
3D Scene Understanding with Deep Learning

by

Junming Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in The University of Michigan
2022

Doctoral Committee:

Professor Matthew Johnson-Roberson, Co-chair
Assistant Professor Andrew Owens, Co-chair
Professor Jeffrey Fessler
Associate Professor Ram Vasudevan

Junming Zhang

junming@umich.edu

ORCID iD: 0000-0003-1464-7676

© Junming Zhang 2022

To Xinping

ii

ACKNOWLEDGEMENTS

This thesis would not have been possible without many people who supported me.

First of all, I would like to thank my advisor Professor Matthew Johnson-Roberson.

The first time I met Matt was in 442 Computer Vision class, and you were always

cool looking with big headphones. Matt is a great mentor and you are always there

when I feel stuck at research and support me by discussions and encouragement. I

appreciate Matt’s openness since I always have the freedom to go for the direction

that interests me. I am also thankful to Professor Ram Vasudevan, and you are

an academic role model to me. I appreciate your help for my research papers and

support at the regular meetings with Ford. Thank you also to Professor Andrew

Owens and Professor Jeff Fessler for being on my dissertation committee and for

your support, guidance and responsiveness in all communications.

I would like to thank for labmates and they are from Ford Center for Autonomous

Vehicles (FCAV), Deep Robot Optical Perception (DROP) lab, and the Robotics

and Optimization for the Analysis of Human Motion (ROAHM) lab: Ming-Yuan

Yu, Manikandasriram Srinivasan Ramanagopal, Alexandra Carlson, Matthew Porter,

Jinsun Liu, Pengcheng Zhao, Fan Bu, Cyrus Aderson, Wonhui Kim, Xiaoxiao Du,

Tianyi Zhang, Katherine Skinner. I learn a lot from you and feel grateful to be in

a team of friendly and supportive lab mates. I also want to thank Waymo Inc. for

providing me a memorable internship experiences during summer of 2021, and I am

grateful to my mentors and my amazing co-workers at Waymo: Casey Goodlett,

Bill Orr, William Baxter, Matthew Rasmussen, and Dave Gallup. I would like to

express appreciation and gratitude to Ford for funding my thesis. Thank you Enrique

Corona, Gaurav Pandey, Armin Parchami and Eric Tseng for valuable feedback at

the monthly meeting.

In the end, I want to express my great appreciation for my family. Especially

thank you to Xinping for always being my companion, my strength and my wife.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . xi

LIST OF APPENDICES . xiv

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Outline . 4

II. Leveraging Semantics for End-to-End Learning of Disparity
Estimation from Stereo Imagery . 6

2.1 Introduction . 6
2.2 Related Work . 8
2.3 Methods . 10

2.3.1 Architecture for Disparity Estimation 10
2.3.2 Cost Volume and Learning Context 11
2.3.3 Disparity Refinement . 11
2.3.4 Architecture for Semantic Segmentation 12
2.3.5 Loss Function . 12
2.3.6 Post Processing . 14

2.4 Experiments . 15
2.4.1 Datasets . 15
2.4.2 Implementation Details . 15
2.4.3 Evaluation . 16
2.4.4 Ablation Study on Loss Components 17
2.4.5 Performance Analysis . 18
2.4.6 Qualitative Results: 3D Models . 19

2.5 Conclusion . 20

III. Learning Rotation-Invariant Representations of Point Clouds 22

3.1 Introduction . 22

iv

3.2 Related Work . 25
3.2.1 View-Based and Volumetric Methods 25
3.2.2 Point Set Learning . 26
3.2.3 Rotation Learning . 26

3.3 Learning Point Cloud with Rotation Invariance 26
3.3.1 Rotation-Invariant Representation 27
3.3.2 Aligned Edge Convolution . 28
3.3.3 Network Architecture . 30

3.4 Experiments . 31
3.4.1 Implementation details . 31
3.4.2 Shape Classification . 32
3.4.3 Part Segmentation . 33
3.4.4 Analysis on Local Reference Frame 35
3.4.5 Aligned EdgeConv Analysis . 37

3.5 Conclusions . 37

IV. Point Set Voting for Partial Point Cloud Analysis 38

4.1 Introduction . 38
4.2 Related Work . 40
4.3 Method . 41

4.3.1 Preliminary: Conditional Variational Auto-encoder 41
4.3.2 Proposed Point Cloud Model . 42
4.3.3 Proposed Method . 42

4.4 Experiment . 43
4.4.1 Implementation . 43
4.4.2 Point Clouds Classification . 46
4.4.3 Part Segmentation . 47
4.4.4 Point Clouds Completion . 47
4.4.5 Ablation study . 48
4.4.6 Training Strategy Analysis . 51
4.4.7 Voting Strategy Analysis . 51
4.4.8 Generalizability to different partial point clouds 53
4.4.9 Visualization of multiple predictions 53

4.5 Conclusion . 54

V. Hyperspherical Embedding for Point Cloud Completion 56

5.1 Introduction . 56
5.2 Related Work . 59
5.3 Review of Learning Point Cloud . 60
5.4 Hyperspherical Embedding for Learning Point Cloud 61

5.4.1 Proposed Hyperspherical Module 61
5.4.2 Effects of Hyperspherical Embedding 61

5.5 Experiments . 65
5.5.1 Experiments on Different Datasets 65
5.5.2 Ablation Study . 67
5.5.3 Experiments on the Effects of Hyperspherical Embedding 68

5.6 Conclusions . 72

VI. Future Directions . 73

APPENDIX . 75

v

BIBLIOGRAPHY . 83

vi

LIST OF FIGURES

Figure

1.1 Dissertation outlines. Algorithms for effective disparity estimation and point cloud
analysis are proposed for 3D scene understanding. 4

2.1 Examples of advantage of fusing segment embedding into disparity estimation.
With fused segment embedding, our model performs better in ill-posed regions,
such as the area within the red bounding box in each figure. The white numbers
in the error maps indicate percentage of incorrect pixels in all regions. 7

2.2 Architecture of our model. The pipeline of our model consists of the following parts.
(a) Input images: rectified input stereo images. (b) Feature extraction: useful
features are extracted from input stereo images. (c) Cost volume: cost volume
is formed by concatenating corresponding features from both sides. (d) Initial
estimation: initial disparity is estimated from cost volume using 3D convolution.
(e) Refinement: initial disparity is further improved by fusing segment embedding.
The PSP module is used to incorporate more context information for the semantic
segmentation task. (f) Output: estimated disparity and semantic segmentation
from both left and right views are generated from the model. In this figure, 2D
and 3D residual blocks are similar to identity blocks that are defined in the [1]. . . 10

2.3 Qualitative results on KITTI 2015 and Cityscapes datasets. (a)Sample results on
KITTI 2015 test set. The last column shows the error maps which are captured
from KITTI benchmark. Error regions are displayed in orange color. (b)Sample
results on Cityscapes. Compared with predication from SGM, our model generates
more smooth and complete disparity map. 16

2.4 Sample qualitative 3D semantic results on KITTI 2015 and Cityscapes datasets.
(a) 3D Reconstruction Results on KITTI 2015. (b)3D Reconstruction Results on
Cityscapes. The last rows in both (a) and (b) show the 3D semantic results.
Different color refers to different semantic class. 21

3.1 An comparison of the performance of state-of-the-art techniques to the method
developed in this paper while performing part segmentation on rotated point clouds
from the ShapeNet dataset. We report results on models of arbitrary rotation
during testing while they trained with only rotation along vertical direction (x
axis) and on models of arbitrary rotation during both training and testing (y axis)
(subfigure a). This degradation in performance can be seen on the quality of part
segmentation in unseen views (subfigure b, where different colors correspond to
different part categories). 23

3.2 An illustration of aligned edge convolution and the Local Reference Frames (LRFs)
that help define it. To construct the rotation-invariant representation (RIR), one
takes the reference point pi and the k-nearest points to it (subfigure a). The LRF
is determined by pi and the anchor point m which is defined as the barycenter of
the k-nearest points to pi. The coordinates of k-nearest points are described with
respect to the LRF. Note that LRFs may not be aligned due to independence of
the local neighborhood of points that define each LRF (subfigure b). 27

vii

3.3 An illustration of the deep hierarchical architecture proposed in this paper to learn a
rotationally invariant representation of point clouds for classification. The network
takes N points as inputs and uses two set abstraction (SA) blocks to hierarchically
learn a representation of larger and larger regions. The final part aggregates features
from the last SA block and outputs a feature vector encoding the input point set.
The SAFirst block samples reference points and builds a k-nearest neighbor (NN)
graph in Euclidean space. It converts points into the RIR and transforms them
using a shared-weights PointNet structure that outputs feature vectors encoding
information for each reference point’ neighbors. The SANext block applies a similar
process to the SAFirst block except for building the k-NN graph in feature space and
extracting features using Aligned EdgeConv. The feature alignment module within
Aligned EdgeConv aligns local features to the LRF of the reference point using
the rotation matrix R and the translation vector T that are defined in the Section
3.3.1. Then the aligned local features are fused with the feature at the reference
point along with translation vector T . Note mlp in the figure is abbreviated for
multi-layer perceptron (MLP). The output is classification scores for c classes. . . . 30

3.4 Qualitative results of our proposed method on part segmentation task on the
ShapeNet dataset. From top to bottom, segmentation results of different cate-
gories are shown. From left to right, we show ground truth label and results when
the input point clouds are arbitrarily rotated during testing. Different colors cor-
respond to different part categories. Our model is robust to arbitrary rotations of
the input point clouds. 34

3.5 Qualitative results of part segmentation on ShapeNet. The Y/AR setting is adopted
for all models. From top to bottom, segmentation results of different categories are
shown. From left to right, we show ground truth label and the results from different
approaches. Different colors correspond to different part categories. Our method
achieves state-of-the-art performance while other approaches fail to generalize to
unseen rotation. 35

4.1 An illustrative comparison between our proposed method and other conditional
graphical models (CGMs). 41

4.2 An illustration of the model developed in this work. The input point clouds are
modeled as a partition of point sets and each local point set is defined by its centroid
and scale r. Local point sets are embedded by a shared-weight PointNet encoder.
The voting via this encoder is used to infer the space for latent features. The latent
feature with the highest probability is sampled from the inferred latent space and
is then passed to a decoding module for prediction. We perform experiments on
three tasks: classification, part segmentation and point clouds completion. 44

4.3 Sample partial point clouds. Left: partial point clouds synthesized by choosing
points (bolded red) falling into one side of a random 2D plane. Right: partial point
clouds generated by back-projecting depth images into 3D space. 46

4.4 Qualitative results on part segmentation of point clouds using the method presented
in this work. Different colors correspond to distinct segments. Left: segmentation
on the ShapeNet part dataset. Middle: segmentation on the simulated partial point
clouds in the ShapeNet. Right: segmentation on the Completion3D dataset. 48

4.5 Qualitative point clouds completion results on partial point clouds provided in
Completion3D dataset. 50

4.6 Qualitative point clouds completion results on partial point clouds simulated on
Completion3D dataset using the introduced strategy in the work. 50

4.7 Results of different aggregation strategies for computing latent features on simu-
lated partial point clouds in ModelNet40. 51

4.8 Visualization of voting strategy. Each vote is decoded into a complete shape by
using the model trained on Completion3D dataset. The points in blue show the
complete shapes. 52

viii

4.9 Visualization of diverse predictions on point clouds completion on the Comple-
tion3D dataset. 54

4.10 Completion on real-world point clouds from ScanNet. Top row: input partial point
clouds. Bottom row: complete point clouds generated by ours. 54

5.1 Architecture of point cloud learning. The upper subfigure shows the general point
cloud analysis structure, where the embedding is directly output from the encoder
without constraints. The lower subfigure shows the structure of the model with the
proposed hyperspherical module. The figures under the embeddings illustrate the
cosine similarity distribution between embeddings, which indicates a more compact
distribution achieved by the proposed method. 57

5.2 An illustration of distributions of singular values. We compute singular values
from weights in the layer right before the embedding, obtained from the point
cloud completion models on MVP dataset with different architectures described in
the plot title. The mean of singular values are denoted by vertical lines, and the
inverted triangle denotes the largest singular value. Normalization leads to learning
more singular weights. 59

5.3 Distribution of embedding’s norm. The embeddings are derived from the MVP test
set on point cloud completion, obtained by using different embeddings or different
optimizers, as described in the plot titles. Unconstrained embeddings are from
models without the proposed module. Transformed embeddings are from models
with the proposed module but removing the normalization layer. Hyperspherical
embeddings are from models using the proposed module. Hyperspherical embed-
dings have large norms. 62

5.4 Cosine similarity distribution of embeddings. We compute pairwise cosine distance
between embeddings obtained from the test set in MVP dataset. We visualize
distribution in either one class or overall classes as described in the plot titles.
Hyperspherical embeddings have more compact angular distribution. 64

5.5 An illustration of gradient conflicts between tasks in multi-task learning during
training. We visualize the gradient cosine similarity and gradient magnitude as in-
dicated by the titles of subfigures, obtained by training point cloud completion and
shape classification on MVP dataset. Hyperspherical embeddings lead to smaller
gradient conflicts between tasks in multi-task learning. 64

5.6 Qualitative results of various state-of-the-arts point cloud completion approaches
on MVP test set. 65

5.7 Qualitative 3D detection, pose estimation, and point cloud completion results on
GraspNet test set. 66

5.8 Illustration of point cloud interpolation on embedding space. The generated point
clouds with hyperspherical embeddings have more clear clues from source or target
shapes than those with unconstrained embeddings. 67

5.9 Performance of multi-task learning of point cloud completion and classification on
MVP with different learning rates. 70

A.1 Results of point clouds completion obtained from the noisy partial observation.
Gaussian noise with zero mean is assumed and the standard deviation is indicated at
the bottom. Top: input partial observation. Bottom: prediction (red) overlapped
with inputs (green). 77

A.2 Failure cases of point clouds completion on the Completion3D dataset. 77
B.1 Performance of multi-task learning of point cloud reconstruction and part segmen-

tation on ShapeNet with different learning rates. 80
B.2 Performance of multi-task learning of point cloud reconstruction and classification

on ModelNet40 with different learning rates. 81
B.3 Cosine similarity distribution of embeddings. We compute pairwise cosine distance

between embeddings obtained from the test set in MVP dataset. We visualize
distribution of different classes as described in the plot titles. Hyperspherical em-
beddings have more compact angular distribution. 82

ix

B.4 More qualitative 3D detection, pose estimation, and point cloud completion results
on GraspNet test set . 82

x

LIST OF TABLES

Table

2.1 Comparison with other unsupervised models on disparity estimation. Results are
reported on the KITTI 2015 stereo validation set manually splitted from 200 train-
ing images. ’CS’ refers to training model on Cityscapes dataset; ’K’ refers to
training model on KITTI; ’PP’ refers to refining disparity with post processing.
With pretraining on Cityscapes, fine-tuning on KITTI and post processing, our
model outperforms other unsupervised methods by a large margin. 18

2.2 Comparison with other supervised methods on disparity estimation. Results are
reported on KITTI 2015 test set. Numbers indicate the percentage of pixels which
have greater than three pixels or 5% disparity error. ’D1-bg’, ’D1-fg’ and ’D1-All’
refer to background pixels which contain static elements, dynamic object pixels and
all pixels respectively. Although there is a gap between performance of supervised
methods and ours, our model shows decent results and even beats DispNet on the
D1-bg region. 18

2.3 Error rates of disparity estimation on regions of each semantic class. In the table,
‘smo’ refers to smoothness loss; ‘seg’ refers to segmentation loss; the first row shows
the name of semantic classes; the second row shows error rates of the model with
all components of losses except smoothness loss and segmentation loss; the third
row shows error rates of the model with all losses except segmentation loss; the
fourth row shows error rates of the model with all losses; the final row shows
percentage of error rate reduction after adding smoothness loss and segmentation
loss. Smoothness loss improves performance on relatively large semantic classes
but not on small semantic classes. With supervision of the semantic segmentation
task, error rates on regions of small semantic classes decrease substantially. 19

2.4 Ablation study on loss components. Results of models with different losses are
reported on KITTI 2015 training set without pretraining or post processing. There
are two stages in our model. The superscript ‘init’ refers to losses in the initial
stage and the superscript ‘ref’ refers to losses in the refinement stage. The sub-
script ‘p’ refers to photometric loss, ‘r’ refers to regularization loss, ‘c’ refers to
consistency loss, ‘s’ refers to smoothness loss and ‘seg’ refers to supervised seman-
tic segmentation loss. Results shown here justify our two-stage architecture and
designed components of total loss. 20

3.1 Classification results on ModelNet40 dataset. We report the accuracy (%) in three
different settings: training and testing with rotation along the vertical direction
(Y/Y), training with rotation along vertical direction and testing with arbitrary
rotation (Y/AR), and performing arbitrary rotation during training and testing
(AR/AR). Though our model is only the third best performer in the Y/Y setting
it is the top model in each of the other categories. In particular our proposed
model has superior performance in the Y/AR and AR/AR, which means that it
can generalize well to unseen rotations. 32

xi

3.2 Part segmentation results on ShapeNet dataset. Point cooridnates are taken as
inputs, and mean inter-over-union (mIoU) across all classes is reported in three
different settings including Y/Y, Y/AR and AR/AR. Our model outperforms all
approaches except PointNet++ in Y/Y setting. Our model has superior perfor-
mance in the Y/AR and AR/AR settings, which means that it can generalize well
to unseen rotations. 33

3.3 Ablation study on aligned edge convolution and comparison with original edge
convolution. Accuracy, number of parameters and FLOPs per sample are reported.
No further experiments were done on AEConv2 due to its poor accuracy. The
number of neighbors is 48. 35

3.4 Ablation study on LRFs. Models are evaluated on ModelNet40 dataset in the
Y/AR setting. Three aspects which effect LRFs are studied: searching methods,
grouping ways and the number of neighbors. 36

3.5 Ablation study on radius in ball query. Models are evaluated on ModelNet40
dataset in the Y/AR setting. Model’s performance is marginally sensitive to radius
if ball query is used. (r1, r2) indicates the radius in the first SABlock and the
second SABlock respectively. 36

4.1 Classification accuracy on ModelNet40. Overall classification accuracy is reported
on complete point clouds (Complete) and simulated partial point clouds (Partial).
The last column (Partial*) shows the results when models trained using the pro-
posed training strategy . 47

4.2 Part segmentation results on ShapeNet part dataset. Mean intersection of unions
(mIoUs) is reported on complete point clouds (Complete) and simulated partial
point clouds (Partial). 48

4.3 Ablation study. The metric is overall classification accuracy on the simulated partial
ModelNet40 test set. “BN” indicates using batch normalization; “DP” indicates
using the dropout technique in fully connected layers except the final one; “# v.
train” indicates the maximum number of votes selected to contribute to the latent
feature at training; “# v. test” indicates the number of votes at test; “radius”
indicates the ball radius of local regions; “BK” indicates the dimension (bottleneck)
of the latent space. 49

4.4 The performance of various state-of-the-art algorithms on partial point cloud com-
pletion on the Completion3D benchmark dataset. Results are reported on the
Completion3D’s withheld test set. The Chamfer distance (CD) is reported, multi-
plied by 104. 49

4.5 The performance of various state-of-the-art algorithms trained via the Comple-
tion3D dataset on partial point cloud completion on a simulated partial point cloud
dataset. Results are reported on simulated partial point clouds of validation set.
The Chamfer distance (CD) is reported, multiplied by 104. 49

5.1 The performance of completion approaches trained via the MVP dataset on point
cloud completion. The Chamfer Distance is reported, multiplied by 104, on the
provided test set. “H” indicates using the proposed hyperspherical module. 65

5.2 Performance on GraspNet test set. Average precision with 3D IoU threshold 0.25
(mAP 0.25) is reported for object detection, and Chamfer Distance (CD) is reported
for point cloud completion, multiplied by 104, and pose accuracy (Pose Acc.) is
reported for 6D pose estimation. The first column indicates the structure of decoder
used in the model, and “H” indicates using the proposed hyperspherical module. . 68

5.3 Results of ablation study. The reported metric is Chamfer Distance, multiplied by
104, of point cloud completion on MVP test set. The first three column indicates the
results of models with different types of embeddings described similarly in Figure
5.3. “reg” indicates training with regularization term to discourage large norms of
embeddings, and the number next to it indicates the weights when adding the term
to training loss. 68

xii

5.4 Comparison results of models using different multi-task training strategies on MVP
dataset. Results of shape classification (Acc) and point cloud completion (CD) are
reported, multipied by 104. “S. vs. M.” shows the percentage of performance
change comparing best completion results in multi-task learning to those in single-
task learning. 70

B.1 Single-task learning on ShapeNet. Overall point segmentation accuracy (Seg Acc.)
is reported for part segmentation, and Chamfer Distance (CD) is reported for point
cloud reconstruction, multiplied by 104. The first column describes the encoders
and decoders used in the model, and “H” indicates using the proposed hyperspher-
ical module. 80

B.2 Single-task learning on ModelNet40. Overall classification accuracy (Cls Acc.) is
reported for shape classification, and Chamfer distance (CD) is reported for point
cloud reconstruction, multiplied by 104. The first column describes the encoders
and decoders used in the model, and “H” indicates using the proposed hyperspher-
ical module. 81

xiii

LIST OF APPENDICES

Appendix

A. Appendix to Point Set Voting . 76

A.1 Appendix to Point Set Voting . 76
A.2 Visualization of Point Clouds Completion with Noisy Inputs 77
A.3 Failure Cases on Point Clouds Completion 78

B. Appendix to Hyperspherical Point Cloud Completion 79

B.1 Proof of Proposition . 79
B.2 More Experiments . 79
B.3 More visualization . 82

xiv

ABSTRACT

3D scene understanding is crucial for robotics, augmented reality and autonomous

vehicles. In those applications, the 3D structure can be computed by using stereo

cameras or depth sensors. One can process these 3D measurements using deep learn-

ing techniques to achieve remarkable performance in various perception related tasks.

However, different from images that have a dominant representation as 2D pixel ar-

rays, 3D data has many representations, including voxels, meshes, depth images,

point clouds, and etc. Among all of them, depth images and point clouds are closer

to the direct output from 3D measurements, as depth images are computed by stereo

cameras and point clouds are generated from LiDAR. The recent improved accessi-

bility of those 3D measurements requires the need of algorithms to interpret them.

Therefore, this dissertation develops algorithms for 3D scene understanding with

deep learning techniques for depth images and point clouds.

The first portion of this dissertation describes an algorithm to estimate accurate

depth maps from stereo images. In particular, by solving the stereo matching prob-

lems, one can generate a disparity map and convert it into a dense depth image.

During the processing, the semantic embedding learned from semantic segmentation

further helps to guide the disparity estimation, especially for smooth, reflective and

occluded regions. With the computed depth images and semantic segments, we can

efficiently produce semantic 3D models.

The second portion of the dissertation addresses the challenges of processing point

cloud data which may be arbitrarily rotated. To solve perception tasks with random

rotation in real-world point cloud data, traditional techniques employ data augmen-

tation. However, this can increase training time and may require more complex deep

learning models. To address rotations that may not exist in the training data, this

dissertation proposes a 3D representation of point clouds that is designed to be rota-

tionally invariant and introduces a novel neural network architecture to utilize this

representation.

The third portion of the dissertation devises methods to address the challenge

of processing real-world point clouds due to partial observations. This dissertation

applies a multivariate Gaussian distribution to model the output from each local

xv

point set and illustrates how to use each such local point set to infer the latent

feature encoding information contained by a complete point cloud. This strategy

ensures accurate prediction with a partial observed point set for different tasks, such

as shape classification, part segmentation, and point cloud completion.

The final portion of the dissertation focuses on point cloud completion. At pro-

cessing the point clouds, existing approaches adopt encoder-decoder structures and

output sparse distributed embeddings, which may lead to worse generalizability at

testing. In addition, analysis of point cloud completion trained jointly with other

tasks are lacking. To address those limitations, this dissertation proposes a novel

module that includes a normalization layer to normalize embeddings into unit one,

and the module can be integrated into existing approaches. Both the theory and

empirical results are shown to demonstrate the effectiveness of the proposed method

on improving point cloud completion performance.

xvi

CHAPTER I

Introduction

1.1 Motivation

In recent years, we have observed many emerging applications using algorithms

to interpret images from cameras and generate high-level semantic outputs. For ex-

ample, a security system equipped with high-resolution cameras requires identifying

people and vehicles while minimizing unwanted alerts by others, such as animals or

shadows; medical image analysis may need to partition images into semantic seg-

ments to diagnose pathologies or guide medical interventions such as surgical plan-

ning, or for research purposes. Those applications are based on 2D measurements

from sensors, while more recent applications in robotics, augmented reality (AR),

and autonomous vehicles are equipped with advanced sensors and some of them are

able to measure the 3D environment. For instance, AR glasses are equipped with

depth cameras to perceive the 3D geometry of environment and correctly display

virtual objects; the perception system in autonomous vehicles contains depth sen-

sors, and they are used to identify locations of obstacles in the world to constrain

the feasible region for driving, as well as understand their high-level categories, such

as pedestrian, to decide whether to yield. In those applications, 3D sensors are able

to generate a fair amount of 3D measurements and this increased accessibility of

3D data requires algorithms to process and analyze them. Inspired by the success

of deep learning in solving 2D image analysis tasks [1, 2, 3, 4, 5], we applied deep

learning to address the challenges in 3D scene understanding.

Different from images that have a dominant representation as 2D pixel arrays,

3D data has many representations, including voxels, meshes, depth images, point

clouds, and etc. The diversity of representations are generated by either different

depth sensors or tailored to different computational algorithms. Volumetric repre-

sentation contains a voxel grid converted from point clouds or meshes, and a voxel

is one if there is a point in it, or zero if it is empty. By organizing the data in a

regular way, volumetric representation enables the usage of existing kernel methods,

1

2

such as 3D convolutions [6, 7, 8]. However, the efficiency of processing volumetric

representation is limited by the grid resolution, and a worse case is that much com-

putation is wasted on processing empty voxels within the volume of objects since

valid voxels are converted only on the surfaces of objects. Moreover, quantization

loss is inevitable when converting into voxels from other representations, which may

lead to degradation of analysis compared to directly processing raw representations.

Meshes define the 3D shapes of objects in a more compact way by using a collection

of vertices, edges and faces, which requires less storage space compared to voxels.

However, the number of elements in a mesh may vary dramatically and have different

combinations, which raise challenges for mesh processing. Some works have been

proposed to perform mesh classification and generation using Deep Neural Networks

(DNNs) methods [9, 10, 9], but the progress in mesh processing is lagging behind

other 3D data representations. One possible reason is that meshes are not a direct

data format from any depth sensors, so representation conversion is needed before

processing meshes, which negatively affects the efficiency in real-world applications.

Therefore, this dissertation is particularly interested in analyzing depth images and

point clouds since they are a data format closer to the output from depth sensors.

Depth images are 2D pixel arrays, which contain the pixel-wise distance between

the image plane and the surfaces of scene objects. Usually, depth images are ob-

tained by depth cameras or solving the stereo matching problem. Because of the

lower cost of stereo setup, this dissertation is motivated to focus on how to accu-

rately derive depth images from stereo images. A general pipeline of generating

depth images from stereo images is to first compute disparity maps by solving stereo

matching problems and then convert disparity into depth with the calibrated camera

parameters, in which the key step is to obtain an accurate disparity map. To solve

the stereo matching problem, traditional methods either use local descriptors to find

the matching points within a predefined window [11], or they minimize an energy

function globally to get an optimal solution [12]. Unfortunately, the results of them

are not reliable due to the ineffective hand-crafted features, and the long processing

time makes it impractical for real-time applications. To address those limitations,

recent works applied convolutional neural networks (CNNs) methods to solve stereo

matching problem and achieved impressive performance by effectively learning fea-

tures from large datasets in an end-to-end training manner[13, 14, 15, 16]. However,

this end-to-end disparity regression requires dense annotation of disparity maps that

are difficult and expensive to acquire[17, 18], which partially explains that the size

of available disparity datasets is relatively smaller than those for other tasks, such

as classification and detection. For example, KITTI 2012 and KITTI 2015, the most

popular benchmarks for the stereo matching task collected in the real-world scenar-

3

ios, contain no more than 400 stereo images for training. Despite the advances of

disparity estimation using CNNs methods, obtaining correct disparity in regions of

reflection, occlusion, and slow-texture is still challenging. Empirically, those difficult

regions are located within large semantic segments, so we are motivated to incorpo-

rate more contextual semantic information during estimating disparity. Therefore,

this dissertation proposes a self-supervised model in which the disparity estimation is

improved by guidance of semantic information learned from semantic segmentation

task.

Point clouds are probably the closest representation to raw sensor output and

encode full information. Similar to mesh representation, directly processing point

clouds is challenging due to the irregularity of the points they contain. Previous

methods converted point clouds into other representations, such as depth images

and voxels, before proccessing point clouds, but the data conversion degrades the

resolution of measured objects which can adversely affect point cloud analysis. More

recently, PointNet is the pioneer work in achieving end-to-end learning for the ir-

regular point data by using symmetric function to address the permutation issues

in the point set [19]. Since then many works have extended PointNet by proposing

different structures to effectively extract information from points clouds [20, 21, 22].

However, the representations learned by most existing approaches are from point

clouds with canonical poses and lack invariance to rotations, while they are com-

mon in real-world scenarios. A typical way to increase the robustness of models to

rotation is augmenting the training point clouds with additional data and random

rotation. However, data augmentation will require more computation resources at

training and designing models with larger capacity. To address above limitations,

this dissertation proposes a new representation of point clouds that is designed to be

rotationally invariant and introduces a novel neural network architecture to utilize

this representation.

Incomplete measurement is another challenge when processing point clouds. Re-

cent works have achieved impressive performance on point cloud analysis [19, 20, 23,

24, 25, 26, 27] by learning meaningful representations from large 3D datasets [17, 28,

29]. However, point clouds provided in those dataset are often incomplete and sparse

due to occlusions, low resolution and the limited view of 3D sensors, which lacks com-

plete information and raises challenges for analyzing point clouds. Therefore, the

ability to predict complete shapes of objects from partial observation is desirable.

Moreover, the complete shapes may be useful in certain applications requiring finer

shapes. For example, the predicted complete shapes will provide finer collision-check

boundaries than 3D bounding boxes to help autonomous vehicles navigate in narrow

lanes or crowded urban regions; compared to incomplete measurement, the robot

4

DispSegNet:
Disparity Estimation
Guided by Semantics

UWStereoNet: Underwater
Disparity Estimation

AECNN:
Rotation-invariant Point

Cloud Analysis

PointSetVoting:
 Partial Point Cloud Analysis

HyperPointCloud:
 Point Cloud Completion

LiStereo:
Dense Depth Map

Estimation

Chapter II
Zhang et al. RAL & ICRA 2019

Chapter III
Zhang et al. 3DV 2020

Chapter V
Zhang et al. RAL 2022 (Submitted)

Chapter IV
Zhang et al. RAL & ICRA 2021

Zhang et al. ICRA 2020

Skinner and Zhang et al. ICRA 2019

Depth Map Point Cloud

Figure 1.1: Dissertation outlines. Algorithms for effective disparity estimation and point cloud
analysis are proposed for 3D scene understanding.

arm can grasp objects in more reasonable poses predicted from the complete shapes,

in particular, for those unknown objects. Thus, this dissertation targets challenges

due to incomplete measurement and devises algorithms for shape classification, part

segmentation, and point cloud completion in partial point cloud analysis.

1.2 Outline

The outlines of this dissertation is illustrated in Figure 1.1, and contents for each

chapter are as follows:

Chapter II targets at improving disparity estimation in certain difficult regions

with reflection, occlusions and low-textures. We set out to exploit the connection

between these two pixel labeling tasks – disparity estimation and semantic segmen-

tation – to improve the performance for disparity estimation. We argue that segment

embedding learned from semantic segmentation can provide more cues for estimating

disparity by constraining smoothness of disparity within difficult regions. From this

perspective, models for disparity estimation need to have a high-level understanding

of objects or at least segments, so stereo matching is no longer a low-level vision

problem. To achieve this, this chapter introduces a multi-task model which outputs

a disparity map and semantic segments simultaneously while the two tasks are cou-

pled, and we can obtain 3D semantics by projecting both outputs into 3D space.

5

The content of this chapter is based primarily on Zhang et al. [30].

In Chapter III, we focus on learning a novel 3D representation of point clouds that

is invariant under rotations and introduces a new neural network architecture to uti-

lize this representation. By leveraging the notion of local reference frame (LRF), we

ensure different orientations of a point cloud are mapped into the same representa-

tion by projecting into a local LRFs. The introduced architecture processes these

local internal features and aligns them with local internal features drawn from other

LRFs before fusing them together in a hierarchical fashion to define global features.

We demonstrate the invariance to rotation of the proposed method on point cloud

classification and part segmentation. The content of this chapter is based primarily

on Zhang et al. [31].

In Chapter IV and Chapter V, we target the challenges due to incomplete mea-

surement in analyzing point clouds. In contrast to prior works on learning a rep-

resentation of all points within the point clouds, Chapter IV proposes to utilize a

shared-weight encoder to embed each local point set by a multivariate Gaussian dis-

tribution. The embedded local point sets vote to infer the information contained in

a complete shape, which resides in the latent space characterized by a distribution.

This probabilistic modeling enables output more accurate prediction when observing

more parts of shapes and generates multiple possible outputs due to the uncertainty

of the partial observation. The proposed methods are general to different point cloud

tasks, and we show state-of-the-art results on shape classification, part segmentation,

and point cloud completion with partial clouds. The content of this chapter is based

primarily on Zhang et al. [32].

We narrow down our focus to point cloud completion tasks in Chapter V. Most

point cloud completion networks consist of an encoder-decoder structure, in which

the encoder extracts embeddings that are used to generate output for different tasks.

However, the learned embeddings are shown to be sparsely distributed in the feature

space, which may lead to worse generalization results at testing when unseen embed-

dings are not captured by embeddings at training. Moreover, the existing approaches

lack analysis of point cloud completion trained in multi-task learning. To address

these problems, we propose a hyperspherical module, which takes the embeddings

from encoders as inputs and transforms and normalizes them to be on a unit hyper-

sphere before passing them to following decoders. The consistent improvement of

point cloud completion observed in both single-task and multi-task learning verify

the effectiveness of the proposed method.

Finally, Chapter VI outlines several main ideas for future research, based on the

findings in this dissertation, and my vision of future directions for 3D perception.

CHAPTER II

Leveraging Semantics for End-to-End Learning of Disparity
Estimation from Stereo Imagery

Recent work has shown that CNNs can be applied successfully in disparity estima-

tion, but these methods still suffer from errors in regions of low-texture, occlusions

and reflections. Concurrently, deep learning for semantic segmentation has shown

great progress in recent years. In this chapter, we design a CNN architecture that

combines these two tasks to improve the quality and accuracy of disparity estimation

with the help of semantic segmentation. Specifically, we propose a network structure

in which these two tasks are highly coupled. One key novelty of this approach is the

two-stage refinement process. Initial disparity estimates are refined with an embed-

ding learned from the semantic segmentation branch of the network. The disparity

estimation task in the proposed model is trained using an unsupervised approach,

in which images from one half of the stereo pair are warped and compared against

images from the other camera. Another key advantage of the proposed approach

is that a single network is capable of outputting disparity estimates and semantic

segments. These outputs are of great use in autonomous vehicle operation; with real-

time constraints being key, such performance improvements increase the viability of

driving applications. Experiments on KITTI and Cityscapes datasets show that our

model can achieve state-of-the-art results and that leveraging embedding learned

from semantic segmentation improves the performance of disparity estimation. 1

2.1 Introduction

Disparity estimation is an important problem in low-level vision. Given two stereo

rectified images, disparity refers to the relative horizontal displacement of two cor-

responding pixels in the left and right images. From dense disparity maps, we can

estimate three dimensional geometry, which is critical for many computer vision

applications, including autonomous vehicle navigation and 3D model reconstruction.
1This chapter is based on [30]

6

7

Left Image Right Image

(a) Input stereo images

6.22 %

(b) Disparity prediction and error map without segment embedding

1.42 %

(c) Disparity prediction and error map with segment embedding

Figure 2.1: Examples of advantage of fusing segment embedding into disparity estimation. With
fused segment embedding, our model performs better in ill-posed regions, such as the area within
the red bounding box in each figure. The white numbers in the error maps indicate percentage of
incorrect pixels in all regions.

Traditionally, dense disparity has been estimated using window-based correlation,

with smoothing, occlusion and globally-optimal matching constraints applied [33, 34,

35, 12]. However, it is difficult to hand-craft these constraints. Additionally, global

optimization is not practical for real-time applications. Recently, stereo matching

has greatly advanced with the help of CNNs, which proves that features learned by

CNNs are more effective than hand-crafted ones. More sophisticated architectures

are able to estimate dense disparity through end-to-end training. This end-to-end

disparity regression from stereo pairs requires a large amount of image pairs with

ground truth disparities during training. However, there is currently no such real

dataset available. Instead, models are pretrained on large synthetic datasets [15, 36]

and then fine-tuned on the real-world target dataset. With this training pipeline,

recent papers [16, 37, 38, 39] achieve an impressive error rate below 2% in the KITTI

benchmark stereo matching task [17, 40]. Still, there are challenges for training on

synthetic data and testing on real data. In this chapter, we focus on developing an

unsupervised method to do stereo matching for dense disparity estimation to help

overcome these challenges.

Despite advances in disparity estimation since the application of CNNs, finding

8

correspondences in regions of high specularity, occlusions or low-texture regions is

still a challenging problem. These areas manifest themselves as noise or missing

regions in the resulting disparity map. For example, in Figure 2.1, the disparity

for the center of the road is incorrect because it is an area of low-texture and it is

hard to find correspondence in this region. We argue that more contextual semantic

information is needed to determine accurate disparity in these challenging regions.

With the rise and success of object classification [41, 1], a new task known as

semantic segmentation has also gained popularity and benefited from access to large

amounts of labeled data [42, 43]. This problem moves beyond simple bounding

boxes and attempts to assign every pixel in an image a semantic label. The dense

nature of this problem is complimentary to the disparity estimation task. Moreover,

segment embedding learned from semantic segmentation can provide further cues for

estimating disparity within ill-posed regions, because disparity tends to be smooth

within an object or segment. From this perspective, models for disparity estimation

need to have a high-level understanding of objects or at least segments, so stereo

matching is no longer a low-level vision problem. Here, we set out to exploit the

connection between these two pixel labeling tasks – disparity estimation and semantic

segmentation – to improve the performance for disparity estimation. In this chapter,

we focus on unsupervised stereo matching guided with the semantic segmentation

task and the main contributions are as follows:

• We propose a model which outputs a disparity map and semantic segments

simultaneously, and then both can be used to acquire 3D semantic information.

• We propose a structure and a smoothness loss which better fuses segment em-

beddings learned from the semantic segmentation task into the process of dispar-

ity estimation. Experiments show that these are helpful for disparity estimation.

• Our unsupervised model is able to achieve state-of-the-art results in the KITTI

stereo vision benchmark dataset, and can also beat some supervised methods

in certain regions.

2.2 Related Work

Typical stereo matching pipelines consist of four steps: matching cost computa-

tion, cost aggregation, disparity estimation and refinement. Traditional methods ei-

ther use local descriptors to find the matching points within a predefined window [11],

or they minimize an energy function globally to get an optimal solution [12].

Supervised Disparity Estimation. Stereo matching has greatly advanced

since CNNs were applied to this task by [13]. That method was supervised, re-

quiring large datasets with stereo images and disparity ground truth. With this

9

supervised approach, after meaningful features are extracted from a deep Siamese

architecture, a cost volume can be computed by simply concatenating features from

both sides [13], dot products [14, 13], a correlation function [15], or by concatenat-

ing all potential corresponding feature vectors from both sides [16]. Several other

papers have also focused on using information from cost volumes. They proposed

different methods and structures, including simple convolutional layers [15], learn-

ing context from 3D convolution [16], using a spatial pyramid pooling module to

incorporate more global context [38], a two-stage refinement structure [44] and two

separate branches for small and large disparities [45, 39]. In line with these sugges-

tions, we form a five-dimensional cost volume by concatenating features from both

sides and extracting information from it using 3D convolution. We then refine the

initial disparity using extra information from segment embedding.

Although some large datasets are now available for training in stereo matching,

the size of available datasets is still relatively small compared to popular datasets

for classification and detection. For example, KITTI 2012 and KITTI 2015, the

most popular datasets for the stereo matching task, contain no more than 400 stereo

images for training. In cases like this, unsupervised stereo matching has gained

attention because it does not require ground truth disparity for training. Because of

this, we focus on unsupervised learning in our approach for the stereo branch of our

network. This maximizes the flexibility of the training sources, which is important

because stereo ground truth is difficult to obtain.

Unsupervised Disparity Estimation. Deep unsupervised stereo matching re-

lies heavily on warping error [46, 47, 48, 49]. This error is measured as the visual

difference between a warped image from one half of a stereo pair and the real image

from the other camera in the stereo setup. End-to-end training has become popular

recently thanks to differentiable bilinear sampling, which can be used to warp im-

ages [47]. Additionally, a smoothness loss and left-right consistency loss also help

improve the quality of results [47, 50]. Although results of these unsupervised meth-

ods are reasonable, a large performance gap still exists between these approaches

and supervised methods. In this chapter, we mainly focus on unsupervised stereo

matching, and seek to use supervised semantic segmentation to help narrow this gap.

Guided Disparity Estimation. Both supervised and unsupervised stereo match-

ing methods still have difficulty estimating correct disparity in flat, reflective and

occluded regions. Thus, recent papers have sought to leverage extra information

such as object-level knowledge [51] and segment embedding [37]. Their results show

that exploiting available high-level information is useful for improving performance

on the task of dense disparity estimation.

In this chapter, we propose a fused model for semantic segmentation and dispar-

10

Feature Extraction

PSP

PSP

Input Images Cost Volume Initial Estimation Refinement Output

PSP

2D Convolution
2D Residual Block
Initial Disparity
Refined Disparity
3D Residual Block

PSP Modual

3D Convolution

Skip Connection

Figure 2.2: Architecture of our model. The pipeline of our model consists of the following parts. (a)
Input images: rectified input stereo images. (b) Feature extraction: useful features are extracted
from input stereo images. (c) Cost volume: cost volume is formed by concatenating corresponding
features from both sides. (d) Initial estimation: initial disparity is estimated from cost volume using
3D convolution. (e) Refinement: initial disparity is further improved by fusing segment embedding.
The PSP module is used to incorporate more context information for the semantic segmentation
task. (f) Output: estimated disparity and semantic segmentation from both left and right views are
generated from the model. In this figure, 2D and 3D residual blocks are similar to identity blocks
that are defined in the [1].

ity estimation that does not require ground truth disparity maps. Our proposed

method is most similar to SegStereo [37], which was developed simultaneously with

our approach. However, our methods differ in several important ways. We focus

on unsupervised stereo matching, where segment embedding is not only fused into

disparity estimation, similar to SegStereo, but also is used to regularize disparity in

the loss. Additionally, SegStereo computes a correlation layer, which may lose infor-

mation, but we form a cost volume retaining all features, which enables the network

to learn more complete feature representations. With additional refinement on the

initial disparity, the results of our model outperform SegStereo by over a 2.5% error

rate on KITTI benchmark.

2.3 Methods

We present a joint model for disparity estimation and semantic segmentation.

These two tasks are highly coupled in the network, with the semantic segment em-

bedding being directly fused into the refinement process for disparity estimation.

The whole architecture of our model is illustrated in Figure 2.2.

2.3.1 Architecture for Disparity Estimation

ResNet 50 structure [1] is used in the Siamese structure, which processes both

the left and right images and generate high-level features for stereo matching and

semantic segmentation. Features for segmentation task come from deeper layers of

the network than those used for the stereo matching task, as the former requires

11

more contextual information than the latter. Each task corresponds to a branch

in the network. In the disparity branch, the size of input features is 1/4 of origi-

nal stereo images. We concatenate features for stereo matching from the left and

right viewpoints, and this produces a five-dimensional cost volume. An eight-layer

encoder-decoder with 3D convolution is then used to predict an initial disparity map

from this volume. The structure of encoder-decoder is shown in Figure 2.2 and the

relative size of cube indicates the relative size of each layer. 3D transpose convolution

is used in the decoder, and skip layers are processed by 3D residual blocks. The seg-

ment embedding is first resized to the same shape of original image and concatenated

with the initial disparity map to do refinement. In details, the convolution layers in

this chapter refer to a convolution layer followed by a batch normalization layer [52]

and a leaky ReLU layer [53], except for the final output layer which only contain a

regular convolution. The size of all kernels is 3 except for the first convolution layer

in Siamese structure, which is 7. The 2D residual block is three layers deep and the

3D residual block is two layers deep.

2.3.2 Cost Volume and Learning Context

After calculating left and right features for stereo matching, we form a cost volume

by concatenating them. Every feature vector from one side is concatenated with all

potential corresponding feature vectors from the other side. This results in a cost

volume with a dimensionality of Batchsize × (Max disparity+1) × Height × Width

× Feature size. We form both left and right cost volumes to calculate a disparity for

both views. Unlike other methods that use dot product or other metrics to measure

correlation between feature vectors, the five-dimensional cost volume here enables the

network itself to learn better correlation metric in an end-to-end training manner.

To extract information from the cost volume, a 3D convolution filter loops over

all three dimensions of height, width and potential disparity values, which cap-

tures broader contextual information. Since 3D convolution is memory intensive,

an encoder-decoder structure is used to reduce the memory footprint. In the end,

soft argmin is used to produce the initial disparity map from this intermediate result.

2.3.3 Disparity Refinement

The initial disparity estimation contains too much noise and its accuracy is limited

by error from poor matching in ill-posed regions, such as occluded, reflective and

texture-less areas. However, the semantic segment embedding can be used to improve

correspondence in those regions. Disparity in the ill-posed regions should have similar

values as regions from the same semantic segment. Essentially, the same smoothness

constraint that is often applied globally can more accurately be applied within object

12

boundaries. To this end, after producing the initial disparity map, we use semantic

segment information to refine the disparity. The residual structure of the refinement

process is shown in Figure 5.1.

After convergence, we assume the initial disparity is reasonable in most regions,

so in the refinement stage we then focus on refining the disparity in ill-posed re-

gions. The residual structure is used here and forces the model to learn this highly

non-linear relationship in such regions. The initial disparity and the semantic seg-

ment embedding are concatenated as the input to later process. The output is then

summed with the initial disparity to get the final estimation.

2.3.4 Architecture for Semantic Segmentation

In both the KITTI and Cityscapes [43] datasets, only the left image from the

stereo pair is labeled with ground truth semantic segments. However, we perform

semantic segmentation on both images in the pair. Left disparity is used to warp

the right predicted semantic segments to the left view, which is in turn regularized

by the left labels during training. The PSP module [5] is used to incorporate more

contextual information from different scales. The size of input features to the PSP

module is 1/8 of original stereo image. In the PSP module, input features are

downsampled into three different sizes using averaging pooling, at scales of 1/2, 1/4

and 1/8 of the original input size. Then they are followed by a convolution with

a 1x1 filter individually to reduce feature dimension to 1/4 of the original input

feature dimension. Different scales of features are then concatenated after they are

upsampled to the shape of the input feature space through bilinear interpolation.

Finally it is followed by a 1x1 convolution to mix features at different scales.

2.3.5 Loss Function

For our approach, we pose stereo matching as an unsupervised problem. The

object loss consists of three items that are defined as the following:

(2.1) Loss = α1Linit + α2Lref + α3Lseg

(2.2) Linit = β1Lp + β2Lc + β3Lr

(2.3) Lref = γ1Lp + γ2Lc + γ3Ls

where Linit supervises initial estimated disparity, Lref supervises refined estimated

disparity and Lseg supervises predicted semantic segments. We set α1 = 0.3, α2 =

13

0.7, α3 = 0.1, β1 = 0.8, β2 = 0.01, β3 = 0.001, γ1 = 0.8, γ2 = 0.05 and γ3 = 0.005

during the training. Other terms in the equation are defined as follows:

Photometric loss (Lp): Let IL and IR be the input left and right images, and DL

and DR be the predicted left and right disparity maps. The warping function F (I,D)

is able to warp image I to the other view based on the disparity map D using bilinear

sampling. The reconstructed left image is I
′
L = F (IR, DL), and the reconstructed

right image is I
′
R = F (IL, DR). The reconstructed image should be very similar to

the original input image. We use both Euclidean distance and a structure similarity

term SSIM S(·) to improve the robustness in ill-posed regions [47]. For the left image,

photometric loss is defined as follows:

(2.4) Lp = λ1S(IL, I
′

L) + λ2|IL − I
′

L|+ λ3|∇IL −∇I
′

L|

where we set λ1 = 0.85, λ2 = 0.15, λ3 = 0.15. These values were selected through

experimentation.

Regularization loss (Lr): Regularization loss is used to smooth local disparity

with information directly from input images, and we only use it in estimating initial

disparity. We assume disparity in the local region tends to be smooth, so we add a

regularization loss to suppress high frequency noise introduced by the photometric

loss term. This regularization loss is the sum of the weighted second derivative of

the disparity map, and the weight is the exponential of the second derivative of the

input image. The higher the second derivative of the input image, the higher the

probability of a change in disparity. For the left side, regularization loss is defined

as follows:

(2.5) Lr =
1

N

∑
|∇2

xDL|e−|∇2
xIL| + |∇2

yDL|e−|∇2
yIL|

where N is number of pixels, ∇2
x and ∇2

y are second derivatives along the X and Y

axes.

Consistency loss (Lc): We can also synthesize a left image from the recon-

structed right image I
′′
L = F (I

′
R, DL) and a right image from the reconstructed left

image I
′′
R = F (I

′
L, DR). Consistency loss is defined as follows:

(2.6) Lc = |IL − I
′′

L|+ |IR − I
′′

R|

This consistency forces the left and right branches to be consistent with one an-

other [50].

Smoothness loss (Ls): For difficult regions, we argue that the network should

be able to infer the disparity from its neighbors within a segment, and we propose to

use a left-right consistency check to find these regions. Smoothness loss is computed

14

in the refinement stage. We warp the right disparity DR using the left disparity

DL, and we form a reconstructed image D
′
L = F (DR, DL). Then we threshold the

absolute difference between DL and D
′
L:

(2.7) Diff =

||DL −D
′
L||, ||DL −D

′
L|| <= t

t, ||DL −D
′
L|| > t

where t is the threshold and is set to 3 during the experiment. Too large of a

threshold will result in a trivial solution. In addition, the disparity should be smooth

inside a segment. These segments are learned from the semantic segmentation task.

Shallower layers are used here instead of the final semantic segmentation layer, bias-

ing to smaller segments being learned. We apply a cost to enforce smoothness within

a segment. For the left side,

Ls =
1

N

∑
|∇2

xDL|(e−|∇2
xfL| + e(Diff−t))

+|∇2
yDL|(e−|∇2

yfL| + e(Diff−t))
(2.8)

where fL is feature vectors from the left view. This loss is only applied during

refinement because it is conditioned on relatively good initial disparity.

Segmentation loss (Lseg): Conventional softmax cross entropy loss is used to

measure the difference between the logits map and the ground truth segment labels.

For the stereo image dataset, only images from one side will be labeled. For example,

KITTI and Cityscapes only have segment labels for the left images. However, the left

disparity map will relate the left and right images. So we can use the left disparity

map to warp the right output segments to the left, and then we can use the left

ground truth label for supervision.

2.3.6 Post Processing

Simple post processing can be used to improve the final results. Although the loss

of smoothness can reduce the effects of occlusion, our model is still prone to error in

those regions. Our post processing consists of two steps: left-right consistency check

and interpolation.

After calculating both left and right disparity, we perform a left-right consistency

check. For left view images, a pixel will fail the check if the difference between

disparity values from the left view and the corresponding pixel from the right view

is greater than a certain threshold. We set this threshold to 1, and we end up with

a boolean mask. We also apply a median filter to this mask because it contains a

fair degree of noise. Then, in these failure regions, we assign them disparity values

from the background. As proposed by [13], we interpolate by moving left until

15

finding a position with a valid disparity and use this as its value. No further global

optimization is applied.

2.4 Experiments

In this section, we explain our implementation details and present qualitative and

quantitative results.

2.4.1 Datasets

KITTI: KITTI 2012 and 2015 are two benchmark real-world driving datasets.

They provide ground truth disparity computed from a calibrated high-resolution

3D LIDAR. There are approximately 200 rectified stereo images with ground truth

disparity for evaluation in both KITTI 2012 and 2015. We primarily focus on the

KITTI 2015 benchmark. Compared to KITTI 2012, challenging regions (e.g. car

windshields) from KITTI 2015 are more correctly represented in the ground truth

because it uses CAD models to produce disparity values for evaluation. Addition-

ally, only KITTI 2015 contains ground truth for semantic segmentation. For evalua-

tion, pixels are divided into two overlapping categories: strictly non-occluded regions

(NOC) and all pixel regions (ALL). The KITTI 2015 benchmark considers a pixel to

be ”correct” if the disparity error is less than 3 pixels and within 5% disparity error.

Cityscapes: Cityscapes is a dataset for semantic urban scene understanding. It

contains 5,000 stereo color images collected from 50 cities, with high quality pixel-

level ground truth semantic labels for the left view of each pair. These images are

split into sets, with 2,975 for training, 500 for validation and 1,525 for testing. There

are no ground truth disparity maps in the Cityscapes dataset, but disparity maps

are provided using the SGM [12] algorithm.

2.4.2 Implementation Details

In the experiments, we implement our architecture in TensorFlow. All experi-

ments are run on a single NVIDIA Titan-X GPU. Original stereo images are nor-

malized to values ranging from -1 to 1. Due to GPU memory limitation, we have

a maximum batch size of 1, the maximum disparity is set to 192 and images are

randomly cropped down to 256x512 patches before feeding into network. During op-

timization, we use the Adam optimizer [54] with β1 = 0.9, β2 = 0.999 and ϵ = 1e−8.

The learning rate is set to 2e−4 for pre-training on Cityscapes and 1e−4 for fine-

tuning on KITTI, and it is halved every 20, 000 iterations. Pre-training on Cityscapes

is done for 100, 000 iterations. We then fine-tune the model on KITTI for an addi-

tional 50, 000 iterations. The finetuning process takes approximately 1 day. No data

16

(a) Sample results on test set in KITTI 2015. From top: left stereo input image,
disparity prediction, error map.

(b) Sample results on Cityscapes. From top: left stereo input image, disparity predic-
tion from SGM, disparity prediction from ours.

Figure 2.3: Qualitative results on KITTI 2015 and Cityscapes datasets. (a)Sample results on KITTI
2015 test set. The last column shows the error maps which are captured from KITTI benchmark.
Error regions are displayed in orange color. (b)Sample results on Cityscapes. Compared with
predication from SGM, our model generates more smooth and complete disparity map.

augmentation is performed in the experiments.

2.4.3 Evaluation

Here, we report the results of our model on the KITTI and Cityscapes datasets

and compare our approach to other state-of-the-art methods.

17

KITTI Benchmark

We report results on 40 validation images split from 200 training stereo images

from KITTI 2015 to evaluate our model. We compare our model with other un-

supervised learning methods in Table 2.1. Note that our model outperforms other

unsupervised methods by a notable margin. In the table, ’CS’ refers to training model

on Cityscapes dataset, ’K’ refers to training model on KITTI and ’PP’ refers to re-

fining disparity with post processing. With pre-training on the Cityscapes dataset

and simple post processing, results of our model are further improved. In addition,

Table 2.2 compares our method to other supervised approaches on the KITTI 2015

leaderboard. Although there is a gap between performance of current state-of-the-art

supervised methods, our model achieves comparable results and even beats DispNet,

a supervised method, on background regions. Sample qualitative results are shown

in Figure 2.3 (a).

We note that our proposed method has relatively large error in the foreground re-

gion. We argue that it is because of significantly larger and more common occlusion

and reflection in foreground regions, such as surfaces of vehicles. There exists no

correspondence on these regions in the input stereo images. However, unlike other

supervised methods that have access to ground truth disparity, our proposed method

highly relies on these correspondence to form photometric loss and uses it as super-

vision. So it is reasonable that our method performs poorly on foreground regions.

Although semantic segments and post processing have been used to greatly reduce

such errors, our method cannot reach the accuracy of those supervised methods.

Cityscapes

We only show qualitative results from the Cityscapes dataset because it does not

provide ground truth disparity maps. The results are shown in Figure 2.3. Note

that compared with the SGM approach, our model is able to generate much more

complete and visually accurate disparity maps.

2.4.4 Ablation Study on Loss Components

We perform ablation experiments to evaluate the different components of our de-

veloped loss function. Results of the ablation study are shown in Table 2.4. Models

are trained and evaluated on the KITTI 2015 without pretraining or any post pro-

cessing. The results of our model are improved due to the two-stage refinement,

designed smoothness loss and incorporation of semantic segmentation supervision.

Specifically, the error rate is reduced from 7.04 to 6.53 with designed smoothness

loss and is further reduced from 6.53 to 5.93 with segment supervision. Figure 2.1

18

Table 2.1: Comparison with other unsupervised models on disparity estimation. Results are re-
ported on the KITTI 2015 stereo validation set manually splitted from 200 training images. ’CS’
refers to training model on Cityscapes dataset; ’K’ refers to training model on KITTI; ’PP’ refers
to refining disparity with post processing. With pretraining on Cityscapes, fine-tuning on KITTI
and post processing, our model outperforms other unsupervised methods by a large margin.

Model NOC pixels All pixels
USCNN [55] 11.17 16.55

Zhou et al. [48] 8.61 9.91
Godard et al. [47] - 9.19
SegStereo [37] 7.70 8.79
Luo et al. [49] 6.31 6.63

Ours(CS) 6.55 7.24
Ours(K) 5.93 6.32

Ours(CS & K) 5.84 6.29
Ours(K & pp) 5.29 5.69

Ours(CS & K & pp) 5.20 5.67

Table 2.2: Comparison with other supervised methods on disparity estimation. Results are re-
ported on KITTI 2015 test set. Numbers indicate the percentage of pixels which have greater than
three pixels or 5% disparity error. ’D1-bg’, ’D1-fg’ and ’D1-All’ refer to background pixels which
contain static elements, dynamic object pixels and all pixels respectively. Although there is a gap
between performance of supervised methods and ours, our model shows decent results and even
beats DispNet on the D1-bg region.

NOC All
Model D1-bg D1-fg D1-All D1-bg D1-fg D1-All Runtime

DispNet [15] 4.11 3.72 4.05 4.32 4.41 4.34 0.06
Content-CNN [14] 3.32 7.44 4.00 3.73 8.58 4.54 1
MC-CNN [13] 2.48 7.64 3.33 2.89 8.88 3.89 67
GC-Net [16] 2.02 5.58 2.61 2.21 6.16 2.87 0.9
PSMNet [38] 1.71 4.31 2.14 1.86 4.62 2.32 0.41

Ours 3.86 15.89 5.84 4.20 16.97 6.33 0.9

shows a qualitative result. With semantic segmentation supervision, it corrects the

wrongly estimated disparity on the center of the road, which is a region with high

reflection.

2.4.5 Performance Analysis

In Table 2.3, we present details error rates on regions of each semantic segmen-

tation class before and after adding smoothness loss and fusing segment embedding.

We wish to delve into how segment embedding learned from semantic segmentation

benefits disparity estimation. In the table, ’smo’ refers to smoothness loss; ’seg’ refers

to segmentation loss; the first row shows the name of semantic classes; the second

row shows error rates of the model with all components of losses except smooth loss

and segmentation loss; the third row shows error rates of the model with all losses

19

Table 2.3: Error rates of disparity estimation on regions of each semantic class. In the table,
‘smo’ refers to smoothness loss; ‘seg’ refers to segmentation loss; the first row shows the name
of semantic classes; the second row shows error rates of the model with all components of losses
except smoothness loss and segmentation loss; the third row shows error rates of the model with all
losses except segmentation loss; the fourth row shows error rates of the model with all losses; the
final row shows percentage of error rate reduction after adding smoothness loss and segmentation
loss. Smoothness loss improves performance on relatively large semantic classes but not on small
semantic classes. With supervision of the semantic segmentation task, error rates on regions of
small semantic classes decrease substantially.

Method road pole car tsign bus swalk train wall build. tlight veg. fence truck person bike terrain rider mbike

Model 2.65 11.26 12.94 6.33 2.31 5.53 1.25 2.45 14.82 2.34 10.60 11.34 6.23 1.52 2.51 6.06 1.06 0.34
Model(smo) 1.51 13.13 10.53 6.35 1.85 4.36 1.15 2.28 13.53 2.63 9.57 11.15 6.26 1.50 2.40 5.81 1.24 0.33

Model(smo&seg) 1.35 7.62 8.83 4.67 1.77 4.25 0.99 2.09 13.05 2.06 9.36 10.13 5.76 1.43 2.36 5.27 1.04 0.36

Improvement % 48.88 32.37 31.72 26.20 23.29 23.09 20.37 14.40 11.94 11.75 11.64 10.73 7.50 6.07 5.95 4.21 2.50 -6.38

except segmentation loss; the fourth row shows error rates of the model with all

losses; the final row shows percentage of error rate reduction after adding smooth

loss and segmentation loss. As shown in the table, the smoothness loss helps improve

disparity estimation for large semantic classes but not for small semantic classes. For

example, error rates on regions of large semantic classes like roads, cars and buses

decrease substantially, but error rates on regions of small semantic classes, such as

poles, traffic lights and traffic signs, actually increase after imposing smoothness loss.

This is because, without guidance of semantic segmentation, smoothness loss tends

to blindly force local disparity smooth and disparities for small objects are smoothed

to their neighbors which results in more error.

However, with supervision of the semantic segmentation task, the model is able to

learn semantic features. In this case, disparity smoothness loss will force the disparity

to be smooth within segments with the same semantic meanings rather than blindly

with neighboring segments. Thus, disparities for small objects will remain coherent.

It is shown in the table that error rates on regions of poles, traffic lights, traffic signs

and other small semantic classes decrease to the lowest level after supervision of the

semantic segmentation task.

The focus of this work is on improving state-of-the-art for unsupervised dispar-

ity estimation guided by semantic segmentation. We also evaluate our method on

semantic segmentation performance. Our baseline IoU is 47.6%. After disparity re-

finement, segmentation performance decreases slightly to 46.9% when evaluating on

40 validation images from KITTI 2015. This suggests that the disparity loss forces

features to be different even within a semantic class.

2.4.6 Qualitative Results: 3D Models

We triangulate the disparity maps with the camera extrinsics into 3D point clouds

with semantic labels as shown in Figure 2.4. We only consider pixels where disparities

are above 5. Note that simultaneously calculating both disparity and semantic class

20

Table 2.4: Ablation study on loss components. Results of models with different losses are reported
on KITTI 2015 training set without pretraining or post processing. There are two stages in our
model. The superscript ‘init’ refers to losses in the initial stage and the superscript ‘ref’ refers to
losses in the refinement stage. The subscript ‘p’ refers to photometric loss, ‘r’ refers to regularization
loss, ‘c’ refers to consistency loss, ‘s’ refers to smoothness loss and ‘seg’ refers to supervised semantic
segmentation loss. Results shown here justify our two-stage architecture and designed components
of total loss.

Linit
p Linit

c Linit
r Lref

p Lref
c Lref

s Lseg NOC pixels All pixels
√ √ √

7.18 8.75√ √ √ √ √
7.04 8.60√ √ √ √
6.70 8.14√ √ √ √ √ √
6.53 6.94√ √ √ √
5.99 6.42√ √ √ √ √ √ √
5.93 6.32

enables us to efficiently produce semantic 3D models, which can be used more directly

for driving tasks than other independent outputs.

2.5 Conclusion

We propose a model in which segment embedding learned from semantic segmen-

tation is fused into the process for disparity estimation. This segment embedding

is helpful for estimating disparity in ill-posed regions. We demonstrate the efficacy

of our method on both KITTI and Cityscapes datasets. Our unsupervised method

achieves comparable results to supervised methods on KITTI and even outperforms

some of them in background regions. Outputting disparities and semantic segments

simultaneously enables us to efficiently produce semantic segments in 3D space.

21

(a) Sample 3D semantic results on KITTI 2015. From top: left stereo input images, 3D cloud points,
semantic segmentation on 3D point clouds.

(b) Sample 3D semantic results on Cityscapes. From top: left stereo input images, 3D cloud points, semantic
segmentation on 3D point clouds.

Figure 2.4: Sample qualitative 3D semantic results on KITTI 2015 and Cityscapes datasets. (a)
3D Reconstruction Results on KITTI 2015. (b)3D Reconstruction Results on Cityscapes. The last
rows in both (a) and (b) show the 3D semantic results. Different color refers to different semantic
class.

CHAPTER III

Learning Rotation-Invariant Representations of Point
Clouds

Point cloud analysis is an area of increasing interest due to the development of

3D sensors that are able to rapidly measure the depth of scenes accurately. Un-

fortunately, applying deep learning techniques to perform point cloud analysis is

non-trivial due to the inability of these methods to generalize to unseen rotations.

To address this limitation, one usually has to augment the training data, which can

lead to extra computation and require larger model complexity. In this chapter, we

propose a new neural network called the Aligned Edge Convolutional Neural Net-

work (AECNN) that learns a feature representation of point clouds relative to Local

Reference Frames (LRFs) to ensure invariance to rotation. In particular, features are

learned locally and aligned with respect to the LRF of an automatically computed

reference point. The proposed approach is evaluated on point cloud classification and

part segmentation tasks. This chapter illustrates that the proposed technique out-

performs a variety of state of the art approaches (even those trained on augmented

datasets) in terms of robustness to rotation without requiring any additional data

augmentation. 1

3.1 Introduction

The development of low-cost 3D sensors has the potential to revolutionize the way

robots perceive the world. For this revolution to be realized, algorithms to interpret

and classify the large volumes of point clouds generated by these sensors must be

developed. To construct such algorithms, one could be inspired by the successes of

deep learning approaches that robustly interpret 2D images in the presence of noise

or lighting, rotation, and scaling variability. These deep learning approaches achieve

impressive performance by relying on representations that enforce lighting, rotation,

and scaling invariance. Unfortunately, the lack of a representation that is able to
1This chapter is based on [31]

22

23

GT PointNet PointNet++ AECNN (Ours)

(a)

(b)

Figure 3.1: An comparison of the performance of state-of-the-art techniques to the method devel-
oped in this paper while performing part segmentation on rotated point clouds from the ShapeNet
dataset. We report results on models of arbitrary rotation during testing while they trained with
only rotation along vertical direction (x axis) and on models of arbitrary rotation during both train-
ing and testing (y axis) (subfigure a). This degradation in performance can be seen on the quality
of part segmentation in unseen views (subfigure b, where different colors correspond to different
part categories).

enforce rotation invariance has hindered the application of deep learning techniques

to analyze point clouds.

To address this challenge, researchers have typically converted point clouds into

regular 2D [6, 56, 57, 58] or 3D [7, 8, 59] grids before applying CNNs to learn a

meaningful representation. Unfortunately, this conversion process degrades the res-

olution of measured objects which can adversely affect point cloud analysis. More

recently, PointNet [19] was proposed to preserve some of this geometric information

by using a symmetric kernel that could enforce permutation invariance. This ap-

proach allowed a user to directly treat a point cloud as an input into a DNN and

24

get a global vector representing the input point cloud as an output. This work was

subsequently extended in a variety of ways to preserve local structure within a point

cloud that proved to be important while performing classification [20, 22, 21]. How-

ever, the representations developed by these methods rely on an individual point’s

absolute position, which hinders their ability to develop algorithms that are invariant

to rigid body transformations. Figure 3.1, for instance, illustrates the deficiency of

these methods when they are applied to perform part segmentation on views that

are unseen during training.

Typically, one can address this limitation and improve the robustness of DNNs

to rigid body transformations by augmenting the training set with additional exam-

ples. However, this requires additional computation and increased model capacity.

For instance, during classification, a model must learn a function that maps the same

object under different rigid body transformations into a similar feature in a feature

space. Rather than augment the training set, other approaches have focused on devel-

oping representations that can preserve rotational symmetry by directly converting

point clouds into a spherical voxel grid and then extracting rotation-equivariant fea-

tures [60, 61, 62]. Unfortunately this conversion still sacrifices resolution that can

adversely affect point cloud analysis. To remedy this loss of information, others have

proposed to represent point clouds relative to a local reference frame (LRF), which is

determined by a local subset of a point cloud [63, 64]. Each point in a neighborhood

of a constructed LRF is represented with respect to that LRF and a local feature

is learned for each point set. Subsequently these local features are fused together

to define global features. These LRF-based learned representations are invariant to

rotation; however, as we illustrate in this chapter, the accuracy of techniques uti-

lizing LRF-based representation are only marginally better than those utilizing an

absolute coordinate based representation for point cloud classification tasks. This is

in part because the learned local features for a pair of points are not aligned before

they are fused together.

To address the limitations of existing approaches, this chapter proposes a novel

3D representation of point clouds that is invariant under rotation and introduces a

new neural network architecture, the Aligned Edge Convolutional Neural Network

(AECNN), to utilize this representation. As in prior work, we leverage the notion of

LRFs to ensure that different orientations of a point cloud are mapped into the same

representation. Each point in a neighborhood of a constructed LRF is represented

with respect to that LRF before subsequent processing. This ensures that the model

is able to learn internal geometric relationships between points rather than learning

geometric relationships that are a function of the absolute coordinates of the points

that may change after rotation. Our proposed AECNN architecture processes these

25

local internal features and aligns them with local internal features drawn from other

LRFs before fusing them together in a hierarchical fashion to define global features.

Importantly, in contrast to prior work that utilizes a spherical coordinate system [63]

or non-orthogonal basis [65], we construct a basis for the LRFs that is orthonormal.

This ensures that feature alignment can be computed in a straightforward manner

which makes the hierarchical fusion of local features tenable. The contributions of

this work are three-fold:

• We propose a novel representation of points clouds that is invariant to arbitrary

rotations.

• We propose a novel alignment strategy to align neighboring features within

distinct LRFs. This makes it feasible to perform feature fusion within a hier-

archical network, which makes a reasonable feature fusion between local and

global features.

• We illustrate that our propose representation is robust to rotation and achieves

state-of-the-art results in both point cloud classification and segmentation tasks.

3.2 Related Work

3.2.1 View-Based and Volumetric Methods

A variety of methods have represented 3D shape as a sequence of 2D images

since they can leverage existing algorithms from 2D vision [1, 4, 66]. These view-

based methods typically project a 3D shape onto 2D planes from different views.

These different images are then processed by CNNs. Though these methods achieve

good performance at classification tasks using off-the-shelf architectures and pre-

trained model [6, 56, 57, 58], the projection of 3D shape onto 2D planes sacrifices

3D geometric structures that are critical during point cloud analysis.

Converting point clouds into 3D voxels can preserve some of this geometric infor-

mation. The higher the resolution of quantization, the more geometric information

is preserved. These converted point clouds can then leverage existing CNNs with 3D

kernels [7, 8, 59]. Since points are only sampled from the surface of objects, regular

quantization can waste valuable resolution on the empty space within or outside ob-

jects. Better partitioning methods, such as KD-tree [67] and Oct-tree [68, 69] have

been proposed to address this limitation. In contrast to these methods, our approach

works directly with point clouds without requiring any conversion.

26

3.2.2 Point Set Learning

Point set learning methods take raw point clouds as input. The pioneering work

in this area is PointNet [19], which independently transforms each point and out-

puts a global feature vector describing the input point cloud by aggregation using

a max pooling layer. Unfortunately, PointNet is unable to learn local structure

over increasing scales, which is important for high-level learning tasks. Extensions

that utilize hierarchical structure [20, 70], graph network [22, 71], or relation-aware

features [21] have been proposed to preserve local geometric structure during process-

ing. Other extensions that rethink the convolution operation to better accommodate

point cloud processing have also been proposed [72, 73]. However, the representation

that is learned by these approaches changes when the point clouds in the training set

are rotated. As a result, these representations perform poorly when utilized during

classification or segmentation tasks on rotated versions of point clouds that were not

included during training.

3.2.3 Rotation Learning

Various methods have been proposed to either learn rotation-invariant or rotation-

equivariant representations. For instance, spatial transformer networkss (STNs) have

been proposed to learn rotation-invariant representations [19]. The STN learns a

transformation matrix to align input point clouds without requiring that the align-

ment place the point clouds in some fixed ground-truth orientation. As a result, the

transformation matrix is not guaranteed to align objects to a consistent orientation

which restricts its utility. Other approaches achieve rotation invariance by relying

on LRFs [63, 64, 65]. However, the difficulty of aligning the features learned with

respect to LRFs, as described earlier, has limited the potential expressive capabilities

of these techniques. Since designing a model that is invariant to rotation is difficult,

a variety of methods have attempted to achieve rotation-equivariance using spherical

convolutions [60, 61, 62]. Spherical convolutions require the spherical representation

of a point cloud. Unfortunately, projecting 3D point clouds into 2D sphere results

in a loss of information.

3.3 Learning Point Cloud with Rotation Invariance

This section introduces our proposed rotation-invariant representation (RIR) of

point clouds using LRFs, our proposed aligned edge convolution designed for RIR,

and the proposed hierarchical network architecture for classification and segmenta-

tion tasks.

27

X

Z

Y

Z X

Y
Z

Y

X

OO

X

Z

Y

(a) (b)
Figure 3.2: An illustration of aligned edge convolution and the LRFs that help define it. To
construct the RIR, one takes the reference point pi and the k-nearest points to it (subfigure a).
The LRF is determined by pi and the anchor point m which is defined as the barycenter of the
k-nearest points to pi. The coordinates of k-nearest points are described with respect to the LRF.
Note that LRFs may not be aligned due to independence of the local neighborhood of points that
define each LRF (subfigure b).

3.3.1 Rotation-Invariant Representation

To construct a representation that is invariant to rotation, we represent a point’s

coordinates relative to a LRF. Each LRF is defined using three orthonormal basis

vectors and is designed to be dependent on local geometry, as is depicted in Figure

3.2 (a). To define this LRF, suppose we are given a reference point pi in a point cloud

and a set of neighboring points {p1, . . . , pk} to pi in the point cloud whose coordinates

are all described with respect to a coordinate system with global origin o. Note, we

describe how to select these reference points in Section 3.3.3, and neighboring points

are those within a certain radius to the reference point. Next, define an anchor point

m as the barycenter of the neighboring points:

(3.1) m =
1

k

k∑
j=1

pj,

and the plane α that is orthogonal to # »opi and intersects with pi. Using these defini-

tions, we can define the projection of m onto the plane α:

(3.2) # »pipm = # »om−
»opi
| # »opi|

· ⟨ # »om,
»opi
| # »opi|

⟩.

With this definition, we can construct the following coordinate axes for the LRF:

(3.3) #»x :=
»pipm
| # »pipm|

, #»z :=
»opi
| # »opi|

, #»y := #»z × #»x .

28

Note that z axis is defined as the direction from global origin o pointing at pi; the x

axis is defined as the direction from pi pointing at pm; and the y axis is defined as

the direction of cross product of z and x axis. The origin of LRF is at the reference

point pi. We assume that the global origin o is known, and in our case we use the

center of point clouds.

We introduce rotation invariance by representing the set of neighboring points

relative to their LRF:

(3.4) tij = (⟨pij, #»x ⟩, ⟨pij, #»y ⟩, ⟨pij, #»z ⟩)

where pij = pj − pi for each pj ∈ {p1, . . . , pk}. Note tij is the RIR for the point pj

relative to the LRF at point pi. We then use a PointNet structure to capture the

geometry within the neighboring points using the RIR:

(3.5) f({ti1, ..., tik}) = MAX({h(ti1), ..., h(tik)})

where f is a learning function, which takes a point set as input, and outputs a feature

vector representing input point clouds, h is a feature transformation function and is

approximated by a MLP. Note, the max pooling layer aggregates information.

3.3.2 Aligned Edge Convolution

To capture the geometric relationship between points in a point cloud, the notion

of edge convolution via DGCNN has been developed [22]. To understand how edge

convolution works, suppose we are given a point cloud with n points, denoted by

P = {p1, ..., pn} ⊆ IR3, along with F-dimensional features corresponding to each

point, denoted by X = {x1, ..., xn} ⊆ IRF . Suppose we construct the k-NN graph

(V,E) in the feature space, where V = 1, ..., n and E ⊆ V ×V are vertices and edges,

then the edge convolution output at i-th vertex is given by:

(3.6) x′
i = MAX

j:(i,j)∈E
g(xi, xj − xi)

where g is a MLP layer.

Note, edge convolution is essentially performing feature fusion. It fuses the global

information captured by xi with local neighborhood information captured by xi−xj.

For right feature fusion, xi and xj must be learned in the same coordinate system.

Unfortunately, it is nonviable to directly apply edge convolutions to features in our

case. This is because in our case, xi and xj are learned relative to two different LRFs,

and the LRFs of xi and xj may not be aligned, as is shown in the Figure 3.2 (b).

As a result, applying edge convolution directly on our learned features may create

inconsistent features.

29

To resolve this problem, we propose aligning xj into the LRF of xi before perform-

ing feature fusion. We call our approach, which is depicted in Figure 3.3, Aligned

Edge Convolution (Aligned EdgeConv). To construct our approach, we begin by un-

derstanding the relationship between different LRFs, which can be described using

a rotation R and translation T . To construct this rotation and translation, suppose

the basis of the LRF for each feature is denoted by E = {e1, ..., en} ⊆ IR3×3. Then

the rotation matrix and translation vector can be computed by:

(3.7) Ri
j = ei · e−1

j = ei · e⊤j

(3.8) T i
j = tij

where ej is an orthogonal matrix defined in (3.3) and tj is defined in (3.4).

R and T describe the relationship between LRFs, so we use them to transform

xj into the LRF of xi. Though it is easy to invert a rotation and translation in

3D, extending it to the high dimensional feature space that xj lives in would be

challenging. One option to resolve this problem is to apply an approach similar to

the STN proposed in the PointNet wherein one predicts a transformation matrix

from Ri
j and T i

j and applies it to xj:

(3.9) x̂j = ϕ(Ri
j, T

i
j) · xj

where ϕ is a MLP layer and outputs an F ×F matrix compatible with xj. Typically

a regularization term is added to the loss during training to constrain the feature

transformation matrix to be close to an orthogonal matrix. Another option is to take

Ri
j, T

i
j and xj as inputs and directly output a transformed feature:

(3.10) x̂j = ϕ(Ri
j, T

i
j , xj)

In this paper, we utilize the second option. As we show in Section 3.4.5, the

first option requires more graphics processing units (GPUs) memory and has more

parameters. Therefore we update the (3.6) by:

(3.11) x′
i = MAX

j:(i,j)∈E
q(xi, x̂j − xi).

Similar to PointNet++ [20], we also include the RIR tij in the edge convolution to

maintain more information. So the aligned edge convolution is given by

(3.12) x′
i = MAX

j:(i,j)∈E
q(xi, x̂j − xi, t

i
j).

30

N
 x

 3 SAFirst

N
/2

 x
 1

28

SANext

N
/8

 x
 2

56

10
24 mlp(512, 256, c)

S
co

re
s

Max
Pool

N
/8

 x
 1

02
4

mlp(256, 512, 1024)

shared

Po
in

t C
lo

ud
s

N
/2

 x
 1

28

Sampling
(FPS) KNN graph Aligned

EdgeConv

N
/8

 x
 2

56

SANext

N
/8

 x
 1

28

N
/8

 x
 k

 x
 1

28

N
 x

 3 Sampling
(FPS) N

/2
 x

 3

KNN graph

N
/2

 x
 k

 x
 3

RIR

mlp(64, 64, 128)

N
/2

 x
 k

 x
 3

N
/2

 x
 k

 x
 1

28

shared

SAFirst

Max
Pool

N
/2

 x
 1

28

M
 x

 k
 x

 D

M
 x

 k
 x

 D

Feature Alignment
mlp(a1, …, D) M

 x
 b

n

Aligned EdgeConv

M
 x

 k
 x

 (2
D

+3
)

M
 x

 k
 x

 b
n

shared

mlp(b1, …, bn)
Max
Pool

Feature
Fusion

TR T

Figure 3.3: An illustration of the deep hierarchical architecture proposed in this paper to learn a
rotationally invariant representation of point clouds for classification. The network takes N points
as inputs and uses two SA blocks to hierarchically learn a representation of larger and larger regions.
The final part aggregates features from the last SA block and outputs a feature vector encoding the
input point set. The SAFirst block samples reference points and builds a k-NN graph in Euclidean
space. It converts points into the RIR and transforms them using a shared-weights PointNet
structure that outputs feature vectors encoding information for each reference point’ neighbors.
The SANext block applies a similar process to the SAFirst block except for building the k-NN
graph in feature space and extracting features using Aligned EdgeConv. The feature alignment
module within Aligned EdgeConv aligns local features to the LRF of the reference point using the
rotation matrix R and the translation vector T that are defined in the Section 3.3.1. Then the
aligned local features are fused with the feature at the reference point along with translation vector
T . Note mlp in the figure is abbreviated for MLP. The output is classification scores for c classes.

3.3.3 Network Architecture

Our proposed network architecture that takes raw point clouds as input and learns

a representation is depicted in Figure 3.3. Our architecture is inspired by techniques

that perform local-to-global learning which has been successfully applied to 2D im-

ages [5] and has been shown to effectively extract contextual information. We exploit

a hierarchical structure to learn both local and global representation. Our approach

captures larger and larger local regions using two SA blocks, proposed by Point-

Net++ [20], and the global features are constructed by aggregating outputs from

the last SA block using max pooling.

The two SA blocks each have distinct structures; however, they share the same

processing pipeline: sampling, grouping, and processing. The structure of the first SA

block (SAFirst) is illustrated in the green block in Figure 3.3. Given the input point

clouds, we use farthest point sampling (FPS) to subsample the point cloud while

31

preserving its geometric structure. The constructed points serve as the reference

points during the construction of a k-NN graph. The k-NN graph is computed in

Euclidean space, and it is used to generate the RIR described in Section 3.3.1. A

shared-weights PointNet structure then processes the RIRs for each local set of points

and outputs a feature vector describing the set of points near each reference point.

The structure of SANext is shown within the blue block in Figure 3.3. The sam-

pling and grouping strategy in SANext is identical to the one in SAFirst except that

one quarter the number of points are selected as reference points and the k-NN graph

is dynamically updated and computed in the feature space, which has been shown

to be more beneficial and have larger receptive fields than a fixed graph version [22].

Then the proposed aligned edge convolution extracts features encoding larger local

regions than the previous SA block. The rotation matrix R and translation vector

T , which can be derived from basis and positions of LRFs, are fed into a feature

alignment module to align local features to the frame of reference point. Essentially,

the SANext is the building block that can be used to iteratively capture larger and

larger local regions.

Note for the segmentation task, we require a feature for each point. We adopt

a similar strategy to PointNet++ [20], which propagates features from subsampled

points to original points. Specifically, the interpolated features from the previous

layer are concatenated with skip linked features output from SA blocks. The interpo-

lation is done via the inverse distance weighted average based on k-NN. Importantly,

the proposed feature alignment idea is also integrated in this feature propagation

pipeline.

3.4 Experiments

This section describes how we implement the network described in Section 3.3.3

and how we validate its utility. First, we evaluate our method on a shape classification

task (Sec 3.4.2) and part segmentation task (Sec 3.4.3). Second, we evaluate the

design of our LRFs (Sec 3.4.4) and illustrate the effectiveness of the proposed aligned

edge convolution (Sec 3.4.5).

3.4.1 Implementation details

We implement our network in PyTorch. All experiments are run on a single

NVIDIA Titan-X GPU. During optimization, we use the Adam optimizer with batch

size 32. Models are trained for 250 epochs. The learning rate starts with 1e−3 and

scale by 0.2 every 100 epochs.

In some experiments, we augment the dataset with arbitrary rotations. However,

32

Method Inputs Input size Y/Y Y/AR AR/AR
MVCNN 80x [56] view 80× 2242 90.2 81.5 86.0
Spherical CNN [60] voxel 2× 642 88.9 76.9 86.9
PointNet [19] point 1024× 3 88.5 21.8 83.6
PointNet++ [20] point 1024× 3 89.3 31.7 84.9
RS-CNN [21] point 1024× 3 89.6 24.7 85.2
DG-CNN [22] point 1024× 3 91.7 31.5 88.0
RI-CNN [64] point 1024× 3 86.5 86.4 86.4
SRINet [65] point 1024× 3 87.0 87.0 87.0
ClusterNet [63] point 1024× 3 87.1 87.1 87.1
SF-CNN [61] point 1024× 3 92.3 84.8 90.1
Ours point 1024× 3 91.0 91.0 91.0

Table 3.1: Classification results on ModelNet40 dataset. We report the accuracy (%) in three
different settings: training and testing with rotation along the vertical direction (Y/Y), training
with rotation along vertical direction and testing with arbitrary rotation (Y/AR), and performing
arbitrary rotation during training and testing (AR/AR). Though our model is only the third best
performer in the Y/Y setting it is the top model in each of the other categories. In particular
our proposed model has superior performance in the Y/AR and AR/AR, which means that it can
generalize well to unseen rotations.

it is impossible to cover all rotations in 3D space. Similar to ClusterNet [63], we

uniformly sample possible rotations. Each rotation is characterized by a rotation

axis v and a rotation angle θ that is given by:

(3.13) R = I + (sin θ)K + (1− cos θ)K2

where K denotes the cross-product matrix for the rotation axis v which has a unit

length and I is the identity matrix. In the experiments, we sample 3-dimensional

vectors from a normal distribution and normalize v to be a unit vector.

We follow the approach presented in [60] to perform experiments in three different

settings: 1) training and testing with rotation along the vertical direction (Y/Y), 2)

training with rotation along vertical direction and testing with arbitrary rotation

(Y/AR) and 3) performing arbitrary rotation during training and testing (AR/AR).

The last two settings in particular are used to evaluate the generalization ability of

the model under unseen rotations.

3.4.2 Shape Classification

One of the primary point clouds analysis tasks is to recognize the category of

point clouds. This task requires a model to learn a global representation.

Dataset. We evaluate our model on ModelNet40, which is a shape classification

benchmark [59]. It provides 12,311 CAD models from 40 object categories, and

there are 9,843 models for training and 2,468 models for testing. We use their

corresponding point clouds provided by PointNet [19], which contain 1024 points in

33

Method Input size Y/Y Y/AR AR/AR
PointNet [19] 2048× 3 79.3 43.0 73.9
PointNet++ [20] 2048× 3 80.6 45.9 75.5
DG-CNN [22] 2048× 3 79.2 46.1 71.8
RS-CNN [21] 2048× 3 80.0 50.7 73.3
RI-CNN [64] 2048× 3 - 75.3 75.5
SRINet [65] 2048× 3 77.0 77.0 77.0
Ours 2048× 3 80.2 80.2 80.2

Table 3.2: Part segmentation results on ShapeNet dataset. Point cooridnates are taken as inputs,
and mIoU across all classes is reported in three different settings including Y/Y, Y/AR and AR/AR.
Our model outperforms all approaches except PointNet++ in Y/Y setting. Our model has superior
performance in the Y/AR and AR/AR settings, which means that it can generalize well to unseen
rotations.

each point clouds. During training we augment the point clouds with random scaling

in the range [−0.66, 1.5] and random translation in the range [−0.2, 0.2] as in [67].

During testing, we perform ten voting tests while randomly sampling 1024 points

and average the predictions.

Point clouds classification. We report the results of our model and compare it

with other approaches in the Table 3.1. Three different training and testing setting

are performed, which are introduced in Section 3.4.1. All approaches, except for the

last five which are specially designed for rotation learning, perform well in the Y/Y

setting, but experience a significant drop in accuracy when evaluated on unseen

rotation as shown in the Y/AR setting. We conclude that these approaches only

generalize well to rotations that they are trained on. However, our proposed method

performs equally well across all three settings. Every evaluated approach has lower

accuracy in the AR/AR setting than the Y/Y setting, except for RI-CNN, SRINet,

ClusterNet, and our proposed method. This is most likely due to the difficulty of

mapping identical objects in different poses to a similar feature space. This requires

larger model complexity and is difficult to address with just dataset augmentation.

RI-CNN (86.4%), SRINet (87.0%) and ClusterNet (87.1%) are specially designed for

rotation invariance. Our model has superior performance in the setting of Y/AR

and AR/AR (91.0%), which means our proposed method generalizes well to unseen

rotations.

3.4.3 Part Segmentation

The part segmentation task requires assigning each point in a point cloud a cate-

gory label. Since this is a point-wise classification task, part segmentation is typically

more challenging than classification.

Dataset. We evaluate our model on ShapeNet part dataset [74], which con-

34

Airplane

Table

Chair

Mug

Figure 3.4: Qualitative results of our proposed method on part segmentation task on the ShapeNet
dataset. From top to bottom, segmentation results of different categories are shown. From left to
right, we show ground truth label and results when the input point clouds are arbitrarily rotated
during testing. Different colors correspond to different part categories. Our model is robust to
arbitrary rotations of the input point clouds.

tains 16,881 shapes from 16 categories and annotated with 50 parts in total. We

split the dataset into training, validation and test sets following the convention in

PointNet++ [20]. 2048 points are randomly picked on the shape of objects. We

concatenate the one-hot encoding of the object label to the last feature layer in the

model as in [20]. During evaluation, mean inter-over-union (mIoU) that are averaged

across all classes is reported.

3D part segmentation. We report the result of our model and compare it

with other approaches in Table 3.2 and (subfigure a) in the Figure 3.1. Results align

well with performance in the classification task. In addition, our method outperforms

other approaches in all three settings, except for PointNet++ which is slightly better

than our proposed method in the Y/Y setting. The consistent performance of our

method in all three settings demonstrates good generalization to unseen rotations.

Qualitative results of part segments are illustrated in Figure 3.4. The comparison

results with other approaches in the Y/AR setting are also visualized in Figure 3.5.

35

DGCNNRSCNNPointNet++PointNetLabel AECNN

Airplane

Car

Chair

Mug

Figure 3.5: Qualitative results of part segmentation on ShapeNet. The Y/AR setting is adopted
for all models. From top to bottom, segmentation results of different categories are shown. From
left to right, we show ground truth label and the results from different approaches. Different colors
correspond to different part categories. Our method achieves state-of-the-art performance while
other approaches fail to generalize to unseen rotation.

Method EdgeConv AEConv1 AEConv2 AEConv3
Acc. 89.6 90.2 48.5 91.0
Para. 1.94M 2.14M - 1.99M
FLOPs 4170M 6393M - 4841M

Table 3.3: Ablation study on aligned edge convolution and comparison with original edge convolu-
tion. Accuracy, number of parameters and FLOPs per sample are reported. No further experiments
were done on AEConv2 due to its poor accuracy. The number of neighbors is 48.

3.4.4 Analysis on Local Reference Frame

We achieve rotation invariance by expressing points coordinates respect to LRFs.

Note that the LRF is handcrafted rather than learned from raw data. As a result,

one may be concerned about the effectiveness of the designed LRF [75]. Currently,

common ways of designing LRFs use the eigenvectors of the covariance matrix of

the local point set [76, 77] or rely on the surface normal as the reference axis [78].

However, computing eignvectors for all points in some local neighborhood of points is

time-consuming and estimating an accurate surface normal from point clouds is still

challenging. In this study, we consider several alternative ways to compute LRFs

and illustrate their effects on performance of models.

36

Searching Grouping # neighbors
Acc.

knn ball Mean Max. D 10 16 32 48

✓ ✓ ✓ 90.4
✓ ✓ ✓ 90.3

✓ ✓ ✓ 90.3
✓ ✓ ✓ 91.0
✓ ✓ ✓ 89.6
✓ ✓ ✓ 90.3
✓ ✓ ✓ 90.8

Table 3.4: Ablation study on LRFs. Models are evaluated on ModelNet40 dataset in the Y/AR
setting. Three aspects which effect LRFs are studied: searching methods, grouping ways and the
number of neighbors.

Radii (0.1, 0.2) (0.1, 0.4) (0.2, 0.2) (0.2, 0.4)
Acc. 89.1 89.3 90.3 90.4

Table 3.5: Ablation study on radius in ball query. Models are evaluated on ModelNet40 dataset in
the Y/AR setting. Model’s performance is marginally sensitive to radius if ball query is used. (r1,
r2) indicates the radius in the first SABlock and the second SABlock respectively.

The definition of LRF is introduced in the Section 3.3.1. Note that given a

reference point, the only variation in the definition of the LRF arises from the x axis.

Because the z axis is defined as the direction from the global origin to the reference

point, and the y axis is defined by the cross product of the z and x axis. Recall

that the x axis is associated with the anchor point m, which is shown in the Figure

3.2. Here we investigate three different aspects that influence the determination of

the anchor point: searching methods, ways of grouping the data, and the number of

neighbors. We perform experiments on shape classification, and Table 3.4 shows the

results.

We compare two searching methods: ball query and k-NN search. Ball query finds

all points within a certain radius to the reference point, but only up to k points are

considered in the experiments. k-NN finds a fixed k nearest points to the reference

point. As is shown in the first four rows of Table 3.4, given the same grouping method

models with k-NN search have equal or higher accuracy than ball query. However,

the performance of the ball query method is marginally sensitive to the size of the

radius chosen, which needs to be assigned manually, as is shown in Table 3.5.

We study two ways of determining the anchor point: we define the anchor point

as the mean of neighboring points or as the point with largest projected distance to

reference point on plane α shown in the Figure 3.2 (b). From rows three and four

in Table 3.4, we conclude that anchor points computed from mean of neighbors is

preferred (91.0%) over anchor points with largest projection distance (90.3%). The

last four rows of Table 3.4 illustrate the performance of our model with different

37

numbers of neighboring points. We find performance drops with decreasing of k and

the model with 48 nearest points achieves the best performance (91.0%). Further

increasing the number of nearest points leads to extra computation burden.

3.4.5 Aligned EdgeConv Analysis

The proposed AECNN is specially designed to learn a rotation-invariant repre-

sentation. Recall that we align features before doing feature fusion within the edge

convolution and call it aligned edge convolution (AEConv). This study compares

the original edge convolution which does not perform feature alignment [22] with our

proposed aligned edge convolution. We also experiment with different strategies for

doing alignment. The results are shown in Table 3.3.

We report three different strategies for alignment: transforming the source feature

by a transformation matrix in the feature space (AEConv1), which is defined in

(3.9); taking source feature xj, LRF ei of source point, LRF ej of reference point

and translation T as inputs to predict the aligned feature (AEConv2); taking source

xj along with rotation matrix R and translation T as inputs to predict the aligned

feature (AEConv3), which is defined in (3.10). Our proposed feature alignment idea is

verified by comparison between the first column and the last columns, where aligned

edge convolution has higher accuracy (91.0 %) than the original edge convolution

(89.6 %) which has no alignment process. AEConv1 (90.2 %) also outperforms edge

convolution, but it loses slightly to AEConv3. Due to limited GPU memory, we need

to reduce the number of learning kernels within the SAFirst block of AEConv1, so

that it can be fed into a single GPU during training. Even in this case, AEConv1 still

has more parameters (2.14M) to learn than AEConv3 (1.99M) and more FLOPs per

sample during the test (6393M) than AEConv3 (4841M). Additionally, AEConv2 is

not able to converge.

3.5 Conclusions

This work proposes AECNN, or the Aligned Edge Convolutional Neural Network,

which addresses the challenges of learning rotationally-invariant representations for

point clouds. Rotation invariance is achieved by representing points’ coordinates

relative to local reference frame. The proposed AECNN architecture is designed to

better extract and fuse information from local and global features. In this way, the

AECNN architecture is able to generalize well to unseen rotation. Extensive experi-

ments are performed in classification and segmentation and demonstrate effectiveness

of AECNN.

CHAPTER IV

Point Set Voting for Partial Point Cloud Analysis

The continual improvement of 3D sensors has driven the development of algorithms

to perform point cloud analysis. In fact, techniques for point cloud classification and

segmentation have in recent years achieved incredible performance driven in part by

leveraging large synthetic datasets. Unfortunately these same state-of-the-art ap-

proaches perform poorly when applied to incomplete point clouds. This limitation

of existing algorithms is particularly concerning since point clouds generated by 3D

sensors in the real world are usually incomplete due to perspective view or occlusion

by other objects. In this chapter, we propose a general model for partial point clouds

analysis wherein the latent feature encoding a complete point cloud is inferred by ap-

plying a point set voting strategy. In particular, each local point set constructs a vote

that corresponds to a distribution in the latent space, and the optimal latent feature

is the one with the highest probability. This approach ensures that any subsequent

point cloud analysis is robust to partial observation while simultaneously guarantee-

ing that the proposed model is able to output multiple possible results. This chapter

illustrates that this proposed method achieves the state-of-the-art performance on

shape classification, part segmentation and point cloud completion. 1

4.1 Introduction

The quality of 3D sensors has rapidly improved in recent years as their ability

to accurately and quickly measure the depth of scenes has surpassed vision-based

methods [79, 16, 30]. This improved accessibility to point clouds demands the de-

velopment of algorithms to interpret and analyze them. Inspired by the success of

DNNs in solving 2D image analysis tasks, approaches with DNNs have been success-

fully applied to perform similar point cloud analysis tasks such as shape classification

and part segmentation [20, 73, 19, 21, 72, 22, 80]. These DNNs methods achieve the

1This chapter is based on [32]

38

39

state-of-the-art performance on these point cloud analysis tasks by learning represen-

tations from large synthetic datasets constructed from sampling the surfaces of CAD

objects [59, 81]. Unfortunately, since point clouds generated from 3D sensors in the

real-world scenarios are often incomplete, these approaches struggle when tasked to

perform analysis on partial point clouds. Since real-world point clouds are often in-

complete due to perspective of view or occlusions, this shortcoming of existing point

cloud analysis methods is particularly cumbersome.

To address the limitations of existing approaches, this chapter proposes a novel

model for partial point clouds analysis. We model the point clouds as a partition

of point sets. Each local point set independently contributes to infer the latent

feature encoding the complete point cloud. In contrast to prior work on learning a

representation of all points within the point clouds, we utilize an encoder to embed

each local point set. All embeddings vote to infer a latent space characterized by a

distribution. As we show in this chapter, giving each local point set a vote ensures

that the model has the ability to address the incomplete nature of point clouds.

Inspired by recent progress in variational inference [82, 83], we output a distribution

for the latent variable and then use a decoder to generate a prediction from the latent

value with the highest probability. In particular, each local point set generates

a Gaussian distribution in the latent space and independently votes to form the

distribution of the latent variable. This voting strategy ensures that the model

outputs more accurate predictions when more partial observations are given, and

the probabilistic modeling enables the model to generate multiple possible outputs.

The contributions of this chapter are:

• We propose that each local point set independently votes to infer the latent

feature. This voting strategy is shown to be robust to partial observation;

• We propose to construct each vote as a distribution in the latent space and this

distribution modeling allows for diverse predictions;

• The proposed model trained with complete point clouds using the proposed

training strategy performs robustly on partial observation at test, which reduces

the cost of collecting large partial point clouds dataset;

• The proposed model achieves state-of-the-art results on shape classification,

part segmentation, and point clouds completion. In particular, it outperforms

approaches trained with pairs of partial and complete point clouds on point

clouds completion.

40

4.2 Related Work

To perform point cloud analysis, researchers have traditionally converted point

clouds into 2D grids or 3D voxels since they can leverage existing CNNs. With

the help of CNNs, those approaches achieve impressive results on 3D shape anal-

ysis [6, 7, 8]. Unfortunately, these 2D grid or 3D voxel representations degrade

the resolution of objects. Researchers have attempted to address this issue by uti-

lizing sparse representations [69, 68]. However, these representations are still less

efficient than point clouds and are unable to avoid quantization effects. More re-

cently, PointNet [19] has pioneered the approaches of directly taking point clouds

as inputs and processed them using DNNs. To accomplish this objective, it uses a

symmetric function to aggregate information from each point which is transformed

to a high-dimensional space. A variety of extensions have been applied to PointNet

[20, 21, 22, 84]; however, none of them is robust to the partial observation that is

common in real-world scenarios.

To address this challenge posed by partial observations, researchers have relied on

training DNNs on partial point clouds collected in real-world scenarios [26, 25, 85, 28].

Each of these approaches rely on networks that are proposed to perform feature

extraction on complete point clouds. Unfortunately, collecting and annotating those

partial point cloud datasets are expensive. Another approach seeks to first infer the

complete data of the partially observed point clouds before later analysis. A common

pipeline to perform this completion first encodes partial observations into a feature

vector and then decodes it to complete point clouds. A variety of methods have

been proposed for designing the decoder [86, 87, 88, 89, 90, 91]. However, each of

these methods outputs a single prediction given partial shapes and lacks the ability

to generate multiple plausible results. One notable exception is able to generate

diverse results by modeling the spatial distribution of all points [87]. Unfortunately,

this approach is only able to address partial point clouds from specific locations.

In contrast, the method developed in this chapter has no such requirement on an

observed partial point cloud, and leverages the distribution over the latent space to

generate diverse predictions.

Hough transform and its variations have been applied to solve many problems,

such as pattern detection, object detection and pose estimation [92, 93, 94, 95, 96, 97].

Some recent work extend it to 3D object detection and demonstrates that hough

voting is well suited for 3D point clouds analysis [26]. Specifically, each local point

set votes for the center of the object, and only those votes which locate within the

cluster are considered for later process. Similarly, we take advantage of this voting

strategy to accumulate small bits of partial information to form a confident latent

41

X YZX Y X YZ

(a) CNN (b) CVAE (c) Ours

Figure 4.1: An illustrative comparison between our proposed method and other conditional graph-
ical models (CGMs).

feature. However, we model each vote as a distribution in the latent space instead of

a deterministic feature vector. This probabilistic modeling enables the model to learn

the weights of votes when predicting latent features and is also useful to generate

multiple possible outputs if needed.

The variational autoencoder (VAE) is one of the popular methods to model a

generative distribution [82]. It assumes a prior distribution of latent variables, which

is often a Gaussian distribution. More recently, the conditional variational autoen-

coder (CVAE) was proposed to extend the VAE by modeling the conditional distribu-

tion [98]. Unfortunately, directly applying a CVAE to partial point clouds requires a

collection of annotated partial point cloud datasets for training. This work addresses

this limitation by proposing each local point set serve as the unit voter to contribute

to the latent feature. Encoding features learned for local point sets of complete point

clouds can be leveraged for embedding local point sets of partial point clouds at test,

which allows us to train on complete point clouds and perform on partial point clouds

at test.

4.3 Method

This section describes the method we use to accomplish the aforementioned ob-

jective.

4.3.1 Preliminary: Conditional Variational Auto-encoder

A CVAE [98] is a directed graphical model. The conditional generative process

of CVAE is as follows: for a given observation x, a noise vector z is drawn from

the prior distribution pθ(z|x), and an output y is generated from the distribution

pθ(y|x; z). The training objective, variational lower bound, of CVAE is written as

follows:

42

(4.1)
log pθ(y|x) ≥ Lϕ,θ(y|x) = −KL(qϕ(z|x,y)||pθ(z|x)))

+Eqϕ(z|x,y)[log pθ(y|x, z)]
The CVAE is composed of recognition network qϕ(z|x;y), prior network pθ(z|x),

and generation network pθ(y|x; z). In this framework, the recognition network

qϕ(z|x;y) is used to approximate the prior network pθ(z|x). All distributions are

modeled using neural networks. During training, the reparameterization trick [82] is

applied to propagate the gradients of ϕ and θ through the latent variables z.

4.3.2 Proposed Point Cloud Model

We model the point clouds x as an overlapping partition of point sets, denoted

by {x1, x2, ..., xn} if there are n point sets in the partition. In the simplest setting,

each point is described by just its 3D coordinates, i.e. xi ⊆ IR3. Each point set is

defined by a centroid and scale, as is shown in the Figure 4.2. To evenly cover the

whole point clouds, we use Farthest Point Sampling (FPS) [20] algorithm to sample

centroids. The number of centroids and the scale are manually set.

4.3.3 Proposed Method

In contrast to CVAEs, in which the generation network takes (x, z) as inputs,

we model the generation process as a Markov chain, as is shown in the Figure 4.1.

Specifically, given the latent variable z sampled from p(z|x), y is independent on

x. As a result, the generation of the output y satisfies the following equation:

p(y|x, z) = p(y|z). The variational lower bound of this model is written as follows:

(4.2)
Lϕ,θ(y|x) = −KL(qϕ(z|x)||pθ(z|x)))

+Eqϕ(z|x)[log pθ(y|z)]
One problem with this learning framework is that the generation network pθ(y|z)

takes values sampled from the recognition network qϕ(z|x) at training while takes

values sampled from the prior network pθ(z|x) at testing. This makes training in-

consistent with testing. Similar to [98], we force consistency between these settings

by making the recognition network qϕ(z|x) the same as the prior network pθ(z|x).
By doing this, z can be drawn from the distribution qϕ(z|x) at both training and

testing, and the KL divergence term becomes zero. We approximate the resulting

version of Equation (4.2) with the Monte Carlo estimator formed by sampling z(i)

from the recognition network qϕ(z|x):

(4.3) Lϕ,θ(y|x) ≈
1

L

L∑
i=1

log pθ(y|z(i)), z(i) ∼ qϕ(z|x).

43

Recall that in our case x is modeled as a set of local point sets {xi}ni=1. Thus,

we propose to generate a vote for each of them, all of which are used to compute

the latent variable z. This voting strategy is inspired by the Hough transform [92]

and VoteNet [26], and it is shown to accumulate small bits of partial information

and output confident predictions. We model each vote as a distribution in the latent

space. By assuming the independence of each vote, the recognition network qϕ(z|x)
can be expanded as follows:

(4.4) qϕ(z|x) =
n∏

i=1

qϕ(z|xi).

In the experiments, we assume qϕ(z|xi) is a Gaussian distribution characterized by

mean vector and covariance matrix, which enables the use of a closed-form solution

to optimizing qϕ(z|x) with respect to z. We denote the maximizing argument of

qϕ(z|x) by zopt. Equation (4.3) is equivalent to estimation with a single point when

setting L = 1. Combining this with the highest probability sample of z, given by

zopt, the objective function can be further written as follows:

(4.5) Lϕ,θ(y|x) ≈ log pθ(y|zopt), zopt = argmax
z

n∏
i=1

qϕ(z|xi).

Previous variational models choose latent features by sampling. However, zopt in our

case can be computed directly (shown in A.1), so all operations are differentiated

with respect to the parameters θ and ϕ, which means that the reparameterization

trick is no longer needed.

Note that the loss function differs as the task changes. A common softmax cross-

entropy loss is used for classification and segmentation whereas the Chamfer dis-

tance [86] is used for training models on point cloud completion task. After training,

the generative process is as follows: for the given observation x, zopt is the result of

voting from {qϕ(z|xi)}ni=1, and then the output y is generated from pθ(y|zopt). The

use of zopt produces a single deterministic prediction. Diverse predictions are gener-

ated by instead sampling z(i)∼qϕ(z|x) followed by applying the generation network

as in the deterministic case.

4.4 Experiment

4.4.1 Implementation

Network architecture We implement our network in PyTorch and use PyTorch

Geometric Library [99]. The architecture of the proposed model is illustrated in the

Figure 4.2. We use DNNs to model qϕ(z|x) and pθ(y|z). A shared-weights network is

44

y
x

z

r

y
x

z

r

y
x

z

r

Encoder

Encoder

Encoder

Shared

Latent Feature Multi-layer Perceptron

Folding-based Decoder

Segmentation

Completion

Partial Point Clouds Votes Generation Latent Space Latent Feature Decoding Prediction

Sample
Classification

MLP Decoder
S

core

Figure 4.2: An illustration of the model developed in this work. The input point clouds are modeled
as a partition of point sets and each local point set is defined by its centroid and scale r. Local
point sets are embedded by a shared-weight PointNet encoder. The voting via this encoder is used
to infer the space for latent features. The latent feature with the highest probability is sampled
from the inferred latent space and is then passed to a decoding module for prediction. We perform
experiments on three tasks: classification, part segmentation and point clouds completion.

used to represent qϕ(z|xi). Given the local point set, we represent each point within

the local region relative to the centroid and then use a shared-weight PointNet as

the basic feature extractor to encode the local region. Both the encoding feature and

coordinates of centroid are processed by a MLP layer and it outputs a distribution

of the latent space. We assume a simple case of multivariate Gaussian distribution

with diagonal covariance matrix, so the output from the MLP consists of two vectors

representing the mean and diagonal elements in the covariance matrix respectively.

Different downstream tasks correspond to different networks for modeling pθ(y|z)
as is shown in Figure 4.2. A folding-based decoder [88] is used for point clouds

completion.

We use similar notations as PointNet++ [20] to describe the network architecture

of the proposed model. SA(k, r, [l0, l1..., ld]) is a set abstraction (SA) level with k local

regions of ball radius r using a shared-weights PointNet structure, which contains

d fully connected layers li(i = 1, ..., d) and l0 is the width of inputs. FC([l0, l1], dp)

represents a fully connected layer with input width l0, output width l1, and dropout

ratio dp. All layers are followed by a batch normalization [52] layer and a Leaky

ReLU [100] layer except for the last prediction layer, last layer in the vote generation,

and layers within the folding-based decoder.

Point coordinates are first transformed to a high-dimensional space by a fully

connected layer. For all experiments, the architecture for generating votes is the

same. The outputs from it are the concatenation of two vectors, representing the

mean and variance respectively, as we model each vote as a multivariate Gaussian

distribution:

FC([3, 64]) −→ SA(64, 0.2, [64 + 3, 64, 128, 512]) −→ FC([512 + 3, 512, 1024 ∗ 2])

45

For shape classification experiments, we decode the latent vector into K category

scores by fully-connected layers:

FC([1024, 512], 0.5) −→ FC([512, 256], 0.5) −→ FC([256, K])

For part segmentation experiments, the point-wise features for predicting part cate-

gory consists of: lifted point coordinates, a one-hot vector for representing the object

category, and the latent vector. The architecture for point-wise prediction of K part

category scores is as follows:

FC([1024 + 64 + 16, 512], 0.5) −→ FC([512, 256], 0.5) −→
FC([256, 128], 0.5) −→ FC([128, K])

(4.6)

For point cloud completion experiments, the model with 0.1 ball-search radius achieves

the best performance. The architecture of decoder is inspired by the folding idea pro-

posed in [88], which folds 2D grids into 3D shapes:

FC([1024 + 2, 512, 512, 3]) −→ FC([1024 + 3, 512, 512, 3])

Training Strategy During optimization, we use the Adam optimizer [101] with

default parameters except for the learning rate. We train models for three different

tasks. (1) For shape classification, the learning rate starts with 0.001 and is scaled

by 0.2 every 200 epochs and the maximum epoch is 500. Batch size is 64 and we split

them into 2 NVIDIA Tesla V100 GPUs during training. (2) For part segmentation,

the learning rate starts with 0.001 and is scaled by 0.2 every 200 epochs and the

maximum epoch is 500. Batch size is 128 and we split them into 4 NVIDIA Tesla

V100 GPUs during training. (3) For point cloud completion, the learning rate starts

with 0.0002 and is scaled by 0.2 every 200 epoch and the maximum epoch is 500.

Batch size is 64 and we split them into 4 NVIDIA Tesla V100 GPUs during training.

During training, we partition the point cloud into 64 local point sets, and each of

them generates a vote in the latent space. To make the voting strategy tenable, we

propose to drop some votes and only a small portion of votes contribute to infer the

latent feature at training. We do random selection and in extreme case only one vote

is selected. This ensures that a single vote still has the potential to be decoded to a

reasonable prediction. Thus, the learned embedding can be leveraged by the basic

unit voter at test and improves the robustness to any type partial shapes. Note that

all votes contribute to compute latent feature at testing.

Partial Point clouds Partial point clouds are only used at testing. In this work,

we experiment on two kinds of partial point clouds. Sample partial point clouds are

visualized in the Figure 4.3. For point cloud datasets that do not provide partial

point clouds, we adapt a simple strategy to simulate partial point clouds, which

46

Figure 4.3: Sample partial point clouds. Left: partial point clouds synthesized by choosing points
(bolded red) falling into one side of a random 2D plane. Right: partial point clouds generated by
back-projecting depth images into 3D space.

are synthesized by selecting points falling into one side of a plane. The plane goes

through the origin and is defined by the normal, which is a 3D vector and generated

by randomly sampling from a normal distribution. The other kind of partial point

clouds used in this work are generated by back-projecting depth images into 3D space,

and they are provided by Completion3D dataset [90]. Compared to simulating partial

point clouds using a subset of complete point clouds, these generated partial point

clouds are closer to measurement from real-world sensors.

4.4.2 Point Clouds Classification

We first consider the task of point cloud classification. This requires that the

model extract a global feature describing distinct geometric information and decode

it into a predicated category.

Dataset We use the ModelNet40 [59] dataset to evaluate our proposed method

on shape classification of point clouds. It contains 12,311 shapes from 40 object

categories. In the experiments, point clouds are generated by evenly sampling 1024

points from the surface of objects. We follow the same strategy of set splitting as

in [19]. Before being passed into the model, point clouds are centered and normalized

within a unit sphere. No data augmentation techniques are applied during training.

Results Quantitative results on Modelnet40 are shown in the Table 4.1. Over-

all classification accuracy is reported on both complete point clouds in the column

(Complete) and simulated partial point clouds in the column (Partial). All listed

methods are trained on provided training set and achieve the state-of-the-art results

on complete point clouds. Our proposed method performs slightly better than Point-

Net and PointNet++. When evaluated on simulated partial point clouds, however,

other approaches experience a significant drop in accuracy. This is unsurprising since

existing approaches are designed and trained for complete point clouds, and general-

ize poorly to novel partial point clouds. In contrast, our method trained on complete

47

Method Input Complete Partial Partial*
PointNet [19] xyz 88.8 20.9 76.5
PointNet++ [20] xyz 91.0 61.5 81.9
RS-CNN [21] xyz 92.3 43.3 71.1
DG-CNN [22] xyz 92.9 51.5 64.9
Ours xyz 91.4 86.4 86.4

Table 4.1: Classification accuracy on ModelNet40. Overall classification accuracy is reported on
complete point clouds (Complete) and simulated partial point clouds (Partial). The last column
(Partial*) shows the results when models trained using the proposed training strategy

point clouds using the proposed training strategy is robust to partial observation

and achieves 86.4% classification accuracy on partial point clouds. Analysis of the

proposed training strategy will be discussed in the later section.

4.4.3 Part Segmentation

Given the point clouds and object category, the part segmentation tasks requires

predicting a part label for each point. As a result, this task requires that the model

extract both global and local information.

Dataset We use the ShapeNet part dataset [59] to evaluate our proposed method

on part segmentation of point clouds. It contains 16,881 shapes from 16 object cate-

gories with 50 parts. Each point cloud contains 2048 points which are generated by

evenly sampling from the surface of objects. We follow the same set splitting con-

ventions in [20]. During evaluation, mean inter-over-union (mIoU) that are averaged

across all classes is reported. No data augmentation techniques are applied during

training.

Results We report the results of our proposed method and compare its perfor-

mance to existing approaches in the Table 4.2. All methods are trained on provided

training set. Our proposed method has superior performance on partial point clouds

and achieves 78.1 mIoU, while others achieve around 30 mIoU. This robustness to

partial observation comes at the expense of slightly lower accuracy on segmentation

of complete point clouds when compared with other approaches. We also test the

robustness of our approach by applying it to the completion3D dataset [90] which

contains partial point clouds but no part labels. Qualitative results on part segmen-

tation by applying the proposed method proposed are shown in the Figure 4.4.

4.4.4 Point Clouds Completion

Given partial point clouds, point cloud completion aims to generate points to

recover the complete shapes. This requires a model that has the ability to infer a

global feature which encodes complete point clouds from the partial inputs.

48

Method Input Complete Partial
PointNet [19] xyz 80.5 29.9
PointNet++ [20] xyz 82.0 30.9
DG-CNN [22] xyz 82.3 29.8
RS-CNN [21] xyz 82.4 30.6
Ours xyz 79.0 78.1

Table 4.2: Part segmentation results on ShapeNet part dataset. Mean intersection of unions
(mIoUs) is reported on complete point clouds (Complete) and simulated partial point clouds (Par-
tial).

Figure 4.4: Qualitative results on part segmentation of point clouds using the method presented in
this work. Different colors correspond to distinct segments. Left: segmentation on the ShapeNet
part dataset. Middle: segmentation on the simulated partial point clouds in the ShapeNet. Right:
segmentation on the Completion3D dataset.

DatasetWe evaluate our model on Completion3D [90], which is a 3D object point

cloud completion benchmark. It contains pairs of partial and complete point clouds

from 8 categories which are derived from the Shapenet dataset with 2048 points

per object point clouds. We apply the set splitting given by the dataset. Partial

point clouds are generated by back-projecting 2.5D depth images into 3D space and

complete point clouds are used as ground truth.

Results Quantitative results on Completion3D’s withheld test dataset are shown

in Table 4.4 where the Chamfer distance multiplied by 104 is reported. Our proposed

model achieves 18.18 average Chamfer distance and outperforms FoldingNet (19.07)

and PCN (18.22), which are trained with both partial and complete point clouds,

while only complete point clouds are used during training for the method developed

in this work.

4.4.5 Ablation study

Results of ablation study are shown in the Table 4.3 and the overall classification

accuracy is reported on the simulated partial test set of ModelNet40. Unsurprisingly,

the accuracy of models is improved after using the batchnorm [52] and dropout [103]

49

Model BN DP # v. train # v. test radius BK Acc.

A1 10 16 0.25 1024 78.4
A2 ✓ 10 16 0.25 1024 80.9
A3 ✓ ✓ 10 16 0.25 1024 81.0
B1 ✓ ✓ 4 16 0.25 1024 79.1
B2 ✓ ✓ 10 16 0.25 1024 81.0
B3 ✓ ✓ 16 16 0.25 1024 79.4
B4 ✓ ✓ 32 16 0.25 1024 78.1
B5 ✓ ✓ 64 16 0.25 1024 76.2
C1 ✓ ✓ 10 8 0.25 1024 76.8
C2 ✓ ✓ 10 16 0.25 1024 81.0
C3 ✓ ✓ 10 32 0.25 1024 82.7
C4 ✓ ✓ 10 64 0.25 1024 83.8
C5 ✓ ✓ 10 128 0.25 1024 84.4
C6 ✓ ✓ 10 256 0.25 1024 84.6
D1 ✓ ✓ 10 256 0.15 1024 83.1
D2 ✓ ✓ 10 256 0.20 1024 86.4
D3 ✓ ✓ 10 256 0.25 1024 84.6
D4 ✓ ✓ 10 256 0.35 1024 82.5
E1 ✓ ✓ 10 256 0.20 512 85.3
E2 ✓ ✓ 10 256 0.20 1024 86.4
E3 ✓ ✓ 10 256 0.20 2048 86.8

Table 4.3: Ablation study. The metric is overall classification accuracy on the simulated partial
ModelNet40 test set. “BN” indicates using batch normalization; “DP” indicates using the dropout
technique in fully connected layers except the final one; “# v. train” indicates the maximum number
of votes selected to contribute to the latent feature at training; “# v. test” indicates the number
of votes at test; “radius” indicates the ball radius of local regions; “BK” indicates the dimension
(bottleneck) of the latent space.

Model Plane Cabinet Car Chair Lamp Sofa Table W.craft Average

FoldingNet [88] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
PCN [89] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22
AtlasNet [102] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77
TopNet [90] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25

Ours 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18

Table 4.4: The performance of various state-of-the-art algorithms on partial point cloud completion
on the Completion3D benchmark dataset. Results are reported on the Completion3D’s withheld
test set. The Chamfer distance (CD) is reported, multiplied by 104.

Model Plane Cabinet Car Chair Lamp Sofa Table W.craft Average

FoldingNet [88] 25.79 40.52 16.12 39.90 43.01 43.76 40.88 26.54 34.56
PCN [89] 21.58 41.87 16.56 38.86 50.19 43.37 39.44 27.57 34.93
AtlasNet [102] 23.13 49.60 16.80 43.34 60.83 48.21 41.94 33.96 39.73
TopNet [90] 21.61 15.24 38.14 35.23 44.42 38.36 36.18 25.97 31.87

Ours 7.54 17.96 9.22 19.49 29.97 15.82 24.58 13.15 17.22

Table 4.5: The performance of various state-of-the-art algorithms trained via the Completion3D
dataset on partial point cloud completion on a simulated partial point cloud dataset. Results are
reported on simulated partial point clouds of validation set. The Chamfer distance (CD) is reported,
multiplied by 104.

50

AtlasNetInput PCNFoldingNet TopNet Ours GT

Figure 4.5: Qualitative point clouds completion results on partial point clouds provided in Com-
pletion3D dataset.

AtlasNetInput PCNFoldingNet TopNet Ours GT

Figure 4.6: Qualitative point clouds completion results on partial point clouds simulated on Com-
pletion3D dataset using the introduced strategy in the work.

techniques, from 78.4% to 81.0%, shown by Model Ai. We model the point clouds

as an overlapping partition of point sets, each of which is defined by its centroid and

scale. As it is shown by Model Di, the performance of this modeling is sensitive

to the scale and accuracy peaks at 0.2 (86.4%). This can be in part explained by

that local regions with small scale contain insufficient distinct geometry features to

infer the complete point clouds, while the learned features for local regions with large

scale tend to be different from those in partial point clouds with unexpected edges

due to missing parts. Model Ei illustrates that the performance of model grows as

we increase the dimension of the latent space (bottleneck), and it saturates at 2048

(86.8%).

We propose to infer latent features voted from local point sets. To make this

voting strategy tenable, we design a training strategy that random number of votes

are selected to compute the latent feature. In the experiments, the maximum number

of selected votes is manually set during training. As it is shown by Model Bi, the

performance peaks when the maximum number of votes is set to 10 (81.0%) and

degrades as more votes are considered. We suspect that this is because more votes

at training mean that more points are observed, and it leads to degradation at testing

when only a small portion of partial objects are observed. Model Ci illustrates that

51

0 4 8 16 32 64 128 256
Number of votes during test

55

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

Vote
Max
Mean

Figure 4.7: Results of different aggregation strategies for computing latent features on simulated
partial point clouds in ModelNet40.

the accuracy of the trained model grows as the number of votes increases at test

from 76.8% to 84.6%, which indicates that more votes accumulate information for a

more confidant prediction.

4.4.6 Training Strategy Analysis

We propose that a random number of votes are selected to compute the latent

feature at training, which makes the voting strategy tenable and robust to the vari-

ant number of votes. Since the latent feature is inferred from a subset of votes, the

model at training makes predictions from partial shapes though complete shapes are

taken as inputs. Thus, the proposed training strategy can be seen as a way of data

augmentation. To make a fair comparison, we also report results of baseline mod-

els trained with the proposed training strategy, and they are shown in the column

(Partial*) of the Table 4.1. For other methods, the partial point clouds fed into the

models at training consist of points covered by random sampled votes. Compared to

results on partial shape while trained on complete shape in the Table 4.1, the pro-

posed training strategy boosts the performance of PointNet (from 20.9% to 76.5%),

PointNet++ (from 61.5% to 81.9%), RSCNN (from 43.3% to 71.1%), and DGCNN

(from 61.5% to 81.9%). However, our proposed method (86.4%) still outperforms all

of them with noticeable improvement, which verifies the effectiveness of our method.

4.4.7 Voting Strategy Analysis

As proposed in this work, we infer the latent feature from votes of local point

sets, and each vote is a distribution in the latent space. The optimal latent fea-

52

Figure 4.8: Visualization of voting strategy. Each vote is decoded into a complete shape by using
the model trained on Completion3D dataset. The points in blue show the complete shapes.

ture is the sampled one with the highest probability. In this section, we analyze

this voting strategy and compare it with the aggregation strategy that the extracted

features from local point sets are aggregated using a symmetric function. We study

two symmetric functions: max pooling and mean pooling. To utilize the aggrega-

tion strategy, we change the vote of each local point set from a distribution to a

deterministic feature vector.

The comparison results are shown in the Figure 4.7. The evaluation metric is the

average classification accuracy on the simulated partial ModelNet40. All models are

trained using the proposed training strategy where the maximum number of votes

considered is set to 10. Our proposed voting strategy is verified by the improved

accuracy when compared to the aggregation strategy using either max pooling or

mean pooling. Classification accuracy grows as the number of votes increases during

testing in both the voting strategy and mean pooling. This can be explained by more

accumulated information as increasing the number of votes. However, this is not the

case for max pooling, whose accuracy peaks at 32 votes, which indicates that max

pooling is sensitive to the number of selected votes.

One of the novelties of the proposed method is to represent the latent space by

a set of independent multivariate Gaussian distributions, which is generated from

local point sets. With the help of the designed training strategy, the model learns to

infer the information contained in the complete shape from an individual local point

set. To verify the proposed voting strategy, we visualize each vote by decoding it

into a complete shape with the model trained on Completion3D dataset. As shown

53

in Figure 4.8, local point sets located at different parts of the object generate votes

encoding information of different shapes. In particular, votes at the front of the

vehicle tend to infer vehicles with sloping rears, while votes at the rear tend to infer

truck-like vehicles. Moreover, compared to votes located at the front and the rear

of the vehicle, votes in the middle contain less distinct geometry information since

their decoded point clouds are blurrier. Therefore, we argue that the proposed voting

strategy are able to model the variations when observing different parts of shapes.

4.4.8 Generalizability to different partial point clouds

We experiment on different partial point clouds to verify the generalizability of

the proposed model. In this section, we target at the point cloud completion task. In

addition to evaluating test set withheld in Completion3D dataset, which are shown

in the Table 4.4, we more exhaustively evaluate all approaches by experimenting on

simulated partial point clouds as in the left subfigure of Figure 4.3. Note that all

models are trained on the provided training set in Completion3D dataset.

As shown in Table 4.5, all approaches except the one developed in this work

experience a significant performance drop when compared to the results shown Table

4.4. We suspect that this is because the partial point clouds in the Completion3D

are different from the simulated partial point clouds, as it is shown in the Figure 4.3.

Unlike other approaches embedding all input points into an encoding feature, we

propose to rely on each local point set as the basic voter, which is more generalized

and less affected by partial shapes. This in part explains that our proposed method

performs equally well on both experiments. Qualitative completion results are shown

in Figure 4.6, and it shows that our proposed model outputs sharper shapes. More

challenging tests are performed on real-world point clouds and are shown in the

Figure 4.10. These partial point clouds are extracted within the labeled object

bounding boxes provided in ScanNet [28]. Note that the input point clouds need to

be transformed to the box’s coordinates and the same scale as the training dataset

before being fed into model. This is because that the representations learned by the

proposed model are not designed to be invariant to rigid body transformation.

4.4.9 Visualization of multiple predictions

The method developed in this work is designed to be able to generate multiple

possible outputs. This is achieved by the latent space model. The latent space

is represented by a set of multivariate Gaussian distributions generated by local

point sets. The use of latent value with the highest probability produces a single

deterministic prediction. Diverse predictions can be generated by sampling from the

latent space and followed by the decoding module. Since it is not easy to sample

54

Input Pred1 Pred2

Pred3 Pred4 GT

Figure 4.9: Visualization of diverse predictions on point clouds completion on the Completion3D
dataset.

Figure 4.10: Completion on real-world point clouds from ScanNet. Top row: input partial point
clouds. Bottom row: complete point clouds generated by ours.

in the latent space as it is represented by a set of distributions, we instead sample

latent value by interpolating between the optimal latent feature inferred by all votes

and a optimal latent feature inferred by a single vote. We perform experiments on

point clouds completion and visualize the results in Figure 4.9.

4.5 Conclusion

This chapter proposes a general model for partial point clouds analysis. In par-

ticular, point clouds are modeled as a partition of point sets which generate votes

to model a latent space distribution. This voting strategy is shown to accumulate

partial information and be robust to partial observation. The sampled latent fea-

ture in the latent space is then decoded for prediction. Extensive experiments are

55

performed in classification, part segmentation, and completion and state-of-the-art

results on all of them demonstrate the effectiveness of the proposed method.

CHAPTER V

Hyperspherical Embedding for Point Cloud Completion

Thanks to deep learning techniques and availability of large 3D datasets, recent works

have achieved impressive performance on point cloud analysis by effectively learning

representations needed for the corresponding learning tasks. In those datasets, most

3D measurements lack complete information of objects and lead to variations between

training and test data, which raises challenges for analyzing point clouds. Thus, it

is desirable to predict the complete shapes of objects from partial observations. The

common point cloud completion network consists of an encoder-decoder structure,

in which the encoder extracts embeddings that will be used to generate outputs

for different tasks. Unfortunately, the learned embeddings shown in this chapter

are sparsely distributed in the feature space, which leads to worse generalization

results at testing. To address these problems, this chapter proposes a hyperspherical

module, which takes embeddings from the encoder as inputs and transforms and

normalizes them to be on a unit hypersphere. With the proposed hyperspherical

embeddings, the magnitude and direction information are decoupled and only the

direction information is optimized. Both the theory and experiments show that the

proposed method enables more stable training with a wider range of learning rates

and more compact embedding distributions. The consistent improvement of point

cloud completion in both single-task and multi-task learning scenarios demonstrates

the effectiveness of the proposed method. 1

5.1 Introduction

The continual improvement of 3D sensors provides more accessibility of point

clouds and demands the need of algorithms to analyze them. Thanks to deep learn-

ing techniques, recent works have achieved impressive performance on point cloud

analysis [19, 20, 25, 26, 27] by effectively learning representations from large 3D

datasets [17, 28, 29]. Point clouds provided in those dataset are often incomplete and

1This chapter is based on a manuscript under review

56

57

Unconstrained
Embedding

Encoder

Completion
Decoder

Other Decoder

Hyperspherical
Embedding

Completion
Decoder

Other Decoder

MLP Norm

Hyper Module

Encoder

0 0.5 1.0

0 0.5 1.0

Figure 5.1: Architecture of point cloud learning. The upper subfigure shows the general point cloud
analysis structure, where the embedding is directly output from the encoder without constraints.
The lower subfigure shows the structure of the model with the proposed hyperspherical module.
The figures under the embeddings illustrate the cosine similarity distribution between embeddings,
which indicates a more compact distribution achieved by the proposed method.

sparse due to occlusions, low resolution and the limited view of 3D sensors. These

measurements lack complete information and contain variations between training

and test data, which raises challenges for analyzing point clouds. Therefore, the

ability to predict complete shapes of objects from partial observations is desirable.

For example, the predicted complete shapes will provide finer collision-check bound-

aries than bounding boxes to help autonomous vehicles navigate in narrow lanes or

crowded urban regions; compared to incomplete measurements, the robot arm can

grasp objects in more reasonable poses with the information of complete shapes, in

particular, for those unknown objects.

More recently, many works have been proposed to perform point cloud comple-

tion [89, 90, 104, 105, 106, 107]. All of them adapt encoder-decoder structures, in

which the encoder takes a partial point cloud as input and outputs an embedding

vector, and then it is processed by the decoder that predicts a complete point cloud.

The embedding space is designed to be high-dimensional as it is considered to have

enough capacity containing the information needed for downstream tasks. However,

the learned high-dimensional embeddings, as shown in Figure 5.4, tend to be sparsely

distributed in the embedding space which increases the possibility that unseen fea-

tures at testing are not captured by the representation learned at training and leads

to worse generalizability of models.

Usually, building a real-world application, such as autonomous vehicle and robot

arm, requires not only the information of complete shapes but also predictions from

other tasks. Compared to training all tasks individually from scratch, a more

58

compact way is to train all tasks jointly, which can reduce the number of pa-

rameters and achieve better efficiency by sharing parts of networks for different

tasks [108, 109, 110]. However, training all tasks together is a difficult optimiza-

tion problem. Conflicts between different tasks are observed and training them

jointly sometimes leads to worse performance compared to learning them individ-

ually [111, 112]. Existing point cloud completion works conduct experiments in

single-task learning, while in this chapter we extend them to multi-task learning. We

show that the structure with embeddings shared by different tasks raises conflicts

at training between point cloud completion and other semantic tasks, which leads

to worse completion performance and hinders accomplishing point cloud completion

jointly with other tasks.

To address above limitations of the existing point cloud completion approaches,

this chapter proposes a hyperspherical module and the overall architecture is shown

in Figure 5.1. Specifically, the hyperspherical module consists of a MLP layer and

a normalization layer, and it can be easily integrated into the existing approaches.

The normalization layer constrains the embedding onto the surface of a hypersphere

by normalizing the embedding’s magnitude to unit, which we called hyperspherical

embedding. By doing that, the magnitude and direction information in embeddings

are decoupled and only the direction information is kept for later use. Extensive

evaluations are conducted to investigate the effects of hyperspherical embeddings on

point cloud completion in both single-task and multi-task learnings. We show that

with the hyperspherical embedding the models are improved by enabling larger learn-

ing rates, more stable training, and a more compact embedding distribution. The

reported improvements of the existing state-of-the-art approaches on several public

datasets illustrates the effectiveness of the proposed method. The main contributions

of this chapter are summarized as follows:

• We propose a hyperspherical module which outputs embeddings constrained

onto the surface of a hypersphere, which leads to improved performance of

existing approaches for point cloud completion in both single-task and multi-

task learning.

• We prove that the hyperspherical embedding benefits the training of models

with a wider learning rate range, stable training, and a compact embedding

distribution.

• We demonstrate the proposed method on public datasets with extensive exper-

iments and show the state-of-the-art results.

59

0 10 20 30
Singular Values

0.0

1.5

3.0

Co
un

ts

1e2 Folding
transformed embedding
hyperspherical embedding
mean transformed
mean hyperspherical

0 5 10
Singular Values

0

2

4
1e2 PCN

transformed embedding
hyperspherical embedding
mean transformed
mean hyperspherical

0 10 20
Singular Values

0

2

4

1e2 TopNet
transformed embedding
hyperspherical embedding
mean transformed
mean hyperspherical

0 5 10 15
Singular Values

0

2

4

1e2 Cascade
transformed embedding
hyperspherical embedding
mean transformed
mean hyperspherical

0 10 20
Singular Values

0

2

4
1e2 SnowFlakeNet

transformed embedding
hyperspherical embedding
mean transformed
mean hyperspherical

Figure 5.2: An illustration of distributions of singular values. We compute singular values from
weights in the layer right before the embedding, obtained from the point cloud completion models
on MVP dataset with different architectures described in the plot title. The mean of singular
values are denoted by vertical lines, and the inverted triangle denotes the largest singular value.
Normalization leads to learning more singular weights.

5.2 Related Work

Point Cloud Completion. The point clouds in most 3D dataset [17, 29, 28,

113, 114] are incomplete and sparse due to occlusions, low resolution and the limited

view of 3D sensors. Unfortunately, those point clouds may lack important informa-

tion contained in complete shapes and raise challenges for point cloud analysis. To

address this problem, many works have been proposed to perform point cloud com-

pletion, in which people seek to recover the full shape of objects based on the partial

observations [89, 90, 32, 104, 107, 106]. Most of them adapt a pipeline of encoding

the partial observations into an embedding feature and then decoding it to complete

point clouds. Since the structures of encoders have been successfully explored by other

3D tasks [20, 19, 22, 21], most completion approaches focus on designing different

completion decoders [89, 88, 90]. However, those one-stage decoders are shown to

output unevenly distributed points over the surface of objects, and they also struggle

to preserve the detail structures in the inputs. Later approaches address this issue

by using a coarse-to-fine decoding strategy, in which the decoding process generates

several complete shapes at different resolutions, and the partial point clouds are used

along with other intermediate decoding results to maximally preserve structures in

the inputs [104, 107, 106, 115]. Different from designing a completion decoder, the

method developed in this chapter focuses on representations learned from encoders,

which is a more universal problem since the developed method can be integrated into

existing structures. We show the improvement of point cloud completion when using

the proposed method on both one-stage and coarse-to-fine decoders.

Hyperspherical Embedding. Effectively obtaining a representation that is

needed for the corresponding learning task from raw input data is very important.

More recently, deep learning techniques with the help of large datasets are able to

learn powerful representations and have demonstrated the superiority over the hand-

craft features. Compared to representations learned without constraints, hyperspher-

60

ical representations have shown advantages in many fields, such as representation

learning, metric learning, and face verification [116, 117, 118, 119, 120, 121, 122]. In

those works, the hyperspherical embedding is obtained by normalizing the vectors to

be on a unit hypersphere. The observed improvement by hyperspherical embeddings

are investigated and can be partly explained by the uniformity of embeddings in the

hypersphere space [117, 123], and more stable training [124]. All those works indicate

the success of hyperspherical embedding and suggested unit hypersphere is a nice

feature space. Thus, this chapter is inspired to apply hyperspherical embeddings

in learning point cloud completion. We propose a new module that outputs hyper-

spherical embeddings and shows consistent improvement of point cloud completion

in both single-task and multi-task learnings.

5.3 Review of Learning Point Cloud

Since our work targets the representations learned from the encoders, we start by

reviewing the general structures of point cloud models.

Inspired by the success in the 2D field, most approaches for point cloud analysis

adopt encoder-decoder or its variant structures. Various encoders have been designed

to process point clouds, but most of them use a symmetric function, such as max

pooling, in the last layer to address the permutation issue contained in the unordered

point set. The outputs from the encoder are learned embeddings, and they will be

then processed by following decoders to generate predictions. In multi-task learn-

ing, suppose the input point cloud is denoted by x ⊆ IR3, and the pipeline can be

summarized as follows:

(5.1) yi = Di(E(x))

where E(.) denotes the encoder with a max pooling in the last layer, Di(.) denotes

the decoder for ith task, yi demotes the prediction for ith task, and the output from

encoder E(x) is the embedding. The overall architecture is shown in Figure 5.1.

Existing problemsMost existing encoders learn representations, or embeddings,

from large datasets using the end-to-end training. This end-to-end learning strategy

does not add constraints on the embeddings, and the embedding distribution tends

to be sparse as shown by previous works [121, 120]. However, a sparse embedding

distribution increases the possibility of testing inputs accidentally falling into the

regions unseen during training due to gaps or holes in the embedding space. On the

contrary, a compact embedding distribution encourages to preserve more information

and helps improve the generalization robustness to unseen features [123, 117]. When

it comes to multi-task learning, embeddings from the encoder are shared by different

decoders to improve efficiency of models. Unfortunately, those decoders learned by

61

different task losses may require different embedding distributions, which may lead

to optimization conflicts during training, and an unconstrained embedding space

makes such an issue happen more easily. In this chapter, we focus on point cloud

completion in single-task learning and multi-task learning with other semantics tasks,

such as classification and segmentation. We use fully connected layers to predict

semantic scores and are supervised by cross entropy loss, while decoders with more

sophisticated structures are used to generate complete point clouds trained using

Chamfer Distance [86].

5.4 Hyperspherical Embedding for Learning Point Cloud

In this section, we describe the proposed hyperspherical module and investigate

the effects of hyperspherical embedding.

5.4.1 Proposed Hyperspherical Module

To address the issues caused by sparse embedding distribution, we propose a new

hyperspherical module and its structure is shown in Figure 5.1. The proposed module

contains two layers, a MLP layer and a normalization layer. Outputs from a encoder

are first transformed by the MLP layer and then the normalization layer constrains

the features onto the surface of hypersphere by l2 normalization,

(5.2) f̂ =
f

∥f∥2

where the ∥f∥2 =
√∑

i f
2
i , and f̂ denotes the l2 normalized embedding of f . With

the normalization, we remove the magnitude information contained in the embed-

dings and only the direction information is optimized.

5.4.2 Effects of Hyperspherical Embedding

In this part, we investigate the effects of optimizing the l2 normalized embedding

and we draw several conclusions: 1) the gradient of the embedding before normaliza-

tion is orthogonal to itself; 2) the magnitude of the embedding before normalization

increases at each update; 3) the increased magnitude enables wider range of learn-

ing rates and more stable training compared to unconstrained embeddings; 4) the

embedding distribution is compact in angular space, resulting better completion per-

formance in both single-task and multi-task learnings.

Proposition V.1. During optimizing l2 normalized embedding f̂ , the computed gra-

dient to the embedding before normalization denoted by f is orthogonal to itself,

⟨f, ∂L
∂f
⟩ = 0.

62

2.0 2.5 3.0
L2 Norm of Embeddings

0

200

400

600

800

Co
un

ts

Adam (Unconstrained)

2 3 4
L2 Norm of Embeddings

0

200

400

600

800

Adam (Transformed)

500 1000 1500
L2 Norm of Embeddings

0

200

400

600

800

Adam (Hyper)

1000 2000 3000
L2 Norm of Embeddings

0

200

400

600

800

RMSprop (Hyper)

Figure 5.3: Distribution of embedding’s norm. The embeddings are derived from the MVP test
set on point cloud completion, obtained by using different embeddings or different optimizers, as
described in the plot titles. Unconstrained embeddings are from models without the proposed
module. Transformed embeddings are from models with the proposed module but removing the
normalization layer. Hyperspherical embeddings are from models using the proposed module. Hy-
perspherical embeddings have large norms.

Proof. Suppose the normalization process follows Equation 5.2 and the loss at

optimization is denoted by L. The gradient to embedding f can be formulated as:

(5.3)
∂L

∂f
=

∂L

∂f̂
− f̂⟨∂L

∂f̂
, f̂⟩

∥f∥2
Based on it, we can show the orthogonality by computing the inner product between

the embedding and its gradient. More details can be found in Appendix B. Similar

conclusions are also reported in [118, 121, 119].

Proposition V.2. For standard stochastic gradient descent (SGD), each update of

embedding f will monotonically increase its norm, ∥f∥2.

Proof. The orthogonality between the embedding and its gradient from Proposi-

tion V.1 indicates that applying gradient at each update increases the norm of an

embedding, which is validated in Figure 5.3 by showing the distribution of embed-

ding’s norm. Similar observations are also reported in [118, 119]. This property is

based on the vanilla gradient descent algorithm and does not strictly hold for op-

timizers that use momentum or separate learning rates for individual parameters.

However, we still find the same effect empirically hold for other SGD-based opti-

mizers, such as Adam [101] and RMSprop [125], as they are illustrated in Figure

5.3.

Proposition V.3. The magnitude of the gradient is inversely proportional to the

norm of the embedding, ∂L
∂f

∝ 1
∥f∥2 .

Proof. Considering the norm ∥f∥2 in the denominator in Equation 5.3, the mag-

nitude of the gradient is inversely proportional to the norm of an embedding. This

conclusion is similar to the one in [119]. However, we further note that this effect en-

ables optimizing neural networks with a wider range of learning rates. In particular,

63

the norm of embedding trained with a large learning rate quickly increases shown

by Proposition V.2 until an appropriate effective learning rate is reached, while the

same setting puts the model at risk of overshooting the minima, so it may not be

able to converge when using unconstrained embeddings. Similar conclusion is ob-

served when normalizing the weights of neural networks proposed by [124], while

this chapter focuses on normalizing the layer of embedding. Figure 5.9 shows the

comparison results with hyperspherical embedding and unconstrained embeddings

trained using different learning rates, and more results can be found in Figure B.2

and Figure B.1 in Appendix B. All of them show that models with hyperspherical

embeddings enable stable training with a wider range of learning rates and better

performance of point cloud completion.

Proposition V.4. Considering a vector is transformed by a matrix, i.e., f = Wx.

During optimization, the increased norm of f requires a poorly conditioned matrix

W .

Proof. The matrix W can be decomposed by singular value decomposition (SVD):

(5.4) W = UΣV T

where U and V are orthonormal matrices and Σ is a diagonal matrix. Based on

Equation 5.4, the norm of the transformed output f is only related to singular values

contained by Σ, since orthonormal matrices U and V do not modify the magnitude

of inputs. Recall that the norm of f increases at optimization from Proposition V.2.

Thus, the weight W will be updated with increasing singular values during opti-

mization. Increasing all singular values makes a greater weight. However, the large

weights lead to overfitting the training data and adversely affect the performance of

models [126]. Regularization can be used to alleviate this issue, but we empirically

find that the scale of weights trained with normalized embeddings behaves similarly

to the one without using it when regularization is not used. Therefore, the increase of

certain singular values in Σ will inevitably lead to decrease of other singular values,

which causes the weight W to be poorly conditioned as it is illustrated in Figure 5.2.

One benefit of learning a singular weight is that it will reduce the complexity

in the input high-dimensional data by keeping information on principle axes deter-

mined by large singular values while ignoring information on other axes. By doing

this, outputs transformed by a singular weight will point in a similar direction. More-

over, the discrepancy of embeddings in magnitude is removed by l2 normalization.

We compute pairwise cosine distance of embeddings trained with or without l2 nor-

malization in the test set and visualize the distribution in Figure 5.4. It shows that

normalization leads to a more compact angular distribution, while the unconstrained

64

0.0 0.5 1.0
Cosine Similarity

0.0

0.5

1.0

1.5

2.0

Co
un

ts

1e4 All Classes
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Plane
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Car
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Table
uncontrained embedding
transformed embedding
hyperspherical embedding

Figure 5.4: Cosine similarity distribution of embeddings. We compute pairwise cosine distance
between embeddings obtained from the test set in MVP dataset. We visualize distribution in either
one class or overall classes as described in the plot titles. Hyperspherical embeddings have more
compact angular distribution.

0 20000 40000 60000 80000
−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Co
sin

e
Si

m
ila

rit
y

Gradient Cosine Similarity
hyperspherical embedding
unconstrained embedding

0 20000 40000 60000 80000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gr
ad

ie
nt

 N
or

m
 C

la
ss

ifi
ca

tio
n

Gradient Norm
hyperspherical embedding classification
unconstrained embedding classification
hyperspherical embedding completion
unconstrained embedding completion

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Gr
ad

ie
nt

 N
or

m
 C

om
pl

et
io

n

Number of Iterations

Figure 5.5: An illustration of gradient conflicts between tasks in multi-task learning during training.
We visualize the gradient cosine similarity and gradient magnitude as indicated by the titles of
subfigures, obtained by training point cloud completion and shape classification on MVP dataset.
Hyperspherical embeddings lead to smaller gradient conflicts between tasks in multi-task learning.

embeddings are sparsely distributed. This compact embedding distribution helps the

model generalize well on unseen data at test and increase generalizability of models.

The learned compact embedding distribution also helps reconcile the learning

conflicts in multi-task learning. The resulting compact embedding distribution forces

different tasks to learn within the shared space, while the unconstrained embedding

space provides tasks the freedom to land on optimal embedding distributions with

discrepancy. We use the gradient cosine similarity to measure the conflicts between

different tasks [112] and visualize the training process in Figure 5.5. The figure shows

that the hyperspherical embeddings lead to smaller gradient conflicts at training, as

larger cosine similarity indicates smaller gradient conflicts. More discussion about

the effects on multi-task learning can be found in Sec 5.5.3.

65

Folding SnowFlakeNetPCN TopNet CascadeInputs / GT

Hyp
er

sp
he

ric
al

Unc
on

st
ra

in
ed

Hyp
er

sp
he

ric
al

Unc
on

st
ra

in
ed

Figure 5.6: Qualitative results of various state-of-the-arts point cloud completion approaches on
MVP test set.

Model plane cabinet car chair lamp sofa table wcraft bed bench bshelf bus guitar mbike pistol sboard average

Folding [88] 4.71 9.08 6.81 15.22 23.12 10.28 14.32 9.90 22.02 10.28 14.48 5.24 2.02 6.91 7.21 4.59 10.39
Folding (H) 4.48 8.82 6.68 13.79 21.44 9.66 12.98 8.57 18.93 8.96 13.44 4.95 2.03 6.43 6.22 4.20 9.47
PCN [89] 4.23 9.35 6.73 13.56 20.94 10.51 14.20 9.81 21.32 9.98 15.08 5.45 1.90 6.23 6.23 5.03 10.03
PCN (H) 4.24 9.14 6.49 13.04 22.47 10.04 12.99 8.75 18.95 9.33 13.93 5.06 1.84 6.00 5.92 4.15 9.52
TopNet [90] 4.63 9.23 6.79 14.31 19.50 10.48 14.30 9.65 20.54 10.12 15.53 5.36 2.09 6.77 7.74 4.94 10.12
TopNet (H) 4.07 9.13 6.75 13.08 19.45 10.03 12.85 8.89 19.50 9.63 14.33 5.23 2.03 6.66 6.42 3.92 9.50
Cascade [107] 2.66 8.69 6.02 10.22 13.07 8.76 9.90 6.67 16.44 7.56 11.00 4.97 1.98 4.58 4.54 2.78 7.49
Cascade (H) 2.61 8.52 5.97 9.52 12.03 8.71 9.83 6.46 15.78 7.17 11.15 4.90 1.88 4.50 4.24 2.76 7.25
SnowFlakeNet [104] 1.94 7.61 5.61 6.77 6.82 7.09 7.21 4.65 10.98 4.76 7.54 4.16 1.14 3.78 3.15 2.67 5.37
SnowFlakeNet (H) 1.89 7.26 5.36 6.50 7.59 6.72 6.63 4.67 10.39 4.39 7.37 4.03 0.95 3.60 3.15 2.84 5.21

Table 5.1: The performance of completion approaches trained via the MVP dataset on point cloud
completion. The Chamfer Distance is reported, multiplied by 104, on the provided test set. “H”
indicates using the proposed hyperspherical module.

5.5 Experiments

Experiments are divided into three parts. We first report results on different

datasets to evaluate the effectiveness of the proposed methods in Sec 5.5.1. Second,

we conduct a detailed ablation study to validate the design of our hyperspherical

module in Sec 5.5.2. Finally, we analyze and visualize the effects of hyperspherical

embeddings introduced in Sec 5.5.3.

5.5.1 Experiments on Different Datasets

More experiments on ModelNet40 and ShapeNet can be found in Appendix

B.

MVP MVP dataset [105] contains pairs of partial and complete point clouds

from 16 categories. Partial point clouds are generated by back-projecting 2.5D depth

images into 3D space and complete point clouds are used as ground truth. In the ex-

66

Inputs Ground Truth Folding Folding Hyper

Figure 5.7: Qualitative 3D detection, pose estimation, and point cloud completion results on Grasp-
Net test set.

periments, we apply the set splitting given by the dataset and no data augmentation

is used.

We evaluate point cloud completion on MVP [105] and compare results of gen-

erating complete shape with 2048 points, and qualitative results can be found in

Figure 5.6. Compared to predictions without our hyperspherical module, the pre-

dicted point clouds tend to be a bit more blurry and contain more noise points. We

assume it is due to the test embeddings falling into regions not close to features

captured at training. More quantitative results are shown in Table 5.1. We compare

the baseline models by adding the proposed module after encoders and denote them

by (H). One exception is SnowFlakeNet, in which the decoding process consists of

encoding modules, so we also add hyperspherical modules in its decoder. To achieve

fair comparison, we train all methods with best training setting and report their

results. Table 5.1 shows that using our proposed module brings consistent improve-

ments of all existing completion approaches with 3 ∼ 9% decrease of average class

Chamfer Distance, which demonstrates the effectiveness of the method developed in

this chapter. Multi-task learning on MVP dataset will be discussed in Sec 5.5.3.

GraspNet Most point cloud completion approaches reported results on syn-

thetic datasets, since collecting a real-world dataset with annotation of complete

shapes is expensive. Unfortunately, incomplete measurements from real-world 3D

sensors differ from those point clouds synthesized in a simulated environment, and

approaches trained on synthetic dataset struggle when tasked to perform completion

in real-world scenarios. More recently, the GraspNet [127] dataset was released and

it contains the groundtruth complete shapes of objects, which helps evaluate point

cloud completion. GraspNet contains 190 cluttered and complex scenes captured by

RGBD cameras, bringing 97,280 images in total. For each image, the accurate 6D

67

Hy
pe
rs
ph
er
ica
l

Un
co
ns
tra
in
ed

Source TargetInterpolations

Figure 5.8: Illustration of point cloud interpolation on embedding space. The generated point
clouds with hyperspherical embeddings have more clear clues from source or target shapes than
those with unconstrained embeddings.

pose and the dense grasp poses are annotated for each object. There are in total 88

objects with provided CAD 3D models, and we use them to generate complete shape

groundtruth with 1024 points.

To demonstrate on real-world scenarios, we aim to detect objects in 3D space

along with predicting their complete shapes on GraspNet [127]. We modified the

structures of VoteNet [26], which was designed to detect 3D objects from point

clouds. The input point clouds are converted from the depth image captured by

RGBD sensors. After extracting the embedding from each proposal, three branches of

decoders are followed to generate predictions of 6DoF 3D bounding boxes, semantics

and objectness scores, and complete shape of point clouds, respectively. In the

evaluation, object detection is measured by mean average precision (mAP), poses

of objects are measured by the symmetry metric proposed in [128], and the point

cloud completion is measured by Chamfer Distance. We evaluate the effectiveness

of the proposed hyperspherical module in this multi-task learning scenario, and the

results shown in Table 5.2. Since the structures between models except decoders

are the same, we denote the model by its decoders in the first column. Two-stage

completion decoders, such as Cascade and SnowFlakeNet, are demonstrated to have

better performance on synthetic dataset. Unfortunately, those decoders refine on

perfect partial point clouds located on object’s surfaces, which are inaccessible in this

case. As it is shown in Table 5.2, hyperspherical embeddings help all three metrics

compared to unconstrained embeddings with noticeable improvement. Qualitative

results can be found in Figure 5.7 and Figure B.4 in Appendix B.

5.5.2 Ablation Study

The results of ablation study are shown in Table 5.3 and numbers in the table

are average class Chamfer Distance of completion models with folding decoder re-

ported on the MVP test set. As shown by the first and third column, adding the

proposed hyperspherical module reduces the completion Chamfer Distance by 8.9%,

from 10.39 to 9.47, which demonstrates the effectiveness of the method developed in

68

Model mAP (0.25) CD Pose Acc.

Folding 70.50 0.18 52.42
Folding (H) 71.21 0.14 54.01
PCN 69.11 0.21 50.33
PCN (H) 70.93 0.15 52.39

Table 5.2: Performance on GraspNet test set. Average precision with 3D IoU threshold 0.25 (mAP
0.25) is reported for object detection, and Chamfer Distance (CD) is reported for point cloud
completion, multiplied by 104, and pose accuracy (Pose Acc.) is reported for 6D pose estimation.
The first column indicates the structure of decoder used in the model, and “H” indicates using the
proposed hyperspherical module.

Unconstrained Transformed Hyperspherical 0.001 reg 0.01 reg 0.1 reg

10.39 10.12 9.47 10.40 10.73 10.89

Table 5.3: Results of ablation study. The reported metric is Chamfer Distance, multiplied by 104,
of point cloud completion on MVP test set. The first three column indicates the results of models
with different types of embeddings described similarly in Figure 5.3. “reg” indicates training with
regularization term to discourage large norms of embeddings, and the number next to it indicates
the weights when adding the term to training loss.

this chapter. There are two layers designed in the hyperspherical module, which are

a MLP layer and a normalization layer. To validate this design, we report the results

of removing the normalization layer. As shown in the second column, completion

results are improved with only the MLP layer, from 10.39 to 10.12, and we argue

the improvement is caused by less variation of embeddings’ norm after transforma-

tion shown in Figure 5.3. By comparing the first three columns, we conclude that

major improvement brought by the hyperspherical module resides in the normal-

ization layer, from 10.12 to 9.47. From Proposition V.2, the norm of embeddings

increases continuously at training, which is the key to learn a compact embedding

distribution as shown in Proposition V.4. To verify the importance of the increased

norm of embeddings, we experiment on adding a weighted constraint on embeddings

to discourage large norms of embeddings along with other losses. The constraint

in this case is the average norm of embeddings within a batch, which is similar to

a regularization term. The results are shown in the last three columns denoted by

(reg) in Table 5.3, and the number next to (reg) indicates the weights added to the

training loss. Since the constraint offset the effect of hyperspherical embeddings to

increase norm, we observe that performance of point cloud completion keeps getting

worse when the weight of constraints increases.

5.5.3 Experiments on the Effects of Hyperspherical Embedding

In this section, we study the effects of hyperspherical embedding and provide

empirical results and visualizations that align with the conclusions claimed in Sec

5.4.

69

Increased Magnitude of Embedding From Proposition V.2, the magnitude

of an embedding get increased during optimization, and we visualize the distribu-

tion of embedding magnitude from test set on MVP dataset in Figure 5.3. When

optimizing our proposed hyperspherical embedding denoted by (Hyper), the scale of

embedding’s magnitude before normalization is significantly larger than those unnor-

malized denoted by (Unconstrained and Transformed). Furthermore, we observe in

two leftmost subfigures that the range of embeddings’ magnitude changes little after

only transformed by a MLP layer, which validates that normalization is the key to

increase embedding magnitude. Even though the effect is based on vanilla gradient

descent, we still find it empirically holds for modern optimizers, such as Adam and

RMSProp shown in the two rightmost subfigures of Figure 5.3.

Enabling Wider Range of Learning Rates When optimizing a normalized

embedding, the gradient at each update can be computed by following the Equation

5.3, and it indicates that the magnitude of gradient is inversely proportional to

the norm of the embedding shown in Proposition V.3. One benefit of this finding

is that the increased norms of embeddings help neural networks gain robustness

to varying values of learning rate. For instance, if the learning rate is large, the

norm of embeddings before normalization quickly increases and makes the effective

learning rate small enough to stabilize training. Figure 5.9 (Figure B.2 and Figure

B.1 are in Appendix B) show the results of models on different tasks using different

learning rates. Compared to the point cloud completion results with unconstrained

embedding, the models using hyperspherical embeddings perform more stably under

a wider range of learning rates with better performance in particular for large learning

rates.

Compact Embedding Distribution Based on Proposition V.2 and Proposi-

tion V.4, optimizing hyperspherical embedding drives the model to learn a more

singular weight. We empirically verify this by visualizing the singular value distri-

bution of weights trained with point cloud completion task on MVP dataset, and

the results are shown in Figure 5.2. We observe that singular values learned with

hyperspherical embedding have a larger value span than those without normalized

embedding, while the majority of them are located near zero.

The resulting singular weights make the learned embedding distributed more com-

pactly in angular space. Figure 5.4 illustrates the angular distribution of embed-

dings by computing cosine similarity of pairwise embeddings from the MVP test set.

Adding a MLP layer to transform the unconstrained embedding does not change the

span of angular distribution significantly, while the hyperspherical embeddings have

much narrower angular span and are distributed more compactly on both single class

and overall classes. Compared to a compact embedding distribution, one disadvan-

70

2e
-05

5e
-05

0.0
00

1
0.0

00
2

0.0
00

5
0.0

01
0.0

02
0.0

05

6

12

18

24

30

Ch
am

fe
r D

ist
an

ce
 (C

D)

Folding

2e
-05

5e
-05

0.0
00

1
0.0

00
2

0.0
00

5
0.0

01
0.0

02
0.0

05

PCN

2e
-05

5e
-05

0.0
00

1
0.0

00
2

0.0
00

5
0.0

01
0.0

02
0.0

05

TopNet

2e
-05

5e
-05

0.0
00

1
0.0

00
2

0.0
00

5
0.0

01
0.0

02
0.0

05

Cascade

2e
-05

5e
-05

0.0
00

1
0.0

00
2

0.0
00

5
0.0

01
0.0

02
0.0

05

SnowFlakeNet

80

85

90

95

Ac
cu

ra
cy

Learning Rate
unconstrained embedding completion unconstrained embedding classification hyperspherical embedding completion hyperspherical embedding classification

Figure 5.9: Performance of multi-task learning of point cloud completion and classification on MVP
with different learning rates.

Single Task Equal Weights PCGrad [112] Uncert. [109] Weight Search
Model Acc CD Acc CD Acc CD Acc CD Acc CD S. vs. M.

Folding 89.68 10.39 89.77 11.37 89.67 11.21 89.81 11.22 89.12 10.45 -0.58
Folding (H) 89.91 9.47 89.63 10.26 89.77 10.13 89.51 10.07 89.43 9.40 0.74
PCN 89.62 10.03 89.58 10.75 89.41 10.75 89.33 10.77 89.26 10.37 -3.39
PCN (H) 89.55 9.52 89.79 9.73 89.56 9.58 89.69 9.58 89.78 9.45 0.74
TopNet 89.49 10.12 89.59 10.42 89.84 10.33 89.58 10.52 89.43 10.24 -1.19
TopNet (H) 89.55 9.50 89.51 9.64 89.80 9.59 89.90 9.48 89.74 8.79 7.47
Cascade 90.91 7.49 90.23 8.58 90.33 8.53 90.27 8.51 90.18 7.50 -0.13
Cascade (H) 90.51 7.25 90.19 8.32 90.02 8.18 90.32 8.32 90.48 7.22 0.41
SnowFlakeNet 90.93 5.37 90.90 5.19 90.99 5.29 90.18 5.27 90.75 5.04 6.15
SnowFlakeNet (H) 90.91 5.21 90.98 5.09 90.95 5.21 90.13 5.11 90.82 5.02 3.65

Table 5.4: Comparison results of models using different multi-task training strategies on MVP
dataset. Results of shape classification (Acc) and point cloud completion (CD) are reported, mul-
tipied by 104. “S. vs. M.” shows the percentage of performance change comparing best completion
results in multi-task learning to those in single-task learning.

tage of sparse embedding distribution is to increase the possibility of unseen features

falling far away from seen features at training, which inevitably worsens the gener-

alization of models at testing. To visually demonstrate the degree of sparsity in the

embedding space, we use trained models that perform point cloud reconstruction on

ModelNet40 to interpolate embeddings on the embedding space and generate point

clouds, and the results are shown in Figure 5.8. Compared to interpolated results

from unconstrained embedding space, the generated point clouds with hyperspher-

ical embeddings have more clear clues from source or target shapes, because the

interpolated hyperspherical embeddings are closer to features captured at training.

Thus, it helps with generating more reasonable shapes of objects at testing.

Improvement on Multi-task Learning In addition to single-task learning,

the proposed hyperspherical module also improves the performance of point cloud

completion in multi-task learning with other semantic tasks. To verify this, we report

results of multi-task learning on three different datasets: ModelNet40, ShapeNet, and

MVP. We report the results of joint training point cloud completion and shape clas-

sification on MVP in Figure 5.9. Since the ModelNet40 and ShapeNet do not provide

pairs of partial and complete point clouds, results of point cloud reconstruction are

reported along with shape classification on ModelNet in Figure B.2 (in Appendix B)

71

and part segmentation on ShapeNet in Figure B.1 (in Appendix B) . By comparing

the results of models with unconstrained embeddings, the proposed hyperspherical

module has little effect on the performance of semantic tasks. However, models with

the proposed module have more stable performance when using large learning rates

than those with unconstrained embeddings, since the same setting tend to cause

training unconverged. In terms of converged results, models with our method still

outperform their baselines with noticeable improvement.

To make a fair comparison, we also report results of other approaches developed

for multi-task learning using different types of embeddings trained on MVP dataset

as shown in Table 5.4. The overall classification accuracy and Chamfer Distance

multiplied by 104 are reported. The second to fifth columns show results of mod-

els with different training strategies indicated by the column title. Unsurprisingly,

models with the proposed hyperspherical modules outperform the baselines on point

cloud completion in both single-task and multi-task learnings under all settings. By

comparing the completion results in multi-task learning, manually searching the op-

timal weights between completion task and classification task takes much time, but it

achieves the best completion results with little affection on classification performance.

Furthermore, the rightmost column (S. vs. M.) presents the percent of changes com-

paring the best completion results in multi-task learning to those in single-task learn-

ing. It shows improvement of completion performance trained in multi-task learning

when using our method, while the models with unconstrained embeddings struggle

in degradation of completion performance when they are trained with shape clas-

sification. One exception is SnowFlakeNet with unconstrained embeddings, which

gets improved on completion when trained with classification. We argue that it is

due to multi-task learning helps with reducing the overfitting issue observed when

training SnowFlakeNet in single-task learning, but our proposed method (5.02) still

outperforms its baseline (5.04).

To delve into the effects of hyperspherical embedding on multi-task learning, we

visualize the conflicts between tasks when training them jointly in Figure 5.5. Specif-

ically, the measure we visualize is the cosine similarity of gradients on the shared

encoders with respect to different task losses, where negative values indicate conflict-

ing gradients, as proposed by [112]. The visualization shows that the gradient cosine

similarity with hyperspherical embeddings are almost positive, while those with un-

constrained embeddings tend to be more negative, which explains the improvement

of point cloud completion in multi-task learning with classification observed in Table

5.4. Moreover, we find that classification dominates the training since its magnitude

of gradient is significantly larger than gradients with respect to completion loss, as

shown in the right subfigure in Figure 5.5. This aligns well with the results of weight

72

search experiments, where smaller classification weight or larger completion weight

lead to better completion performance.

5.6 Conclusions

This chapter proposes a general module for point cloud completion. In particular,

our hyperspherical module transforms and normalizes the output from the encoder

onto the surface of a hypersphere before it is processed by the following decoders. We

study the effects of the proposed hyperspherical embeddings in both theoretical and

experimental ways. Extensive experiments are performed on synthetic and real-world

dataset, and the achieved state-of-the-art results in both single-task and multi-task

learnings demonstrate the effectiveness of the proposed method.

CHAPTER VI

Future Directions

This thesis targets the challenges in 3D scene understanding by developing al-

gorithms for generating depth maps and point cloud analysis, but there are ample

room for development of other directions. This chapter outlines several main ideas

for future research as follows.

3D scene understanding with limited data

Thanks to the deep learning techniques and the accessibility of large datasets,

existing models have achieved impressive performance on tasks in 3D scene under-

standing. The methods developed in this thesis also rely on large datasets and focus

on how to effectively learn the representations from point clouds. However, accessibil-

ity of large datasets is not always guaranteed since annotating data, especially in 3D

space, is known to be difficult and expensive. Furthermore, the lack of ample train-

ing data will significantly degrade the performance of deep learning models. Thus,

obtaining models with the ability to perform similarly well with limited amounts of

training data is desirable. Specifically, learning 3D data with one-shot learning or

unsupervised learning has the potential to broaden the applications that require 3D

scene understanding while have limited access to training data.

Transferring knowledge from synthetics to real-world applications

Another way to address the inaccessibility of large 3D datasets is to obtain rela-

tively cheap synthetic datasets. For example, the methods developed in this thesis as

well as other approaches propose to experiment on synthetic point clouds generated

by sampling on the surfaces of CAD models of objects; sophisticated simulators have

been designed to simulate the interaction between vehicles for generating self-driving

car datasets. Since there is a discrepancy between the synthetic data and real-world

measurement, directly applying the models trained on synthetic data perform worse

on real-world data. In particular, we are interested in transferring the knowledge

73

74

learned from completion on synthetic point clouds to real-world completion appli-

cations, since annotating the groundtruth complete shapes of objects in real-world

measurement is almost infeasible. And the ability to predict complete shapes from

3D measurement would benefit many downstream tasks, such as robot arms for

grasping unknown objects.

Compact modeling of shapes

Compared to voxels, point clouds are a more compact representation of objects

without quantization loss, so methods developed in this thesis focus on representing

objects using point clouds. The architectures we used are able to generate point

clouds with fine details at a preset resolution. However, this fixed resolution of

point clouds may raise challenges for different downstream tasks. For example, the

high-resolution point clouds are needed for analyzing tasks, while saving those point

clouds will consume a fair amount of storage space. Therefore, it is desirable to rep-

resent objects in a compact representation and have the ability to be converted into

arbitrary resolution of point clouds at the same time. More recent works proposed

to model the shape of objects using a sign distance function by learning from point

clouds, in which the function outputs a value for any point to indicate whether it

is inside or outside the objects, and arbitrary resolution of shapes can be generated

by sampling in the space. And I believe representing 3D objects in this way has

the potential to broaden the analysis of 3D measurement and will also be useful for

applications requiring collision check.

APPENDIX

75

76

APPENDIX A

Appendix to Point Set Voting

A.1 Appendix to Point Set Voting

Here we provide the derivation of zopt, the optimal latent feature with highest

probability in the latent space. The distribution of the latent space qϕ(z|x) is rep-

resented by a set of multivariate Gaussian distributions shown in Equation (4.5).

By assuming that votes are independent and qϕ(z|xi) is Gaussian distributed, the

derivation of zopt is as follows:

zopt = argmax
z

qϕ(z|x)

= argmax
z

log(qϕ(z|x))

= argmax
z

n∑
i=1

log(qϕ(z|xi))

= argmax
z

n∑
i=1

log

(
1

(2π)m/2|Σ|1/2i

exp

(
−1

2
(z− µi)

TΣ−1
i (z− µi)

))

= argmax
z

−
n∑

i=1

log
(
(2π)m/2|Σ|1/2i

)
+

n∑
i=1

(
−1

2
(z− µi)

TΣ−1
i (z− µi)

)
= argmax

z

n∑
i=1

(
−1

2
(z− µi)

TΣ−1
i (z− µi)

)

(A.1)

where a multivariate Gaussian distribution is characterized by mean vector µi and

covariance matrix Σi; n is the number of votes; m is the dimension of the latent

space. The solution to optimizing qϕ(z|x) can be computed by setting derivative to

zero,

0 =
∂
∑n

i=1

(
−1

2
(z− µi)

TΣ−1
i (z− µi)

)
∂z

=
n∑

i=1

Σ−1
i (z− µi)

(A.2)

77

No noise

Figure A.1: Results of point clouds completion obtained from the noisy partial observation. Gaus-
sian noise with zero mean is assumed and the standard deviation is indicated at the bottom. Top:
input partial observation. Bottom: prediction (red) overlapped with inputs (green).

AtlasNetInput PCNFoldingNet TopNet Ours GT

Figure A.2: Failure cases of point clouds completion on the Completion3D dataset.

and the maximizing argument zopt of qϕ(z|x) is given by

(A.3) zopt =

∑n
i=1Σ

−1
i µi∑n

i=1Σ
−1
i

For simplicity, we assume diagonal covariance matrix during experiments. Both µi

and Σi are generated from each local point set, and modeled by neural networks.

A.2 Visualization of Point Clouds Completion with Noisy Inputs

We visualize the results of point clouds completion with added noise in the Figure

A.1. Input partial point clouds are perturbed using Gaussian noise with zero mean,

and the standard deviation differs in experiments as they are indicated at bottom of

78

the figure. It shows that the proposed model tends to maintain input partial shapes

and lacks the ability to distinguish noise points.

A.3 Failure Cases on Point Clouds Completion

We show failure cases of point clouds completion on Completion3D in the Figure

A.2. Given partial observation with no distinct geometric information, all models

fail to generate correct complete point clouds. However, the method developed in

this paper is able to generate sharp and reasonable completion, while outputs of

other approaches are blurry. We argue the reason is that other approaches tend

to generate a mean shape of training data when difficult partial point clouds are

observed. However, the proposed model predicts reasonable complete shapes.

79

APPENDIX B

Appendix to Hyperspherical Point Cloud Completion

B.1 Proof of Proposition

Suppose the normalization process follows Equation 5.2, and the loss at opti-

mization is denoted by L, and the gradient to embedding f follows Equation 5.3.

Based on them, we show the orthogonality between an embedding and its gradient

by computing the their inner product:

⟨f, ∂L
∂f

⟩ =
⟨f, ∂L

∂f̂
⟩ − ⟨f, f̂⟩⟨∂L

∂f̂
, f̂⟩

∥f∥2

=
⟨f, ∂L

∂f̂
⟩ − ⟨f̂ , f̂⟩⟨∂L

∂f̂
, f⟩

∥f∥2

=
⟨f, ∂L

∂f̂
⟩ − ⟨∂L

∂f̂
, f⟩

∥f∥2
= 0

(B.1)

B.2 More Experiments

ModelNet40 ModelNet40 dataset contains 12,311 shapes from 40 object cat-

egories, and they are split into 9,843 for training and 2,468 for testing. Since the

dataset does not provide partial point clouds, we evaluate our proposed method on

performing point cloud reconstruction and shape classification. We generate input

point clouds by evenly sampling 1024 points from the surface of objects and normalize

them within a unit sphere, and no data augmentation is used at training.

Quantitative results on Modelnet40 [59] are shown in Table B.2. To make a

fair comparison, we report results of combination of two popular encoders, Point-

Net [19] without T-Net and DGCNN [22], and three different point cloud decoders

that are Folding [88], PCN [89] and TopNet [90]. The baseline models are compared

80

Model Seg Acc. CD

PointNet-Folding 92.06 50.08
PointNet-Folding (H) 92.01 34.75

PointNet-PCN 92.06 43.61
PointNet-PCN (H) 92.01 38.18

PointNet-TopNet 92.06 37.4
PointNet-TopNet (H) 92.01 35.50

DGCNN-Folding 92.50 49.21
DGCNN-Folding (H) 92.39 33.88

DGCNN-PCN 92.50 42.42
DGCNN-PCN (H) 92.39 37.11

DGCNN-TopNet 92.50 36.80
DGCNN-TopNet (H) 92.38 35.10

Table B.1: Single-task learning on ShapeNet. Overall point segmentation accuracy (Seg Acc.) is
reported for part segmentation, and Chamfer Distance (CD) is reported for point cloud reconstruc-
tion, multiplied by 104. The first column describes the encoders and decoders used in the model,
and “H” indicates using the proposed hyperspherical module.

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

0

50

100

150

200

250

Ch
am

fe
r D

ist
an

ce
 (C

D)

PointNet+Folding

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

PointNet+PCN

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

PointNet+TopNet

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

DGCNN+Folding

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

DGCNN+PCN

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

DGCNN+Topnet

80

84

88

92

96

Ac
cu

ra
cy

Learning Rate
unconstrained embedding completion unconstrained embedding segmentation hyperspherical embedding completion hyperspherical embedding segmentation

Figure B.1: Performance of multi-task learning of point cloud reconstruction and part segmentation
on ShapeNet with different learning rates.

to its variants added with our proposed hyperspherical modules denoted with (H).

As shown by the last column in Table B.2, our proposed hyperspherical module

helps baseline approaches gain noticeable decrease of Chamfer Distance in all cases.

We also test the proposed module in shape classification by removing point cloud

decoders. As shown in the second column, the proposed method module leads to

slightly better performance of shape classification. Multi-task learning results on

shape reconstruction and classification are shown in Figure B.2. By comparing the

results of models with unconstrained embeddings, the proposed hyperspherical mod-

ule have little effect on the performance of semantic tasks. However, models with the

proposed module have more stable performance when using large learning rates than

those with unconstrained embeddings, since the same setting tend to cause training

unconverged. In terms of converged results, models with our method still outperform

their baselines with noticeable improvement.

ShapeNet ShapeNet part dataset [59] dataset contains 16,881 shapes from 16

object categories with 50 parts. Each point cloud contains 2048 points which are

generated by evenly sampling from the surface of objects, and we follow the same

81

Model Cls Acc. CD

PointNet-Folding 87.33 75.86
PointNet-Folding (H) 87.36 48.88

PointNet-PCN 87.33 48.17
PointNet-PCN (H) 87.36 43.55

PointNet-TopNet 87.33 55.04
PointNet-TopNet (H) 87.36 49.65

DGCNN-Folding 89.22 70.32
DGCNN-Folding (H) 89.47 45.37

DGCNN-PCN 89.22 46.54
DGCNN-PCN (H) 89.47 42.70

DGCNN-TopNet 89.22 55.87
DGCNN-TopNet (H) 89.47 48.75

Table B.2: Single-task learning on ModelNet40. Overall classification accuracy (Cls Acc.) is re-
ported for shape classification, and Chamfer distance (CD) is reported for point cloud reconstruc-
tion, multiplied by 104. The first column describes the encoders and decoders used in the model,
and “H” indicates using the proposed hyperspherical module.

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

0

50

100

150

200

250

300

Ch
am

fe
r D

ist
an

ce
 (C

D)

PointNet+Folding

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

PointNet+PCN

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

PointNet+TopNet

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

DGCNN+Folding

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

DGCNN+PCN

0.0001
0.0002

0.0005
0.001

0.002
0.005 0.01

DGCNN+Topnet

80

84

88

92

Ac
cu

ra
cy

Learning Rate
unconstrained embedding completion unconstrained embedding classification hyperspherical embedding completion hyperspherical embedding classification

Figure B.2: Performance of multi-task learning of point cloud reconstruction and classification on
ModelNet40 with different learning rates.

set splitting as in [20]. Since the dataset does not provide partial point clouds, we

evaluate our proposed method on performing point cloud reconstruction and part

segmentation.

We report the results on ShapeNet [59] in Table B.1. Similar to models con-

structed for experiments on ModelNet40, we experiment on a combination of differ-

ent encoders and decoders. As shown by the last column in Table B.1, the proposed

hyperspherical module improves point cloud reconstruction consistently in all cases.

When tasked on part segmentation, the point cloud decoders are removed from the

models, and the embeddings concatenated with lifted point-wise features are pro-

cessed by fully connected layers to predict part category. From the second column in

Table B.1, part segmentation performance is not affected by the proposed module.

Multi-task learning results on shape reconstruction and part segmentation are shown

in Figure B.1. By comparing the results of models with unconstrained embeddings,

the proposed hyperspherical module have little effect on the performance of seman-

tic tasks. However, models with the proposed module have more stable performance

when using large learning rates than those with unconstrained embeddings, since the

82

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8

Co
un

ts

1e4 Plane
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Cabinet
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Car
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Chair
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8

Co
un

ts

1e4 Lamp
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Couch
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Table
uncontrained embedding
transformed embedding
hyperspherical embedding

0.4 0.6 0.8 1.0
Cosine Similarity

0

2

4

6

8 1e4 Watercraft
uncontrained embedding
transformed embedding
hyperspherical embedding

Figure B.3: Cosine similarity distribution of embeddings. We compute pairwise cosine distance
between embeddings obtained from the test set in MVP dataset. We visualize distribution of
different classes as described in the plot titles. Hyperspherical embeddings have more compact
angular distribution.

Inputs Ground Truth Folding Folding Hyper PCN PCN Hyper

Figure B.4: More qualitative 3D detection, pose estimation, and point cloud completion results on
GraspNet test set

same setting tend to cause training unconverged. In terms of converged results, mod-

els with our method still outperform their baselines with noticeable improvement.

B.3 More visualization

We show the angular distribution of embeddings by computing the pairwise cosine

similarity obtained from the test set in MVP dataset. More visualizations of different

classes as described in the plot titles are shown in Figure B.3, and the distribution

of overall classes is shown in Figure 5.5

More qualitative results of 3D object detection, pose estimation, and point cloud

completion can be found in Figure B.4.

BIBLIOGRAPHY

83

84

BIBLIOGRAPHY

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection
with region proposal networks,” in Advances in neural information processing systems, 2015,
pp. 91–99.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 779–788.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2961–2969.

[5] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.

[6] Y. Feng, Z. Zhang, X. Zhao, R. Ji, and Y. Gao, “GVCNN: Group-view convolutional neural
networks for 3d shape recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 264–272.

[7] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object
recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 922–928.

[8] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and multi-view
CNNs for object classification on 3d data,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 5648–5656.

[9] Y. Feng, Y. Feng, H. You, X. Zhao, and Y. Gao, “Meshnet: Mesh neural network for 3d shape
representation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 8279–8286.

[10] G. Gkioxari, J. Malik, and J. Johnson, “Mesh R-CNN,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9785–9795.

[11] J. Joglekar, S. S. Gedam, and B. K. Mohan, “Image matching using sift features and relax-
ation labeling technique—a constraint initializing method for dense stereo matching,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5643–5652, 2014.

[12] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 30, no. 2, pp. 328–341, 2008.

[13] J. Zbontar and Y. LeCun, “Stereo matching by training a convolutional neural network to
compare image patches,” Journal of Machine Learning Research, vol. 17, no. 1-32, p. 2, 2016.

85

[14] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo matching,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
5695–5703.

[15] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 4040–4048.

[16] A. Kendall, H. Martirosyan, S. Dasgupta, and P. Henry, “End-to-end learning of geometry and
context for deep stereo regression,” in IEEE International Conference on Computer Vision.
IEEE, 2017, pp. 66–75.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 3354–3361.

[18] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[19] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 652–660.

[20] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space,” in Advances in neural information processing systems, 2017,
pp. 5099–5108.

[21] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional neural network for point
cloud analysis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8895–8904.

[22] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph
CNN for learning on point clouds,” ACM Transactions on Graphics (TOG), vol. 38, no. 5, p.
146, 2019.

[23] X. Li, J. K. Pontes, and S. Lucey, “Pointnetlk revisited,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 12 763–12 772.

[24] J. Lee, S. Kim, M. Cho, and J. Park, “Deep hough voting for robust global registration,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 994–16 003.

[25] S. Shi, X. Wang, and H. Li, “PointRCNN: 3d object proposal generation and detection from
point cloud,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 770–779.

[26] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d object detection
in point clouds,” in Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 9277–9286.

[27] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham, “Learning
semantic segmentation of large-scale point clouds with random sampling,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[28] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet:
Richly-annotated 3d reconstructions of indoor scenes,” in Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 2017.

86

[29] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou,
Y. Chai, B. Caine, et al., “Scalability in perception for autonomous driving: Waymo open
dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2446–2454.

[30] J. Zhang, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson, “Dispsegnet: Leveraging
semantics for end-to-end learning of disparity estimation from stereo imagery,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1162–1169, 2019.

[31] J. Zhang, M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Learning rotation-invariant
representations of point clouds using aligned edge convolutional neural networks,” in 2020
International Conference on 3D Vision (3DV). IEEE, 2020, pp. 200–209.

[32] J. Zhang, W. Chen, Y. Wang, R. Vasudevan, and M. Johnson-Roberson, “Point set voting
for partial point cloud analysis,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
596–603, 2021.

[33] W.-S. Jang and Y.-S. Ho, “Efficient disparity map estimation using occlusion handling for
various 3d multimedia applications,” IEEE Transactions on Consumer Electronics, vol. 57,
no. 4, 2011.

[34] S. Adhyapak, N. Kehtarnavaz, and M. Nadin, “Stereo matching via selective multiple win-
dows,” Journal of Electronic Imaging, vol. 16, no. 1, p. 013012, 2007.

[35] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory
and experiment,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE International
Conference on. IEEE, 1991, pp. 1088–1095.

[36] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt,
D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolutional networks,” in
Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766.

[37] G. Yang, H. Zhao, J. Shi, and J. Jiaya, “Segstereo: Exploiting semantic information for
disparity estimation,” in Proceedings of the European Conference on Computer Vision, 2018,
pp. 636–651.

[38] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 5410–5418.

[39] Z. Liang, Y. Feng, Y. G. H. L. W. Chen, and L. Q. L. Z. J. Zhang, “Learning for disparity
estimation through feature constancy,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2811–2820.

[40] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3061–3070.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Adv. Neural Info. Process. Syst., 2012, pp. 1097–1105.

[42] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in European conference on computer
vision. Springer, 2014, pp. 740–755.

[43] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3213–3223.

[44] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual learning: A two-stage
convolutional neural network for stereo matching,” in 2017 IEEE International Conference
on Computer Vision Workshop. IEEE, 2017, pp. 878–886.

87

[45] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: Evolution
of optical flow estimation with deep networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2462–2470.

[46] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised CNN for single view depth
estimation: Geometry to the rescue,” in European Conference on Computer Vision. Springer,
2016, pp. 740–756.

[47] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth estimation
with left-right consistency,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 270–279.

[48] C. Zhou, H. Zhang, X. Shen, and J. Jia, “Unsupervised learning of stereo matching,” in 2017
IEEE International Conference on Computer Vision. IEEE, 2017, pp. 1576–1584.

[49] N. Luo, C. Yang, W. Sun, and B. Song, “Unsupervised stereo matching with occlusion-aware
loss,” in Pacific Rim International Conference on Artificial Intelligence. Springer, 2018, pp.
746–758.

[50] Y. Zhong, Y. Dai, and H. Li, “Self-supervised learning for stereo matching with self-improving
ability,” arXiv preprint arXiv:1709.00930, 2017.

[51] F. Guney and A. Geiger, “Displets: Resolving stereo ambiguities using object knowledge,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
4165–4175.

[52] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” in International Conference on Machine Learning, 2015, pp. 448–456.

[53] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convo-
lutional network,” arXiv preprint arXiv:1505.00853, 2015.

[54] D. Kinga and J. B. Adam, “A method for stochastic optimization,” in International Confer-
ence on Learning Representations (ICLR), vol. 5, 2015.

[55] A. Ahmadi and I. Patras, “Unsupervised convolutional neural networks for motion estima-
tion,” in Image Processing (ICIP), 2016 IEEE International Conference on. IEEE, 2016,
pp. 1629–1633.

[56] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural
networks for 3d shape recognition,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 945–953.

[57] A. Kanezaki, Y. Matsushita, and Y. Nishida, “Rotationnet: Joint object categorization and
pose estimation using multiviews from unsupervised viewpoints,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 5010–5019.

[58] J.-C. Su, M. Gadelha, R. Wang, and S. Maji, “A deeper look at 3d shape classifiers,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[59] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep
representation for volumetric shapes,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1912–1920.

[60] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, “Learning so (3) equivariant
representations with spherical CNNs,” in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 52–68.

88

[61] Y. Rao, J. Lu, and J. Zhou, “Spherical fractal convolutional neural networks for point cloud
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 452–460.

[62] Y. You, Y. Lou, Q. Liu, L. Ma, W. Wang, Y. Tai, and C. Lu, “Prin: Pointwise rotation-
invariant network,” arXiv preprint arXiv:1811.09361, 2018.

[63] C. Chen, G. Li, R. Xu, T. Chen, M. Wang, and L. Lin, “Clusternet: Deep hierarchical
cluster network with rigorously rotation-invariant representation for point cloud analysis,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
4994–5002.

[64] Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung, “Rotation invariant convolutions for 3d
point clouds deep learning,” in 2019 International Conference on 3D Vision (3DV). IEEE,
2019, pp. 204–213.

[65] X. Sun, Z. Lian, and J. Xiao, “Srinet: Learning strictly rotation-invariant representations for
point cloud classification and segmentation,” in Proceedings of the 27th ACM International
Conference on Multimedia, 2019, pp. 980–988.

[66] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 3431–3440.

[67] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for the recognition of
3d point cloud models,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 863–872.

[68] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN: Octree-based convolutional
neural networks for 3d shape analysis,” ACM Transactions on Graphics (TOG), vol. 36, no. 4,
p. 72, 2017.

[69] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating networks: Efficient convolu-
tional architectures for high-resolution 3d outputs,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2088–2096.

[70] J. Li, B. M. Chen, and G. Hee Lee, “So-net: Self-organizing network for point cloud analysis,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp.
9397–9406.

[71] Y. Zhang and M. Rabbat, “A graph-CNN for 3d point cloud classification,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 6279–6283.

[72] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 9621–9630.

[73] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution on x-transformed
points,” in Advances in Neural Information Processing Systems, 2018, pp. 820–830.

[74] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer, L. Guibas,
et al., “A scalable active framework for region annotation in 3d shape collections,” ACM
Transactions on Graphics (TOG), vol. 35, no. 6, p. 210, 2016.

[75] R. Spezialetti, S. Salti, and L. D. Stefano, “Learning an effective equivariant 3d descriptor
without supervision,” in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 6401–6410.

89

[76] A. Mian, M. Bennamoun, and R. Owens, “On the repeatability and quality of keypoints
for local feature-based 3d object retrieval from cluttered scenes,” International Journal of
Computer Vision, vol. 89, no. 2-3, pp. 348–361, 2010.

[77] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms for local surface
description,” in European conference on computer vision. Springer, 2010, pp. 356–369.

[78] A. Petrelli and L. Di Stefano, “On the repeatability of the local reference frame for partial
shape matching,” in 2011 International Conference on Computer Vision. IEEE, 2011, pp.
2244–2251.

[79] J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional neural network to
compare image patches,” The journal of machine learning research, vol. 17, no. 1, pp. 2287–
2318, 2016.

[80] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas, “Kp-
conv: Flexible and deformable convolution for point clouds,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 6411–6420.

[81] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[82] P. K. Diederik and M. Welling, “Auto-encoding variational bayes,” in Proceedings of the
International Conference on Learning Representations (ICLR), vol. 1, 2014.

[83] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” arXiv preprint
arXiv:1906.02691, 2019.

[84] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local structures by kernel
correlation and graph pooling,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 4548–4557.

[85] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for 3d object detection
from rgb-d data,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 918–927.

[86] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d object reconstruction
from a single image,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 605–613.

[87] Y. Sun, Y. Wang, Z. Liu, J. Siegel, and S. Sarma, “Pointgrow: Autoregressively learned point
cloud generation with self-attention,” in The IEEE Winter Conference on Applications of
Computer Vision, 2020, pp. 61–70.

[88] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud auto-encoder via deep
grid deformation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 206–215.

[89] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point completion network,” in
2018 International Conference on 3D Vision (3DV). IEEE, 2018, pp. 728–737.

[90] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “Topnet: Structural
point cloud decoder,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 383–392.

[91] D. Stutz and A. Geiger, “Learning 3d shape completion from laser scan data with weak super-
vision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 1955–1964.

90

[92] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and curves in
pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

[93] D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,” Pattern recog-
nition, vol. 13, no. 2, pp. 111–122, 1981.

[94] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, “The 3d hough transform for plane
detection in point clouds: A review and a new accumulator design,” 3D Research, vol. 2, no. 2,
p. 3, 2011.

[95] M. Sun, G. Bradski, B.-X. Xu, and S. Savarese, “Depth-encoded hough voting for joint object
detection and shape recovery,” in European Conference on Computer Vision. Springer, 2010,
pp. 658–671.

[96] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep learning of local rgb-d patches
for 3d object detection and 6d pose estimation,” in European conference on computer vision.
Springer, 2016, pp. 205–220.

[97] S.-Y. Guo, Y.-G. Kong, Q. Tang, and F. Zhang, “Probabilistic hough transform for line detec-
tion utilizing surround suppression,” in 2008 International Conference on Machine Learning
and Cybernetics, vol. 5. IEEE, 2008, pp. 2993–2998.

[98] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep condi-
tional generative models,” in Advances in neural information processing systems, 2015, pp.
3483–3491.

[99] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[100] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

[101] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[102] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A papier-mâché approach
to learning 3d surface generation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 216–224.

[103] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[104] P. Xiang, X. Wen, Y.-S. Liu, Y.-P. Cao, P. Wan, W. Zheng, and Z. Han, “Snowflakenet: Point
cloud completion by snowflake point deconvolution with skip-transformer,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp. 5499–5509.

[105] L. Pan, X. Chen, Z. Cai, J. Zhang, H. Zhao, S. Yi, and Z. Liu, “Variational relational point
completion network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 8524–8533.

[106] X. Wen, T. Li, Z. Han, and Y.-S. Liu, “Point cloud completion by skip-attention network
with hierarchical folding,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 1939–1948.

[107] X. Wang, M. H. Ang Jr, and G. H. Lee, “Cascaded refinement network for point cloud
completion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 790–799.

91

[108] J. Uhrig, M. Cordts, U. Franke, and T. Brox, “Pixel-level encoding and depth layering for
instance-level semantic labeling,” in German conference on pattern recognition. Springer,
2016, pp. 14–25.

[109] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 7482–7491.

[110] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with attention,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 1871–1880.

[111] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” Advances in
neural information processing systems, vol. 31, 2018.

[112] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient surgery for multi-
task learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 5824–5836,
2020.

[113] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d tracking and forecasting with rich maps,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[114] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The apolloscape open
dataset for autonomous driving and its application,” IEEE transactions on pattern analysis
and machine intelligence, vol. 42, no. 10, pp. 2702–2719, 2019.

[115] X. Wen, P. Xiang, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu, “Pmp-net:
Point cloud completion by learning multi-step point moving paths,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7443–7452.

[116] S. Pu, K. Zhao, and M. Zheng, “Alignment-uniformity aware representation learning for zero-
shot video classification,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 19 968–19 977.

[117] T. Wang and P. Isola, “Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere,” in International Conference on Machine Learning.
PMLR, 2020, pp. 9929–9939.

[118] D. Zhang, Y. Li, and Z. Zhang, “Deep metric learning with spherical embedding,” Advances
in Neural Information Processing Systems, vol. 33, pp. 18 772–18 783, 2020.

[119] X. Zhang, F. X. Yu, S. Karaman, W. Zhang, and S.-F. Chang, “Heated-up softmax embed-
ding,” arXiv preprint arXiv:1809.04157, 2018.

[120] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere embedding
for face recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 212–220.

[121] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “Normface: L2 hypersphere embedding for
face verification,” in Proceedings of the 25th ACM international conference on Multimedia,
2017, pp. 1041–1049.

[122] W. Liu, Y.-M. Zhang, X. Li, Z. Yu, B. Dai, T. Zhao, and L. Song, “Deep hyperspherical
learning,” Advances in neural information processing systems, vol. 30, 2017.

[123] W. Liu, R. Lin, Z. Liu, L. Xiong, B. Schölkopf, and A. Weller, “Learning with hyperspherical
uniformity,” in International Conference On Artificial Intelligence and Statistics. PMLR,
2021, pp. 1180–1188.

92

[124] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accel-
erate training of deep neural networks,” Advances in neural information processing systems,
vol. 29, 2016.

[125] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning,” Coursera,
video lectures, vol. 264, no. 1, pp. 2146–2153, 2012.

[126] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[127] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-scale benchmark for
general object grasping,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 11 444–11 453.

[128] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A convolutional neural network
for 6d object pose estimation in cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Leveraging Semantics for End-to-End Learning of Disparity Estimation from Stereo Imagery
	Learning Rotation-Invariant Representations of Point Clouds
	Point Set Voting for Partial Point Cloud Analysis
	Hyperspherical Embedding for Point Cloud Completion
	Future Directions
	APPENDIX
	BIBLIOGRAPHY

