 

analysis are required to understand this method’s procedure to size soil particles. This could limit 

the range of users able to make use of this more complex method, potentially undercutting its 

extensive list of benefits as a non-intrusive, rapid, high-resolution grain sizing approach. The other 

image-based soil characterizations methods listed in Table 2.1 (including those used with 

SedImaging and the VisCPT) are equally rigorous and robust methods using complex 

computational and geotechnical knowledge to create them. Yet all of those methods, even the 

machine learning procedure of Nie et al. (2015)’s SAPM (Section 2.1), can be explained in 

approachable and attainable language. The automation and accuracy of an image-based soil 
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characterization method aside, the usability must also be a conscious consideration when selecting 

to use any of these methods.  

The second limitation of the Buscombe et al. (2010) method is that only a single average 

particle size is assigned for an entire soil assembly image. This single value could be useful in 

holistic geologic characterization projects, but a complete particle size distribution for a soil 

assembly is required for most geotechnical, geoenvironmental, geomechanical, and related 

applications.  

Black et al. (2014) developed an image-based soil assembly characterization method that 

uses a combination of first- and second-order image texture approaches to size sand and gravel 

river bedforms from aerial images. The first-order approaches investigate a photographed soil 

assembly’s pixel intensity values without considering the spatial distribution of these values across 

the image. For example, a first-order approach of an image could be its mean, variance, or range 

of pixel intensity values. Alternatively, second-order approaches do consider the spatial 

distribution of pixel values across an image.  

The specific second-order textural approach used by Black et al. (2014) is also utilized with 

the VisCPT. Both Black et al. (2014) and the VisCPT methods use various textural indices from 

the Spatial Gray Level Dependence Method (SGLDM) proposed by Haralick et al. (1973). Given 

this, the details of this method are omitted here and are reserved for Section 5.3 and Appendix B. 

Broadly, for the SGLDM, an image’s co-occurrence matrix is calculated. This matrix is a 

mathematical visualization of the distribution of identical pixel intensity values across the image. 

From there, Haralick et al. (1973) defined equations for fourteen textural indices that characterize 

the shape, distribution, intensity, and other attributes of this co-occurrence matrix. Black et al. 

(2014) and the method used with the VisCPT correlate several of these Haralick textures to soil 
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particle size. Several of the same Haralick textural indices used with the VisCPT are also used in 

the Black et al. (2014) method.  

Black et al. (2014) determined that their first-order textural approach is adequate in 

distinguishing between sand and gravel bedforms, while their second-order textural approach is 

needed for further grain size distributions of the gravel assemblies. The method was used for aerial 

images of soils at four testing sites along the Fraser River in British Columbia, Canada, and was 

calibrated using the same soils. Black et al. (2014) notes that one of the largest limitations of their 

method is the small, localized sample size. Given the image magnification of the aerial 

photographs used by Black et al. (2014), photographed sands were often sub-pixel, meaning “one 

pixel is an averaged measure of a population of several [sand] grains.” Black et al. (2014) 

investigated the impact on grain sizing particles that are small enough to be influenced by this 

“pixel averaging effect.” They compared this to sizing larger gravel particles that, instead of the 

“pixel average effect,” are represented by “actual grain texture” in the aerial images. The camera 

magnifications of SedImaging and VisCPT are such that even the smallest photographed silt 

particles are never sub-pixel, thus eliminating this type of concern in these methods.   
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Chapter 3 SedImaging Systems 

 

This chapter will describe the evolution of SedImaging, beginning from the original system 

of LabSed (Section 3.1) to the motivation and inception of both FieldSed (Section 3.2) and the 

third system, Sed360 (Section 3.3). The focus will be on the hardware of these three systems, while 

Chapter 4 will describe the image analysis method used with SedImaging to generate particle size 

distributions (PSDs) of sands. Less emphasis is placed upon the hardware of the original 

SedImaging system, LabSed; instead, the author’s development of the FieldSed and Sed360 

systems are the main focuses of Chapter 3. Example PSD results using the FieldSed are presented 

in this chapter, while those generated using the Sed360 are reserved for Chapter 4 as part of the 

discussion of the newest image analysis method. Chapter 3 also details a case history involving 

the FieldSed for sediment classification in the Kalamazoo River (Section 3.2.4).   

*** 

Passages and portions of this chapter are taken from previous publications describing the 

FieldSed (Ventola and Hryciw 2019; Ventola et al. 2020b) and the Sed360 (Ventola and Hryciw 

2022a, Ventola and Hryciw 2022b) SedImaging systems. 

3.1 Original Hardware: LabSed 

The original SedImaging hardware system, referred to as “LabSed”, is shown in Fig. 3.1. 

The device consists of a water-filled 64mm x 64mm x 2134mm (2.5in x 2.5in x 7ft) square 

aluminum sedimentation column; a support tower for positioning and supporting the weight of the 

column; a system base; and a soil accumulator. The accumulator is attached to the bottom of the 
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sedimentation column by two quick-release clamps. The accumulator has a glass viewing window 

through which the soil is photographed using a digital single-lens reflex (DSLR) camera. 

The SedImaging LabSed device performs best for soil particle sizes between 0.075mm (US 

Standard No. 200 sieve) and 2.0mm (US Standard No. 10 sieve), which encompasses the fine and 

medium sand range as defined by the Unified Soil Classification System. Typically, 450 ± 50g of 

solids are tested in a LabSed specimen. The soil is initially placed in a 455mm (18in) long 

cylindrical acrylic tube having an outside diameter of 64mm (2.5in) and a 6.4mm (0.25in) wall 

thickness. Known as the “presorter tube” (Fig. 3.2), it is used to break up soil clumps by 

aggressively mixing the specimen in water. The tube also provides a convenient method for 

releasing a soil specimen into the LabSed sedimentation column.  

The presorter tube is filled between 80% and 90% with water, and a soil specimen is added. 

The open end of the tube is sealed with a thin rubber membrane; the membrane is pushed slightly 
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Figure 3-1. The LabSed. 

 

Figure 3-2. The LabSed presorter tube. 
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into the tube, thereby creating a vacuum seal (Fig. 3.3[a]). The soil-water mixture is vigorously 

mixed. The presorter is then inverted so that the membrane-sealed end is on the bottom, and the 

sand is allowed to settle atop the inwardly-curved membrane. Then the rubber membrane is slipped 

off of the presorter. Because of the vacuum, the soil does not fall out of the opened tube (Fig. 

3.3[b]). The tube is transferred to the top of the sedimentation column (Fig. 3.3[c]) and a rubber 

stopper, shown in Fig. 3.2, is removed from the tube. This releases the vacuum and allows the soil-

water mixture to rapidly drop into the sedimentation column. Ohm and Hryciw (2014) also 

discusses the presorter in detail.  

The soil particles sediment through the water and settle within the sediment accumulator 

(Fig. 3.1), where the soil column is photographed. This photograph is analyzed using the HWT-

based method (detailed in Chapter 4) to generate the soil specimen’s PSD. After the specimen has 

been photographed, the water in the LabSed column is drained through a valve located above the  

 

Figure 3-3. LabSed presorter tube’s vacuum-release system. (a) Vacuum-sealed rubber membrane, (b) Soil 

specimen remains in the presorter after the membrane is removed, (c) Presorter is moved to the top of the 

sedimentation column and the rubber stopper is removed. 
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sediment accumulator (Fig. 3.1); the soil is removed from the accumulator, and the LabSed is 

cleaned in preparation for its next use. 

3.2 FieldSed 

Due to its size, large weight, and ancillary components, the LabSed is only practical for 

use in a laboratory setting. Therefore, a new SedImaging system known as “FieldSed” was 

developed in 2017 and introduced by Ventola and Hryciw (2019). FieldSed provides portable 

SedImaging testing at construction sites, quarries, offshore, and other locations distant from a 

traditional soil laboratory. FieldSed modifies the original LabSed device using reduced scale 

lightweight components, enabling it to be easily deployed for field applications. In addition to cost 

savings over traditional sieving, this field system also eliminates the time and cost associated with 

transporting test specimens to a laboratory. FieldSed also provides a method to determine the fines’ 

percentage of a sand specimen (Section 3.2.2). Its portability and low cost allowed FieldSed to be 

the centerpiece of a large characterization program of over 100 Kalamazoo River bed sediments 

in 2017 (Section 3.2.4). 

3.2.1 The FieldSed System 

The FieldSed is shown in Fig. 3.4. The overall operation of the FieldSed is similar to that 

of the LabSed. The major difference between the two devices is the sedimentation column. The 

FieldSed replaces the sedimentation column and accumulator with one continuous 25mm x 25mm 

x 1830mm (1in x 1in x 6ft) square transparent acrylic tube. Secondly, the FieldSed sedimentation 

column is held in position by the simple bracket shown in Fig. 3.5. The column load is transferred 

to the ground at the base, where it is also positioned using two metal dowels shown in Fig. 3.6. 

The locked bracket (Fig. 3.5[b]) and dowels insure column verticality. A square rubber stopper is 
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Figure 3-4. The FieldSed. 

 

Figure 3-5. FieldSed positioning bracket. (a) Unlocked, (b) Locked. 

 

permanently fixed inside the base of the sedimentation column (Fig. 3.6). Similar to LabSed, the 

FieldSed also utilizes a presorter tube. However for the FieldSed, the outside diameter of the tube 



 38 

is only 25mm (1in). Figure 3.7(a) shows the FieldSed presorter placed at the top of the 

sedimentation column, and Fig. 3.7(b) shows the release of the presorter plug and a soil specimen’s 

introduction into the top of the sedimentation column. 

The HWT image analysis method used with the LabSed system is also used with the 

FieldSed. The clear acrylic sediment column and flexible positioning system of the FieldSed allow 

photographing all four sides of the settled soil from the same camera location. Thus, a much larger 

percentage of the overall soil specimen is used for image analysis. Four distinct PSD curves are 

generated and later combined to provide a representative PSD for the whole soil specimen. 

The relatively inexpensive acrylic tubing and simple FieldSed design allow many 

sedimentation columns to be constructed and utilized simultaneously for parallel testing. Figure 

3.8 shows 19 FieldSed columns held in a testing rack and prepared for such parallel testing. A soil  

 

 

Figure 3-6. FieldSed rubber stopper, base, and positioning dowels. 
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specimen is released into each of the columns and allowed to sediment to the bottom. Later, the 

sedimentation columns are individually removed from the rack and placed into the FieldSed 

positioning system, photographed on all four sides, and returned to the rack. This parallel testing 

allows for quickly analyzing large numbers of specimens by eliminating the need to both wait for 

sedimentation to end, and to clean sedimentation columns between consecutive tests.     

The small cross-section of the FieldSed sedimentation columns also allows for the use of 

smaller soil specimens than those required for the LabSed. While about 450g of solids are typically 

used in the LabSed, only about 85 ± 15g are sufficient for the FieldSed to yield reproducible 

results. Table 3.1 compares the salient features of the LabSed and FieldSed systems.   

 

 

Figure 3-7. Soil specimen release from the FieldSed presorter. (a) Prior to release, (b) Several seconds after 

release. 
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Figure 3-8. FieldSed parallel testing hardware. (a) Sedimentation columns in a testing rack, (b) A technician 

preparing many sedimentation columns. 

 

Table 3-1. Comparing LabSed and FieldSed systems. 

Item LabSed FieldSed 

Sediment column dimensions [mm] 64 x 64 x 2134  25 x 25 x 1830 

System materials Aluminum, glass Acrylic 

Sediment column weight [kg] 8.9 0.9 

Required volume of water for each test [m3] 9 x 10-3 1 x 10-3 

Typical specimen weight of solids [g] 450 ± 50 85 ± 15 

Field portable No Yes 

Detachable sediment accumulator Yes No 

Drainage port  

Parallel testing possible                                                                 

Yes 

No 

No 

Yes 

Number of photographed column sides 1 4 

Volume percentage of specimen used for PSD a 2% 16% 

Pre-sorting tube dimensions (length; diameter) [mm] 455; 64 455; 25 
a Assumes an average particle size of 1.0mm 

3.2.2 Specimen Prewashing 

SedImaging by FieldSed works best for coarse-grained soils with particle sizes ranging 

from 2.0mm (No. 10 sieve opening) to 0.075mm (No. 200 sieve opening). A prewashing procedure 

may be used to determine the percentage of soil mass outside of this range. The prewashing 
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effectively removes particles larger than 2mm and smaller than 0.075mm, without specimen-

drying, prior to testing with the FieldSed.   

The first step of prewashing involves a visual inspection of a specimen for particles larger 

than 2.0mm. If the specimen does appear to have larger particles, the soil is washed over a No. 10 

sieve. The material retained on the sieve is air- (or hot pan) dried and the dry weight (W>No.10) is 

recorded. While the material retained on the No. 10 sieve is drying, the remainder of the specimen 

is transferred to the presorter. Once the soil is in the presorter, water is added to a marked height. 

The tube with the specimen and water is weighed (Wpre). Next, the presorter is sealed and the soil-

water mixture is vigorously agitated for several seconds. Following agitation, the user sets the tube 

upright, allowing the coarser particles to begin settling. After a few moments, the tube is unsealed 

and the suspended fines-water mixture is carefully poured over a No. 200 sieve. The material 

passing the No. 200 sieve can be retained for other laboratory testing (e.g. Atterberg Limits) if 

desired.  

Clean water is added to the presorter, and the agitation process is repeated several times 

until the water in the tube is observed to be relatively clear after agitation. After the final pour over 

the No. 200 sieve, any material retained on the sieve is carefully returned to the tube. The presorter 

is filled with clean water to the marked height and the weight of the tube and its contents is again 

recorded (Wpost). The material that remained in the tube is the weight of the specimen portion 

having particles sizes between 0.075mm and 2.0mm (WNo.200-No.10). This material is then released 

into a FieldSed sedimentation column and, following sedimentation, is photographed. A HWT-

based PSD (Chapter 4) is generated for this portion of the specimen; the distribution is later 

adjusted to reflect the portions of the original specimen that were retained on the No. 10 sieve 
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(W>No.10), and that passed the No. 200 sieve (W<No.200). The total dry weight of the specimen 

(Wtotal,dry) is:  

 

                                                𝑊𝑡𝑜𝑡𝑎𝑙,𝑑𝑟𝑦 =  𝑊>𝑁𝑜.10 + 𝑊<𝑁𝑜.10                                             (3.1) 

 

where: 

 

                                                   𝑊<𝑁𝑜.10 =  
𝐺𝑆 × (𝑊𝑝𝑟𝑒−𝑊𝑡𝑢𝑏𝑒)

(𝐺𝑆− 𝛼)
                                                   (3.2) 

 

                                             𝑊𝑁𝑜.200−𝑁𝑜.10 =  
𝐺𝑆 × (𝑊𝑝𝑜𝑠𝑡−𝑊𝑡𝑢𝑏𝑒)

(𝐺𝑆− 𝛼)
                                               (3.3) 

 

                                           𝑊<𝑁𝑜.200 =  𝑊<𝑁𝑜.10 −   𝑊𝑁𝑜.200−𝑁𝑜.10                                         (3.4) 

 

 

      𝑊𝑡𝑜𝑡𝑎𝑙,𝑑𝑟𝑦 = total dry weight of the soil specimen [g] 

         𝑊>𝑁𝑜.10 = weight of material retained on the No. 10 sieve [g] 

         𝑊<𝑁𝑜.10 = weight of material passing the No. 10 sieve [g] 

                  𝐺𝑆 = specific gravity of solids at 20°C 

              𝑊𝑝𝑟𝑒 = weight of presorter, water, and soil specimen before agitations [g] 

            𝑊𝑡𝑢𝑏𝑒 = weight of presorter filled just with water [g] 

                    α = water temperature correction value 

𝑊𝑁𝑜.200−𝑁𝑜.10 = weight of material between the No. 200 and No. 10 sieves [g]; 

             𝑊𝑝𝑜𝑠𝑡 = weight of presorter, water, and soil specimen after agitations [g] 

       𝑊<𝑁𝑜.200 = weight of material passing the No. 200 sieve [g] 

 

The fines percentage of the specimen (Pfines), which is used for both USCS and AASHTO soil 

classifications, is:  

                                              𝑃𝑓𝑖𝑛𝑒𝑠 = (
𝑊<𝑁𝑜.200

𝑊𝑡𝑜𝑡𝑎𝑙,𝑑𝑟𝑦
) × 100                                                          (3.5) 
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Figure 3.9 summarizes the complete testing procedure for SedImaging by FieldSed, if prewashing 

is also required. It includes specimen prewashing, SedImaging via the FieldSed, and final PSD 

generation using the HWT-based method and prewashing results. This procedure was followed 

during the 2017 Kalamazoo River sediment characterization project (Section 3.2.4).   

 

 

Figure 3-9. Prewashing and SedImaging by FieldSed summary design. 

 

 

Material in the presorter is released into the FieldSed sedimentation column. The 

particles sort and settle at the base of the column and are photographed. The 

images are analyzed via the HWT-method and a PSD is generated.  

Specimen (without particles > 2.0 mm) is funneled into the presorter. The tube is 

filled with water to a fixed height. The presorter with the specimen and water is 

weighed. The weight of solids is computed using Eq. 3.2.  

Specimen in the presorter is agitated several times. After each agitation, the 

specimen is allowed to settle for several seconds, and the suspended fines-water 

mixture is poured over a No. 200 sieve (0.075 mm). The process is repeated until 

the water in the tube is noticeably clearer. Any material retained on the No. 200 

sieve is returned to the presorter, the water level is brought back to the 

predetermined height, and the total weight of the presorter, water, and specimen 

is taken again. The percentage of fines is computed using Eq. 3.5.  

Specimen is washed over a No. 10 

sieve. Material retained on the 

sieve is air- (or hot pan) dried and 

weighed.   

Specimen contains particles  

> 2.0 mm (No. 10 sieve). 

Specimen does not contain 

particles > 2.0 mm (No. 10 sieve). 

A representative 85 ± 15 g soil specimen is collected. 

The HWT-based PSD is adjusted for any material removed during prewashing 

and the final grain size distribution is produced. 

  

Specimen 

prewash 

SedImaging  
via FieldSed  
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3.2.3 Example FieldSed Results 

Figure 3.10 shows images and PSD results for two different sands photographed in the 

FieldSed. These results do not consider any material removed during prewashing. The specimen 

in Fig. 3.10(a) (Sand A) is an example where the HWT-based PSDs of the four photographed sides 

are nearly identical. Occasionally however, differences are observed between the four images, 

which warrants the development of a single combined PSD. Fig. 3.10(b) shows another example 

sand (Sand B) that has a larger difference between its four images. Sand B’s Sides 1 and 2 contain 

slightly less of the coarsest particles than do Sides 3 and 4. This is reflected in Sand B’s four PSDs. 

The PSDs are all similar in shape, but are slightly shifted horizontally from one another, with Sides 

1 and 2 reporting smaller percentages of medium sand than Sides 3 and 4. 
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Figure 3-10. SedImaging results using the FieldSed. (a) Sand A, (b) Sand B. 

For both Sand A and Sand B, the data points from all four sides are combined into one total 

PSD and are plotted in Figs. 3.10(a) and 3.10(b) as a thicker black line designated as “Combined”. 

The specimens were also sieved according to ASTM C136/C136M-19, and those results are also 

plotted. For both specimens, excellent agreement between the “Combined” PSD and “Sieve” is 

observed. Regardless of the variations between the four images of a specimen photographed in the 

FieldSed, combining the particle size data into one overall PSD tends to yield an accurate 
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representation of the specimen. Combining the four sides’ PSDs into one is the standardized 

practice for the FieldSed.  

3.2.4 Particle size distribution of Kalamazoo River sediments by FieldSed 

As part of a geoenvironmental investigation of the Kalamazoo River in southwest 

Michigan (Fig. 3.11), river sediment samples were collected and analyzed in order to map river 

bedforms. In 2017, a portion of this analysis was performed using the first field application of Ohm 

and Hryciw’s (2014) SedImaging method for particle size analysis. A field laboratory was 

established next to the Kalamazoo River (Fig. 3.11) to determine particle size distributions (PSDs) 

of over one hundred collected sediment core samples. The field laboratory was covered, but was 

without temperature control or an oven to dry specimens. The soils consisted mostly of fine sands 

with varying percentages of silt and clay. The goal of the testing program was to rapidly obtain 

accurate PSDs to delineate areas for more detailed subsequent mapping of fine sediment bedforms 

in the Kalamazoo River.    

By identifying and grouping the Kalamazoo River bedforms according to grain size 

characteristics, more efficient follow-up stratified environmental sampling was developed. Fewer 

additional samples were needed in coarse bedform areas, and higher density sampling could be 

focused on finer-grained and transitional areas. Other field-based methods, such as cone  
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Figure 3-11. Kalamazoo River and this project's testing locations. 

 

penetrometry and geophysical methods, are also available to distinguish coarse and fine bedforms. 

However, FieldSed was utilized in this study because it requires no additional field equipment at 

the sampling locations, it can be directly compared to conventional sieve and hydrometer testing, 

and the technology is capable of producing high resolution grain size distributions of fine and 

medium sands. 

The field laboratory shown in Fig. 3.12 was set up by Wood Environment & Infrastructure 

Solutions, Inc. in a pole barn next to the Kalamazoo River in southwestern Michigan. At the field 

lab, 118 specimens were selected from sediment cores and analyzed using SedImaging by 

FieldSed. Without the need for oven-drying, the soil specimens could be tested quickly after their 

delivery to the field lab. Using only one to two technicians at a time, a daily average of 16 

specimens were tested. 

As part of the broad field testing program of the river sediments, seven samples were taken 

from different sediment cores for a quality control investigation. Each sample was homogenized  
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Figure 3-12. Field laboratory for testing the Kalamazoo River sediments. 

 

and an approximately 85g specimen was tested in the field following the procedure outlined in 

Fig. 3.9. Upon imaging, the portion of the specimen tested in the FieldSed was carefully collected 

and sent to the Geotechnical Engineering Laboratory at the University of Michigan (UM) (see Fig. 

3.11). There it was re-tested using a sister FieldSed system. This was done to evaluate the 

repeatability of FieldSed results obtained by different technicians under different environmental 

and lighting conditions. The remaining homogenized sample was also sent to UM.   

Separate SedImaging tests were also performed on specimens from the untested material 

sent to UM. As with the specimens tested in the field lab, about 85g of each UM lab sample was 

tested according to the procedure in Fig. 3.9: prewashed (if necessary) and then tested by FieldSed. 

This second set of SedImaging tests was performed to evaluate the repeatability of the entire Fig. 

3.9 testing procedure, including prewashing. The remainder of the untested material sent to UM 

was sieved according to ASTM C136/C136M-19. This was done to both evaluate the repeatability 

of prewashing, and to compare all SedImaging results by FieldSed to sieving. 
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Figures 3.13 through 3.19 contain the complete PSDs for the seven control specimens. 

These FieldSed PSDs are the combined data from the different photographed sides for each of the 

specimens (analogous to the “Combined” PSDs in Fig. 3.10). For each, the PSDs generated from 

the SedImaging’s HWT image analysis method are compared to sieve data. Unlike those in Fig. 

3.10, the HWT-based PSDs are now adjusted for any material removed during prewashing. The 

PSDs of the specimens photographed in the field are referred to as “Field” while “Field-Repeat” 

are the PSDs of the same specimens retested in the UM laboratory. “Lab” refers to the specimens 

tested fully (including prewashing) at UM. “Sieve” is the sieve data of the remaining material not 

tested by SedImaging that was sent to UM. Each figure also includes three photographs. The 

leftmost image is one of the “Field” specimen sides, the center image is one of the four “Field-

Repeat” sides, and the rightmost image is one of the four sides from “Lab”.  

Table 3.2 summarizes various PSD characteristics including D60, CU, and the 

corresponding Unified Soil Classification System (USCS) group name for the seven quality 

control tests. The table also includes the specimen percentages that were removed by prewashing 

(if applicable). Using bar graphs, Fig. 3.20 compares the percentages of each specimen (according 

to the HWT-based PSDs or sieve data in Figs. 3.13 through 3.19) that fall within four particle size 

ranges: coarser than 2.0mm (coarse sand or gravel), 2.0mm to 0.425mm (medium sand), 0.425mm 

to 0.075mm (fine sand), and finer than 0.075mm (silt/clay).    

By observation of Figs. 3.13 through 3.19, the agreement between PSD results in “Field”, 

“Field-Repeat”, “Lab”, and “Sieve” tests is subjectively assessed to be excellent. Any small 

variations between the four data sets for each specimen can be attributed to the absence or presence 

of only a few of the coarsest particles, which will cause parallel offsets over the remainder of the 

PSD curves. For example, in Fig. 3.14 (Specimen B), the “Lab” PSD is the same shape, but lies  
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Figure 3-13. Specimen A. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides. 
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Figure 3-14. Specimen B. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides. 
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Figure 3-15. Specimen C. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides. 
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Figure 3-16. Specimen D. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides. 
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Figure 3-17. Specimen E. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides. 
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Figure 3-18. Specimen F. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides. 
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Figure 3-19. Specimen G. (Top) verification PSDs, (Bottom) Field [left], Field-Repeat [center], and Lab [right] 

photographed FieldSed sides.
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Table 3-2. Verification testing of select Kalamazoo River specimens. 

 
Specimen A Specimen B Specimen C Specimen D Specimen E 
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D60 [mm] 0.72 0.74 0.72 0.75 0.68 0.68 0.59 0.70 0.46 0.45 0.46 0.50 0.37 0.37 0.44 0.45 0.28 0.33 0.31 0.33 

D50 [mm] 0.60 0.63 0.60 0.63 0.58 0.58 0.50 0.59 0.40 0.39 0.40 0.43 0.33 0.33 0.38 0.40 0.22 0.28 0.26 0.28 

D30 [mm] 0.44 0.47 0.44 0.47 0.42 0.42 0.37 0.41 0.31 0.30 0.31 0.33 0.25 0.25 0.29 0.31 0.16 0.21 0.19 0.21 

D10 [mm] 0.29 0.32 0.29 0.33 0.28 0.28 0.24 0.30 0.23 0.23 0.23 0.24 0.19 0.19 0.21 0.22 0.11 0.14 0.11 0.13 

CU
  a 2.48 2.31 2.48 2.27 2.43 2.43 2.46 2.33 2.00 1.96 2.00 2.08 1.95 1.95 2.10 2.05 2.55 2.36 2.82 2.54 

CC
  b 0.93 0.93 0.93 0.89 0.93 0.93 0.97 0.80 0.91 0.87 0.91 0.91 0.89 0.89 0.91 0.97 0.83 0.95 1.06 1.03 

USCS Soil 

Classification c,d,e c c c c c c c c c c c c c c c c d d d c 

Retained on No. 

10 sieve [%] f 
13 13 15 -- 9 9 8 -- 5 5 2 -- 3 3 4 -- 11 11 9 -- 

Passing No. 200 

sieve [%] f 
2 2 2 -- 1 1 1 -- 1 1 1 -- 1 1 1 -- 8 8 9 -- 

a Coefficient of Uniformity, Cu = D60/D10 
b Coefficient of Curvature, Cc = (D30)2/(D60 x D10) 
c SP, poorly-graded sand 
d SP-SM, poorly-graded sand with silt; or SP-SC, poorly-graded sand with clay 
e SM, silty sand; SC, clayey sand; or SM-SC, silty, clayey sand 
f Via the prewashing procedure  
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Table 3-2 Con’t. Verification testing of select Kalamazoo River specimens. 

 
Specimen F Specimen G 
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D60 [mm] 0.22 0.23 0.24 0.24 0.10 0.10 0.12 0.11 

D50 [mm] 0.20 0.21 0.22 0.22 0.095 0.095 0.11 0.10 

D30 [mm] 0.18 0.18 0.19 0.19 0.080 0.080 0.09 0.08 

D10 [mm] 0.14 0.15 0.15 0.15 0.064 0.060 -- -- 

CU  
a 1.57 1.53 1.60 1.60 1.56 1.67 -- -- 

CC
  b 1.05 0.94 1.00 1.00 1.00 1.07 -- -- 

USCS Soil 

Classification c,d,e c c c c e e e e 

Retained on No. 

10 sieve [%] f 
0 0 0 -- 0 0 1 -- 

Passing No. 200 

sieve [%] f 
1 1 2 -- 5 5 12 -- 

a Coefficient of Uniformity, Cu = D60/D10 
b Coefficient of Curvature, Cc = (D30)2/(D60 x D10) 
c SP, poorly-graded sand 
d SP-SM, poorly-graded sand with silt; or SP-SC, poorly-graded sand with clay 
e SM, silty sand; SC, clayey sand; or SM-SC, silty, clayey sand 
f Via the prewashing procedure
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slightly to the right of the “Field”, “Field-Repeat”, and “Sieve” PSDs. The “Lab” specimen 

contained slightly fewer particles with diameters larger than 1.0mm than the other specimens.   

In addition to the PSDs, it is also useful to compare size distributions by specific ranges 

(coarse sand or gravel, medium sand, fine sand, and fines) as shown in Fig. 3.20. For example, in 

Specimen B, we see nearly identical percentages of the coarsest and finest particles. The only clear 

difference is that the “Lab” test suggested 8% more fine sand (rather than medium sand) than did 

the other three tests. This was caused by a slight under-sampling of the medium sand for use in the 

“Lab” test. The “Sieve” results agreed perfectly with the “Field” and “Field-Repeat” PSDs.  

Several general observations can be made by inspection of Figs. 3.13 through 3.19 and Fig. 

3.20. First, comparison of “Field” and “Field-Repeat” data confirm the repeatability of results by 

SedImaging using FieldSed. This means that the sorting of particles during sedimentation is both 

effective and repeatable. It also confirms that the particles photographed on the four sides of the 

column are representative of the material in the interior that is not in camera view. These tests 

further illustrate the insensitivity of the FieldSed results to environmental changes and specifically, 

differences in ambient lighting. As seen in the specimen photos in Figs. 3.13 through 3.19, the 

“Field” specimens were photographed in natural light, whereas the “Field-Repeat” and “Lab” were 

photographed under overhead fluorescent lighting. The final PSDs of these three tests were not 

impacted by the different lighting conditions.  
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Figure 3-20. Particle size distributions by size ranges for quality control Specimens A through G.
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Secondly, the HWT-generated PSDs, once adjusted for material removed by prewashing, 

show strong correlation with traditional sieve results. This confirms the accuracy of the sample-

splitting procedures used by field technicians and, more importantly, of the prewashing method 

itself. The figures confirm that prewashing does a very good job of removing the out-of-range 

sized particles from the specimens prior to FieldSed testing. 

The results for Specimen G (Fig. 3.19) are noteworthy, as this material contained more 

fines than the other six specimens. According to Table 3.2, the field technicians removed only 5% 

fines from their sample by prewashing. By contrast, 12% fines were removed in the “Lab” 

specimen. In the “Field”, “Field-Repeat”, and “Lab” FieldSed photographs, the HWT-based image 

analysis reported additional fines in the specimens that were not removed during both prewashings.  

Although there was a significant difference in the amount of fines removed during 

prewashing between the field and at UM, when the corresponding HWT-based PSDs were 

appropriately adjusted, the results were similar. The final HWT-based PSDs more closely match 

the sieve data. This success is attributed to the fact that the HWT method (when used on images 

having sufficient magnification), will detect silt particles. Despite this, it is important to note that 

prewashing specimens is still an important step with SedImaging by FieldSed. The prewashing 

removes the vast majority of fines in a specimen, especially clay, thus reducing the settling time 

required during its release into the FieldSed sedimentation column. While it may be concluded 

that the FieldSed procedure somewhat compensates for incomplete prewashing, more research is 

needed to test the particle size limits of the FieldSed analysis. This quality control investigation 

was an early indication that silty sands and possibly sandy silts may be characterized by 

SedImaging using FieldSed.        
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The FieldSed and HWT results may also be immune to some abnormalities that may arise 

during sedimentation. In the “Field” test of Specimen C (Fig. 3.15) the soil particles appear to have 

been deposited in two stages. This was attributed to an inadvertently step-wise release of soil from 

the presorter tube. As a result, instead of the larger particles continuously grading to smaller 

particles over the full specimen height, some of the smaller particles are located beneath larger 

ones, as observed in Fig. 3.15. This was an extremely rare occurrence in the Kalamazoo River 

FieldSed testing program but is mentioned here because it happened to occur in one of the control 

tests. Despite this unusual abnormality, the final “Field” HWT-based PSD for Specimen C was in 

excellent agreement with the other PSDs.    

3.3 Sed360 

As noted throughout Section 3.2, SedImaging via FieldSed furthered the already 

established advantages of LabSed over sieving. However, FieldSed still requires users to manually 

rotate the sedimentation column to photograph each of its four sides. The PSDs determined for 

each side has to be combined to produce a single PSD representative of the entire specimen. The 

square-cross section of the extruded acrylic tubing also causes visual distortion at the four corners, 

requiring users to crop out portions of the FieldSed images prior to image analysis.  

In response, the Sed360 SedImaging system was developed by Ventola and Hryciw 

(2022a). The new Sed360 system replaces the square tubing of the FieldSed with a circular cross-

section sedimentation column that sits atop a rotating stage. This new system captures images of 

the sedimented cylindrical soil specimen on the rotating stage. Thus, instead of taking four separate 

images (like FieldSed), the Sed360 is automated to take many more images of the settled soil 

assembly as it rotates. Narrow vertical strips from each images is extracted and stitched into one 

large seamless “unwrapped cylinder” image of the specimen surface. This stitched image is 
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analyzed to determine the specimen’s PSD. This automation increases the testing efficiency of 

SedImaging by reducing required user intervention during a test, increases the accuracy of the 

image analysis results by including more of a specimen’s soil particles in the analysis, and it has 

also lead to the expansion of the soil particle size (diameter) range eligible for SedImaging testing 

by more than a factor of two. For the first time with any SedImaging system, the range of testable 

soil particle sizes in the Sed360 includes the entire range of sands, from 4.75mm to 0.075mm 

(between US Standard sieves No. 4 and No. 200) per the Unified Soil Classification System. The 

prewashing method described in Section 3.2.2 can also be used with the Sed360 to determine the 

fines and gravel percentages of a sand specimen tested in the Sed360.  

3.3.1 The Sed360 system 

The Sed360 system, shown in Fig. 3.21, consists of a 1.8m (6ft) long clear acrylic 

sedimentation column with an inside diameter of 25.4mm (1in) and a 3.2mm (1/8in) wall 

thickness. The column is held in place by a support tower. A positioning bracket mounted on the 

support tower (Fig. 3.21[a]) ensures perfect verticality of the column, while allowing it to rotate. 

The split-piece bracket and the bracket latch (Fig. 3.22) were designed to facilitate easy removal 

and replacement of one sedimentation column by another for rapid testing of consecutive  
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Figure 3-21. The Sed360. (a) Full view, (b) Detailed view of bottom. 
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Figure 3-22. Sed360 positioning bracket. (a) Closed, (b) Opened, (c) Sedimentation column inserted. 

 

 

Figure 3-23. Sed360 pedestal, load transfer system, and rotation stage. 
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specimens. The sedimentation column is open on its top end, and fitted with a removable double 

O-ringed acrylic pedestal on the bottom (Fig. 3.23). Removal of the pedestal allows for rapid clean 

up after testing. The sedimentation column sits atop a Thorlabs motorized precision rotation stage 

(Fig. 3.23). Users can set the range and speed of rotation. 

 Figure 3.23 also shows the Sed360’s load transfer system. The Thorlabs rotation stage has 

a load capacity of 15N (1.5kg, 3.4lb). The weight of the Sed360 hardware plus soil and water in 

the column exceeds this capacity. Therefore, a system was designed to transfer the weight of the 

sedimentation column and its contents from the stage to the support tower while still allowing the 

column to rotate freely. Figure 3.24 details the hardware components of the load support system.  

A drive block (Fig. 3.24[a]) is screwed into the rotation stage. A short central shaft 

protrudes up from the drive block where it is firmly locked into the lower section of a flexible shaft 

coupling (Fig. 3.24[b]). The coupling is used to adjust for any small longitudinal misalignment 

between the rotation stage and the parts of the load support system above it. The bearing block in 

Fig. 3.24(c) is secured to the system’s support tower. A stainless steel ball bearing bushing is press-

fitted into the bearing block (Fig. 3.24[c]). Figure 3.24(d) shows a rotation platform which sits on 

the bearing block. The rotation platform has a central aluminum shaft (not shown in Fig. 3.24) 

permanently affixed to the underside of the platform. This shaft slips through the ball bearing 

bushing and is held tightly in the upper section of the flexible shaft coupling. Thus, the shaft and 

the platform rotate with the rotating stage, drive block, and flexible coupling. Lastly, the 

sedimentation column and its pedestal base sit on the rotation platform. Two rigid positioning 

dowels project upward from the rotation platform (Fig. 3.24[d]). They fit snugly into the removable 

pedestal base, ensuring accurate and consistent positioning of the sedimentation column for image 

capture.   



 67 

 

Figure 3-24. Sed360 load transfer system. (a) Drive block, (b) Flexible shaft coupling, (c) Bearing block, (d) 

Rotation platform. 
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The final piece of hardware of the Sed360 system is the presorter tube. It is a 457mm (18in) 

long clear acrylic tube having an inside diameter of 22.2mm (7/8in) and a 1.6mm (1/16in) wall 

thickness. Like the sedimentation column, the tube has one open end while the other is closed by 

a rubber plug. The presorter is used to instantaneously release a soil specimen into the top of the 

sedimentation column. The tube is also used to break up any particle clumps within a soil specimen 

prior to release into the column. Finally, the presorter tube can be used (as applicable) in the 

prewashing procedure (Section 3.2.2) to quantify and remove gravel and fines from a soil 

specimen.  

3.3.2 Performing a Sed360 test 

There are four stages in a Sed360 test. The first stage involves preparing a soil specimen 

and releasing it into the Sed360 system. The next set of steps is to automatically capture images 

of the settled soil. The third stage is automatically processing the captured images into a single 

“unwrapped cylinder” image, and the fourth stage is the analysis of the unwrapped image to 

generate the soil’s PSD. 

Stage 1. Introducing a Soil Specimen into the Sed360 System 

To begin the Sed360 test, the sedimentation column is filled with water. Next, an 85  15g 

soil specimen is funneled into the open end of the presorter tube. Water is added to the presorter 

until the tube is around 80 to 90 percent full. Next, the open end of the tube is covered by a rubber 

membrane. A vacuum seal is created by gently pressing the membrane into the tube while 

stretching it over the outside of the tube. Once sealed, the presorter and its contents are vigorously 

agitated to break up any soil clumps in the specimen. The tube is then inverted so the end with the 

rubber membrane is on the bottom and soil particles begin to settle atop the rubber membrane. 

Next, the membrane is slipped off. Due to the vacuum, the soil specimen and water remain inside 
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the tube even with the membrane removed. This allows the presorter tube to be cleanly transported 

to the top of the sedimentation column. A small adaptor is used to align and mate the open end of 

the presorter to the top of the sedimentation column. The rubber plug is removed, releasing the 

vacuum. The soil and water in the presorter immediately fall into the sedimentation column, and 

the soil particles begin to settle and sort by size.  

  The largest particles in the soil specimen naturally settle at the base of the sedimentation 

column first, followed by progressively finer particles. The amount of time required for the entire 

soil specimen to settle will vary depending on the soil’s gradation, but most well-graded sand 

specimens will settle in less than 10 minutes, with clean, poorly-graded medium sands settling in 

under five. Once the entire specimen has settled, image capture using the rotation stage can 

commence.    

Stage 2. Sed360 Image Capture 

The image capture is fully automated. The Thorlabs precision stage is controlled by a 

computer where users set the rotation speed and range. For the current Sed360 test, the stage is 

programmed to rotate at a speed of 0.8°/s. A full 360 rotation takes 7.5 minutes. The rotation 

speed was conservatively selected to assure that there would be precise image stitching and no 

image blurring. While the stage is rotating, the camera is automatically capturing images of the 

soil. There is a five-second pause between photographs; with the current stage rotation speed, this 

corresponds to a soil image every four degrees, totaling 90 images captured for the full rotation. 

After the stage has rotated 360, the sedimentation column is detached from the positioning 

system, and the column’s pedestal base (Fig. 3.23) is removed for quick cleanup.  

  A parametric analysis later revealed that a rotation speed of 1.5°/s paired with a one-

second pause between photographs can be used to produce the same results as those by the slower 
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rotation (0.8°/s). Using a rotation speed of 1.5°/s reduces the total rotation and image capture time 

to four minutes. Henceforth, the faster rotation time of 1.5°/s will be utilized in all Sed360 testing. 

All data photographed by the Sed360 presented here use the older rotation speed of 0.8°/s. 

Stage 3. Image Processing  

The 90 photographs collected during stage rotation are stitched to form an “unwrapped cylinder” 

of the settled soil. The image stitching is fully automated. Figure 3.25 illustrates the process. For 

each of the 90 captured images, only a 64 pixel-wide portion from the center of the photographed 

sedimentation column is utilized. The 64-pixel width of each stitched image was selected based 

on the diameter of the sedimentation column and the camera magnification. This thin strip of each 

image is taken from the portion of the sedimentation column that is normal to the axis of the camera 

lens (i.e. there is no particle distortion due to the curve of the sedimentation column). Therefore, 

when the 64-pixel widths of consecutive images are automatically stitched together, there is no 

image distortion (particle shortening or elongation).  

The physical distance of this 64-pixel width is approximately 1.3mm (0.05in). Once all the 

image “slices” are extracted, they are ordered sequentially to begin forming the stitched image. A 

final step crops the widths of the slices (as needed) to ensure adjacent slices are perfectly aligned. 

The cropping involves comparing the columns of pixel grayscale intensity values of one slice to 

those of the next consecutive slice, and removing the pixel columns of the first slice that are also 

present in the later slice. This final step is needed to account for any minor fluctuations in camera 

shutter speed or elapsed time between successive image captures. Figure 3.26 shows the 

unwrapped image for an example soil that contains soil particles from the entire sand range (coarse, 

medium, and fine sand).  The stitched image of the unwrapped cylinder is now ready for PSD 

analysis.   
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Figure 3-25. Image stitching of the Sed360 system. 
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Figure 3-26. Unwrapped cylinder image of example sand tested with the Sed360 system. 

 

Stage 4.  PSD Determination Using Haar Wavelet Transformation 

With the expanded range of testable soil particle sizes afforded by the new Sed360, the 

accuracy of the original HWT-based analysis method used with the LabSed and FieldSed systems 

required reexamination. As will be discussed in Section 4.2.2, an autoadaptive HWT image 

analysis approach was developed. Despite it being developed after the fabrication of the Sed360, 

this updated analysis method can be used for any of the other SedImaging systems. This new 

method also relies on the same HWT-based image analysis fundamentals as the original analysis 

approach. The details of both of these methods, as well as example Sed360 PSD results will be 

reserved for Chapter 4. 
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3.3.3 Sed360 specimen utilization in the image analysis  

For typical 85g sand specimens tested in the Sed360, such as that in Fig. 3.26, the 

percentage of the specimen’s total soil particles that are observed at the sedimentation column’s 

periphery (and photographed by the Sed360) is between approximately 10% and 20%. This 

percentage will be larger for coarser sand particles than for finer ones. There has not been a direct 

verification that the soil particles in the interior of the column at a given elevation are of the same 

size as those at the periphery. However, with excellent agreement between Sed360 and sieve 

results (deferred to Chapter 4) as well as in earlier reported SedImaging comparisons (Figs.  3.10 

and 3.13 through 3.19, Hryciw et al. 2015, Ohm and Hryciw 2014, Ventola and Hryciw 2019, and 

Ventola et al. 2020b), which also reported strong agreement, such a verification has essentially 

been performed. Moreover, visual observation of particle settling confirms a mostly horizontal 

settling front, which, in addition to the Sed360-sieve agreement, confirms that soil particles at the 

outer edge of the sedimentation column are of similar size to those in the interior of the column at 

the same elevation. 

3.3.4 Summary of Sed360 improvements over previous SedImaging systems 

 The advantages of FieldSed over sieving as described in Section 3.2 and by Ventola et al. 

(2020b) and Ventola and Hryciw (2019) also hold for the Sed360: simple hardware, portability, 

rapid testing, no need to oven-dry specimens prior to testing, low noise, and the ability to set up 

many sedimentation columns for parallel testing of specimens. However, the Sed360 has its 

additional advantages. First, the new circular column atop a rotation stage allows for test 

automation; during image capture, lab technicians can attend to other tasks. Secondly, the 

removable circular double O-ringed pedestal of the Sed360 provides a better seal and facilitates 

rapid cleaning of the system. As mentioned previously, all of the particles at the periphery of the 
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specimen are utilized for PSD determination. Lastly, but maybe most importantly, the continuous 

unwrapped cylinder image has expanded the testable soil particle size range of SedImaging to now 

include the entire sand range (4.75mm to 0.075mm; between US Standard sieves No. 4 and No. 

200). This last improvement will be further emphasized in Section 4.2 as part of the discussion of 

the autoadaptive HWT-based image analysis method.  

3.4 Chapter Summary 

This chapter documented the evolution of SedImaging. It began by introducing the original 

SedImaging system, the LabSed, while detailing the overall procedure of testing a soil by this 

method. Next, the second SedImaging system, the FieldSed, was presented. The FieldSed is a 

field-portable device with low-cost hardware and is ideal for testing a large number of soil 

specimens with parallel testing hardware (Fig. 3.8). Generating a coarse-grained soil’s particle size 

distribution (PSD) by FieldSed is nearly identical as doing so by LabSed. However there are 

several key differences between the LabSed and FieldSed; these differences were discussed in 

Section 3.2.1, with the largest differences between the two systems listed in Table 3.1. With the 

advent of the FieldSed, a prewashing procedure was developed. Detailed in Section 3.2.2, this 

procedure is used before testing in the FieldSed in order to cleanly and quickly remove soil 

particles in a specimen that fall outside of the testable particle size range for the FieldSed. The 

prewashing procedure determines a soil’s percentage of gravels and fines (by weight). The 

FieldSed was the centerpiece of a large-scale soil characterization project of Kalamazoo River 

sediments. This project was the focus of Section 3.2.4. Using the prewashing procedure, the 

FieldSed was used to generate PSDs of over 100 Kalamazoo River sediments. Seven of the river 

sediments were part of a quality control investigation that showed excellent agreement between 

FieldSed and sieving PSDs, as well as reproducibility of the prewashing procedure.  
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Chapter 3 concluded with the third SedImaging system, the Sed360. The Sed360 

transforms SedImaging into a near fully automated test. The introduction of a precision rotation 

stage with the Sed360 eliminates the need for user-intervention during image capture. The Sed360 

has also successfully expanded the range of testable soil particles by SedImaging to include the 

entire sand range (as defined by the Unified Soil Classification System). The four stages of 

performing a Sed360 test were detailed in Section 3.3.2. An example of the final image of a soil 

specimen tested in the Sed360 was presented in Fig. 3.26. Example Sed360 PSDs and how they 

compare to sieving are part of Chapter 4’s discussion of the current autoadaptive HWT-based 

method. Lastly, the Sed360 was compared to the LabSed and FieldSed in Section 3.3.4.  
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Chapter 4 Haar Wavelet Transform (HWT)-Based Image Analysis 

 

The focus of this chapter is the image analysis method used with the SedImaging systems. 

Section 4.1 describes the original analysis method used with LabSed and FieldSed. The 

development of the Sed360 (Section 3.3) led to the expansion of testable soils by SedImaging 

which became the impetus for a new image analysis method. The new method (Section 4.2) is an 

autoadaptive approach that expands upon the functions of the original analysis method. In doing 

so, sands with a range of gradations and mixes can now be accurately tested with SedImaging. 

(This new analysis method, though created only after the fabrication of the Sed360, can be used 

with all three SedImaging systems.) Example PSDs of sands tested in the Sed360 and analyzed 

with the new image analysis method are presented in Section 4.2.3.  

*** 

Passages and portions of this chapter are taken from previous publications (Ventola and 

Hryciw 2019; Ventola et al. 2020b, Ventola and Hryciw 2022a, and Ventola and Hryciw 2022b).  

4.1 Original HWT-based image analysis for SedImaging 

Some image-based, three-dimensional particle assembly analysis methods, including the 

method used with SedImaging, do not size soil particles individually. Instead, they determine a 

soil’s PSD statistically by analyzing the spatial distribution of pixel color or grayscale intensities 

of the photographed soil assembly. Individual soil particles are not counted or analyzed using these 

spatial methods. These statistical spatial methods eliminate the need for user-defined thresholds 

for deterministic segmentation analysis, and are less computationally-intensive than deterministic 
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approaches.  

To determine a soil’s PSD with SedImaging, an image analysis method based on the 

mathematical Haar Wavelet Transform (HWT) (Haar 1910) is utilized. Figure 4.1 shows a 20 by 

16 square grid superimposed over a sedimented Sed360 specimen that contains only medium and 

fine sand particles (i.e. the allowable range of testable soil sizes for the original HWT-based 

analysis method). Each square area in Fig. 4.1 is analyzed and will contribute one data point to the 

PSD. Thus, the image in Fig. 4.1 will contribute 20 x 16 = 320 data points to the PSD. 

 

Figure 4-1. HWT analysis squares for a Sed360 soil specimen. 
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For the HWT, each analysis square must be 2n pixels by 2n pixels in size where n is typically 

seven or eight. The squares in Fig. 4.1 are 28 (256) pixels by 28 (256) pixels in size. With 

SedImaging, since sedimentation through water sorts a soil specimen by particle size, each of the 

HWT analysis squares contains particles of approximately the same size. The relative uniformity 

of particle sizes within each analysis square is important to the analysis.  

For each analysis square, an “Energy” (E) is computed at n “decomposition levels” (DL). 

At the first decomposition level, E1 reflects the magnitude of the difference in grayscale values of 

adjacent pixels throughout the analysis square. The greater the difference, the larger the E1. At the 

second DL, E2 reflects the difference between average grayscale values of adjacent 2 x 2 pix2 

subareas throughout the analysis square. At the third decomposition, E3 is a measure of the 

difference of average grayscale values between adjacent 4 x 4 pix2 subareas, and so on. At the last 

decomposition level (regardless of n), En quantifies the difference in grayscale values between the 

four quadrants of the analysis square.  

To mathematically define E, at each DL, four values are computed for each 2 x 2 subarea 

of the analysis square. (The pixel dimensions of these subareas change depending on the DL.) 

Described by Hryciw et al. (2015), these four values are 

“1. The approximation: twice the average of [the] four grayscale values; 

2. The average difference in grayscale [values] between the two rows; 

3. The average difference in grayscale [values] between the two columns; and 

4. The average difference in grayscale [values] between the two diagonals.” 

  At each decomposition level i (i = 1,2,…n), these four values are collected from all of the 

2 x 2 subareas to form four new matrices Ai, Hi, Vi, and Di respectively (e.g. Hi is a matrix that 

contains “the average difference in grayscale [values] between the two rows” and Vi is a matrix 
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that contains “the average difference in grayscale [values] between the two columns” (Hryciw et 

al. 2015)). The Energies of matrices Hi, Vi, and Di (EH, EV, and ED) are calculated and summed to 

compute Ei for each DL. The E of a matrix is the sum of the squares of the matrix’s elements. For 

example, for a small 4 x 4 pix2 image, if H1 is  

𝐻1 =  [
2 5
1 7

] 

then the energy of H1, represented as EH1, is 

𝐸𝐻1 =  22 + 52 + 12 + 72 = 79   𝐴𝑛𝑠. 

The E of each DLi, (Ei) is  

                                                     𝐸𝑖 =  ∑ 𝐸𝐻𝑖 +  ∑ 𝐸𝑉𝑖 +  ∑ 𝐸𝐷𝑖                                               (4.1) 

For each analysis area, the energy of every DL is calculated. The distribution of E across 

the DLs is of interest. Figure 4.2 shows the Energies (Eq. 4.1) at eight decomposition levels for 

three example analysis squares marked in Fig. 4.1. 

 

Figure 4-2. Energy curves of three example HWT analysis squares from Fig. 4.1. 
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Many sands are composed of multicolored grains, or at least different shades of the same 

color. The important benefit of this is that an analysis area’s E will be largest at the DL at which 

the pixel area of “grayscale averaging” approximately coincides with the size of the soil particles 

within the analysis square. This point is illustrated in Fig. 4.3, which shows the distribution of E 

by DL (Fig. 4.3[a]) for an example analysis square (not one of the squares in Fig. 4.1). Also shown 

in Fig. 4.3 are the grids corresponding to the grayscale averaging areas at the 5th (16 x 16 pix2) 

(Fig. 4.3[b]), 6th (32 x 32 pix2) (Fig. 4.3[c]), and 7th (64 x 64 pix2) (Fig. 4.3[d]) DLs. To the right 

of each of the three gridded analysis squares, pixel values have been replaced with each area’s 

average grayscale. As compared to the 5th and 7th DLs, the differences in average grayscale values 

of adjacent grid areas is more pronounced at the 6th DL. Thus, the E is greatest around the 6th DL. 

By visual observation of Fig. 4.3, the particle size is best approximated by the size of the grid at 

the 6th level, where E is largest. 
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Figure 4-3. Example of the HWT method used with SedImaging. (a)Analysis area and corresponding Energy versus 

decomposition level plot, (b) grayscale averaging areas for the 5th, (c) 6th, and (d) 7th decomposition levels. 
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At a fixed image magnification, Energy distributions shift to the right (to higher DLs) with 

increasing particle size. This is observed in the three example analysis areas and their 

corresponding energy curves in Fig. 4.2. Shin and Hryciw (2004) observed that the centroid of the 

area (CA) under the E vs. DL plot correlated very well with the size of particles in the analysis 

square (where particle size is defined by sieve opening). The CA for Example Analysis Squares A, 

B, and C in Fig. 4.2 are 3.9, 4.6, and 5.2 respectively (and 5.07 for the separate example in Fig. 

4.3). A calibration curve between CA and the Pixels per Particle Diameter (PPD) was established 

by Hryciw et al. (2009). This calibration curve is plotted in Fig. 4.4 and given by the equation:   

                                                                𝑃𝑃𝐷 =  (
𝐶𝐴

2.4
)

5.1
                                                          (4.2) 

The CA values for the three Fig. 4.1 analysis squares and their corresponding PPDs are also shown 

in Fig. 4.4.  

 

Figure 4-4. HWT calibration results for three example HWT analysis squares from Fig. 4.1. 
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The HWT analysis is repeated for all of the analysis squares shown in Fig. 4.1, the CA 

values are computed, and the corresponding PPDs are found. The PPD values are converted to 

particle sizes (d) from the known image magnification (MAG) in pixels/mm according to Eq. 4.3 

                                                                       𝑑 =  
𝑃𝑃𝐷

𝑀𝐴𝐺
                                                                       (4.3) 

Hryciw and Jung (2008) showed that void ratio variations in the sedimented soil specimens are 

very small. As such, each analysis square represents an equal fraction of the specimen’s volume 

of solids. Thus, the particle sizes are ranked from largest to smallest and plotted in Fig. 4.5. The 

points corresponding to the three Fig. 4.1 example analysis squares are identified in the figure.  

 

Figure 4-5. Sed360 PSD results from Fig. 4.1 highlighting three example HWT analysis squares 
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4.2 Advancements to SedImaging’s HWT-based image analysis method 

With the expanded range of testable soil particle sizes afforded by the Sed360 (Section 

3.3), the accuracy of the original HWT-based analysis method required reexamination. From this, 

two significant issues were revealed: (1) the original PPD-CA calibration (Eq. 4.2) required an 

update (Section 4.2.1), and (2) using a fixed HWT analysis area size (regardless of the area’s pixel 

dimensions) to evaluate an entire soil specimen yields inaccurate PSDs (Section 4.2.2). These two 

issues motivated development of the new, autoadaptive HWT image analysis approach described 

herein.   

4.2.1 The New PPD-CA calibration 

The original PPD-CA calibration (Eq. 4.2) was developed using older camera technology 

and a narrower particle size range (medium and fine sands only). Values of PPD ranged only 

between 2 and 60. With new Sed360 hardware (Section 3.3) and the expanded particle size range, 

PPDs can now range to above 200. This warranted an investigation into how well Eq. 4.2 fits data 

at these much higher PPDs. To perform this recalibration, sand particles were sieved into 11 

narrow size ranges as listed in Table 4.1. The sand is a glacio-fluvial material referred to as “2NS” 

by the Michigan Department of Transportation (MDOT 2010). 

The CA values for the 504 analysis squares listed in Table 4.1 are plotted versus the 

corresponding mid-PPD values in Fig. 4.6. Equation 4.2 (solid red line) remains a good fit for 

PPDs of 4.1, 5.9, and 8.9. However, at higher PPDs, the calibration points are better fitted by 

                                                        𝑃𝑃𝐷 =  2.5(𝐶𝐴−1.15)                                                      (4.4) 
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Table 4-1. 2NS sand ranges for Sed360 calibration testing. 

Size 

Range No. 
Sieve Range 

Size Range 

[mm] 

Corresponding 

PPD Range a 
Mid PPD 

Number of analysis squares 

(i.e. data points in Fig. 4.6) 

1 No. 4 to No. 5 4.75 – 4.00 233.2 – 196.4 214.8 42 

2 No. 5 to No. 6 4.00 – 3.35 196.4 – 164.5 180.5 46 

3 No. 7 to No. 8 2.80 – 2.36 137.5 – 115.9 126.7 45 

4 No. 10 to No. 12 2.00 – 1.70 98.2 – 83.5 90.8 35 

5 No. 14 to No. 18 1.40 – 1.00 68.7 – 49.1 58.9 28 

6 No. 20 to No. 25 0.85 – 0.71 41.7 – 34.9 38.3 30 

7 No. 30 to No. 35 0.60 – 0.50 29.5 – 24.6 27.0 22 

8 No. 40 to No. 50 0.425 – 0.300 20.9 – 14.7 17.8 72 

9 No. 70 to No. 100 0.212 – 0.150 10.4 – 7.4 8.9 66 

10 No. 100 to No. 170 0.150 – 0.090 7.4 – 4.4 5.9 80 

11 No. 170 to No. 200 0.090 – 0.075 4.4 – 3.7 4.1 38 

     Σ 504 
a Image magnification = 49.1 pix/mm. 

 

 

Figure 4-6. PPD-CA calibration using the Sed360 data from Table 4.1. 
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Equation 4.4 is a straight line in the semi-log scale of Fig. 4.6. This equation was obtained 

by fitting the data above PPD =15 to maximize the coefficient of determination, R2. Hryciw et al. 

(2014) anticipated that when camera technology advances to higher resolutions, the PPD-CA 

calibration would be linear of the form given by Eq. 4.4. At the same time, there is good reason 

for the flattening of the curve below PPD ≈ 15. When PPDs are low, the E values are high at low 

DLs. Because there is no data below DL = 1, the “E curves” are truncated at the 1st decomposition 

level. This results in an increasing compression of CA values as PPD moves downward from about 

15 (i.e. CA ≈ 4).  

Ideally, a single equation would fit the entire PPD range, but at the present time, this would 

require a drastic change to image acquisition. Camera magnifications would have to be increased 

so that PPDs are always greater than 15. In other words, the finest (0.075mm) sand particles would 

require PPD = 15. This in turn would require a camera magnification of 200pixels/mm (about four 

times the current magnification). Unfortunately, this would decrease a camera’s field of view so 

much that several photos in the vertical direction would be needed, possibly at different camera 

magnifications, to photograph an entire soil specimen. Such complexity would make Sed360 

testing cumbersome. Therefore, to maintain the simplicity of the Sed360 hardware (as well as the 

analysis) the author recommends using the following piecewise PPD-CA calibration: 

                                             𝑃𝑃𝐷 =  {
(

𝐶𝐴

2.4
)

5.1
            𝑖𝑓 𝐶𝐴 ≤ 4.0

2.5(𝐶𝐴−1.15)     𝑖𝑓 𝐶𝐴 > 4.0
                                              (4.5)  

Equation 4.5 is highlighted in yellow in Fig. 4.6. The R2 value of Eq. 4.5 for the calibration data 

is 0.993. Equation 4.5 is used for obtaining all of the HWT-based PSD results presented in Section 

4.2.3. 
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4.2.2 Autoadaptive HWT-based image analysis for SedImaging 

While the establishment of Eq. 4.5 is crucial to accurately characterize the expanded 

particle size range in the Sed360, the greater improvement to the original HWT-based analysis 

method stems from the need for autoadaptive determination of the HWT analysis square sizes. To 

illustrate this need, Fig. 4.7(a) presents a Sed360 specimen that contains coarse, medium, and fine 

sand particles. Figure 4.7(b) plots this specimen’s PSDs. This image was analyzed using the 

original HWT-based method (Section 4.1), but with Eq. 4.5 instead of Eq. 4.2, four separate times. 

Each time, a single HWT analysis square size was used for the entire image. Sieving results 

following ASTM C136/C136M-19 (ASTM 2019) are also in Fig. 4.7(b) (as red square data points). 

 

 

Figure 4-7. Analyzing the same sand specimen image using different sizes of HWT analysis squares. (A) Sand in 

Sed360, (b) PSD results. 
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Figure 4.7 reveals that none of the four PSDs using uni-sized analysis squares matches the 

full range of sieve-based results. Only the PSD using 1024 x 1024 pix2 analysis squares correctly 

sizes the coarse sand. Conversely, only the 128 x 128 pix2 analysis squares correctly size the finest 

sand. Figure 4.7 confirms that variable analysis area sizes are needed to correctly characterize 

specimens containing particles over the full spectrum of sand sizes; larger squares should be used 

for coarser sand, and smaller squares for finer sand. In response to these findings, a procedure was 

developed that autoadaptively select the sizes of the analysis squares to suit the various particle 

sizes.  

The great majority of E-distributions follow a pattern as shown in Fig. 4.8 (and Figs. 4.2 

and 4.3). These ideal distributions display low E at low DLs, gradually rise with increasing DL, 

and steepen and peak at the midrange-DLs. The E then monotonically decreases back to low levels 

at the highest DLs. When a distribution follows this quasi-parabolic pattern, particle sizes 

determined by Eq. 4.5 will be accurate and reliable. E-distributions such as those in Figs. 4.2, 4.3, 

and 4.8 are deemed “acceptable”.   

On occasion, an E-distribution does not follow an acceptable pattern. In such cases, Eq. 4.5 

does not yield an accurate PPD. Figure 4.9 shows examples of such undesirable E-distributions. 

In Fig. 4.9(a) the analysis square is too small for the particle size and thus, the E-distribution fails 
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Figure 4-8. Examples of analysis squares with "acceptable" E-distributions. (a) Analysis square containing smaller 

particles, and (b) Square containing larger particles. 

 

to decrease at high DLs. This truncation of the E-distribution results in an inappropriately low CA 

value and the underestimation of PPD by Eq. 4.5. A similar, although less pronounced 

underestimation of CA can also occur for an E-distribution that peaks at the second largest DL. In 

this case (not shown in Fig. 4.9), the analysis square is still too small, and should not be used.  

The analysis square in Fig. 4.9(b) is too large because it contains particles with a wide 

range of sizes. Larger sand particles are at the bottom of the square, with progressively finer sand 

above. The corresponding E-distribution peaks around DL = 5 to 6 before decreasing. However 

because of the wide range of soil particle sizes in the analysis square, the energy distribution begins  
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Figure 4-9. Examples of analysis squares with “unacceptable” E-distributions. (a) HWT analysis square is too 

small relative to the soil particles, (b) Range of particle sizes is too large and (c) Energy curve impacted by particle 

coloring. 

 

to increase again at DL =  n-1 and n. The reason for this E increase is that at DL =  n-1 and n, large 

areas of averaged grayscale values are being compared to other large areas of averaged grayscales. 

When particles of greatly different sizes are contained within compared areas, the averaged 

grayscale values can differ enough to cause the increases in E at these higher DLs. 

Another example of unusual features impacting the E-distribution is shown in Fig. 4.9(c). 

Like the E-distribution in Fig. 4.9(b), the one in Fig. 4.9(c) also increases at the final decomposition 

level, n. Here, the E increase is caused by the proximity of similarly colored particles. Three large 

light-colored particles in Fig. 4.9(c) occupy almost 50% of the top half of this analysis square. 

Moreover, the bottom left quadrant of Fig. 4.9(c) contains a very dark particle. Because of the 
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large areas of high contrasting grayscale values and their location within the analysis square, the 

E at the final DL jumps up. This upturn in E at the last DL shifts CA to the right and causes an 

overestimation of particle size.    

It is important to emphasize that while the E-distributions in Figs. 4.9(b) and 4.9(c) are 

both “unacceptable”, the causes of the undesirable increasing E at the highest DLs is different. In 

Fig. 4.9(b), the analysis square contains a range of particle sizes that is too large. The size of the 

analysis square in Fig. 4.9(c) is actually “acceptable”; it contains particles of about the same size 

(i.e. the square is not too big) and it also contains enough soil particles (i.e. the square is sufficiently 

large).  Instead, the “unacceptability” in this case is due to the happenstance proximity of certain-

colored soil particles. While Figs. 4.9(b) and 4.9(c) have similarly shaped “unacceptable” E-

distributions, the autoadaptive analysis square sizing method uses different procedures for 

addressing these two situations.  

A final cause of “unacceptable” energy distributions is uneven particle illumination across 

an analysis area.  One would see a similar increase in E at the highest DLs like those in Figs. 4.9(b) 

and 4.9(c) if an analysis square had uneven lighting. For example, if the upper half of the HWT 

square had more illumination than the bottom, the E at the final DL (which compares the average 

grayscale values of the square’s four quadrants) would increase. The CA value from a HWT energy 

distribution that is impacted by such global characteristics would be skewed high. Using a CA 

value from this type of E-distribution in Eq. 4.5 would oversize the analysis square’s particles. 

Appendix A summarizes the research on the effects of uneven lighting on the shape of HWT 

energy distributions that lead to these conclusions. This research was conducted with soil images 

photographed in the FieldSed. Based on the results from this research, the effects of uneven 
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lighting on HWT results have been reduced with the Sed360 and the autoadaptive HWT-based 

analysis method.  

 

Basic Principles of the Autoadaptive HWT-Based Image Analysis Method 

The autoadaptive analysis square sizing is predicated on four principles: 

(a) It is a reasonable assumption that soil particles of the same size are located at the same 

elevation of a sorted Sed360 specimen. Therefore, the E-distributions of all analysis 

squares at the common elevation are collectively used for the selection of the analysis area 

size. The same square size is then assigned for a given elevation across the entire width of 

the image.    

(b) The distinctions between “acceptable” and “unacceptable” E-distributions discussed with 

Figs. 4.8 and 4.9 are utilized by the autoadaptive procedure. Acceptable E-distributions are 

used “as is” while unacceptable distributions are used after being adjusted. The adjustment 

procedure is discussed in “Procedure”  within this Section. 

(c) Larger analysis squares are preferred for larger particle sizes because larger analysis 

squares can be decomposed to more (higher) levels, and thus, the E-distribution is less 

likely to be truncated at DL = n. With less truncation, the computed CA will yield a more 

reliable PPD by Eq. 4.5.  

(d) Despite the preference for larger analysis squares as noted in the third principle, the 

smallest “acceptable” analysis squares are used for better resolution of particle sizes. Even 

if a larger analysis square yields an “acceptable” E-distribution, the E-distributions of the 

contained smaller analysis areas are investigated for acceptability before final selection of 

an analysis square size.  
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Figure 4.10 illustrates principle (d). Here, a 2048 x 2048 pix2 analysis area contains coarse 

sand particles. Based on the discussion of “acceptable” E-distributions with Fig. 4.8, the E-

distribution for this large 2048 x 2048 pix2 area is “acceptable”. It exhibits a peak at one of the 

mid-range DLs and E is low at the upper levels. Using Eq. 4.5 with the known camera 

magnification and Eq. 4.3, the size of this area’s particles is found to be D = 3.29mm. When the 

square is quartered, the 1024 x 1024 pix2 areas reveal four E-distributions that are also 

“acceptable”. The top two 1024 x 1024 pix2 areas yield particle sizes of 2.79mm and 2.75mm 

which, as expected, are smaller than the one determined for the entire 2048 x 2048 pix2 area. The 

bottom two 1024 x 1024 pix2 areas yield larger particle sizes of 3.58mm and 4.11mm. The size 

difference between particles in the top and bottom halves of the 2048 x 2048 pix2 area is visible 

by eye in Fig. 4.10. While the 2048 x 2048 pix2 analysis area’s E-distribution  was “acceptable”, 

using the smaller (and also acceptable) 1024 x 1024 pix2 areas leads to more accurate particle 

sizing.  
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Figure 4-10. Example illustrating guiding principle (d) of the autoadaptive sizing method of HTW analysis squares. 

 

Procedure for the Autoadaptive HWT-Based Image Analysis Method 

After a Sed360 soil specimen is sedimented, photographed, and “unwrapped”, it is ready 

to be analyzed according to the autoadaptive analysis square sizing procedure:  

(1) The entire soil specimen is first discretized into 2048 x 2048 pix2, then 1024 x 1024 pix2, 

512 x 512 pix2, 256 x 256 pix2, and finally,128 x 128 pix2 HWT analysis squares. 

(2) The E-distributions are computed for all of the analysis squares. When the E-distribution 

takes an upward turn at high DLs, the E values at the high DLs are set to zero. This same 

zeroing of E at high DLs was performed during the calibration that produced Eq. 4.5.  
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(3) Selection of the appropriate size of analysis squares is determined using the flow chart in 

Fig. 4.11. The investigation begins with the largest analysis square size of 2048 x 2048 

pix2. Analysis starts with the lowest row of 2048 x 2048 pix2 analysis squares in the image 

and progresses upward. With each new 2048 x 2048 pix2 row, Fig. 4.11 is used from 

“Start”. The smallest allowable analysis square size anywhere in the image is set at 128 x 

128 pix2. 

(4) Using the appropriate analysis square sizes determined by Fig. 4.11, the CA values for all 

of the areas are computed. Equation 4.5 converts the CA values to PPD, and with the known 

camera magnification and Eq. 4.3, the actual particle size representing each analysis square 

is computed.  

(5) Since analysis squares have varying sizes, the particle sizes are weighted by the size of the 

analysis squares when developing the PSD.   
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Figure 4-11. Flow chart followed in Step 3 of the autoadaptive HWT analysis square sizing method. 
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4.2.3 Sed360 PSD results using the autoadaptive HWT-based analysis method 

Five soil specimens were tested in the Sed360 using the autoadaptive analysis square sizing 

method. The stitched “unwrapped” views of these specimens are in Fig. 4.12. The specimens 

contain varying amounts of coarse (4.75mm to 2mm), medium (2mm to 0.425mm), and fine sand 

(0.425mm to 0.075mm). The exception is Specimen B, which contains only coarse and fine sand. 

The same 2NS parent soil was used for all five engineered specimens so that the study would focus 

only on the performance of the autoadaptive method on different size gradations, rather than on 

different soil types.  

Figures 4.13 through 4.17 show the grayscale images of the five specimens. Overlaying 

each of these images is a grid showing the autoadaptively selected analysis squares. All five 

specimens required analysis squares ranging from 128 x 128 pix2 to 1024 x 1024 pix2. Although 

2048 x 2048 pix2 areas were the starting point in all five cases, no such large analysis area was 

found to be appropriate. The resulting PSDs are also plotted in Figs. 4.13 through 4.17 with 

comparisons to sieving results. Table 4.2 summaries the PSD-derived parameters (D60, Cu etc.). 

To emphasize the benefit of the autoadaptive method, Table 4.2 also lists the PSD parameters 

obtained by using the older approach of uni-sized analysis squares, in this case, only 256 x 256 

pix2. The 256 x 256 pix2 results are clearly inferior to the autoadaptive results and therefore, are 

not plotted in Figs. 4.13 through 4.17, and will not be further discussed.    
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Figure 4-12. Sed360 sand specimens containing various size percentages per sieve analysis (coarse/medium/fine 

sands): (a) 67/23/10, (b) 50/0/50, (c) 37/51/12, (d) 31/46/23, and (e) 10/40/50. 
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Figure 4-13. Sed360 Results for Specimen A. (a) Autoadaptively determined analysis squares used to generate the 

HWT-based PSD, (b) PSD results. 

 

Figure 4-14. Sed360 Results for Specimen B. (a) Autoadaptively determined analysis squares used to generate the 

HWT-based PSD, (b) PSD results. 
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Figure 4-15. Sed360 Results for Specimen C. (a) Autoadaptively determined analysis squares used to generate the 

HWT-based PSD, (b) PSD results. 

 

Figure 4-16. Sed360 Results for Specimen D. (a) Autoadaptively determined analysis squares used to generate the 

HWT-based PSD, (b) PSD results. 
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Figure 4-17. Sed360 Results for Specimen E. (a) Autoadaptively determined analysis squares used to generate the 

HWT-based PSD, (b) PSD results. 

 

Table 4-2. Details and results of the five sands tested in the Sed360. 

Item 

Specimen 

A 

Specimen 

B 

Specimen 

C 

Specimen 

D 

Specimen 

E 

Sed360 
Sieve 

Sed360 
Sieve 

Sed360 
Sieve 

Sed360 
Sieve 

Sed360 
Sieve 

256 a Auto b 256 a Auto b 256 a Auto b 256 a Auto b 256 a Auto b 

Specimen 

Size [g] 
96.8 93.0 100.3 97.8 91.4 

Coarse 

Sand [%] 
2 44 67 1 35 50 2 31 37 1 24 31 0 8 10 

Medium 

Sand [%] 
56 48 23 23 17 0 68 59 51 59 53 46 42 42 40 

Fine  

Sand [%] 
42 8 10 76 48 50 30 10 12 40 23 23 58 50 50 

D60 [mm] 0.88 2.10 2.60 0.34 1.70 2.20 0.90 1.80 1.90 0.70 1.40 1.50 0.43 0.54 0.60 

D30 [mm] 0.36 1.40 1.80 0.23 0.23 0.23 0.42 0.96 1.00 0.38 0.50 0.50 0.21 0.20 0.21 

D10 [mm] 0.31 0.45 0.40 0.16 0.13 0.10 0.31 0.43 0.30 0.24 0.22 0.21 0.14 0.12 0.10 

Cu 
c 2.8 4.7 6.5 2.1 13.1 22.0 2.9 4.2 6.3 2.9 6.4 7.1 3.1 4.5 6.0 

Cc 
d 0.5 2.1 3.1 1.0 0.2 0.2 0.6 1.2 1.8 0.9 0.8 0.8 0.7 0.6 0.7 

a Using a fixed HWT analysis area size of 256 pixel by 256 pixel  
b Using the autoadaptive HWT analysis area sizing procedure from Fig. 4.11  
c Coefficient of Uniformity, Cu = D60/D10 
d Coefficient of Curvature, Cc = (D30)2/(D60 x D10) 
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As seen in Figs. 4.13 through 4.17, for all five of the sand specimens, the coarsest sand 

particles that were first to settle at the base of the sedimentation column require larger HWT 

analysis squares; as finer sand particles settle overtop larger ones, progressively smaller analysis 

squares were automatically adopted. Because of the different analysis square sizes, the coarser 

portions of the sands’ Sed360 PSDs contain fewer data points while the finer sand portions of the 

PSDs have more points. Naturally, for the specimens with greater percentages of coarse sand 

(Specimens A, B, and C), more of the larger (1024 x 1024 pix2 and 512 x 512 pix2) analysis squares 

were employed than for the specimens with more fine sand (Specimens D and E). These trends are 

visualized in the stacked bar graphs in Fig. 4.18. About 50% of Specimens B and E are fine sand, 

which is reflected in the high number of the smallest analysis square (128 x 128 pix2) being 

employed for these two specimens. 

 

 

Figure 4-18. Composition breakdown of the five specimens by percent. (a) Sand type percentages within each 

specimen according to sieve results, and (b) percentage of the specimen images analyzed using each of the 

autoadaptively-selected HWT square sizes. 
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Overall there is very good agreement between the autoadaptive Sed360 PSD and the 

sieving results for all five sand specimens. In all five cases, the percentages of fine sand by the 

autoadaptive method and by sieving (see Table 4.2) are virtually identical. This excellent 

agreement is also seen in Figs. 4.13 through 4.17 where at 0.425mm, the Sed360 and sieving curves 

coincide. However, at the rightmost ends of the PSD curves, the autoadaptive Sed360 typically 

undersizes the smallest particles. This could be due to small errors in the manual cropping of 

Sed360 images. Or, ambient light may be illuminating the tops of the soil specimens, thus making 

the top row of analysis areas appear to contain larger particles than they actually are.  Future 

research can address this relatively minor issue.  

Specimen B Discussion 

The gap-graded Specimen B (Fig. 4.14[a]) illustrates an important success of the 

autoadaptive method. Specimens A, C, D, and E have a continuous and uninterrupted flow of 

larger HWT analysis squares from the bottom of the images to progressively smaller squares 

moving up the image. By contrast, in the middle of Specimen B near the interface between coarse 

and fine sand, 512 x 512 pix2 analysis squares were adopted. Above them there is an immediate 

jump to 128 x 128 pix2 areas. This is a logical and expected result for a gap-graded sand. More 

interestingly, above the row of smaller squares, larger 256 x 256 pix2 squares were selected by the 

autoadaptive procedure. Here, the small sand particles dictate the use of the smallest squares (128 

x 128 pix2), but various locations of different particle colors necessitated two rows of larger squares 

(256 x 256 pix2) above the two rows of smaller squares. Had smaller analysis squares been used 

in this region, clustered black particles within the lighter colored sand could lead to undesired 

upturns in E-distributions at the highest DLs. The autoadaptive procedure eliminates this problem 

by effectively “diluting” these localized effects over larger 256 x 256 pix2 areas.  
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To illustrate this further, one of the 256 x 256 pix2 analysis squares in this region, circled 

in red in Fig. 4.14(a), contains a cluster of black particles in its upper left quadrant. Figure 4.19 

includes the E-distribution for this 256 x 256 pix2 analysis square as well as for the four 

corresponding 128 x 128 pix2 squares. The 256 x 256 pix2 analysis square yields an ordinary E-

distribution that has one peak at the fourth decomposition level and no undesired E upturns at its 

upper DLs. However, the square’s upper left 128 x 128 pix2 quadrant, which contains the 

aforementioned cluster of black particles in the lower 1/8th of the area, E peaks at the second to 

last DL, as it should based on the fundamental HWT mathematics (Section 4.1). Even though there 

is no upturn in E, CA will be somewhat high due to the large E at DL=n-1.   

 

Figure 4-19. A Specimen B 256 x 256 pix2 analysis square and its corresponding 128 x 128 pix2 quadrants. 
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The lower right 128 x 128 pix2 of the original 256 x 256 pix2 illustrates another effect. Here 

we observe a very light cluster in the lower right quadrant and a spattering of darker particles 

(circled in Fig. 4.19) in the upper left quadrant. This causes the upturn in E at the final DL. As 

previously discussed, an E-distribution that upturns at the final few DLs (as the E for this 128 x 

128 pix2 area does), skews CA higher. The autoadaptive analysis area sizing procedure does not 

allow this to affect the PSD; because of this and similar 128 x 128 pix2 squares throughout these 

two rows of 128 x 128 pix2 areas (Fig. 4.14[a]), the larger 256 x 256 pix2 analysis squares were 

instead adopted to represent this region for determining Specimen B’s Sed360 PSD.  

To explain why the Sed360 PSD reports 17% medium sand in Specimen B when the mix 

was created with only coarse and fine sand, the three rows of 512 x 512 pix2 analysis squares in 

Fig. 4.14(a) are examined. These three rows are located at the interface between the fine and coarse 

sand. The top one of these rows contains mostly fine sand, with only several particles of coarse 

sand visible in a few of the analysis squares. The bottom row contains mostly coarse sand with a 

few pockets of visible fine sand. The middle row contains variable amounts of fine and coarse 

sand. In Fig. 4.20, the data points in the Sed360 PSD are color-coded to the analysis squares in the 

three rows.   

As expected, the analysis squares that appear to contain only fine sand (the green-colored 

squares in Fig. 4.20) yield particle size values (the green circle data points in Fig. 4.20) that fall 

within the fine sand range of the Sed360 PSD. Similarly, the analysis squares that appear to contain 

only coarse sand (the pink squares) have particle sizes (the pink circle data points) that are within 

or very near the coarse sand range of the PSD.  

The remaining areas in these three rows of analysis squares (the brown, cyan, and dark blue 

squares) correspond to the PSD data points that plot within the medium sand range.  The three sets 
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contain various proportions of fine and coarse sand. The brown areas contain mostly fine sand 

with a few coarse sand pieces. Thus, the corresponding brown PSD data points lie at the finer end 

of the medium sand size range. The dark blue squares contain mostly coarse sand with a few small 

clusters of fine sand, which explains why the dark blue Sed360 PSD data points lie in the coarser 

end of the medium size range. Lastly, the cyan areas are those that contain a more even mix of 

coarse and fine sand. As such, their points lie closer to the middle of the medium sand range. The 

HWT-based particle sizes for the brown, cyan, and dark blue analysis squares are essentially 

providing a weighted average for the varying amounts of coarse and fine sands in these areas. In 

doing so, the Sed360 PSD erroneously concludes that there is medium-sized sand in Specimen B.  

It is worth noting that Specimen B was intentionally engineered to test the limits of the 

Sed360 for a severely gap-graded sand. With particles between 2.0mm and 0.425mm entirely  

absent from this specimen, penetration of the pores in the coarse sand by fine sand particles was 

guaranteed. A naturally-occurring gap-graded sand would typically not have such a wide range of 

particles sizes missing entirely. Even small amounts of medium-sized particles would create a sand 

filter that would limit the pore “clogging”. Better agreement should therefore be expected between 

the Sed360 and sieve PSDs for naturally-occurring gap-graded sands.  
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Figure 4-20. Investigating the HWT analysis squares at the coarse and fine sand interface in Specimen B. 
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Specimen E Discussion 

At the coarse end of the PSDs, the autoadaptive Sed360 method seems to undersize 

particles slightly. This is most evident and pronounced in Specimen E, shown in Fig. 4.17. To 

understand why this occurs, Specimen E’s row of 1024 x 1024 pix2 analysis squares in Fig. 4.17(a) 

is examined. There are not enough coarse sand particles to fully fill up these four large analysis 

areas; the coarse sand particles fill only the bottom half of these 1024 x 1024 pix2 squares while 

finer sand particles fill the top half of this row of analysis squares. The HWT results for these 

squares are like that in the Fig. 4.10 example. In both instances, for an analysis areas that contains 

a range of particle sizes, the HWT-determined particle size is smaller than the largest particles in 

the area, but larger than the finest particles. The possible solution to this in Fig. 4.10 was to quarter 

the larger analysis square. This yielded four HWT-based particle sizes that more accurately 

represented the particles in the specimen. However using smaller areas for the coarse sand particles 

in Specimen E is not feasible, and ultimately the reason why the Sed360 PSD undersizes the coarse 

sand portion of the specimen.  

To illustrate, Fig. 4.21 examines the eight energy curves for the 512 x 512 pix2 analysis 

squares located in the bottom half of Specimen E’s 1024 x 1024 pix2 areas. As reflected in their 

energy curves, these areas are too small relative to the size of the coarse sand. Four of the energy 

curves violate the rules of the current autoadaptive HWT analysis area sizing procedure detailed 

earlier. Energy curves 3 and 8 have increasing energy values at the final decomposition level, while 

curves 2 and 7 peak at the second to last decomposition level. Per the autoadaptive rules, these 

four energy curves should have their Es at the upper DLs set to zero. However, since 50% of this 

row of 512 x 512 pix2 analysis squares are “corrected”, the HWT-based method does not use these 

smaller areas, and is therefore forced to use the larger 1024 x 1024 pix2 squares. The 512 x 512 



 109 

pix2 analysis squares are too small to correctly size the coarse sand in Specimen E, yet there is not 

enough coarse sand in this specimen to be accurately detected by the HWT method in the larger 

1024 x 1024 pix2 squares. One solution to this problem is to use a larger overall specimen size, but 

other remedies may exist that can be explored in the future. 

 

Figure 4-21. Invalid 512 x 512 pix2 energy curves leads to an undersizing of the Specimen E’s coarse sand. 
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4.3 Chapter Summary  

Chapter 4 focused on the image analysis method used with all three SedImaging systems. 

This method was referred to throughout this chapter as the “HWT-based method.” Soils tested by 

LabSed and FieldSed were analyzed by the original HWT-based method. A detailed description 

of the original method was provided in Section 4.1. To aid this description, example HWT-based 

results for a sand tested by SedImaging were shown in Figs. 4.1, 4.2, 4.4, and 4.5. The two main 

parameters of the HWT-based method, CA and PPD, were introduced here. The original sieve-

defined calibration curve relating CA and PPD was given in Eq. 4.2. Using this with Eq. 4.3, the 

size of the soil particles in an analyzed image are determined and a soil’s final PSD is created.  

The expanded soil particle size range for SedImaging that was made possible by the Sed360 

required a re-calibration of the original PPD-CA equation (Eq. 4.2). Narrow ranges of known soil 

particle sizes were photographed with the Sed360. These ranges were listed in Table 4.1. Using 

these images, a new piecewise PPD-CA calibration curve was defined in Eq. 4.5 and shown in Fig. 

4.6. Equation 4.5 was necessary to accurately size the coarse sand particles that can now be tested 

with SedImaging via the Sed360.  

In addition to Eq. 4.5, the original HWT-based method was redesigned to automatically 

(and continually) adapt its procedure to accurately size the different particles throughout a soil 

assembly image. This autoadaptive image analysis method was described in Section 4.2.2 and 

presented as a flow chart in Fig. 4.11.  

Using both Eq. 4.5 and the autoadaptive HWT-based method, five soil specimens were 

tested with the Sed360 and were the focus of Section 4.2.3. The specimens were all formed from 

the same parent soil, but all had different gradations, with one soil being a gap-graded mix. The 

five sands were presented in Fig. 4.12. Their PSDs were determined using the autoadaptive HWT-
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based method and were compared to sieving with overall very good agreement. These comparisons 

were shown in Figs. 4.13 through 4.17 and also presented in Table 4.2. This chapter concluded 

with several discussions of unique results of the autoadaptive HWT-based method for two of the 

sand specimens. 
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Chapter 5 Vision Cone Penetrometer (VisCPT) 

 

This chapter begins by discussing the evolution of the VisCPT hardware. Section 5.1 

briefly describes the first and second generation VisCPTs, while Section 5.2 focused on the latest 

third generation VisCPT. A prototype of the third generation system (Section 5.2.1) was fabricated 

by ConeTec Investigations Ltd. and was extensively used as part of several benchtop-testing 

calibration projects. During these, the original image analysis method utilized with the earlier 

VisCPTs, the Haralick Spatial Gray Level Dependence Method (SGLDM) (Section 5.3), was used 

to analyze images captured by the prototype (Section 5.4.1). The Haar Wavelet Transform (HWT)-

based method that has mainly been used with SedImaging (Chapters 3 and 4) was also used to 

analyze VisCPT images (Section 5.4.2). In doing so, ongoing research (Section 5.4.3) is exploring 

ways to utilize both of these analysis methods to expand the application and accuracy of both the 

VisCPT and SedImaging systems.  

*** 

Passages and portions of this chapter are taken from a previous publication that introduced 

the third generation VisCPT prototype (Ventola et al. 2020a).  

5.1 First and Second Generation VisCPT Hardware Systems 

The original VisCPT shown in Fig. 5.1 (top) was developed by Raschke and Hryciw 

(1997). It equipped a traditional CPT device with two black and white charge coupled device 

(CCD) cameras. The camera closer to the penetrometer tip captured lower-magnification images, 

while the second camera captured higher-magnification images. The lower-magnification 
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camera’s field of view was 14mm (vertical), while the higher-magnification’s was 2mm (vertical). 

Both cameras had a resolution of only 768 pixels by 494 pixels. The second generation VisCPT 

(Shin 2005), shown in Fig. 5.1 (bottom), replaced the two previous cameras with one micro digital 

color CCD camera. The device consisted of an electronic piezocone and a vision module 

containing the camera. The camera captured images with a 720 x 480 pix2 resolution and a 10mm 

field of view (vertical). 

One undesirable design feature of the first two generations of the VisCPT was the diameter 

difference between the piezocone and the vision module. The piezocone has a diameter of 36mm 

(1.4in), while the vision modules have larger diameters of 51mm (2.0in) (first generation) and 

47mm (1.9in) (second generation). The larger diameters for the VisCPT vision modules were 

necessary to house the internal video components that were commercially available at the time of 

fabricating these systems.  

  

 

Figure 5-1. Earlier Vision Cone Penetrometers (VisCPTs). Top: First generation VisCPT (1997), Bottom: Second 

generation VisCPT (2005). 
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5.2 Third Generation VisCPT Hardware System 

The introduction of smaller, board-based microcameras warranted a redesign of the 

VisCPT with the intent to reduce or eliminate the diameter differences between the various 

components of the system. First, a prototype of the third generation VisCPT (Section 5.2.1) was 

fabricated in 2019 by ConeTec and used for several benchtop calibration testing projects (Section 

5.4). The purpose of this testing was to determine if the original image analysis method (Section 

5.3) used with the previous VisCPT generations was still an effective tool given the updated 

camera technology in the third generation system. It was also an opportunity to explore, the use of 

the Haar Wavelet Transform (HWT)-based image analysis method (Chapter 4) with the VisCPT 

system. After promising results of this testing, the third generation VisCPT was fabricated (Section 

5.2.2) and is prepared to be used in upcoming calibration chamber testing as part of a larger in-situ 

project for thin layer soil detection by VisCPT (Section 6.2).   

5.2.1 3D-Printed Prototype for Benchtop Calibration Testing  

The third generation VisCPT camera module contains a high-speed digital interface. This 

allows high-resolution images to be transmitted quickly enough to be viewed in real time and be 

stored for later analysis. The interface uses a differential cable and an error correcting protocol to 

guarantee transmission. The highest resolution soil images are transmitted with the cone stationary 

using lossless compression. Lower resolution images are transmitted and stored with each depth 

pulse allowing less detailed analysis in real time. The camera itself has a long focal length and 

views the soil using a right-angled mirror through a sapphire viewing window. The long focal 

length enables the camera to view the passing soil with a small angle of view, therefore minimizing 

fisheye effects in the captured images. Careful control of lighting and aperture keep the image in 
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focus even when thermal expansion and contraction of the physical components change the optical 

path. This also keeps soil in focus even if the viewing window is not in direct contact with the soil.  

A 3D-printed prototype of the third generation VisCPT was built in 2019 and used as part of a 

benchtop calibration testing program. The prototype is shown in Fig. 5.2(a); a cross-section 

schematic is illustrated in Fig. 5.2(b). The prototype has an octagonal cross-section, with a 15.9mm 

(0.63in)-diameter sapphire viewing window centered on one of the flat sides. One end of the 

prototype connects to a 15cm2 (2.3in2) electronic CPT piezocone. The other end connects to a CPT 

rod. An e-Con Systems See3CAM_80 13 Megapixel UVC USB camera is used. This camera has 

a resolution of 13 Megapixels, which is almost 38 times greater than that of the second generation 

VisCPT.  

Figure 5.3 shows images captured with the VisCPT prototype. The 4208 x 3120 pix2 

images are of various dry soil particle sizes from the same parent 2NS sand (MDOT 2010). As 

seen in Fig. 5.3(d), which depicts silt material photographed with the VisCPT, this system’s high-

resolution camera enables characterization of soils into the silt range (Section 5.4). An area of the 

prototype’s viewing window (the upper left region) has localized uneven illumination, casting 

shadows over the photographed soil particles. Though undesirable, this is a byproduct of the vision 

module’s internal dimensions, which restrict the placement of the system’s camera and 

illumination board. In response, only portions of the viewing window with uniform illumination 

were extracted for use in the calibration testing.  

For benchtop calibration testing, the VisCPT prototype was connected to a BK Precision 

1735A DC power supply that controlled the illumination of the soil through the sapphire window. 

Figure 5.4 shows the benchtop calibration testing set up. Details and results of the testing using 

the prototype are presented in Section 5.4. 
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Figure 5-2. 3D-printed prototype of the third generation VisCPT vision module. (a) Vision module, (b) Schematic of 

the module’s cross-section. 
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Figure 5-3. Images of 2NS sand captured with the VisCPT prototype. Midpoint particle sizes of (a) medium sand, 

1.85mm, (b) medium sand, 0.86mm, (c) fine sand, 0.256mm, (d) silt, 0.046mm. 

 

Figure 5-4. Benchtop calibration testing setup using the VisCPT prototype. 
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5.2.2 Third Generation VisCPT for Calibration Chamber Testing 

After conducting the benchtop calibration testing (Section 5.4) with the 3D-printed 

prototype, ConeTec fabricated the third generation VisCPT in 2022 in preparation for use in 

forthcoming calibration chamber testing (Section 6.2). This new VisCPT is shown in Fig. 5.5. The 

VisCPT’s camera and illumination board are housed directly “upstream” of the vision module in 

the hardware housing unit. Standard 10cm2 (1.6in2) CPT rods (not shown in Fig. 5.5) can be 

connected to this housing unit. A non-functioning 15cm2 (2.3in2) CPT cone tip is attached at the 

opposite end of the vision module. This cone tip does not have electronic piezocone capabilities; 

a separate CPT system with a piezocone will be used for the aforementioned calibration chamber 

testing. Attaching an electric piezocone to the VisCPT in Fig. 5.5 is possible for future field testing 

applications. The vision module, hardware housing unit, and cone tip in Fig. 5.5 all have the same 

outer diameter as a standard 15cm2 (2.3in2) CPT cone tip (44mm, 1.8in). This uniformity across 

the entire VisCPT was not possible with the first and second generation systems.  

 

 

Figure 5-5. Third generation VisCPT. 
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The cross-section of the vision module is no longer an octagon like its earlier prototype. 

Instead, the module’s cross-section is nearly circular with two flattened sides that are located 180 

relative to one another. The 15.9mm- (0.63in) diameter viewing window is set within one of these 

flattened sides. The other flattened side (not shown in Fig. 5.5) allows for the VisCPT to be 

positioned horizontally on a table or other flat surface for ex-situ testing. The transition areas 

between the rounded and flattened portions of the vision module have been smoothed to reduce 

any impact the changing cross-section shapes may have on the surrounding soil as the VisCPT 

advances through soil strata. Two of these transition areas on the vision module are circled with a 

dashed line in Fig. 5.6.     

The e-Con Systems See3CAM_80 13 Megapixel UVC USB camera from the third 

generation VisCPT prototype has been replaced with an even higher resolution, Ximea MU181CR-

ON 18 Megapixel USB3 camera. The same BK Precision 1735A DC power supply from the 

prototype is still used to power the illumination board in this system. Figure 5.7 shows six images 

(all with an image size of 4896 x 3680 pix2) of different dry sands and a moist red clay 

photographed with the third generation VisCPT. For comparison, Figs. 5.7(a) through 5.7(d) are 

the same 2NS particle sizes as the prototype images from Fig. 5.3. Figures 5.7(e) and 5.7(f) are the 

clay and sand that will be used in the forthcoming VisCPT calibration chamber testing. 

Images captured with this VisCPT have a magnification of 247.1pix/mm. Unlike the 

prototype, nearly the entire viewing window is visible in images captured by this VisCPT. This 

allows for more of the viewable soil to be utilized for image analysis. Furthermore, the severe 

shadow in the prototype images in Fig. 5.3 is no longer present in those in Fig. 5.7. However, the 

hardware constraints of this VisCPT still creates some uneven illumination throughout the viewing 
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Figure 5-6. Smoothed transition areas in the VisCPT's vision module. 

 

window. As seen in the images in Fig. 5.7, there is a localized region in the center of the viewing 

window that is slightly brighter than the rest of the image. While this is still undesirable, (the 

uneven illumination will erroneously impact the image analysis results since they, as will be 

discussed in Section 5.3, are based on an image’s distribution of pixel grayscale intensity values) 

the uneven illumination in this VisCPT is reduced from that of the prototype. Future research will 

focus on post-processing methods to properly address this uneven illumination.  
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Figure 5-7. Images of soils captured with the third generation VisCPT. Midpoint particle sizes of the sands (a) 2NS 

medium sand, 1.85mm, (b) 2NS medium sand, 0.86mm, (c) 2NS fine sand, 0.256mm, (d) 2NS silt, 0.046mm, (e) Red 

clay, (f) Sand used in upcoming calibration chamber testing. 
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5.3 Haralick Spatial Gray Level Dependence Method (SGLDM) Image Analysis  

Images captured with the VisCPT are analyzed using the Spatial Gray Level Dependence 

Method (SGLDM) proposed by Haralick et al. (1973). The SGLDM defines 14 textural indices 

based on various spatial distributions of grayscale pixel intensity values of an image. These indices 

are a single numerical value corresponding to different textural characteristics of an image. An 

image of any dimension (square or not) can be analyzed with the Haralick SGLDM method. 

Appendix B provides a brief overview of the mathematical definitions of the selected Haralick 

textural indices used with the VisCPT. 

Ghalib et al. (1998) and Ghalib et al. (2000) determined that three of the textural indices 

“Energy”, “Contrast”, and “Local Homogeneity” were most useful for delineating soil layers in 

(first and second generation) VisCPT data. This Energy textural index is not to be confused with 

the Energy from the HWT-based method described in Chapter 4; these two Energies are entirely 

different and have different mathematical definitions. Ghalib et al. (2000) plotted Energy, 

Contrast, and Local Homogeneity textural indices alongside traditional CPT tip resistance, side 

friction, and pore pressure logs. The Haralick textural index profiles are used to identify thin soil 

layers and lenses that are often undetected by the CPT. Appendix C provides results of a case 

history comparing CPT and textural index soil profile logs for a testing location in California.   

The Energy textural index is defined as the global homogeneity of an image (Ghalib et al. 

2000). The Energy index increases when an image contains increasingly larger clusters of similar 

grayscale values. In the application of the VisCPT, such clustering would occur for finer-grained 

materials, such as clay or silt layers. For example, the clay in Fig. 5.7(e) would be expected to have 

a higher Energy than the medium sand in Fig. 5.7(c). Contrast is the measure of any local variations 

in grayscale values within an image (Ghalib et al. 2000). It is highly sensitive to boundaries 
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between soil particles or open cracks; Contrast drops significantly for finer-grained materials. A 

profile log of Contrast contains a large amount of noise due to the sensitivity of this index to said 

boundaries. A Local Homogeneity profile log is virtually a mirror-image of a corresponding 

Contrast log, but with much less boundary sensitivity (and therefore less noise). For example, 

when a Contrast log reaches a minimum value for clay layers, the Local Homogeneity log will 

peak at a maximum value. Figure 5.8 plots these three textural indices for a profile of known soil 

types.  

In Fig. 5.8, all three indices can accurately detect the two thin (1 to 3cm thick) clay layers 

located between 0.4 and 0.6m distance, with the Energy profile most clearly detecting these layers. 

The Contrast and Local Homogeneity profiles both distinguish the different sand layers between 

the 0.0 and 0.2m and 0.6 and 0.8m distances, but as previously mentioned, the Local Homogeneity 

profile contains less noise than the Contrast profile. The Energy profile does not clearly distinguish 

between these sand layers. Since the Contrast and Local Homogeneity index logs can distinguish 

similar soil profile features, and higher noise is present within the Contrast data, Ghalib (2001) 

concludes that only using Energy and Local Homogeneity indices are necessary for the VisCPT. 

As will be discussed in Section 5.4, these two textural indices, as well as several others, formed 

the basis of a portion of the benchtop calibration testing with the third generation VisCPT 

prototype.
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Figure 5-8. Profile logs for Energy, Contrast, and Local Homogeneity Haralick texture indices of a known soil profile (Ghalib et al. 2000).
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5.4 Benchtop calibration testing with the third generation VisCPT prototype 

Two benchtop calibration testing projects were conducted with the VisCPT prototype. The 

first one (Sections 5.4.1 and 5.4.2) only involved 2NS sand. Both the SGLDM and HWT-based 

analysis methods were used to analyze these 2NS images. After this work yielded promising 

results, the benchtop testing was expanded for the second project (Section 5.4.3), which used these 

same image analysis methods for different soils beyond 2NS. The work for this second project is 

ongoing, but the preliminary results merit a discussion that begins in Section 5.4.3 and continues 

within Section 6.2.   

5.4.1 Haralick SGLDM analysis of VisCPT images 

The advent of the third generation VisCPT warranted a re-evaluation of the original 

SGLDM image analysis method. As noted in Section 5.2, this testing occurred using the VisCPT 

prototype in Fig. 5.2 with the benchtop setup in Fig. 5.4. The voltage from the system’s power 

supply was varied to study the effect of image brightness on the textural indices. To determine the 

appropriate voltage, dry 2NS soil particles of different size ranges were photographed at a series 

of voltages. Table 5.1 summarizes the different particle sizes selected for use in this calibration 

research. All soil images were captured at the same camera magnification (246.6pix/mm) and with 

the same camera settings (e.g. sharpness, white balance, exposure, etc.). Five different images for 

each size range were captured; a total of 40 unique soil images at each voltage were obtained. Nine 

different voltages ranging from 3.75 Volts to 7.00 Volts were analyzed. Through a comparison 

(not detailed here) of voltages/illuminations and the resulting textural indices, 4.25 Volts was 

determined to provide the ideal illumination for this investigation.  
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Table 5-1. 2NS sand particle size ranges used in VisCPT benchtop calibrations testing. 

Sample Sieve Size Range 
a Particle Size Range [mm] (Midpoint) Midpoint PPD 

b [pix] 

a No. 10 – No. 12 2.0 – 1.7 (1.85) 456.2 

b No. 18 – No. 25 1.00 – 0.71 (0.86) 210.8 

c No. 30 – No. 35 0.6 – 0.5 (0.55) 135.6 

d No. 50 – No. 70 0.300 – 0.212 (0.256) 63.1 

e No. 70 – No. 100 0.212 – 0.150 (0.181) 44.6 

f No. 100 – No. 170 0.15 – 0.09 (0.12) 29.6 

g No. 200 – No. 270 0.075 – 0.053 (0.064) 15.8 

h No. 270 – No. 400 0.053 – 0.038 (0.046) 11.2 
   a Sieve size ranges were gathered in accordance with ASTM (2019) C136/C136M-19 
   b Pixels per particle diameter, PPD, can be determined by rearranging Eq. 4.3 in Section 4.1 using a particle size  

   range’s midpoint and the known VisCPT magnification of 246.6pix/mm 

 

Figure 5.9 shows one of the five soil images captured for each of the Table 5.1 size ranges 

using a VisCPT illumination of 4.25 Volts. The images in Fig. 5.9 are 2048 x 2048 pix2 and were 

gathered from a fixed region of the VisCPT viewing window with uniform illumination. Even 

though the Haralick SGLDM image analysis method can be used for non-square images, this image 

size was selected so that the same exact images could also be analyzed with the HWT-based 

method, which Section 4.1 notes requires 2n x 2n pix2 (n = 1,2,3...) analysis area sizes.   

Five Haralick textural indices: Contrast, Correlation, (Local) Homogeneity, Variance, and 

Energy were computed for the 40 images of various-sized soil particles from Table 5.1 and Fig. 

5.9. In Fig. 5.10, the Haralick textural indices are plotted versus the known midpoint PPD value 

for each image. (As noted in footnote b of Table 5.1, this PPD is the same as that defined in Eq. 

4.3 in Section 4.1). Contrast (Fig. 5.10[a]), Correlation (Fig. 5.10[b]), Homogeneity (Fig. 5.10[c]), 

and Variance (Fig. 5.10[d]) all exhibit clear trends with PPD; Contrast has an inverse relationship 

with PPD, while Correlation, Homogeneity, and Variance all have direct relationships with PPD. 

Furthermore, there is very high reproducibility between the five different soil images taken at each 

PPD. Figure 5.10 shows that Contrast, Correlation, Homogeneity, and Variance are promising 
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Figure 5-9. Photos of each 2NS sieve size range from Table 5.1. 

 

textural indices that will eventually be used to characterize particles over a size range spanning 

nearly two orders of magnitude, from the silt range to medium sand.  

In contrast to the other indices, Energy (Fig. 5.10[e]) appears to have no correlation with 

PPD. Unlike the conclusions reached by Ghalib (2000), it appears that Energy cannot be used to 

determine soil particle sizes. The reason for the discrepancy between Fig. 5.10(e) and Ghalib 

(2000) possibly lies in the VisCPT camera magnification. Ghalib (2000) was using the earlier 

generations of the VisCPT, which utilized significantly lower magnification cameras. As such, 

Ghalib was reporting PPD values for sands between 1 and 30 pixels; the PPD values reported with 

the third generation VisCPT prototype range between 10 and 500 pixels Therefore, the correlation 

Ghalib (2000) reported between Energy and PPD is not appropriate for the larger PPDs shown in 

Fig. 5.10.   

With the exception of Energy, four of the textural indices in the Haralick SGLDM image 

analysis method from this VisCPT calibration work were shown as promising methods for 
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determining soil particle sizes from the silt range to medium sand. Using these four indices (as 

well as potentially the HWT-based analysis method in Section 5.4.2), the Haralick SGLDM will 

be used with the third generation VisCPT (Fig. 5.5) in an upcoming calibration chamber 

application. Formal correlations between these Haralick textural indices and PPD can also be 

established. Section 5.4.3 also explores the use of these indices for testing other soils beyond 2NS. 
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Figure 5-10. Haralick textural indices versus Pixels per Particle Diameter (PPD) as part of the VisCPT benchtop 

calibration testing for 2NS sand. (a) Contrast, (b) Correlation, (c) Homogeneity, (d) Variance, (e) Energy. 
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5.4.2 HWT-based image analysis of VisCPT images 

The increased camera resolution of the third generation VisCPT prototype enabled an 

opportunity to analyze VisCPT images using the Haar Wavelet Transform (HWT)-based method. 

Already proven as a powerful analysis tool when paired with SedImaging (Chapters 3 and 4), the 

HWT-based method may yield similar success when used with this VisCPT. The HWT-based 

results may be used to supplement, refine, or confirm those from the Haralick SGLDM textural 

indices. The HWT-based method may also be useful in delineating between different soil types 

tested with the VisCPT. The foundational research for this was part of the calibration work 

performed with the VisCPT prototype.  

The same 40 images used to compute the Haralick textural indices in Section 5.4.1 and Fig. 

5.10 were also analyzed with the HWT-based analysis method. The 40 wavelet indices, CA, 

(defined in Section 4.1) are plotted versus the soil particles’ known midpoint PPDs in Fig. 5.11. 

For each image, the entire 2048 x 2048 pix2 image was used as a single HWT analysis area (i.e. 

smaller 1024 x 1024 pix2, or 512 x 512 pix2 etc. analysis areas were not part of this investigation). 

There is a well-defined positive correlation between CA and PPD. A best-fit line (R2 = 0.933) for 

the data is 

                                                                 𝑃𝑃𝐷 =  10(
𝐶𝐴

2.2
 −1 )                                                          (5.1) 

Equation 5.1 is plotted in Fig. 5.11 as a solid red line. For comparison, the updated PPD-CA 

equation used with SedImaging and the Sed360 (Eq. 4.5) is also plotted in the figure, as a dashed 

black line.  

 As seen in Fig. 5.11, despite both being empirically-fitted equations for 2NS and analyzed 

by the same HWT-based method, Eqs. 5.1 and 4.5 are not identical. Initially the cause of this  
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Figure 5-11. CA versus PPD for 2NS particles photographed with the VisCPT prototype. 

 

discrepancy was thought to involve the environmental differences between VisCPT (Eq. 5.1) and 

Sed360 (Eq. 4.5) images. Though these effects do impact the two calibration equations, they do so 

minimally and do not fully explain the equation differences. The larger source of this difference is 

an intriguing new discovery of the HWT-based analysis method and will be explored further in 

future research (Section 6.2).  

The 2NS particles photographed with the VisCPT prototype are dry, while those in the 

Sed360 are saturated. The VisCPT particles are illuminated by the system’s direct, LED 

illumination board, while those in the Sed360 are illuminated by overhead fluorescent laboratory 

lights. As such, the same soil particle photographed in these lighting systems would have two 
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different grayscale pixel intensity distributions across its surface. The particle orientation for the 

Sed360 and the benchtop VisCPT testing may also be distinct.  

While these environmental differences do affect the pixel grayscale intensity distributions 

of the 2NS images, they do not fully account for the difference between Eqs. 5.1 and 4.5. The 

larger source of the difference relates to the two systems’ camera magnifications. The VisCPT 

images have a magnification (246.6pix/mm) that is over five times larger than those captured with 

the Sed360 (49.1pix/mm). To determine the impact of these different magnifications on the CA-

PPD data, the VisCPT images were downscaled to more closely match the Sed360 magnification. 

The VisCPT PPD values were adjusted and the CA values recalculated. The adjusted VisCPT 2NS 

data is plotted in Fig. 5.12 as yellow triangle data points. The original VisCPT data, as well as Eqs. 

5.1 and 4.5 are plotted again in Fig. 5.12. The adjusted VisCPT data falls very close to the Sed360 

PPD-CA piecewise calibration curve. The differences between the adjusted VisCPT data in Fig. 

5.12 and Eq. 4.5 are now possibly due to the aforementioned environmental differences between 

VisCPT and SedImaging image capture.  

The results in Fig. 5.12 are revelatory. They show that the HWT-based analysis method, 

specifically CA, is a function of camera magnification. This discovery was only possible by 

analyzing VisCPT images using the HWT-based method. Previous to this, only SedImaging soil 

images were analyzed. Between the three SedImaging systems, camera magnification has changed 

very little (between 10 and 30pix/mm). Therefore, any effects of the different SedImaging 

magnifications on CA values were less detectable. Future research (Section 6.2) will be dedicated 

to investigating the relationship between CA and camera magnification. It may be possible to 

eliminate the need for Eqns. 4.5 and 5.1 and instead have a single PPD-CA equation that contains 
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an additional parameter that varies with camera magnification. This would streamline the 

adaptability of the HWT-based method for various cameras and testing systems.  

 

Figure 5-12. Adjusted VisCPT 2NS CA-PPD data compared to the Sed360's Eq. 4.5. 

 

5.4.3 Soil differentiation by the SGLDM and HWT-based method 

Well-defined trends between CA and PPD in Figs. 5.11 and 4.6, and the high coefficients 

of determinations (R2) for both Eq. 5.1 (0.933) and Eq. 4.5 (0.993) support the use of the HWT-

based method for determining soil particle size for both SedImaging and VisCPT images. The 
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strong trends between the Haralick textural indices and PPD presented in Fig. 5.10 are similarly 

promising. However both investigations have been constricted to 2NS (or similarly-looking) sand.  

Thus, preliminary research has been conducted using the VisCPT prototype with the 

SGLDM and HWT-based analysis methods with the goal to differentiate and accurately 

characterize different soils beyond 2NS. Research will be conducted on how these two image 

analysis methods can be used concurrently or sequentially to characterize different soils, thereby 

widely expanding the application of these methods. Though this research with the prototype is 

only preliminary and requires additional calibration (potentially involving machine learning) the 

work that has already been conducted is still noteworthy, and is presented here. Lastly, though this 

research was performed using VisCPT images, the findings of this work can also be applied to 

SedImaging testing.  

For this investigation, eight different dry soils (including 2NS from previous studies) were 

photographed with the VisCPT prototype. The soils contained particles of various sizes, colors, 

transparency, and shapes. The soils were sieved into narrow size ranges and photographed with 

the prototype under constant illumination and camera settings. Unlike the VisCPT images from 

Sections 5.4.1 and 5.4.2 which were only of 2NS particles, the illumination here was lowered to 

4.0V. This was necessary to reduce image washout for the white-colored soils in this investigation.  

There were nine sieve ranges, varying from medium sand retained between the No. 10 and 

No. 12 sieves (sieve openings 2.0mm to 1.7mm) down to silt material retained between the No. 

270 and No. 400 sieves (sieve openings 0.053mm to 0.038mm). Figure 5.13 shows one of the 4208 

x 3120 pix2 VisCPT image for the eight different soils and their applicable sieve ranges. The 

known midpoint PPD value for each of the nine sieve size ranges is also included in the figure.  
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As seen in Fig. 5.13, 2NS contains soil particles in all of the sieve ranges, while the Nevada 

soil only contains fine sand particles. Costa Rica and Treasure Island soils contain fine sand and 

silt. The Upper Peninsula soil only contains silt material, Scotts Valley and Nesika Beach contains 

fine and medium sand, and Ottawa soil only contains medium sand particles. The Costa Rica sand 

contain mostly dark brown and black particles, and the Nesika Beach sand contains a more even 

mix of black and white particles. The Upper Peninsula and Treasure Island soils are similar to 2NS 

in their heterogeneous mix of soil colors, though the Upper Peninsula material has an overall 

slightly reddish hue to its particles. Lastly, Scotts Valley and Ottawa sands contain mostly white 

and translucent particles, while the Nevada contains nearly fully white, opaque particles. As a 

collection, the eight soils represent an expansive range of soil particle types.  

For each of the soils and their sieved particle size ranges, four or five different images were 

captured by the prototype. Just like those in Fig. 5.9, 2048 x 2048 pix2 images from a fixed region 

of the VisCPT viewing window with uniform illumination were used from each photograph. These 

images were analyzed with the HWT-based image analysis method using a single 2048 x 2048 

pix2 analysis area. The computed CA values from the HWT-based method are plotted versus the 

known midpoint PPD values for all eight soils in Fig. 5.14.
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Figure 5-13. Testing different soils with the VisCPT prototype.
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Figure 5-14. CA versus PPD results for different soils tested with the VisCPT. 

 

All eight soils have a visible, direct CA-PPD trend. However, the empirical constants 

needed to fit these trend lines are different. An empirical best-fit line was calculated for each soil, 

except for the Upper Peninsula and Ottawa sands since those sands only contained two sieve size 

ranges of data. These best-fit lines (without the data points) are plotted in Fig. 5.15. The R2 value 

for each of the soils’ best-fit line is listed in the figure’s legend. Appendix D includes separate 

figures for each of the eight soils (including the Upper Peninsular and Ottawa sands) that plot the 

CA-PPD data points with their corresponding best-fit trend line. The trend line for 2NS in Fig. 

5.15 is different from (though virtually identical to) Eq. 5.1 for the 2NS data in Fig. 5.11 (Section 
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5.4.2). Though these sets of data are both dry 2NS particles, a different VisCPT illumination level 

was used for each (4.25V versus 4.0V). An additional particle size range (particles retained 

between the No. 25 and No. 30 sieves) was also added for this later work. Therefore, these two 

data sets of 2NS particles are independent from one another. Appendix E includes a plot comparing 

these near identical, yet independent data sets and trend lines of 2NS photographed at the two 

different illuminations.  

With the exception of the Nevada sand, all of the trend lines in Fig. 5.15 have similar 

slopes, but at different heights in the CA-PPD space. Furthermore, 2NS, Treasure Island, and 

Scotts Valley sands have nearly identical slopes and locations. As seen in the images in Fig. 5.13,   
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Figure 5-15. Empirical CA-PPD trend lines of the soils from Figs. 5.13 and 5.14. 

 

a reassessment of Nevada sand photographed at an even lower illumination may be necessary since 

at the current 4.0V illumination, particle washout may still be occurring. This could explain this 

sand’s unusually high slope in Fig. 5.14, and its low R2 and unique best-fit line in Fig. 5.15. Future 

research will explore the reevaluation of Nevada sand.  

The Fig. 5.15 trend lines (barring Nevada sand) support a future approach where instead of 

using a single PPD-CA equation like Eqs. 4.5 and 5.1, a family of PPD-CA equations can be 

available to determine the particle size(s) for a soil tested with either VisCPT or SedImaging. The 

specific PPD-CA equation would be selected for a given soil based upon some identifier. The 
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identifier could be something as simple as the average grayscale value of an image of that soil. 

More likely, the identifier (or identifiers) would be more complex, such as one (or more) of the 

Haralick textural indices discussed in Sections 5.3 and 5.4.1. To this final point, the same 2048 x 

2048 pix2 images of the eight soils in Fig. 5.13 were analyzed by the SGLDM. 

Figures 5.16 through 5.20 plot the results of the same five Haralick textural indices from 

Section 5.4.1 for the eight different soils. The indices are plotted versus the known midpoint PPD 

value for each image. The data in these figures continue to be analyzed and will be part of ongoing 

research (Section 6.2), yet initial observations yield some promising avenues of investigations.  

As a hypothetical example, Section 5.4.1 notes that the Energy index (Fig. 5.20) did not 

appear to have any discernable direct or indirect trend with the PPDs for 2NS. Additionally, 2NS, 

Treasure Island, and Scotts Valley soils (the same three soils with the most similar best-fit CA-

PPD lines in Fig. 5.15) all have Energy values that are consistently localized near 10-3, regardless 

of PPD. The remaining soils’ Energy values do not always lie so close to 10-3, if at all (e.g. Ottawa, 

Costa Rica, and Nevada). If an unknown soil was photographed using either VisCPT or  
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Figure 5-16. Contrast vs. PPD for various soils. 

 

Figure 5-17. Correlation vs. PPD for various soils. 
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Figure 5-18. Homogeneity vs. PPD for various soils. 

 

Figure 5-19. Variance vs. PPD for various soils. 
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Figure 5-20. Energy vs. PPD for various soils. 

   

SedImaging, and its Haralick textural Energy index was 10-3, then the soil may possibly be similar 

in composition to 2NS, Treasure Island, or Scotts Valley sands. Therefore, the specific PPD-CA 

equation that was fitted for these three calibration soils could then be applied to the example 

unknown soil, to yield an accurate soil PSD.  

Though formally unsubstantiated, this example illustrates the ongoing work of using the 

HWT-based analysis method in conjunction with the SGLDM textural indices to further expand 

the application and accuracy of both the VisCPT and SedImaging systems. Section 6.2 details the 

implications of such research with greater impact.  
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5.5 Chapter Summary 

 Chapter 5 detailed the hardware advancements of the VisCPT, as well as the image analysis 

methods used with this system. The first and second generation VisCPTs were shown in Fig. 5.1. 

The prototype of the third generation was fabricated by ConeTec Investigations Ltd. in 2019 and 

was shown in Fig. 5.2 within Section 5.2.1. Later, the third generation VisCPT (Figs. 5.5 and 5.6) 

was constructed in 2022 and was discussed in Section 5.2.2. This device will be used in upcoming 

calibration chamber testing (Section 6.2). The focus of Section 5.3 was the image analysis that was 

historically the main method to characterize soils photographed by the earlier VisCPTs. This 

approach uses several of the textural indices from the Spatial Gray Level Dependence Method 

(SGLDM) proposed by Haralick et al. (1973). Using these textural indices, the VisCPT can detect 

thin soil layers that are often missed in CPT soil profiles. Figure 5.8 showed an example soil profile 

illustrating this.   

Section 5.4 discussed the benchtop calibration testing performed with the third generation 

VisCPT prototype. This testing consisted of several parts. In Section 5.4.1, narrow particle size 

ranges of the same sand were photographed by the prototype VisCPT. Information for all of the 

size ranges was included in Table 5.1, and sample images of each size range were shown in Fig. 

5.9. These images were analyzed by five of the Haralick textural indices and plotted in Fig. 5.10. 

Several of the indices were shown to be promising methods for determining soil particle sizes from 

the silt range to medium sand.  

The second benchtop research area was presented in Section 5.4.2. It involved analyzing 

the same soil images from Section 5.4.1, but now using the HWT-based method. This research 

revealed several conclusions, the most unexpected being that the PPD-CA calibration is a function 

of camera magnification. This topic will be prioritized in future research.  
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The final focus area involving the VisCPT prototype was detailed in Section 5.4.3. Eight 

different soils with various particle size ranges were photographed using the VisCPT. Example 

images of the soils were included in Fig. 5.13. These images were analyzed with both the Haralick 

textural indices and the HWT-based method. The goal of this exploratory research is to see how 

these two image analysis methods can be used together to delineate different soil types. If 

successful, this could be applied to VisCPT and SedImaging to broaden the applications of both 

systems in the future.    
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Chapter 6 Summary and Future Recommendations 

 

Sieving is the traditional method of determining a coarse-grained soil’s particle size 

distribution (PSD). A PSD is used to classify a soil and provide an initial estimate for soil 

properties and behaviors. As such, sieving is a laboratory procedure widely used throughout civil 

and environmental engineering, earth sciences, and related industries. Despite its broad 

application, sieving is not without its disadvantages. Sieving has been well documented as time- 

and energy-intensive, disruptive, and costly.  

In response, image-based soil analysis methods have been developed as alternatives to 

sieving. These methods are repeatable, rapid, clean, non-disruptive, and often low-cost and semi- 

or fully-automated. One of these methods was developed by Ohm and Hryciw (2014) and is called 

SedImaging. To determine a sand’s PSD using SedImaging, a soil specimen sediments through a 

column of water. The soil particles will naturally sort by size, with larger soil particles sedimenting 

through the water faster than finer particles. Therefore the sedimented soil assembly that settles at 

the base of the water column is sorted by size: larger soil particles at the base of the assembly and 

finer soil settling overtop. Once fully sedimented, the soil assembly is photographed. The image 

is analyzed using a method based on the Haar (1910) mathematical Wavelet Transform (HWT). 

In this image analysis, a sieve-defined calibration is used to generate the soil’s PSD. The original 

SedImaging system developed by Ohm and Hryciw (2014) holds many benefits over sieving (Ohm 

et al. 2013 and Chapter 3 of this dissertation). However the original SedImaging system also has 

its own limitations, namely the system’s limited range of testable soil particle sizes, its non-

portability, and its non-automated testing procedure. As a result, the author created two newer 
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SedImaging systems, the FieldSed and the Sed360. These two systems hold the same benefits as 

the original SedImaging system over sieving, as well as their own additional benefits (Table 1.2 

and Chapter 3). These added advantages of FieldSed and Sed360 have cemented SedImaging as a 

rapid and accurate alternative to sieving for a wide range of coarse-grained materials.   

SedImaging and its HWT-based image analysis method is one of the two main research 

areas detailed in this body of work. Sections 6.1.1 and 6.1.3 summarize the conclusions, 

significance, and broader impacts of the dissertation research involving SedImaging. Section 6.2 

provides recommendations for future work using SedImaging and the HWT-based analysis 

method.  

*** 

Image-based soil analysis methods can also enhance the capabilities of existing soil 

characterization systems (rather than simply replacing them). An example of this is the Vision 

Cone Penetrometer (VisCPT), the second main research area of this dissertation. The VisCPT 

equips a traditional cone penetrometer (CPT) with camera(s) that capture video and images of in-

situ soil as the CPT is advancing through a soil profile. In doing so, the VisCPT refines CPT results 

and even detects thin (several centimeters thick) soil layers that are undetected in CPT boring logs. 

This thin layer soil detection is particularly useful when these layers are liquefiable soils in an 

earthquake-prone site (Section 6.2). Up until the research in this dissertation, VisCPT soil images 

were mainly analyzed using several of the textural indices from the Spatial Gray Level Dependence 

Method (SGLDM) proposed by Haralick et al. (1973). These textural indices were used to 

delineate soil layers. This dissertation documents research using the third generation VisCPT. Part 

of this involved also analyzing VisCPT images using the HWT-based analysis method from 

SedImaging. Through this research, the possibility of combining the results of the HWT and 
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Haralick textural indices to analyze a wide range of soil types both ex-situ with SedImaging and 

in-situ with the VisCPT is explored. If successful, this would dramatically expand the applications 

of these two systems. This VisCPT work using the HWT-based method also revealed a new 

discovery regarding the impact of camera magnification on the HWT method’s sieve-defined 

calibration equation. The HWT’s CA-PPD equation was found to be a function of camera 

magnification. The equation will be readjusted to consider this dependency. This realization is 

crucial to all future image analysis work for both the VisCPT and SedImaging. Sections 6.1.2 and 

6.1.3 summarize the conclusions, significance, and broader impacts of the current VisCPT 

research, while Section 6.2 discusses recommendations for future research with this system.  

6.1 Summary 

This section lists the main milestones and conclusions of this dissertation for both 

SedImaging (Section 6.1.1), the VisCPT (Section 6.1.2), and their image analysis methods. Section 

6.1.3 underscores the importance and broader impacts of the research of this dissertation on the 

wider field of soil characterization in civil engineering and related disciplines.  

6.1.1 Summarizing SedImaging research 

 A field-portable SedImaging system known as “FieldSed” was developed in 2017. It uses 

smaller and more transportable equipment than the original SedImaging system (referred 

to throughout this dissertation as “LabSed”). FieldSed is nearly identical in operation to 

LabSed, with several exceptions. Unlike LabSed, which is made of aluminum hardware, 

FieldSed uses low-cost and lightweight acrylic hardware, allowing for simultaneous 

parallel testing of many soil specimens. With FieldSed, four different images of the settled 

soil specimen are captured. This is possible because of the FieldSed’s clear, square acrylic 
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sedimentation column (as opposed to LabSed’s larger aluminum column). By capturing 

more images of the soil assembly with FieldSed than with LabSed, a larger percentage of 

the specimen is used in the image analysis to determine a soil’s PSD. Additionally, smaller 

soil specimens can be tested in the FieldSed as compared to LabSed. The same HWT-based 

image analysis used with LabSed is also used with FieldSed. Therefore, the same strong 

agreement between LabSed and sieving PSDs is also present with the FieldSed. 

SedImaging via the FieldSed has the same advantages as does LabSed over sieving, but 

FieldSed has its own additional advantages over LabSed.  

 

 Like LabSed, the range of testable soils for FieldSed is limited to fine and medium sands 

per the Unified Soil Classification System (USCS), or soil particle sizes between 0.075mm 

(standard US No. 200 sieve) and 2.0mm (standard US No. 10 sieve). In response to this 

limitation, a prewashing procedure was developed to use before testing a soil in the 

FieldSed. This procedure cleanly removes soil particles that fall outside of the testable size 

range for FieldSed. Without the need for oven drying, the procedure determines the 

percentage of a soil specimen that is coarser than the US No. 10 sieve, and perhaps more 

significantly, the percentage of fines (finer than the US No. 200 sieve). After testing in the 

FieldSed and analyzing the captured soil images, the soil’s SedImaging-based PSD is 

adjusted for any material removed during the prewashing procedure. By determining a soil 

specimen’s percentage of fines, the prewashing procedure expands FieldSed’s range of 

testable soils beyond clean medium and fine sands. Lastly, even though the prewashing 

procedure was created with the FieldSed, the process can be used with any of the 

SedImaging systems. 
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 The FieldSed was used with the prewashing procedure as part of a large-scale soil 

characterization project along several miles of the state of Michigan’s Kalamazoo River in 

2017. Over 110 sands were tested in the FieldSed for this project. The FieldSed testing was 

conducted in a temporary field laboratory constructed next to the river. A small number of 

specimens were selected for quality control testing to determine the reproducibility of the 

SedImaging results. Sieve analyses were also performed to establish the accuracy of 

SedImaging via the FieldSed. The control test results demonstrated that the FieldSed is a 

promising portable device that can rapidly, accurately, and repeatedly determine PSDs in 

(nontraditional) field labs for geotechnical and geoenvironmental applications. 

    

 A third SedImaging system was developed in 2020. Called “Sed360”, this system replaced 

the square acrylic tubing of the FieldSed with circular cross-sectioned tubing. The circular 

tube sits atop a precision rotating stage. The stage rotates at a preset speed while a camera 

captures images of the settled sand specimen every four degrees. The collection of images 

are automatically stitched together to form a seamless “unwrapped cylinder” image of the 

tested soil specimen. This combined image is analyzed using the original HWT-based 

method to generate the soil’s PSD. The rotation stage and image stitching of the Sed360 

have, for the first time, nearly fully automated SedImaging, all while still yielding PSDs 

with excellent agreement to sieving results. Also for the first time with SedImaging, coarse 

sands are successfully tested in the Sed360. This expands the range of testable soil particles 

for SedImaging to encompass the entire sand range (according to the USCS, between US 

Standard sieves No. 4 [4.75mm] and No. 200 [0.075mm]).  
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 The expanded range of testable soils in the Sed360 necessitated a reexamination of the 

HWT-based image analysis method used with SedImaging. There were two key outcomes 

from this research. (1) The calibration equation used in the HWT-based analysis method 

was reformatted to reflect the expanded range of testable particle sizes. (2) While keeping 

the fundamentals of the HWT-based analysis, the method was extensively restructured to 

automatically adjust the procedure to the size of the soil particles that it is analyzing at any 

given point. These two advancements were crucial to ensure that the strong agreement 

between sieving and SedImaging results were maintained for the Sed360’s expansion of 

testable soils. This restructured HWT-based method can also be used with the LabSed and 

FieldSed systems.     

6.1.2 Summarizing VisCPT research  

 In 2019 a prototype of the third generation VisCPT was fabricated by ConeTec 

Investigations Ltd. The prototype contains a 13 Megapixel UVC USB camera and an 

internal LED board for photographing and illuminating soil particles at the system’s 

viewing window. The author conducted extensive benchtop calibration testing with the 

prototype. Part of this research focused on the original Haralick textural indices that were 

used with the first and second generation VisCPTs. It was shown that when using the high 

magnification camera and updated hardware of the newest VisCPT prototype, several of 

the Haralick textural indices are promising methods for determining soil particle size across 

the medium sand to silt range (as defined by the USCS).  

 

 Another area of the benchtop research with the VisCPT prototype involved the HWT-based 

analysis method. Narrow particle size ranges of a glacio-fluvial material referred to as 
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“2NS” (MDOT 2010) were photographed using the VisCPT prototype and analyzed by the 

HWT-method which, until this research, was mostly used only with SedImaging. The 

results yielded a strong relationship between soil particle size and the HWT-method index 

“CA”. However, the magnitude of this relationship is different from that determined for the 

same 2NS material when it was tested in the SedImaging systems. This led to the new 

discovery that camera magnification (which is several times greater in the VisCPT than in 

any of the SedImaging systems) is also a factor to be considered in the HWT-based grain 

sizing method. This factor can be quantified in future research (Section 6.2). 

 

  The final focus of the benchtop testing of the VisCPT prototype involved photographing 

different soils. Eight soils, including 2NS, with particles of different sizes, colorings, 

translucencies, and shapes were photographed at a constant illumination by the VisCPT. 

The images were analyzed both by the HWT-based method and the Haralick textual 

indices. The goal of this preliminary research is to eventually use both of these analysis 

methods to differentiate and accurately characterize a breadth of soil types. If successful, 

this can strengthen the accuracy and widen the application of both the VisCPT and 

SedImaging systems. Section 6.2 mentions this as an area of future research. 

 

 In 2022, ConeTec fabricated the finalized third generation VisCPT. It contains an 18 

Megapixel USB3 camera with a redesigned illumination system. Images of several sands 

and one clay have been captured with the VisCPT. This VisCPT is primed to be used in 

upcoming calibration chamber testing. This testing is part of a larger project focused on 

thin liquefiable soil layer detection in earthquake-prone regions (Section 6.2).  
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6.1.3 Research Significance and Broader Impacts 

The significance and broader impacts of the research discussed throughout this dissertation 

and are summarized here.  

 

 Sieving is the traditional method of classifying coarse-grained materials in geotechnical 

engineering and related fields. However the disadvantages and limitations of the test have 

been well documented. Sieving is a non-automated, and time-, energy-, and noise-intensive 

test. In response, image-based soil characterization techniques are rapidly gaining 

popularity as low cost and rapid alternatives to sieving. One such method was developed 

by Ohm and Hryciw (2014) and is called SedImaging. The original SedImaging system 

had a number of powerful advantages over sieving: no noise pollution, rapid, and no need 

for oven-dried soil specimens prior to testing. SedImaging uses a sieve-defined calibration 

to generate particle size distributions (PSDs), thus there is excellent agreement between 

SedImaging and sieve-based PSDs. Yet the original SedImaging system was not without 

its own limitations. (1) The system’s heavy hardware confined the system to a traditional 

laboratory setting, and (2) the method requires user-intervention throughout the testing 

procedure. Additionally, (3) the original SedImaging system was limited to classifying only 

medium and fine sands (as defined by the Unified Soil Classification System). The two 

newer SedImaging systems developed by the author, FieldSed (2017) and Sed360 (2020), 

were designed to help eliminate the limitations of the original SedImaging system, while 

still yielding excellent agreement with sieve results.   
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 The FieldSed is a portable system with lightweight hardware. Therefore, for the first time, 

SedImaging testing now extends beyond the traditional laboratory setting. The success of 

the FieldSed’s adaptability was confirmed by its use in a 2017 large scale riverbed 

characterization project. The system was set up in a converted pole barn and was used to 

generate the PSDs of over one hundred river sediments. The converted barn was next to 

the river where sediments were being collected; by way of the FieldSed, the specimens 

were classified on site, directly after their removal from the river (i.e. the soils were not 

shipped to an off-site lab where they would be oven dried prior to sieving/testing). In 

addition to the FieldSed, a prewashing procedure was developed. Prewashing determines 

the percentage of material in the soil specimens that fall outside of the allowable 

SedImaging particle size range. The low-cost equipment of the FieldSed also enables 

parallel testing of multiple soil specimens. Combining FieldSed with the prewashing 

procedure and the parallel testing, PSD results of the riverbed sediments were generated in 

a fraction of the time and cost of traditional characterization methods like sieving. 

SedImaging has been proven to be an accurate alternative to sieving; with the introduction 

of the FieldSed, SedImaging is now also a portable, lightweight, and an even lower cost 

sieve alternative.  

 

 Through the introduction of a rotating stage, SedImaging via the Sed360 is a nearly fully-

automated soil characterization method. Unlike sieving (and even the previous SedImaging 

systems) Sed360 requires little user involvement throughout a test, thus increasing the 

testing efficiency of SedImaging. Automated image capture and image stitching make this 

possible with the Sed360. The new hardware of the Sed360 is still portable like FieldSed. 
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Additionally, the Sed360 hardware and the testing automation have now excitedly 

expanded the range of testable soils with SedImaging. For the first time, SedImaging via 

Sed360 can accurately characterize soil particles across the entire sand range. Combining 

this expanded testable size range with the prewashing procedure, SedImaging can now 

generate a PSD for all sands, as well as determine the percentage of gravel and fines in a 

sand specimen.  

 

 Prior to this dissertation’s research, SedImaging was shown to be an accurate alterative to 

sieving. However the system was limited in its portability, automation, and most 

significantly, its testable particle size range. Through the work within this dissertation, the 

FieldSed and Sed360 systems have powerfully transformed SedImaging into a portable, 

nearly fully-automated, yet still accurate soil characterization method that spans over two 

orders of magnitude of testable particle sizes. The applicability, approachability, and 

reliability of SedImaging have been broadened by the development of the FieldSed and 

Sed360. More broadly, by utilizing SedImaging over sieving as a soil characterization 

method, users can enjoy a cleaner and quieter testing environment, and the soil 

characterization process is more efficient, cheaper, and automated. Engineering firms can 

translate these time and cost savings into increasing their testing frequency, resulting in 

safer, more informed engineering designs.  

 

 The Vision Cone Penetrometer (VisCPT) is an in-situ device that equips a CPT with a 

video camera to photograph the passing soil strata during probe advancement. These 

images are analyzed and used to identify thin soil layers (several centimeters thick) that are 
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missed by traditional CPT soil boring logs. Prior to the research within this dissertation, 

the most recent VisCPT device was developed in 2005. Smaller cameras with much greater 

resolutions motivated the fabrication of the third generation VisCPT by ConeTec 

Investigations Ltd. in 2022. Benchtop calibration testing with this third generation VisCPT 

was conducted. A variety of soil types and particle sizes where photographed by this 

VisCPT. The images were analyzed using both the original method from the earlier 

VisCPTs, as well as the method previously used with SedImaging. This benchtop 

calibration research will help finalize the image analysis procedure for the forthcoming 

VisCPT calibration chamber testing and in-situ testing. The VisCPT research also 

unexpectedly revealed a new, formerly unexplored detail of the SedImaging image analysis 

method. All future research with the SedImaging image analysis method will include this 

newly discovered detail.  

 

 The third generation VisCPT combined with the image analysis benchtop testing 

rejuvenates the system as a potent full-scale in-situ soil characterization device of the 

future. The VisCPT will be used in earthquake prone regions to detect thin liquefiable 

layers missed by other in-situ soil characterization methods. By identifying these thin 

layers, soil improvement efforts for liquefaction mitigation or earthquake-resilient 

infrastructure can be more readily adopted, resulting in safer and healthier built 

environments.         

6.2 Future Recommendations 

There are several areas of suggested future research involving SedImaging, the VisCPT, 

and the image analysis methods used with these systems. Some of these recommendations are 
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based upon current or preliminary research detailed in this dissertation, while others are less 

explored, but are nevertheless intriguing.  

 

 With SedImaging, a sand’s percent of fines is estimated when the prewashing procedure is 

used prior to releasing the sand into the SedImaging water column. To estimate this, the 

fines are removed from the rest of the specimen. Future research can explore eliminating 

the need for the prewashing procedure. A specimen’s fines would not be removed 

beforehand, and are instead also released into the SedImaging system and analyzed 

alongside the rest of the particles. The percentage of fines would also be characterized by 

image analysis. A second higher magnification camera (such as the one used in the third 

generation VisCPT) can be added to the SedImaging hardware to photograph the fines. 

Unlike the existing SedImaging camera, this second camera’s field of view would be 

limited to only a few millimeters near the top of the soil assembly. Using this camera, the 

volume of fines in the soil assembly could be determined. A soil’s fines percentage could 

also be calculated without the use of image analysis. Instead, the SedImaging hardware 

could be equipped with additional testing devices, such as pressure transducers or 

capacitive sensors, which can be calibrated to estimate the amount of fines in a soil 

specimen within the SedImaging water column.  

 

 If it becomes possible to determine a soil’s percentage of fines within the SedImaging 

system, then the functionality of the SedImaging presorter tube ought to be reexamined. It 

may be possible to even fully eliminate the presorter tube and redesign the SedImaging 

sedimentation column to provide a way to break up soil clods prior to photographing a soil 
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assembly. Without the need for the presorter, SedImaging testing time would be reduced 

even further, and the system would take another step towards becoming a fully automated 

soil characterization procedure.  

 

 Soils with different particle colors, angularities, reflectivity, and opacities can be tested 

more extensively by SedImaging. Similar to the preliminary conclusions after testing eight 

soils with the VisCPT (Section 5.4.3), creating a family of SedImaging calibration curves 

for different soil types will further broaden the application of this system. Figure 6.1 shows 

the “unwrapped” images of three different soils tested in the Sed360. Figure 6.1(a) is a 

poorly-graded mono-colored sand from Brady, Texas; Fig. 6.1(b) is Ottawa sand, and Fig. 

6.1(c) is from Nesika Beach, Oregon. The soils in Figs. 6.1(b) and 6.1(c) were also part of 

the Section 5.4.3 work with the VisCPT. Unlike those in Fig. 5.13, in Fig. 6.1 these soils 

are not separated into narrow particle size ranges. These three soils are visually quite 

different from 2NS (and similar soils) that has been extensively (and successfully) tested 

with SedImaging.  
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Figure 6-1. Different sands tested in the Sed360. (a) Brady, Texas, (b) Ottawa, and (c) Nesika Beach. 

 

Calibrating SedImaging’s HWT-based analysis method used 2NS soil images. Therefore 

using the existing HWT-based calibration equation (Eq. 4.5) to characterize a soil that is 

as visually unlike 2NS as those in Fig. 6.1 would be erroneous. To illustrate this, the three 

sands in Fig. 6.1 were analyzed by the HWT-based method using Eq. 4.5. The PSD results 

are plotted as yellow data points alongside sieve data (ASTM C136/C136M-19) for the 

three sands. The results for the Brady sand are in Fig. 6.2, Ottawa is presented in Fig. 6.3, 

and Nesika Beach in Fig. 6.4. As anticipated, the SedImaging PSD does not align with the 

sieve data for any of the sands. Using Eq. 4.5 for these sands yields incorrect PSDs. Out of 

the three, the PSD for the Nesika Beach sand, which is the closest in particle coloring to 

2NS, is nearest to the sieve results.  
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The HWT-based analysis method was performed again for these three soils. This time, the 

numerical constants in Eq. 4.5 were adjusted until the soil’s SedImaging PSD more closely 

matched the sieve data. These better-fitting PSDs are plotted as cyan triangle data sets in 

Figs. 6.2 through 6.4. This fitting method is purely for illustration purposes, and these new 

constants for the calibration equations should not be used for research purposes. However 

in this example, the Brady and Ottawa sands use the same adjusted equation constants, 

while Nesika Beach’s calibration equation is the most similar to Eq. 4.5. As seen in Fig. 

6.1, Brady and Ottawa sands both contain highly uniform, round, translucent particles, 

which explains why these two sands would have similar, if not identical, SedImaging 

calibration equations. Though the results in Figs. 6.2 through 6.4 are unverified examples, 

they highlight the necessity of creating a family of HWT calibration curves to accurately 

analyze different soil types by SedImaging. 2NS was specifically selected as the soil to 

calibrate the existing HWT-based method because of this material’s common coloring and 

grading that is seen in many other soils. Yet as Figs. 5.13 and 6.1 show, there exists soils 

of other colors, angularities, and opacities.  

 

Creating a procedure (perhaps involving machine learning) that selects a specific 

calibration curve for a soil specimen to yield the most accurate PSD would be 

transformative for SedImaging.  

 

Lastly, gap-graded and other uniquely-graded soils can also be tested more deeply with the 

Sed360 beyond the investigation in Section 4.2.3 and presented in Figs. 4.12(b) and 4.14. 
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Figure 6-2. Example SedImaging PSD results for the Brady, Texas, sand in Fig. 6.1. 
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Figure 6-3. Example SedImaging PSD results for the Ottawa sand in Fig. 6.1. 
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Figure 6-4. Example SedImaging PSD results for the Nesika Beach sand in Fig. 6.1. 
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 The third generation VisCPT is scheduled to be used in a multi-university project focused 

on thin-soil delineation in earthquake-prone regions, namely Christchurch, New Zealand. 

The project will compare traditional CPT soil boring logs to those generated from VisCPT 

data as well as the actual soil profile obtained by geo-slicing. It is expected that the VisCPT 

will detect thin soil layers that are not detected in CPT data. These results will be analyzed 

alongside observational surficial liquefaction manifestations from the 2010-2011 

Canterbury, New Zealand earthquake sequence. Before field testing occurs, calibration 

chamber testing with the VisCPT will be conducted at the Virginia Tech research facilities. 

This calibration chamber testing will use a constructed soil profile of alternating thin 

(several centimeters thick) layers of clay and sand (these soils are shown in Figs. 5.7[e] 

and 5.7[f]). During this stage, the image analysis technique(s) (the Haralick textural 

indices, the HWT-based method, or a combination of the two) that will be used for the 

eventual field testing imaging will be determined.  

 

 The benchtop testing of the third generation VisCPT prototype yielded exciting starting 

points for future research. The testing unexpectedly revealed that camera magnification 

affects the calibration equation used in the HWT-based method for determining particle 

size. This area ought to be researched further, and a readjustment of the existing HWT 

calibration equation to reflect this dependence may be recommended. The benchtop work 

also began the foundational work of using the two image analysis methods of SedImaging 

and the VisCPT together to delineate and characterize different soils. The related work that 

was presented in Section 5.4 requires deeper analysis, and a larger-scale testing schedule 

of different soils needs to be designed before any actionable conclusions can be made. 
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Appendix A: Investigating the effect of uneven particle illumination on HWT-based PSDs 

 

As with many of the other image-based soil characterization methods presented in Chapter 

2, uneven lighting across a SedImaging soil assembly erroneously affects the HWT-based analysis 

of the image. This leads to incorrect PSD results. Therefore, steps were taken to reduce uneven 

lighting across soil assembly images captured with a SedImaging system. A study was conducted 

into how the uneven lighting in a soil assembly image specifically impacts a HWT-based PSD. 

The study is summarized in this Appendix and the results helped inform some of the key aspects 

of the autoadaptive HWT-based method presented in Section 4.2.2.       

Figure A.1 shows two different 5120 pixel by 1024 pixel grayscale images of sand with a 

particle size range between 0.3mm and 0.212mm (material retained between the US Standard No. 

50 and No. 70 sieves). The images are two of the photographed sides of the same sand assembly 

photographed in the FieldSed. The photographs appear nearly identical. However, Image 1 (Fig. 

A.1[a]) is slightly more evenly-illuminated than Image 2 (Fig. A.1[b]). The bottom of Image 2 is 

slightly darker and its top is slightly lighter than the rest of the soil column. To confirm this, the 

grayscale values of Images 1and 2 were compared.  

The average grayscale values were calculated for every row and column of both Image 1 

and 2. The results for Image 1 are seen in Fig. A.2, and Fig. A.3 for Image 2. Since these images 

are from the same soil assembly, the two grayscale distributions are expected to be similar, though 

some minor variations between them (uneven lighting aside) is expected. This is confirmed by the  
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Figure A-1. Two soil images with known with a particle size range between 0.3mm and 0.212mm (material retained 

between the US Standard No. 50 and No. 70 sieves). (a) Image 1, (b) Image 2. 

 

results in Figs. A.2 and A.3. Specifically, both the row and column grayscale standard deviation 

values (rows and columns respectively) are very similar between the two images. However, as seen 

in Fig. A.3, Image 2 has higher average grayscale values (i.e. lighter pixel intensities) at the very 

top of its image, and lower values (i.e. darker pixel intensities) at the very bottom of the image. 

These areas are circled in yellow in Fig. A.3(a). The same is not seen as significantly within Image 

1 (though Image 1 does still contain slightly darker average grayscale values at the bottom of the  
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Figure A-2. Average grayscale pixel intensity values for Image 1 in Fig. A.1(a). (a) Row values, (b) Column values. 
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Figure A-3. Average grayscale pixel intensity values for Image 2 in Fig. A.1(b). (a) Row values, (b) Column values. 
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image). This supports the earlier claim that there is more uneven particle illumination within Image 

2 than within Image 1. Due to the larger sample size (5120 rows), these few lighter and darker 

rows of Image 2 do not cause the rows of Image 2 to vary far from that of Image 1. However, these 

few rows do have a noticeable effect on the image’s HWT-based PSD.  

To illustrate this, Images 1 and 2 were analyzed by the HWT-based method. The method 

was performed twice on each image, using a different analysis area size each time. Areas of 1024 

x 1024 pix2 and 512 x 512 pix2 were used. The PSDs using both analysis area sizes were plotted. 

Figure A.4 includes this data for Image 1 (Fig. A.4[a]) and Image 2 (Fig. A.4[b]). The figure 

identifies the locations of each analysis areas within the soil images. The areas are numbered, and 

the particle size corresponding to each square is color coded and included in the overall PSD data. 

The upper and lower bound of the known particle sizes range for these soil images are plotted as 

dotted red and blue vertical lines.  

Figure A.4 shows the sensitivity of the original HWT-based analysis method to uneven 

illumination within a soil image. Figures A.2 and A.3 showed that Image 2 contains more shadows 

and uneven lighting than Image 1. Therefore, based on the details of the HWT-based method 

(Section 4.1), more irregularities within Image 2’s HWT-based PSD is expected here than for 

Image 1. This is confirmed in Fig. A.4. More of Image 2’s PSDs using both 1024 x 1024 pix2 and 

512 x 512 pix2 analysis areas fall outside of the known particle size range than do the PSDs of 

Image 1. Table A.1 compares the HWT-based PSD data for each of the two images.  
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Figure A-4. PSD data using two different analysis area sizes in the original HWT-based method. (a) Image 1, (b) 

Image 2. 
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Table A-1 Comparing PSD Data for Images 1 and 2. 

Analysis area size  

(shape of corresponding data 

points in Fig. A.4) 

Number of data points falling within the known particle size 

range of the sample (% accuracy) 

Image 1 (Fig. A.4[a]) Image 2 (Fig. A.4[b]) 

1024 x 1024 pix2 (square) 3 of 5 (60%) 0 of 5 (0%) 

512 x 512 pix2 (diamond) 12 of 20 (60%) 6 of 20 (30%) 

 

To further emphasize that uneven lighting impacts HWT results, the PSD data that falls the 

farthest outside of the known size range are from the top- and bottom-most analysis areas for both 

images. These are Squares 1 and 5 for the 1024 x 1024 pix2 areas (respectively the black and 

yellow square data points). For the 512 x 512 pix2 areas, these are Squares 1 through 4 and 17 

through 20 (respectively the gray-black and yellow-orange diamond data points). Therefore, the 

brighter illumination at the top of the two soil images, as well as the darker regions at the bottom, 

are affecting the HWT particle sizing in those regions of the soil assembly. The question that still 

remains is how this affects the HWT results.  

To answer this, a deeper look into Image 1’s HWT energy distributions was needed. Image 

1 contains a very minimal amount of uneven lighting across the soil assembly. Despite this, Fig. 

A.4(a) shows that this image’s HWT-based PSD curves still do not fall entirely within the known 

particle size range. Analyzing the image’s energy distributions can help reveal how even slight 

uneven lighting can affect the HWT results. With this knowledge, the autoadaptive HWT-based 

method can be designed to identify and adapt for an environmental factor like uneven lighting in 

a soil assembly. In doing so, HWT-based PSD results will more accurately size soil particles.   

Figure A.5(a) repeats Fig. A.4(a) (for convenience). The figure more importantly includes 

the HWT energy distributions for all of the 512 x 512 pix2 (Fig. A.5[b]) and 1024 x 1024 pix2 (Fig. 

A.5[c]) analysis areas. For the PSD data points that fall outside of the known particle size range 
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(noted earlier as those for the top- and bottom-most analysis squares), their corresponding energy 

distributions increase at the highest decomposition levels (DLs). The most prominent examples of 

this are the 1024 x 1024 pix2 Squares 1 and 5. In these energy distributions, the value for the 10th 

DL exceeds that of the 9th level. This jump causes the CA value to increase, and therefore, the soil 

particle size for these squares also jump. Thus, these two areas report far larger particle sizes than 

the three other 1024 x 1024 pix2 areas.  

Two other causes of this energy distribution jump were discussed in Section 4.2.2. There, 

it was shown that the final DL increases when an analysis area is improperly sized for the soil 

particle sizes within it, or by the proximity of similarly colored particles within the analysis area. 

Figure A.5 shows how uneven lighting within an analysis area can also produce the same 

“unacceptable” energy distributions. Of the five 1024 x 1024 pix2 analysis areas, Squares 1 and 5 

are the only “unacceptable” energy distributions. These two areas also contain the most lighting 

inconsistencies. Square 1 is at the very top of the photographed soil column. The overhead 

laboratory lighting used for image capture brightly illuminates the particles at the top of this area. 

Alternatively, Square 5 is at the very bottom of the soil column, and therefore has the most shadows 

cast on its particles. These lighting inconsistencies are virtually imperceptible by eye; as seen in 

Fig. A.2(a), Image 1 has an overall uniform average grayscale distribution along its vertical axis. 

However, when this distribution is analyzed separately using the five 1024 x 1024 pix2 HWT 

analysis areas, the lighting inconsistencies become consequential.  
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Figure A-5. Image 1 analyzed using two different analysis areas in the original HWT-based method. (a) 1024 x 1024 

pix2 and 512 x 512 pix2 analysis areas and their PSD data points, (b) 512 x 512 pix2 energy using Eq. 4.1’s energy 

definition, (c) 1024 x 1024 pix2 energy distributions using Eq. 4.1’s energy definition.  
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Figure A.6 plots the average pixel intensity value for every row (Fig. A.6[a]) and column 

(Fig. A.6[b]) of Image 1’s five 1024 x 1024 pix2 analysis squares. The standard deviation of all 

the average values for an area’s rows (σrows) and columns (σcolumns) are reported. The average row 

values for Squares 2, 3, and 4 change very little throughout the windows; their σrows are very low. 

The same is not true for Squares 1 and 5. These two analysis areas have noticeably larger average 

row grayscale distributions than the other squares. More specifically, Square 1 and 5’s σrows values 

are over 200% larger than the other three areas’ values. The top half of Square 1 has slightly larger 

average grayscale row values (which corresponds to lighter-colored particles). Square 5 has an 

approximately 40-grayscale row value drop (corresponding to darker-colored particles) in its 

lowest 100 pixel rows. Alternatively, in Fig. A.6(b) all five analysis squares have nearly identical 

average column value distributions; they also have similarly small σcolumns values. An identical 

investigation could be performed with the 512 x 512 pix2 analysis areas and similar conclusions 

could be made: vertical lighting inconsistencies are seen in the top- and bottom-most analysis 

areas, while little horizontal variations are seen throughout the entire soil column.  
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Figure A-6. Average grayscale pixel intensity values for each of Image 1’s 1024 x 1024 pix2 analysis areas. (a) Row 

values, (b) Column values. 
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Figure A-6 Con’t. Average grayscale pixel intensity values for each of Image 1’s 1024 x 1024 pix2 analysis areas. 

(a) Row values, (b) Column values. 
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While the vertical lighting inconsistencies observed in Fig. A.6(a) appear minimal, they 

are a source of Image 1’s PSD data points erroneously falling outside of the known particle size 

range. To support this claim, the HWT-based analysis was performed two additional times on 

Image 1. Instead of using Eq. 4.1’s total energy equation (as seen in Figs. A.5[b] and A.5[c]) the 

following equations were used: 

                                                                      𝐸𝑖 =  ∑ 𝐸𝑉𝑖                                                             (A.1) 

                                                                      𝐸𝑖 =  ∑ 𝐸𝐻𝑖                                                             (A.2) 

As noted in Section 4.1, EVi is the energy that compares the grayscale pixel intensity values 

between columns and EHi compares values between rows. Therefore, for Image 1 (which contains 

vertical lighting inconsistencies and little to no horizontal inconsistencies), more accurate PSD 

data is expected when Eq. A.1 is used in the HWT method as compared to Eq. A.2. Equation A.2 

will be more impacted by the uneven lighting in Fig. A.6(a).  

Figure A.7 includes the PSD data (Fig. A.7[a]) and energy distributions (Figs. A.7[b] and 

A.7[c]) using Eq. A.1 in the HWT-based analysis of Image 1. Figure A.8 is identical to Fig. A.7, 

but instead Eq. A.2 is used in the HWT-based method.  

The results in these two figures are informative. Figure A.8 contains PSD data that falls 

even farther outside of the known size range than either Figs. A.5 or A.7. The energy distributions 

in Fig. A.8 have even larger increases in their final DLs than those in Fig. A.5. The cause of this 

refers back to earlier claims: uneven lighting across the soil assembly. Figures A.5 and A.8 were 

created using HWT energy equations that contain the EH term, which compares rows of pixel 

intensity values. Figure A.6(a) shows how the lighting changed vertically (i.e. between rows of 

pixels) throughout Image 1. Therefore, Figs. A.5 and A.8’s energy distributions and thus the PSD 

data is directly (erroneously) impacted by the non-uniform lighting in the vertical direction. 
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Figure A-7. Image 1 analyzed using two different analysis areas in the original HWT-based method. (a) 1024 x 1024 

pix2 and 512 x 512 pix2 analysis areas and their PSD data points, (b) 512 x 512 pix2 energy using Eq. A.1’s energy 

definition, (c) 1024 x 1024 pix2 energy distribution using Eq. A.1’s energy definition.  
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Figure A-8. Image 1 analyzed using two different analysis areas in the original HWT-based method. (a) 1024 x 1024 

pix2 and 512 x 512 pix2 analysis areas and their PSD data points, (b) 512 x 512 pix2 energy using Eq. A.2’s energy 

definition, (c) 1024 x 1024 pix2 energy distributions using Eq. A.2’s energy definition.  

 

The PSD data in Fig. A.5 is less adversely affected by the uneven lighting (i.e. this PSD 

falls more closely within the known size range) than Fig. A.8 simply due to the fact that Fig. A.5’s 
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total energy equation also consists of other terms, EV and ED. These energy terms are not as 

impacted by Image 1’s lighting inconsistencies as is EH. Figure A.7, which uses an HWT energy 

equation that only considers EV, shows PSD data that almost entirely falls within the known 

particle size range. Figure A.7’s energy equation only compares columns of pixel grayscale values. 

Figure A.6(b) shows that there is little to no horizontal lighting variations across Image 1; thus, 

Fig. A.7’s energy distributions are not as impacted by lighting inconsistencies. These energy 

distributions increase very little (if at all) in the final DL, and their HWT-based particle sizing most 

accurately represents the soil of Image 1.   

This analysis with Eqs. A.1 and A.2 could be performed again for Image 2, yielding the 

same conclusions. Image 2 was shown to contain more uneven lighting than Image 1. Therefore, 

there would be an even larger differences between the PSD data using Eqs. A.1 and A.2 than there 

is between the PSDs in Figs. A.7 and A.8. These results for Image 2 would only further the 

conclusions reached using Image 1. Image 1 was specifically chosen to show that even for an 

image that has only a small amount of lighting inconsistencies, HWT-based PSD data is decidedly 

impacted by uneven illumination.  

The conclusions from this research helped form the foundation of the autoadaptive HWT-

based method. The data in this Appendix showed how increasing energy values at the upper DLs 

impact an energy distribution’s CA value. Therefore the autoadaptive HWT-based method 

identifies when this occurs for an analysis area, and either sets these increasing upper DL values 

to zero, or selects a different analysis area size. Consequently, the autoadaptive HWT-based 

method more accurately sizes soil particles.   
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Appendix B: Overview of Haralick et al. (1973)’s Spatial Gray Level Dependence Method 

(SGLDM) textural indices  

  

To determine the Haralick SGLDM textural indices for a grayscale image I(x,y) with pixel 

intensity values between 0 (pure black) and 255 (pure white), its co-occurrence matrix is created. 

The co-occurrence matrix, P(i,j;d), is a symmetrical 256 x 256 matrix that is a visualization of 

identical pixel intensity values and their spatial distribution to one another across I(x,y). Hryciw 

et al. (1998) state,  

 

“The co-occurrence matrix P(i,j;d) is…the normalized probability density 

function of having two image pixels of gray level values of i and j, separated 

by a spatial distance d. In other words, the matrix I is searched for all pixels 

having grayscale values i and j separate by distance d along the eight 45° fan 

rays originating from the first pixel.” 

 

Haralick et al. (1973) defined 14 textural indices that characterize an image’s co-occurrence 

matrix. Five of these textural indices were used to analyze VisCPT images presented in this 

dissertation. These indices are Contrast, Correlation, Energy, Local Homogeneity, and Variance. 

They are defined as  

                                                𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡, 𝐶𝑂𝑁 =  ∑ ∑
[(𝑖−𝑗)2𝐏(𝑖,𝑗,𝑑)]

2552                                            (B.1) 

                                         𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐶𝑂𝑅 =  ∑ ∑
[(𝑖−𝜇𝑥)(𝐣−𝜇𝒚)𝐏(𝑖,𝑗,𝑑)]

(𝜎𝑥)(𝜎𝑦)
                                   (B.2)            
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                                                        𝐸𝑛𝑒𝑟𝑔𝑦, 𝐸 =  ∑ ∑ 𝐏(𝑖, 𝑗, 𝑑)2                                              (B.3)  

                                          𝐿𝑜𝑐𝑎𝑙 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦, 𝐿𝐻 =  ∑ ∑
𝐏(𝑖,𝑗,𝑑)

1+(𝑖−𝑗)2                                        (B.4)   

                                       𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑉𝐴𝑅 =  ∑ ∑(𝑖 − 𝜇𝑥)(𝐣 − 𝜇𝒚)𝐏(𝑖, 𝑗, 𝑑)                               (B.5) 

Where “𝜇𝑥 and 𝜎𝑥 are the mean and standard deviations of the row sums of matrix P, 

and 𝜇𝑦 and 𝜎𝑦 are analogous statistics of the column sums” (Ghalib 2001). 
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Appendix C: CPT vs. VisCPT data for a Treasure Island soil profile 

 

Ghalib (2001) details a case study where the VisCPT was used at the former National 

Geotechnical Experimentation Site (NGES) on Treasure Island in San Francisco, California. The 

study compared the accuracy of the VisCPT soil profile delineation to laboratory and observational 

results. The VisCPT was also compared to CPT soil profile logs. Figure C.1(a) plots an example 

CPT log and Fig. C.1(b) plots the VisCPT results for the same profile. The CPT data contains the 

tip resistance, side friction, and pore pressure logs. The VisCPT data plots the profiles of two of 

the Haralick textural indices: Energy and Local Homogeneity. The Energy and Local Homogeneity 

profiles identified many clay, silt, and sand seams and lenses that are not detected in the CPT data. 
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Figure C-1. Soil profile logs for a Treasure Island case study. (a) CPT data, (b) VisCPT data. (Ghalib et al. 2000). 
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Figure C-1 con’t. Soil profile logs for a Treasure Island case study. (a) CPT data, (b) VisCPT data. (Ghalib et al. 

2000). 
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Appendix D: Section 5.4.3 separated CA-PPD data and corresponding trend lines for the 

eight soils tested with the VisCPT 

 

Figures D.1 through D.8 plot the VisCPT CA-PPD data sets from Fig. 5.14 alongside their 

corresponding trend lines from Fig. 5.15 for each of the eight soils. The soils are separated into 

individual figures within this Appendix for readability. 2NS data is plotted in Fig. D.1, Costa Rica 

is in Fig. D.2, Nesika Beach in Fig. D.3, Upper Peninsula in Fig. D.4, Treasure Island in Fig. D.5, 

Scotts Valley in Fig. D.6, Ottawa in Fig. D.7, and Nevada in Fig. D.8. The colors of the data in 

Figs. D.1 through D.8 correspond to those used throughout Section 5.4.3. The trend lines for Upper 

Peninsula and Ottawa sands were omitted in Section 5.4.3 since these soils only contained two 

sieved size ranges of data. However, these trend lines are included in Figs. D.4 (Upper Peninsula) 

and D.7 (Ottawa) for completeness. The trend lines’ R2 values are purposely omitted in these two 

figures to emphasize these limited data sets.  
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Figure D-1. 2NS CA-PPD data in Section 5.4.3 VisCPT testing. 

 

 

Figure D-2. Costa Rica CA-PPD data in Section 5.4.3 VisCPT testing. 
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Figure D-3. Nesika Beach CA-PPD data in Section 5.4.3 VisCPT testing. 

 

Figure D-4. Upper Peninsula CA-PPD data in Section 5.4.3 VisCPT testing. 
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Figure D-5. Treasure Island CA-PPD data in Section 5.4.3 VisCPT testing. 

 

Figure D-6. Scotts Valley CA-PPD data in Section 5.4.3 VisCPT testing. 
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Figure D-7. Ottawa CA-PPD data in Section 5.4.3 VisCPT testing. 

 

Figure D-8. Nevada CA-PPD data in Section 5.4.3 VisCPT testing. 
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Appendix E: Comparing CA-PPD results for different 2NS data sets gathered with the 

VisCPT 

 

Figure E.1 is a CA-PPD plot of the two independent 2NS data sets photographed at 

different VisCPT illumination voltages. As noted in Section 5.4.3, these data sets have nearly 

identical trend lines. The data using the 4.25V illumination was originally included in Fig. 5.11; 

the 4.0V illumination data is separately plotted in Fig. D.1. Section 5.4.3 discusses the differences 

between these two data set.  

 

Figure E-1. CA-PPD data for 2NS data photographed by the VisCPT at different illumination voltages. 
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