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Abstract 

 

Cataracts are a common eye condition characterized by the clouding of the natural 

crystalline lens that impairs vision. In cataract surgery, the natural lens of the eye is replaced by 

an intraocular lens (IOL) implant to restore vision to the patient. A cataract surgery procedure 

involves the removal of the natural cloudy lens by means of ultrasound phacoemulsification, 

followed by the replacement of the lens with an IOL implant chosen specifically for the patient. 

The power of the IOL should be selected appropriately in order to attain optimal postoperative 

vision. IOL power calculation has evolved over multiple generations, starting with regression 

and theoretical optics-based formulas to machine learning (ML) formulas, as well as hybrid 

formulas. Nevertheless, there is still room for improvement in terms of prediction accuracy. 

At University of Michigan’s Kellogg Eye Center, we gathered a large collection of 

medical records of cataract patients and retrieved demographic and surgical information from the 

Sight Outcomes Research Collaborative (SOURCE) database. In this dissertation, I present 

research projects in which we used artificial intelligence-based approaches to improve the 

functionality and accuracy of tools assisting the clinical decision-making procedure. Through a 

series of studies, we developed and investigated methodologies for achieving better refractive 

results with cataract surgery with the aid of artificial intelligence algorithms. Predicting where 

the intraocular lens resides within the eye after cataract surgeries is a critical step in the 

determination of the IOL power and several other applications (e.g., ray tracing). In Chapter 2, 

we gathered a dataset of 847 patients and developed methods for predicting the postoperative 

IOL position (postoperative anterior chamber depth) which outperformed existing methods 



 xvi 

including Haigis, Hoffer Q, Holladay I, Olsen, and SRK/T.  Further, we explored whether the 

ML-predicted lens position can be used to improve the performance of existing IOL formulas. In 

Chapter 3, we combined the ML-based postoperative ACD prediction method described in 

Chapter 2 with existing optics-based methods including Haigis, Hoffer Q, Holladay, and SRK/T. 

These methods use theoretical Gaussian optics-based equations to estimate the effective lens 

position (ELP). When combine with our ML-predicted lens position, all four formulas achieved 

significantly better prediction performance. In Chapter 4, we used our ML-predicted 

postoperative ACD with a ray tracing-based IOL formula (OKULIX), and significantly improved 

its performance. In Chapter 5, we described a new machine learning-based formula, Nallasamy 

formula, that predicts the most appropriate IOL power based on the preoperative biometry alone. 

We showed that this new formula outperformed existing formulas including the Barrett 

Universal II formula, and the Emmetropia Verifying Optical (EVO) formula. In Chapter 6, we 

demonstrate the risks of using standard evaluation metrics for ML-based IOL formulas, and 

present two new metrics for more robust evaluation of IOL power prediction formulas. In 

Chapter 7, we summarize the main findings and discuss future directions. 

Together, the projects presented in this dissertation examined and proved the possibility 

of utilizing artificial intelligence in cataract surgery decision-making. These studies are among 

the pioneers of the use of ML in cataract surgery, and they will lay the foundation for the next 

era of cataract surgery planning. 
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Chapter 1 Introduction 

1.1 Cataract and Cataract Surgery 

Cataract is a pathological condition wherein the transparent crystalline lens of the eye 

develops opacifications, causing blurry, cloudy, dim vision which could negatively affect the 

patient's quality of life, and may eventually lead to blindness if not treated properly. Cataract 

formation, or the cataractogenesis process, has various contributing factors including ultraviolet 

radiation, trauma, systemic diseases such as diabetes and hypertension, genetic mutations, and 

chemical toxicity induced by drugs.[1,2] Among all factors, the most common cause of visually 

significant cataract is aging.[3] According to a survey of the National Eye Institute in 2010, 

68.30% of people over 80 years old in the United States had cataract, and the overall prevalence 

rate of cataract in the United States was 17.11%.[4] Globally, senile cataract (age-related 

cataract) prevalence varies significantly among different regions, possibly due to variations in 

genetic and environmental factors.[3,5]  

The earliest documentation of cataract dated back to the 5th dynasty of Egypt (2457-2467 

B.C.).[6,7] Cataract was first treated around 800 B.C. by “couching”, a technique for dislodging 

the cataract into the vitreous cavity. [6,7] Today, cataract patients can safely restore their vision 

through surgical extraction of the clouded lens, and implantation of a transparent artificial lens. 

The high prevalence of cataract makes cataract surgery one of the most commonly performed 

surgery in the United States. It is estimated that about 4 million cataract surgeries are performed 

each year in the United States alone, and about 23 million cataract surgeries are performed each 
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year worldwide. With the advancement of cataract surgery over centuries, it is now a safe and 

effective procedure to restore sight to patients.  

Prior to the cataract surgery, the surgeon decides which IOL type and which power is 

appropriate for the patient based on the patient’s preference and the surgeon’s experience. Three 

main types of IOLs are available: monofocal lenses, multifocal lenses, and toric lenses. 

Monofocal lenses correct vision at only one focal length (far, intermediate, or near), so the 

patient may require glasses for near vision if the lens corrects distance vision only, and vice 

versa. Multifocal lenses correct both near and distance vision. Toric lenses corrects astigmatism. 

There are other premium IOLs such as aspheric IOLs which are monofocal lenses that correct for 

spherical aberration; accommodating IOLs which move with the eye’s ciliary muscles to provide 

clear vision at all distances; and trifocal IOLs which correct near, far, and intermediate vision. 

The most common type of lens used in cataract surgery is the monofocal lens. It is also called the 

standard IOL and is typically covered by medical insurance in the United States. The studies in 

this dissertation were focused on the Alcon AcrySof SN60WF lens which is a single-piece 

monofocal blue-light filtering lens. It is currently one of the most commonly implanted lenses in 

the US and the most commonly implanted IOL at University of Michigan’s Kellogg Eye Center.  

The power of the IOL is calculated using the surgeon's preferred IOL formulas based on 

the patient's preoperative biometry and the target refraction, which is the desired postoperative 

refraction. For monofocal lenses, such as the Alcon SN60WF lens, patients and surgeons usually 

prefer to aim for a distance target (emmetropia) to obtain a broader range of usable vision than 

with a near target. This is because the +/-0.25D depth of field of typical monofocal IOLs 

translates to a broader real-world depth of field at emmetropia than at near. The target refraction 

is typically set at a slightly myopic value (e.g. -0.25D), primarily to reduce the risk of hyperopic 
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surprise. A hyperopic result after cataract surgery can leave a patient without any point in space 

that is in focus without the use of corrective eyewear (e.g., glasses or contact lenses). Some 

patients prefer a near target (e.g., intentional myopia of -2.5D to -3.0D) instead of emmetropia, 

for example those with high or moderate myopia [8], those who spend more time performing 

near-distance tasks (such as reading, using computers and mobile phones), and those who intend 

to have monovision (one eye set for distance and one eye set for near).  

The surgical procedure can be summarized as follows. The surgeon creates incisions in 

the cornea to gain access to the crystalline lens. After filling the anterior chamber with a 

viscoelastic device that provides anterior chamber stability and protection to intraocular 

structures, the surgeon carefully creates a small circular opening in the anterior capsule of the 

crystalline lens. The surgeon then uses an ultrasonic handpiece to divide, emulsify, and aspirate 

the cataractous lens material. This technique is named Phacoemulsification, first developed by 

Charles Kelman in 1967 and popularized in the 1980s. Phacoemulsification is now the method of 

choice for most cataract surgery.[9] After removal of lens cortical material, an artificial lens is 

then implanted into the capsular bag. Due to the thin profile of standard intraocular lens implants 

relative to the natural lens, cataract surgery causes deepening of the anterior chamber depth 

(ACD) and decreases the intraocular pressure.[10] The corneal power is also subject to surgical 

change due to the incisions made in the cornea. However, there is currently no reliable method of 

predicting such postoperative changes in these biometric characteristics. 

During the patient’s postoperative visits, the technician measures the manifest refraction 

and the best spectacle-corrected visual acuity (BSCVA) of the patient with a manual or 

automatic phoropter. The spherical equivalent (SE) is typically used as an estimate of the eye’s 

refractive error, which combines the spherical component (SC) which measures nearsightedness 
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or farsightedness, and cylindrical component (CC) which measures astigmatism, with the 

following equation: 𝑆𝐸 = 𝑆𝐶 + 0.5𝐶𝐶. The visual acuity measures the sharpness of vision at a 

certain distance. It has been proven that factors such as the lens position, refraction, and visual 

acuity of the operated eye should stabilize about a month after the surgery.[11,12] In the event 

that the refractive outcome of the surgery is not satisfactory, additional surgical procedures such 

as IOL exchange may be required.[13] 

1.2 Intraocular Lens Power Calculation 

1.2.1 Optical Biometry Measurements  

 

Figure 1.1 Eye structure. 

The goal of an IOL formula is to predict an optimum IOL power so that the recipient of 

the IOL can reach a desired postoperative refraction. To make such predictions, preoperative 

biometry measurements of patients’ eyes are taken into consideration. The following are the 

typical biometry measurements provided by standard optical biometers (Figure 1.1): the axial 

length (AL, measured in mm) which is the distance from the corneal vertex to the macula; the 
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lens thickness (LT, measured in mm), which measures the central thickness of the crystalline 

lens (or the IOL of a pseudophakic eye); the central corneal thickness (CCT, measured in m) 

measures the central thickness of the cornea; the flat corneal power (K1, measured in diopter) 

and steep corneal power (K2, measured in diopter); astigmatism (AST, measured in diopter) is 

the degree of astigmatism, which is the difference between K2 and K1 (𝐴𝑆𝑇 = 𝐾2 − 𝐾1). White 

to white (WTW, measured in mm) is the horizontal corneal diameter; the aqueous depth (AD, 

measured in mm) is the distance between the corneal endothelium and anterior lens surface; the 

anterior chamber depth (ACD, measured in mm) is the distance between the front surface of the 

cornea and anterior lens surface (𝐴𝐶𝐷 = 𝐴𝐷 + 𝐶𝐶𝑇). In pseudophakic eyes, the lens position 

can be represented by the ACD, and the LT is the thickness of the IOL.  

Two types of biometry measurement devices (biometers) are available: optical biometers 

which use infrared light, and ultrasound biometers which use ultrasound. As optical biometers 

allow for noninvasive and noncontact measurements, they are used for routine cataract patients. 

Contact ultrasound biometers are typically used for patients with dense cataracts, an inability to 

follow fixation instructions, or positioning issues. Examples of most used optical biometers are 

the Lenstar series (Haag-Streit AG, Switzerland) which uses Partial Coherence Interferometry 

(PCI), and the IOLMaster series (Carl Zeiss AG, Germany) which uses optical low-coherence 

reflectometry (OLCR). Previous studies have shown that these devices have high repeatability 

and reproducibility with low intraobserver and interobserver variations.[10,14–16]. Biometers 

are operated through bundled software installed on a computer, which can be used to record 

patient information and biometry measurements, as well as calculate the IOLs powers with built-

in formulas. The Pentacam (OCULUS, Germany) is another commonly used device that takes 

cross-sectional images of the anterior segment of the eye with a rotating Scheimpflug camera. A 
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distinguishable difference between Pentacam and optical biometers is that it recognizes both 

anterior and posterior surface of the cornea, which enables measurement of the true total 

refractive power of the cornea. By contrast, in the Lenstar and IOLMaster, the keratometry is an 

estimation of the corneal power based only on the measured radius of curvature of the anterior 

corneal surface. The computation of the keratometry considers a preset keratometric refraction 

index, and a best-fit ellipsoid built based on projected light reflections.[17] The difference in 

biometry measurements from IOLMaster 500,  IOLMaster 700, and Lenstar LS 900 are believed 

to be clinically insignificant.[18–20] The difference between predicted IOL powers based on 

Lenstar or IOLMaster were also found to be clinically insignificant. [21] The keratometry 

readings from Pentacam were found to be significantly different from the ones obtained by 

Lenstar or IOLMaster [22–24]. Examples of biometry measurement devices are shown in Table 

1.1.  

Device Manufacturer Technology 

Anterion Heidelberg Engineering Ltd., Hertfordshire, United Kingdom Swept Source (SS) OCT 

Argos Alcon Inc, Texas, United States Swept Source (SS) OCT 

Galilei G6 Ziemer, Port, Switzerland All-in-one: dual Scheimpflug 

tomography, Placido topography and 

optical biometer 

IOL Master 500 Carl Zeiss Meditec AG, Jena, Germany Partial coherence interferometry (PCI) 

IOLMaster 700 Carl Zeiss Meditec AG, Jena, Germany Swept Source (SS) OCT  

Lenstar LS 900 Haag-Streit AG, Koeniz, Switzerland Low-coherence optical reflectometry 

(LCOR)  

Pentacam AXL OCULUS, Germany Scheimpflug imaging 

Table 1.1 Examples of biometry measurement devices.  

OCT: optical coherence tomography. 

1.2.2 Existing IOL Formulas 
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Existing IOL formulas can be broadly classified into these categories: theoretical 

Gaussian optics-based, empirical regression-based, ray tracing-based, and machine learning-

based IOL formulas. The earliest Gaussian optics-based IOL formulas (published between the 

1950s and 1980s), such as the Binkhorst formula, Thijssen formula, Colenbrander formula, 

Fyodorov formula shared a common form as shown below, even though they were independently 

derived (Table 1.2). The main difference is in the values of adjustment factors (ℎ𝑖 and ℎ𝑐). [25] 

The derivation of the thin lens formula based on a paraxial eye model is demonstrated in 

Appendix A. These first-generation thin lens formulas contain an adjustment factor which can 

be adjusted to fit different IOL types. This adjustment factor represents an estimate of 

postoperative ACD that is constant across all patients.  

𝑃 =
𝑁

𝐴𝐿 − 𝐶 − ℎ𝑖
−

𝑁

𝑁
𝐾 − 𝐶 − ℎ𝑐

 

P = IOL power for emmetropia in diopters; AL = axial length in meters; K = corneal 

power; C = estimated postoperative anterior chamber depth in meters; N = refractive index of 

vitreous and aqueous humor; ℎ𝑖 and ℎ𝑐 = corrections for the principal planes of the IOL and the 

cornea, respectively. 

Different from the optics-based formulas, the SRK formula (devised by Sanders, Retzlaff 

and Kraff in 1980) is a linear regression function fitted using a historical dataset.  

The SRK II formula, which is a second generation formula, improved on the estimation 

of postoperative ACD by adjusting it with AL. Third-generation formulas introduced the concept 

of effective lens position (ELP), which represents an imaginary location of the thin lens (in the 

thin lens approximation), but not its actual physical location.[26,27] ELP was modeled as a 

function of the preoperative AL and K. It was later proved that the errors in the estimation of the 

ELP is a vital source of errors (35.5%) in refraction prediction according to Norrby et al.[28]  
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The fourth generation and newer generation formulas improved the estimation of ELP and the 

prediction accuracy further.  

In addition to standard biometry, recent IOL formulas have started to include patient 

demographics, such as age and gender in IOL calculation. There is increasing evidence 

supporting the inclusion of demographic data. The influence of age on the prediction errors has 

been previously described. [29–32] Gender- and race-related variability in biometry of cataract 

patients was also observed.[33–36] Findings of these publications suggest that the demographics 

of a patient may play a role in IOL power prediction. 

The above-mentioned IOL formulas are dedicated to serve general cataract patients, with 

physiologic, prolate corneas. IOL power calculation of difficult cases such as patients who had 

previous corneal refractive surgery should follow different protocols. The primary source of 

error in IOL power selection using standard formulas for post-refractive surgery eyes can be 

attributed to the inaccurate measurement of the central corneal power (K).[37] This is because 

standard optical biometers do not measure the refractive power of the cornea in diopters directly, 

but instead they estimate the total corneal power based on the measured radius of curvature of 

the anterior corneal surface using the following equation.[37–39]  

𝐾 =
𝑛𝑐 − 1

𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟
 

In this equation, K is the estimated corneal power in diopters; 𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟  is the measured 

radius of curvature of the anterior corneal surface in meters; 𝑛𝑐 is the keratometric index 

(typically set to 1.3315, 1.336, 1.3375 or 1.338). The detailed formulation of this equation has 

been described in previous publications,[40] as well as demonstrated in Appendix B. The 

estimation of the total corneal power makes assumptions about (1) the refractive index of the 
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cornea, (2) the refractive index of aqueous humor, (3) the average anterior corneal curvature, and 

(4) the anterior-posterior corneal curvature ratio. 

AP ratio = 
𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟

𝑅𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 

Here 𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟  is the radius of curvature of the anterior corneal surface, and 𝑅𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  is 

the radius of curvature of the posterior corneal surface. The keratometric index represents a 

mixture of the presumed constants. Corneal refractive surgery alters the shape of the cornea 

(anterior and posterior curvature), so the keratometric index will no longer be accurate in these 

cases, and the K measurements for these eyes become inaccurate. [39,41]  Several publications 

have reviewed the methods and formulas (e.g. Barrett True-K, Haigis-L[42] and OCT-based 

formulas) for selecting IOL powers for post-refractive eyes.[41,43,44] Currently, there is no 

universally accepted gold standard, and it is generally recommended to take into consideration 

the results from different calculation methods for a better selection of the IOL powers for eyes 

that had previous refractive surgery.[44] 

Generation Formula Equation Reference 

1st Binkhorst IOL power P to achieve emmetropia: 

𝑃 =  
1336(4𝑅 − 𝐴𝐿)

(𝐴𝐿 − 𝐶)(4𝑅 − 𝐶)
 

R is the radius of corneal curvature 

[45] 

Colenbrander IOL power P to achieve emmetropia: 

𝑃 =  
1336

𝐴𝐿 − 𝐶 − 0.05
−

1336

1336
𝐾 − 𝐶 − 0.05

 

[46] 

Fyodorov IOL power P to achieve emmetropia: 

𝑃 =  
1336 − 𝐴𝐿 ∗ 𝐾

(𝐴𝐿 − 𝐶)(1 −
𝐶𝐾

1336)
 

[47] 

Thijssen IOL power P to achieve emmetropia: 

𝑃 =  
1336

𝐴𝐿 − 𝐶 + 𝐶𝑜𝑛𝑠𝑡1
−

1336

1336
𝐾 − 𝐶 + 𝐶𝑜𝑛𝑠𝑡2

 

[48] 

SRK IOL power P to achieve emmetropia: 

𝑃 = 𝐴 − 2.5𝐴𝐿 − 0.9𝐾,  

A is the A-constant 

[49,50] 
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2nd SRK II IOL power P to achieve emmetropia: 

𝑃 = 𝐴1 − 2.5𝐴𝐿 − 0.9𝐾,  

A1 is a factor calculated based on the A-constant and AL 

[51] 

Table 1.2 Equations of first and second generation IOL formulas.  

P: IOL power (D); AL: axial length (in mm); K: average keratometry (D); C = estimated constant postoperative 

anterior chamber depth (mm). 

 
Generation Formula Principal Input preoperative biometry Reference 

1st  

 

SRK Regression AL, K [49,50] 

Thijssen Gaussian optics (thin lens) AL, K [48] 

2nd 

 

SRK II Regression AL, K [51] 

Hoffer Gaussian optics (thin lens) AL, K [52] 

3rd SRK/T Gaussian optics (thin lens) AL, K [53,54] 

Hoffer Q Gaussian optics (thin lens) AL, K [52,55] 

Holladay 1 Gaussian optics (thin lens) AL, K [56] 

4th Barrett Universal II  Gaussian optics (thick lens) AL, K, ACD, LT*, WTW* [57] 

Olsen Ray tracing AL, K, ACD, LT [58] 

Haigis Gaussian optics (thin lens) AL, K, ACD [59] 

Holladay 2 Gaussian optics (thin lens) AL, K, ACD, LT*, age*, WTW*, 

preoperative refraction* 

[60] 

New T2  Gaussian optics (thin lens) AL, K [61] 

Ladas Super Formula 

(LSF) 

Amalgam of existing formulas AL, K, ACD* [62–64] 

OKULIX Ray tracing AL, K, ACD*, LT*, posterior K* [65] 

Kane  Gaussian optics and artificial 

Intelligence 

AL, K, ACD, LT*, CCT*, gender [66] 

Hill-RBF v3.0  Artificial Intelligence AL, K, ACD, LT*, WTW*, CCT* [67] 

EVO v2.0  Gaussian optics (thick lens) AL, K, ACD, LT*, CCT* [68] 

PearlDGS Artificial Intelligence and 

Gaussian optics (thick lens) 

AL, K, ACD, LT, CCT, WTW [69] 

VRF-G Gaussian optics, regression, 

and ray tracing 

AL, K, ACD, WTW, LT, CCT, 

gender, preoperative refraction 

[70] 

K6 Gaussian optics (thin lens and 

thick lens) 

AL, K, ACD, WTW, LT, CCT [71] 

Table 1.3 Examples of IOL formulas of different generations.  

Measurements marked with * are optional. 
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1.2.3 Artificial Intelligence and Machine Learning 

 Machine learning (ML) is a discipline within the broader artificial intelligence (AI) area 

that uses statistical methods to recognize patterns in data. Machine learning can be broadly 

categorized into three types of tasks: supervised learning, where the ground truth is known, 

unsupervised learning, where the cases are not labeled, and reinforcement learning, where the 

model learns interactively through trial and error. The problem of supervised learning can be 

further divided into two types: regression tasks involving cases with continuous numerical 

observations as the ground truth, and classification tasks involving discrete labels as the ground 

truth. 

This section introduces state-of-the-art supervised ML algorithms that are most relevant 

to this dissertation. Support Vector Machines (SVMs) use support vectors to establish margins 

when building predictive models based on the data. Using it in conjunction with nonlinear 

kernels can map feature vectors into higher-dimensional spaces, enabling better case 

differentiation. In addition, decision trees-based ensemble machine learning algorithms have 

gained significant popularity because they are efficient and powerful, such as the random forest 

algorithm which applies bootstrap aggregation (i.e., bagging) to a set of decision trees, and 

gradient boosted decision trees (GBDT) which applies boosting as the meta-algorithm to 

ensemble weak learners (decision trees) and uses gradient descent as the optimization algorithm.  

Artificial neural networks (ANN) are originally introduced in the 1940s and 1950s. In recent 

years, it has gained increasing popularity as a result of performance improvements in Central 

Processing Units (CPUs) and Graphics Processing Units (GPUs), as well as a data explosion. 

Deep learning refers to the use of neural networks with a large number of hidden layers. A deep 

network allows for a multitude of parameters and thus the ability to learn very complex patterns. 
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Therefore, deep learning is particularly useful for complex tasks such as image recognition and 

labeling, text recognition, speech recognition, etc.  

ML algorithms typically involve a variety of hyperparameters which play a critical role in 

the model's prediction performance. For instance, the tree depth for decision trees, the learning 

rate for gradient descent, and the number of hidden layers and neurons for ANN. Additionally, 

model selection is also necessary to decide on the appropriate data augmentation and feature 

engineering methods. Together, the optimization of ML models can be performed via cross-

validation. The basic workflow of supervised ML consists of steps shown in Figure 1.2. Many 

machine learning toolboxes (Keras[72], TensorFlow[73], PyTorch[74], Scikit-Learn[75], 

XGBoost[76], LightGBM[77]) have been developed in recent years, which greatly facilitate and 

streamline the development of ML models.  

 

Figure 1.2 Supervised machine learning workflow. 

 

1.2.4 AI-Based IOL Power Prediction 

Ophthalmology is one of many fields in which machine learning has been used, including 

but not limited to recognition and diagnosis of ophthalmic diseases such as glaucoma, diabetic 
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retinopathy, macular edema and age-related macular degeneration.[78,79] IOL power calculation 

is in line with this trend. As shown in Table 1.3, existing AI-based IOL formula include the Hill-

RBF formula, the Kane formula, and the PearlDGS formula. The Hill-RBF (Radial Basis 

Function) formula calculator was released in 2016 and is currently at version 3.0. The Kane 

formula was developed by Jack Kane in 2017, based on a dataset with nearly 30000 cases. This 

formula combines theoretical optics and artificial intelligence, and was found to outperform 

other existing formulas including Barrett Universal II. [70,80] The PearlDGS formula was 

published in 2021 claiming to outperform existing formulas including K6, Olsen, EVO v2.0, 

Hill-RBF v3.0 and Barrett Universal II.[69] Ladas Super Formula (LSF) AI,[64] which is 

currently unreleased, combines AI with the original Ladas Super Formula. Apart from the above-

mentioned formulas, in the recent years, a growing number of machine learning-based methods 

for postoperative refraction prediction have been published and await further validation (Table 

1.4).  

ML has also been applied to postoperative ACD (or ELP) estimation.[81] ML-based 

prediction of ELPs using OCT measurements has also been explored. [82] 

Method Data Size  Function Reference 

Support vector machine regression model (SVM-RM) and 

multilayer neural network ensemble model (MLNN-EM) 

1168 

patients 

Standard IOL 

calculation 

[83] 

Support vector regression (SVR), XGBoost and artificial 

neural network (ANN) 

1107 

patients 

Adjust existing 

IOL formulas 

[62] 

Bayesian additive regression trees (BART) 3276 

patients 

Standard IOL 

calculation 

[84] 

Karmona method: an ensemble of support vector machines 

(SVMs) with radial basis function (RBF) and multivariate 

adaptive regression spline (MARS) with second-order 

polynomials 

260 patients Standard IOL 

calculation 

[85] 
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Support vector regression (SVR), random forest regression 

(RFR), gradient boosting regression (GBR), and neural 

network (NN) 

2010 

patients 

Standard IOL 

calculation 

[86] 

MM formula: combines thin lens geometric optics and 

machine learning (ensemble-based model) 

681 patients Standard IOL 

calculation 

[87] 

Table 1.4 Summary of recently (2020-2022) published artificial intelligence-based methods for IOL power 

prediction for cataract surgery. 

1.2.5 Evaluation of IOL Formulas 

The evaluation of the prediction performance of IOL formulas usually follows the 

following protocols [88–91].  

To investigate the accuracy of IOL formulas designed for general cataract patients, eyes 

that had prior refractive surgery should be excluded. Patients with limited vision acuity (worse 

than 20/40) should be excluded because the postoperative refraction measurement of these cases 

may be inaccurate. In analyzing the formulas' performance, only one eye per patient should be 

included since most statistical tests assume the samples are independent. 

The formula-specific constants should be optimized using previous patients’ data to 

accommodate for systematic errors introduced by differences in lens material, lens geometry, 

surgical techniques of surgeons, biometry measurement devices, patient population, etc.[92,93] 

The most optimal constant should zero out the mean prediction error of postoperative refraction 

in the dataset. As an alternative to optimizing the constants with historical data, the surgeon may 

choose to use the constants provided by User Group for Laser Interference Biometry (ULIB).[94] 

After calculating predictions with preoperative biometry and appropriate lens constants, the 

prediction performance of IOL formulas can be measured and compared with the following 

metrics: mean error (ME), mean absolute error (MAE), median absolute error (MedAE), 

standard deviation (SD) of the arithmetic error of the refraction prediction, and the ratio of eyes 
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that obtain an error within ± 0.25 𝐷, ± 0.5 𝐷, ± 0.75 𝐷, and ± 1 𝐷. To investigate the stability 

of prediction accuracy in different AL groups, the performance of the IOL formulas in short (AL 

< 22 mm), medium (22 mm ≤ AL ≤ 26 mm), and long (AL > 26 mm) AL groups should be 

computed and compared. Based on previous publications, predictions of existing formulas for 

extremely short or long eyes are usually less accurate compared to eyes of medium axial length, 

especially the short eyes.[95–98]  

Many retrospective studies have been conducted to compare the prediction performance 

of existing IOL formulas in general cataract patients.[70,80,96,99–105] The Barrett Universal II 

formula is well-established and historically proved to be one of the most effective formulas for 

general cataract patients, before the introduction of newer formulas. In some studies, newer 

formulas or newer version of existing formulas, such as Kane, Hill-RBF v3.0, VRF-G and EVO 

v2.0 have shown superior performance compared to traditional formulas, despite their relatively 

short existence.[70,80,96] 

The performance rankings of formulas in long and short eyes are inconsistent across 

publications, especially as better-performing IOL formulas emerge. See 6.6 for more discussions 

on this topic. 

1.3 Dissertation Outline 

The goal of this dissertation is to describe a series of research focusing on the application 

of machine learning in postoperative refraction and lens position prediction for cataract surgery. 

This dissertation is structured as follows. In Chapter 2, I present our work on developing a 

machine learning-based method for predicting the postoperative lens position (i.e., the 

postoperative anterior chamber depth). In Chapter 3, I present a method to incorporate ML-

predicted postoperative ACD into existing optics-based IOL formulas. In Chapter 4, I present 
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methods to incorporate ML-predicted postoperative ACD into an existing ray tracing based IOL 

formula. In Chapter 5, I present an ensemble machine learning-based model for predicting 

postoperative refractions for cataract surgery patient who received Alcon SN60WF lenses. In 

Chapter 6, I present two new metrics for evaluating the prediction performance of machine 

learning based IOL formulas. In Chapter 7, I summarize and discuss the findings and limitations 

of the presented studies, as well as future directions of research on AI-aided cataract surgery. 
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Chapter 2 Prediction of Postoperative Intraocular Lens Position in Cataract Surgery 

2.1 Abstract 

The purpose of this research was to develop a method for predicting postoperative 

anterior chamber depth (ACD) in cataract surgery patients based on preoperative biometry, 

demographics, and intraocular lens (IOL) power. Patients who underwent cataract surgery and 

had both preoperative and postoperative biometry measurements were included.  Patient 

demographics and IOL power were collected from the Sight Outcomes Research Collaborative 

(SOURCE) database. A gradient boosting decision tree model was developed to predict the 

postoperative ACD. The mean absolute error (MAE) and median absolute error (MedAE) were 

used as evaluation metrics. The performance of the proposed method was compared to five 

existing formulas. A total of 847 patients were assigned randomly in a 4:1 ratio to a 

training/validation set (678 patients) and a testing set (169 patients). Using preoperative biometry 

and patient sex as predictors, the presented method achieved an MAE of 0.106 ± 0.098 (SD) on 

the testing set, and a MedAE of 0.082. MAE was significantly lower than that of the five existing 

methods (p < 0.01). When keratometry was excluded, our method attained an MAE of 0.123 ± 

0.109, and a MedAE of 0.093. When IOL power was used as an additional predictor, our method 

achieved an MAE of 0.105 ± 0.091 and a MedAE of 0.080. In conclusion, the presented machine 

learning method achieved greater accuracy than previously reported methods for the prediction 

of postoperative ACD. 
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2.2 Introduction 

As described in Chapter 1, the anterior chamber depth (ACD) indicates the location of the 

crystalline (natural) lens inside the phakic eye or that of an artificial lens in a pseudophakic eye. 

Since the natural lens is much thicker than current artificial lens implants, the postoperative ACD 

is usually deeper than the preoperative ACD.  However, the exact change in the ACD after 

surgery is difficult to predict. Existing IOL formulas have taken different approaches to predict 

the postoperative lens position. 

In first-generation IOL formulas, postoperative IOL axial position in the eye was 

modeled as a constant (4mm) in anterior chamber intraocular lens (ACIOL) power calculations.  

In second-generation formulas, Binkhorst introduced axial length as a predictor, while third-

generation formulas involved both corneal power and axial length as predictors of postoperative 

IOL position. Olsen et al. introduced two additional variables, preoperative anterior chamber 

depth (ACD) and preoperative crystalline lens thickness as predictors for postoperative IOL 

position. In 1993, Holladay first proposed the term “expected lens position” or ELP to indicate 

the location of the lens as it relates to a given optical model of the eye.[106] The ELP estimates 

in SRK/T, Holladay1 and Hoffer Q are derived based on theoretical formulas. The ELP estimate 

in the Haigis formula is a simple linear combination of the axial length and the preoperative 

anterior chamber depth. Although ELP was initially intended to estimate the position of the IOL, 

ELPs in the aforementioned formulas were developed to account for different formula-specific 

assumptions and regression results.[26,28] In order to reflect the use of ELP to account for these 

formula-specific assumptions and regression results, the term ELP today refers to “effective lens 

position” rather than “expected lens position”.   
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The importance of postoperative IOL position in IOL power calculations is due to the 

reliance of optical models of the eye on the distances between the optical components of the eye 

(the cornea and IOL) and the photoreceptors within the retina. Whether utilizing Gaussian optics 

or ray-tracing, optical models used in IOL power calculation require accurate estimates of 

postoperative IOL position to achieve useful results. Indeed, Norrby estimated in 2008 that 

estimates of IOL position were responsible for 36% of the error in IOL power predictions.[28]  

While effective lens position (ELP) refers to the distance between the anterior surface of 

the cornea and the principal plane of the IOL resulting in the observed refraction in a given 

optical model, it is important to distinguish this entity from the postoperative ACD. The 

postoperative ACD is a measurable quantity, representing the distance between the anterior 

corneal surface and the anterior IOL surface along the visual axis in the postoperative eye. The 

relationship between ELP for a given optical model and postoperative ACD depends on the 

optical model itself, meaning that while postoperative ACD is a measurable quantity, ELP is 

only a computable quantity. 

As Kriechbaum et al. pointed out in 2003, exact postoperative ACD prediction based on 

preoperative biometry data is, in principle, impossible because of the effect of several uncertain 

parameters including the shrinkage of the capsular bag.[107] There have, however, been reports 

of various preoperative features that may be predictive of postoperative ACD. For example, Plat 

in 2017 reported correlation between measurements of axial length (AL), horizontal white to 

white distance (WTW), and preoperative ACD with postoperative ACD.[108] Other approaches 

have added corneal power to improve postoperative ACD prediction.[26] 

Methods utilizing measures from anterior segment optical coherence tomography (AS-

OCT) have achieved high accuracy in postoperative ACD prediction.[109,110] However, these 



 20 

approaches rely on angle-to-angle measurements that are not typically obtained in a standard 

cataract surgery preoperative workup. Furthermore, these measurements involve manual caliper-

based measurements, introducing subjectivity and variability into the measurements while 

slowing the workflow of the cataract surgeon. 

An ideal method for postoperative ACD estimation would utilize only data obtained from 

optical biometry. It would achieve high accuracy yet have minimal loss of accuracy in the 

absence of reliable keratometry data. Such a method would be able to integrate into existing 

workflows. It could also be used for patients who had previously undergone refractive surgery, 

and would lend itself well to integration into existing and novel methods for IOL power 

calculation. 

Since it is not particularly common to obtain biometry both preoperatively and 

postoperatively, building a dataset large enough to accurately predict postoperative ACD can be 

a challenge. In this chapter, leveraging the Sight Outcomes Research Collaborative (SOURCE) 

repository, we describe the creation of a dataset including over 800 patients with both 

preoperative and postoperative biometry. Furthermore, we present here the development and 

testing of a machine learning approach to postoperative ACD prediction. 

2.3 Materials and Methods 

2.3.1 Data collection 

Biometry records (including preoperative and postoperative biometry) between August 

25, 2015 and June 27, 2019 were retrieved from Lenstar LS900 optical biometers (Haag-Streit 

USA Inc, EyeSuite software version i9.1.0.0) at University of Michigan’s Kellogg Eye Center. 

Institutional review board approval was obtained for the study and it was determined that 

informed consent was not required because of its retrospective nature and the anonymized data 
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utilized in this study. The study was carried out in accordance with the tenets of the Declaration 

of Helsinki. Patient demographics and cataract surgery information (including date of surgery 

and implanted IOL power) were obtained via the Sight Outcomes Research Collaborative 

(SOURCE) Ophthalmology Data Repository, which captures electronic health record (EHR) data 

of all patients receiving any eye care at academic medical centers participating in this research 

collaborative. SOURCE captures information on patient demographics, diagnoses identified 

based on International Classification of Diseases (ICD) codes, procedures based on Current 

Procedural Terminology (CPT) codes, and structured and unstructured (free-text) data from all 

clinical encounters (clinic visits, operative reports, etc.). For this study, we focused on a subset of 

the SOURCE patients receiving care at the University of Michigan. Spherical equivalent 

manifest refractions from the postoperative month one visit were identified from the clinical 

record for all patients who underwent cataract surgery (CPT = 66984 or 66982) from the dataset. 

The power and model of the implanted intraocular lens for each surgery was collected as well. 

Only those surgeries involving the implantation of an Alcon SN60WF single-piece acrylic 

monofocal lens (Alcon, USA) were included in the study. Patients who had prior refractive 

surgeries were excluded from the dataset. Patients who had an additional surgery (e.g., 

endothelial keratoplasty) at the time of their cataract surgery were also excluded. Postoperative 

biometry records with outliers in IOL thickness were excluded to address the possibility of lens 

tilt affecting the assessment of ACD. The outliers were defined as records where the 

postoperative lens thickness fell greater than 1.96 standard deviations away from the mean 

thickness for a given IOL power. 

2.3.2 Model development 
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After data collection, the raw data was reformatted so that each sample in the dataset 

consisted of a set of predictors and a target value that could be utilized by the machine learning 

model. Among the biometry records, it was possible for individual eyes to have multiple 

preoperative and postoperative sets of biometry measurements. In order to take advantage of 

these records, preoperative and postoperative biometry records of the same eye were matched in 

a way that accounted for all possible combinations. An eye with 𝑥 preoperative records and 𝑦 

postoperative records had 𝑥𝑦 possible combinations. The inclusion of all possible preoperative 

and postoperative biometry record combinations represents a form of data augmentation, with 

the intention of increasing robustness to measurement variations while recognizing that the same 

eye can have varying lens thickness and preoperative anterior chamber depth due to natural 

cataract progression. At the end of data preprocessing (Figure 2.1, middle panel), a dataset of 

4137 samples that involved 847 distinct patients was generated and used for the development of 

the machine learning model. Each sample consisted of (1) preoperative biometry: axial length 

(AL), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness 

(LT), flat keratometry K1, steep keratometry K2, 𝐾𝑚 =
𝐾1+𝐾2

2
, and horizontal white-to-white 

(WTW), (2) patient sex, (3) IOL power, and (4) postoperative ACD, where (1)-(3) were the 

predictors and (4) was the target variable in the machine learning model.  
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Figure 2.1 Method pipeline.  

In the middle panel, “n records” refers to the total number of records or samples in the whole dataset; “n patients” 

refers to the total number of distinct patients; “n eyes” refers to the total number of distinct eyes. In the right panel, 

3251 in the training/validation set is the total number of samples before selecting one sample per patient in the 

validation set. 

 

Corneal power is one of the most important features in both postoperative ACD 

prediction and postoperative refraction prediction in cataract surgery. However, corneal power 

measurement is unreliable in patients with prior corneal refractive surgery. In order to evaluate 

applicability of our method to patients with prior corneal refractive surgery, we examined how 

well our method performed when corneal power was not available.  

We also studied the effect of IOL power in postoperative ACD prediction, because even 

though IOL power is directly associated with IOL thickness, which could in turn affect 

postoperative ACD, IOL power, to our knowledge, has not been considered in existing formulas. 
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In summary, we examined the performance of three classes of models where different 

subsets of variables were used as predictors: (1) Base, which used AL, CCT, ACD, LT, K1, K2, 

Km, WTW, and patient sex as predictors, (2) Base + IOL, which added IOL power to “base” as 

an additional feature, and (3) Base – K, which removed K1, K2, and Km from “Base”, using AL, 

CCT, ACD, LT, WTW, and patient sex as predictors. 

LightGBM (2.2.3), which is a widely used framework for implementing the gradient 

boosted decision tree algorithm, was used to construct the machine learning model. During the 

training process, the training data were augmented through two methods (Figure 2.1, right panel) 

(1) IOL power augmentation, and (2) data interpolation. The purpose of using IOL power 

augmentation was to improve the prediction performance by incorporating the relationship 

between IOL power and IOL thickness into the training data. During IOL power augmentation, 

the implanted IOL power (𝐼𝑂𝐿𝑜𝑙𝑑) was replaced by 𝑛𝐼𝑂𝐿 randomly selected IOL powers, and the 

ground truth postoperative ACD was adjusted based on the selected IOL powers. Specifically, 

for each distinct patient, 𝑛𝐼𝑂𝐿 synthetic IOL powers (𝐼𝑂𝐿𝑛𝑒𝑤,1, 𝐼𝑂𝐿𝑛𝑒𝑤,2, …) between 

[𝐼𝑂𝐿𝑚𝑖𝑛 , 𝐼𝑂𝐿𝑚𝑎𝑥] were selected and the adjusted (new) postoperative ACD corresponding to 

each new IOL power was calculated as: 

𝐴𝐶𝐷𝑛𝑒𝑤 = 𝐴𝐶𝐷𝑜𝑙𝑑 − 𝑚(𝐼𝑂𝐿𝑛𝑒𝑤 − 𝐼𝑂𝐿𝑜𝑙𝑑) 

where 𝑚 ∈ [0,1] is a constant, 𝐼𝑂𝐿𝑚𝑖𝑛 ≥ 6, 𝐼𝑂𝐿𝑚𝑎𝑥 ≤ 30. The value of 𝐼𝑂𝐿𝑚𝑖𝑛, 𝐼𝑂𝐿𝑚𝑎𝑥, 

𝑚, and 𝑛𝐼𝑂𝐿 were optimized through cross-validation. In data interpolation, 𝑘 samples were 

randomly picked, and the center of those 𝑘 samples was calculated by averaging each dimension 

of the predictor vector 𝑋 and the target value 𝑦. Categorical variables were treated as continuous 

variables. The number of samples, 𝑘, used to create each synthetic sample and the number of 

samples generated, 𝑛, were optimized through cross-validation.  
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2.3.3 Model evaluation 

Five repetitions of five-fold cross-validation were used to perform a grid-search for the 

parameters in data augmentation (𝐼𝑂𝐿𝑚𝑖𝑛, 𝐼𝑂𝐿𝑚𝑎𝑥, 𝑚, 𝑛𝐼𝑂𝐿, 𝑛, and 𝑘) and the hyperparameters 

in the machine learning model (the learning rate, number of estimators, maximum tree depth, and 

number of leaves). Cross-validation was also used to evaluate the performance of different 

subsets of features. Mean absolute error (MAE) in postoperative ACD prediction was used as the 

primary evaluation metric in cross-validation. The optimal models for three scenarios: (1) Base 

(2) Base + IOL (3) Base − K were selected based on the mean of the MAEs in the cross-

validation results. 

We then tested the performance of our model on a hold-out testing dataset and compared 

the performance of our methods with five existing formulas: Haigis, Hoffer Q, Holladay I, Olsen, 

and SRK/T. These five existing formulas were implemented in Python 3 based on their 

publications.[52–56,58,59] The lens constants were optimized for each formula to eliminate 

systematic errors in refraction prediction using previously described methods.[58,90,97] The 

optimized constants were: 1.655 for Haigis, 5.844 for Hoffer Q, 1.990 for Holladay I, -0.225 for 

Olsen, and 119.303 for SRK/T. The corresponding mean errors in refraction are listed in Table S 

2.1. We further compared our methods to two baseline prediction methods: (1) average 

postoperative ACD, which used the average postoperative ACD in the training/validation dataset 

as the predicted ACD for the testing set and (2) linear regression, which used AL, CCT, ACD, 

LT, K1, K2, Km and WTW as predictors. Data augmentation (i.e., interpolation and IOL 

augmentation) was not applied to the linear regression model.  

Apart from the testing set described above, we also gathered a separate testing set 

consisting of 78 cataract patients (78 eyes) who had a history of prior refractive surgery. We 
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tested the Base-K model on this separate post-refractive testing set in order to compare the 

prediction performance of our method for patients with and without prior refractive surgery. 

To investigate the degree to which dataset size affected prediction performance, the 

performance of our method and linear regression were compared as random subsets of the 

training dataset of varying size (20%, 40%, 60%, 80%, and 100%) were utilized. The 

subsampling of the training dataset was applied before data interpolation to better simulate the 

reduction in available raw data.  

During the testing and validation process, one testing/validation sample was randomly 

selected for each patient to ensure that performance evaluation was not biased due to the varying 

number of records available per patient. In addition to the MAE, the median absolute error and 

Pearson correlation coefficient (𝑟) were also calculated for the performance comparison in the 

testing set. To gain insights into the relative importance of predictors in the machine learning 

model, we calculated the total gain (total reduction in training loss) across splits in decision trees 

for each predictor in the model.  

2.3.4 Statistical analysis 

Statistical testing was performed to investigate relationships between variables in the 

dataset. A chi-square test was performed to evaluate the difference in the proportion of males and 

females among all patients. A two-tailed Student t-test was performed to evaluate for differences 

in the means of biometry values between males and females. The Pearson correlation coefficients 

and the p-values testing the significance of correlation were calculated between the postoperative 

ACD and the preoperative biometry measurements. To assess the difference in cross-validation 

results of different methods, a Wilcoxon sign-rank test was performed. The testing set results of 

different methods were compared based on the Friedman test followed by a post-hoc paired 
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Wilcoxon signed-rank test with Bonferroni correction. Performance of the keratometry-

independent Base – K model was compared between the testing sets of patients with and without 

prior refractive surgery through an unpaired two-sample Wilcoxon rank-sum test (i.e., the Mann-

Whitney U test). Statistical significance for all above tests was defined as p-value < 0.05. All 

statistical analysis and machine learning model construction scripts were written in Python 3.  

2.4 Results 

2.4.1 Data characteristics 

In total, our dataset included the preoperative and postoperative biometry measurements 

and surgical records of 1205 eyes from 847 patients (Figure 2.1). These patients were split into 

training/validation and testing sets. The distributions of the biometry measurements were similar 

in the two sets (Table 2.1). There were significantly more females than males (chi-square test, p 

< 0.01). The postoperative anterior chamber depth (ACD) was positively correlated with 

preoperative AL, ACD, WTW, and CCT (p < 0.01 for each), and negatively correlated with 

preoperative LT and WTW (p < 0.01 for each). Postoperative ACD was not significantly 

correlated with preoperative Km (p = 0.74) ( 

Figure 2.2A).  

Figure 2.2B shows the distribution of the power of the implanted IOL and the 

postoperative lens thickness (r = 0.75, p < 0.01). The scatter plot indicates a linear relationship 

between the IOL power and postoperative IOL thickness. The distributions of biometry 

measurements in male and female patients are shown in  

Figure 2.2C. The preoperative AL, preoperative ACD, and postoperative ACD in male 

patients were longer than those in female patients (p < 0.01 for each). Km in females was greater 

than that in males (p < 0.01). 
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Table 2.1 Patient demographics.  

Since patients in our dataset had varied numbers of biometry exam records, we randomly selected one record/patient 

from the training/validation set and the testing set to calculate the summary statistics. 

 

2.4.2 Model performance 

As stated above, different subsets of features were tested to examine the performance of 

our machine learning model when (1) corneal power was not available and (2) IOL power was 

considered. Figure S2 shows the cross-validation results of the alternative models with 

optimized parameters. The cross-validation results (i.e., the average MAE) of each alternative 

model were as follows: 0.121 mm for Base = biometry + patient sex, 0.120 mm for Base + IOL, 

0.131 mm for Base − K. The addition of IOL power improved prediction performance, while 

IOL-based  augmentation, which simulated the linear relationship between an IOL’s power and 

its thickness further improved prediction performance, beyond the addition of IOL power alone. 

Base – K performed significantly worse compared to Base and Base + IOL (p < 0.01), as 

expected. For comparison purposes, we recalculated the cross-validation results using median 

Characteristic Training/Validation Set (mean ± SD) Testing Set (mean ± SD) 

Gender male: 283 (41.7%), 

female: 395 (58.3%) 

male: 65 (38.5%), 

female: 104 (61.5%) 

Age at surgery (years) 71.08 ± 10.50 71.02 ± 8.96 

Preoperative Km (D) 43.78 ± 1.65 43.94 ± 1.70 

Preoperative AL (mm) 23.98 ± 1.09 23.79 ± 1.09 

Preoperative LT (mm) 4.52 ± 0.45 4.53 ± 0.44 

Preoperative ACD (mm) 3.25 ± 0.41 3.24 ± 0.42 

Postoperative ACD (mm) 4.66 ± 0.30 4.64 ± 0.30 
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absolute error as the evaluation metric. The results were as follows: 0.100 mm for Base, 0.097 

mm for Base + IOL, and 0.108 mm for Base – K. The prediction performance was consistent 

with the results obtained with MAE. 

 

Figure 2.2 Baseline dataset characteristics.  

A) Bar graph plotting the Pearson correlation coefficient 𝑟 between postoperative anterior chamber depth and 

preoperative biometry in the training/validation dataset. B) Scatter plot of IOL power against the postoperative lens 

thickness. The dots are 50% transparent. C) The distribution of preoperative axial length, corneal power, anterior 

chamber depth and postoperative anterior chamber depth in male (M) and female (F) patients. One record per patient 

in the training/validation set was randomly selected to generate the figures (i.e., the same set of records as the 

“Training/Validation Set” column in Table 2.1).  

 

The performance of the three models on the unseen testing dataset is presented in Table 

2.2 and Table 2.3. The Friedman test for difference in MAE among the methods in Table 2.2 

was significant (p < 0.01). The Base predictors, which included preoperative biometry and 
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patient sex, achieved an MAE of 0.106 mm. Adding the IOL improved the prediction 

performance in the test set (MAE = 0.105 mm). Base and Base + IOL significantly outperformed 

Haigis, Hoffer Q, Holladay I, Olsen, SRK/T, and mean postoperative ACD, based on the post-

hoc Wilcoxon signed rank test with Bonferroni correction (p < 0.01). When the corneal power 

was not included (Base − K), which simulates the scenario when the measured corneal power is 

not reliable, our method maintained good performance, with an MAE = 0.123 mm. The 

performance of Base − K still significantly outperformed the existing 5 formulas (p < 0.01). 

When we tested the Base − K model on patients with prior refractive surgery (Table 2.3), the 

MAE was 0.129 mm, and this result was not significantly different compared with the 

performance of Base − K for patients with no history of refractive surgery (p = 0.13).  

Index Method MAE in mm  ± SD MedAE in mm 

(interquartile range) 

𝑹𝟐 

1 Base = biometry + patient sex 0.106 ± 0.098 0.082 (0.119) 0.777 

2 Base + IOL 0.105 ± 0.091 0.080 (0.114) 0.781 

3 Haigis 0.680 ± 0.172 0.681 (0.206) 0.681 

4 Hoffer Q 1.228 ± 0.251 1.219 (0.318) 0.407 

5 Holladay I 0.743 ± 0.283 0.744 (0.403) 0.405 

6 Olsen 1.200 ± 0.172 1.199 (0.206) 0.681 

7 SRK/T 1.205 ± 0.328 1.183 (0.256) 0.317 

8 Average postoperative ACD 0.231 ± 0.195 0.192 (0.000) / 

9 Linear regression 0.116 ± 0.099 0.089 (0.120) 0.746 

Table 2.2 Prediction performance on the testing set.  

MAE = Mean Absolute Error. MedAE = Median Absolute Error. 
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Index Method Number of 

Patients 

MAE in 

mm ± SD 

MedAE in mm 

(interquartile range) 

𝑹𝟐 

1 Base – K without prior 

refractive surgery 

169 0.123 ± 

0.109 

0.093 (0.124) 0.711 

2 Base – K with prior 

refractive surgery 

78 0.129 ± 

0.096 

0.110 (0.145) 0.743 

Table 2.3 Prediction performance on the testing set without using the corneal power as an input.  

The testing set used for “Base – K without prior refractive surgery” was the same as the that in Table 2.2. And a 

separate testing set was used for “Base – K with prior refractive surgery” (see details in Methods). MAE = Mean 

Absolute Error. MedAE = Median Absolute Error. 

 

Figure 2.3 Testing set MAE (in mm) of postoperative ACD prediction of the linear regression method and our 

Base method (Base = biometry + patient sex).  

MAE = mean absolute error, ACD = anterior chamber depth. 

 

The performance of our methods and the linear regression method on training datasets of 

varying size is shown in Figure 2.3. The result demonstrates that the performance attained by 

our Base method on the testing set continued to improve as the dataset grew to 100% of the 

available data. On the contrary, the improvement of the linear regression method plateaued at 

around 60% of the available data. The above result indicates that the large set of paired 
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preoperative and postoperative biometry provided a significant benefit to our machine learning 

model and that its performance may continue to improve as more data becomes available.  

Feature importance in the Base model and Base model with IOL power is shown in 

Figure 2.4. ACD, LT, and WTW ranked highly in both models. IOL power achieved a high 

importance score when it was added into the model (Figure 2.4B). 

 

Figure 2.4 Feature importance in the Base model and Base + IOL model, measured by the percentage of total 

gain.  

 

2.5 Discussion 

We have presented here a machine learning approach to predicting postoperative ACD in 

cataract surgery using standard preoperative optical biometry measurements.   

In order to develop this method, we built, to our knowledge, the largest optical biometry 

dataset involving both preoperative and postoperative measurements reported to date. We found, 

through sampling of subsets of this dataset of varying size, that the performance of our machine 

learning method for predicting postoperative ACD improved substantially as the dataset size 
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grew, while the performance of linear regression plateaued at 60% of the available data. This 

finding underscores the potential of our machine learning method to continue to improve as the 

dataset, derived from the SOURCE data repository, continues to grow. 

We found that even a linear regression approach to modeling postoperative ACD 

achieved performance better than that of previously reported methods (including Haigis, Hoffer 

Q, Holladay I, Olsen, and SRK/T) both in terms of the mean absolute error and the Pearson 

correlation (𝑟). The performance of linear regression on our biometry dataset also exceeded that 

of previously reported AS-OCT methods by R2 value.[109] Since lens constants were optimized 

individually prior to computing the predictions of each of the aforementioned formulas, the high 

performance of linear regression relative to existing methods was likely due to the size of the 

dataset of available, as well as the use of optical biometry to directly measure postoperative IOL 

position, as opposed to ultrasound biometry or ELP calculations. The existing formulas 

considered here use a thin lens assumption, wherein the intermediate value referred to as the 

ACD does not represent the position of either surface of the IOL, but rather the location of the 

principal plane.[26] Therefore, the estimated ACD terms in these formulas can more accurately 

be described as providing information about the ELP within the optical models employed by 

those IOL power calculation formulas. As such, they are not ideal for prediction of the true 

postoperative anatomy of the eye of a cataract surgery patient. 

By employing a gradient boosting machine learning algorithm, we were able to 

significantly improve ACD prediction performance beyond that of linear regression and existing 

ACD prediction formulas. Our method also outperformed methods employing more involved 

measurement techniques such as AS-OCT.[109,110] Evaluation of feature importance 

demonstrated that preoperative ACD was the most important input parameter, followed by 
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crystalline lens thickness (LT), axial length (AL), and horizontal white to white (WTW), 

respectively. Inclusion of patient sex, which is not typically utilized in methods of postoperative 

ACD prediction, in the model was found to improve performance (Figure S 2.2). This finding 

was consistent with prior studies of patient biometry reporting consistent differences in ocular 

shape between male and female patients, with female corneal powers measuring greater and axial 

lengths measuring shorter than those of males on average.[111,112]  

In order to enhance performance of our gradient boosting machine learning approach, we 

included biometry measurements for the same eye taken at multiple preoperative and 

postoperative time points. The variations in the biometry measurements among different records 

reflect the margin of error of optical biometry measurements as well as the natural increase in 

lens thickness and concomitant reduction in preoperative anterior chamber depth over time. 

One of the data augmentation methods employed involved modeling IOL thickness based 

on IOL power to account for potential variations in postoperative ACD due to the thickness of 

the IOL utilized. This augmentation method utilized the linear relationship between the IOL 

power and the IOL thickness shown in  

Figure 2.2B. Variations in lens thickness measurements for a given IOL power are also 

depicted in  

Figure 2.2B, and could be caused by: (1) tilt and decentration of the IOL, (2) variations 

in the production of the lens, and (3) trace residual or proliferative lens material, which could 

affect the detection of the surfaces of the IOL. Despite these variations, the data augmentation 

method presented here resulted in improvements in cross-validation performance (Figure S 2.2). 

The performance enhancement seen with the IOL thickness adjustment method indicates that 

IOL thickness is indeed relevant to postoperative ACD. It further indicates that customized IOL 



 35 

thickness modeling should be included in methods for postoperative ACD prediction depending 

on the model of IOL intended for use in the patient’s preoperative plan. 

Due to challenges in accurately assessing corneal power in post-refractive surgery 

patients, we investigated a keratometry-independent (K-independent) approach to the prediction 

of postoperative ACD as well. Our method outperformed a previously-reported method for K-

independent prediction of ACD,[113] and may be applicable in new methods for IOL power 

calculation in patients with prior refractive surgery. Performance of this K-independent model 

was not significantly different for patients with or without prior refractive surgery, indicating its 

applicability to the post-refractive surgery population.  

The limitations of our study include the use of a retrospective, rather than prospective, 

dataset. It was not possible to compare our method for ACD prediction to those of the Barrett 

Universal II or Holladay 2 formulas, as the ACD predictions of these formulas are not publicly 

available. An additional limitation of our study is that while a hold-out testing set was used, it 

was comprised of data obtained at the same institution. Building a separate testing set external to 

our institution would provide additional validation of our method, and will be a future direction 

of this work. The presented models were developed using the Alcon SN60WF lens due to the 

high frequency of its use at our institution, however, the extension of our approach to other IOLs 

will be a future direction of this work through the expansion of the SOURCE data repository. 

The method presented here for the prediction of postoperative ACD has the potential to 

be integrated into methods for IOL power calculation. Both geometrical optics and ray-tracing 

methods for IOL power calculation rely on some form of prediction of postoperative IOL 

position, and could benefit from the accuracy of the approach presented here. Since feature 

engineering is an important part of optimizing machine learning methods, and postoperative 
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ACD is known to be a useful predictor in traditional methods of IOL power calculation, it is 

possible that postoperative ACD may be a useful feature for machine learning approaches to IOL 

power calculation as well. 

In summary, the machine learning method presented here for predicting postoperative 

ACD in cataract surgery has the potential for integration into novel methods for IOL power 

calculation, both in standard and post-refractive surgery cases. 

2.6 Publication and Acknowledgement 

This chapter is a published work [114]: Li, T., Yang, K., Stein, J. D., & Nallasamy, N. 

(2020). Gradient boosting decision tree algorithm for the prediction of postoperative intraocular 

lens position in cataract surgery. Translational vision science & technology, 9(13), 38-38. 

2.7 Supplementary Materials 

2.7.1 Supplementary figures 
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Figure S 2.1 Schematic of the IOL augmentation method.  

IOL = the IOL power. LT = the thickness of the intraocular lens. ACD = the postoperative anterior chamber depth. 

The upper half of the figure elaborates the equation's derivation 𝐴𝐶𝐷𝑛𝑒𝑤 = 𝐴𝐶𝐷𝑜𝑙𝑑 − 𝑚(𝐼𝑂𝐿𝑛𝑒𝑤 − 𝐼𝑂𝐿𝑜𝑙𝑑) which 

we used to augment the IOL power and the postoperative ACD. During the augmentation, simulated cases were 

created based on real cases in the dataset. The IOL powers for the simulated cases were randomly selected. The 

equation assumes (1) a simple linear relationship between the IOL power and the thickness of the intraocular lens: 

𝐿𝑇𝑛𝑒𝑤 − 𝐿𝑇𝑜𝑙𝑑 = 𝑚′(𝐼𝑂𝐿𝑛𝑒𝑤 − 𝐼𝑂𝐿𝑜𝑙𝑑) (𝐿𝑇𝑛𝑒𝑤 and 𝐿𝑇𝑜𝑙𝑑  are the thickness of the IOL), and (2) an imaginary anchor 

point on the visual axis within the IOL that has a fixed location independent of the IOL power. The first assumption 

bridges the IOL power and the thickness of the IOL. The second assumption is necessary because it provides way to 

map the change in intraocular lens thickness to the change in the postoperative ACD. The diagrams in the lower half 

of the figure depict two physiologically plausible assumptions about the location of the IOL: (1) when the anchor 

point is at 0.5 ∗ 𝐿𝑇𝐼𝑂𝐿 (𝐿𝑇𝐼𝑂𝐿 is the thickness of the IOL) and (2) when the anchor point is at 1.0 ∗ 𝐿𝑇𝐼𝑂𝐿. The blue 

lens stands for the real implanted lens, and the white lens stands for the imaginary lens in a simulated case. Instead 

of guessing a value for the location of the anchor point, the anchor point location was represented by 𝑚′′ ∗ 𝐿𝑇𝐼𝑂𝐿 

(𝑚′′ ∈ [0,1]) and 𝑚′′ was combined with 𝑚′ into one single variable: 𝑚 = 𝑚′𝑚′′. For a given constant 𝑚, we could 

calculate the corresponding postoperative ACD and evaluate the performance of our method using the augmented 

data. The 𝑚 that gave the best performance in cross-validation was chosen. 



 38 

 

Figure S 2.2 Boxplot of the cross-validation results of six alternative methods.  

The means (±SD) of MAE for the methods were: 0.1209 ± 0.00593 for Base, 0.1212 ± 0.00539 for Base + IOL 

without augmentation, 0.1197 ± 0.00533 for Base + IOL, 0.1306 ± 0.00606 for Base – K, 0.1210 ± 0.00531 for Base 

– sex, and 0.1293 ± 0.00665 for Base without data interpolation. The mean is represented by a white square inside 

the boxplot. The yellow dashed line marks the lowest mean (0.1197) among four models. Base + IOL used IOL 

augmentation and Base + IOL without augmentation did not use IOL augmentation. 

2.7.2 Supplementary tables 

Table S 2.1 Optimized constants and mean error of existing formulas.  

The constants for Holladay 1, SRK/T, Hoffer Q and Haigis were selected so that the absolute value of the mean 

error was minimized. The constants were searched in a space around their default value with a step of 0.001. The 

constant for the Olsen formula was calculated based on the publication.[58] 

 

 

Formula Constant  Optimized Constant Value 
Signed Average Numerical Error in 

Refraction 

Holladay1 Surgeon factor 1.990  -0.000509 

SRK/T A constant 119.303  -0.000509 

Hoffer Q ACD 5.844 -0.000499 

Haigis 𝑎0 1.655  -0.000405 

Olsen ACDconst 5.155 / 
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Chapter 3 Improve the Accuracy of Existing Lens Formula with Machine Learning-

Predicted Lens Position  

3.1 Abstract 

The aim of this study was to assess whether incorporating a machine learning (ML) 

method for accurate prediction of postoperative anterior chamber depth (ACD) improves the 

refraction prediction performance of existing intraocular lens (IOL) calculation formulas. A 

dataset of 4806 cataract patients were gathered at the Kellogg Eye Center, University of 

Michigan, and split into a training set (80% of patients, 5761 eyes) and a testing set (20% of 

patients, 961 eyes). A previously developed ML-based method was used to predict the 

postoperative ACD based on preoperative biometry. This ML-based postoperative ACD was 

integrated into new effective lens position (ELP) predictions using regression models to rescale 

the ML output for each of four existing formulas (Haigis, Hoffer Q, Holladay, and SRK/T). The 

performance of the formulas with ML-modified ELP was compared using a testing dataset. 

Performance was measured by the mean absolute error (MAE) in refraction prediction. When the 

ELP was replaced with a linear combination of the original ELP and the ML-predicted ELP, the 

MAEs ± SD (in Diopters) in the testing set were: 0.356 ± 0.329 for Haigis, 0.352 ± 0.319 for 

Hoffer Q, 0.371 ± 0.336 for Holladay, and 0.361 ± 0.331 for SRK/T which were significantly 

lower (p-value < 0.05) than those of the original formulas: 0.373 ± 0.328 for Haigis, 0.408 ± 

0.337 for Hoffer Q, 0.384 ± 0.341 for Holladay, and 0.394 ± 0.351 for SRK/T. In conclusion, 

using a more accurately predicted postoperative ACD significantly improves the prediction 

accuracy of four existing IOL power formulas.  
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3.2 Introduction 

As demonstrated in previous chapters, the estimation of postoperative intraocular lens 

(IOL) position is essential to IOL power calculations for cataract surgery. Methods to improve 

the accuracy of the prediction of postoperative ACD have been studied for decades. Existing 

theoretical formulas use an intermediate variable named effective lens position (ELP) to 

represent the predicted lens position. However, based on our results shown in Chapter 2, the 

ELPs predicted by the existing formulas are not exact estimates of the physical distance between 

the cornea and the IOL. Our ML-predicted postoperative ACD was a more accurate 

representation of the physical location of the lens. In view of the limitations of the ELP in 

existing formulas, recently, more efforts have been devoted to constructing ELPs that better 

reflect the true location of the IOL.[110,115–118] New IOL power prediction methods have also 

been developed based on the new-generation ELP prediction methods, and they have shown that 

using a more accurately predicted IOL position helps to improve the IOL power prediction 

accuracy.[115] 

It is so far largely unexplored whether inserting a more accurately predicted ELP into 

existing formulas improves refraction prediction accuracy. This is an important question 

because: (1) it provides a fast and efficient way to modify and improve on existing IOL formulas 

whose reliability has been tested extensively. (2) such research can provide supports for 

translating the continued improvements in accuracy in postoperative ACD prediction into better 

refraction predictions in published formulas. Several previous studies had modified the ELPs in 

existing formulas in order to achieve better refraction prediction results in certain cataract cases. 

Modification of ELP calculation in the Haigis formula for sulcus-implanted IOLs was reported to 

improve performance.[119] Kim et al. adjusted the ELP estimation in SRK/T formulas with the 



 41 

corneal height in post-refractive patients and achieved satisfactory accuracy.[120] It remains to 

be explored whether improvement of ELP estimates for in-the-bag IOL placement can improve 

IOL power calculations of existing formulas for general cataract patients.  

Since most recently published IOL formulas (e.g., Barrett Universal II [121,122], 

Holladay 2, Olsen formula [123]) are either not disclosed to the public or do not have the option 

to customize the value of ELP during the prediction of postoperative refraction, here we applied 

our postoperative ACD prediction methods described in Chapter 2 to a dataset of 4806 cataract 

surgery patients and replaced the ELP estimates in 4 existing IOL formulas: Haigis, Hoffer Q, 

Holladay, and SRK/T. We combined our machine learning (ML) prediction of true postoperative 

ACD with the original ELP estimated by each formula and substituted this updated ELP 

prediction for each formula. We then compared the refraction prediction performance of each 

formula using its original and enhanced ELP estimates. The findings reported here demonstrate 

that existing formulas can benefit from improved methods for predicting true postoperative 

ACD.  

3.3 Materials and Methods 

3.3.1 Postoperative ACD prediction machine learning model 

In previous work,[124] we developed a machine learning-based postoperative anterior 

chamber depth (ACD) prediction model, which predicts the postoperative anterior chamber depth 

(in mm) based on preoperative biometry. Here in the presented study, an ACD prediction 

machine learning model was trained using the method and dataset (847 patients, 4137 eyes) 

described in the previous research. The dataset was composed of the preoperative and 

postoperative biometry measured by the Lenstar LS900 optical biometers (Haag-Streit USA Inc, 

EyeSuite software version i9.1.0.0) at the University of Michigan’s Kellogg Eye Center. The 
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postoperative ACD was defined as the distance from the front surface of the cornea to the front 

surface of the intraocular lens (IOL). The postoperative ACD predicted by the machine learning 

model is referred to as 𝐸𝐿𝑃𝑀𝐿 in this chapter.  

3.3.2 Data collection 

In this study, biometry records were collected using the same approach as for the 

development of the ML postoperative ACD prediction model at University of Michigan's 

Kellogg Eye Center.[124] Institutional review board approval was obtained for the study, and it 

was determined that informed consent was not required because of its retrospective nature and 

the anonymized data used in this study. The study was carried out in accordance with the tenets 

of the Declaration of Helsinki. 

The inclusion criteria were: (1) patients who had cataract surgery (Current Procedural 

Terminology [CPT] code = 66984 or 66982) but no prior refractive surgery and no additional 

surgical procedures at the time of cataract surgery. (2) the implanted lens was an Alcon SN60WF 

single-piece acrylic monofocal lens (Alcon, USA). Each case in the dataset corresponds to one 

operation of a single eye with preoperative and postoperative information. The preoperative 

information includes the measurements of the axial length (AL), lens thickness (LT), anterior 

chamber depth (ACD), flat keratometry (K1), steep keratometry (K2), and the average 

keratometry which was calculated as 𝐾 =
𝐾1+𝐾2

2
. The postoperative information includes the 

postoperative refraction (spherical component SC and cylindrical component CC) where the time 

when it was recorded was closest to one month (30 days) after surgery. Since the patients were 

measured in a lane of 10 feet long (3.048 meters), which was shorter than the standard length of 

20 feet (6 meters), the SC was adjusted for the vergence distance by adding 
1

6
−
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1

𝑡𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠
=

1

6
−

1

3.048
= −0.1614 according to Simpson and Charman’s 

recommendation.[125] The spherical equivalent (SE) refraction was therefore calculated as 

𝑆𝐸 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = (𝑆𝐶 − 0.1614) + 0.5𝐶𝐶. Samples that were used to train the postoperative 

ACD prediction machine learning model were excluded from the dataset so that the dataset better 

simulates unseen samples. 

The dataset in total consisted of 4806 patients (Figure 3.1). The dataset was split into a 

training dataset used for the development of the methods and a testing dataset used for 

performance comparison. 80% of the patients were randomly assigned to the training set, and the 

rest of the patients (20%) were assigned to the testing set. For patients who had more than one 

associated case in the testing set (i.e., patients who had both eyes operated on), one case was 

randomly selected to ensure each patient had the same weight when the prediction performance 

was evaluated. At the end of this process, the training set had 3845 patients (5761 eyes), and the 

testing set had 961 patients (961 eyes). 

 

Figure 3.1 The analysis pipeline of the presented study.  
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𝐸𝐿𝑃𝐹 = the effective lens position (ELP) estimated by the existing formulas. 𝐸𝐿𝑃𝑀𝐿= the postoperative anterior 

chamber depth (ACD) predicted by the machine learning method. 𝐸𝐿𝑃𝐵𝐶  = the back-calculated ELP (see main text). 

𝐸𝐿𝑃𝐹
′  is a term that refers to a new ELP that is used to replace the 𝐸𝐿𝑃𝐹 in the existing formulas. 

 

3.3.3 Linear regression model 

We implemented four existing formulas (Haigis, Hoffer Q, Holladay, and SRK/T) in 

Python based on their publications.[52–55,59,126–128] The existing formulas calculated the 

effective lens position (𝐸𝐿𝑃𝐹) as a function of the preoperative biometry (Figure 3.1): 𝐸𝐿𝑃𝐹 =

𝑓0(𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦). The predicted ELP (𝐸𝐿𝑃𝐹) was then used to predict the postoperative refraction: 

𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓1(𝐸𝐿𝑃𝐹, 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦). Here, the goal was to reduce the refraction prediction error 

by replacing 𝐸𝐿𝑃𝐹 with a different value, 𝐸𝐿𝑃𝐹
′ . Our approach involves two steps: (1) finding the 

theoretically most optimal ELP values, (2) modeling the most optimal ELP with 𝐸𝐿𝑃𝐹 and the 

ML-predicted postoperative ACD, denoted 𝐸𝐿𝑃𝑀𝐿. 

In the first step, the most optimal ELP (denoted 𝐸𝐿𝑃𝐵𝐶) was found by the standard 

method of back-calculating the ELP when the predicted refraction was set to equal the true 

refraction (i.e., 𝑓1(𝐸𝐿𝑃𝐵𝐶, 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦) = 𝑡𝑟𝑢𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛). In other words, when 

𝐸𝐿𝑃𝐹
′ = 𝐸𝐿𝑃𝐵𝐶, the refraction prediction errors of all patients equal zero. More details on the 

computation of 𝐸𝐿𝑃𝐵𝐶 can be found in Supplementary Materials 3.7.3.  

After the computation of 𝐸𝐿𝑃𝐹, 𝐸𝐿𝑃𝑀𝐿, and 𝐸𝐿𝑃𝐵𝐶, we modeled 𝐸𝐿𝑃𝐵𝐶 using a linear 

function of 𝐸𝐿𝑃𝐹 and/or 𝐸𝐿𝑃𝑀𝐿 so as to obtain an approximation of the most optimal ELP using 

available variables. We compared four different approaches of approximating 𝐸𝐿𝑃𝐵𝐶: (1) 

Original, 𝐸𝐿𝑃𝐹
′ = 𝐸𝐿𝑃𝐹: using the original 𝐸𝐿𝑃𝐹, (2) Formula LR, 𝐸𝐿𝑃𝐹

′ = 𝑐1 ∙ 𝐸𝐿𝑃𝐹 + 𝑐3: using 

linearly adjusted 𝐸𝐿𝑃𝐹, (3) ML LR, 𝐸𝐿𝑃𝐹
′ = 𝑐2 ∙ 𝐸𝐿𝑃𝑀𝐿 + 𝑐3: using linearly adjusted 𝐸𝐿𝑃𝑀𝐿, (4) 

Formula & ML LR, 𝐸𝐿𝑃𝐹
′ = 𝑐1 ∙ 𝐸𝐿𝑃𝐹 + 𝑐2 ∙ 𝐸𝐿𝑃𝑀𝐿 + 𝑐3: using a linear combination of 𝐸𝐿𝑃𝐹 
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and 𝐸𝐿𝑃𝑀𝐿. Here 𝑐1, 𝑐2, and 𝑐3 are constants. Outliers with large refraction errors (i.e., 𝑒𝑟𝑟𝑜𝑟 ≥

 𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 + 2 ⋅ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 or 𝑒𝑟𝑟𝑜𝑟 ≤  𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 − 2 ⋅ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

were excluded for each formula before establishing the linear regression model, in order to 

obtain better modeling results. The refraction prediction errors were calculated as 𝑒𝑟𝑟𝑜𝑟 =

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑢𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛. The linear regression was performed using scikit-

learn 0.20.3. 

On the testing set, 𝐸𝐿𝑃𝐹
′  was calculated based on the values of 𝑐1, 𝑐2, and 𝑐3 obtained 

through linear regression. The predicted refraction was calculated as 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

𝑓1(𝐸𝐿𝑃𝐹′, 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦). The mean absolute error (MAE), median absolute error (MedAE) and 

mean error (ME) were calculated for performance comparison. 

3.3.4 A-constant optimization 

The A-constants for the formulas were optimized based on the training dataset so that the 

mean error in refraction prediction was closest to zero. The A-constants were optimized 

separately for the unmodified formulas and formulas with a modified ELP estimate (see 

additional details in the “A-Constant Optimization” section and Figure S 3.1 in Supplementary 

Materials). The optimized A-constants for the original formulas were: a0 = -0.733, a1 = -0.234, 

a2 = 0.217 for Haigis, ACD constant = 5.724 for Hoffer Q, surgeon factor = 1.864 for Holladay, 

and A = 119.089 for SRK/T (Table S 3.1).  

3.3.5 Statistical analysis 

Linear regression analysis was used to assess the significance of the correlation between 

𝐸𝐿𝑃𝐹, 𝐸𝐿𝑃𝑀𝐿, and 𝐸𝐿𝑃𝐵𝐶. To test whether the MAE and ME of different methods were 

significantly different, a Friedman test followed by a post hoc paired Wilcoxon signed-rank test 
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with Bonferroni correction was used. Statistical significance was defined as the p-value <0.05. 

All the above analyses were performed with Python 3.7.3. 

 

3.4 Results 

3.4.1 Dataset overview 

The cases in the training and testing datasets had a similar distribution according to the 

summary statistics shown in Table 3.1. As elaborated in Materials and Methods, we calculated 

𝐸𝐿𝑃𝐹, 𝐸𝐿𝑃𝑀𝐿 , and 𝐸𝐿𝑃𝐵𝐶 based on the formulas and their optimized A-constants. The mean and 

standard deviation of the ELPs calculated based on the original formulas were summarized in 

Table S 3.2. 𝐸𝐿𝑃𝐵𝐶 and 𝐸𝐿𝑃𝐹 had similar mean values in contrast to 𝐸𝐿𝑃𝑀𝐿. 

The Pearson correlation coefficients (𝑅) between 𝐸𝐿𝑃𝐹, 𝐸𝐿𝑃𝑀𝐿 , and 𝐸𝐿𝑃𝐵𝐶 were shown 

in Table 3.2. Three ELP-related variables were positively intercorrelated with each other. The 

correlation coefficients, 𝑅, between 𝐸𝐿𝑃𝐵𝐶 and 𝐸𝐿𝑃𝑀𝐿 were the weakest among the three pairs of 

variables across all formulas. 

Characteristic Training set  Testing set 

Gender Male: 2514 eyes (43.6%), 

Female: 3247 eyes (56.4%) 

Male: 425 eyes (44.2%), 

Female: 536 eyes (55.8%) 

Age at surgery (years) 70.99 ± 9.61 70.10 ± 10.24 

Preoperative K (D) 43.85 ± 1.64 43.90 ± 1.66 

Preoperative AL (mm) 24.19 ± 1.40 24.20 ± 1.41 

Preoperative LT (mm) 4.54 ± 0.45 4.53 ± 0.45 

Preoperative ACD (mm) 3.24 ± 0.41 3.26 ± 0.41 

Postoperative refraction (D) -0.53 ± 0.96 -0.57 ± 0.90 

Table 3.1 The summary statistics for the patient demographics for the training and testing dataset.  
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For the age at surgery, preoperative biometry, and postoperative refraction, the mean ± SD (standard deviation) is 

shown in the table. K = keratometry; AL = axial length; LT = lens thickness; ACD = anterior chamber depth; D = 

Diopter. 

 

Index Variable Pairs Haigis Hoffer Q  Holladay1 SRK/T  

1 𝐸𝐿𝑃𝐹 vs. 𝐸𝐿𝑃𝑀𝐿 0.751 0.676 0.698 0.636 

2 𝐸𝐿𝑃𝐵𝐶  vs. 𝐸𝐿𝑃𝐹 0.621 0.730 0.622 0.633 

3 𝐸𝐿𝑃𝐵𝐶  vs. 𝐸𝐿𝑃𝑀𝐿 0.532 0.544 0.534 0.524 

Table 3.2 The Pearson correlation coefficients (𝑹) between 𝑬𝑳𝑷𝑭, 𝑬𝑳𝑷𝑴𝑳 , and 𝑬𝑳𝑷𝑩𝑪.  

The 𝐸𝐿𝑃𝐵𝐶  and 𝐸𝐿𝑃𝐹 were calculated using the A constants optimized based on the original formulas. P-values of 

all correlations were < 0.05. All 𝑅 were rounded to three decimal places. 

 

3.4.2 Linear regression results on the training set 

Linear regression models were established based on the training set and the 𝑅2 of 

alternative linear models were shown in Table 3.3. The coefficients of the fitted linear regression 

line are shown in Table S 3.3. The mean and SD of the 𝐸𝐿𝑃𝐹
′  resulting from different models are 

shown in Table S 3.4. For “Formula LR”, the 𝑅2 was larger than that of “ML LR” for all four 

formulas. For “Formula & ML LR”, the 𝑅2 was larger than that when one of 𝐸𝐿𝑃𝐹 or 𝐸𝐿𝑃𝑀𝐿 was 

excluded from the linear combination for all four formulas.  

Index Methods  Haigis Hoffer Q  Holladay1 SRK/T  

1 Formula LR 0.377 0.541 0.579 0.394 

2 ML LR 0.376 0.442 0.426 0.378 

3 Formula & ML LR 0.425 0.622 0.605 0.482 

Table 3.3 The 𝑹𝟐 of alternative least-squares linear regression models in the training set.  

The outlier cases were removed before calculating the above values. The largest 𝑅2 among three methods is marked 

in bold for each formula. P-values of all correlations were < 0.05.  
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3.4.3 Refraction prediction performance comparison on the testing set 

Linear regression analysis was used to assess the significance of the correlation between 

𝐸𝐿𝑃𝐹, 𝐸𝐿𝑃𝑀𝐿, and 𝐸𝐿𝑃𝐵𝐶. To test whether the MAE and ME of different methods were 

significantly different, a Friedman test followed by a post hoc paired Wilcoxon signed-rank test 

with Bonferroni correction was used. Statistical significance was defined as the p-value <0.05. 

All the above analyses were performed with Python 3.7.3. 

We tested the performance of four scenarios on the testing set and summarized the MAE 

and SD in Table 3.4. The mean error (ME) and median absolute error (MedAE) were shown in 

Table S 3.5 and Table S 3.6. Statistical tests were used to compare the difference in the MAEs 

of different models (see Materials and Methods 3.3.5). Using a linear combination of 𝐸𝐿𝑃𝐹 and 

𝐸𝐿𝑃𝑀𝐿, the refraction prediction results of four existing formulas were significantly improved 

compared to original 𝐸𝐿𝑃𝐹 (statistical test results shown in Table S 3.7 and Table S 3.8).  

We further compared the MAEs of “Original” and “Formula & ML LR” among patients 

with short, medium, and long axial length (Table S 3.9). It was observed that the short and 

medium axial length groups had a higher percentage decrease in MAE than the long axial length 

group for Hoffer Q and SRK/T. For Haigis, the medium AL group achieved higher decrease than 

the other two groups. And for Holladay, the long AL group achieved more decrease in MAE than 

the other two groups. 

Index Methods Haigis Hoffer Q Holladay1 SRK/T 

1 Original  0.373 ± 0.328 0.408 ± 0.337 0.384 ± 0.341 0.394 ± 0.351 

2 Formula LR 0.373 ± 0.328 (0.0%) 0.374 ± 0.321 (8.3%) 0.388 ± 0.342 (-1.1%)  0.391 ± 0.345 (0.8%) 

3 ML LR 0.391 ± 0.346 (-4.8%) 0.454 ± 0.375 (-21.4%) 0.434 ± 0.364 (-13.0%) 0.397 ± 0.344 (-1.5%) 



 49 

4 Formula & ML LR 0.356 ± 0.329 (9.0%) 0.352 ± 0.319 (22.5%) 0.371 ± 0.336 (3.4%) 0.361 ± 0.331 (9.1%) 

Table 3.4 Performance in the testing set.  

The mean absolute error (MAE) ± standard deviation (SD) and the percentage reduction in MAE compared to 

“Original” for alternative linear models in the testing set. All MAE and SD were rounded to three decimal places. 

The percentage reduction was calculated as 
𝑀𝐴𝐸  𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑚𝑒𝑡ℎ𝑜𝑑−𝑀𝐴𝐸 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 

𝑀𝐴𝐸 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
⋅ 100%. All percentage reduction 

values were rounded to one decimal place. The method with the smallest MAE among four alternative methods is 

marked in bold for each formula. 

 

3.5 Discussion 

In this study, we applied a previously developed machine learning method for 

postoperative anterior chamber depth (ACD) prediction to an unseen dataset of 4806 cataract 

surgery patients to assess whether it was possible to improve the performance of existing IOL 

formulas (Haigis, Hoffer Q, Holladay, and SRK/T) by replacing each formula’s ELP estimate. 

We computed three ELP-related quantities: the machine learning-predicted postoperative 

ACD (𝐸𝐿𝑃𝑀𝐿), formula-predicted ELP (𝐸𝐿𝑃𝐹), and a back-calculated ELP (𝐸𝐿𝑃𝐵𝐶) that 

minimized the refraction error for each eye in the dataset. They are strongly correlated with each 

other (Table 2.2), which indicates that (1) 𝐸𝐿𝑃𝐹 and 𝐸𝐿𝑃𝑀𝐿 are both predictive of the most 

optimal ELP 𝐸𝐿𝑃𝐵𝐶, (2) 𝐸𝐿𝑃𝐹 and 𝐸𝐿𝑃𝑀𝐿 contain partially overlapping information, which is 

consistent with our expectation. 𝐸𝐿𝑃𝑀𝐿 is an estimation of the value of the true postoperative 

ACD. On the other hand, 𝐸𝐿𝑃𝐹 was designed by the originators of each formula to serve a 

similar purpose but was based on the theoretical assumptions in each formula. Our findings are 

consistent with observations of previous studies that the ELP estimates made by IOL formulas 

were numerically different from the true postoperative ACD. [110] 

Using a training dataset of 3845 patients, we sought to evaluate whether the machine-

predicted postoperative ACD, 𝐸𝐿𝑃𝑀𝐿, was able to provide information that could be used to 
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refine each formula’s predicted ELP, 𝐸𝐿𝑃𝐹. We established regression models between the 

𝐸𝐿𝑃𝑀𝐿, 𝐸𝐿𝑃𝐹, and 𝐸𝐿𝑃𝐵𝐶 to evaluate whether a linear combination of 𝐸𝐿𝑃𝑀𝐿 and 𝐸𝐿𝑃𝐹 used in 

place of the original 𝐸𝐿𝑃𝐹 could lower the refraction prediction error. Using the modified ELPs, 

we obtained significantly lower mean absolute errors (MAE) in refraction prediction compared 

to the formulas with the original ELPs on the unseen testing set (Table S 3.4). Notably, the 

accurately predicted postoperative ACD (𝐸𝐿𝑃𝑀𝐿) alone did not outperform the original ELP 

(𝐸𝐿𝑃𝐹) when it was inserted into the formulas (Table S 3.4, row 3 compared to row 1). This is 

likely because the original method of calculating ELP in each formula compensates for its 

particular model of the eye and its associated assumptions. Our 𝐸𝐿𝑃𝑀𝐿, however, does not have 

any components that compensate for the assumptions and constants in the formulas. On the other 

hand, 𝐸𝐿𝑃𝑀𝐿 has information about the true postoperative ACD, which it appears can 

beneficially alter the original ELP estimate.  

In this study, the A-constants were optimized separately when 𝐸𝐿𝑃𝐹 was replaced with 

different 𝐸𝐿𝑃𝐹
′ . The means of  𝐸𝐿𝑃𝐹

′ , as shown in Table S 3.4 were numerically close to those of 

𝐸𝐿𝑃𝐹 as shown in Table S 3.2. However, in our method, the similarity between 𝐸𝐿𝑃𝐹
′  and 𝐸𝐿𝑃𝐹 

was not among the restrictions and goals of the optimization. The reason that 𝐸𝐿𝑃𝐹
′  and the 

original 𝐸𝐿𝑃𝐹 had similar means might be that the other parts of each formula put restrictions on 

the values of ELP in order to obtain reasonable results. This could also be the reason why 𝐸𝐿𝑃𝐵𝐶 

and 𝐸𝐿𝑃𝐹 had similar means as shown in Table S 3.2.  

Previous studies involving replacement of ELP in existing formulas have focused on 

special cases, such as sulcus implantation and post-refractive surgery eyes, where ELP estimates 

of traditional formulas would be expected to be inapplicable.[10,11] However, the method for 

replacing ELP estimates presented here provides a simple way of improving the refraction 
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prediction performance of existing formulas for the general cataract surgery population. While it 

would be ideal to evaluate this method on modern formulas such as Barrett Universal II or 

Holladay 2, the absence of published equations for these formulas prevents such a study. As 

such, we studied the application of the machine learning predicted postoperative ACD in four 

existing formulas whose mathematical equations were published. Although it awaits to be further 

validated, similar results can likely be transferred to other refraction prediction methods, since 

many modern IOL power formulas use predicted postoperative ACD as an intermediate step for 

predicting postoperative refraction. A limitation of the study was the absence of an external 

validation set, despite the use of a large unseen testing dataset (961 eyes). Accordingly, 

evaluation of the method at additional institutions and the extension to additional formulas will 

be future directions of this work. 

In summary, the results of this study demonstrate that a machine learning method for 

postoperative ACD prediction based on postoperative optical biometry can be incorporated into a 

variety of existing IOL power formulas to improve their accuracy in refraction prediction. 

3.6 Publication and Acknowledgement 

This chapter is a published work [129]: Li, Tingyang, Joshua Stein, and Nambi 

Nallasamy. "AI-powered effective lens position prediction improves the accuracy of existing 

lens formulas." British Journal of Ophthalmology (2021). 

3.7 Supplementary Materials 

3.7.1 Supplementary figures 
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Figure S 3.1 The pipeline of the A-constant optimization procedure.  

Numbers in the figure don't represent real data. 

  

3.7.2 Supplementary tables 

Formula Constant Optimized Constants Mean Error 

Haigis a0 (a1 = 0.234, a2 = 0.217) -0.736 0.000319 

Hoffer Q ACD 5.726 0.000157 

Holladay1 Surgeon factor 1.867 0.000121 

SRK/T A constant 119.091 -0.000204 

Table S 3.1 The optimized A constants and the corresponding mean error for the original formulas in the 

training dataset.  

The A constants were optimized so that the absolute value of the mean error was minimized. The mean errors were 

calculated after excluding the outliers (see main text). The mean errors in the training set were rounded to three 

significant figures. 

 

Dataset Variables Holladay1 SRK/T Hoffer Q Haigis 

Training dataset 𝐸𝐿𝑃𝐹 4.00 ± 0.41 5.82 ± 0.50 5.86 ± 0.38 5.28 ± 0.36 

𝐸𝐿𝑃𝐵𝐶  4.08 ± 0.92 5.85 ± 0.83 5.97 ± 1.00 5.32 ± 0.76 
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𝐸𝐿𝑃𝑀𝐿 4.67 ± 0.27 

Testing dataset 𝐸𝐿𝑃𝐹 4.00 ± 0.39 5.83 ± 0.47 5.87 ± 0.38 5.28 ± 0.36 

𝐸𝐿𝑃𝐵𝐶  4.06 ± 0.72 5.84 ± 0.65 5.95 ± 0.80 5.31 ± 0.61 

𝐸𝐿𝑃𝑀𝐿 4.68 ± 0.26 

Table S 3.2 The mean ± standard deviation (SD) for 𝑬𝑳𝑷𝑭, 𝑬𝑳𝑷𝑴𝑳, and 𝑬𝑳𝑷𝑩𝑪 in the training and testing 

dataset when 𝑬𝑳𝑷𝑭
′ = 𝑬𝑳𝑷𝑭.  

The 𝐸𝐿𝑃𝐵𝐶  and 𝐸𝐿𝑃𝐹 were calculated using the corresponding formula with the optimized A-constants therefore 

their values vary with different formulas. The values of 𝐸𝐿𝑃𝑀𝐿 only depend on the values of the preoperative 

biometry. The outliers were not removed when the above summary statistics were calculated. All values were 

rounded to two decimal places. 

 

Methods Holladay1 SRK/T Hoffer Q Haigis 

Formula LR 𝑐1 = 1.27 

𝑐3 = -1.01 

𝑐1 = 0.76 

𝑐3 = -1.67 

𝑐1 = 1.44 

𝑐3 = -26.65   

𝑐1 = 1.00 

𝑐3 = -5.88 

ML LR 𝑐2 = 1.65 

𝑐3 = -3.80 

𝑐2 = 1.31 

𝑐3 = -0.33 

𝑐2 = 1.62 

𝑐3 = -1.70 

𝑐2 = 1.24 

𝑐3 = -0.53 

Formula & ML LR 𝑐1 = 0.98 

𝑐2 = 0.61 

𝑐3 = -2.77 

𝑐1 = 0.47 

𝑐2 = 0.79 

𝑐3 = -2.55 

𝑐1 = 1.09 

𝑐2 = 0.65 

𝑐3 = -6.90 

𝑐1 = 0.58 

𝑐2 = 0.68 

𝑐3 = -4.44 

Table S 3.3 The coefficients (𝒄𝟏 and 𝒄𝟐) and the intercept 𝒄𝟑 for the linear regression model established based 

on the training dataset.  

All values were rounded to two decimal places.  

 

Dataset Method Holladay1 SRK/T Hoffer Q Haigis 

Training 

dataset 

Formula LR 4.06 ± 0.52 5.80 ± 0.38 5.90 ± 0.55 5.28 ± 0.36 

ML LR 3.92 ± 0.44 5.78 ± 0.35 5.86 ± 0.43 5.26 ± 0.33 

Formula & ML LR 3.98 ± 0.53 5.80 ± 0.40 5.89 ± 0.55 5.27 ± 0.37 

Formula LR 4.04 ± 0.46 5.80 ± 0.31 5.91 ± 0.53 5.28 ± 0.34 
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Testing 

dataset 

ML LR 3.90 ± 0.39 5.79 ± 0.32 5.87 ± 0.39 5.27 ± 0.30 

Formula & ML LR 3.97 ± 0.46 5.79 ± 0.34 5.89 ± 0.49 5.28 ± 0.34 

Table S 3.4 The mean ± standard deviation (SD) for 𝑬𝑳𝑷𝑭
′  in the training and testing dataset.  

The 𝐸𝐿𝑃𝐵𝐶  and 𝐸𝐿𝑃𝐹 were calculated using the corresponding formula with the optimized A-constants therefore 

their values vary with different formulas. The values of 𝐸𝐿𝑃𝑀𝐿 only depend on the values of the preoperative 

biometry. The outliers were not removed when the above summary statistics were calculated. 

 

Methods Holladay1 SRK/T Hoffer Q Haigis 

Original  -0.020 ± 0.513 -0.008 ± 0.528 -0.020 ± 0.529 -0.025 ± 0.496 

Formula LR 0.008 ± 0.517  -0.003 ± 0.522 -0.017 ± 0.492 -0.018 ± 0.496 

ML LR 0.057 ± 0.563  0.001 ± 0.525 0.007 ± 0.589 -0.001 ± 0.523 

Formula & ML LR 0.009 ± 0.500  -0.008 ± 0.490 -0.016 ± 0.475 -0.014 ± 0.484 

Table S 3.5 The mean error (ME) ± standard deviation (SD) of alternative linear models in the testing set.  

All values were rounded to three decimal places. 

 

Methods Holladay1 SRK/T Hoffer Q Haigis 

Original  0.299 0.307 0.330 0.283 

Formula LR 0.305 0.310 0.293 0.283 

ML LR 0.351 0.308 0.366 0.304 

Formula & ML LR 0.290 0.273 0.268 0.263 

Table S 3.6 The median absolute error (MedAE) of alternative linear models in the testing set.  

All values were rounded to three decimal places. 

 

Statistic Holladay1 SRK/T Hoffer Q Haigis 

Friedman chi-square test statistic 37.29 39.13 117.42 37.25 

p-value 4.00e-08 1.63e-08 2.78e-25 4.07e-08 
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Table S 3.7 The Friedman test statistic and the p-values for comparing the testing set results of different 

methods. 

 All Friedman statistics were rounded to two decimal places. All p-values were rounded to three significant figures. 

 

Formula Methods ML LR Formula LR Formula & ML LR 

Haigis Formula LR 1.7E-01 / / 

Formula & ML LR 1.8E-11 2.6E-03 / 

Original 1.7E-01 1.0E+00 2.7E-03 

Hoffer Q Formula LR 1.5E-10 / / 

Formula & ML LR 1.7E-26 3.6E-05 / 

Original 4.1E-05 1.5E-10 5.1E-17 

Holladay 1 Formula LR 1.5E-04 / / 

Formula & ML LR 4.4E-12 3.0E-04 / 

Original 1.4E-05 1.0E+00 9.9E-03 

SRK/T Formula LR 1.0E+00 / / 

Formula & ML LR 1.7E-12 7.0E-06 / 

Original 1.0E+00 1.0E+00 1.1E-05 

  

Table S 3.8 The post hoc test results of four existing formulas for comparing the testing set performance of 

different methods.  

The insignificant p-values (p≥0.05) were highlighted in bold.  

 

Method Formulas Short AL  

(𝐴𝐿 < 22𝑚𝑚) 

n=28 

Medium AL 

(22𝑚𝑚 ≤ 𝐴𝐿 ≤ 26𝑚𝑚) 

n=832 

Long AL  

(𝐴𝐿 > 26𝑚𝑚) 

n=100 

Original Haigis 0.321 ± 0.234 0.373 ± 0.332 0.383 ± 0.315 

Hoffer Q 0.524 ± 0.295 0.396 ± 0.335 0.480 ± 0.350 

Holladay1 0.397 ± 0.224 0.364 ± 0.322 0.541 ± 0.464 
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SRK/T 0.438 ± 0.236 0.386 ± 0.337 0.452 ± 0.465 

Formula 

& ML 

LR 

Haigis 0.330 ± 0.285 (-2.8%) 0.353 ± 0.331 (5.5%) 0.394 ± 0.319 (-2.8%) 

Hoffer Q 0.338 ± 0.264 (35.5%) 0.344 ± 0.318 (13.1%) 0.420 ± 0.338 (12.5%) 

Holladay1 0.392 ± 0.257 (1.3%) 0.356 ± 0.320 (2.2%) 0.486 ± 0.445 (10.3%) 

SRK/T 0.375 ± 0.284 (14.3%) 0.351 ± 0.324 (9.0%) 0.438 ± 0.391 (3.2%) 

Table S 3.9 The mean absolute error (MAE) ± standard deviation in the testing set for patients with short, 

medium, and long axial length (AL).  

All MAE and SD were rounded to three decimal places. For “Formula & ML LR”, the percentage reduction in MAE 

compared to “Original” were shown. The percentage reduction was calculated as 

𝑀𝐴𝐸 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −𝑀𝐴𝐸 𝑜𝑓 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 & 𝑀𝐿 𝐿𝑅 

𝑀𝐴𝐸 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
⋅ 100% and was rounded to one decimal place. The letter “n” is the number of 

cases in each AL group. 

3.7.3  Back-calculation of ELP 

As described in the main text, the postoperative refraction was predicted using a function 

of 𝐸𝐿𝑃𝐹 and preoperative biometry: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓1(𝐸𝐿𝑃𝐹, 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦). Here we 

define 𝐸𝐿𝑃𝐵𝐶 as follows: when 𝐸𝐿𝑃𝐹 = 𝐸𝐿𝑃𝐵𝐶, 𝑓1(𝐸𝐿𝑃𝐵𝐶 , 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦) − 𝑡𝑟𝑢𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0 

holds for all cases. In other words, when the ELP estimation equals 𝐸𝐿𝑃𝐵𝐶, the refraction 

prediction error equals zero for all cases. Based on the above definition, the value of 𝐸𝐿𝑃𝐵𝐶 can 

be found by solving for the 𝑥 in the equation 𝑓1(𝑥, 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦) − 𝑡𝑟𝑢𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0, where 

𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦and 𝑡𝑟𝑢𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 are known. For a given case, there were always no more than 

two roots for the above function because of the quadratic nature of the formulas. When there 

were two roots, the smaller root was taken as 𝐸𝐿𝑃𝐵𝐶 because of two main reasons: (1) the greater 

root was usually >50, which was not within a physiologically meaningful range for ELP; (2) 

practically when the larger roots were used as 𝐸𝐿𝑃𝐵𝐶, the 𝑅2 in the training set was significantly 

lower than that obtained with the smaller root (data are not shown). The function 
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𝑓1(𝑥, 𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑦) − 𝑡𝑟𝑢𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0 was solved programmatically using 

scipy.optimize.fsolve (scipy 1.2.1) in Python 3.7.3. 

3.7.4 A-constant optimization 

When 𝐸𝐿𝑃𝐹 was not replaced with a modified value 𝐸𝐿𝑃𝐹
′  (Figure S 3.1, upper part), the 

A-constants of the formulas were optimized in the standard way: first, compute the mean 

refraction prediction error when the A-constant takes different values, then, the A-constant that 

gives the smallest absolute mean error is the most optimal A-constant.  

When 𝐸𝐿𝑃𝐹 = 𝐸𝐿𝑃𝐹
′  (𝐅𝐢𝐠𝐮𝐫𝐞 𝐒 𝟑. 𝟏, lower part), the A-constants were optimized based 

on the same concept, the value of 𝐸𝐿𝑃𝐹
′  changes with the values of the A-constant. The pseudo-

code for the A-constant optimization process is shown below. The value of 𝐸𝐿𝑃𝑀𝐿 does not 

change with the A-constant. The value of 𝐸𝐿𝑃𝐹 and 𝐸𝐿𝑃𝐵𝐶 changes with the A-constants. 

Algorithm: A-constant optimization when 𝑬𝑳𝑷𝑭 = 𝑬𝑳𝑷𝑭
′  

1 𝐸𝐿𝑃𝑀𝐿← compute 𝐸𝐿𝑃𝑀𝐿 using the machine learning model 

2 FOR 𝑎 IN A-constant search space 

3             𝐸𝐿𝑃𝐹 ← compute 𝐸𝐿𝑃𝐹 based on the formula with 𝑎 as the A constant 

4             𝐸𝐿𝑃𝐵𝐶← compute 𝐸𝐿𝑃𝐵𝐶  based on the formula with 𝑎 as the A constant 

5             𝑐1, 𝑐2, 𝑐3 ← model 𝐸𝐿𝑃𝐵𝐶  as a linear function of 𝐸𝐿𝑃𝑀𝐿and/or 𝐸𝐿𝑃𝐹. 

6             𝐸𝐿𝑃𝐹
′  ← 𝑐1 ⋅ 𝐸𝐿𝑃𝐹 + 𝑐2 ⋅ 𝐸𝐿𝑃𝑀𝐿 + 𝑐3 

7              predicted refraction ← compute the predicted refraction based on 𝑎 and 𝐸𝐿𝑃𝐹
′  

8              mean error ← compute ME based on the predicted and true refraction 

9 END FOR 

10 The most optimal A-constant← the A-constant that minimizes the absolute mean error 
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Chapter 4 Ray Tracing IOL Calculation Performance Improved by AI-Powered 

Postoperative Lens Position Prediction 

4.1 Abstract 

The aim of this study was to assess whether incorporating a machine learning (ML) 

method for accurate prediction of postoperative anterior chamber depth (ACD) improves cataract 

surgery refraction prediction performance of a commonly used ray tracing power calculation 

suite (OKULIX). A dataset of 4357 eyes of 4357 cataract patients was gathered at the Kellogg 

Eye Center, University of Michigan. A previously developed machine learning-based method 

was used to predict the postoperative ACD based on preoperative biometry measured with the 

Lenstar LS900 optical biometer. Refraction predictions were computed with standard OKULIX 

postoperative ACD predictions and ML-based predictions of postoperative ACD. The 

performance of the ray tracing approach with and without ML-based ACD prediction was 

evaluated using mean absolute error (MAE) and median absolute error (MedAE) in refraction 

prediction as metrics. Replacing the standard OKULIX postoperative ACD with the ML-

predicted ACD resulted in statistically significant reductions in both MAE (1.7% after zeroing 

mean error) and MedAE (2.1% after zeroing mean error). ML-predicted ACD substantially 

improved performance in eyes with short and long axial lengths (p < 0.01). Using an ML-

powered postoperative ACD prediction method improves the prediction accuracy of the 

OKULIX ray tracing suite by a clinically small but statistically significant amount, with the 

greatest effect seen in long eyes. 
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4.2 Introduction 

Most modern IOL calculation formulas involve computation of postoperative refraction 

using Gaussian optics, which relies on the assumption that incoming rays are paraxial, in 

addition to empirically determined adjustment factors. The primary empirical adjustments for 

these modern formulas (such as Barrett Universal II, Holladay 2, and SRK/T) are made through 

the use of Effective Lens Position (ELP) as an intermediate quantity to indicate the location of 

the lens as it relates to a given optical model of the eye.[130] ELP was initially intended to 

estimate the position of the IOL in the postoperative eye. In practice, however, the postoperative 

ACD and the optimal location of the principal plane of the IOL in a given formula’s optical 

model of the eye are not numerically equal.[28,131] Achieving an accurate prediction of the 

optimal ELP represents an ongoing limitation for modern formulas. 

Numerical ray tracing represents an alternative to Gaussian optics for the purpose of IOL 

power calculation. Ray tracing involves the direct calculation of refraction of rays of light at each 

medium change within the eye using Snell’s law. Studies have demonstrated that ray tracing 

performance is comparable to that of state-of-the-art IOL calculation formulas in normal eyes 

and may provide improved IOL calculation accuracy in certain populations.[132,133] 

The more data available regarding the index of refraction of each medium, the curvature 

of each surface (including the anterior and posterior surfaces of the cornea and the intraocular 

lens implant) and position of each of these refracting surfaces relative to one another, the more 

accurate a ray tracing calculation is. As such, ray tracing calculations are likely to benefit from 

improved methods for predicting the actual anatomical postoperative IOL position. 
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In Chapter 2 and Chapter 3, we demonstrated that 1) it is possible to improve on 

estimates of the true anatomical postoperative IOL position through the use of a gradient-

boosting machine learning (ML) approach, and 2) incorporation of this ML-predicted 

postoperative IOL position can be used to refine ELP estimates in existing IOL formulas and 

improve their accuracy. [114,129] 

In this chapter, we investigate whether our machine learning method for prediction of 

postoperative IOL position as described in Chapter 2 is able to improve the accuracy of the 

commonly used OKULIX ray tracing suite for intraocular lens power calculation. The standard 

approach to postoperative IOL position prediction in the OKULIX suite employs a regression 

model based on axial length and thickness of the crystalline lens. In the work presented here, we 

sought to determine whether, holding all else equal, replacement of the standard OKULIX 

postoperative IOL position prediction method with that of a highly accurate machine learning-

based predictor, had the potential to improve the accuracy of ray tracing calculations. 

 

4.3 Materials and Methods 

4.3.1 Data collection 

Preoperative and postoperative biometry records of cataract patients were exported from 

the Lenstar LS900 optical biometers (Haag-Streit USA Inc, EyeSuite software version i9.1.0.0) 

at the University of Michigan’s Kellogg Eye Center. Patients who had cataract surgery but no 

prior corneal surgery and no additional surgical procedures at the time of cataract surgery were 

included. Only surgery cases involving the implantation of Alcon SN60WF single-piece acrylic 

monofocal lenses (Alcon Inc., USA) were included in the study, because it is the most commonly 

implanted lens at the Kellogg Eye Center. Cases that were used to train the postoperative ACD 
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prediction machine learning model were excluded from the dataset so that the dataset involved 

only unseen samples. One eye was selected at random for each patient who had undergone 

surgery in both eyes, so that all cases in the final dataset were independent of each other. The 

preoperative information gathered included the measurements of the axial length (AL), 

crystalline lens thickness (LT), anterior chamber depth (ACD), the radius of curvature in the flat 

meridian (R1), the radius of curvature in the steep meridian (R2), patient gender, and selected 

IOL power. As defined by the Lenstar LS900 optical biometer, the postoperative ACD represents 

the distance from the anterior surface of the cornea to the anterior surface of the IOL. The 

postoperative refraction (including the spherical component [SC] and cylindrical component 

[CC]) records were obtained. The spherical equivalent (SE) refraction was calculated as 

𝑆𝐸 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = (𝑆𝐶 − 0.1614) + 0.5𝐶𝐶. The constant 0.1614 was used to account for the 

length (10 feet, 3.048 meters) of the examination lane according to Simpson and Charman’s 

recommendation.[134] For each patient, the postoperative record that was generated closest to 

one month (i.e., 30 days) after surgery was included. Details about the collection and processing 

of the dataset can be found in our previous publications. [114,129] 
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Figure 4.1 The analysis pipeline of the presented study.  

PACD = postoperative anterior chamber depth. MAE = mean absolute error. MedAE = median absolute error. The 

“OKULIX-predicted PACD” was not a direct output from OKULIX, but calculated as 𝑃𝐴𝐶𝐷 = 𝑃𝐴𝐷 − 𝐶𝐶𝑇, where 

𝑃𝐴𝐷 is the OKULIX-predicted postoperative aqueous depth (AD).  

 

4.3.2 Performance comparison between OKULIX and ML-based approach 

The dataset in total consisted of the aforementioned preoperative and postoperative data 

for 4357 eyes of 4357 patients (Figure 4.1). Our postoperative ACD prediction machine learning 

model (referred to as the “Base” model in our prior work) was used to compute predictions of 

postoperative ACD (in mm) for each eye in the dataset based on the preoperative data (AL, CCT, 

preoperative ACD, LT, R1, R2, and WTW) and patient gender. Details about the ML method can 

be found in our previous publication.[114] The OKULIX standalone PC software suite 

(OKULIX v9.20, Panopsis GmbH, Mainz, Germany) was utilized to compute refraction 
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predictions based on the available preoperative biometry (AL, LT, R1, R2, and preoperative 

ACD) and laterality of the case. In addition to the postoperative refraction, OKULIX also 

predicts the postoperative aqueous depth (AD) as an intermediate value which in downstream 

pipelines serves as one of the input variables for the prediction of the refraction. By design, the 

OKULIX software allows the users to replace its predicted postoperative aqueous depth (AD) 

with a custom value. We therefore compared the refraction prediction accuracy of OKULIX 

when different PACD were used: (1) its standard internal prediction of postoperative ACD and 

(2) the postoperative ACD prediction from our ML model. OKULIX by default outputs a 

predicted aqueous depth (AD) defined as the distance from the posterior surface of the cornea to 

the anterior surface of the IOL, instead of a predicted PACD (defined as distance from the front 

surface of the cornea to the anterior surface of the IOL). In order to transform the ML-predicted 

postoperative ACD to a predicted postoperative AD, the preoperative central corneal thickness 

(CCT) was subtracted from the ML-predicted postoperative ACD. Similarly, to compare the 

OKULIX and ML-predicted PACD, we transformed the OKULIX-predicted postoperative AD to 

postoperative ACD prediction by adding the preoperative CCT. The equations used to transform 

predicted postoperative ACD to AD and AD to ACD are shown as follows, where the OKULIX 

predicted postoperative AD is the direct output from OKULIX, and the ML predicted 

postoperative ACD is the direct output from the ML method. 

𝑂𝐾𝑈𝐿𝐼𝑋 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑡𝑜𝑝.  𝐴𝐶𝐷 = 𝑂𝐾𝑈𝐿𝐼𝑋 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑡𝑜𝑝. 𝐴𝐷 + 𝑝𝑟𝑒𝑜𝑝. 𝐶𝐶𝑇 

𝑀𝐿 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑡𝑜𝑝.  𝐴𝐷 = 𝑀𝐿 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑡𝑜𝑝. 𝐴𝐶𝐷 − 𝑝𝑟𝑒𝑜𝑝. 𝐶𝐶𝑇  

The dataset was split into an optimization dataset and a performance comparison dataset, 

where the former was utilized for zeroing out the mean error and the latter was used for 

prediction performance comparison. A total of 1000 cases were randomly set aside as the 
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optimization dataset. Increasing the size of the optimization dataset did not significantly change 

the results (results not shown). The remaining 3357 cases were utilized to assess performance of 

the ray tracing calculations with and without the ML-predicted PACD. Mean absolute error 

(MAE), median absolute error (MedAE), and mean error (ME) of refraction predictions were 

computed for performance comparison. The prediction error was defined as follows. A negative 

error corresponds to a more myopic prediction, and a positive error corresponds to a more 

hyperopic prediction. 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

We further bootstrapped the performance comparison dataset to obtain the confidence 

intervals for the MAE, MedAE, and differences in MAE and MedAE. Specifically, a random 

sampling of 3357 cases with replacement was applied 10,000 times to the performance 

comparison dataset, and four metrics were calculated for those 10,000 bootstrap samples as 

follows. Let 𝑝𝑖 be the absolute error of the OKULIX-based approach for the i-th case and 𝑞𝑖 be 

the absolute error of the ML-based approach for the i-th case in the bootstrap dataset. For each 

bootstrap dataset we calculated (1) the mean absolute error as 𝑚𝑒𝑎𝑛{𝑝1, 𝑝2, . . . , 𝑝3357} and 

𝑚𝑒𝑎𝑛{𝑞1, 𝑞2, . . . , 𝑞3357}, (2) the median absolute error as 𝑚𝑒𝑑𝑖𝑎𝑛{𝑝1, 𝑝2, . . . , 𝑝3357} and 

𝑚𝑒𝑑𝑖𝑎𝑛{𝑞1, 𝑞2, . . . , 𝑞3357}, (3) the mean of the differences between the absolute error as 

𝑚𝑒𝑎𝑛{𝑝1 − 𝑞1, 𝑝2 − 𝑞2, . . . , 𝑝3357 − 𝑞3357}, (4) the median of the differences between the 

absolute error as 𝑚𝑒𝑑𝑖𝑎𝑛{𝑝1 − 𝑞1, 𝑝2 − 𝑞2, . . . , 𝑝3357 − 𝑞3357}. 

4.3.3 Zeroing of mean error 

To account for possible systematic differences in our patient population, we zeroed out 

the mean errors of the OKULIX predictions individually for the OKULIX and ML approaches. 

This was done by computing the mean error on the optimization dataset and subtracting it from 
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the predictions on the performance comparison dataset (Figure 4.1). The aforementioned scoring 

metrics (e.g. MAE) were computed after the zeroing of mean error.[135]  

4.3.4 Statistical analysis 

A paired Wilcoxon test was performed to evaluate the significance of the difference 

between the OKULIX and ML-predicted PACD. The same test (Wilcoxon test) was performed 

to test whether the prediction errors of the OKULIX and ML-based approach were significantly 

different. Statistical significance was defined as the p-value <0.05. All the above analyses were 

performed with Python 3.7.3. 

 

4.4 Results 

4.4.1 Dataset overview 

The dataset in total consisted of 4357 cataract surgery cases of 4357 patients. Among 

those patients, 1919 (44.04%) were males and 2438 (55.96%) were females. A summary of the 

dataset is shown in Table 4.1. The OKULIX-predicted postoperative ACD had a mean of 5.13 

mm and was significantly longer than the ML-predicted postoperative ACD (mean=4.68 mm) 

(Wilcoxon-test p-value<0.01).  

Characteristic Mean ± SD Median Range 

Min Max 

Age at surgery (years) 70.66 ± 9.53 71.24 13.23 89.45 

Preoperative K (D) 43.85 ± 1.61 43.84 33.42 50.39 

Preoperative AL (mm) 24.21 ± 1.38 24.01 20.44 31.22 

Preoperative LT (mm) 4.52 ± 0.45 4.51 2.50 5.99 

Preoperative ACD (mm) 3.26 ± 0.41 3.27 2.08 5.15 
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OKULIX-predicted postoperative ACD (mm) 5.13 ± 0.29 5.12 4.25 6.24 

ML-predicted postoperative ACD (mm) 4.68 ± 0.26 4.69 3.85 5.59 

Postoperative refraction (D) -0.56 ± 0.96 -0.41 -12.16 3.34 

Table 4.1 Baseline characteristics of the dataset.  

The highly myopic postoperative refraction value (“-12.16” in the last row in the table) was from a patient with high 

myopia and unilateral cataract who chose a highly myopic target refraction to avoid anisometropia. D: diopter; SD: 

standard deviation. 

 

4.4.2 Refraction prediction performance comparison 

The OKULIX and ML-based approaches were compared using the performance 

comparison dataset, and the results are shown in (Table 4.2. The refraction prediction errors in 

the optimization dataset were significantly different for the OKULIX and ML-based approaches 

(Table 4.2, column 1) (Wilcoxon-test p-value < 0.01). The unadjusted predictions in the 

optimization dataset from OKULIX tended to be more myopic compared to the true refraction 

(ME = -0.329 D), while the unadjusted predictions from the ML-based method tended to be more 

hyperopic (ME = 0.211 D) (though to a lesser extent). After subtracting the mean errors from the 

optimization dataset, the mean errors of the OKULIX and ML-based approaches became much 

closer to zero in the performance comparison dataset (Table 4.2, column 2). The mean absolute 

errors (MAEs) in refraction prediction were significantly lower for the ML-based approach 

compared to the OKULIX-based approach (Table 4.2, column 3) (Wilcoxon-test p-value < 

0.01). 
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Figure 4.2 Bootstrap results in the performance comparison dataset.  

A. The distribution of the mean absolute error. B. The distribution of the median absolute error. C. The distribution 

of the means of the difference in the absolute errors of OKULIX and the ML method. D. The distribution of the 

medians of the difference in the absolute errors of OKULIX and the ML method. The red dashed line marks the 

location of 0.0. 

 

The bootstrap distributions of MAE, MedAE and the mean/median difference in absolute 

errors are depicted in Figure 4.2. According to the bootstrap results, the 95% confidence interval 

(CI) for MAEs was [0.3459, 0.3677] for OKULIX and [0.3404, 0.3615] for ML. The 95% CI for 

MedAE was [0.2679, 0.2901] for OKULIX and [0.2638, 0.2858] for ML. The 95% CI for the 

mean of the differences in absolute errors was [0.0017, 0.0101]. The 95% CI for the median of 

differences in absolute errors was [0.0003, 0.0083]. 
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 Unadjusted ME  

in optimization 

dataset ± SD 

ME in 

performance 

comparison dataset 

± SD 

MAE 

in performance 

comparison dataset 

± SD 

MedAE  

in performance 

comparison dataset 

OKULIX -0.329 ± 0.471 0.018 ± 0.478 0.357 ± 0.318 0.280 

ML 0.211 ± 0.470 0.019 ± 0.470 0.351 ± 0.313  0.274  

% improvement / / 1.7% 2.1% 

Table 4.2 Performance comparison set results.  

The first column shows the ME ± SD in the optimization dataset, where the ME was calculated from the unadjusted 

predictions from OKULIX and ML. The second column shows the ME ± SD in the performance comparison dataset, 

after subtracting the corresponding ME in the optimization dataset from the original prediction from OKULIX and 

ML. The percent improvement was calculated as 
𝑂𝐾𝑈𝐿𝐼𝑋 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒−𝑀𝐿 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑂𝐾𝑈𝐿𝐼𝑋 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
. ME: Mean Error; MAE: Mean 

Absolute Error; MedAE: Median Absolute Error. 

4.4.3 Refraction prediction performance comparison in different axial length groups 

We further summarized the performance of the OKULIX and ML-based approaches in 

different axial length (AL) groups in Table 4.3. There were significant differences in the short 

and long axial length groups and insignificant difference in the medium length group. 

AL Group Number of cases (%) Wilcoxon test p-value Method MAE ± SD MedAE 

Short 

(AL<=23mm) 

  

589 (17.5%) <0.01 OKULIX 0.394 ± 0.333 0.313 

ML 0.373 ± 0.328 0.290 

% improvement 5.3 % 7.3% 

Medium 

(23mm<AL<=26mm) 

2429 (72.4%) 0.22 OKULIX 0.340 ± 0.306 0.265 

ML 0.343 ± 0.307 0.270 

% improvement -0.9% -0.5% 
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Long 

(AL>26mm) 

339 (10.1%) <0.01 OKULIX 0.409 ± 0.361 0.322 

ML 0.365 ± 0.328 0.271 

% improvement 10.8% 15.8% 

Table 4.3 Results comparison in different axial length groups.  

This table shows the performance of OKULIX and ML-based approaches for patients in the short, medium and long 

axial length group. The percent improvement was calculated as 
𝑂𝐾𝑈𝐿𝐼𝑋 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒−𝑀𝐿 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑂𝐾𝑈𝐿𝐼𝑋 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
. The Wilcoxon 

test was performed to compare the difference in the absolute errors between OKULIX and ML-based approaches in 

three different axial length groups. MAE: Mean Absolute Error; MedAE: Median Absolute Error. 

 

4.5 Discussion 

In this study, we sought to determine whether utilizing a machine-learning based 

approach to prediction of postoperative IOL position could improve the performance of a ray 

tracing approach to IOL power calculations. 

Ray tracing offers several advantages over traditional geometrical optics approaches to 

IOL power calculation. In particular, through the calculation of refraction of light rays at each 

refracting surface in the eye, factors such as irregular corneal curvature and varying pupil sizes 

can be accounted for with a ray tracing approach. The incorporation of more detailed surface 

information, including corneal tomography with Scheimpflug imaging or optical coherence 

tomography, offers the potential to maintain accuracy for a broader range of eyes than traditional 

methods. Since ray tracing accuracy depends primarily on the accuracy of anatomical 

measurements, rather than on theoretical quantities such as ELP, ray tracing may have greater 

long-term potential in comparison to traditional IOL calculation methods as techniques for 

measuring the size, shape, and anatomical location of components of the eye’s optical system 

continue to evolve. 



 70 

The physical location of the IOL (postoperative ACD) is one component of the post-

cataract surgery optical system that is not directly measurable preoperatively. However, our 

group has previously developed and validated a machine learning method for accurate 

postoperative ACD prediction using preoperative optical biometry, gender, and intended IOL 

power. 

In previous work, our group demonstrated that incorporating this ML method for 

postoperative ACD prediction into the ELP calculations of traditional IOL calculation formulas 

significantly improved the refraction prediction performance of these IOL formulas.[129] Since 

ray tracing methods in theory require only the true postoperative ACD, rather than an ELP, it 

would logically follow that utilization of our validated ML method for postoperative ACD 

prediction could improve the accuracy of ray tracing IOL power calculations. In the study 

presented here, we evaluated whether replacing the standard model for postoperative ACD in the 

commonly used OKULIX ray tracing suite with our ML-based postoperative ACD prediction 

could improve the refraction prediction performance of the OKULIX suite. 

We found that replacing the standard OKULIX postoperative ACD model (based on a 

linear regression of axial length and lens thickness) with our ML-based postoperative ACD 

model resulted in statistically significant improvements in the MAE and MedAE of ray tracing 

refraction predictions. It appears likely that the internal ACD predictions of OKULIX were 

sufficiently accurate in normal length eyes (as would be expected for a linear regression 

approach) such that no significant difference in refraction prediction was seen in the normal 

length eye population. However, utilization of our ML approach significantly improved 

refraction prediction MAE and MedAE in patients with short eyes (5.3% reduction in MAE, 

7.3% reduction in MedAE) and those with long eyes (10.8% reduction in MAE, 15.8% reduction 
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in MedAE). Although the overall improvement and the improvement in the short eyes were 

clinically small, we believe the results are of clinical significance for the long eyes. 

The results highlighted the impact of the accuracy of postoperative ACD prediction on 

the accuracy of the refraction prediction for ray tracing methods. In relation to this study, our 

previous research has shown that substituting the ELP with a more accurately predicted 

postoperative ACD improved the accuracy of existing IOL formulas.[129] Since more and more 

studies on ELP (or postoperative ACD) prediction have been published, it is important to 

synchronize the progress in ELP prediction with efforts on refraction prediction. Our research 

provided a support for the vital role of postoperative ACD prediction in refraction prediction, 

suggesting that new generation ELP prediction methods should be considered when developing 

new IOL formulas and should be considered for incorporation with existing IOL formulas as an 

easily achievable refinement. 

Since our ML model for postoperative ACD prediction was demonstrated to outperform 

linear regression in its prior validation study, it would be expected that incorporation of this ML 

model into the OKULIX suite would improve refraction prediction performance. While the 

means of the ACD predictions and refraction predictions were different between the standard and 

ML-based approaches, subtracting off the mean error in refraction prediction on an optimization 

subset represents a straightforward (and previously described) method for addressing these 

systematic differences. The postoperative ACD prediction of OKULIX appeared to be longer 

than the ones predicted by the ML method (Table 4.1), and naturally the unadjusted refraction 

predictions of OKULIX were more myopic (Table 4.2). We corrected this systematic error by 

subtracting the mean error for the performance comparison dataset. 
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While our study was intentionally limited to eyes with normal corneas (in order to test the 

standard version of the ML model described in our group’s prior work), a clear future direction is 

to apply the keratometry-independent version of our ML model for predicting postoperative 

ACD to the ray tracing analysis of eyes with abnormal corneas, such as those with ectasia, prior 

refractive surgery, or prior keratoplasty. This subset of patients with abnormal corneas is one 

group for which ray tracing has been demonstrated to have clear advantages over traditional 

methods for IOL power calculation. However, the accurate prediction of postoperative ACD in 

this population is more challenging due to the absence of reliable keratometry data. 

In addition, our study was limited to a retrospective sample and further investigation in a 

prospective manner would be of value. 

In summary, this study demonstrates that incorporation of a validated machine learning 

method for postoperative ACD prediction can significantly improve ray tracing IOL calculation 

performance. Further investigation into the efficacy of this approach in eyes with ectatic and 

post-refractive surgery corneas is warranted. 

 

4.6 Publication 

This chapter is a published work [136]: Li, Tingyang, Aparna Reddy, Joshua D. Stein, 

and Nambi Nallasamy. "Ray tracing intraocular lens calculation performance improved by AI-

powered postoperative lens position prediction." British Journal of Ophthalmology (2021). 
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Chapter 5 Postoperative Refraction Prediction with Ensemble Machine Learning 

5.1 Abstract 

The aim of this study is to develop a new intraocular lens (IOL) power selection method 

with improved accuracy for general cataract patients receiving Alcon SN60WF lenses. A total of 

5016 patients (6893 eyes) who underwent cataract surgery at University of Michigan’s Kellogg 

Eye Center and received the Alcon SN60WF lens were included in the study. A machine 

learning-based method was developed using a training dataset of 4013 patients (5890 eyes), and 

evaluated on a testing dataset of 1003 patients (1003 eyes). The performance of our method was 

compared to that of Barrett Universal II, EVO, Haigis, Hoffer Q, Holladay 1, PearlDGS, and 

SRK/T. Mean absolute error (MAE) of the Nallasamy formula in the testing dataset was 0.312 

Diopters and the median absolute error (MedAE) was 0.242 D. Performance of existing methods 

were as follows: Barrett Universal II MAE = 0.328 D, MedAE = 0.256 D; EVO MAE = 0.322 D, 

MedAE = 0.251 D; Haigis MAE = 0.363 D, MedAE = 0.289 D; Hoffer Q MAE = 0.404 D, 

MedAE = 0.331 D; Holladay 1 MAE = 0.371 D, MedAE = 0.298 D; PearlDGS MAE = 0.329 D , 

MedAE = 0.258 D; SRK/T MAE = 0.376 D, MedAE = 0.300 D. The Nallasamy formula 

performed significantly better than seven existing methods based on the paired Wilcoxon test 

with Bonferroni correction (p-value < 0.05). In conclusion, the Nallasamy formula (available at 

https://lenscalc.com/) outperformed the seven other formulas studied on overall MAE, MedAE, 

and percentage of eyes within 0.5 D of prediction. Clinical significance may be primarily at the 

population level. 



 74 

5.2 Introduction 

Cataract surgery is the most commonly performed surgical procedure in the United States 

(approximately 4 million/year) and worldwide (approximately 23 million/year). The appropriate 

selection of IOL power based on accurate prediction of postoperative refraction is necessary for 

achieving a favorable refractive outcome and is closely associated with patient satisfaction. An 

inappropriate IOL power was found to be the indication for approximately 20% of cataract 

surgery cases that required secondary intervention, lens removal or lens exchange, according to 

analyses of records between 2002 and 2017.[137,138]  

Various generations of IOL power calculation formulas have been published since the 

1960s. From the earliest regression formulas (Binkhorst formula, SRK formula) to the fourth and 

fifth generation of vergence formulas which established the effective lens position (ELP) as a 

function of the axial length, lens thickness and keratometry, the accuracy of IOL power 

calculation has been substantially improved. Among existing formulas, the Barrett Universal II 

formula [57] is widely used and several publications have demonstrated that Barrett Universal II 

has greater accuracy than other traditional formulas.[139,140] In addition to the above-

mentioned formulas, a number of new IOL formulas have been published recently, such as the 

Emmetropia Verifying Optical (EVO) formula [68] which is a theoretical thick lens formula, and 

the PearlDGS formula [69,141], which is a machine learning-based thick lens calculation 

method. 

Although the methodology for IOL power selection has been studied for decades, patient 

expectations for refractive outcomes continue to rise and room remains for improvement in 

refraction prediction performance. Machine learning (ML) and artificial intelligence have proven 
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to be successful in many medical applications, including ophthalmology.[78,142] Researchers 

have begun to incorporate ML into IOL power calculations in recent years.  

However, key limitations exist among recently-published ML-based IOL calculation 

methods: (1) performance comparisons limited to older generation formulas,[84] (2) failure to 

achieve statistically significant improvement over current generation formulas,[86] and (3) small 

datasets that leave the robustness and generalizability of methods in question.[85] 

From Chapter 2 to Chapter 4, we presented our machine learning-based postoperative 

ACD prediction method, which provides a more accurate estimation of the postoperative lens 

position compared to existing IOL formulas, and we have shown that our ML-predicted ACD 

was able to improve the postoperative refraction prediction accuracy of existing Gaussian optics-

based IOL formulas as well as ray tracing-based formulas. With a goal of advancing the 

understanding of IOL power selection for general cataract patients and improving refraction 

prediction accuracy, in the current chapter, we present a novel machine learning-based IOL 

power calculation method, the Nallasamy formula, based on a large dataset of 5016 cataract 

patients. In this model, we employed ensemble machine learning methods and novel data 

augmentation methods. The performance of our method was compared to that of Barrett 

Universal II, EVO, Haigis, Hoffer Q, Holladay 1, PearlDGS, and SRK/T on an unseen testing 

dataset of 1003 patients. 

5.3 Materials and Methods 

5.3.1 Data collection and preprocessing 

The presented study focused on a subset of patients receiving care at the University of 

Michigan between August 25, 2015 and June 27, 2019. The preoperative biometry records were 

obtained from Lenstar LS 900 optical biometers (Haag-Streit USA Inc, EyeSuite software 
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version i9.1.0.0) at University of Michigan’s Kellogg Eye Center. Patient demographics 

(including patient age, gender, and ethnicity) and cataract surgery information were obtained via 

the Sight Outcomes Research Collaborative (SOURCE) Ophthalmology Data Repository. 

SOURCE is a data repository that tracks the electronic health record (EHR) data of all patients 

receiving any eye care at participating academic medical institutions. The information deposited 

in SOURCE includes patient demographics, diagnoses identified based on International 

Classification of Diseases (ICD) codes, procedures based on Current Procedural Terminology 

(CPT) codes, and structured and unstructured (free-text) data from all clinical encounters (clinic 

visits, operative reports, etc.). Various studies using data from SOURCE were 

published.[114,129,143–145] Manifest refractions were performed at the end of the first 

postoperative month by trained technicians employed by University of Michigan’s Kellogg Eye 

Center. Manifest refraction data was obtained through the SOURCE repository. 

Institutional review board approval was obtained for the presented study. All subjects 

were fully anonymized and, therefore an informed consent was not required for this retrospective 

study. The study was carried out in accordance with the tenets of the Declaration of Helsinki. 

The inclusion criteria for the cases were as follows: (1) Cataract surgery was performed 

(CPT code = 66982 or 66984). (2) An Alcon SN60WF one-piece acrylic monofocal lens was 

implanted, (3) No refractive surgery was performed before the cataract surgery. (4) No additional 

surgery was performed at the time of cataract surgery. Cases with any CPT code other than 

66982 or 66984 were excluded. (5) Visual acuity was 20/40 or better. (6) Data was complete and 

was not out of bounds for any of the formulas with which performance was compared. 

5.3.2 Stacking ensemble machine learning framework 
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After all preprocessing steps, we obtained a clean tabular dataset of 5016 patients 

wherein each eye had a complete profile of preoperative biometry, patient demographics (patient 

gender and age), the power of the implanted IOL and the postoperative refraction. Preoperative 

biometry included the axial length (AL), crystalline lens thickness (LT), anterior chamber depth 

(ACD), aqueous depth (AD), astigmatism, white-to-white (WTW), central corneal thickness 

(CCT), and keratometry (K1 and K2, 𝐾 =
𝐾1+𝐾2

2
 ). The postoperative refraction was calculated 

from the spherical component (SC) and the cylindrical component (CC) with an adjustment with 

regard to the lane length at Kellogg Eye Center (10 feet, 3.048 meters): 

spherical equivalent (SE) 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  (SC − 0.1614) + 0.5CC according to Simpson and 

Charman’s recommendation.[125] 

The prediction task was framed as a regression problem where the goal was to build a 

machine learning algorithm that predicts the postoperative refraction using available information. 

The value to be predicted is referred to as the target value (represented as Y in Figure 5.1) and 

the inputs that are used to make the predictions are referred to as features or predictors 

(represented as X in Figure 5.1). The dataset was randomly split into a training/validation set 

with 4013 patients (5890 eyes) which was 80% of all patients, and a testing set with 1003 

patients which was 20% of all patients (Figure 5.1). In order to make sure all samples in the 

testing set were independent, one eye was selected at random and dropped from the dataset for 

all patients with both eyes available in the dataset. The training/validation set was used for cross-

validation and hyperparameter selection of the machine learning model. The testing set was used 

for performance comparison between the existing formulas and our ML-based method. 

Ensemble learning is a technique that involves combining the predictions from base 

learners with the goal of reducing variance and achieving improved prediction performance. An 
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ensemble model is usually believed to outperform individual learners in most cases.[146] 

Stacking (or stacked generalization) is one of the most commonly used meta-learning paradigms, 

where a number of base-learners are trained using the raw training data and a single meta-learner 

is trained to combine the predictions from the base-learner.[147] The reason for using an 

ensemble ML model in this study is to take advantage of different classes of ML algorithms and 

improve the overall performance of the model. The stacking model consists of two layers. In the 

first layer a group of level-1 learners was trained based on the raw data (preoperative patient data 

and the postoperative refraction). The second layer consists of the metamodel which uses the 

output of the level-1 learners as the input features. Therefore, the number of input features for the 

level-2 model equals the number of level-1 models. The output from the level-2 meta-model is 

the final prediction result (Figure 5.1). 

 

Figure 5.1 The overall method pipeline. 

 

5.3.3 Lens constant optimization of existing IOL formulas 
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The existing formulas Haigis, Hoffer Q, Holladay 1, SRK/T were implemented in Python 

based on their specific equations.[52–55,59,126–128] The results obtained were validated 

against printouts from Haag-Streit USA Inc, EyeSuite software version i9.1.0.0. The prediction 

results of Barrett Universal II [57], EVO (v2.0) [68] and PearlDGS [69,141] were obtained 

through their online calculators. The constants of the corresponding formulas were optimized 

based on the cases in the training dataset (4013 patients). The most optimal constant was selected 

by zeroing the mean prediction error. The optimized constants are listed in Table 5.1.  

Formula Constant Value 

Barrett Lens factor 1.94 

EVO A constant 119.0 

Haigis a0, a1, a2 -0.739, 0.234, 0.217 

Hoffer Q Personalized ACD 5.727 

Holladay 1 Surgeon factor 1.860 

PearlDGS IOL A constant 119.1 

SRK/T A constant 119.082 

Table 5.1 The optimized lens constants.  

 

5.3.4 Cross-validation and hyperparameter tuning 

During the development of the ML model, we performed model evaluation and selection 

through five-fold cross-validation. During the cross-validation, 4013 training/validation cases 

were divided into training sets and validation datasets. A random eye was removed for patients 

with both eyes available in the validation dataset. The optimization of hyperparameters of the 

machine learning models, the combination of the level-1 models, and the selection of the level-2 
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model were performed by minimizing the averaged mean absolute error (MAE) based on the 

cross-validation results. 

5.3.5 Performance comparison on the testing set 

To compare the performance between our method and existing IOL formulas, we trained 

the ML-model with the entire training dataset (5890 eyes) and made predictions on the testing 

dataset. We calculated the mean arithmetic error (ME), mean absolute error (MAE), median 

absolute error (MedAE) of the postoperative refraction predictions and the standard deviation 

(SD) of the prediction error. We also calculated the number and percentage of patients with an 

absolute prediction error of less than or equal to 0.25 D, 0.50 D, 0.75 D, and 1.00 D, and 

evaluated the statistical significance of the difference between formulas with Cochran’s Q test. 

The statistical significance of the difference between the testing set performance of the IOL 

formulas was assessed using a Friedman test followed by a paired Wilcoxon test with Bonferroni 

correction. To investigate the performance of our method in cases with different axial lengths, 

we calculated the SD, ME, MAE, and MedAE for patients in the short AL group (AL < 22 mm), 

medium AL group (22 mm ≤ AL ≤ 26 mm) and long AL group (AL > 26 mm). In addition to the 

above metrics, we calculated the slope of the correlation between the arithmetic error and AL as 

𝑚. Using the above variables, we computed the IOL Formula Performance Index (FPI) as 

recommended by Hoffer et al[89] for each formula as follows, where 𝑛 is the percentage of eyes 

with an absolute error within 0.5 D. Higher FPI means better accuracy. 

𝐹𝑃𝐼 =  
1

𝑆𝐷 + 𝑀𝑒𝑑𝐴𝐸 + 10 ∗ 𝑎𝑏𝑠(𝑚) + 10 ∗ (𝑛10)−1
 

To investigate the effect of the size of the training data on the performance of the ML 

model, we randomly sampled 10%, 20%, ..., 90% of the training data, then retrained and 
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compared the alternative models’ results on the testing set. The proportions of training cases 

were adjusted before the application of data augmentation and data transformation techniques. 

All other configurations and hyperparameters were kept the same for alternative models except 

for the number of training cases. 

In this study, the refraction prediction error was defined as follows. The criterion for 

statistical significance was p-value < 0.05. All statistical analyses were scripted with Python 

3.9.5. 

error = true postoperative refraction − predicted postoperative refraction 

5.4 Results 

You’ll Out of 5016 patients, 4013 patients (5890 eyes) were assigned to the 

training/validation dataset, and 1003 cases were isolated as a hold-out testing dataset for 

performance comparison. A summary of the patient demographics in the training and testing sets 

is shown in Table 5.2. A total of 49 surgeons performed the surgeries included in the dataset. 

The distribution of data is shown in Figure S 5.1.  

Characteristic Training set (mean ± SD) Testing set (mean ± SD) 

Count 5890 eyes, 4013 patients 1003 eyes, 1003 patients 

Gender Male: 2573 eyes (43.7%), 

Female: 3317 eyes (56.3%) 

Male: 433 eyes (43.2%), 

Female: 570 eyes (56.8%) 

Age at surgery (years) 71.00 ± 9.43 70.73 ± 9.50 

Preoperative K (D) 43.87 ± 1.54 43.88 ± 1.56 

Preoperative AL (mm) 24.17 ± 1.34 24.15 ± 1.35 

Preoperative LT (mm) 4.53 ± 0.44 4.53 ± 0.45 

Preoperative ACD (mm) 3.26 ± 0.41 3.25 ± 0.41 

Postoperative refraction (D) -0.55 ± 0.85 -0.59 ± 0.93 



 82 

Table 5.2 Summary of patient demographics.  

SD: standard deviation; K: keratometry; AL: axial length; LT: lens thickness; ACD: anterior chamber depth; D: 

diopter. 

 

The performance of our method and existing methods is shown in Table 5.3. According 

to the Wilcoxon test, our method performed significantly better than all the other seven methods 

with an MAE of 0.312 D, which was 4.9% lower than that of Barrett (0.328 D) and 3.1% lower 

than that of EVO (0.322 D). The specific p-values can be found in Table S 5.1. Our method also 

achieved the highest Formula Performance Index (FPI).  

The percentage of patients with an absolute error less than or equal to 0.25 D, 0.50 D, 

0.75 D, and 1.00 D is shown in Figure 5.2. Our method resulted in a larger percentage of 

patients in the absolute error ≤ 0.5 D group (80.2%) compared to Barrett (78.3%), EVO (79.8%) 

and PearlDGS (77.7%), and a larger percentage of patients in the absolute error ≤ 1.0 D group 

(97.6%) compared to Barrett (96.6%), or EVO (96.9%) and PearlDGS (97.4%). Overall, our 

method achieved the highest percentage in the absolute error ≤ 0.5 D group among all eight 

formulas, and was statistically better than all other formulas except EVO (Cochran’s Q test p-

values were shown in Table S 5.2) on this metric. 
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Figure 5.2 The percentage of patients in each error category for each formula, calculated based on the results 

in the testing dataset. 

 

 MAE MedAE ME SD m AE ≤ 0.5 D FPI P-value 

Barrett 0.328 0.256 0.038 0.437 0.307 78.3% 0.198 p < 0.05 

EVO 0.322 0.251 0.043 0.427 0.128 79.8% 0.312 p < 0.05 

Haigis 0.363 0.289 0.024 0.469 0.226 74.7% 0.230 p < 0.05 

Hoffer Q 0.404 0.331 0.009 0.518 0.951 70.3% 0.085 p < 0.05 

Holladay 1 0.371 0.298 0.021 0.487 0.773 74.0% 0.101 p < 0.05 

PearlDGS 0.329 0.258 0.044 0.438 0.408 77.7% 0.165 p < 0.05 

SRK/T 0.376 0.300 0.014 0.485 0.486 73.2% 0.143 p < 0.05 

Our Method 0.312 0.242 0.015 0.418 -0.033 80.2% 0.447 / 

Table 5.3 Performance summary in the testing set.  

MAE: mean absolute error; MedAE: median absolute error; ME: mean error, SD: standard deviation of the 

prediction error; m: the axial length bias, computed as the slope of the correlation between the arithmetic error and 

AL; AE ≤ 0.5 D: percentage of eyes with an absolute error (AE) less than or equal to 0.5 D; FPI: Formula 

Performance Index. The unit for the errors is Diopter (D). Wilcoxon test p-value < 0.05 indicates the statistical 

significance of the difference between the performance of our method and an existing method. 
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We compared the performance of the tested formulas among patients with different axial 

lengths in Table 5.4. Numerically, our method achieved the lowest MAEs and SDs among all 8 

formulas in all 3 AL groups. The relationship between the prediction errors and the ALs is 

shown in Figure 5.3. The errors of our method remained close to zero across the whole span of 

ALs. 

 

Method Short AL  

(< 22.0 mm, n = 32) 

Medium AL  

(≥ 22.0 and ≤ 26.0 mm, n = 878) 

Long AL  

(> 26.0 mm, n = 93) 

MAE MedAE ME SD MAE MedAE ME SD MAE MedAE ME SD 

Barrett 0.401 0.259 -0.108 0.543 0.325 0.255 0.032 0.434 0.332 0.259 0.142 0.402 

EVO 0.390 0.277 -0.088 0.514 0.319 0.250 0.043 0.424 0.330 0.269 0.086 0.410 

Haigis 0.429 0.380 -0.029 0.551 0.360 0.285 0.012 0.466 0.369 0.295 0.156 0.437 

Hoffer Q 0.653 0.577 -0.494 0.623 0.381 0.310 -0.015 0.486 0.532 0.442 0.407 0.520 

Holladay 1 0.520 0.500 -0.241 0.592 0.346 0.280 -0.021 0.452 0.549 0.489 0.505 0.473 

PearlDGS 0.426 0.402 0.170 0.564 0.320 0.250 0.040 0.426 0.387 0.320 0.154 0.468 

SRK/T 0.513 0.491 -0.198 0.592 0.368 0.294 -0.005 0.476 0.402 0.322 0.273 0.430 

Our Method 0.380 0.314 -0.050 0.512 0.310 0.238 0.015 0.417 0.312 0.269 0.041 0.389 

Table 5.4 The postoperative refraction prediction performance of existing formulas and our method in 

short/medium/long AL groups in the testing set.  

AL: axial length; n: number of eyes in each group; MAE: mean absolute error; MedAE: median absolute error; ME: 

mean error; SD: standard deviation of the prediction error. 
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Figure 5.3 The mean prediction errors in the testing set grouped based on axial lengths.  

Each dot represents the mean prediction error of eyes with an axial length between a specific range. 

 

Figure 5.4 The change of the mean absolute prediction error in the testing set when the machine learning 

method uses 10%, 20%, …, 100% of the training data.  

 

When the model was trained with different proportions of the training data (Figure 5.4), 

the corresponding performance on the testing set displayed a trend toward improving 

performance (decreased MAE) with increasing training set sizes. 
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5.5 Discussion 

We have presented here a new machine learning-based IOL power calculation method 

which performs statistically significantly better than Barrett Universal II, EVO (v2.0) and 

PearlDGS on a large unseen testing dataset. We chose an ensemble machine learning framework 

for this particular problem, and this choice allows the method to compensate for the potential 

biases of individual learners. During the development of the model, we designed and applied 

several data augmentation methods to enhance prediction performance. Data augmentation 

methods are not only beneficial for enlarging the dataset size, but also to address natural 

imbalances in clinical datasets. The biometry measures are not uniformly distributed as shown in 

Figure S 5.1. For example, the axial length has more instances in the medium group (between 22 

mm and 26 mm) compared to the long and short AL groups. The postoperative refractions and 

the implanted IOL powers were not uniformly distributed either. All IOL powers in the dataset 

were manually selected by surgeons with a particular target refraction in mind, typically between 

0 D and -3 D. Data augmentation helps to account for the scarcity of extreme cases and biases 

introduced by clinical decision-making process. 

In this study, we used a relatively large dataset of 6893 eyes. Evaluation of the 

relationship between the proportion of the available training data used and MAE demonstrated 

the expected inverse relationship. This trend continued even as the training set was increased 

from 90% to 100% of the available training data (Figure 5.4), indicating the potential for further 

improvement as the same model is exposed to larger datasets.  

We achieved lower MAEs than Barrett Universal II, PearlDGS, and EVO in all three 

axial length groups. Our method yielded 80.2% of eyes with a predicted refraction within 

± 0.5 𝐷 of the true refraction, which was approximately 2% more than that of Barrett (78.3%) 
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(p=0.04). The Nallasamy formula also achieved 51.2% of eyes within ± 0.25 𝐷, which was 

approximately 2% more than that of all other methods (next closest was EVO at 49.3%). Due to 

sheer volume of cataract surgery worldwide -- 23 million cataract surgeries each year -- 

achieving an additional 2% of patients with refractive error less than 0.25 D would likely be 

clinically relevant at a population level. At the same time, the difference in mean absolute error 

between our method and the next closest (EVO) of 0.010 D is not likely to be of clinical 

significance for the average patient. This discrepancy in clinical relevance appears to arise from 

the difference between the average patient and the overall population. Table 5.4 demonstrates 

that the differences in MAE are smaller in the medium axial length group than in the short and 

long axial length groups. Since there are far more patients in the medium axial length group than 

in the short and long axial length groups, the reported mean absolute error reflects the smaller 

difference in errors in the more common medium axial length group. The overall difference in 

percentage of patients with errors less than 0.25 D is reflective of larger errors typically seen in 

the short and long axial length groups. Figure 5.3 highlights the divergence in prediction error of 

the Nallasamy formula and other methods at the limits of axial length. 

Recently, Hoffer et al. proposed in Ophthalmology the use of the Formula Performance 

Index (FPI) as a means of evaluating and ranking the performance of IOL power calculation 

methods.[89] Higher values of the FPI indicate higher performance. Our method strongly 

outperformed the existing formulas on FPI, achieving a 0.447 FPI while the existing formulas 

ranged from 0.085 to 0.312 (Table 5.3). The FPI takes into account the (1) SD of the prediction 

error, (2) the MedAE, (3) the AL bias, and (4) the percentage of eyes with refraction predictions 

within 0.5 D of true refractions. Our method demonstrated superior performance on each of these 

individual metrics, as summarized in Table 5.3. Of particular note is our method’s superior SD 
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of the prediction error, which Holladay et al. recently referred to as “the single best parameter to 

characterize the performance of an IOL power calculation formula.”[148] 

Also of interest is the AL bias, which is calculated as the slope of the correlation of the 

AL and the prediction error for a given formula. The existing IOL formulas demonstrate strong 

correlations between AL and the prediction error, as depicted in Figure 5.3. Machine learning-

based methods such as ours, on the other hand, have the potential to better capture the 

nonlinearity of the relationship between biometric variables, IOL power, and postoperative 

refraction, resulting in substantially smaller AL bias (e.g., -0.03 for Nallasamy vs. 0.31 for 

Barrett). This translates to improved performance across AL categories (short, medium, and 

long), and should obviate the need for using different formulas based on axial length. 

We are aware of multiple limitations of our study. Our method has not yet been validated 

on a dataset from a different medical institution. Performance analysis on external datasets will 

be a focus of future work as we begin to apply our approach to different populations around the 

world. Another limitation is that we were not able to compare our performance with a few 

formulas such as Hill-RBF because of a lack of access. However, prior studies indicate that 

Barrett Universal II is a good reference point for top-tier IOL formulas.[97,139,140] An 

additional limitation is that at present, our method has been customized for the Alcon SN60WF 

lens, and additional data will be needed to adjust the method for additional lens models. We were 

not able to test the Nallasamy formula's performance on eyes with extremely long or extremely 

short axial lengths due to a lack of available data in our dataset. Considering the Nallasamy 

formula was not trained with those eyes either, we believe the Nallasamy formula is currently not 

suitable to be used for extreme eyes. The online Nallasamy formula calculator (available at 
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https://lenscalc.com/) displays a warning message if AL is outside the range of 21 mm - 31.5 

mm. Similarly, a warning is displayed if the K readings are outside the range of 37 D - 52 D.  

An intrinsic difference between ML-based methods and the vergence formulas is that 

vergence formulas estimate the effective lens position (ELP) as a vital variable during the 

calculation of the postoperative refraction, but ML-based methods usually take a one-step 

approach for prediction, unless the model is specifically designed to predict both the ELP and the 

postoperative refraction. In previously published work, we reported the development of an ML-

based method for postoperative anterior chamber depth (ACD) estimation.[114,129] However, 

the method presented here does not rely upon prediction of a postoperative ACD or ELP as an 

intermediate variable, unlike the vergence formulas. This approach may allow the ML method to 

avoid the propagation of errors (however small) introduced during the prediction of the 

postoperative ACD or ELP. 

While the theoretical optics-based methods remain crucial for special cases, machine 

learning offers improved performance for large populations through the identification of latent 

patterns in historical data that can go unrecognized by existing methods. To that end, we have 

reported here the successful development and testing of a machine learning-based approach to 

IOL power calculation for cataract surgery that outperforms Barrett Universal II, PearlDGS, and 

EVO on all broadly accepted metrics of IOL calculation performance. The Nallasamy formula is 

now freely available to the public to use online at https://lenscalc.com/. 

5.6 Publication 

This chapter is a published work[149]: Li, Tingyang, Joshua Stein, and Nambi 

Nallasamy. "Evaluation of the Nallasamy formula: a stacking ensemble machine learning 

method for refraction prediction in cataract surgery." British Journal of Ophthalmology (2022). 
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5.7 Supplementary Materials 

5.7.1 Supplementary figures 

Figure S 5.1 Distribution of data in the training and testing datasets.  

A. Training data distribution. B. Testing data distribution. The number of bins for the bar plots is 30. The curve in 

each plot is a gaussian kernel density estimate of the distribution. AL: axial length; CCT: central corneal thickness; 

AD: aqueous depth; ACD: anterior chamber depth; LT: lens thickness; K1: flat keratometry; K2: steep keratometry, 

AST: astigmatism; WTW: white-to-white; D: diopter 

 

5.7.2 Supplementary tables 

 

Formula Our Method SRK/T Holladay 1 Haigis Hoffer Q Barrett EVO 

SRK/T 2.71E-18 / / / / / / 

Holladay 1 9.31E-14 1.00E+00 / / / / / 
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Haigis 9.51E-15 1.00E+00 1.00E+00 / / / / 

Hoffer Q 1.26E-23 7.74E-02 1.24E-08 2.60E-09 / / / 

Barrett 1.08E-03 7.02E-14 3.00E-09 1.11E-08 1.99E-22 / / 

EVO 2.41E-02 1.27E-14 5.04E-10 1.57E-09 7.28E-20 1.00E+00 / 

PearlDGS 1.20E-02 1.37E-07 5.71E-07 3.29E-07 3.70E-22 1.00E+00 1.00E+00 

Table S 5.1 The p-values from the post-hoc paired Wilcoxon tests, following the Friedman test, for the 

comparison of the testing set performance between methods.  

The p-values were adjusted with Bonferroni correction. The p-values between our method and the conventional 

methods were shown in the first column. All significant p-values (p-value < 0.05) were underscored. The Friedman 

test statistic was 235.65, and the associated p-value was 3.13e-47, which was statistically significant. 

 

Comparison Within ±0.25 D Within ±0.50 D Within ±0.75 D Within ±1.00 D 

Vs. Barrett 1.18e-1 4.16e-2 8.33e-2 1.24e-2 

Vs. EVO 1.07e-1 6.66e-1 8.41e-1 5.22e-2 

Vs. Haigis 2.06e-6 9.98e-6 4.83e-6 1.84e-2 

Vs. Hoffer Q 3.70e-11 3.37e-11 2.25e-10 3.96e-5 

Vs. Holladay 1 4.83e-7 8.12e-7 9.63e-8 2.56e-4 

Vs. PearlDGS 5.30e-2 1.47e-2 4.74e-2 5.93e-1 

Vs. SRK/T 1.89e-6 9.43e-8 7.98e-7 5.74e-6 

Table S 5.2 The p-values from Cochran’s Q test for the comparison of number cases within 0.25 D, 0.50 D, 

0.75 D, and 1.00 D between our method and existing methods in the testing set.  

All significant p-values (p-value < 0.05) were underscored. D: diopter. 
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Chapter 6 MAEPI and CIR: New Metrics for Robust Evaluation of the Prediction 

Performance of AI-Based IOL Formulas 

6.1 Abstract 

The purpose of this study is to develop a class of new metrics for evaluating the 

performance of intraocular lens power calculation formulas robust to issues that can arise with 

AI-based methods. The dataset consists surgical information and biometry measurements of 

6893 eyes of 5016 cataract patients who received Alcon SN60WF lenses at University of 

Michigan’s Kellogg Eye Center. We designed two types of new metrics: the MAEPI (Mean 

Absolute Error in Prediction of IOL) and the CIR (Correct IOL Rate) and compared the new 

metrics with traditional metrics including the mean absolute error (MAE), median absolute error 

(MedAE), and standard deviation (SD). We evaluated the new metrics with simulation analysis, 

machine learning (ML) methods as well as existing optics-based IOL formula (Barrett Universal 

II, Haigis, Hoffer Q, Holladay 1, and SRK/T). Results of traditional metrics did not accurately 

reflect the performance of overfitted ML formulas. By contrast, MAEPI and CIR discriminated 

between accurate and inaccurate formulas. The standard IOL formulas received low MAEPI and 

high CIR, which were consistent with the results of the traditional metrics. In conclusion, 

MAEPI and CIR provide a more accurate reflection of the real-life performance of AI-based IOL 

formula than traditional metrics. They should be computed in conjunction with conventional 

metrics when evaluating the performance of new and existing IOL formulas. The proposed new 

metrics would help cataract patients avoid the risks caused by inaccurate AI-based formulas, 

whose true performance cannot be determined by traditional metrics. 
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6.2 Introduction 

The prediction performance of intraocular lens (IOL) formulas for cataract patients is 

usually evaluated with the following metrics: the mean prediction error (ME), the mean absolute 

error (MAE), median absolute error (MedAE) and standard deviation (SD) of the prediction error 

(PE), as recommended in multiple publications.[88–90] These are standard evaluation metrics 

commonly used for regression problems in which the target value is a scalar. The MAE 

summarizes the average distance between the prediction and the true value. The MedAE 

evaluates the median deviation and is less sensitive to outliers and extreme values. The standard 

deviation (SD) measures the extent of scattering of the PE. Aside from these standard metrics, 

ophthalmologists also calculate the percentage of PEs within a certain range (e.g., ± 0.25 𝐷, 

± 0.5 𝐷), and the performance in different axial length (AL) groups (short, medium, and long). 

The former is a convenient way of investigating the distribution of PEs. The latter aids in 

determining whether a formula has consistent performance among myopic, hyperopic, and 

regular eyes. Recently, Hoffer et al[89] demonstrated a new evaluation metric, the IOL Formula 

Performance Index, which combines multiple metrics into one: (1) the SD (2) the MedAE (3) the 

AL bias, and (4) the percentage of eyes with PE within ± 0.5 𝐷. Holladay et al reviewed IOL 

calculation evaluation metrics and recommended the standard deviation (SD) as the single best 

measurement because SD allows the use of heteroscedastic statistical methods and SD predicts 

the percentage of cases within a given interval, the mean absolute error, and the median of the 

absolute errors.[91] However, this conclusion was drawn based on the results of 11 optics-based 

IOL formulas (Barrett, Olsen, Haigis, Haigis WK, Holladay 1, Holladay 1 WK, Holladay 2, 

SRK/T, SRK/T WK, Hoffer Q, and Hoffer Q WK), which have been validated extensively with 

real-world datasets. For machine learning (ML) based formulas, the algorithm is oftentimes a 
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black box, of which the exact behavior is not known a priori. When evaluating or developing 

novel ML-based IOL formulas, it is important that the evaluation metric is appropriately selected 

and robust enough so that the trained model can be generalized to unseen data.  

A special characteristic of cataract patient datasets is that the data is highly imbalanced, 

because the IOL powers were manually selected, rather than randomly drawn, and some powers 

were selected more often than the others. The postoperative refractions therefore represent a 

highly biased view of the expected outcome, assuming the IOL power is not specified. When 

trained on such imbalanced datasets, ML predictions are likely to be dominated by the over-

represented domains, or in other words, the algorithm will tend to always predict the most 

common numbers (for regression) and labels (for classification). 

For imbalanced regression problems, standard evaluation metrics (such as the MAE) are 

known to provide frequently misleading conclusions,[150,151] because they measure the average 

behavior of the most frequent cases, while rare cases may be of greater interest. In contrast to 

numerous publications focused on imbalanced classifications, little research has been conducted 

on the metrics for imbalanced regressions. As summarized in Table 6.1, previously proposed 

metrics for imbalanced regression problems include weighted errors, asymmetric loss 

functions,[152] precision-recall evaluation framework-based metrics,[153,154] Receiver 

Operating Characteristic (ROC) curves for regression,[155–157] and ranking-based 

evaluation.[158] Unfortunately, none of these metrics are targeting the underlying optimization 

goal within the context of IOL power prediction. 

Choosing the correct scoring metric is a critical first step for developing or evaluating 

IOL formulas. Through our previous work developing machine learning-based IOL formulas (as 

described in Chapter 5) [159], we identified multiple weaknesses of conventional metrics that, to 
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our knowledge, have not been discussed in the literature. Traditional metrics can generate 

misleading information for formulas developed solely based on historical data, as is commonly 

the case with machine learning-based methods. In this work, we demonstrate a series of new IOL 

formula accuracy evaluation metrics, which should be used alongside traditional metrics when 

evaluating the performance of IOL formulas.    

Method Type Examples/Explanations 

Weighted error 
𝑒𝑟𝑟 =  

∑ 𝑤𝑖 ∙ 𝐿(𝑦𝑖 , 𝑦𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

where 𝑤𝑖 is the weight of the 𝑖th case, 𝐿 is a loss function 

Asymmetric loss functions LINLIN asymmetric linear loss function[152]: 

𝐿(𝑦𝑖 , 𝑦𝑖) = {
𝑎|𝑦𝑖 − 𝑦𝑖|   𝑖𝑓 𝑦𝑖 ≥ 𝑦𝑖;

𝑏|𝑦𝑖 − 𝑦𝑖|   𝑖𝑓 𝑦𝑖 < 𝑦𝑖;
 

where 𝑎 and 𝑏 are constants, 𝐿 means the loss function 

Precision/recall evaluation framework, 

based on the concept of utility-based 

regression 

 

The utility of a prediction model is defined as: 

𝑈 = 𝑇𝐵 − 𝑇𝐶 

where costs (TC) and benefits (TB) are defined based on a loss function and a relevance 

function.[153,154] 

Adapt ROC curves to regression Regression ROC space[157], Regression Error Characteristic (REC) curve[155], Regression 

Error Characteristic Surfaces (RECS)[156]  

Ranking-based evaluation As opposed to residual-based additive measures of errors (such as the MAE), ranking-based 

measures evaluate the model's performance in sorting 𝑦 values and maintaining the 

ranking.[158] 

Table 6.1 Metrics for imbalanced regression.  

Notations: 𝑦𝑖  is the true value of the 𝑖th case; 𝑦̂𝑖  is the predicted value of the 𝑖th case; 𝑛 is the total number of cases.  

6.3 Methods 

6.3.1 Data collection 

We collected medical records of patients receiving care at the University of Michigan 

between August 25, 2015 and June 27, 2019. A total of 49 surgeons performed the surgeries 

included in the dataset. The patients were all measured preoperatively and postoperatively with 
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Lenstar LS 900 optical biometers (Haag-Streit USA Inc, EyeSuite software version i9.1.0.0) at 

University of Michigan’s Kellogg Eye Center. Patient demographics (including patient age, 

gender, and ethnicity), the implanted IOL powers and the postoperative refraction were obtained 

from the Sight Outcomes Research Collaborative (SOURCE) Ophthalmology Data Repository. 

The data in SOURCE were described and used in various studies.[114,129,143–145] We 

included the manifest refractions measured by trained technicians employed by University of 

Michigan’s Kellogg Eye Center at or closest to one month after the surgery. The postoperative 

refraction was computed with the following equation using an adjustment with regard to the lane 

length at Kellogg Eye Center (10 feet, 3.048 meters): spherical equivalent (SE) refraction =

 (spherical component − 0.1614) + 0.5 × cylindrical component . The adjustment factor was 

determined according to Simpson and Charman’s recommendation.[125] 

Patients who received uneventful phacoemulsification cataract surgery (Current 

Procedural Terminology code = 66982 or 66984) and implantation of Alcon SN60WF one-piece 

acrylic monofocal lenses were included in this study. We excluded (1) patients who received 

previous refractive surgery or additional procedures during cataract surgery; (2) patients with 

postoperative visual acuity worse than 20/40; (3) records that were incomplete or out of bounds 

for any of the five IOL formulas analyzed in this study (Barrett Universal II, Haigis, Hoffer Q, 

Holladay 1 and SRK/T). 

This research was conducted in compliance with the Institutional Review Board (IRB) at 

the University of Michigan. Informed consent was not applicable because this is a retrospective 

study, and all cases were fully anonymized. The study was carried out in accordance with the 

tenets of the Declaration of Helsinki. 

6.3.2 Conventional metrics 



 97 

Among a total of 𝑛 eyes, for the 𝑖th eye, we shall denote the actual postoperative 

refraction as 𝑦𝑖, and the predicted postoperative refraction with a given prediction method for the 

implanted IOL as 𝑦̂𝑖. Further we define 𝑒𝑖 as the refraction prediction error (PE) of the 𝑖th eye, 

and the PE equals the actual refraction minus the predicted refraction: 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖. The mean 

absolute error can then be calculated as follows: 

𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1

𝑛
 

The standard deviation of the PE can be calculated as: 

𝑆𝐷 = √
∑ |𝑒𝑖−𝑒̅|2𝑛

𝑖=1

𝑛−1
, 𝑒̅ =

∑ 𝑒𝑖
𝑛
𝑖=1

𝑛
 

The Formula Performance Index (FPI) is calculated as demonstrated by Hoffer et al.[89] 

𝐹𝑃𝐼 =  
1

𝑆𝐷 + 𝑀𝑒𝑑𝐴𝐸 + 10 ∗ 𝑎𝑏𝑠(𝑚) + 10 ∗ (𝑛10)−1
 

Four key elements are involved in FPI: (1) the SD (2) the MedAE (3) the axial length 

(AL) bias 𝑚, calculated as the slope of the correlation between the prediction error and the AL. 

(4) the percentage of patients with predictions errors within ± 0.5 D, represented as 𝑛. 

6.3.3 The MAEPI and CIR 

In this section, we demonstrate the specific definitions of the MAEPI (Mean Absolute 

Error of the Prediction of the IOL) and CIR (Correct IOL Rate). In addition to the previously 

defined notations, for the 𝑖th eye, we define its implanted IOL power as 𝑝𝑖, and the predicted IOL 

power as 𝑝̂𝑖. For IOL power 𝑝 (for example, 6 𝐷 ≤ 𝑝 ≤ 30 𝐷, 𝑠𝑡𝑒𝑝 = 0.5 𝐷), we defined the 

corresponding predicted postoperative refraction as 𝑦̂𝑖
𝑝
. The predicted IOL power 𝑝̂𝑖 is found by 

minimizing the absolute difference between the actual postoperative refraction 𝑦𝑖 and the 
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predicted postoperative refraction 𝑦̂𝑖
𝑝
 while altering the value of 𝑝. Therefore, the relationship 

between 𝑝̂𝑖, and 𝑦̂𝑖
𝑝
 can be defined with the following equation (Table 6.2). 

𝑝̂𝑖 = argmin
6≤𝑝≤30,𝑠𝑡𝑒𝑝=0.5

|𝑦𝑖 − 𝑦̂𝑖
𝑝| 

As a comparison, the predicted postoperative refraction 𝑦̂𝑖 is defined as: 

𝑦̂𝑖 = 𝑦̂𝑖
𝑝=𝑝𝑖 

Similar to the definition of refraction PE, we define the IOL power prediction error as 

follows: 

𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 𝑃𝐸 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 

The MAEPI is therefore defined as: 

𝑀𝐴𝐸𝑃𝐼 =
∑ |𝑝𝑖 − 𝑝̂𝑖|

𝑛
𝑖=1

𝑛
 

In addition to MAEPI, we define the CIR (Correct IOL Rate) as the proportion of 

predicted IOL powers 𝑝̂𝑖 having a deviation within 0.0 D, ± 0.5 D, ± 1.0 D from the implanted 

IOL power 𝑝𝑖. Specific examples for calculating the MAEPI and CIR are shown in 

Supplementary Material A. Lower MAEPI and higher CIR mean better prediction 

performance.  

𝐶𝐼𝑅(0)  =  
∑ 𝐼(|𝑝𝑖 − 𝑝̂𝑖| = 0.0)𝑛

𝑖=1

𝑛
× 100% 

𝐶𝐼𝑅(0.5)  =  
∑ 𝐼(|𝑝𝑖 − 𝑝̂𝑖| ≤ 0.5)𝑛

𝑖=1

𝑛
× 100% 

𝐶𝐼𝑅(1)  =  
∑ 𝐼(|𝑝𝑖 − 𝑝̂𝑖| ≤ 1.0)𝑛

𝑖=1

𝑛
× 100% 

The above definitions of MAEPI and CIR assume that the formula predicts the 

postoperative refraction as the response variable and uses the given IOL power as an explanatory 

variable. If a predictive model is instead designed to predict the IOL power as the response 
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variable according to designated target refractions, 𝑝̂𝑖 is simply the directly output of the model. 

The MAEPI and CIR can be calculated with the same equations as shown above.  

Variable True Value Predicted Value 

Postoperative refraction 𝑦𝑖  𝑦̂𝑖 = 𝑦̂𝑖
𝑝=𝑝𝑖 

Postoperative refraction  

when IOL power = 6 D, 6.5D, …., 30 D  

unknown 𝑦̂𝑖
𝑝=6

, 𝑦̂𝑖
𝑝=6.5

,…, 𝑦̂𝑖
𝑝=30

 

Implanted IOL power 𝑝𝑖 𝑝̂𝑖 = argmin
6≤𝑝≤30,𝑠𝑡𝑒𝑝=0.5

|𝑦𝑖 − 𝑦̂𝑖
𝑝| 

Table 6.2 A summary of the variables used in this study.  

Variable 𝑖 is an index of the cases, referring to the 𝑖th eye among all cases. 

 

6.3.4 Simulation analysis: MAEPI vs. refraction MAE 

As shown in Figure 6.1, for a given eye and a given IOL power prediction formula, we 

use 𝑒 (𝑒 ∈ ℝ) to represent the refraction PE of the implanted IOL. We denote by 𝑑 the increment 

of the prediction value when the IOL power is increased by 0.5 D. Since the spherical equivalent 

refraction of the eye should decrease with increasing power of the IOL, we assume here that 𝑑 is 

always negative.  

In order to characterize the behavior of the conventional metrics and the new metrics, we 

performed data simulations under different conditions and restrictions. Scenario (1): The IOL 

power and predicted refraction have a linear relationship, meaning that 𝑑 < 0 is a constant for all 

patients. Scenario (2): The IOL power and predicted refraction have a non-linear relationship, 

meaning that 𝑑 < 0 is not a constant. Scenario (3): predictions are random. 
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Figure 6.1 Schematics of three simulation scenarios and when the IOL powers are continuous numbers.  

PE: prediction error. Variable 𝑝𝑖 is the implanted IOL power for the 𝑖th eye among all cases. Variable 𝑦̂𝑖
𝑝
 is the 

predicted postoperative refraction corresponds different IOL powers (𝑝) for the 𝑖th eye. Variable 𝑑 is the increment 

of the predicted refraction. 

 

In scenario (1), when 𝑑 is a negative constant, it can be proven that the MAEPI and 

refraction MAE are always consistent, meaning that they always have a non-negative correlation. 

Consider a fictitious case 𝐴, wherein the PE of the implanted IOL is 𝑒𝑎 (𝑒𝑎 ∈ 𝑅). We can 

represent the predicted IOL power as (𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 + 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑡ℎ𝑒 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 ∗ 𝑛𝑎), 

where 𝑛𝑎 ∈ ℤ. The difference between the actual postoperative refraction and the predicted 

refraction for the predicted IOL power and is then 𝑒𝑝𝑎 =  𝑒𝑎 − 𝑛𝑎𝑑. Similarly, for case B, the 

PE of the implanted IOL is 𝑒𝑏 (𝑒𝑏 ∈ 𝑅), and the difference between the actual refraction and the 
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predicted refraction for the predicted IOL power is 𝑒𝑝𝑏 =  𝑒𝑏 − 𝑛𝑏𝑑, where 𝑛𝑏 ∈ ℤ. Based on the 

above relationships, we have 

𝑒𝑎 = 𝑒𝑝𝑎 + 𝑛𝑎𝑑, 𝑒𝑏 = 𝑒𝑝𝑏 + 𝑛𝑏𝑑 

Accordingly, 

|𝑒𝑎| = |𝑒𝑝𝑎 + 𝑛𝑎𝑑|, |𝑒𝑏| = |𝑒𝑝𝑏 + 𝑛𝑏𝑑| 

Thus, if |𝑒𝑎| > |𝑒𝑏|, it follows that: 

|
𝑒𝑎

𝑑
| > |

𝑒𝑏

𝑑
| 

|
𝑒𝑝𝑎 + 𝑛𝑎𝑑

𝑑
| > |

𝑒𝑝𝑏 + 𝑛𝑏𝑑

𝑑
| 

|
𝑒𝑝𝑎

𝑑
+ 𝑛𝑎| > |

𝑒𝑝𝑏

𝑑
+ 𝑛𝑏| 

By a simple feature of absolute values, we have: 

|
𝑒𝑝𝑎

𝑑
| + |𝑛𝑎| ≥ |

𝑒𝑝𝑎

𝑑
+ 𝑛𝑎| > |

𝑒𝑝𝑏

𝑑
+ 𝑛𝑏| ≥ |𝑛𝑏| − |

𝑒𝑝𝑏

𝑑
| 

Since 𝑒𝑝𝑎 is, by definition, the error associated with optimal IOL power by the prediction 

method under consideration, and d is the difference in refraction prediction for each step in IOL 

power, it follows that  

|𝑒𝑝𝑎| ≤ |
𝑑

2
| 

and 

|
𝑒𝑝𝑎

𝑑
| <

(
𝑑
2)

𝑑
=

1

2
 

Similarly, the minimum value of |𝑛𝑏| − |
𝑒𝑝𝑏

𝑑
| is |𝑛𝑏| −

1

2
. Therefore, we have 

1

2
+ |𝑛𝑎| ≥  |

𝑒𝑝𝑎

𝑑
| + |𝑛𝑎| ≥ |

𝑒𝑝𝑎

𝑑
+ 𝑛𝑎| > |

𝑒𝑝𝑏

𝑑
+ 𝑛𝑏| ≥ |𝑛𝑏| − |

𝑒𝑝𝑏

𝑑
| ≥ |𝑛𝑏| − 1/2 
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and thus 

|𝑛𝑎| > |𝑛𝑏| − 1 

Since 𝑛𝑎, 𝑛𝑏 ∈ ℤ, this implies 

|𝑛𝑎| ≥ |𝑛𝑏| 

Hence, we see that |𝑒𝑎| > |𝑒𝑏| implies |𝑛𝑎| ≥ |𝑛𝑏| for arbitrary eyes A and B and thus 

MAEPI and refraction MAE have a non-negative correlation under the aforementioned 

conditions. 

In scenario (2), the MAEPI and refraction MAE are not always consistent. The 

corresponding counterexamples are shown in the Supplementary Material B. In conventional 

vergence formulas such as the Haigis, SRK/T, Holladay 1, and Hoffer Q formula, the 

postoperative refraction is represented as a reciprocal function of the IOL power: 

𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐴 +
𝐵

𝐶 + 𝐷 ∗ 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟
 

where 𝐴, 𝐵,𝐶 and 𝐷 are functions of preoperative biometry measurements. The first 

derivative of this function is 

𝑑(𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

𝑑(𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟)
=  −

𝐷𝐵

(𝐶 + 𝐷 ∗ 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟)2
 

which is not a constant because it changes with the IOL power. In the case of IOL power 

calculation, the first derivative is always negative, because the predicted postoperative refraction 

should always decrease with increasing IOL power. This above-described scenario fits the 

assumptions of scenario (2): 𝑑 < 0 and 𝑑 is not a constant. 

In scenario (3), the predictions did not depend on the input data, but were completely 

random. We generated the predictions for each case and each IOL power randomly based on a 

uniform distribution, without assuming the values of 𝑒 and 𝑑. This scenario helps to demonstrate 
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the general behavior of the MAEPI and refraction prediction MAE, with no assumptions on the 

characteristics of the IOL formula. 

In the above analysis we assumed a step of 0.5 D for the IOL powers. It is obvious that 

the general behavior of the IOL metrics will not be affected when the IOL power has a different 

increment step (see also Figure 6.1A). To facilitate comprehension, we have provided examples 

in Supplementary Material C for situations when the new metrics are consistent/inconsistent 

with the refraction metrics assuming continuous IOL powers.  

Scenario Number of Cases Range of 𝒆 Value/Range of 𝒅 Range of Refraction Prediction  

(1)  500 [-1.0, 1.0] -0.5 / 

(2)  500 [-1.0, 1.0] [-1, -0.1] / 

(3)  500 / / [-5,5] 

Table 6.3 The simulation parameters.  

Variable 𝑒 is the prediction error (PE) of the implanted IOL. Variable 𝑑 is the signed increment of the refraction 

prediction when the IOL power increases by 0.5 D.  

 

For the above-described three scenarios, we simulated the refraction predictions for 

different patients and IOL powers. The parameters used for the simulation are shown in Table 

6.3. For scenario (1) and (2), the value of 𝑒 was randomly generated for each simulated patient. 

A fixed value of 𝑑 was used across all cases and all IOL powers for scenario (1). A random value 

of 𝑑 was selected for each simulated patient and each IOL power for scenario (2). Schematics of 

each scenario are illustrated in Figure 6.1A, and specific examples of simulated patients are 

shown in the Supplementary Material D. 

6.3.5 Patient data analysis 

In addition to the simulation analysis, we investigated the relationship between MAEPI 

and refraction MAE using real patient data collected at University of Michigan’s Kellogg Eye 
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Center. We analyzed the performance of the following models on the dataset: (1) the baseline 

formula (2) the overfitted formulas (3) the standard formulas.  

To build these models, we randomly separated the patients in the dataset into a training 

set (80%, 4013 patients, 5890 eyes) and a testing set (20%, 1003 patients, 1003 eyes) (Figure 

6.1B). One random eye was kept for patients with both eyes available in the testing set. 

The baseline formula randomly samples from a normal distribution centered around the 

training dataset’s mean postoperative refraction. This is done to simulate a method with poor 

prediction accuracy, but generates plausible results given the tendency to target postoperative 

refractions within a narrow range. Specifically, we generated the predictions from a normal 

distribution where the mean equaled the mean of the postoperative refraction in the training 

dataset, and the standard deviation was 0.01 (to simulate a tight grouping around the mean).  

Overfitting is a term in machine learning which describes the situation when the 

algorithms are memorizing not only the underlying patterns but also the noise and biases present 

in the training dataset. With the overfitted formulas, we simulated prediction models which have 

appealing prediction accuracies for the implanted IOLs in the historical dataset, but fail to make 

accurate predictions for new unseen patients due to the lack of ability of making predictions for 

IOL powers that are not included in the historical dataset. Based on our experience, formulas that 

were developed solely or mostly based on historical datasets are especially vulnerable to 

overfitting. We then trained support vector machines (SVM) (implemented by scikit-learn 

0.24.2[75]) and XGBoost[76] (a machine learning [ML] framework for gradient boosting tree-

based algorithms) with the training set. SVM and XGBoost are both state-of-the-art machine 

learning frameworks, commonly used for a wide variety of applications, including 

ophthalmology. The preoperative biometry measurements and patient information used as 
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features are listed as follows: the SN60WF IOL power (D), patient gender, patient age at surgery 

(years), eye laterality, axial length (mm), central corneal thickness (μm), aqueous depth (mm), 

anterior chamber depth (mm), lens thickness (mm), flat and steep keratometry (D), astigmatism 

(D) and white-to-white (mm). The hyperparameters for the machine learning models were 

optimized based on five-fold cross-validation. The models were optimized by minimizing the 

cross-validation MAE. The values of the hyperparameters are shown in Supplementary 

Material E.  

Formula Constant Value 

Barrett Lens factor 1.94 

Haigis a0, a1, a2 -0.739, 0.234, 0.217 

Hoffer Q Personalized ACD  5.727 

Holladay 1 Surgeon factor 1.860 

SRK/T A constant 119.082 

Table 6.4 The optimized formula constants. 

 

For the standard formulas, we computed the refraction MAE, MedAE, SD, FPI, as well 

as the MAEPI and CIRs for five well-established IOL formulas: Barrett Universal II, Haigis, 

Hoffer Q, Holladay 1 and SRK/T. Friedman test followed by a post-hoc Wilcoxon signed-rank 

test with Bonferroni correction was used to compare the difference in the IOL power MAE 

(MAEPI) and refraction MAE. The predictions of Barrett Universal II were retrieved from the 

online calculator.[57] The Haigis, Hoffer Q, Holladay 1 and SRK/T formula were implemented 

in Python based on their publications.[52–56,59,127,128] The formula constants were optimized 

by zeroing out the mean prediction error in the training data (Table 6.4). We plotted and 

calculated the correlation between the IOL power prediction errors and the refraction prediction 

error for the above-mentioned formulas.  
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We generated partial dependence plots (PDP) for the above formulas to visualize the 

effect of the IOL powers on the predicted refractions. The PDP calculates the predicted 

refraction while altering the IOL powers and keeping all the other features unchanged. Barrett 

Universal II was removed from this analysis because of technical difficulty in the 

implementation using a web-based calculator. 

In order to demonstrate that the step of the IOL powers will not influence the 

conclusions, we computed the IOL metrics assuming the IOL power step = 1.0 D and 0.01 D. 

The former represents a step larger than the common 0.5 D step, and the latter resembles a 

continuous variable. The Barrett Universal II calculator does not allow altering the IOL power 

step, therefore the Barrett formula was excluded from this analysis. 

All statistical analyses were performed with Python 3.9.5. The criterion for statistical 

significance was p-value < 0.05. 

6.4 Results 

6.4.1 Simulation analysis results 

We simulated three main situations to compare the properties of the IOL prediction errors 

and the refraction prediction errors. The corresponding results are shown in Figure 6.2. 

Consistent with the theoretical derivation in the Methods section above, Figure 6.2A shows no 

overlap between the horizontal error intervals, which infers that when a case A has a lower 

absolute IOL power PE than case B, the refraction absolute error of case A can never be higher 

than that of case B, and vice versa. On the contrary, Figure 6.2B and Figure 6.2C show 

instances where a case A had a lower IOL absolute error than case B, but the refraction absolute 

error of case A was higher than that of case B, meaning the refraction accuracy and IOL 

accuracy suggest contradictory conclusions about case A and B. Increasing the number of 
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simulated cases beyond 500 or altering the value/range of 𝑒, 𝑑, or the refraction prediction in 

Table 6.3 did not change the general characteristics of the simulation results (results not shown).  

 

Figure 6.2 Scatter plots of simulation results under three conditions.  

A. Refraction absolute PE vs. the scatter plot of IOL power absolute PE when the d < 0 and d is a constant. B. 

Refraction absolute PE vs. the scatter plot of IOL power absolute PE when the d < 0 and d is not a constant. C. 

Refraction absolute PE vs. the scatter plot of IOL power absolute PE when the predictions are random. Each dot in 

the scatterplot represents a simulated case. Variable 𝑑 is the signed increment of the refraction prediction when the 

IOL power increases by 0.5 D. PE: prediction error. 

6.4.2 Patient data analysis results 

To investigate the behavior of the MAEPI and CIR in clinical data, we utilized the 

aforementioned dataset of 5016 patients (6893 eyes) at the Kellogg Eye Center and compared the 

performance of different methods using a testing subset of 1003 patients (1003 eyes). A 

summary of the dataset is shown in Table 6.5. The distribution of IOL powers and postoperative 

refractions in the training and testing dataset are shown in Figure 6.3. Distribution of other 

measurements are shown in Figure S 6.1. The prediction results of different methods are shown 

in Table 6.6. 
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Figure 6.3 Distribution of the IOL power and postoperative refraction in the training and testing dataset.  

The number of bins for the bar plots was set to 30. The curve in each plot represents a gaussian kernel density 

estimate of the distribution. D: diopter. 

 

Characteristic Training set (mean ± SD) Testing set (mean ± SD) 

Count 5890 eyes, 4013 patients 1003 eyes, 1003 patients 

Gender Male: 2573 eyes (43.7%), 

Female: 3317 eyes (56.3%) 

Male: 433 eyes (43.2%), 

Female: 570 eyes (56.8%) 

Age at surgery (years) 71.00 ± 9.43 70.73 ± 9.50 

Preoperative K (D) 43.87 ± 1.54 43.88 ± 1.56 

Preoperative AL (mm) 24.17 ± 1.34 24.15 ± 1.35 

Preoperative LT (mm) 4.53 ± 0.44 4.53 ± 0.45 

Preoperative ACD (mm) 3.26 ± 0.41 3.25 ± 0.41 

Postoperative refraction (D) -0.55 ± 0.85 -0.59 ± 0.93 

Table 6.5 The distribution of the dataset.  

AL: axial length; LT: lens thickness, ACD: anterior chamber depth; SD: standard deviation; D: diopter. 
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Index Method MAEPI 

(D) 

CIR(0) CIR(0.5) CIR(1) Ref. MAE 

(D) 

Ref. MedAE 

(D) 

Ref. ME 

(D) 

Ref. SD 

(D) 

AL 

bias 

±0.5 

D 

FPI 

(1) Random 6.836 1.9% 6.3% 10.0% 0.628 0.393 -0.036 0.934 -0.302 55.7% 0.163 

(2) SVM 0.546 32.4% 76.5% 92.9% 0.329 0.245 0.023 0.455 -0.076 78.4% 0.366 

XGBoost 1.451 15.7% 43.9% 64.8% 0.368 0.286 0.016 0.488 -0.037 73.3% 0.398 

(3) Barrett 0.450 35.8% 81.3% 95.5% 0.328 0.256 0.0376 0.437 0.307 78.3% 0.198 

Haigis 0.497 31.3% 77.1% 94.1% 0.363 0.289 0.0237 0.469 0.226 74.7% 0.230 

Hoffer Q 0.591 24.6% 69.8% 90.7% 0.404 0.331 0.0091 0.517 0.951 70.3% 0.085 

Holladay 0.529 30.2% 74.4% 92.5% 0.371 0.298 0.0207 0.486 0.773 74.0% 0.101 

SRK/T 0.540 29.1% 73.5% 92.5% 0.376 0.300 0.0144 0.485 0.486 73.2% 0.143 

Table 6.6 Performance of individual methods in the testing set.  

MAEPI: mean absolute error in prediction of the IOL. CIR: correct IOL rate; MAE: mean absolute error; MedAE: 

median absolute error; ME: mean of prediction error; Ref: refraction; SD: standard deviation of the prediction error; 

AL: axial length; AL bias was calculated based on PE; FPI: formula performance index; D: diopter. 

 

The formula that provided predictions by sampling from the aforementioned normal 

distribution centered on the training dataset mean yielded a high MAEPI (6.836 D) and 

extremely low IOL accuracies. On the contrary the refraction metrics were closer to normal 

range: the MAE was 0.628 D; the MedAE (0.393 D) was less than 0.5 D; the SD (0.934 D) was 

less than 1.0 D; the percentage of errors within ± 0.5 D was 55.7%; and the FPI (0.163) was 

higher than those of Hoffer Q, Holladay 1 and SRK/T. 

The overfitted formulas (SVM and XGBoost) resulted in appealing refraction prediction 

performance, and poor IOL power prediction performance. The refraction MAE (0.329 D) and 

SD (0.455 D) of the SVM method were numerically close to those of the Barrett Universal II 

formula (0.328 D and 0.437 D). On the contrary, the MAEPI (0.546 D) of the SVM method was 

worse than that of SRK/T (0.540 D). 
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The Pearson correlation scores between the IOL prediction errors and the refraction 

prediction errors are shown in Table 6.7. The scatter plots of the refraction absolute errors of 

each eye and the IOL absolute errors of each eye for each method are shown in Figure 6.4. 

“Random” formula and the “Overfitted” formulas had lower correlation coefficients compared to 

those of the existing formulas. 

In order to demonstrate that the same conclusions still hold when the step of IOL powers 

does not equal 0.5 D, we calculated the IOL power metrics assuming the step of IOL powers was 

1 D and 0.01 D (Table S 6.1).  

 

Figure 6.4 The scatter plots of the IOL power PE and the refraction PE for each method.  

PE: prediction error. 

Index Method Correlation between  

IOL power PE and  

Refraction PE 

P-value 

(1) Random -0.019 >0.05 

(2) SVM 0.827 <0.05 

XGBoost 0.846 <0.05 

(3) Barrett 0.973 <0.05 

Haigis 0.970 <0.05 

Hoffer Q 0.963 <0.05 

Holladay 0.962 <0.05 

SRK/T 0.972 <0.05 
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Table 6.7 The Pearson correlation coefficient and p-value between the IOL power prediction error and the 

refraction prediction PE. 

 

Figure 6.5 The partial dependence plots (PDP) for IOL power.  

IOL powers range from 6 D to 30 D. The blue lines depict how the predicted refractions change with the IOL 

powers for individual patients. To facilitate comparisons and visualization, the heads of blue lines are centered at 

zero. The thick black line with yellow highlight represents the average of all blue lines. The refraction prediction 

MAE (“Ref. MAE”), the standard deviation of the refraction prediction error (“Ref. SD”) and the IOL power 

prediction MAE (MAEPI) of the corresponding formulas are marked on the plots for the convenience of comparison 

(they are also listed in Table 6.6). 

 

6.4.3 Analysis of overfitted formulas 
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The partial dependence plots of the “Random” formula, the XGBoost method, and the 

Holladay formula are shown in Figure 6.5. Partial dependence plots of other methods are shown 

in Figure S 6.2. We have selected the Holladay 1 formula for the comparison with the XGBoost 

method because the refraction ME, MAE, and SD of Holladay were similar to those of the 

XGBoost method, and yet the IOL power MAE (MAEPI) was substantially different (see Table 

6.6 and Figure 6.5). The Wilcoxon test p-value for the refraction MAEs of Holladay and 

XGBoost was not significant (p > 0.05) (complete results shown in Table S 6.2). The Wilcoxon 

test p-value for the IOL power MAEs (MAEPIs) was significant (p = 2.34e-16) (complete results 

shown in Table S 6.3). 

Prediction results of XGBoost and Holladay for a specific patient in the testing dataset 

are shown in Table 6.8. The actual implanted IOL power of this patient was 20.5 D, and the 

actual postoperative refraction was -0.0364 D. The refraction PE for XGBoost was (−0.0346) −

(−0.312)  =  0.2774 𝐷, and for Holladay 1 it was  (− 0.0346) − (−0.347)  =  0.3124 𝐷. On 

the other hand, the IOL power PE for XGBoost can be calculated as 𝑎𝑐𝑡𝑢𝑎𝑙 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 −

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑂𝐿 𝑝𝑜𝑤𝑒𝑟 =  20.5 − 19 =  1.5 𝐷, and for Holladay 1 it was  20.5 − 20 = 0.5 𝐷.  

Index IOL Power (D)  Refraction Predicted by XGBoost (D) Refraction Predicted by Holladay 1 (D) 

1 18.5 0.047 0.945 

2 19.0 -0.062 0.627 

3 19.5 -0.124 0.306 

4 20.0 -0.214 -0.019 

5 20.5 -0.312 -0.347 

Table 6.8 Prediction results of one patient from the testing set.  

D: diopter.  
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6.5 Discussion 

In this study, we identified potential problems with the traditional metrics for IOL 

formulas. These metrics focus on the deviation of a formula’s predicted refraction for the 

implanted IOL power from the true postoperative refraction. We have presented here two new 

metrics, the Mean Absolute Error in Prediction of the IOL (MAEPI) and Correct IOL Rate (CIR) 

that are not susceptible to biases related to the clustering of real-world refraction targets in 

historical data. 

Based on the simulation analysis results, only under special circumstances will the IOL 

metrics and the refraction metrics always be consistent and as such, IOL metrics (MAEPI and 

CIR) should be considered essential for the assessment and optimization of the performance of 

IOL formulas. As shown in the patient data analysis results, the conventional metrics can 

generate misleading information with ML prediction results. We believe this issue is the result of 

the following factors:  

(1) The basic mechanism of ML models is to learn patterns from historical data, which 

sometimes makes them vulnerable to noise and biases in the training data, thus overfitting to the 

historical data if not properly trained. This property is in opposition to the theoretical optics-

based methods. We trained machine learning models with the SVM algorithm and the XGBoost 

framework, and showed that both can be overfitted. It is possible to overcome overfitting through 

machine learning techniques such as data augmentation, resampling or by integrating theoretical 

components to the ML model. While of potential interest, a review of these methods is beyond 

the scope of this work.  

(2) The IOL powers in the dataset were chosen through clinical decision making, and the 

postoperative refractions were influenced by the IOL powers. Both quantities have a unimodal 
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distribution (Figure 6.3), meaning that the distribution has one clear peak. Because of this 

reason, a calculator that simply predicts random values around the mean of historical data 

resulted in a reasonable MAE and SD of refraction prediction errors (Table 6.6, “Random” 

method). This method of fooling the refraction metrics can be easily “learned” by machine 

learning algorithms. As mentioned before, the dataset can overfit the model with meaningless 

information or information that is specific to the dataset. In the case of IOL prediction, the 

postoperative refractions are not randomly drawn from a distribution but are influenced by the 

IOL power that is manually selected by a surgeon based on discussions of refractive target with a 

patient (typically between -3.0 and 0.0 D). The fact that the postoperative refraction in historical 

datasets follows a certain distribution can be misleading for ML models. Practically, there is a 

tendency for ML algorithms to take advantage of such properties during training and 

inadvertently develop models that are not representative of the true system underlying the 

observations presented. This is a generalization issue caused by the mismatch between historical 

datasets and unseen patients. 

(3) When evaluating formulas using a historical dataset, the conventional metrics assume 

known implanted IOL powers correspond to the postoperative refraction, which is not practical 

in real clinical settings. In contrast to that, the IOL metrics make no assumption about which IOL 

power was implanted. Suppose that the patient in Table 6.8 were an incoming patient 

participating in a clinical trial testing the performance of XGBoost and Holladay 1, with the 

target refraction = -0.0364 D, the surgeon using XGBoost would end up picking a 19.0 D lens, 

and the surgeon using Holladay 1 would pick a 20.0 D lens. It is likely that clinical trial results 

would agree with the MAEPI rather than the refraction MAE calculated from Table 6.8. 
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Therefore, the IOL metrics are more intuitive and are better representations of real-life 

performance of IOL formulas using modern empirical methods such as ML. 

As mentioned in the Introduction, previous research has shown that standard metrics are 

not adequate for ML with imbalanced data, both in the case of regression and 

classification.[150,151,160] However, the existing evaluation frameworks for imbalanced 

regression does not provide an immediate solution for evaluating IOL formulas’ performance. 

The Regression Error Characteristics (REC) curve, which plots the absolute deviation tolerance 

versus accuracy, can be viewed as an expanded version of proportions of patients with errors 

within different intervals.[155] The REC curve provides a description of the cumulative 

distribution function of the errors, however its limitation is also recognized in previous 

research.[156] The standard deviation of the prediction error was recently put forth as the “single 

best parameter” to characterize the performance of an IOL formula.[91] However, the paper 

investigated only geometric optics-based formulas that have been tested extensively over the 

years. From the point of view of a surgeon, a critical question is whether reported evaluation 

metrics are able to predict the real-life performance of a new formula. In this study, we have 

demonstrated that the SD, as well as the other traditional metrics such as MAE, MedAE and the 

percentage of patients in different error intervals, can be easily fooled by ML methods (Table 

6.6). The Random, SVM and XGBoost model achieved abnormal high FPI (Table 6.6), which 

implies that the FPI is not a reliable evaluation metric.  

Well-performing IOL formulas should have low MAEPI as well as low refraction MAE 

and SD. When comparing the performance of existing formulas, it is normal that a formula 

outperforms another in multiple metrics. However, this will not eliminate the necessity of taking 

each of these metrics into consideration, because such results are not guaranteed to be 
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generalizable to all relevant metrics. We believe the traditional metrics and the new IOL power 

metrics both describe important aspects of the performance of a formula, and therefore we 

recommend using both at the same time. 

In this study, we assumed that the IOL formula predicts the postoperative refraction as a 

function of the IOL power. On the other hand, if the IOL formula is formulated as predicting the 

appropriate IOL power based on a specific refraction, then the MAEPI can simply be calculated 

as the mean absolute prediction error based on the standard equation. However, there is a 

persistent imbalance in the data, so the ML model will tend to predict common IOL powers (e.g., 

near 20 D) more frequently, regardless of how the refraction is specified. As an example, a 

model that outputs random IOL powers in a narrow interval around 20 D is capable of achieving 

a low MAEPI, which is similar to the results we obtained from the Random model in Table 6.6. 

Therefore, we recommend that in this scenario, both IOL power-based metrics and refraction-

based metrics still need to be calculated to obtain a more accurate assessment of the formula's 

performance. 

In our dataset the spherical component and cylindrical component had a step of 0.25 D, 

and the IOL powers had a step of 0.5 D. The presented analysis did not assume a fixed step for 

the measured refraction, therefore if the refraction had a different step or became continuous the 

results and conclusion would still be the same. We have also demonstrated in the Methods and 

Results sections that the conclusions drawn do not depend on the step of the IOL powers.  

Despite the benefits of using the IOL accuracy metrics, we have identified the following 

limitations: (1) Calculating the IOL accuracy metrics may require programming knowledge and 

may consume more computing resources compared to the traditional metrics, because the 

predictions of multiple IOL powers have to be computed for each patient to determine the 
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predicted IOL power. This issue might be especially prominent for machine learning models 

since the scoring metrics may need to be computed repetitively during model selection. (2) The 

refraction MAE can be utilized as the loss function for optimization algorithms in machine 

learning. On the contrary, the MAEPI cannot be used directly as a loss function.   

We are aware of potential confusion regarding the definition of the predicted IOL power. 

In the clinical setting, surgeons often choose an IOL power for which the predicted refraction is 

closest to the target refraction while remaining negative and/or more myopic than the target 

refraction. However, when calculating the MAEPI, the predicted IOL power should simply be 

the one of which the predicted refraction is closest to the true refraction. This is because the IOL 

power metrics are calculated according to historical datasets and the aim is to evaluate the 

accuracy of a formula. For instance, for a patient with a postoperative refraction of 2 D, the IOL 

power metrics should evaluate whether the IOL formula is able to pick the correct IOL power 

when aiming at a refraction of 2 D, instead of a refraction of -0.5 D. 

In sum, we have demonstrated the potential pitfalls when using traditional metrics for 

performance evaluation of IOL formulas, including refraction MAE and SD. We recommend 

using the newly proposed IOL metrics, MAEPI and CIR, in addition to the conventional metrics 

for evaluating the performance of an IOL formula, especially for pure or largely ML-based 

formulas.  

6.6 Publication 

This chapter is under revision for publication at Translational Vision Science & 

Technology: Li, Tingyang, Joshua Stein, and Nambi Nallasamy. "MAEPI and CIR: new metrics 

for robust evaluation of the prediction performance of AI-based IOL formulas.". 
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6.7 Supplementary Materials 

Supplementary Material A 

Example calculation for MAEPI and CIR 

Given the following dataset of two patients: 

Patient ID Implanted IOL Power (D) Postop. Refraction (D) 

1 20.0 -0.45 

2 15.5 -1.25 

 

For each patient, compute IOL predictions of all IOL powers (6 D to 30 D). 

Patient ID IOL Power (D) Predicted Refraction (D) 

1 6.0 5.28 

1 6.5 4.89 

1 … … 

1 19.0 -0.11 

1 19.5 -0.40 

1 20.0 -0.78 

1 20.5 -1.21 

1 … … 

1 30.0 -3.23 

 

Patient ID IOL Power (D) Predicted Refraction (D) 

2 6.0 5.28 

2 6.5 4.89 

2 … … 

2 13.5 -0.82 

2 14.0 -1.20 

2 14.5 -1.52 

2 15.0 -1.89 
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2 15.5 -2.01 

2 … … 

2 30.0 -3.23 

 

Based on the above results for patient 1, when IOL power = 19.5 D, the predicted 

refraction (-0.40 D) is closest to the actual postoperative refraction (-0.45 D). Therefore, the 

predicted IOL power for patient 1 is 19.5 D. Similarly, the predicted IOL power for patient 2 is 

14.0 D. 

The refraction prediction error of patient 1 =-0.45-(-0.78) = 0.33 D 

The refraction prediction error of patient 2 =-1.25-(-2.01) = 0.76 D 

The refraction prediction MAE = (0.33+0.76)/2 = 0.545 D 

The IOL power prediction error of patient 1 = 20.0 - 19.5 = 0.5D 

The IOL power prediction error of patient 2 = 15.5 - 14.0 = 1.5D 

The MAEPI = (0.5+1.5)/2 = 1.0 

The CIR(0) = 0% 

The CIR(0.5) = 50% 

The CIR(1) = 50% 

In practice it is not necessary to compute predictions for all 6 D to 30 D IOL powers. A 

more efficient algorithm can be designed to determine the IOL power that has a predicted 

refraction closest to the actual postoperative refraction. 

 

Supplementary Material B 

Case A 

Implanted IOL power for case 1 = 20 D, postoperative refraction = 0 D 
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For this case, the predicted IOL power = 20.5 D, absolute refraction PE = 0.2 D, absolute 

IOL power PE = 0.5 D 

 

Case B: Example wherein the two metrics are not consistent when d < 0, d is not a constant 

Implanted IOL power for case 2 = 20 D, postoperative refraction = 0 D. 

 

 

 

For this case, the predicted IOL power = 20.0 D, absolute refraction PE = 0.3 D, absolute 

IOL power PE = 0.0 D. 

The refraction absolute PE was higher than case A, but IOL absolute PE was lower than 

case A. 

 

Case C: Example wherein the two metrics are consistent when d < 0, d is not a constant 

Implanted IOL power for case 2 = 20 D, postoperative refraction = 0 D. 

 

 

 

For this case, absolute refraction PE = 0.0 D, absolute IOL power PE = 0.0 D. 

IOL Power (D) 19.5 20 20.5 21.0 

Predicted Refraction (D) 0.6 0.2 -0.1 -0.3 

IOL Power (D) 19.5 20 20.5 21.0 

Predicted Refraction (D) 0.6 -0.3 -0.5 -0.8 

IOL Power (D) 19.5 20 20.5 21.0 

Predicted Refraction (D) 0.5 0.0 -0.4 -0.7 
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The refraction absolute PE was lower than case A, the IOL absolute PE was also lower 

than case A. 

Supplementary Material C 

 

Case A (IOL power is continuous) 

Implanted IOL power for case 1 = 20 D, postoperative refraction = 0 D 

 

 

 

For this case, the predicted IOL power = 18.32 D, absolute refraction PE = 0.2 D, 

absolute IOL power PE = 1.68 D 

 

Case B: Example wherein the two metrics are not consistent when d < 0, d is not a constant, 

and the IOL power is continuous 

Implanted IOL power for case 2 = 20 D, postoperative refraction = 0 D. 

 

 

 

For this case, the predicted IOL power = 19.51 D, absolute refraction PE = 0.3 D, 

absolute IOL power PE = 0.49 D. 

The refraction absolute PE was higher than case A, but IOL absolute PE was lower than 

case A. 

 

IOL Power (D) 18.32 20.00 

Predicted Refraction (D) 0.0 -0.2 

IOL Power (D) 19.51 20 

Predicted Refraction (D) 0.0 -0.3 
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Case C: Example wherein the two metrics are consistent when d < 0, d is not a constant, 

and the IOL power is continuous 

Implanted IOL power for case 2 = 20 D, postoperative refraction = 0 D 

 

 

 

For this case, the predicted IOL power = 19.51 D, absolute refraction PE = 0.1 D, 

absolute IOL power PE = 0.49 D. 

The refraction absolute PE was lower than case A, the IOL absolute PE was also lower 

than case A. 

 

Supplementary Material D 

Examples of simulated samples: 

(1) Linear: 𝑑 = -0.5, range of 𝑒 is [-1,1] 

Patient 1: The postoperative refraction = -0.5 D, implanted IOL power = 21 D, 𝑒 = 0.8, 𝑑 = -0.5 

 

 

 

Patient 2: The postoperative refraction = +0.7 D, implanted IOL power = 15 D, 𝑒 = -0.3, 𝑑 = -

0.5 

 

 

 

IOL Power (D) 19.51 20 

Predicted Refraction (D) 0 -0.1 

IOL Power (D) … 20.0 20.5 21.0 21.5 … 

Predicted Refraction (D) … -0.3 -0.8 -1.3 -1.8 … 

IOL Power (D) … 14.0 14.5 15 15.5 … 

Predicted Refraction (D) … 2.0 1.5 1.0 0.5 … 
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(2) None-linear: range of 𝑑 is [-1, -0.1], range of 𝑒 is [-1,1] 

Patient 1: The postop. refraction = -0.5 D, implanted IOL power = 21 D, 𝑒 = 0.8, range of 𝑑 is [-

1, -0.1]  

 

 

 

Patient 2: The postop. refraction = +0.7 D, implanted IOL power = 15 D, 𝑒 = -0.3, range of 𝑑 is 

[-1, -0.1]  

 

 

 

(3) Random: range of refraction predictions is [-5,5] 

Patient 1: The postop. refraction = -0.5 D, implanted IOL power = 21 D, range of refraction 

predictions is [-5,5] 

 

 

 

Patient 2: The postop. refraction = +0.7 D, implanted IOL power = 15 D, range of refraction 

predictions is [-5,5] 

 

 

 

 

IOL Power (D) … 20.0 20.5 21.0 21.5 … 

Predicted Refraction (D) … -0.5 -1.0 -1.3 -1.5 … 

IOL Power (D) … 14.0 14.5 15 15.5 … 

Predicted Refraction (D) … 2.1 1.7 1.0 0.6 … 

IOL Power (D) … 20.0 20.5 21.0 21.5 … 

Predicted Refraction (D) … -1.5 1.0 -0.3 2.7 … 

IOL Power (D) … 14.0 14.5 15 15.5 … 

Predicted Refraction (D) … 4.3 -0.8 3.5 1.6 … 
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Supplementary Material E 

Hyperparameters of the machine learning models. 

Hyperparameters for SVM: 

sklearn.svm.SVR(kernel='rbf',epsilon=0.4,C=100, gamma=0.0005 ) 

 

Hyperparameters for XGBoost: 

learning_rate = 0.05, n_estimators = 400, max_depth= 6, min_child_weight = 5, gamma = 0.5, 

subsample = 0.5, colsample_bytree = 0.8, scale_pos_weight = 0.5, reg_alpha = 1e-5, objective = 

‘reg:squarederror’ 

 

Index Method MAEPI (D) CIR(0) CIR(0.5) CIR(1)  MAEPI (D) CIR(0) CIR(0.5) CIR(1) 

IOL power step = 0.01 D IOL power step = 1.0 D 

(1) Random 6.845 0.0% 4.1% 8.1% 7.092 1.8% 6.7% 11.2% 

(2) SVM 0.559 0.0% 60.5% 86.7% 0.575 30.6% 74.7% 91.4% 

XGBoost 1.518 0.0% 32.2% 54.9% 1.454 16.6% 44.5% 64.2% 

(3) Haigis 0.514 0.0% 57.5% 87.3% 0.544 28.6% 72.9% 92.3% 

Hoffer Q 0.602 0.0% 50.1% 82.5% 0.624 25.0% 66.0% 88.3% 

Holladay 0.546 0.0% 55.2% 86.0% 0.574 27.2% 70.6% 91.1% 

SRK/T 0.557 0.0% 54.3% 85.7% 0.583 26.4% 69.6% 90.9% 

Table S 6.1 The MAEPI and CIRs calculated assuming the step of the IOL powers equals 0.01 D and 1.0 D.  

Because the step of the IOL power was 0.5 D in the dataset, it is not technically meaningful to evaluate the 

percentage of predicted IOL powers that are identical to the ones in the dataset. Here we included CIR(0) only for 

the sake of comparison. MAEPI: mean absolute error in prediction of IOL; CIR: correct IOL rate; D: diopter. 

  

 
Barrett Haigis Hoffer Q Holladay 1 SRK/T Random SVM 

Haigis 1.00E+00 / / / / / / 

Hoffer Q 5.65E-01 1.00E+00 / / / / / 
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Holladay 1 6.59E-04 1.00E+00 4.62E-02 / / / / 

SRK/T 3.97E-01 1.00E+00 1.00E+00 1.00E+00 / / / 

Random 1.03E-13 3.39E-11 4.49E-10 3.10E-12 9.44E-14 / / 

SVM 1.00E+00 1.00E+00 2.12E-01 3.46E-02 1.00E+00 3.43E-11 / 

XGBoost 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 3.70E-11 1.00E+00 

Table S 6.2 The post-hoc Wilcoxon test p-values (with Bonferroni correction) for the refraction absolute 

prediction error.  

The Friedman chi-square test statistic, correcting for ties: 402.99. The associated p-value was 5.45e-83. Significant 

p-values are marked in bold with underscore. 

 

 
Barrett Haigis Hoffer Q Holladay 1 SRK/T Random SVM 

Haigis 5.32E-02 / / / / / / 

Hoffer Q 2.21E-02 1.00E+00 / / / / / 

Holladay 1 1.64E-01 1.00E+00 1.00E+00 / / / / 

SRK/T 6.02E-05 1.00E+00 1.00E+00 2.17E-01 / / / 

Random 3.54E-14 2.23E-14 2.91E-14 2.58E-14 8.04E-15 / / 

SVM 1.00E+00 1.00E+00 1.00E+00 1.00E+00 3.50E-01 1.74E-14 / 

XGBoost 1.35E-13 7.71E-16 3.06E-16 2.34E-16 4.04E-18 8.23E-09 1.84E-18 

Table S 6.3 The post-hoc Wilcoxon test p-values (with Bonferroni correction) for the IOL power absolute 

prediction error.  

The Friedman chi-square test statistic, correcting for ties: 146.27. The associated p-value was 2.476e-28. Significant 

p-values are marked in bold with underscore. 
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Figure S 6.1 Distribution of data in the training and testing datasets.  

A. Training data distribution. B. Testing data distribution. The number of bins for the bar plots was set to 30. The 

curve in each plot represents a gaussian kernel density estimate of the distribution. AL: axial length; CCT: central 

corneal thickness; AD: aqueous depth; ACD: anterior chamber depth; LT: lens thickness; K1: flat keratometry; K2: 

steep keratometry, AST: astigmatism; WTW: white-to-white; D: diopter 
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Figure S 6.2 The partial dependence plots (PDP) for IOL power.  

IOL powers range from 6 D to 30 D. The blue lines depict how the predicted refractions change with the IOL 

powers for individual patients. The heads of blue lines are centered at zero for the sake of comparison and 

visualization. The thick black line with yellow highlight represents the average of all blue lines. The refraction 

prediction MAE (“Ref. MAE”), the standard deviation of the refraction prediction error (“Ref. SD”) and the IOL 

power prediction MAE (MAEPI) of the corresponding formulas are marked on the plots for the convenience of 

comparison (they are also listed in Table 6.6). 
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Chapter 7 Conclusions and Future Directions 

7.1 Summary of Findings  

Beyond the surgeon's technique, accurate prediction of postoperative refraction lies at the 

heart of any successful cataract surgery. Although many IOL formulas have been developed in 

the past decades, the accuracy of IOL formulas still needs to be enhanced to address the ever-

increasing expectations of cataract patients. In light of the large number of cataract surgeries 

performed every year, improving the accuracy of IOL power selection has become a crucial 

endeavor for both academic researchers and ophthalmologists. However, a complicated interplay 

of interdependent factors involved in IOL power selection made modeling the vision of the eye a 

rather challenging task.  

Theoretical Gaussian optics-based methods have demonstrated good prediction abilities, 

despite their limitations in terms of model complexity. In contrast, supervised machine learning 

algorithms are able to circumvent the limitations of theoretical methods and learn complex 

patterns without relying on experts’ knowledge, making it a viable option for future IOL 

formulas. The objective of this dissertation is describing a series of retrospective studies where 

we developed machine learning-based methods using cataract patients’ data attained at the 

University of Michigan’s Kellogg Eye Center to aid the decision-making process for cataract 

surgery. 
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In Chapter 2, using the preoperative biometry and postoperative ACD of 847 patients, we 

built a machine learning based method for postoperative lens position (ACD) prediction. 

Previous methods estimate the ELP as a function of AL, K, ACD and LT. In order to improve 

the accuracy of prediction, we utilized a gradient boosted decision tree-based algorithm in 

addition to adding more features (such as WTW and patient sex) to the algorithm. The prediction 

performance was significantly better than that of existing formulas Haigis, Hoffer Q, Holladay 1, 

Olsen, and SRK/T. The MAE and MedAE of the prediction slightly decreased when IOL power 

was added as an additional feature. Additionally, our algorithm maintained good performance 

when K (corneal power) was not available. 

In Chapter 3, in order to investigate whether the ML-predicted postoperative ACD can 

improve the accuracy of existing optics-based IOL formulas for predicting postoperative 

refraction, we combined the ML model discussed in Chapter 2 with four existing formulas: 

Haigis, Hoffer Q, Holladay, and SRK/T. The performance of all formulas was significantly 

improved when formula-predicted ELPs were replaced with a linear combination of ML and 

formula-predicted ELPs. 

In Chapter 4, we investigated into methodologies of combining ML-predicted ACD with 

ray tracing based IOL prediction formula OKULIX. OKULIX computes the postoperative 

refraction with exact calculations based on Snell’s law but the postoperative lens position is not 

an exact calculation but a prediction.[161] Accordingly, we hypothesized that OKULIX should 

produce a more accurate prediction of postoperative refraction when the lens position is more 

accurately predicted. The results that we obtained corroborated our hypothesis: when combined 

with ML-predicted postoperative ACD, OKULIX achieved significantly better prediction 
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performance. Together with Chapter 3, we have shown that more accurate predictions of the 

postoperative lens position can significantly improve the performance of existing prediction 

methods. 

In Chapter 5, we compiled a large dataset of 5016 cataract patients' preoperative biometry 

and postoperative manifest refraction, and utilized this dataset for developing the AI-based 

Nallasamy formula. The Nallasamy formula was developed using a stacking ensemble 

framework whereby the first-level models are combined using the second-level meta-algorithm. 

Furthermore, we devised novel feature engineering and data augmentation methods to integrate 

expert knowledge into the ML model for further improvement of prediction performance. Based 

on our results on a testing set of 1003 patients (1003 eyes), the Nallasamy formula significantly 

outperformed existing formulas including Barrett Universal II, EVO, Haigis, Hoffer Q, Holladay 

1, PearlDGS, and SRK/T. The Nallasamy formula is freely available online at 

https://lenscalc.com/.  

In Chapter 6, we proposed two metrics for robust evaluation of machine learning based 

IOL formulas. It is long-established that for imbalanced dataset, standard metrics (such as 

accuracy for classification tasks) may lead to misleading conclusions. However, the cataract 

patient dataset exhibits an extremely unbalanced distribution where the majority of IOL powers 

and the majority of postoperative refraction values are approximately centered around their 

average values. Unlike supervised classification tasks for which many metrics for imbalanced 

dataset have been proposed (such as the F-score), metrics for imbalanced regression and 

specifically for IOL formulas are underexplored. The MAEPI and CIR that we proposed in 

Chapter 6 calculate the accuracy in selecting the most appropriate IOL power based on the 
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predicted refraction of all IOL powers. Our results showed that MAEPI and CIR were capable of 

distinguishing overfitted ML models and providing unbiased evaluation scores. 

7.2 Future Directions 

7.2.1 Machine learning in cataract surgery 

Our method and current machine learning-based formulas have demonstrated excellent 

performance and a promising future for AI-aided cataract surgery planning. In light of our 

experience and the opinions expressed in other publications, we summarize the advantages and 

disadvantages of machine learning methods as follows. 

Machine learning has the following merits that make it a great candidate for building new 

IOL power selection methods: (1) The traditional vergence formulas only use a limited number 

of parameters (i.e., coefficients and constants). This is because these formulas were derived 

manually and with unavoidable simplifications. Comparatively, ML models present greater 

flexibility and scalability. Algorithms such as neural networks do not theoretically place a limit 

on the number of parameters that can be included in the prediction model. In this way, ML 

models are able to capture intervariable relationships with a higher level of complexity. (2) ML 

provides a more flexible framework that facilitates easy combination of different types of 

information (e.g., text and images), as well as different types of prediction models (e.g., 

integrating theoretical methods into machine learning-based methods). Such flexibility is 

especially important as more and more medical devices with different capabilities become 

available to patients. There will be difficulties leveraging data of other formats using theoretical 

optics-based methods. (3) There is a large degree of reliance on expert knowledge in theoretical 
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formulas. However, because of the eye's complicated structure, many aspects of the eye and the 

changes caused by cataract surgery cannot be readily represented mathematically. By contrast, 

ML can identify patterns purely based on the dataset, thus allowing it to uncover rules and 

patterns that were previously unknown to experts. (4) The ELP must be specifically predicted in 

theoretical formulas in order to be able to predict the postoperative refraction. Meanwhile, ML 

models can directly predict postoperative refraction using preoperative biometry. This feature 

might help ML-based methods avoid errors caused by ELP prediction. 

In addition to the above advantages, machine learning has limitations compared to 

theoretical methods. We also suggest potential solutions to these limitations. (1) The 

performance of ML models is highly dependent on the size and quality of data. This issue is 

especially relevant for atypical eyes (such as eyes with extreme ALs). Many commonly-known 

ML-based IOL formulas were developed using large datasets: the RBF calculator project (for 

developing the Hill-RBF formula) involved 44 study sites in 20 countries; the Kane formula was 

built with ~30000 cases; the PearlDGS formula used more than 4000 cases; the Ladas Super 

Formula (LSF) AI claims that more than 4000 eyes were used to improve the original LSF. 

Establishing cross-institutional databases such as the SOURCE database may facilitate the 

gathering of data in future studies. Further, the use of data augmentation techniques such as 

interpolation may help to increase the dataset size and improve prediction generalizability. (2) 

Overfitting is an issue that can occur with any ML model. When overfitting happens, the ML 

model has high prediction accuracy with known cases, but poor prediction accuracy with unseen 

cases. ML learning models are particularly vulnerable to overfitting when the datasets are small, 

as is the case for many medical datasets. Since overcoming overfitting is a long-standing 
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endeavor, there have been many sophisticated techniques that have been developed and are 

widely used in modern ML model development.[162] (3) Difficulty in interpretation is another 

common issue with ML algorithms. Essentially this means that it is difficult to explain in human 

language how a machine learning algorithm makes a decision or predicts a certain number (with 

exceptions of algorithms such as decision trees). Although there are indirect ways to examine the 

underlying logic of a model, such as assessing feature importance and feature dependence, 

currently it is still impossible to accurately interpret ML models. Interdisciplinary researchers 

and computer science researchers are both actively working on these topics, with promising 

results constantly emerging. (4) Unlike theoretical methods, ML models do not have an 

optimizable lens-specific constant, therefore ML models are not directly generalizable to 

completely unseen lens types. A possible way to resolve this issue is by devising methods or 

equations that can be used to adjust predictions of IOL formulas for different lenses. A second 

solution is to retrain the ML-based formula with different datasets. This idea has been 

successfully implemented via transfer learning with the Nallasamy formula using the Aravind 

Eye Care System’s dataset collected in southern India where patients received the Aravind-

designed Auroflex IOLs. This study was presented at the 2022 American Society of Cataract and 

Refractive Surgery (ASCRS) annual meeting.  

According to the above description, despite inherent limitations of current machine 

learning algorithms, we can anticipate that artificial intelligence will play a key role in the 

development of next-generation IOL formulas. In addition to general cataract patients, artificial 

intelligence also has a great potential for difficult cataract surgery cases where theoretical 

methods may not be the best choice. This may include patients with combined cataract surgery 
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and endothelial keratoplasty (EK) surgery, such as Descemet's Stripping Endothelial 

Keratoplasty (DSEK) or Descemet Membrane Endothelial Keratoplasty (DMEK).  It may also 

include patients with corneal ectasia or prior penetrating keratoplasty. Future ML applications 

that are most relevant to this dissertation will be discussed in the following sections. 

7.2.2 Machine learning predicted lens position combined with intraoperative aberrometry 

Intraoperative aberrometry (IA) measures the power of the aphakic or pseudophakic eye 

during surgery. The Optiwave Refractive Analysis (ORA) system (Alcon, Fort Worth, TX, USA) 

uses a proprietary algorithm and IA measurements to predict postoperative refractions. Recent 

publications found mixed performance results when comparing ORA to Barrett True K No 

History (Barrett TKNH) among post-refractive surgery patients [163–165]. For regular cataract 

patients (with no refractive surgery history), IA displays no significant advantage compared to 

standard IOL formulas. [166] In practice, IA is typically used to validate the IOL power 

selection. A prominent source of error in the IA-based formula is the error in the estimation of 

the postoperative lens position. A study in this direction may investigate methodologies to 

combine IA-based methods with more accurate lens position prediction methods such as our 

ML-based method described in Chapter 2. 

7.2.3 Evaluation metrics for IOL formulas 

Previous discussions on the choice of evaluation metrics for IOL formulas (SD [91] and 

FPI [89]) have not considered the imbalances in the dataset. It was our publication that first 

discussed the limitations of standard regression metrics (such as MAE, MedAE and SD) 

resulting in false conclusions when ML-based formulas are overfitted. We have demonstrated in 
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Chapter 6 that MAEPI and CIR effectively distinguished overfitted, poorly performing ML 

models built with state-of-the-art ML algorithms. We anticipate more experimentation and 

validation of these two metrics MAEPI and CIR in the future.  

In addition, we noticed that the data imbalance issues do not arise only in cataract 

patients, but rather occur in a wide range of medical datasets as well. For example, for diagnostic 

classification, it is expected that the dataset will have fewer positive cases than negative cases. 

As an example of imbalanced regression, consider an AI-powered grading system for medical 

education. If not enough poor grades are present in the training dataset, the ML algorithm may 

tend to give high grades when it encounters uncertain data. Standard evaluation metrics will not 

accurately reflect such errors because poor grades are rare in the dataset, and thus the value of 

the evaluation metric is mostly driven by the algorithm’s performance in cases with high grades. 

Problems of imbalanced regression in other fields of medical research need to be addressed with 

the same rigor. Our recommendation is that the selection of evaluation metrics should depend on 

the application's goals. For example, a grading system may employ a ranking-based evaluation 

metric which evaluates the ability of the ML system to maintain the predicted value rank rather 

than calculating the absolute difference. 

7.2.4 IOL power prediction in short and long eyes 

When compared with existing formulas, the Nallasamy formula achieved a smaller 

variation in errors between eyes with different ALs. This result is in line with the performance of 

other new IOL formulas such as Kane and EVO, which were shown to have relatively small 

variations of errors among different ALs compared to older formulas (such as Hoffer Q and 

Holladay 1).[80,99] However, despite the trend of increasing accuracy, methods to reduce 
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prediction errors specifically for extreme ALs have been sparsely explored. Based on our 

experience and our review of relevant publications, we identified the following factors that may 

be the cause of errors in prediction for short and long axial lengths. 

Inaccurate ELP (postoperative ACD) predictions could be one source of error, 

particularly in short eyes which require high IOL powers and thick IOLs. A high-power IOL is 

more susceptible to the ELP prediction error, while on the other extreme, the impact of ELP 

diminishes as the IOL power approaches zero. [52,167,168] The issue may not arise in ML-

based formulas that do not predict ELP as an intermediate variable. 

A second source of error is the keratometry measurements. Short eyes may have steeper 

corneas, and long eyes may have flatter corneas, both of which could affect the accuracy of the 

keratometry measurements of biometer.[167] Similar to the issues with post-refractive surgery 

eyes, the assumptions made by the biometer about the corneal index and the relationship between 

the anterior and posterior corneal surfaces may not be accurate for eyes of extreme AL. This 

issue could be mitigated through the use of devices that are able to measure the total corneal 

power based on both the anterior and posterior corneal surface. Many publications have proven 

that total K measurements (e.g., K values considering both the anterior and posterior corneal 

surface) are significantly different from standard K measurements (e.g., K values considering 

only the anterior corneal surface), and IOL power calculations resulted in statistically significant 

differences. [23,169–171] By analyzing the formula prediction errors using total K and standard 

K respectively, the influence of K measurements on the prediction accuracy of extreme eyes can 

be determined.  
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Another source of error is the scarcity of cases of extreme ALs as compared to cases with 

medium ALs. Previous sections have discussed the effect of data size on ML algorithms. A lack 

of data may also affect theoretical formulas, since the relationship between variables may be 

different for extreme ALs, in comparison with average ALs. Without enough data, it is difficult 

to accurately approximate such a complex nonlinear relationship for postoperative refraction or 

ELP prediction. 

Most studies have focused on the prediction error variations related to ALs, but it has also 

been demonstrated that varied ACDs and LTs also contribute to error variations.[172] In reality, 

many biometric variables are correlated. For example, eyes with shorter ALs tend to have shorter 

ACD and thicker LT, and vice versa. The inclusion of patient demographic information may be 

one way to take into consideration such differences between patients.  

7.2.5 IOL power prediction in post-refractive surgery eyes 

Postoperative refraction prediction has always been difficult for patients who have 

previous refractive surgery such as laser-assisted in situ keratomileusis (LASIK), photorefractive 

keratectomy (PRK), or radial keratotomy (RK). These procedures alter the shape of the cornea, 

making the K measurement inaccurate. Formulas have been developed for these post-refractive 

eyes, such as the Barrett True-K formula and Haigis-L. Previous studies have compared the 

performance of standard formulas + total K (measured based on the anterior and posterior 

corneal surfaces) with that of formulas for post-refractive surgery eyes + standard K (measured 

only based on the anterior corneal surface). They found that the results differed based on the lens 

type and subgroup of patients.[173–175]  
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There is still room for improvement in the accuracy of the IOL power prediction for post-

refractive surgery eyes, as more accurate measurement devices and more advanced algorithms 

become available. In future studies, ML-based methods include information of both anterior and 

posterior surface corneal measurements, as well as to devise IOL formulas using standard K for 

post-refractive surgery patients. 

7.2.6 IOL power prediction of the second eye using data of the first eye 

There has been considerable effort put into determining how to correct the second eye's 

IOL prediction based on the first operated eye's results in bilateral sequential cataract surgery. 

There are two main methods of adjusting the prediction of the second eye based on the errors of 

predicted postoperative refraction of the first operated eye [176]. One method is the formula-

specific adjustment, where the second eye predictions are adjusted by formula-specific 

regression coefficients established based on the prediction errors of the first and second eye:  

𝑅𝑥2
𝑁𝑒𝑤 =  𝑅𝑥2

𝑂𝑙𝑑 + 𝛽𝑃𝐸1 

Rx2
New is the corrected refraction prediction of the second eye; Rx2

Old is the uncorrected 

refraction prediction of the second eye; PE1 is the refraction prediction error of the first eye; 

𝛽 is a formula-specific coefficient between 0 to 1, which is estimated based on a retrospective 

correlation analysis of prediction errors of the first eye and the second eye. Sometimes a constant 

value of 0.5 (50%) is used instead of 𝛽. 

Another method is the patient-specific IOL constant adjustment, where the second eye 

predictions are adjusted by regression coefficients established based on the patients-specific IOL 

constants optimized based on the first eye and second eye. 
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The first method has been widely adopted in previous publications and was shown to be 

effective in reducing the prediction error of the second eye.[177–179] 

Previous methods mostly investigated linear correlations between the results of the first 

and second eye. The methodology could be further improved by introducing non-linear modeling 

and sophisticated pattern recognition with ML algorithms. 

7.3 Conclusions 

Our ML-based postoperative lens position prediction method has achieved outstanding 

performance and we have further shown that the ML-predicted postoperative ACD can be used 

to improve the prediction performance of existing IOL formulas. The ML-based Nallasamy 

formula has also shown superior prediction performance compared to existing formulas based on 

our results. In the Future Directions section, we reviewed the advantages and limitations of 

machine learning applied to IOL power prediction and outlined potential future directions for 

further research.  

In conclusion, as more data become available and advanced medical devices and 

technologies become available, the future holds great potential for AI-powered applications in 

cataract surgery and ophthalmology research. 
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Appendices  

 

Appendix A: Derivation of the Thin Lens Formula 

  

 

Figure A.1 Diagram of the thin lens assumption.  

The thin lens schematic is shown in Figure A.1 The cornea and the intraocular lens (IOL) 

are assumed to be thin lenses with zero thickness. The light ray only bends once when it passes 

through the thin lens, whereas in reality the lens has two refracting surfaces (the anterior surface 

and the posterior surface). The refractive index of air is 𝑛1 (which is usually set to 𝑛1 =  1). The 

refractive index of the aqueous humor is 𝑛2. The refractive index of the vitreous humor is 𝑛3. 

The power of the cornea is 𝑃1. The power of the IOL is 𝑃2. The distance between the object and 

the cornea is 𝑑1. The distance between the cornea and the IOL is 𝑑2. The distance between the 

IOL and the image of the object is 𝑑3. All quantities given are in SI units. The vergences can be 

then calculated with the following equations. 𝑉1 is the vergence of light just before entering the 
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cornea. 𝑉2 is the vergence of the light right after leaving the cornea. 𝑉3 is the vergence of light 

just before entering the IOL. 𝑉4 is the vergence of the light right after leaving the IOL. 

𝑉1 =  
𝑛1

𝑑1
 

𝑉2 = 𝑉1 + 𝑃1 =
𝑛2

𝑑′
 

𝑉3 =  
𝑛2

𝑑′ − 𝑑2
=  

𝑛2

𝑛2
𝑛1
𝑑1

+ 𝑃1
− 𝑑2

 

𝑉4 = 𝑉3 + 𝑃2 =  
𝑛2

𝑛2
𝑛1
𝑑1

+ 𝑃1
− 𝑑2

+ 𝑃2 =  
𝑛3

𝑑3
 

𝑑3 =
𝑛3

𝑉4
=

𝑛3

𝑛2
𝑛2

𝑛1
𝑑1

+ 𝑃1
− 𝑑2

+ 𝑃2
 

Here 𝑑′ is an intermediate variable referring to a distance where the light coming out of 

the cornea will converge (media refractive index = 𝑛2). 

To obtain emmetropia, the image distance 𝑑3 should equal the lens-to-retina distance 

(𝐴𝐿 − 𝐴𝐶𝐷) so that the image of the object falls precisely on the retina. Now rewrite the 

expression of 𝑑3 while letting 𝑃1 = 𝐾 (the keratometry measurement),  
𝑛1

𝑑1
→  0 (because 

𝑛1

𝑑1
 is 

much smaller than 𝑃1), and 𝑑2 = postoperative ACD. 

𝑑3 =
𝑛3

𝑛2
𝑛2

0 + 𝐾 − 𝐴𝐶𝐷
+ 𝑃2

= 𝐴𝐿 − 𝐴𝐶𝐷 
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Solving the above equation gives the expression of 𝑃2, which is the power of the IOL to 

obtain emmetropia. Here 𝑛2, n3 are the refractive index of the aqueous and vitreous humor, 

respectively.  

𝑃2 =
𝑛3

𝐴𝐿 − 𝐴𝐶𝐷
−

𝑛2

𝑛2
𝐾 − 𝐴𝐶𝐷

 

Here AL, K and ACD are postoperative AL, postoperative K and postoperative ACD 

respectively. The above expression represents a generic form for early generation thin lens 

formulas (e.g., the Thijssen formula). The vergence formulas approximate the postoperative AL 

and K with preoperative AL and K. The postoperative ACD is an estimated value. The aqueous 

humor refractive index 𝑛2 and vitreous humor refractive index 𝑛3 are usually set to 𝑛2 = 𝑛3 =

1.336. 
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Appendix B: Derivation of the Equations for Keratometry Measurements 

 

 

Figure B.1 Diagram of the anterior segment of the eye  

The following derivation is based on the publication of Olsen.[40] Based on the 

schematic shown above in Figure B.1, the total power of the cornea (including the power of the 

anterior and posterior surface) can be given by the following equations. Here, 𝑛0 is the refractive 

index of air; 𝑛1 is the refractive index of the cornea; 𝑛2 is the refractive index of the aqueous 

humor; d is the central corneal thickness; 𝑟1 is the radius of curvature of the anterior corneal 

surface; 𝑟2 is the radius of curvature of the posterior corneal surface; 𝑃1 is the refractive power of 

the anterior corneal surface; 𝑃2 is the refractive power of the posterior corneal surface. The unit 

of 𝑃1, 𝑃2, and 𝑃𝑡𝑜𝑡𝑎𝑙 is diopter. The unit of 𝑟1, 𝑟2 and 𝑑 is meter. 

𝑃1 =  
𝑛1 − 𝑛0

𝑟1
 

𝑃2 =  
𝑛2 − 𝑛1

𝑟2
 

𝑃𝑡𝑜𝑡𝑎𝑙 =  𝑃1 + 𝑃2 −
𝑑

𝑛1
𝑃1𝑃2 

Now set 𝑛0 = 1, AP ratio 𝑎 =
𝑟1

𝑟2
 , 𝑏 =

𝑛1

𝑛2
. 
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𝑃𝑡𝑜𝑡𝑎𝑙 =  
(

𝑎
𝑏

− 𝑎 + 1) 𝑛1 − 1

𝑟1
−

(
1
𝑏

− 1)(𝑛1 − 1)𝑎𝑑𝑛1

𝑟1
2

 

Now make the following assumptions:  𝑛1 = 1.376, 𝑛2 = 1.336, AP ratio 𝑎 = 7.7/6.8, 

𝑑 = 0.5 𝑚𝑚 = 0.0005 𝑚 ,  
(

1

𝑏
−1)(𝑛1−1)𝑎𝑑𝑛1

𝑟1
= −0.0008 (let 𝑟1 = 7.7 𝑚𝑚 = 0.0077 𝑚 for this 

part), then: 

𝑃𝑡𝑜𝑡𝑎𝑙 =  
1.3315 − 1

𝑟1
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