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ABSTRACT

Alzheimer’s disease (AD) and dementia pose a significant burden to individuals

and public health. AD is expected to grow in prevalence in the coming decades due

to the aging population. Brain atrophy is a major component of AD pathology and

can occur before symptoms of cognitive impairment. However, pathological brain

atrophy and symptoms of cognitive impairment may be a result of many years of

disease impacts. Evidence supports the need for early detection of impacted neuro-

circuitry to foresee future progression to advanced stages of AD and develop treat-

ments. This dissertation examines predictive modeling and deep learning methods

to identify brain-behavior relationships and learn low-dimensional representations of

brain activity from MR imaging data. The dissertation and methods are separated

into four parts.

Part one of this work examines multivariate analysis approaches applied to func-

tional connectivity from subjects with an early clinical phenotype of AD, mild cog-

nitive impairment (MCI). A regression framework using partial least squares and

feature selection demonstrated significant brain-behavior relationships with measures

of cognition and memory. The results also confirm other findings that ecologically

relevant task-based connectivity serves as a “stress-test” for memory-related deficits

such as those observed in MCI. This approach elucidated brain regions that may be

implicated in MCI and warrant future study (superior temporal gyrus, inferior pari-

etal lobule, and superior frontal gyrus). Part two extends the multivariate analyses

studied in part one to an additional brain imaging modality, arterial spin labeling

(ASL). Cerebral blood flow (CBF) as measured by ASL demonstrated brain-behavior

xiv



relationships with composite measures of memory and learning in a cohort along the

spectrum of AD, demonstrating that CBF data warrant further investigation as a

predictor in this application.

Parts three and four utilize a variational autoencoder (VAE) model, a deep learn-

ing approach to encode latent representations that aim to disentangle sources of fMRI

signal. A surface-based VAE trained on only healthy controls is shown to be general-

izable to patients with MCI or dementia of the Alzheimer’s type (DAT). The results

maintained individual separation and high input/decoder output spatial reconstruc-

tion correlation of r=0.8 across all three groups. Part four extended the surface-based

model used in part three to a volumetric fMRI approach. Similarly to the surface-

based model, high reconstruction accuracy (NRMSE=0.68) and temporal correlation

(r=0.8) between input and decoder output are demonstrated. This approach is more

readily applicable to 3D fMRI data as compared to the surface-based model.

In summary, this work has proposed and developed multivariate and deep learning

analysis techniques for brain imaging data in the context of AD with the ultimate

goal of improving detection and intervention for early pathological changes in the

brain.
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CHAPTER I

Introduction

1.1 Background

1.1.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI), consisting of a series of brain vol-

ume MRI acquisitions, has been increasingly studied for insights into brain function.

It utilizes the blood-oxygen level dependent (BOLD) signal as an indirect measure of

neural activity; this activity impacts local hemodynamics in the brain and thereby

influences the MRI signal. There are two main modes of fMRI acquisition: task and

resting-state. Task-based fMRI involves the subject completing a specific task while

being scanned, whereas resting-state fMRI is collected in the absence of external task

stimulus. Task-based fMRI is used to study aspects of the “working” brain. For

example, one common task is a motor task, such as finger-tapping, that has been

utilized for studying activation of the motor cortex.

Resting-state fMRI provides a measure of intrinsic brain activity, or brain activity

when the subject is not performing any specific task. Research has demonstrated

that the default-mode network (DMN) is involved in a baseline state of the brain (i.e,

it is activated during wakeful rest including self-referential processing and internally

directed cognition) [70, 142]. Resting-state acquisitions are beneficial in studies of
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groups that may have difficulties completing a task (such as disease states impacting

motor control, attention, or cognition).

1.1.2 Connectivity

There are several types of MRI-derived connectivity. The first is structural con-

nectivity, typically referring to diffusion-based measures of physical connections in

the brain. Diffusion-tensor imaging (DTI) measures the three-dimensional motion

of water molecules [11, 12], which primarily diffuse along white matter tracts, thus

providing an estimate for anatomical connections in the brain.

Functional connectivity is a measure of the temporal association between fMRI

BOLD signals in different brain regions. This association is often computed using cor-

relation (i.e., Pearson’s correlation), and the regions that co-vary are thought to have

indirect or direct communication. Biswal and colleagues demonstrated functional

connectivity in humans using resting-state fMRI, where the motor cortex regions of

interest were significantly more correlated with each other than with other areas of

the brain [19]. This was replicated soon after with motor and language areas [73, 178].

Notably, connectivity can be studied with task and/or resting-state fMRI, with each

method providing its own benefits.

There are several possible methods for obtaining brain regions among which to

assess functional connectivity. Seed-based methods require a choice of seed, meaning

a regional timecourse with which to correlate other regional timecourses. Often, this

seed is either a particular voxel (seed-based), region-of-interest (ROI) (ROI-based),

or parcel from using an predefined template (“parcellation”) of segments of the brain.

For each of these approaches, preprocessed fMRI timecourses averaged over each

seed, ROI, or parcel would be extracted and correlated in a pairwise manner to yield a

correlation matrix. There are also decomposition methods (i.e., principle components

analysis (PCA)), and data-driven methods such as independent component analysis
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(ICA).

Functional connectivity can be computed as a static measure, by using the entire

time-series in the correlation, or as a dynamic measure by splitting the time-series

into multiple states and deriving connectivity metrics for each state. This enables

study of time-varying connectivity across the brain.

Structural and functional connectivity are useful for studies of brain networks.

Both provide unique insights, either into the node connections in a network (struc-

tural), or the correlated activity between nodes (functional). Finally, a third type

of connectivity, effective connectivity, aims to model the cause of activity in brain

regions. Effective connectivity is assessed through structural equation modeling or

dynamic causal modeling.

Over the years, interest in and publication of fMRI-based functional connectivity

analyses has increased. Since fMRI-based functional connectivity is noninvasive and

can provide a metric for brain activity that is in a lower dimensional space than

volumetric fMRI, yet encodes both whole-brain and temporal information, it is an

appealing data type for neurofunctional studies. Often, functional connectivity is

analyzed by thresholding connectivity values and mapping them back onto the brain

to visualize networks, or by graph theory analysis. More recent analysis approaches

involve predictive modeling, which will be introduced in Chapter II.

1.1.3 Alzheimer’s Disease: Pathology and Functional Changes

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, often leading

to dementia that is characterized by loss of cognitive and memory function. Approx-

imately 6 million Americans are afflicted with AD, and this number is projected to

rise to 12.7 million by 2050 due to the increasingly aging population [143]. More

recently, three distinct stages of Alzheimer’s disease have been clinically adopted: a

preclinical stage, an intermediate stage of mild cognitive impairment (MCI), and, in
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the advanced stages, dementia of the Alzheimer’s type (DAT) [89]. MCI diagnosis

requires objective evidence of cognitive disturbances, despite relatively preserved ev-

eryday functioning. DAT is defined by severe cognitive and functional deficits that

must be clinically diagnosed. Patients exhibiting the earliest clinical phenotype of

DAT, MCI, have significant risk of progressing to dementia. However, the likelihood

and speed of this conversion varies by individual. Furthermore, it is known that pre-

clinical AD begins to effect the brain years before any diagnosis is made. Therefore,

there is an increasing need for the study of brain changes in the early stages to aid

future research of detection, prediction, and treatment methods.

Dementia is a nonspecific term for symptoms of cognitive and memory-related

deficits. There are several diseases or disorders that can cause dementia; Alzheimer’s

disease is one of the most prevalent causes. Other causes include cerebrovascular dis-

ease, Lewy body disease, frontotemporal lobar degeneration, and Parkinson’s disease,

among others. However, there are often co-morbidities or mixed pathologies between

other dementia causes [141], complicating the process of diagnosis, and highlighting

the need for adaptable biomarkers that can differentiate or illuminate overlapping

pathologies when applied transdiagnostically.

Alzheimer’s disease pathology is defined by accumulation of amyloid-β and tau

proteins, beginning years to decades before diagnosis (Figure 1.1). Tau presence is

linked to cognitive decline. The hippocampus, in the temporal lobe, is one of the

earliest brain structures affected in Alzheimer’s disease. The Braak staging model

outlines the progression of this accumulation from its beginnings in the inferior tem-

poral and medial-frontal lobes until most areas of the brain are effected [21]. This

accumulation is followed by nerve cell degeneration, or brain atrophy, that is visually

recognized in brain images (such as MRI) by ventricle enlargement, widening of sulci,

and thinning of gyri [169]. At this point, cognitive and behavioral changes begin to

emerge as the disease progresses into advanced stages.
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Figure 1.1: Schematic of Alzheimer’s disease biomarkers and their progression
over time. Figure from the Alzheimer’s Disease Neuroimaging Initiative (https:
//adni.loni.usc.edu/study-design/#background-container).

Cognitive changes are expected to occur with normal, healthy aging, but increased

levels of cognitive changes occur with MCI and DAT. Impairments in episodic mem-

ory, which entails conscious retrieval of detailed long-term memories of unique past

events, is a notorious symptom of dementia, and often reflected in areas of the default-

mode network [71]. However, episodic memory performance is also expected to decline

with increasing age. Semantic memory, which involves general understanding of the

world, is often stable over a lifetime, and may provide useful distinctions between

aging and pathological cognitive decline [131]; however, it may not be consistently

impaired across subjects along the continuum of Alzheimer’s disease [84]. Other cogni-

tive changes that may occur with age and/or dementia include degradation in spatial

abilities, reasoning, and processing speed. There is increasing interest in studying the

difference between normal aging and pathology because Alzheimer’s disease causes

changes in the brain many years before symptoms are detectable in the clinic, and
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distinguishing early functional brain changes from normal aging can aid detection.

Biomarkers primarily focus on three components of Alzheimer’s disease: amyloid-

β, tau pathology, and neuronal injury [88, 90]. Biomarkers that are used to observe

amyloid and tau in-vivo include measures of cerebrospinal fluid (CSF) and positron

emission tomography (PET). The use of PET ligands, such as fluorodeoxyglucose

(FDG), has been adopted as an AD biomarker. FDG can assess the metabolism of

glucose in the brain, which is commonly abnormal in AD [127]. FDG-PET often

demonstrates hypometabolism in areas with brain atrophy [36, 128]. FDG and other

PET ligands are also used to investigate tau pathology in living individuals. Neuronal

injury is assessed with structural MRI, FDG-PET hypometabolism, or CSF total tau.

AD-related brain atrophy has been observed via structural MRI up to a decade before

symptoms and diagnosis occur [165]. The presence of Alzheimer’s disease is presumed

if differential diagnosis of these biomarkers and clinical evaluations of cognition in-

dicate AD pathology. This can be confirmed post-mortem through neuropathology

studies using Pittsburgh Compound-B (PiB) that binds to amyloid-β and reveals its

deposits in the brain [85]. There is clinical need for new biomarkers to assess different

aspects of Alzheimer’s disease and detect earlier changes in the brain.

There is also growing knowledge of the genetic component of Alzheimer’s disease.

The first discovery in this realm was the risk of developing Alzheimer’s disease with

the presence of the apolipoprotein E (APOE) gene type ϵ4 allele [135]. Additional

studies have found other genetic loci associated with Alzheimer’s disease [109, 158],

and significant correlations between genetic risk scores and future AD risk as well as

progression from MCI to DAT [16].

Growing evidence supports the consensus that interventions are needed at the

earliest stages of Alzheimer’s disease. This motivates the need for sophisticated

data acquisition and analysis techniques that can disentangle early changes in the

brain, leading to biomarker discovery and improved detection and prediction of dis-
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ease states. Studies can leverage imaging modalities and cognitive assessments and

other tools to study structural and functional changes inherent to Alzheimer’s disease.

Functional MRI is a promising modality due to its noninvasive nature and capacity

for multimodal integration (i.e., combination with structural MRI, DTI, etc.).

1.1.4 Functional MRI and Alzheimer’s Disease

Functional MRI is increasingly studied as a potential biomarker for Alzheimer’s

disease, with an emphasis on connectivity and network analysis. Both resting-state

and task-based fMRI have been investigated for this purpose, each providing distinct

insights into changes in brain activations in Alzheimer’s disease. Differences in fMRI

activations in this context may be related to altered neural activity that results in AD-

related impairments (e.g., deficits in memory) or neurovascular dysfunction causing

altered neurovascular coupling or other causes. In addition, compensatory-related

increases in fMRI activations during early stages of Alzheimer’s disease pathology are

widely acknowledged [40, 67].

Decreases in regional coherence in the posterior cingulate cortex/precuneus have

been observed in subjects with DAT compared to controls in resting-state fMRI [81].

There is evidence that task-based stimuli perturb network connectivity, resulting in

improved detection of disease-relevant changes. Certain types of task-based fMRI,

such as memory-related tasks, can serve as stress tests to emphasize brain regions or

networks of interest implicated in afflictions of memory. For example, deficits in ex-

plicit visual memory are observed in subjects with DAT during viewing of scenes [64].

Face-name association task-based fMRI studies indicate that medial temporal lobe

(including hippocampal) activations are diminished in subjects with DAT [161]. The

object-location association task was developed for use in testing memory impairment

in MCI and illuminated the changes in encoding mechanisms in disease states [75].
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1.1.5 Functional Connectivity and Alzheimer’s Disease

Resting-state fMRI functional connectivity has been utilized in numerous studies

of Alzheimer’s disease. The hippocampus is implicated in early stages of Alzheimer’s

disease, and has been demonstrated to have disrupted resting-state functional con-

nectivity in subjects with amnestic MCI [9].

In resting-state, disrupted functional connectivity in the DMN is another common

observation in cohorts along the continuum of Alzheimer’s disease. Alterations of de-

fault mode network connectivity observed in MCI and DAT patients versus healthy

controls [2, 18, 148, 173]. Insufficient memory function is often reflected by impaired

default mode network functional connectivity [35, 125] and subjects with DAT demon-

strate reduced connectivity in the posterior DMN as compared to healthy older adults

[71].

Functional connectivity demonstrates significant between-group differences in MCI

compared to healthy controls, signifying that global degradation of brain networks are

detectable in early stages (MCI) [120]. In amnestic MCI, initial increases in posterior

cingulate cortex (PCC) connectivity have been observed, followed by decreased PCC

activity and increased connectivity in the frontal network at a longitudinal follow-up

[8]. This may reflect a potentially compensatory-related pattern of initial hyper-

connectivity in early disease stages followed by hypo-connectivity as the pathology

advances. Furthermore, this progression often follows the trail of pathological changes

observed by Braak et al. [21], starting in the medial temporal lobe, spreading through

areas of the DMN (including the PCC) and then spreading to frontal regions of the

brain in later stages.

Characterization of neural mechanisms involved in early changes in the brain

with Alzheimer’s disease pathology is crucial for prediction of conversion to advanced

disease stages and studies of therapeutic interventions. The evidence that functional

connectivity is a sensitive metric for memory and other AD-related changes in the
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brain, along with evidence of functional connectivity increases in initial disease states,

indicates that it may aid early detection and could provide further utility, such as in

studies of prediction.

1.2 Motivation

Neuroimaging has become an important tool in the clinical evaluation of individu-

als with suspected neurodegenerative disease, such as AD. Brain scans using structural

MRI have the power to elucidate the presence and progression of neurodegeneration.

Individuals with MCI and DAT often display the AD hallmark progressive atrophy

(especially in one of the key AD regions, the medial temporal lobes) [169]. However,

once macroscale brain atrophy is observed, the disease has already been affecting the

brain for years to decades. Early detection is key. A large area of interest in cur-

rent research to improve early detection of AD is focused on characterizing the early

functional changes in the brain with AD; one approach is with functional MRI, as it

provides a proxy for neural activity.

Functional MRI measures are increasingly studied as potential biomarkers for

Alzheimer’s disease, with an emphasis on connectivity and network analysis. As

previously discussed, compensatory-related increases in fMRI activations during early

stages of Alzheimer’s disease pathology are widely acknowledged. During advanced

stages of AD, general reductions in brain activations are often observed. Differences in

fMRI activations in this context may be related to altered neural activity that results

in AD-related impairments (such as deficits in memory) or neurovascular dysfunction

causing altered neurovascular coupling or potentially other causes. The takeaway is

that fMRI can provide a indirect measure of neuronal functioning and may be useful in

identifying patients at risk of developing AD even before macroscale atrophy develops.

Overall, detection and interventions are needed at the earliest stages of Alzheimer’s

disease. Functional MRI is a promising modality due to its noninvasive nature and
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capacity for multimodal integration. So fMRI may be able to illuminate neural mech-

anisms involved in early changes, hopefully leading to improved early detection.

This dissertation focuses on evaluating the merits of several neuroimaging data

types and analysis approaches for studying early changes in brain networks in AD.

The first aim is to evaluate whether task-based functional connectivity focused on

memory can “stress” the relevant networks and better capture relationships between

functional connections and memory performance compared to resting-state functional

connectivity. Next, this work considers the extension of previous predictive modeling

frameworks to arterial spin labeling measures of cerebral blood flow. The third aim

is to evaluate whether a pre-trained (on healthy subjects) representation learning

model is readily generalizable to rs-fMRI data from patients across the spectrum of

Alzheimer’s disease. Lastly, this work aims to evaluate how the cortical surface-based

VAE findings extend to a volumetric version.

1.3 Contributions

The main contributions described in this dissertation are discussed in four chapters

that are outlined in this section.

In chapter II, we examined multivariate analysis of mild cognitive impairment. We

developed a partial least squares (PLS) regression and feature selection pipeline for

functional connectivity. Our results demonstrated improved brain-behavior prediction

with task-based data.

In chapter III, we designed and implemented a novel application of brain-behavior

prediction to arterial spin labeling (ASL) data. Our results included significant rela-

tionships between ASL measures and both learning and memory metrics.

In chapter IV, we implemented a novel extension of a cortical surface-based rep-

resentation learning model to rsfMRI in the aging population (typical, MCI, DAT).

The surface-based model trained on healthy controls maintained individual separa-
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tion and high reconstruction performance when applied to subjects with MCI and

DAT.

In chapter V, we developed a volumetric representation learning model to study

rsfMRI. We demonstrated that spatial and temporal patterns of rsfMRI were success-

fully encoded and decoded and that the resulting generative model aligned well with

known resting-state networks.

Chapter VI summarizes the work described in earlier chapters and discusses its

possible future extensions.

Besides these chapters, Appendix A includes additional figures from the CPM

methodology in Chapter II and Appendix B provides a how-to guide for those getting

started with high performance computing as it pertains to fMRI data preprocessing.
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CHAPTER II

Multivariate Analysis of Mild Cognitive

Impairment Using Connectome Predictive

Modeling and Partial Least Squares Regression

2.1 Introduction

Patterns of functional connectivity from functional magnetic resonance imaging

(fMRI) indicate temporally correlated brain activations [19]. These patterns can

also reflect physiological changes in the brain [134]. Recent studies have focused on

identifying neurological and psychiatric diseases using predictive models based on an

individual’s functional connectivity footprint [108, 151]. There is also evidence that

functional connectivity measured during a task that is relevant to a neuropsychological

state can provide additional and/or complementary information; such findings have

been reported for studies of attention, intelligence, language and working memory

[68, 93, 180].

An individual’s connectivity footprint holds promise as a potential biomarker for

dementia of the Alzheimer’s type (DAT). However, Alzheimer’s disease often effects

the brain many years before symptoms are clinically diagnosed, beginning with the

accumulation of amyloid and tau proteins followed by brain atrophy. After this stage,

patients develop memory deficits and enter the continuum of the mild cognitive im-
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pairment (MCI) clinical phenotype. This makes early detection of any brain changes

paramount for patient diagnosis and therapeutic intervention. MCI is typified by

the presence of both subjective and objective cognitive (herein to focus on memory)

deficits but relatively preserved everyday functioning [3]. MCI due to Alzheimer’s

disease indicates significant risk of progressing to dementia, a condition that is ex-

pected to significantly increase in prevalence in the next few decades. As such, the

diagnostic category of MCI provides a clinically relevant testbed for predictive model-

ing since this phenotype encompasses those who range from nearly cognitively intact

to those nearly indistinguishable from dementia. Thus, focusing on only those with

MCI may ultimately help identify those most likely to convert to dementia in the

near future, thereby enabling earlier identification and intervention. To the authors’

knowledge, there are no studies examining predictive modeling in a cohort with MCI

using pathology-relevant functional connectivity footprints.

Connectome predictive modeling (CPM) is one approach to relate functional brain

network strength to a specific metric of behavior or trait. The protocol for CPM in-

cludes feature selection of functional connectivity data and linear regression [47, 159],

Elastic Net regression [41], or another approach to predict the response of inter-

est. CPM has been applied in several studies of connectivity data and successfully

predicted attention performance [151], individual identification and fluid intelligence

[47, 68]. Other work has utilized CPM to predict working memory performance from

various age groups [183]. Additionally, functional connectivity from resting-state

fMRI was found to successfully predict measures of overall cognitive impairment us-

ing functional connectivity from subjects spanning the AD spectrum [119]. An ex-

tension of CPM also determined that combining predictor information from two or

more task functional connectivity measurements provides complementary information

about individual differences [54].

Another existing multivariate analysis technique, partial least squares (PLS) re-
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gression, maximizes covariance between data and labels in its modeling approach

and is currently used in various aspects of neuroimaging [107]. Since PLS regres-

sion utilizes both data and labels to estimate the model, it is an attractive approach

for representing the interplay between cognitive deficits and functional connectivity

across the continuum of MCI. PLS regression has shown promise in similar milieu

for investigating the brain-behavior relationship. For example, PLS regression has

been successfully used to predict reading comprehension, episodic memory, and at-

tention from functional connectivity [93, 124, 180]. PLS regression has been applied

to a cohort with MCI using resting-state functional connectivity [124]. However,

to the authors’ knowledge, it has not yet been applied to a cohort with MCI using

MCI-relevant fMRI task data. There are many underlying factors contributing to a

diagnosis of MCI and a case-control study is likely to overlook the heterogeneity of

relationships in this population by enlarging the study scope to multiple entire pheno-

types. Thus, it is important to examine the relationship between ecologically-relevant

neuroimaging-derived measures and cognitive performance within the MCI group.

Other analytical methods suited to brain-behavior relationship modeling include

principal components regression (PCR), brain basis set (BBS) [162, 163], and other

combinations of principal components analysis and regression [53], among others.

However, neither of them provides the implicit modeling of response variables as in

PLS regression. Therefore, this study focuses on an in-depth comparison of CPM and

PLS regression.

As evidenced through CPM and PLS regression, multiple analytical methods have

been applied to patterns of functional connectivity and their relationships with cog-

nitive performance. However, there are few studies comparing their performance

against one another. Different methodologies have the potential to provide comple-

mentary information or better pinpoint relationships of interest. In this work, we

aim to fit CPM and modified PLS regression (termed PLS-BETA) models to the
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brain-behavior relationship in subjects with MCI and investigate the merit of these

different modeling approaches. We demonstrate that PLS-BETA is a viable tech-

nique for modeling the brain-behavior relationship and offers an improvement over

other techniques in predicting individual differences, perhaps due to its maximizing

of the covariance of predictor and response variables. As stated above, prior evidence

demonstrates that task-based functional connectivity relevant to a condition can em-

phasize brain-behavior relationships [68, 93, 180]. Therefore, a secondary aim was to

evaluate whether task-based functional connectivity focused on memory can “stress”

the relevant networks and better capture relationships between functional connections

and memory performance compared to resting-state functional connectivity. We also

investigated whether a combination of the two task-based connectivity predictors

may add complementary information about the effects of memory impairment an in-

dividual is experiencing. As an exploratory aim, we evaluated the significant nodes

resulting from CPM and PLS-BETA in relation to known evidence of dysfunction in

MCI.

2.2 Methods

2.2.1 Data

fMRI data were acquired using a Nova Medical 32-channel head coil on a 3T

MR750 GE scanner using multiband EPI (MB factor=3). Task and resting-state

fMRI data were acquired during a single scanning session for 84 older adults with

MCI (age=73.0±7.1, 47M/37F). All participants provided written informed consent

and study activities were approved by VA Ann Arbor. Acquisition parameters for

the task-based scans were repetition time (TR) 1200 ms, echo time (TE) 30 ms, 318

timepoints, flip angle 70°, field of view (FOV) 220 mm, 51 axial slices, and 2.5 mm

isotropic voxels. Resting-state scans used the following parameters: TR: 900 ms, TE:
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30 ms, 506 timepoints, and 3.25 x 3.25 x 3 mm voxels. Resting-state scans were

completed eyes-open with a fixation cross. SPGR parameters were as follows: TR:

12.3 ms, TE: 5.2 ms, flip angle 15°, FOV 25.6 cm, 1 mm3 voxels, reconstruction matrix

256 x 256, and 156 slices. Each session included two runs of each type of fMRI scan.

Initially, the first runs of these scans were analyzed, and later, the second runs were

analyzed to replicate the same original methods.

The face-name and object-location association fMRI tasks were performed as pub-

lished [74–76]. Face-name and object-location association tasks used a mixed event-

related block design consisting of six active blocks and seven rest blocks. Active blocks

contained three novel and three repeated stimuli, where participants were instructed

to push a button when a new stimulus occurred. After the scan, participants com-

pleted a memory test using the same stimuli. For face-name runs, participants were

shown faces and asked to recall the name in the cued recall phase, and then asked

to select the correct name from three options in the recognition phase. For object-

location runs, participants were shown an object followed by a blank screen and were

instructed to touch the location of the object on a touch screen monitor in the free

recall phase, and then shown the object and then its corresponding room without

the object and were instructed to touch the correct position on the touch screen in

the cued recall phase. Lastly, there was a recognition phase where participants were

instructed to select the location of the object from three location choices [74]. An

example of this paradigm is shown in Figure 2.1. For the purposes of this study, we

focus on the encoding-related BOLD fMRI data; the face-name and object-location

memory test performances will be reported separately.

2.2.2 Neuropsychological Measures

We selected measures of cognitive functioning to evaluate the true predictive

ability of PLS-BETA and CPM. These measures included the total score on the
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Figure 2.1: The object location association paradigm, reprinted from [75] by permis-
sion from Elsevier: Neuropsychologia, “Where did I put that? Patients with amnestic
mild cognitive impairment demonstrate widespread reductions in activity during the
encoding of ecologically relevant object-location associations,” Benjamin M. Hamp-
stead, et al. © 2011.

Montreal Cognitive Assessment (MoCA) [130] and both the Delayed Memory In-

dex (RBANSdelayed) and Total Score (RBANStotal) on the Repeatable Battery for the

Assessment of Neuropsychological Status (RBANS) [145]. RBANS, particularly the

delayed memory index, has been shown to be associated with AD pathology [164].

The RBANS metrics used in this work were summed raw index scores since age was

corrected in the analytic model. Subject demographics and neuropsychological cog-

nitive measure means and standard deviations are reported in Table 2.1. Note that

raw scores are used for the RBANS and MoCA to avoid redundant correction since

age was included in the primary analytic model.

2.2.3 Preprocessing

The following preprocessing steps were applied to the imaging data: cardiac and

respiratory noise correction using RETROICOR [63], slice timing correction using
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Table 2.1: Demographic and performance means (standard deviation) for subjects.

aMCI (n=84,
47M/37F)

Age 73.0 (7.1)
RBANSdelayed 28.0 (9.9)
RBANStotal 165.6 (22.0)

MoCA 21.5 (3.2)

Statistical Parametric Mapping software version 12 (SPM12; Wellcome Department

of Human Neuroimaging, London, England), combined distortion correction (using

a field map generated in FSL MCFLIRT [91], motion registration in SPM12), nor-

malization into MNI space (sampled at 3 mm resolution) (Computational Anatomy

Toolbox for SPM, CAT12; http://www.neuro.uni-jena.de/cat/), and smoothing at

5 mm FWHM. The CONN toolbox then applied detrending (quadratic), despiking

(loess regression smoothing, piecewise cubic interpolation), nuisance regression (mo-

tion parameters and first derivative and quadratic, CSF and white components (top 5

components identified by PCA in CSF/white matter masks)), and bandpass filtering:

0.01-0.1 Hz.

Functional data were parcellated into 264 regions of interest (ROIs) using the

Power atlas [137], with 8 additional ROIs (Table 2.2): two in the left and right amyg-

dala and six from the left and right hippocampus for a total of 272 ROIs. Average

time courses in all ROIs were correlated with all other ROI timecourses (Pearson

product-moment correlation). Z-scores were computed from these correlation matri-

ces via Fisher transformation.

2.2.4 Modeling

PLS-BETA and CPM modeling were applied to the first runs of two task-based

(face-name and object-location association) and resting-state connectivity data and

used to predict each cognitive measure: MoCA score, RBANSdelayed and RBANStotal.
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Table 2.2: MNI coordinates and labels for pathology-specific ROIs used in addition
to the Power atlas.

ROI MNI (x, y, z) Label

1 (-24, -4, -20) Left Amygdala
2 (24, -2, -20) Right Amygdala
3 (28, -12, -20) Right Hippocampus
4 (30, -24, -12) Right Hippocampus
5 (30, -39, -3) Right Hippocampus
6 (-29, -12, -22) Left Hippocampus
7 (-30, -24, -12) Left Hippocampus
8 (-29, -38, -4) Left Hippocampus

PLS-BETA was implemented with the MATLAB 2020b function plsregress, which

implements the SIMPLS algorithm, using leave-one-out cross validation. PLS re-

gression has many options for feature selection; here, the highest magnitude PLS

regression coefficients are used to limit overfitting [123]. For each subset of leave-one-

out training data, age was regressed from both functional connectivity and cognitive

measures. The resulting predictors and responses were used to obtain PLS regression

weights and the top 300 in magnitude were used as a feature mask to form a new

PLS model on the training data (Figure 2.2). This feature mask was also used to

test the model on the left-out subject. To evaluate significance, permutation testing

was performed with 1000 iterations. Each iteration, randomly shuffled labels were

inputted to the entire cross-validated modeling process to generate a null distribution

of R values against which to compare the actual R value.

CPM was implemented using the protocol in [159], shown in Figure 2.3, with a

threshold of 0.01 for feature selection of significantly correlated edges. Significant

edges were summed into the overall “brain score.” This process was done for positive

and negative correlations separately. Then, a linear model was fit under the assump-

tion of a linear relationship between brain score and behavioral score. A leave-one-out

framework was used, with the “left-out” subject used to test the fit linear model. Age

was regressed within the cross-validation scheme from both connectivity and measures
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Figure 2.2: Schematic of PLS-BETA modeling approach. (a) First, connectivity
matrices are reshaped into an N x P predictor matrix, where P is the total number
of connectivity edges in the upper triangular region of connectivity matrices for each
subject. (b) The predictor matrix and cognitive measure response variables are split
into train and test groups following a leave-one-out cross-validation framework. (c)
For each fold, the following procedure is followed: (1) Age is regressed from both
predictors and responses in the train group and the resulting age regression coefficients
are applied to the left-out test subject. (2) An initial PLS regression is performed with
the training group only. (3) From the initial PLS regression, the beta coefficients are
used as feature selection criterion by selecting the top 300 magnitude beta coefficients.
(4-5) This feature selection is used to form a final PLS-BETA model on the train group
and the resultant model is applied to the test subject. (d) After all folds have been
completed, the predicted behavior is evaluated.
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as for PLS-BETA. Permutation testing was performed with 1000 iterations to evaluate

significance.

We also evaluated combinations of task and rest connectivity data by concatenat-

ing the types of connectivity data into the predictor variable feature space with the

same response variables.

2.2.5 Visualization

Significant model connections were visualized with the Yale BioImage Suite Con-

nectivity Viewer (bioimagesuiteweb.github.io/webapp/), to evaluate lobule con-

nections across hemispheres, and to display important nodes defined by degree, the

number of edges attached to a particular node [152]. For demonstration purposes,

nodes with the top 5 highest degrees were selected to visualize significant connections

for each model. The MNI coordinates for the top five highest degree nodes were used

to obtain labels in WFU PickAtlas [122] from the Talairach Daemon [110] and the

automated anatomical labeling (AAL) atlas [167].

2.3 Results

Both PLS-BETA and CPM yielded significant brain-behavior relationships using

task data for the measures RBANStotal and RBANSdelayed (summarized in Table 2.3).

PLS-BETA predicted cognitive performance for both task fMRI datasets (Figures

2.4-2.6). Figures 2.4-2.6 show line plots of actual versus predicted scores, circle plots

of node connectedness, and glass brain plots to visualize high degree node locations.

For object-location task data, a significant relationship was identified for RBANStotal

(R=0.44, p≤0.001). For face-name task data, significant relationships were identified

for RBANStotal (R=0.55, p≤0.001) and RBANSdelayed (R=0.37, p≤0.05). PLS-BETA

also depicted a significant relationship with RBANStotal (R=0.43, p≤0.001) for the

combination of face-name and object-location task data (Figure 2.7). CPM resulted in
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Figure 2.3: Schematic of the CPM method [159], reprinted by permission from
Springer Nature: Springer Nature, Nature Protocols, “Using connectome-based pre-
dictive modeling to predict individual behavior from brain connectivity,” Xilin Shen,
et al. © 2017. Following a leave-one-out cross validation framework, connectivity
data and behavioral measures are correlated across the training set subjects. The re-
sulting correlations are thresholded at a given level to determine significance (p<0.01).
Next, the connectivity values at significant edges are summed separately for positive
and negative correlations. This generates a brain score that is used to fit a linear
model with the behavioral measures. Finally, this model is applied to the held-out
subject to predict a behavioral score from their connectivity data. After all folds
are complete, the performance is evaluated via correlation of actual and predicted
behavioral measures.
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Table 2.3: PLS-BETA and CPM Results Comparison.
CPM

Face-name Object-location Resting-state
Behavioral Data Rpos Rneg Rpos Rneg Rpos Rneg

RBANSdelayed 0.18 0.04 -0.08 0.03 0.13 0.10
RBANStotal 0.09 0.46** 0.33* 0.28* 0.17 0.04
MoCA -0.20 -0.18 0.03 -0.24 0.07 -0.22

PLS-BETA
Face-name Object-location Resting-state

Behavioral Data R R R
RBANSdelayed 0.37* 0.11 0.13
RBANStotal 0.55** 0.44** 0.09
MoCA 0.04 0.22 0.03
* p ≤ 0.05, ** p ≤ 0.001, obtained from 1,000 permutations.

significant relationships for RBANStotal with both types of task fMRI data: face-name

data (R=0.46, p≤0.001 for CPM negative edges) and object-location data (R=0.33,

p≤0.05 for CPM positive edges; R=0.28, p≤0.05 for CPM negative edges). Resting-

state data did not yield significant positive relationships with these cognitive metrics

using either PLS-BETA or CPM methods.

High degree nodes and corresponding region labels are summarized in Tables 2.4

and 2.5, for PLS-BETA and CPM, respectively. For PLS-BETA, these nodes occurred

in the superior frontal gyrus, superior temporal gyrus, precuneus, and inferior parietal

lobule. For CPM, these nodes occurred in the precuneus, middle frontal gyrus, inferior

parietal lobule, superior temporal gyrus, and precentral gyrus. Relevance of high

degree node locations will be considered in the following section.

These results were replicated with functional connectivity data from the second

run of each fMRI scan. The replication results are shown in Table 2.6. PLS-BETA

resulted in significant relationships between face-name task fMRI and RBANSdelayed

(R=0.30, p≤0.05) and between object-location task fMRI and RBANStotal (R=0.30,

p≤0.05). For CPM, significant relationships were identified for face-name task fMRI

with both RBANSdelayed (R=0.32, p≤0.05 for CPM positive edges) and RBANStotal
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Figure 2.4: RBANStotal PLS-BETA results for object-location task data. A) Plot of
predicted versus actual RBANStotal values. B) Circle plot of significant connections
between brain areas (using node degree threshold of 14). C) Glass brain plot of
significant nodes and connections.
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Figure 2.5: RBANStotal PLS-BETA results for face-name task data. A) Plot of
predicted versus actual RBANStotal values. B) Circle plot of significant connections
between brain areas (using node degree threshold of 15). C) Glass brain plot of
significant nodes and connections.
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Figure 2.6: RBANSdelayed PLS-BETA results for face-name task data. A) Plot of
predicted versus actual RBANSdelayed values. B) Circle plot of significant connections
between brain areas (using node degree threshold of 18). C) Glass brain plot of
significant nodes and connections.
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Table 2.4: Top 5 highest degree nodes for PLS-BETA models with each data/measure
result, with both Talairach Atlas labels and Automated Anatomical Labeling (AAL)
atlas labels.

Node Degree MNI (x, y, z) Talairach Label AAL Label

Object-location, RBANStotal

215 19 (-56, -50, 10)
Temporal Lobe,

Temporal Mid L
Superior Temporal Gyrus

194 18 (0, 30, 27) NA Cingulum Ant L

175 16 (40, 18, 40)
Frontal Lobe,

Precentral L
Middle Frontal Gyrus

169 15 (49, -42, 45)
Parietal Lobe,

Frontal Inf Tri R
Inferior Parietal Lobule

222 14 (10, -62, 61)
Parietal Lobe,

Angular L
Precuneus

Face-name, RBANStotal

198 21 (26, 50, 27)
Frontal Lobe,

Frontal Mid L
Superior Frontal Gyrus

165 18 (47, 10, 33)
Frontal Lobe,

Precentral R
Middle Frontal Gyrus

108 17 (13, 30, 59)
Frontal Lobe,

Frontal Sup Medial R
Superior Frontal Gyrus

140 16 (29, -77, 25)
Occipital Lobe,

Occipital Mid R
Sub-Gyral

64 15 (6, 67, -4) NA Frontal Med Orb R

Face-name, RBANSdelayed

85 24 (-10, 39, 52)
Frontal Lobe,

Frontal Sup Medial L
Superior Frontal Gyrus

92 23 (6, 54, 16)
Frontal Lobe,

Frontal Sup Medial R
Medial Frontal Gyrus

140 20 (29, -77, 25)
Occipital Lobe,

Occipital Mid R
Sub-Gyral

108 18 (13, 30, 59)
Frontal Lobe,

Frontal Sup Medial R
Superior Frontal Gyrus

89 18 (13, 55, 38)
Frontal Lobe,

Frontal Sup R
Superior Frontal Gyrus
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Table 2.5: Top 5 highest degree nodes for CPM models with each data/measure
result, with both Talairach Atlas labels and Automated Anatomical Labeling (AAL)
atlas labels.

Node Degree MNI (x, y, z) Talairach Label AAL Label

Face-name, RBANStotal, Negative Edges

145 21 (24, -87, 24)
Occipital Lobe,

Occipital Sup R
Cuneus

139 20 (15, -87, 37)
Parietal Lobe,

Cuneus R
Precuneus

80 20 (15, -63, 26)
Occipital Lobe,

Precuneus R
Precuneus

159 18 (-47, 11, 23)
Frontal Lobe,

Frontal Inf Tri L
Sub-Gyral

140 18
(29, -77, 25) Occipital Lobe,

Occipital Mid R
Sub-Gyral

Object-location, RBANStotal, Positive Edges

248 15 (34, 38, -12)
Frontal Lobe,

Frontal Inf Orb R
Middle Frontal Gyrus

270 13 (-29, -12, -22)
Limbic Lobe,

Hippocampus L
Parahippocampa Gyrus

242 12 (-21, -22, -20)
Limbic Lobe,

ParaHippocampal L
Parahippocampa Gyrus

215 12 (-56, -50, 10)
Temporal Lobe,

Temporal Mid L
Superior Temporal Gyrus

182 12 (11, -39, 50)
Frontal Lobe,

Cingulum Mid R
Paracentral Lobule

Object-location, RBANStotal, Negative Edges

227 16 (-33, -46, 47)
Parietal Lobe,

Parietal Inf L
Sub-Gyral

214 14 (54, -43, 22)
Parietal Lobe,

Temporal Sup R
Inferior Parietal Lobule

183 12 (55, -45, 37)
Parietal Lobe,

SupraMarginal R
Supramarginal Gyrus

33 12 (51, -6, 32)
Frontal Lobe,

Postcentral R
Precentral Gyrus

197 11 (31, 56, 14)
Frontal Lobe,

Frontal Mid R
Middle Frontal Gyrus
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Figure 2.7: RBANStotal raw score PLS-BETA results for combined face-name and
object-location task data. A) Plot of predicted versus actual RBANStotal raw score
values. B) Circle plot of significant connections between brain areas for face-name
task data (using node degree threshold of 12). C) Circle plot of significant connections
between brain areas for object-location task data (using node degree threshold of 8).
D) Glass brain plot of significant nodes and connections for face-name task data. E)
Glass brain plot of significant nodes and connections for object-location task data.

(R=0.42, p≤0.05 for CPM positive edges, R=0.35, p≤0.05 for CPM negative edges).

CPM also yielded significant relationships between object-location task fMRI and

RBANSdelayed (R=0.28, p≤0.05 for CPM positive edges) and RBANStotal (R=0.41,

p≤0.05 for CPM positive edges).

2.4 Discussion

PLS-BETA and CPM of task-based fMRI data predicted independent measures of

memory and global cognition in those with MCI, supporting other studies finding that

these predictive modeling approaches are successful [180]. In the Run 1 results, PLS-

BETA was able to identify significant relationships with more measures (RBANStotal

and RBANSdelayed) whereas CPM only identified significant relationships with one

measure: RBANStotal. For CPM with RBANStotal, negative edges resulted in the

only significant findings for face-name task data, while both positive and negative
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Table 2.6: PLS-BETA and CPM Results Comparison, Run 2.
CPM

Face-name Object-location Resting-state
Behavioral Data Rpos Rneg Rpos Rneg Rpos Rneg

RBANSdelayed 0.32* 0.18 0.28* 0.15 0.10 0.09
RBANStotal 0.42* 0.35* 0.41* 0.15 0.13 0.03
MoCA -0.24 0.21 0.12 0.22 0.05 -0.16

PLS-BETA
Face-name Object-location Resting-state

Behavioral Data R R R
RBANSdelayed 0.30* 0.25 0.09
RBANStotal 0.19 0.30* 0.07
MoCA 0.03 -0.11 -0.04
* p ≤ 0.05, ** p ≤ 0.001, obtained from 1,000 permutations.

edges yielded significant relationships using object-location association task data.

In the Run 2 results, PLS-BETA and CPM both identified significant relationships

with RBANStotal and RBANSdelayed. The success of the PLS-BETA model may be

attributed to maximizing the covariance between predictor and response data, rather

than developing weights based solely on the predictor data. PLS-BETA may also

benefit from not separating positive and negative edges as in CPM.

In comparing the Run 1 and Run 2 results, several different significant relation-

ships with both modeling approaches are observed. Of note, the Run 1 relationship

identified by PLS-BETA between RBANStotal and face-name task fMRI does not

stay consistent in Run 2. In this study, while neuropsychological assessments are ad-

ministered once per session, fMRI scans are completed twice (two runs) per session.

Therefore, the only difference in model input is from predictors. Changes in results

between runs can potentially be attributed to changes in participant engagement,

attention, or practice effects with task-based fMRI. Other studies have found that

practice improves performance and alters the underlying brain activity in working

memory tasks [55, 133]. This indicates the need for further study of the stability of

such predictive modeling approaches with task-based fMRI.
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However, in both runs, no significant relationships resulted from using resting-

state data. These results support other findings that task-based predictors relevant

to the response variable add significant benefit, compared to resting-state predictors

[68, 93]. The results of this study indicate that the object-location and face-name

tasks used here are well-equipped to emphasize brain-behavior relationships in dis-

eases and disorders that affect cognition. Despite these findings favoring task-based

fMRI, resting-state fMRI maintains an advantage due to its ease of completion for

subjects, especially those with impairments. Functional connectivity from resting-

state fMRI has been found to successfully predict the degree of cognitive impairment

from subjects along the AD spectrum [119]. This warrants further study about the

value of task versus resting-state fMRI data in predictive modeling.

PLS-BETA and CPM both identified clinically relevant areas involved in MCI,

such as the superior frontal gyrus, superior temporal gyrus (STG), inferior parietal

lobule (IPL), and precuneus. High degree nodes located in the frontal and parietal

regions may be indicative of compensatory-related increased activity in these regions

in those with MCI [61, 82, 149]. The inferior parietal lobule, involved in the default

mode network, tends to exhibit increased functional connectivity in those with amnes-

tic MCI [139]. Memory deficits are linked to temporal lobe atrophy and dysfunction

[160, 171]. Several areas were highlighted in both modeling approaches, including the

IPL, precuneus, and STG. This indicates that these areas may be generally implicated

in MCI and warrant further consideration in future studies.

One limitation of this work is the small sample dataset (n<100) that that warrants

a leave-one-out cross-validation scheme. A larger dataset could also be tested with k-

fold cross-validation to reduce variability, but potentially at the cost of increasing bias.

PLS-BETA can also benefit from parameter tuning to ensure the optimal selection of

regression coefficient features.

Small effect sizes are common with neuroimaging-based predictive modeling. How-
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ever, insights gained from neuroimaging-based models are unlikely to be the sole con-

siderations contributing to a clinical decision. Other indicators would likely be used,

either in combination with modeling results, or as additional input to a predictive

model. The methods described here serve to introduce new fMRI tasks and analysis

approaches, as well as identify brain regions impacted early in disease states that

warrant further study of their role in the application of interest.

One impact of multivariate models is that additional predictor data can be easily

included in the model, via simple internal concatenation, to increase inclusion of im-

portant features in the model and boost prediction performance. External aggregate

methods with multiple types of data have also demonstrated increased performance in

prediction [146]. In the context of MCI, combining multiple datasets and/or modal-

ities per subject has the potential to enhance predictive capabilities. For example,

combining multiple types of task and resting-state fMRI data along with other modal-

ities or contrasts such as arterial spin labeling (ASL) or myelin water imaging can

provide complementary information about the participants’ neurofunctional states.

Additionally, the high likelihood of comorbidities for patients that are presumed to

have an Alzheimer’s disease etiology warrants further study of predictive models com-

bining multiple comorbidities. One study has demonstrated that predictive modeling

can identify commonalities between complex and potentially intertangled disorders

such as autism spectrum disorder and attention-deficit/hyperactivity disorder [108].

A similar approach in the context of dementia could likewise elucidate transdiagnos-

tic neurofunctional differences in the many potential causes of dementia, including

Alzheimer’s disease.

As PLS-BETA is a linear process, future work will examine nonlinear approaches

to dimensionality reduction for this context. Variational autoencoders have demon-

strated utility in encoding fMRI activity [77, 101], and this latent representation of the

data may potentially be useful for predictions. These methods can also be extended
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to other datasets such as those of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI).

In addition, the fMRI data used in this work is based on anatomical alignment

of subjects using structural MRI. Current research indicates that hyperalignment, an

alternative to anatomical alignment, provides functional connectivity in a common

high-dimensional information space across subjects and may therefore preserve unique

fine-scale information about subjects [23]. Another area of future investigation can

utilize hyperalignment of the fMRI data analyzed in this work in combination with

brain-behavior predictive models to provide different aspects of functional connectiv-

ity.

In future work, predictive modeling approaches such as PLS-BETA may be able

to provide useful insights into the potential targets and/or impacts of therapeutic

interventions as well as indications of imminent neurological symptoms.

2.5 Conclusion

This study demonstrated that PLS-BETA is a relevant prediction technique for

MCI-related memory and cognition changes. PLS-BETA classified brain-behavior

relationships using two types of task-based functional connectivity and outperformed

PLS-BETA models developed with resting-state functional connectivity. Overall,

task-based functional connectivity predictors that “stress” memory and cognition

systems proved to be effective in the estimation of memory and cognition performance

with both the PLS-BETA and CPM techniques.

33



CHAPTER III

Extension of Predictive Modeling Framework for

Arterial Spin Labeling Cerebral Blood Flow

3.1 Introduction

Early detection is critical to the intervention of Alzheimer’s disease (AD), as

AD-related changes in the brain occur many years before symptoms or diagnosis.

However, the pathogenesis of AD has numerous contributing factors of uncertain or

varying degrees of importance (e.g., proteinopathy, vascular disease, genetic compo-

nents, etc.) that complicate early detection. Thus, it is important to understand each

component individually as well as their combined effects. One common observation

in Alzheimer’s disease is the vascular effect of cerebral hypoperfusion [38, 105, 147].

Arterial spin labeling (ASL) is a quantitative MRI-based measure of perfusion. ASL

data is acquired on standard MRI scanners using specialized pulse sequences to la-

bel blood in the neck and observe its perfusion through the brain. This MRI-based

modality is noninvasive and eliminates the need for injections of radioactively labeled

tracers that are needed to examine perfusion in other imaging modalities, such as

positron emission tomography (PET) or single photon emission computed tomogra-

phy (SPECT). ASL has demonstrated cerebral hypoperfusion in AD that is consistent

with other modalities [95]. Furthermore, lower cerebral blood flow (CBF) as measured
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by ASL has been directly related to cognitive decline and multi-domain impairments

in AD [17, 114].

This work aims to relate ASL CBF data to external measures of cognitive perfor-

mance in a predictive modeling framework. Ultimately, the brain-behavior relation-

ships illuminated by this analysis are hypothesized to identify scientifically relevant

brain regions impacted by AD. Further study of these brain regions may contribute

to the understanding of neural and vascular effects in AD.

This work examines composite measures of cognition and their relationship with

ASL-measured CBF. Composite scores combining several test scores have been widely

used in the context of mild cognitive impairment (MCI) and dementia of the Alzheimer’s

type (DAT) [60, 80, 94]. Combinations of different neuropsychological or cognitive

assessments have demonstrated equal or improved performance as compared to their

individual components [31], indicating that these composite scores may be able to

better capture the multifaceted and highly variable continuum of AD. For example, a

composite score for executive functioning matched or exceeded the performance of its

individual components in several tasks, including predicting conversion to dementia,

detecting temporal changes, and associations with MRI or cerebrospinal fluid-based

measures [60]. Here, composite scores are derived for several AD-related domains,

including language, memory, and learning, as response variables to evaluate the pre-

dictive performance of ASL-measured CBF.

In this work, the widely used connectome predictive modeling (CPM) machinery

[159] is extended to a different input data type: arterial spin labeling (ASL) volu-

metric CBF maps, as well as composite measures of memory, learning, and language

performance. ASL data has been commonly used to predict AD status and risk of

conversion from early stages to later stages [24]. To the authors’ knowledge, this is

the first application of ASL measures in a predictive modeling framework to relate

to continuous composite measures of memory and cognition in AD. This “voxel-wise
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predictive modeling” (VPM) approach aims to relate volumetric ASL data to predict

cognition and memory in subjects with MCI and DAT, along with healthy subjects.

We hypothesize that the ASL CBF data provides predictive information in relation

to these external measures of cognition in AD.

3.2 Methods

3.2.1 Data

Structural T1w MRI and arterial spin labeling-derived volumetric cerebral blood

flow maps were obtained for 90 subjects, including cognitively normal (CN) individ-

uals and those with a diagnosis of MCI or DAT (mean age 79.4, standard deviation

7.2, 48 CN/22 MCI/20 DAT) enrolled at the Michigan Alzheimer’s Disease Research

Center. T1w images and ASL data were acquired using a Nova Medical 32-channel

head coil on a 3T MR750 GE Discovery scanner using GE’s 3D pseudo-continuous

ASL (pCASL) sequence. T1w scan parameters included an image size of 256x256x208

with 1 mm3 resolution. Scan parameters included TR/TE of 4.902 s/10.8 ms, post-

labelling delay of 2.025 s, image size of 128x128x40, 1.75 x 1.75 mm resolution, 40

slices, 3.5 mm slice thickness, and 3 signal averages.

3.2.2 Neuropsychological Measures

In this work, the response variables consisted of measures of cognitive and memory

function that were obtained at the time of scanning. Several composite measures

were defined (corresponding components for each composite score are listed below).

A fourth neuropsychological measure analyzed in this work is the Montreal Cognitive

Assessment (MoCA), that was designed for screening of mild cognitive impairment

[130]. MoCA includes tasks focusing on several domains: short-term memory recall,

delayed recall, visuospatial abilities, executive function, sustained attention, language,
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and orientation to time and place.

• Learning composite score: mean of z-scores for Craft Story Immediate Recall

(both verbatim and paraphrase) [30] and Hopkins Verbal Learning Test (HVLT)

Immediate Recall [22].

• Memory composite score: mean of z-scores for Craft Story Delayed Recall (both

verbatim and paraphrase) [30], Hopkins Verbal Learning Test (HVLT) Delayed

Recall [22], and Benson Complex Figure Recall [136].

• Language composite score: mean of z-scores for Controlled Oral Word Asso-

ciation (COWA) Phonemic Fluency test-version CFL [153], Semantic Fluency

(both animal and vegetable) [5], and Multilingual Naming Test (MINT) Total

Score [87].

• MoCA z-score.

3.2.3 Preprocessing

ASL data were preprocessed using an automated toolbox, ExploreASL [129] ver-

sion 1.9.0 (10.5281/zenodo.5809216), including Statistical Parametric Mapping (SPM)

12 [6, 48], Computational Anatomy Toolbox (CAT) 12 [56], Lesion Segmentation

Toolbox (LST) v2.0.15 [37, 157], and with Matlab 2020a. The standard ExploreASL

preprocessing pipeline was selected, with the additional partial volume correction

(PVC) option. The standard pipeline includes white matter hyperintensity correc-

tion, segmentation, spatial normalization, motion correction, registration, CBF quan-

tification, and PVC. Further details of the standard pipeline are described in [129].

Additionally, normalization to the MNI152 template was performed with SPM12.

The resulting CBF maps were used for further analysis, as shown in Figure 3.1. A

normalized gray matter tissue segmentation was obtained for each subject using T1w
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Figure 3.1: ASL CBF data (top), smoothed gray matter segmentation (2nd row),
final overlapping gray matter masks (3rd row), and masked CBF (4th row) for a
representative subject. The masked CBF data are used as the input to VPM.

images in SPM12 with the default parameters. To best capture continuous gray mat-

ter regions (i.e., without gaps), the gray matter tissue segmentation was smoothed

with a Gaussian kernel at 6 mm FWHM and then thresholded at 0.3. Then, the

overlapping union of gray matter regions across all subjects was used as the final

mask for the entire CBF dataset to ensure that each subject had the same number

of possible features.

3.2.4 Modeling

The voxel-wise predictive modeling approach is depicted in Figure 3.2. In a cross-

validation framework (leave-one-out was used in this work, but k-fold cross-validation

can be easily adopted), the CBF maps with or without a gray matter mask were used

as voxel-wise predictor input data. Age was regressed from the predictors separately
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for train and test partitions. A CPM-like framework was used; however, rather than

connectome edges as input for each subject, VPM uses voxels, specifically voxels from

volumetric ASL CBF maps. First, each voxel (across subjects) in the CBF maps is

correlated with response variable (across subjects). Those voxels exceeding the prede-

termined threshold of significance (p<0.01, based on the original CPM methodology

[159]) are used to generate feature masks. Similar to CPM, this is done separately

for positive and negative correlations, resulting in two sets of feature masks (positive

and negative). Finally, the input training data values within regions of the feature

mask are used to fit a linear model with the training responses, and this model is

tested on the held-out set to generate a prediction. After all folds are completed, the

model performance is evaluated by correlating predicted and actual responses.

Permutation testing was completed via pseudorandom shuffling of the neuropsy-

chological measures to estimate the null distribution. The resultant distribution was

used to assess significance of the model fit. The number of voxels in each model was

counted and divided by the total number of voxels in the final gray matter mask.

Labels for the cluster locations identified by VPM were determined using MNI coor-

dinates in WFU PickAtlas [122] from the Talairach Daemon [110] and the automated

anatomical labeling (AAL) atlas [167].

3.3 Results

Figure 3.3 shows the resultant VPM relationships. Relationships were eluci-

dated with positive voxels for several metrics; models using the learning and memory

composite scores had the largest effect sizes and resulted in statistical significance

(p<0.05) using permutation testing. There were no significant results for negative

voxel models. For several of the negative voxel models (those using the learning,

memory, and MoCA neuropsychological measures), no voxels exceeded the signifi-

cance threshold after correlation with the measures, resulting in no relationship. The
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Figure 3.2: Schematic for Voxel-wise Predictive Modeling using ASL-measured CBF
data. First, the preprocessed CBF maps are masked to gray-matter regions. Then, the
data are partitioned into train/test groups based on a leave-one-out cross validation
scheme. Each train set (including both predictors and responses) undergoes age
regression and the same regression is applied to the test set. For each fold, each
voxel of the masked CBF maps is correlated with neuropsychological measures. The
resulting p-values are thresholded for significance at 0.01 to yield a mask of CBF
map features. This is done separately for positive and negative correlations. Next,
the feature mask is applied to the CBF values and all values are summed to create a
voxel score for each subject. The voxel score for each subject is used as a predictor to
estimate a linear model with the response neuropsychological measures. This model is
applied to the left out subject to generate a behavior prediction. Once all folds have
been completed, the model performance is assessed via correlation between actual
and predicted behavior.
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Table 3.1: ASL VPM Results for each Neuropsychological Measure.
Learning Memory Language MoCA

Rpos 0.20* 0.20* -0.04 0.11
Rneg 0 0 0.09 0
Positive Voxels (count) 1624 1556 17 412
Positive Voxels (%) 1.05 1.01 0.011 0.27
Negative Voxels (count) 0 0 256 30
Negative Voxels (%) 0 0 0.17 0.02
* p ≤ 0.05, ** p ≤ 0.001, obtained from 1,000 permutations.

remaining negative voxel relationship, language, was not significant.

Figure 3.4 shows the corresponding feature masks resulting from the models for

each of the neuropsychological metrics. The model performances and feature mask

sizes are detailed in Table 3.1. The cluster locations are described in Table 3.2. For

the learning and memory composite metrics, clusters were identified in the inferior

parietal lobule, supramarginal gyrus, cingulate gyrus, and cerebellar tonsil.

3.4 Discussion

This work focuses on characterizing the predictive relationship between ASL-

measured CBF and learning and memory performance. The results shown here in-

dicate that measures of CBF correspond to external neuropsychological measures

of cognition and memory in a predictive modeling framework. This supports other

evidence that ASL-based CBF metrics correspond to cognitive performance and im-

pairments [17, 114].

The learning and memory cluster locations and relationships highlight their sim-

ilarity. The composite scores for learning and memory are both based on the Craft

story and HVLT cognitive assessments, and only differ in the duration of recall pe-

riod (immediate versus delayed) due to the nature of learning and memory. This

is because learning can be thought of as “a process for acquiring memory” [132].

Similarities in the findings between the learning and memory composite metrics may

41



Figure 3.3: VPM plots showing predicted versus actual metrics for the learning,
memory, and language composite scores as well as MoCA. The left column contains
positive VPM results and the right column contains negative VPM results.
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Figure 3.4: VPM feature masks for each neuropsychological measure overlaid on
mean gray matter-masked CBF input data. Red depicts positive feature masks and
cyan depicts negative feature masks. Images are in radiological orientation.
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Table 3.2: Cluster locations for VPM positive or negative results with each neuropsy-
chological measure, with both Talairach Atlas labels and Automated Anatomical
Labeling (AAL) atlas labels.

Measure MNI (x, y, z) Talairach Label AAL Label

Learning
(0, -33, 31)

Limbic Cortex,
Cingulum Post L

(positive) Cingulate Gyrus

Learning
(47, -42, 30)

Parietal Lobe,
Supramarginal R

(positive) Supramarginal Gyrus

Memory
(36, -56, -51)

Cerebellum Posterior Lobe,
Cerebellum B R

(positive) Cerebellar Tonsil

Memory
(47, -50, 21)

Parietal Lobe,
Temporal Sup R

(positive) Inferior Parietal Lobule

Language
(1, 44, -22)

Frontal Lobe,
Rectus R

(positive) Orbital Gyrus

Language
(7, -64, -4)

Occipital Lobe,
Lingual R

(negative) Lingual Gyrus

MoCA
(43, 10, -2)

Sub-lobar,
Insula R

(positive) Insula

MoCA
(43, 33, -13)

Frontal Lobe,
Frontal Inf Orb R

(positive) Middle Frontal Gyrus
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also be expected due to the overlaps in effects of pathology on learning and memory

processes. Learning and memory are intertwined in disease states, such as AD, as

both are impacted by pathological degradation of forebrain cholinergic systems [42],

meaning that brain-behavior prediction may elucidate similar relationships using the

two metrics.

Regions of the brain isolated in the VPM feature masks indicate involvement

of brain regions that may be impacted in AD. The inferior parietal lobule (IPL),

which formed a relationship with the memory composite score, has demonstrated

involvement in AD. Disruptions in CBF have been specifically observed in the IPL

in subjects with AD [170, 185]. In addition, regions in the cingulate gyrus that

formed a relationship with the learning composite score may also be tied to AD.

Synaptic loss and cortical thinning associated with AD neuropathology has been

shown to occur within the cingulate gyrus [115, 156]. The supramarginal gyrus, which

contributed to the relationship with the learning composite score, is also relevant in

the context of AD. AD patients with depression have demonstrated increased CBF

in the supramarginal gyrus as compared to AD patients without depression [116].

During a working memory task, AD subjects displayed increased fMRI activations in

the supramarginal gyrus compared to controls [179]. In addition, the supramarginal

gyrus may be involved in cognitive reserve for the normal elderly controls [176]. In the

cerebellar tonsil, which contributed to the model with the memory composite score,

altered glucose metabolism has been observed to indicate a potential for conversion

to cognitive decline [34]. The involvement of these brain regions in the VPM results

indicates the need for further analysis of these areas in relation to measures of CBF

and behavior in the context of AD.

Optimally, multimodal combinations of data will be used in predictive models.

ASL data has been shown to provide complementary information to other metrics,

such as hippocampal volume [174]. Hippocampal volume can be examined using
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structural T1-weighted MRI scans, as acquired here, and could be added to the VPM

procedure as an additional predictor. Additionally, structural T1-weighted images

can provide information about neuronal atrophy and have been used in deep learning

models for prediction of AD status as well as conversion from MCI to DAT [10]. These

acquisitions can be easily combined with ASL acquisitions to provide additional data

about a subject. Combinations with other data types is hypothesized to enhance

prediction, and should be examined in future work.

This study has several limitations. First, the sample size is small (N<100). How-

ever, since ASL CBF in AD is a relatively novel predictor type for this application

in predictive modeling, this study demonstrates the potential of ASL predictors for

further study. To reduce the impacts of the resultant small effect sizes, the predictors

evaluated in this work can be combined with other data from other domains, such as

other neuroimaging, demographics, genetics, clinical or other measures. Combining

several predictors could improve accuracy of predictions.

ASL data fundamentally differs from fMRI data in that ASL yields a quantitative

measure of cerebral blood flow whereas fMRI provides a proxy for neural activity. ASL

data are typically acquired in the “resting-state,” as was the case here. Since this is a

novel application of ASL data where fMRI data have typically been used, resting-state

ASL data are a good starting point. Furthermore, task-free acquisitions are beneficial

for subjects with difficulties completing tasks. However, task-free acquisitions exclude

the potential additional information from a task-based acquisition. Studies have

demonstrated that ecologically-relevant tasks can provide a stress test for networks of

interest, boosting signal in those regions [68, 180] as compared to resting-state fMRI.

Similar to BOLD fMRI, ASL is sensitive to changes in task conditions [39], and can

elucidate relationships between changes in cerebral blood flow and task demands. This

sensitivity indicates that task-based ASL could be informative as a predictor in VPM.

Task-based ASL as a predictor for brain-behavior modeling remains a recommended
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focus for future work.

As described in earlier chapters, there are many options for predictive models,

and different predictors may necessitate different modeling approaches. Overall, the

novel application of ASL-derived CBF measures to predictive modeling demonstrated

in this work has many opportunities for future extension and study.

3.5 Conclusion

Arterial spin labeling provides a noninvasive, nonionizing measurement of cerebral

blood flow. This work demonstrates the utility of ASL-based perfusion measurement

as a predictor for external measures of cognitive and memory status in patients with

varying degrees of AD. Novel ASL acquisitions such as ASL fingerprinting also provide

the potential for simultaneous estimation of other vascular parameters, including

bolus arrival time, T1 relaxation, and blood volume. These additional parameters

could also be used in the framework demonstrated here, along with other data types.

Other opportunities for multimodal data approaches are further discussed in Chapter

VI: Future Work.
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CHAPTER IV

Representation Learning of Subjects Along the

Spectrum of Alzheimer’s Disease Using a

Surface-based Variational Autoencoder Model

4.1 Introduction

Resting-state functional MRI (rsfMRI) has demonstrated value in evaluating be-

havioral or disease states, such as mild cognitive impairment (MCI) and dementia due

to Alzheimer’s disease [98, 175]. Functional MRI studies often seek to determine how

brain activity is represented in the measured signal. However, the fMRI signal con-

tains many sources of activity or fluctuation (including neurophysiology, cognition,

head motion, physiological artifacts, etc.). Common analysis approaches use general

linear models or data-driven approaches, such as ICA, to separate stimulus or other

fMRI signals of interest from noise [14, 52]. However, these approaches are limited

to detecting linear relationships within the data. Furthermore, since fMRI data are

often high-dimensional in both space and time, specialized spatial or temporal di-

mensionality reduction techniques, such as functional connectivity, are implemented

to infer brain network interactions and their relation to neurological or psychiatric

disease states [50, 120].

Recent years have demonstrated increased interest in applications of machine

48



learning to medical images, including fMRI. Deep learning is a promising approach

to analyze large datasets, such as fMRI, with nonlinear relationships. Representation

learning is a type of machine learning focused on generating latent representations of

input data. Kim, et al. recently demonstrated that these latent representations are

successfully able to identify individuals using a variational autoencoder (VAE) model

with resting-state fMRI [101]. The VAE model is of particular interest because it

learns a latent representation that corresponds to disentangled fMRI sources and it

is then also able to reconstruct or synthesize fMRI data. Essentially, the VAE model

provides a nonlinear technique to reduce large fMRI data to identify a mixture of

latent representations that may be able to encode between-subjects or other signal

effects.

In a recent study, a variational autoencoder has been designed to encode high-

dimensional rsfMRI activity patterns as low-dimensional (256-D) latent representa-

tions, and to use latent representations to generate or reconstruct rsfMRI patterns

[101]. This VAE model is nonlinear, learnable from fMRI data alone and thus unsu-

pervised or independent of any task or subject groups, and able to identify healthy

subjects from their rsfMRI representations.

In this work, we ask whether the 2D VAE model trained with rsfMRI data from

healthy volunteers can be readily generalizable to patients across the spectrum of

Alzheimer’s disease. For this purpose, the VAE model is applied to a cohort of

cognitively normal older adults (CN), individuals with amnestic mild cognitive im-

pairment (MCI), and individuals with dementia of the Alzheimer’s type (DAT). We

explore whether the VAE-derived latent representations of rsfMRI activity can sep-

arate these individual subjects, despite the model having no knowledge of disease

states, and also how well it can perform classification of subtypes.
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4.2 Methods

4.2.1 Data

Structural T1w MRI and resting-state fMRI data were obtained for 193 older

adults (107 CN, 57 amnestic MCI, and 29 DAT) enrolled at the Michigan Alzheimer’s

Disease Research Center. T1w scan parameters included an image size of 256x256x208

with 1 mm3 resolution. Functional scans were acquired on a 3T MR750 GE scanner

with a 32 channel Nova Medical coil using multiband EPI (MB factor = 6), TR/TE

= 0.8 s/30 ms, flip angle = 52, 2.4 mm isotropic resolution, 570 timepoints, and 60

slices. Participants were instructed to focus on a fixation cross.

4.2.2 Preprocessing

Results included in this manuscript come from preprocessing performed using fM-

RIPrep 20.2.0 ([44]; [43]; Research Resource Identifier (RRID): SCR 016216), which

is based on Nipype 1.5.1 ([65]; [66]; RRID:SCR 002502).

4.2.2.1 fMRIPrep: Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)

with N4BiasFieldCorrection [166], distributed with ANTs 2.3.3 [7, RRID:SCR 004757],

and used as T1w-reference throughout the workflow. The T1w-reference was then

skull-stripped with a Nipype implementation of the antsBrainExtraction.sh work-

flow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmenta-

tion of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was per-

formed on the brain-extracted T1w using fast [FSL 5.0.9, RRID:SCR 002823, 184].

Brain surfaces were reconstructed using recon-all [FreeSurfer 6.0.1, RRID:SCR 001847,

33], and the brain mask estimated previously was refined with a custom variation of

the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the
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cortical gray-matter of Mindboggle [RRID:SCR 002438, 104]. Volume-based spatial

normalization to two standard spaces (MNI152NLin6Asym, MNI152NLin2009cAsym)

was performed through nonlinear registration with antsRegistration (ANTs 2.3.3),

using brain-extracted versions of both T1w reference and the T1w template. The

following templates were selected for spatial normalization: FSL’s MNI ICBM 152

non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model

[[45], RRID:SCR 002823; TemplateFlow ID: MNI152NLin6Asym], ICBM 152 Non-

linear Asymmetrical template version 2009c [[49], RRID:SCR 008796; TemplateFlow

ID: MNI152NLin2009cAsym],

4.2.2.2 fMRIPrep Functional data preprocessing

For each of the BOLD runs per subject, the following preprocessing was performed.

First, a reference volume and its skull-stripped version were generated using a cus-

tom methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated

based on two (or more) echo-planar imaging (EPI) references with opposing phase-

encoding directions, with 3dQwarp [29] (AFNI 20160207). Based on the estimated

susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calcu-

lated for a more accurate co-registration with the anatomical reference. The BOLD

reference was then co-registered to the T1w reference using bbregister (FreeSurfer)

which implements boundary-based registration [72]. Co-registration was configured

with six degrees of freedom. Head-motion parameters with respect to the BOLD

reference (transformation matrices, and six corresponding rotation and translation

parameters) are estimated before any spatiotemporal filtering using mcflirt [FSL

5.0.9, 92]. BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207

[29, RRID:SCR 005927]. The BOLD time-series were resampled onto the following

surfaces (FreeSurfer reconstruction nomenclature): fsaverage. The BOLD time-series

(including slice-timing correction when applied) were resampled onto their original,
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native space by applying the transforms to correct for head-motion. These resam-

pled BOLD time-series will be referred to as preprocessed BOLD in original space, or

just preprocessed BOLD. The BOLD time-series were resampled into standard space,

generating a preprocessed BOLD run in MNI152NLin6Asym space. First, a reference

volume and its skull-stripped version were generated using a custom methodology of

fMRIPrep. Grayordinates files [62] containing 91k samples were also generated using

the highest-resolution fsaverage as intermediate standardized surface space. Several

confounding time-series were calculated based on the preprocessed BOLD : framewise

displacement (FD), DVARS and three region-wise global signals. FD was computed

using two formulations following Power (absolute sum of relative motions, [138]) and

Jenkinson (relative root mean square displacement between affines, [92]). FD and

DVARS are calculated for each functional run, both using their implementations in

Nipype [following the definitions by 138]. The three global signals are extracted within

the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological re-

gressors were extracted to allow for component-based noise correction [CompCor, 15].

Principal components are estimated after high-pass filtering the preprocessed BOLD

time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor vari-

ants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are

then calculated from the top 2% variable voxels within the brain mask. For aCom-

pCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated

in anatomical space. The implementation differs from that of Behzadi et al. in that

instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are

subtracted pixels that likely contain a volume fraction of GM. This mask is obtained

by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it

ensures components are not extracted from voxels containing a minimal fraction of

GM. Finally, these masks are resampled into BOLD space and binarized by thresh-

olding at 0.99 (as in the original implementation). Components are also calculated
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separately within the WM and CSF masks. For each CompCor decomposition, the

k components with the largest singular values are retained, such that the retained

components’ time series are sufficient to explain 50 percent of variance across the

nuisance mask (CSF, WM, combined, or temporal). The remaining components are

dropped from consideration. The head-motion estimates calculated in the correction

step were also placed within the corresponding confounds file. The confound time

series derived from head motion estimates and global signals were expanded with the

inclusion of temporal derivatives and quadratic terms for each [154]. Frames that

exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as

motion outliers. All resamplings can be performed with a single interpolation step

by composing all the pertinent transformations (i.e. head-motion transform matrices,

susceptibility distortion correction when available, and co-registrations to anatom-

ical and output spaces). Gridded (volumetric) resamplings were performed using

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize

the smoothing effects of other kernels [111]. Non-gridded (surface) resamplings were

performed using mri vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2 [1, RRID:SCR 001362],

mostly within the functional processing workflow. For more details of the pipeline,

see the section corresponding to workflows in fMRIPrep’s documentation.

The above boilerplate text was automatically generated by fMRIPrep with the

express intention that users should copy and paste this text into their manuscripts

unchanged. It is released under the CC0 license.

4.2.2.3 Geometric reformatting and additional preprocessing

The rsfMRI data were geometrically reformatted using the same methods as pub-

lished in [101]. The Freesurfer-based spherical coordinates were sampled to a 192x192

grid for each hemisphere. Voxel-wise 3rd-order polynomial regression, 0.01-0.1 Hz
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bandpass filtering [27], and normalization to 0 mean and 1 standard deviation were

then applied.

4.2.3 Variational autoencoder

The pre-trained VAE model (Figure 4.1) consists of encoder and decoder portions,

each containing 5 convolutional layers, as in [101]. The model, with β=9, encoded ge-

ometrically reformatted cortical surface-based rsfMRI data into a 256-D latent space

and then decoded back to cortical space. The model used rsfMRI data from the

Human Connectome Project (WU-Minn HCP Quarter 2) [168] for 100, 50, and 500

healthy subjects in the training, validation, and testing portion, respectively. Each

subject’s scan acquired 1,200 time frames at a repetition time (TR) of 0.72 s. The

pre-trained VAE was applied directly to rsfMRI data from every time point in every

subject across the three groups (CN, MCI, DAT). The pre-trained model encoded

this novel data set into low-dimensional (256-D) latent variables, and then decoded

the latent variables into the original geometrically-reformatted fMRI space.

4.2.4 Visualization

The latent variable time courses for 30 subjects were visualized in a 2-dimensional

space using t-Distributed Stochastic Neighbor Embedding (t-SNE) with cosine dis-

tance and a perplexity of 30, implemented in Matlab 2020a. The latent represen-

tations were then decoded to reconstruct the original rsfMRI data. Reconstruction

performance was assessed by converting decoded outputs to original cortical space and

computing correlation with smoothed cortical inputs using a 6 mm FWHM Gaussian

kernel.
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Figure 4.1: Schematic of the surface-based VAE model architecture,
reprinted from [101] under Creative Commons-BY-NC-ND 4.0 license (https://
creativecommons.org/licenses/by-nc-nd/4.0/).
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4.2.5 Classification

In addition, the classification performance of latent variables was evaluated with

two separate methods: (1) support vector machine (SVM) and (2) fully connected

network classification. For the first approach, the mean latent variable µ values were

used as input to an SVM classifier with a linear kernel and a box constraint (C) of 1

to classify both binary (CN vs. MCI, MCI vs. DAT) and multiclass (CN vs. MCI vs.

DAT) groups. This was performed in a leave-one-out cross-validation framework. The

fully connected network is shown in Figure 4.2. It was implemented as a separate

module that takes the latent variable µ values as input and consisted of two fully

connected layers and used cross entropy loss with class weights determined by class

size to classify both binary (CN vs. MCI, MCI vs. DAT) and multiclass (CN vs.

MCI vs. DAT) groups. The model was implemented in PyTorch 1.7.0 and trained for

10 epochs. Several hyperparameters were tested, including learning rate (1e-5, 1e-4,

1e-3) and number of hidden layers (100, 150, 200).

Several other approaches were initially investigated, including: support vector

machine classification using k-means cluster centroids of latent variable means, Eu-

clidean distance of latent variables across subjects, and latent variables’ “functional

connectivity” (i.e., pairwise correlations between different latent variables) as input to

predictive modeling with external measures of memory and cognition. However, these

approaches were not analyzed further due to poor initial performance on multiclass

distinctions.

4.3 Results

Figure 4.3 shows the reconstruction performance of the encoded and decoded

data. Across all three groups, the average correlation was approximately 0.8, which

is comparable to the results in healthy subjects [101].
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Figure 4.2: Architecture for fully connected neural network classification module.
The latent variable means (256-D) from the pretrained VAE encoder are input to two
linear layers with a ReLU activation between each layer. The first linear layer outputs
a predetermined number of samples (100, 150, or 200 were tested). The second linear
layer outputs C samples, where C is the number of classes used as input. For binary
classification (CN vs. MCI, MCI vs. DAT), C=2 and for multiclass classification (CN
vs. MCI vs. DAT), C=3.

Figure 4.3: Reconstruction performance, assessed by correlation of VAE model input
(smoothed, 6mm FWHM) and output in cortical space for each of the three groups
(CN, MCI, DAT).
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Figure 4.4: Timecourses of cortical input data and output in cortical space for a
representative subject and brain region.

Figures 4.4 and 4.5 show representative timecourses from cortical input data and

decoder output data for a representative subject and two representative brain re-

gions. The mean correlation coefficient between input and output timecourses across

brain regions was r=0.92. Temporal alignment was demonstrated with the input and

decoded output.

The t-SNE visualization for subject-wise distinctions is demonstrated in Figure

4.6, which displays latent variable timecourses for 30 representative subjects. Figure

4.7 shows the same subjects’ latent representations in a 2D t-SNE visualization, in-

stead delineated by group. Figure 4.8 contains the 2D t-SNE visualization for all 193

subjects.

The classification results using SVM on time-averaged latent variable means are

tabulated in Table 4.1 and achieved a maximum accuracy of 75% on binary classi-

fication between cognitively normal and dementia of the Alzheimer’s type (DAT).

The classification results using the full connected neural network on latent variable

means are tabulated in Table 4.2 and achieved a maximum accuracy of 75% on binary
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Figure 4.5: Timecourses of cortical input data and output in cortical space for a
representative subject and brain region.

Figure 4.6: 2D t-distributed stochastic neighbor embedding (t-SNE) visualization of
latent representations for 30 representative subjects.
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Figure 4.7: 2D t-distributed stochastic neighbor embedding (t-SNE) visualization of
latent representations for 30 representative subjects.

Figure 4.8: 2D t-distributed stochastic neighbor embedding (t-SNE) visualization of
latent representations for all 193 subjects.
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Table 4.1: SVM Classification Performance with 2D VAE Latent Variables. Classes
consisted of either the original full sample (unbalanced) or were undersampled to
achieve balanced groups. For multiclass classification, sensitivity and specificity for
each group is listed in the order shown in the first column.

Balanced Accuracy Sensitivity Specificity
(Yes/No) (%) (%) (%)

Binary (CN/DAT) No 75 86 34
Binary (CN/MCI) No 67 72 58
Multiclass (CN/MCI/DAT) No 51 45 64

65 42
84 17

Binary (CN/DAT) Yes 63 62 62
Binary (CN/MCI) Yes 62 63 61
Multiclass (CN/MCI/DAT) Yes 40 61 52

59 38
54 31

Table 4.2: Fully Connected Neural Network Classification Performance with 2D VAE
Latent Variables. The model used a learning rate of 1e-5 and 150 samples for the first
layer. Classes consisted of the original full sample (unbalanced groups) since class
weights were used in the loss function. For multiclass classification, sensitivity and
specificity for each group is listed in the order shown in the first column.

Balanced Accuracy Sensitivity Specificity
(Yes/No) (%) (%) (%)

Binary (CN/DAT) No 75 88 21
Binary (CN/MCI) No 60 64 41
Multiclass (CN/MCI/DAT) No 47 57 52

37 64
14 91
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classification between CN and DAT.

4.4 Discussion

Our results indicate that the approach used here maintains individual separa-

tion when the model is applied to cortical surface fMRI data from participants with

amnestic MCI or DAT as well as healthy controls, with low reconstruction error.

This establishes that the VAE model is generalizable across subject populations de-

spite differences in age and disease conditions. This was achievable even though the

model was trained on healthy participants with no exposure to disease states such as

amnestic MCI or DAT. However, the 2-D visualization using t-SNE does not yield

group-wise distinctions, perhaps due to its lack of information about disease states.

In addition, t-SNE is only one method for visualizing output from the VAE model

to assess individual subject separation and alternative visualization approaches may

not yield the same results.

While individual separation performs well, group-wise classification using latent

variable means does not perform to the same degree as other classification works, such

as those using structural MRI to achieve high sensitivity and specificity of near or over

90% [32], or those using functional MRI network analysis that achieve sensitivity and

specificity of 85% and 80%, respectively [25]. This may be because the model is only

trained to reconstruct outputs that are similar to the input while maintaining latent

variables close to an independent and standard normal distribution. This model setup

is only based on rsfMRI input data and does not include labels containing informa-

tion about disease states. Another potential cause of lower than desired classification

accuracy may be due to individual subjects that defy typical disease profiles, despite

diagnosis. In other words, phenotype classification models may learn a disease pro-

file that is actually comprised of several factors, including neurocognitive, clinical,

and/or sociodemographic contributors, among others, and model failure is common
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because this multitude of factors does not always generalize to all individuals [69].

Future work may investigate embedded or separate supervised classification modules

in combination with the unsupervised VAE to improve classification performance.

The results shown here indicate that the VAE model is a promising technique for

the study of brain activity in both healthy cohorts as well as those with neurological

and psychiatric diseases. The VAE model can therefore be reasonably extended to

populations in other areas in need of further study (e.g., Parkinson’s disease, depres-

sion, attention-deficit hyperactive disorder (ADHD), and autism spectrum disorder).

Studies in other patient populations could illuminate different low-dimensional rep-

resentations indicating disease affects or other significant characteristics.

Future work could also investigate running this pre-trained VAE model on task

data to evaluate generalization. Task-based fMRI can serve as a stress test to empha-

size networks relevant to disease being studied. Memory or cognition tasks relevant to

Alzheimer’s disease may emphasize sources of brain activity relevant to Alzheimer’s

disease. Classification with latent variables as well as temporal dynamics are also of

interest for further study.

Additionally, combining the insights discovered in this work with alternate biomark-

ers for Alzheimer’s disease could elucidate further subtypes. For example, the amy-

loid, tau, or APOE status of the 193 subjects studied in this work could be added

to the classification or low-dimensional embedding approaches to determine if those

biomarkers have bearing on misclassified or misclustered samples.

As discussed in [101], the 2D surface-based model narrowly focuses on geomet-

rically reformatted cortical brain activity since it is considered the center of human

cognitive capabilities [144] and to promote ease of implementation via major reduc-

tions in computational burden. However, this introduces limitations by neglecting

subcortical brain regions that could contain additional important information for

clinical and cognitive science applications. In Chapter V, a volumetric model for
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fMRI is considered.

4.5 Conclusion

Overall, the VAE model provides a mode of analysis of fMRI that may disen-

tangle sources of brain activity. As an alternative to data dimensionality reduction

techniques such as temporal correlation (i.e., in the context of fMRI, functional con-

nectivity collapses the time dimension), the VAE latent networks can provide infor-

mation about whole-brain and nonlinear relationships in the brain. Future work is

needed to further investigate volumetric VAE models and classification.
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CHAPTER V

Representation Learning of Resting-state

Functional MRI Using a Volumetric Variational

Autoencoder Model

5.1 Introduction

As demonstrated in [101] and Chapter IV, the surface-based variational autoen-

coder (VAE) model is capable of learning low-dimensional representations (256-D) of

high-dimensional fMRI data in both healthy cohorts and subjects in the population

spectrum of AD. This compression of rsfMRI data to a low-dimensional latent space

has been shown to provide adequate encoding to perform individual identification

[101], with great potential for other applications, including brain-behavior prediction

and classification of disease states. As a generative model, the VAE also allows for the

generation of fMRI samples from the low-dimensional space via the model’s decoding

portion.

In this work, we consider whether a similar VAE model trained with volumetric

fMRI data (rather than a cortical subset of the data) is capable of encoding fMRI into

low-dimensional representations, decoding these representations back into volumetric

fMRI space, and also generating new fMRI patterns from the latent space. We hy-

pothesize that the volumetric model will be advantageous for other applications that
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may require the additional subcortical data, such as in studies of certain brain net-

works. For example, the subcortical component of the default mode network (DMN)

has been understudied [4] and may provide additional information about brain activ-

ity. Altered DMN connectivity has been established as a hallmark difference between

cognitively intact and mild cognitive impairment or dementia due to Alzheimer’s

disease [2, 18, 148, 173] or other neurological and psychiatric diseases. However,

DMN activity is impacted in a nonspecific fashion; changes in the DMN are observed

in many disorders, including depression [155], autism [97], schizophrenia [20], and

post-traumatic stress disorder [112]. Since the VAE latent variables aim to repre-

sent sources of brain activity (and thereby, networks), this low-dimensional encoding

could provide a novel representation or biomarker for different disorders, including

Alzheimer’s disease.

Since fMRI measurements may be a result of many potential sources (e.g., neural

activity, motion, cardiac and/or respiratory, scanner noise), a remaining challenge

is to identify how signals of interest (e.g., related to neural activity or stimuli) are

encoded in the fMRI data. We hypothesize that a VAE model using volumetric fMRI

may aid in the disentanglement of signal sources in future applications. We also hy-

pothesize that using volumetric fMRI that is similar to the acquired format of the data

(i.e., minimally preprocessed), improvements in ease of interpretation and implemen-

tation will be made. By eliminating the surface-based preprocessing and geometric

reformatting as in [101], the computational burden of preprocessing is reduced. This

provides for the potential of the volumetric VAE model to be incorporated into the

initial fMRI reconstruction and analysis pipeline.

Existing studies of VAE models trained on fMRI data are focused on either cortical

surface data and/or a subcortical subset of the volumetric data [57, 58, 100, 101,

177]. In this work, the variational autoencoder model aims to successfully categorize

both whole-brain spatial and temporal patterns in volumetric resting-state fMRI.
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This work aims to lay the groundwork for future integration of the VAE model into

reconstruction and other fMRI analysis pipelines.

5.2 Methods

5.2.1 Data

For model training, validation, and testing, volumetric resting-state fMRI data

from 400 healthy subjects was retrieved from the Human Connectome Project mini-

mally preprocessed pipeline [168]. Each scan consists of 1,200 time frames sampled at

a repetition time (TR) of 0.72 seconds, with 2 mm isotropic resolution covering the

whole brain. The model was trained on 300 subjects’ fMRI timecourses and validated

on 100 subjects’ fMRI timecourses. The first 10 frames were included to limit the

data size for computation.

5.2.2 Preprocessing

In addition to the minimal preprocessing implemented in the HCP dataset, spatial

smoothing with a FWHM of 6 mm was performed in Statistical Parametric Mapping

software version 12 (SPM12; Wellcome Department of Human Neuroimaging, London,

England). This was done to enable the model to learn from smoother spatial patterns,

comparable to the smooth cortical data resulting from surface sampling and geometric

reformatting in [101]. Next, voxel-wise 3rd-order polynomial regression, 0.01-0.1 Hz

bandpass filtering [27], and normalization to 0 mean and 1 standard deviation were

applied.

5.2.3 Variational autoencoder

We designed and implemented a 3D β-VAE [83] in a similar manner to the cortical

surface-based β-VAE for fMRI [101] in order to learn low-dimensional representations
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Figure 5.1: Schematic of the volumetric fMRI VAE model architecture. First, in the
encoder portion of the model, volumetric inputs of size (96, 128, 96) go through 5
convolutional layers, each consisting of 3D convolution, 3D batch normalization, and
ReLU activation. Each convolution uses a kernel size of (4, 4, 4), stride of (2, 2, 2),
and padding of (1, 1, 1). The resultant feature map of dimensions (3, 4, 3) is then
reshaped and input to a linear layer, which produces a vector of 256 latent variable
distribution means. The means and log variance are reparameterized to yield a final
z vector. This vector is input to another linear layer. On the decoder side, there are
5 blocks consisting of 3D transpose convolutions, 3D batch normalization and ReLU
activation, all with the same hyperparameters as the encoder. The final output is a
(96, 128, 96) dimensional volumetric dataset.

of the spatial features of volumetric fMRI. The VAE model is based on original work

by [103]. The 3D VAE designed here is comprised of encoder and decoder portions

that takes each volume of 3D fMRI data (96x128x96) as input. The encoder contained

five 3D convolutional layers, including 3D batch normalization and leaky rectified

nonlinearity. The linear layer used the resultant 3x4x3 feature map as input and

yielded each latent variable distribution mean and standard deviation. The decoder

followed a similar process to map the latent variables back to the volumetric fMRI

space. The model was implemented in PyTorch 1.7.0 and the architecture is depicted

in Figure 5.1.

L(ϕ, θ|x) = ||x− x′||22 + β ·DKL[N(µz, σz)||N(0, I)] [5.1]
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Equation 5.1 is the loss function for the 3D model that is minimized during

training through the optimization of encoding and decoding parameters (ϕ and θ,

respectively). Similar to the surface-based (2D) VAE model [101], it consists of a re-

construction term assessed via mean squared error (MSE) and a regularization term

using Kullback-Leibler divergence (KLD). The regularization term constrains the dis-

tribution of every latent variable to be close to an independent and standard normal

distribution. The β parameter balances the trade-off of reconstruction performance

and regularization. Figure 5.2 shows the model training curves for 100 epochs. The

model was trained with stochastic gradient descent and the Adam optimizer [102],

with a starting learning rate of 1e-5 and a batch size of 32. After evaluating model

performance with and without learning rate decay, the learning rate was chosen to

decay every 20 epochs by a factor of 10. Figure 5.3 shows the model training curves

for 100 epochs without learning rate decay. Without learning rate decay, the recon-

struction loss and KLD values were higher. An initial parameter sweep (β=0.1, 1, 10,

100) indicated that the optimal range for β was around 10 based on the final epoch

training and validation loss and NRMSE of input and output rsfMRI data. A further

parameter sweep, shown in Figure 5.4, showed that the optimal trade-off between

MSE and KL divergence was around β=7∼11. β=7 was chosen for further analysis.

5.2.4 Evaluation

Reconstruction performance was assessed using normalized root mean squared

error (NRMSE) between the input data and decoded output. The normalized root

mean squared error (NRMSE) between input and output was assessed with the fol-

lowing equation: NRMSE=||xout−x||2/||x||2. Temporal alignment was assessed using

correlation within a gray matter mask.

To evaluate the capability of the trained VAE model to disentangle fMRI sources,

the latent variables from a novel subject’s timecourse were clustered temporally with
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Figure 5.2: Plot of the MSE loss and Kullback-Leibler divergence for training and
validation process over 100 epochs, with learning rate decay (by a factor of 10) every
20 epochs.

Figure 5.3: Plot of the MSE loss and Kullback-Leibler divergence for training and
validation process over 100 epochs, without learning rate decay.
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Figure 5.4: Plot of the trade-off between MSE loss and Kullback-Leibler divergence
for varying values of β.
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k-means clustering and k=8 clusters. Then, the clustered latent variables were de-

coded to volumetric space. The Dice coefficient was computed between decoded

clusters and each of the Beckmann resting-state networks, thresholded at 2σ to allow

for a binary mask to measure overlap.

To investigate whether the 3D VAE model learns low-dimensional representations

of fMRI patterns and is also able to decode those representations into the original

fMRI space, we synthesized fMRI data using the trained network. Samples from

the prior distribution (i.e., standard normal distribution) were used to generate a

timecourse containing 1,000 frames of fMRI patterns with the trained VAE decoder.

These fMRI patterns were input to a temporal ICA with 23 components using the

scikit-learn FastICA toolbox in Python 3.7.9. These were then compared to ICA maps

from measured fMRI (1,000 frames) from a subject from the HCP dataset, as well as

each of the Beckmann resting-state networks, also generated through ICA using 200

fMRI volumes from 10 subjects with 23 components [13]. This comparison was done

using the Dice coefficient. First, the absolute values of the images were thresholded

at the corresponding µ+2σ value. Then the Dice coefficient was computed with the

thresholded binary images between each Beckmann RSN and each of the measured

and synthesized ICA maps.

DSC =
2|X ∩ Y |
|X|+ |Y |

[5.2]

The Dice coefficient was computed using Equation 5.2, where X and Y are the

binarized measured or synthesized ICA maps and the Beckmann RSNs, respectively.

The highest Dice coefficient of the measured and synthesized ICAmaps with each RSN

is displayed in the Results. Finally, the correlation of the measured or synthesized

ICA maps with each RSN was used to determine if sign-flipping was required for the

measured and synthesized ICA maps. If the correlation was negative, the measured

or synthesized ICA maps were negated to match the RSN ICA maps.
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Figure 5.5: Spatial patterns from the volumetric VAE input (top row) and decoder
output (bottom row).

5.3 Results

This work implemented a VAE model that aims to compress volumetric fMRI data

to a 256-D latent space and then decode latent representations back to volumetric

fMRI space. Figure 5.5 shows that the 3D VAE appears to reconstruct spatial patterns

in a similar manner to the surface-based (2D) model, where it effectively results in

output that is a smoothed version of the input, corresponding to smoothing of around

6mm FWHM. The NRMSE between input and decoder output for spatial patterns

was approximately 0.68. The VAE model also preserves temporal patterns between

average timecourses from the gray matter for both the input and decoder output.

Figure 5.6 demonstrates good alignment, with a correlation of approximately 0.8.

To investigate whether the 3D VAE model is able to encode low-dimensional rep-

resentations of fMRI data and synthesize fMRI patterns from this latent space, we

analyzed clustered latent variables as well as decoded samples from the prior distribu-

tion using the trained model. Figure 5.7 shows the results from temporally k-means

clustered latent variables. Visual inspection may indicate that brain networks are

reflected in the resultant clusters, but further analysis is needed. Figures 5.8-5.15

show the comparisons of synthesized and measured fMRI temporal ICA maps with
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Figure 5.6: Timecourses from the average timecourses within the gray matter regions
of the input and decoder output.

the Beckmann resting state networks. The highest corresponding ICA maps (Dice

coefficient) are displayed here; however, visual inspection indicates that better cor-

respondence between measured/synthesized and/or RSN may be achieved with ICA

maps that do not yield the greatest Dice coefficient. For example, the visuo-spatial

system is well represented in synthesized ICA maps (Figure 5.12), but not as well for

measured ICA maps. However, the measured ICA map most highly corresponding

to executive control (Figure 5.13) appears to align well with the visuo-spatial system

regions.

5.4 Discussion

Here, we present a volumetric VAE model that learns low-dimensional represen-

tations of 3D fMRI data. The results demonstrate that the volumetric VAE model

performs in a similar manner to the 2D surface-based model [101]. It successfully re-
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Figure 5.7: Decoded clustered latent representations for cluster 4, 5, 6.

constructs spatial and temporal patterns, and reveals network-like patterns in latent

variable timecourses. The VAE model developed here provides a nonlinear modeling

approach for volumetric fMRI data that may be advantageous for broader applica-

tions, such as those in the intersection of neuroscience and machine learning.

There are many possible future directions for this work. The synthesized fMRI

may enable other areas of study, such as deep learning applications that require

significant training data. The Dice coefficient analysis to identify potential network

patterns in the synthesized and measured decoded data could be altered to more

accurately align functional brain regions. Measures of spatial frequency or correlation

may be well suited for this application [51]. Other measures of similarity, such as the

Jaccard index, may also be informative [121].

Future work can examine integration of a volumetric VAE model into reconstruc-

tion and preprocessing pipelines to identify sources of neural activity in fMRI data.

It is hypothesized that the 3D VAE model presented here will generalize to different

data types, including task and other scan conditions as well as other subject popula-

tions. For example, the pre-trained surface-based model has successfully generalized

to movie-watching fMRI without the need for retraining or fine-tuning the model

[99]. This is expected to also hold true in the 3D case, but this remains for future
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Figure 5.8: ICA maps for the medial visual cortical areas RSN (top) and the mea-
sured (middle) and synthesized (bottom) ICA maps with the highest corresponding
Dice coefficient.
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Figure 5.9: ICA maps for the lateral visual cortical areas RSN (top) and the measured
(middle) and synthesized (bottom) ICA maps with the highest corresponding Dice
coefficient.
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Figure 5.10: ICA maps for the auditory system RSN (top) and the measured (middle)
and synthesized (bottom) ICA maps with the highest corresponding Dice coefficient.
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Figure 5.11: ICA maps for the sensory-motor system RSN (top) and the measured
(middle) and synthesized (bottom) ICA maps with the highest corresponding Dice
coefficient.

79



Figure 5.12: ICA maps for the visuo-spatial system RSN (top) and the measured
(middle) and synthesized (bottom) ICA maps with the highest corresponding Dice
coefficient.
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Figure 5.13: ICA maps for the executive control RSN (top) and the measured
(middle) and synthesized (bottom) ICA maps with the highest corresponding Dice
coefficient.
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Figure 5.14: ICA maps for the dorsal visual stream (left) RSN (top) and the mea-
sured (middle) and synthesized (bottom) ICA maps with the highest corresponding
Dice coefficient.
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Figure 5.15: ICA maps for the dorsal visual stream (right) RSN (top) and the mea-
sured (middle) and synthesized (bottom) ICA maps with the highest corresponding
Dice coefficient.
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investigation.

The VAE model used in this work consists solely of spatial relationships; it treats

each time point independently. The combination of a self-attention mechanism with

the VAE model is promising for capturing long-range temporal relationships in the

fMRI data. This transformer could be implemented in the encoder portion of the

model to remember temporal dynamics, similar to functional connectivity. Other

deep learning approaches to examine temporal dynamics in fMRI data would also be

interesting to investigate.

In future work, we plan to apply the volumetric model to rsfMRI from subjects

with dementia of the Alzheimer’s type. We hypothesize that this extension of the

VAE model will generalize to data from subjects along the continuum of Alzheimer’s

disease, as in Chapter IV. Additionally, identifying low dimensional features in the

VAE latent space associated with certain aspects of healthy or disordered brain activ-

ity (e.g., memory, cognition, attention, etc.) could provide pivotal access to extract

meaningful activity from measured fMRI or other brain monitoring data. This im-

plicates many further areas of study, including other clinical and cognitive science

applications across disease populations and brain imaging modalities. As mentioned

in Chapter IV, the VAE model can be readily extended to task-based fMRI, through

using the rs-fMRI pre-trained VAE model or by re-training on task data. Task-based

data may offer unique insights in clinical applications due to its ability to attenuate

or strengthen network activity in irrelevant or relevant brain regions.

5.5 Conclusion

In summary, the volumetric VAE model provides information from subcortical

regions and captures nonlinear relationships neglected in other analysis approaches.

This holds promise for clinical applications, especially in cases of dementia, which can

arise from many potential causes. The high rate of comorbidities seen in dementia
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and other neurological and psychiatric diseases emphasizes the need for analysis ap-

proaches that can be applied transdiagnostically to disentangle and distinguish each

cause. Advanced modeling approaches such as the VAE are expected to be particu-

larly influential in these future areas of research.
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CHAPTER VI

Future Work

In the previous chapters, we have proposed novel combinations of modeling and

neuroimaging data from subjects along the spectrum of Alzheimer’s disease. However,

no one data modality captures the full picture of a neurological or psychiatric disease

and combining multiple modalities can fortify and augment our findings. Several

options for future work integrating multimodal data in the context of AD are discussed

in the following chapter. The modeling techniques developed in this dissertation

may also provide utility in identifying specific brain regions to target for potential

therapeutic interventions such as neurostimulation. Overall, much remains to be

learned about Alzheimer’s disease; this section discusses a few potential areas in

which to extend the work in this dissertation.

6.1 Combinations of Multimodal Data

One promising extension of this work is to combine multimodal data in the afore-

mentioned prediction and modeling approaches. This has already been investigated

in studies of classification related to Alzheimer’s disease, such as combinations of

structural MRI and PET [182], or structural MRI and DTI [117]. Multimodal pre-

dictors have also proved useful in regression capacities; for example, a combination

of structural MRI, FDG-PET, and cerebrospinal fluid (CSF) improved performance
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over models using individual modalities [181]. Predictive modeling and deep learn-

ing techniques can utilize multimodal data through simple concatenation in the in-

put/predictors or through a combined modeling approach such as the multiple-kernel

method.

One avenue to pursue multimodality is through DTI-based measures. White mat-

ter microstructures, as measured by DTI, undergo significant changes through a lifes-

pan [113]. Changes in DTI measures are also apparent in disease states, including

Alzheimer’s disease [78, 79, 150]. A more advanced version of DTI that may pro-

vide unique information on tissue microstructures is neurite orientation dispersion

and density imaging (NODDI). NODDI has shown promise in representing aspects

of pathology that occur in AD [26, 172]. Other data types include MRI-based mea-

sures of myelin water fraction that can provide insights about demyelination and

white matter changes that occur in neurodegenerative conditions such as AD [118].

As evidenced through existing studies on the role of APOE and other gene status

in Alzheimer’s disease, there is increasing interest in the genetic component of AD.

There is also growing opportunity to use imaging measures in combination with ge-

netics data, such as genome-wide association studies (GWAS).

Other future studies could investigate combinations of potential therapeutics with

predictive modeling to model longitudinal outcomes. This approach also has the op-

tion for multimodal data combinations. The search for therapeutics for AD has been

ongoing for decades. Existing therapeutic medications (i.e., aducunab) are limited to

clearing Alzheimer’s disease proteins but have negligible effects on overall functioning,

especially when administered in advanced disease stages.

6.2 Targeting for Neurostimulation and Neuromodulation

Neurostimulation and neuromodulation techniques are direct and noninvasive and

may provide utility in the characterization and treatment of Alzheimer’s disease.
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However, further study is needed to evaluate the proper dosage application and safety

of these approaches. Transcranial Direct Current Stimulation (TCDS) uses currents

from an anode to target and stimulate specific areas of the brain, and a cathode re-

ceives current out of the brain. This approach has been shown to improve memory

performance in subjects with DAT [46], although further studies are needed. Tran-

cranial magnetic stimulation (TMS) uses an electric field generated in copper coils

to discharge the resulting magnetic field into the brain. This has been found to in-

duce stimulation of motor and visual cortex brain activity, and has been successfully

used to reduce depression symptoms [59, 106]. Future work could study the effects of

such techniques on brain networks using the modeling approaches presented in this

dissertation with the ultimate goal of identifying the optimal brain regions to target.

TMS could be promising for characterization of Alzheimer’s disease states and the

associated changes in neuroplasticity or excitability [96] and potentially treatment.

Existing studies have found improved cognitive function with TMS in subjects with

MCI or DAT [28, 140]. Some studies also implement cognitive training. Working

memory training in older adults has been shown to improve plasticity [86]; future

work could examine predictive modeling effects of different types of cognitive and

memory training in subjects along the continuum of AD. Predictive modeling before

and after training may be able to illuminate altered brain networks or predict the

best brain regions in which to apply TMS.

6.3 Conclusion

There are many ongoing advancements in neuroimaging, AD therapeutics, deep

learning and predictive modeling. Novel combinations of image/data acquisition and

analysis have enormous potential to increase understanding, detection, prediction,

and treatment of neurological and psychiatric disorders such as AD. Several research

areas of interest pertain to the main work and future directions discussed in this
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dissertation: (1) relationships between multimodal data and metrics of behavior rele-

vant to Alzheimer’s disease, (2) differences in brain-behavior relationships for subjects

with MCI or DAT after completing cognitive rehabilitation tasks and/or undergoing

non-invasive brain stimulation, and (3) representation learning of multimodal or lon-

gitudinal data. Ultimately, studying brain changes and modeling approaches applied

to AD remains an interesting yet challenging problem.
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APPENDIX A

Additional Connectome Predictive Modeling

Results

A.1 Connectome Predictive Modeling (CPM) Figures

In addition to the PLS-BETA results discussed in Chapter II, analogous figures

for the CPM results are included in this Appendix. As described before, significant

model connections were visualized with the Yale BioImage Suite Connectivity Viewer

(bioimagesuiteweb.github.io/webapp/), to evaluate node connections and display

important nodes (defined by degree). The MNI coordinates and node labels for the

top five highest degree nodes are tabulated in Table 2.5. Further discussion of these

results is included in Chapter II.
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Figure A.1: RBANStotal CPM results for face-name task data (negative edges).
A) Plot of predicted versus actual RBANStotal values. B) Circle plot of significant
connections between brain areas (using node degree threshold of 18). C) Glass brain
plot of significant nodes and connections.
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Figure A.2: RBANStotal CPM results for object-location task data (positive edges).
A) Plot of predicted versus actual RBANStotal values. B) Circle plot of significant
connections between brain areas (using node degree threshold of 12). C) Glass brain
plot of significant nodes and connections.
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Figure A.3: RBANStotal CPM results for object-location task data (negative edges).
A) Plot of predicted versus actual RBANStotal values. B) Circle plot of significant
connections between brain areas (using node degree threshold of 11). C) Glass brain
plot of significant nodes and connections.
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APPENDIX B

Guide to the Great Lakes High Performance

Compute Cluster for fMRI Preprocessing

B.1 High Performance Computing at University of Michigan

The Great Lakes High Performance Compute (HPC) cluster at University of

Michigan (UM) is incredibly valuable in handling large datasets, such as those en-

countered with fMRI. In addition to excellent documentation provided by the Uni-

versity of Michigan Advanced Research Computing division of Information and Tech-

nology Services (https://arc.umich.edu/greatlakes/), resources are plentiful on

various other sites as many of the required procedures and codes are standard across

HPC clusters. For example, Great Lakes uses widespread Slurm scheduling (https:

//slurm.schedmd.com/), and batch scripting is common in many applications. This

Appendix aims to provide a how-to guide for researchers desiring to use a HPC

cluster for preprocessing of fMRI data. It is impossible to summarize all the po-

tential variations of this approach; readers can modify portions of this guide for

their own application and software setup as needed. The full code is published

(https://doi.org/10.5281/zenodo.7047041) [126]. This work was completed via
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Linux; hence, some of the following directions will need to be adjusted for those on

Windows.

B.1.1 Accessing Great Lakes

There are two important components needed to use Great Lakes: a login account

(which provides access to the cluster) and a Slurm account (which pays for cluster

usage). Using your login account via login nodes does not generally incur charges

for tasks, such as editing job scripts, compiling software, or transferring data. Job

submission via a Slurm account does incur charges, and current rates are available

on the Great Lakes webpage. Once you have a Great Lakes login account, you can

access it on campus or via UM VPN with your Level-1 password using ssh. Next, it is

important to determine which Great Lakes Slurm account should be associated with

your usage. If you do not have funding of your own, your college or department (e.g.,

Michigan Engineering) at UM may provide a shared Slurm account for small projects,

but large-scale research or courses should have dedicated Slurm accounts. At the time

of writing, UM was providing a ’base allocation’ to all faculty and some post-doctoral

fellows. Furthermore, UM’s Rackham Graduate School or national funding agencies

(e.g., NSF) may be able to provide funding that can be used to pay for usage on Great

Lakes. Once connected, you can navigate to the Slurm account /scratch/ directory

that provides large amounts of storage to work on your own data and scripts.

On the Great Lakes server, you can use the command my_accounts or id \$USER

to obtain more information about Slurm accounts through which you have access to

compute resources. If you don’t have access, you’ll need the Slurm account owner to

request for you to have access.
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B.1.2 Data transfer to Great Lakes

When working with many subjects or many files of data, it is helpful to set up

SSH keys from the local server containing the data to Great Lakes to avoid requiring

authentication for each file transfer. On Linux and Mac, keys are located in files;

in Windows, they are stored in a registry entry. Those on Windows can refer to

the following for help generating an SSH key: https://www.ssh.com/academy/ssh/

putty/windows/puttygen. On the local server, obtain the existing key file and copy

the contents of the public key to the Great Lakes key file. On Great Lakes, make this

key file one of your authorized keys: cat /path/to/local/key/file/id_rsa.pub

>> ∼/.ssh/authorized_keys. On your local server, you can now easily copy data

to Great Lakes via a transfer node (greatlakes-xfer.arc-ts.umich.edu) using scp

or rsync. Note that the --files-from flag for rsync can be a helpful alternative for

this last step as well by allowing you to copy directories or files listed in a text file.

Note that fMRI data should be in BIDS format for fMRIPrep.

B.1.3 Running fMRIPrep in Batches

Preprocessing with fMRIPrep (https://fmriprep.org/en/stable/) can be a

long process, especially if processing a large number of subjects and/or including the

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) components. With FreeSurfer,

a single subject’s fMRIPrep processing can range from 8-13 hours. Great Lakes can

help with this by allowing you to submit many jobs at once that can run concurrently.

Here, this is accomplished using a list of subjects and submitting each subject’s pro-

cessing as a separate job, which will then be queued in the order submitted. This

way, each subject will run separately and, if there is an error, it won’t disrupt the

processing for other subjects. It is highly recommended to test your job scripts with

a handful of subjects first before submitting all of them.
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B.1.3.1 Creating a batch file for fMRIPrep

First, set up a batch file (e.g., fmriprep_job_script.sbat) that runs your process

(e.g., fMRIPrep) for a single subject and copies the output files to the desired server.

At this point, it is helpful to copy the SSH key from Great Lakes to the server where

you want output files to go. This eliminates the need for authentication when each

job script copies output files from Great Lakes to the local server.

The batch file is comprised of directives, loading modules, and user scripts. The

directives first specify that we will use the bash shell and then contain information

for the Slurm scheduler about how to allocate resources and other specifications for

each job. Below is an example of the directives for an fMRIPrep job.

In the next component of the batch file, the required software can be loaded. The

Great Lakes HPC uses Singularity containers for fMRIPrep, so that is all that is

needed. We can also specify to print information about the job to the output file,

which is recommended for debugging.

Finally, any job-specific code can be added to the batch file. For fMRIPrep, this

most likely includes creating directories, pointing to software licenses, the actual call

to fMRIPrep, copying files to the local server (if desired), and removing unneeded

intermediate files. For the call to fMRIPrep, many options are available and some

flags are self-explanatory. The --cifti-output fMRIPrep flag is needed for output

data in Human Connectome Project (HCP) grayordinates. In this work, fMRIPrep

20.2.5 CIFTI outputs (91k) are the chosen dimensionality of CIFTI outputs to match

HCP 1200 CIFTI data. The flag --output-spaces sets the standard spaces to which

we would like to map the fMRI data. Further documentation of fMRIPrep is available

here: https://fmriprep.org/en/stable/. It is recommended to test the job script

with a small number of subjects for debugging purposes.
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B.1.3.2 Creating a wrapper submission script

Next, create a wrapper bash script (e.g., submit_fmriprep_subject.sh) that

copies the batch script and replaces the subject ID using a text file that contains the

list of subject IDs for which you wish to run fMRIPrep. Tips for creating this text

file will be discussed in Appendix B.1.3.3. For each subject in the text file, this bash

script will submit a separate job via sbatch using the batch file renamed for each

subject. This is useful to pinpoint any subject-specific errors in the output logs.

B.1.3.3 Generating a list of subject files

The following codes can be run from the data directory to append subject IDs

to the correct text file. Note that you can select a subset or all of the subjects by

modifying these commands.

for d in ./*; do [[ -d "$d" ]] && echo "${d##./}" >> sublist.txt; done

# copy desired subject IDs (edit as needed)

head -5 sublist.txt > my_subjects.txt

tail -n 107 sublist.txt > my_subjects.txt

B.1.3.4 Submitting, Monitoring, and Quality Checks for fMRIPrep jobs

Finally, you can run the wrapper function (sh submit_fmriprep_subject.sh)

to submit your jobs. Again, it is highly recommended to test this with a subset of

subjects to debug any issues before submitting them all.

After submitting a job, check on progress or cancel jobs with the following options:

# Check if jobs are queued

sq

# Check if jobs are running

sacct -u $USER | grep RUNNING
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# Check if jobs are complete

sacct -u $USER | grep COMPLETE

# Cancel jobs

scancel [jobID]

After your fMRIPrep job is complete, you can perform QA checks using the

fMRIPrep output HTML file. A useful demonstration for this is found in Andy’s

Brain Book: https://andysbrainbook.readthedocs.io/en/latest/OpenScience/

OS/fMRIPrep Demo 3 ExaminingPreprocData.html.
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