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ABSTRACT

Numerical simulations of multi-scale problems remain challenging in many applica-

tions due to complex interactions between the resolved and unresolved scales. Effective

computations of these problems require coarse-grained models that approximate the impact

of the fine scales in terms of the coarse scales. This work develops coarse-grained modeling

strategies that leverage the structure of the underlying partial differential equations and

formal projections of the available high-dimensional data to discover closures and augment

existing model forms.

First, a coarse-grained modeling approach for Galerkin discretizations is developed

by combining the Variational Multi-scale decomposition and the Mori–Zwanzig (M–Z)

formalism. An appeal of this approach is that – akin to Green’s functions for linear problems

– the impact of unresolved dynamics on resolved scales can be formally represented as a

convolution (or memory) integral in a non-linear setting. A parameter-free dynamic version

of the MZ-VMS model is then developed for the continuous Galerkin method and assessed

in detail in coarse-grained simulations of a range of problems from the one-dimensional

Burgers equation to incompressible turbulence.

Second, the VMS sub-scale model forms discussed in the first part are rewritten in

a non-dimensionalized form to generate a neural network (N-N) model form and a set

of generalizable local non-dimensional input and output features. These features, along

with the model structure, are embedded into a special N-N called the variational super-

resolution N-N (VSRNN), providing a general framework for the data-driven discovery

of closures for various Galerkin discretizations. It is further demonstrated that for linear

xvi



problems, our formulation reduces the problem of learning the sub-scales to one of learning

the basis coefficients of the projected element Green’s function. By training the VSRNN

network on a sequence of 𝐿2-projected data, and using the super-resolved state to compute

the discontinuous Galerkin fluxes, improvement in the optimality and the accuracy of

the method is obtained for both the linear advection problem and turbulent channel flow

problem. The model is also shown to extrapolate to out-of-sample initial conditions and

Reynolds numbers.

Finally, closure model discovery through formal projections of the high-dimensional

data proposed in the second part is extended to the near-wall region. This resulted in the

development of a unified framework that can be used as a lens to quantitatively assess and

augment a wide range of coarse-grained models of turbulence, viz. large eddy simulations

(LES), hybrid Reynolds-averaged/LES methods, and wall-modeled (WM)LES. Taking a

turbulent channel flow as an example, optimality is assessed in the wall-resolved limit,

the hybrid RANS/LES limit, and the WMLES limit via projections at different resolutions

suitable for these approaches. These optimal a priori estimates are shown to have similar

characteristics to existing a posteriori solutions reported in the literature. Consistent ac-

curacy metrics are developed for scale-resolving methods using the optimal solution as a

reference, and evaluations are performed.We further characterize the slip velocity (a form

of sub-scale) inWMLES in terms of the near-wall under-resolution, and develop a universal

scaling relationship for the slip wall model coefficient, which is used to augment existing

slip wall models. Various a posteriori tests reveal superior performance over the dynamic

slip wall model.

Overall, this dissertation develops mathematical formalisms and data-driven tools that

enable the development of generalizable coarse-grained models for a wide range of multi-

scale problems and allows for an objective assessment and augmentation of existing closures.
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CHAPTER I

Introduction

1.1 The multi-scale phenomenon.

The multi-scale phenomenon is ubiquitous in science and engineering and is character-

ized by disparate ranges of spatio-temporal scales and complex interactions therein. If the

separation between the smallest and the largest scales is sufficiently large, the number of

degrees of freedom required to describe the system can become computationally intractable.

Hence, to reduce computational complexity, multi-scale modeling is required. The applica-

tions of multi-scale modeling range from protein conformational dynamics to astrophysics.

One problem where the multi-scale phenomenon is strongly observed is fluid flow. Figure

1.1 shows the hierarchy of multi-scale models used to model fluid-flow problems. The

most straightforward approach is to track the movement of each molecule, i.e., molecular

dynamics. This approach becomes computationally intractable for large systems. In most

applications, the position of each molecule is not important, and the quantities of interest

are the average quantities such as the velocity, the pressure, or the distribution functions.

Multi-scale modeling aims to reduce computational complexity by deriving new governing

equations for the quantities of interest without losing considerable predictive accuracy. This

process is called coarse-graining, and the resulting model is called a coarse-grained model.

Figure 1.1 also shows the various equations used to describe fluid flows at different levels

of approximation. Moving from from right to left, the computational cost increases, and

1



Molecular Dynamics Meso-scales Approach

Accuracy and Cost

Continuum  Approach 1-D models using correlations

Coarse field

NS+ClosureNS

Boltzmann equation

Present work

Projection

Boiler

Condenser

Pump Turbine

Model complexity

Navier-Stokes (NS)  Equations

Figure 1.1: Descriptions of fluid-flow at different levels of multi-scale approximations.

the governing equations become simpler yet computationally more complex and have more

physics embedded. Moving from left to right, i.e., coarse-graining, is not easy. As will be

seen later in this thesis, whenever coarse-graining is performed, the effect of the unresolved

physics has to be represented in terms of the coarse-graining variables only. This is called

the closure problem. For example, the collision term in the Boltzmann equation, which

models the effect of collisions between molecules on the particle distribution functions,

is a form of closure approximated in terms of the distribution functions. Similarly, the

constitutive relationship that links the viscous fluxes to the velocity gradients is another

form of closure.

Once a closure is developed, the coarse-grained equations govern the evolution of the

coarse-grained variables as long as the coarse-graining assumptions are valid and the closure

is accurate. For example, the Navier-stokes equations are valid under the assumption that

the molecular mean free path _𝑚 is much smaller than the length scale of the fluid flow

problem, and the constitutive relations for the viscous fluxes are valid.

However, the multi-scale phenomenon is not just restricted to the hierarchy shown in

Figure 1.1. Nature has cursed us with more hierarchy levels within the solutions to the

coarse-grained equations without violating any of the modeling assumptions. For example,

the solutions to the Navier-Stokes equation under the conditions of high Reynolds numbers

show desperate ranges of spatial and temporal scales while still satisfying the assumptions

of continuum mechanics. This multi-scale structure, in these cases, is purely a product
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Figure 1.2: Multi-scale solutions to PDEs.

of the PDEs and not the modeling assumption used to obtain the PDE. In this thesis, the

aim is to develop coarse models for similar PDEs to ensure efficient computation of their

solutions.

1.2 Multi-scale nature of PDEs.

In the previous section, a discussion was presented on how a multi-scale hierarchy could

be present in the solution of the PDE itself. This multi-scale hierarchy present in the solution

of PDE is similar to the outer hierarchy shown in figure 1.1, of which the PDE is originally a

part. However, the physics governing this multi-scale behavior is self-contained in the PDE

without violating any modeling assumptions used to arrive at the PDE. Figure 1.2 shows

the solution for some of the PDEs that exhibit multi-scale nature. It can also be observed

from Figure 2 that the multi-scale behavior is not limited to non-linear PDEs, suggesting

that linear PDEs also require coarse-grained modeling. In all these PDEs, the multi-scale

behavior is controlled by parameters such as the Reynolds number or the Peclet number.
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When the Peclet number or Reynolds number is sufficiently high, the smallest length or

time scales present in the flow are much smaller than the problem’s geometrical length and

time scales. As a result, an extremely fine grid and time-step are required to resolve these

flows. However, in most of these cases, only specific quantities, such as the mean solution,

the motion of the large structures, or the solution outside the boundary layer, are of interest.

Hence, for all practical purposes, the multi-scale modeling of PDEs is essential.

1.2.1 Turbulence.

Turbulence is a multi-scale phenomenon exhibited by the solutions to the Navier-Stokes

equations under high Reynolds number conditions. Although a precise definition does not

exist, the flow is considered to be turbulent if:

1. The flow is three-dimensional, non-linear, irregular, and chaotic.

2. A range of scales is present. This is driven by the balance between inertial forces and

viscous forces.

3. Continuous cascade of energy from large-scale structures to small-scale structures

where it is dissipated as heat through the action of viscosity.

4. Increased mixing of mass, momentum, and energy.

5. They are rotational, i.e., there is a presence of non-zero vorticity.

These properties make turbulence an interesting but extremely hard problem to understand

or solve computationally. Richard Feynman called turbulence "the most important unsolved

problem of classical physics.". Historical paintings like "The Starry Night" (1889) by Van

Gogh and "The Great Wave off Kanagawa" by Hokusai (1830) have depicted turbulence

and its features through art.
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1.3 Resolution requirement for multi-scale PDEs.

The previous section discussed how specific parameters such as the Peclet number

or Reynolds numbers trigger multi-scale behavior in PDEs. In this section, the resolution

requirement for theNavier-Stokes equations will be quantified. Similar estimates can also be

obtained for other multi-scale PDEs. The resolution requirement depends on two different

factors mainly:

1. The accuracy of the numerical method. An accurate numerical scheme would require

a lesser number of degrees of freedom.

2. The size of the smallest length or the smallest time scale dictated by the physics of

the problem.

First, the effect of the numerical method is discussed. In any numerical method, the

solution is sampled at a fixed number of points, nodes, etc. The distance between the points

or nodes along a direction 𝑖, is an estimate of the grid size Δ𝑥𝑖 in that direction. In general,

the physics of the problem dictates the the size of the smallest scales (_𝑖) present in the

solution along a particular direction 𝑖. Estimates of the number of grid points Kawai and

Larsson (2012) required to resolve these length scales are given by:

_𝑖 ≥ 𝛽Δ𝑥𝑖 (1.1)

where 𝛽 is the grid points per wavelength. The value of 𝛽 depends on the numerical scheme

used. A lower 𝛽 implies a better numerical method. However, 𝛽 cannot be so small that it

violates the Nyquist theorem.

Second, an estimate of _𝑖 for turbulent flows is obtained using Kolmogorov’s hypothesis.

As shown in figure 1.3 and discussed previously, in turbulence, a continuous cascade

of energy from large-scale structures (low-wavenumber) to small-scale structures (high-

wavenumber) is present. The amount of energy cascaded is governed by the size of the
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large-scale structures that span the geometry 𝐿 and the velocity scale𝑈 of the problem. By

equating the amount of energy that is cascaded from the large scales to that dissipated as

heat at the smallest length scale _𝑖 through viscous dissipation, an estimate of _𝑖 can be

obtained as follows:

_𝑖

𝐿
≈ [

𝐿
≈ 1
𝑅𝑒3/4

(1.2)

where 𝑅𝑒 is based on the size of the geometry 𝐿 and the velocity scale 𝑈 i.e. 𝑅𝑒 = 𝑈𝐿
a
.

The estimated size of small scales, i.e., _𝑖 is also called the Kolmogorov’s length scale and

is denoted by [ in the literature.

Finally, by combining equations 1.1 and 1.2 the following grid point estimate is obtained:

𝑁𝑖 ≈
𝐿

Δ𝑥𝑖
≈ 𝛽𝑅𝑒3/4. (1.3)

The above estimate is for a single direction. Turbulence being a 3-D phenomenon, the

actual number of spatial degrees of freedom can be obtained as follows:

𝑁𝑑𝑜 𝑓 = 𝑁
3
𝑖 ≈ 𝛽3𝑅𝑒9/4. (1.4)
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Setting the CFL number 𝐶 constant to reduce time-stepping errors and ensure stability

(for explicit methods), the following estimate of the number of time steps required to perform

the time integration for one flow through the time scale is obtained:

𝑁𝑡 =
𝐿

𝑈Δ𝑡
=

𝐿

𝐶Δ𝑥𝑖
≈ 𝛽𝑅𝑒3/4

𝐶
(1.5)

The approximate number of operations 𝑁𝑜𝑝𝑠 required to solve the problem is given by

𝑁𝑜𝑝𝑠 ≈ 𝑁𝑑𝑜 𝑓 𝑁𝑡 ≈
𝛽4𝑅𝑒3

𝐶
(1.6)

Hence, the accuracy of the numerical method can only play a small role when the Reynolds

number of the problem becomes excessively large. Taking the case of a commercial jet

(𝑅𝑒 ≈ 108), fixing the CFL number to 1, and assuming that an extremely accurate spatial

scheme with 𝛽 ≈ 2 is used, a grid with approximately 20000003 grid points is required

and 2000000 time-steps are needed to be taken to obtain the solution. Combined with

the multi-physics nature of these problems, these problems are intractable on any existing

supercomputer.

1.4 Modeling multi-scale PDEs.

In the previous section, it was shown that it is impossible to solve the PDEs numerically

for many of the problems of our interest. In this section, various coarse-grain modeling

techniques are discussed that are used to reduce their computational complexity.

1.4.1 General Idea.

The general idea in all these coarse-graining techniques is to start with the PDE; for

example
𝜕𝑢

𝜕𝑡
+ 𝑅(𝑢) = 0, (1.7)
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and applying a coarse-graining operator G to obtain the following:

G 𝜕𝑢
𝜕𝑡

+ G𝑅(𝑢) = 0. (1.8)

Assuming time invariance of the operator and defining G𝑢 as 𝑢ℎ the following equation is

obtained:
𝜕𝑢ℎ

𝜕𝑡
+ 𝑅(𝑢ℎ) + [G𝑅(𝑢) − 𝑅(𝑢ℎ)] = 0 (1.9)

In general, 𝑢ℎ can be represented on a much coarser mesh than 𝑢. Our goal is to obtain

a PDE that governs the evolution of the coarse-grained variable 𝑢ℎ. Consequently, the

new modified PDE can be resolved well on the coarse grid. The first part of the equation

resembles the original PDE given in equation (1.7) except it has been replaced with 𝑢ℎ. The

computation of the additional term [G𝑅(𝑢) −𝑅(𝑢ℎ)] still requires the access to 𝑢. The final

step is to approximate approximates [G𝑅(𝑢) − 𝑅(𝑢ℎ)] in terms of 𝑢ℎ only i.e.

𝜕𝑢ℎ

𝜕𝑡
+ 𝑅(𝑢ℎ) + 𝐶 (𝑢ℎ) = 0 (1.10)

This step is called closure modelling and𝐶 (𝑢ℎ) is called a closure. Equation 1.10 represents

the coarse-grained model in the strong form. As will be seen later in the thesis, based on

what coarse-graining method has been employed, the coarse-grained equation can also exist

in a weak form. Based on what the coarse-graining operator G represents, equation 1.10 can

represent the governing equations for different coarse-grained methods. For example, in the

case of fluid flow, if the action of G on the flow variables represents their time average for a

statistically stationary flow or their ensemble average for a case where repeatable transient

simulations can be performed, then 𝐶 (𝑢ℎ) represents a Reynolds-Averaged Navier-Stokes

(RANS) closure.

Similarly, if the effect of G is the same as that of a filter with a filter width that is

approximately the size of the grid, then 𝐶 (𝑢ℎ) represents a sub-grid closure. Consequently,
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the effect of smaller scales than the grid needs to be modeled; hence, the term "sub-grid"

is used. In this dissertation, the primary focus will be on sub-grid scale modeling. The

sub-grid models for fluid-flow problems are also known as large eddy simulation (LES)

models. However, as will be later seen in this thesis, the actual closure might be a mix and

match of both the RANS and the LES models.

1.4.2 Sub-grid modeling.

As discussed previously, sub-grid modeling refers to a particular type of coarse-grained

modeling approach where only the scales that can be well represented on the grid (coarse-

scales) are resolved, whereas the effect of the high frequency (wavenumber) oscillations on

the coarse-scales are modeled. As a consequence, the cost of simulating the PDE is reduced

because the coarse-grained solution can now be solved on a much coarser grid. However,

this does not imply that the grid can be as coarse as possible. This section will discuss this

limit in the context of large eddy simulations for turbulent flows.

1.4.2.1 Large eddy simulation.

Large eddy simulation (LES) is an essential tool for performing scale-resolving simu-

lations of the atmospheric boundary layers, combustion, acoustics, plasma, aerodynamics,

and many other significant problems. The word "large eddy" is derived from the large-scale

flow structures (eddies) which are resolved in these simulations. Although LES is cheaper

in comparison to DNS, it remains an expensive tool for most problems. However, the

recent increase in the computational power of most computers and the emergence of high-

performance clusters (HPCs) have led to the wider adoption of LES, both by the industry

and academia. By 2030, NASA plans to perform wall-modeled LES (WMLES) of an entire

aircraft configuration Slotnick et al. (2014).

To demonstrate the action of LES, consider the energy spectra shown in figure 1.4. In

RANS, the large-scale mean flow structures are resolved. As a result, the impact of all the
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scales (entire spectrum) needs to be modeled. In LES, scales until the inertial range of

the turbulence spectrum are resolved and the rest small residual scales that are responsible

for the dissipation of energy into heat are modeled. In DNS, all the scales are resolved,

including the small dissipative scales. In the case of high-Reynolds turbulence, the inertial

spectrum can be quite large, i.e., the wavenumber can vary across orders of magnitude.

Hence, to reduce the computational complexity, the filter width for LES should be placed

in the low-wavenumber range of the inertial spectrum. A general rule of thumb to obtain

accurate LES results is to choose the filter width such that it resolves 80 % of the total

turbulent kinetic energy (TKE). However, this puts an upper limit on the computational cost

reduction that LES can provide.

1.5 Ideal properties of a sub-grid model.

Various sub-grid models have been successfully applied to a wide range of turbulent

flow problems. As discussed by Parish (2018), traditional sub-grid approaches can be

broadly categorized into:

• Implicitly-filtered implicit LES.

• Implicitly-filtered explicit LES.
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• Explicitly-filtered implicit LES.

• Explicitly-filtered explicit LES.

Readers are encouraged to read Parish (2018) for a detailed overview of these methods.

In addition to traditional LES methods, methods such as the variational multiscale method

(VMS) and the approximate deconvolution method, have also been used successfully. For

a detailed description of the VMS methods, readers are encouraged to jump to Chapter 2

directly. For each of these sub-grid models, there exists both advantages and disadvantages

that make them suitable for a problem. However, there is no consensus within the sub-grid

modeling community about which approach works best for a general class of problems.

There are several parameters to judge a sub-grid model. In the next part, a discussion on

some properties that are desired in a sub-grid model is provided and the existing sub-grid

models are rated based on each point.

1.5.1 Formalism-driven approach.

The Navier-Stokes equations were derived around the 1800s. A century later, the first

conceptual framework for turbulence was given by Kolmogorov in 1941. Twenty years later,

the first sub-grid model based on the Kolmogorov theory was proposed by Smagorinsky

to simulate atmospheric air current (1963). After nearly 30 years, the dynamic versions

were introduced (Germano et al., 1991; Meneveau et al., 1996). As history has shown,

it takes a lot of time and effort to understand the physics of a PDE system and develop a

sub-grid model based on it. Although the physics-based techniques provide many insights

and have been successfully tested on many fluid flow problems, they are non-existent or

extremely hard to derive for many multi-physics problems (e.g., combustion) where the

Navier-Stokes equations are solved along with other PDEs. Given the multitude of such

multi-physics problems, it is impossible to understand the physics of every problem and

propose a physics-based sub-grid model. Hence, a formal strategy is required, which
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allows the generation of the sub-grid model directly from the PDE without requiring any

phenomenological assumption.

Different formal techniques have been successfully applied to derive subgrid models.

One such formal approach is the approximate deconvolution approach by Stolz and Adams

(1999); Stolz et al. (2001), where the closure is directly computed using the de-convoluted

variables. To compute the de-convoluted variables, an approximate form of the filter inverse

does not require the knowledge of any turbulence theory. Implicit LES also qualifies as a

formal approach since it relies on the numerical dissipation of the method, and explicit sub-

gridmodeling is not required. Another class of formal approaches is based on the variational

multi-scale (VMS) (Hughes et al., 1998b). In Chapter 3, a novel model reduction strategy

for non-linear problems is derived that combines the VMS method with the Mori-Zwanzig

formalism.

1.5.2 Perfect scale decomposition.

In the traditional LES approach (also known as implicitly-filtered explicit LES), to

obtain the coarse-grained PDE, a filtering/coarse-graining operation is performed on the

original PDE as shown in equation (1.9). The sub-grid term i.e. [G𝑅(𝑢) − 𝑅(𝑢ℎ)] is then

modeled using a explicit sub-grid closure (for e.g. the Smagorinsky model). However,

the definition of G is not required in this derivation. It is assumed that the action of the

explicit sub-grid closure would ensure that the sub-grid fine scales are not present and the

coarse-grained variables are implicitly filtered.

The sub-grid model controls the size of the smallest flow structures that are resolved,

which are approximately equal to the size of the grid. As a result, the discretization

errors in LES can be roughly the same order of magnitude as the sub-grid modeling

errors. The different treatment of equal-in-size sub-grid modeling errors (sub-grid model)

and discretization errors (numerical scheme) in implicitly-filtered explicit LES makes it

challenging to define what the LES solution represents. This is because the true coarse-
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grained PDE that is solved is modified due to the numerical method and, consequently, the

coarse-grained solution as well. Hence, 𝐺 is not known a priori and is dependent on both

the numerical method and the sub-grid closure. Additionally, the sub-grid model depends

on the grid size. As a result, when the mesh size is reduced, the PDE system is changed, and

consequently, the coarse-graining operator 𝐺 also changes, which makes it hard to define

convergence and assess the performance of the LES model.

Alternatively, an another filter G2 can be derived and applied to the non-linear term at

every time step as follows:

𝜕𝑢ℎ

𝜕𝑡
+ G2𝑅(𝑢ℎ) + [G𝑅(𝑢) − 𝑅(𝑢ℎ)] = 0. (1.11)

By filtering the non-linear term, the spectral content of the advective term is brought down

to the G2 level Lund (2003). Consequently, the spectral content of all the terms is brought

down to the G2 level. If the size of G2 is larger than the grid size, the small scales that

are difficult to be represented on the grid can be damped, and the truncation error can be

reduced. Hence, the coarse-scale solution approximately satisfies the relationshipG2𝑢 ≈ 𝑢ℎ.

Another approach where the distinction between the coarse and fine-scale is exact is the

variational multiscale methods (VMS). As will be later seen in Chapter 2, the solution and

weighting spaces in VMS is decomposed as follows:

V = Vℎ ⊕ V′, (1.12)

The next step is to choose a projection operator which gives the best representation of 𝑢

on Vℎ based on some optimality. Hence, it is known before solving the coarse-grained

system what part of the true solution 𝑢 is being resolved and not resolved in the simulation.

As a consequence, there is no distinction between the sub-grid modeling errors and the

discretization errors, and their effect jointly is modeled through a single closure. In Chapter

3 and Chapter 4, based on this idea of perfect scale decomposition, VMS closures will be
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developed using mathematical formalism and data, respectively. The idea of perfect scale

decomposition will be again exploited in Chapter 5 to obtain optimal estimates of 𝑢ℎ for

various coarse-grained methods for wall-bounded flows.

1.5.3 Accurate closure development.

The goal of closuremodeling is to approximate the subgrid term as accurately as possible

i.e.

G𝑅(𝑢) − 𝑅(𝑢ℎ) ≈ 𝐶 (𝑢ℎ) (1.13)

For transient PDEs, the true fine scales are both functions of the coarse space variables and

their time-history Stinis (2007);Parish and Duraisamy (2017a,b,c);Pradhan and Duraisamy

(2020). Similarly, for non-linear transient PDEs, the closure not only depends on the coarse-

grained variables’ time history but also on the solution of an extremely high-dimensional

PDE called the orthogonal dynamics equation Parish and Duraisamy (2017a,b); Gouasmi

et al. (2017); Parish and Duraisamy (2017c). Hence, even if an analytical form of closure

exists, the cost of computing it might be comparable to or more expensive than solving

the original system. Hence, an approximate form of closure is required for all practical

purposes. If the approximate sub-gridmodel accurately captures the actual sub-grid stresses,

it automatically qualifies as an excellent sub-grid model.

It is rare in turbulent fluid flow problems that the sub-grid model is accurate in capturing

the actual sub-grid stresses. This is because the fine scales and the sub-grid stresses are

strongly dependent on the current state and the entire time history. However, most sub-grid

model forms depend entirely on the coarse-field at time 𝑡 to predict the sub-grid stresses

at time 𝑡. It is often argued how close the modeled sub-grid stress should be to the actual

sub-grid stress. As described in Meneveau and Katz (2000), most of the time, the interest

is not so much in the detail that the DNS solution provides but only in the ability of LES

to generate the correct flow statistics, such as the mean and r.m.s. of the flow variables.

Hence, it is acceptable that the actual sub-grid stresses are different from their modeled
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form as long as the first and second-order statistics of the flow are accurate.

For the accurate computation of the first and second-order statistics, one of the quantities

the sub-grid model should accurately model is the mean dissipation rate of the resolved

kinetic energy. By modeling this rate correctly, sub-grid models such as the Smagorinksky

model work excellently on many problems without showing a high correlation coefficient

between true and the modeled sub-grid stresses Meneveau and Katz (2000). Another

interpretation of an accurate sub-grid model is based on the optimal LES framework by

Langford and Moser (1999a). In optimal LES, it is possible to construct an abstract sub-grid

model that can obtain correct single-time, multi-point statistics and generates a minimal

error in the instantaneous dynamics. Here, the LESmodel iswritten as a conditional average,

an average over all the instantaneous fields that correspond to the same LES solution when

filtered. As a result, the modeled sub-grid stresses do not necessarily have to show a high

spatial correlation with the actual sub-grid stresses; however, it still preserves predictive

accuracy.

1.5.4 Problem adaptivity.

A common problem in most of the sub-grid closures is the presence of free parameters.

The optimal value of these free parameters depends on the problem and the numerical

method. The classic example is the constant coefficient Smagorinky model. Many different

values have been reported for the Smagorinsky coefficient 𝐶𝑠 ranging from 0.1 Deardorff

(1970), 0.15 (Pope and Pope, 2000), 0.17 (McMillan and Ferziger, 1979), to 0.23 (Lilly,

1966) for various problems. In addition to 𝐶𝑠 being problem dependent, its value can also

vary in space. For example, in a wall-bounded flow, the value of 𝐶𝑠 goes to zero at the

wall. Better model forms Vreman (2004); Nicoud and Ducros (1999); Nicoud et al. (2011)

have also been proposed, which only require the specification of a single global coefficient

that is constant in space. Sub-grid models derived using the MZ formalism and fixed

memory model also require the specification of a memory length 𝜏. Hence, a mechanism is
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required to dynamically adjust these coefficients in both space and time without specifying

these parameters explicitly. This approach is called dynamic sub-grid modeling. The first

dynamic version of the Smagorinsky model was introduced by Germano et al. (1991) and

extended to complex geometry by Meneveau et al. (1996). A global dynamic modeling

approach for the VREMEN model was also introduced by You and Moin (2007b), which

enabled automatic adjustment of the VREMEN model coefficient in time. Most of these

approaches are based on Germano’s identity, which exploits the relationship between the

sub-grid stresses and the non-linear terms at two different filter levels to obtain the model

parameter. In Chapter 3, a dynamic version of an MZ-VMS sub-grid closure will be

introduced for the continuous Galerkin finite element method that uses the Germano’s

identity to obtain the memory length dynamically.

1.5.5 Stability.

The sub-grid model should ensure the stability of the coarse-grained simulation. Most

sub-grid models are dissipative, i.e., they take out energy from the system and prevent its

buildup at the high wave-number modes. For example, the Smagorinsky model adds a posi-

tive non-linear viscosity to the original system. Hence, the effect of the Smagorinsky model

is mostly stabilizing. However, this is not always the case. The absolute deconvolution

method Stolz and Adams (1999); Stolz et al. (2001) which is based on the idea of using the

filter inverse to compute the non-linear terms, is not stable without a dissipative relaxation

term. Another non-dissipative closure is the scale-similarity model. The sub-grid stresses

obtained using the scale-similarity model show a high correlation with the actual sub-grid

stresses; however, it fails to keep the coarse-grained simulation stable. The scale-similarity

model is always used in its mixed form by blending it with the Smagorinsky model Bardina

et al. (1980); Liu et al. (1994, 1995); Vreman et al. (1994); Xie et al. (2019b) to ensure

stability. In addition to the scale-similarity model, the dynamic Smagorinsky model is

susceptible to instability if the predicted model coefficient is negative. This is true near the
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wall, where back-scattering can happen, and the model coefficient can become negative.

This problem can be fixed by capping the value to zero to prevent the model coefficient

from becoming negative. Sub-grid models trained using data can also suffer from numeri-

cal instability. This is because the stability of the final closure is generally not guaranteed

during the training process. This is the case in Chapter 5, where our data-driven closure

was unstable and needed to be under-relaxed with a known stable method.

1.5.6 Computational efficiency.

The cost of a coarse-grained simulation largely depends on the complexity of the

closure and the numerical method used. The cost of computing the closure can account for a

significant fraction of the computational cost. The most cost-effective methods are based on

the implicit LES approach. In this approach, the numerical dissipation present in the scheme

is assumed to model turbulence, and no ad-hoc treatment in the form of a sub-grid model is

required. In addition to the implicit LES approach, the variational multiscale method also

does not require any ad-hoc treatment for turbulence since it does not distinguish between

the effect of the small-scale structures in turbulence and the unresolved numerical fine-

scales it attempts to model. Among explicit LES models, the constant coefficient-based

models Smagorinsky (1963); Nicoud and Ducros (1999); Nicoud et al. (2011); Vreman

(2004) are the easiest to implement and most cost-effective. The dynamic version of these

models is generally known to be more accurate. However, they are more expensive due to

the test-filtering operation, which is required to obtain the model coefficient dynamically.

Additionally, the model coefficient obtained through the dynamic procedure varies

rapidly and requires additional averaging in space/time, which adds to the computational

cost. The averaging procedure is convenient when there are homogeneous directions, as

in the case of channel flow (stream-wise and span-wise) or flow over a 2D airfoil (span-

wise). For complex geometries with no homogeneous directions, the averaging procedure

is challenging and requires the specification of local regions where the averaging needs to
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be performed. A robust way of dynamic modeling in the case of complex geometries is

to perform the averaging over the trajectory of the fluid particle Meneveau et al. (1996).

However, this requires the solution of two additional transport equations, further adding

to the computational cost. In review, the cost of sub-grid modeling depends on the case’s

complexity, the sub-grid model’s accuracy, and the user’s expertise in specifying model

parameters.

1.5.7 Model consistency.

In the age of data, machine learning has become an important tool for learning closures

directly from data. In a data-driven approach the goal is to learn a function 𝐶𝑀𝐿 (𝑢ℎ) that

approximates the sub-grid terms G𝑅(𝑢) − 𝑅(𝑢ℎ) i.e.

G𝑅(𝑢) − 𝑅(𝑢ℎ) ≈ 𝐶𝑀𝐿 (𝑢ℎ). (1.14)

This approach was restricted in the past due to the lack of availability of high-resolution data

and computational resources. One approach is to compute the sub-grid term G𝑅(𝑢)−𝑅(𝑢ℎ)

and learn it as a functions of 𝑢ℎ and its derivatives. However, it is not possible to learn the

closure precisely and some modeling error is always present i.e.

G𝑅(𝑢) − 𝑅(𝑢ℎ) = 𝐶𝑀𝐿 (𝑢ℎ) + 𝜖 . (1.15)

When this model is used online as a sub-grid model, the effect of the modeling error 𝜖 on

the quantities of interest is not guaranteed to be favorable. Hence, it is essential to train

the closure to minimize the difference between the actual value and predicted values of

the quantities of interest rather than between the predicted and the actual sub-grid stresses.

This is called a model consistent approach where the model is consistent with the solver in

which it will be used. Model consistency is an important property to have in a data-driven

sub-grid model. However, there are many challenges.
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The first problem is regarding the model consistency of sub-grid models in the scale-

resolving simulations of chaotic problems. For these cases, if the sensitivity of the model

weights is taken with respect to the solution at a far enough time in the future, there

is a chance that these sensitivities might blow up. Hence, gradient-based optimization

approaches cannot be applied to train the models. The second problem is regarding the

sensitivity of these scale-resolving subgrid models to the numerical method. If a sub-

grid model is developed in a model consistent setting, the model might get over-fit to the

numericalmethod used in the solver. This problem can be solved by keepingmultiple solvers

with different numerical methods in the training loop or switching to the VMS formalism,

where the sub-grid model is tied to the numerical method. In this dissertation, the model-

consistent approach is not considered. However, a discussion on model consistency is

provided at the end of Chapter 5.

1.6 Coarse-graining wall-bounded flows.

Although LES provides huge computational advantages in the case of many canonical

problems, such as homogeneous isotropic turbulence, it fails to provide a considerable

computational advantage when applied to wall-bounded flows. The lack of computational

benefits in the case of wall-bounded flows results from the size of the energy-containing

scales near the wall that scale with the viscous length scale O(𝛿𝑣), which eventually, in

the log layer region, increases approximately linearly with the distance from the wall. A

schematic of the energy-containing eddies is shown in figure 1.5. Further, if the Reynolds

number of the flow is extremely high, the viscous length scale 𝛿𝑣 is much smaller than

the boundary layer thickness 𝛿. As shown in figure 1.5, to satisfy the 80 % criteria, the

wall-resolved LES mesh needs to have a grid size comparable to 𝛿𝑣 near the wall and can

increase to 𝛿 near the edge of the boundary layer. As a result, many grid points are required

in the inner layer leading to the cost of wall-resolved LES (WRLES) being comparable

to DNS. The term "wall-resolved" is used because the energy-containing structures near
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the wall are also resolved. Based on the latest estimate by Yang and Griffin (2021), for

external aerodynamics, the grid requirement for performing DNS, wall-resolved (WR)LES,

and wall modeled (WM)LES are 𝑂 (𝑅𝑒2.05), 𝑂 (𝑅𝑒1.86) and 𝑂 (𝑅𝑒) respectively. For this

case, the cost of DNS is not very different from LES. Among the three approaches, the

WMLESmethod has the least complexity. TheWMLES approach and similar cost-effective

approaches for simulating wall-bounded turbulence will be explained next.

A wide range of approaches have been proposed to perform cost-effective computations

of wall-bounded flows at high Reynolds numbers. The twomost commonly used approaches

are thewall-stress/slip-basedwall-modeled LES (WMLES) approach and the hybrid RANS-

LES approach. These methods are based on the idea of performing traditional LES far away

from the wall and transitioning to a RANS-based description near the wall. As shown in

figure 1.5, the grid sizes (or the filter sizes) for the hybrid RANS-LES case in the span-wise

and stream-wise directions are comparable to the semi-channel height or the boundary

layer thickness 𝛿 ( ≈ 0.1𝛿). Figure 1.5 also shows the representative energy spectra at two

different wall-normal locations. The spectrum near the wall is shifted to the right because

more energy is present in the higher frequency wave numbers near the wall than in the

center of the channel. As a result, the grid size required to capture 80% of the energy near

the wall requires a finer mesh.

If a filter size of approximately 0.1𝛿 (hybrid RANS-LES) is used in the span-wise and

stream-wise direction, the grid at the center of the channel can capture a good fraction of the

total turbulent kinetic energy to qualify as an LES mesh. However, the exact resolution fails

to capture the required amount of energy near the wall. Consequently, the effect of almost

the entire spectrum must be modeled in the near-wall region, especially at high Reynolds

numbers. Hence, the RANS method is more suitable for the near-wall region in this case.

As discussed earlier, the RANS approach is not required for the wall-resolved case because

the mesh size is smaller near the wall to ensure 80% is captured throughout, and traditional

sub-grid models can be used.
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Figure 1.5: The size of the energy containing eddies in a wall bounded flow increase with the
distance from the wall. The use of filter sizes bigger than the size of eddies that contribute
significantly to the TKE necessitates RANS-like closure modelling approaches.
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Figure 1.6: The traditional wall-stress and slip-wall based WMLES approaches.

An alternate approach to the hybrid RANS-LES approach is wall-modeled LES (WM-

LES) approach. As shown in figure 1.6, there are mainly two types of WMLES approaches.

The first approach is the wall-stress-based WMLES approach, where the RANS and LES

components are solved on two separate meshes. The RANS mesh exists primarily near

the wall and receives velocity information from the off-wall grid points on the LES mesh.

RANS is then performed on thismesh, and thewall-shear stress is computed. Thewall-shear

stress is then passed onto the LES grid as a Neumann boundary condition. Alternatively,

the RANS mesh can be replaced with a wall function that describes the solution in the inner

layer under equilibrium conditions. The second WMLES approach is the slip-wall-based

WMLES approach, where a Robin boundary condition is specified at the wall. This ap-

proach does not require the sampling of the velocity fields at the off-wall grid points and

works by imposing a slip velocity. As will be shown in Chapter 5, the exact slip velocity

needed to be imposed depends on the solution of the RANS equations and the numerical

method used to perform the LES.
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1.6.1 The need for a special treatment for wall-bounded flows.

Ideally, no a priori knowledge of near-wall physics should be required to develop

models using the formalism-based approaches. However, irrespective of whether the model

is developed using phenomenological assumptions or formal techniques, the accuracy of

the final closure largely depends on the final modeling assumptions. For example, the

Smagorinskymodel assumes that the modeled rate of sub-grid production for the turbulence

kinetic energy transfer from large to small scale balances dissipation, which is wrong when

the filter size used is huge near the wall. Similarly, as will be seen later in Chapter 3, the

finite memory M-Z model, which is used to model the memory term in the Mori-Zwanzig

identity, assumes that the memory integral is highly correlated with the value of the integral

at 𝑠 = 0. These modeling assumptions might fail again when a large filter size is used near

the wall. In fact, the finite-memory-based M-Z closure for the spectral Fourier Galerkin

method can be proved to be globally dissipative. This property, although stabilizing, is not

representative of the small-scale dynamics when a large filter size is used near the wall. In

summary, given the current state of memory modeling for the M-Z formalism, an ad-hoc

modeling approach for the near-wall region might still be required. This is the motivation

behind the wall-modeling work presented in Chapter 5, where the poor performance of

some of the existing wall models has been investigated, and better model forms have been

suggested.

1.7 Presence of a unified structure.

In the previous sections, different types coarse-grained modeling techniques were in-

troduced. In this section, some of the existing coarse-grained modeling approaches are

compared, and commonalities are drawn between them. To this end, consider one of the
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simplest PDEs (i.e., the linear-advection equation) as follows:

𝜕𝑢

𝜕𝑡
+ 𝑎 𝜕𝑢

𝜕𝑥
= 0. (1.16)

It is well understood that the discretization of the convective term with a central scheme

makes it susceptible to instability for linear advection. The semi-discrete form for this case

is given by
𝜕𝑢

𝜕𝑡
|𝑘 + 𝑎

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
2Δ𝑥

+𝑂 (Δ𝑥2) = 0 (1.17)

where 𝑢𝑘 denotes the solution at 𝑘 𝑡ℎ grid point. A more stable formulation is obtained by

using points in the upwind direction to compute the convective term as follows:

𝜕𝑢

𝜕𝑡
|𝑘 + 𝑎

𝑢𝑘 − 𝑢𝑘−1
Δ𝑥

= 0, (1.18)

for 𝑎 > 0. Expanding 𝑢𝑘−1 using the Taylor series, one can obtain:

𝜕𝑢

𝜕𝑡
|𝑘 + 𝑎

𝜕𝑢

𝜕𝑥
|𝑘 =

𝑎Δ𝑥

2
𝜕2𝑢

𝜕𝑥2
|𝑘 +𝑂 (Δ𝑥2). (1.19)

The additional term 𝑎Δ𝑥
2

𝜕2𝑢
𝜕𝑥2

|𝑘 can be considered to be a sub-grid model for equation (1.16)

to improve its stability. A Galerkin discretization of equation (1.16) results in the following:

(
𝜕𝑢ℎ

𝜕𝑡
+ 𝑎 𝜕𝑢ℎ

𝜕𝑥
, 𝑤ℎ

)
Ω′

= 0 ∀𝑤ℎ ∈ Vℎ. (1.20)

Equation (1.20) is also susceptible to instability without a proper closure. A stream-wise

upwind Petrov Galerkin (SUPG) based closure for equation (1.20) is given by:(
𝜕𝑢ℎ

𝜕𝑡
+ 𝑎 𝜕𝑢ℎ

𝜕𝑥
, 𝑤ℎ

)
Ω′

+
∑︁
𝐾

∫
𝐾

𝜏𝑎2
𝜕𝑤ℎ

𝜕𝑥

𝜕𝑢ℎ

𝜕𝑥
𝑑Ω′ = 0. ∀𝑤ℎ ∈ Vℎ (1.21)
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An expression for 𝜏 for the SUPG method is given by:

𝜏 =
Δ𝑥

2𝑎
. (1.22)

Substituting back in equation (1.21) the following equation is obtained:(
𝜕𝑢ℎ

𝜕𝑡
+ 𝑎 𝜕𝑢ℎ

𝜕𝑥
, 𝑤ℎ

)
Ω′

+
∑︁
𝐾

∫
𝐾

𝑎Δ𝑥

2
𝜕𝑤ℎ

𝜕𝑥

𝜕𝑢ℎ

𝜕𝑥
𝑑Ω′ = 0. ∀𝑤ℎ ∈ Vℎ (1.23)

Equation (1.23) can also be obtained directly by the Galerkin discretization of the modified

PDE given by equation (1.19). Further comparing equation (1.23) and (1.19), the following

relationship between 𝜏 and the equivalent artificial viscosity a𝑒 that is added to the original

PDE, is obtained:

a𝑒 = 𝜏𝑎
2. (1.24)

Hence, the effect of the stabilization terms present in the VMS method is identical to

adding numerical dissipation to stabilize finite difference methods for advection-dominated

flows. The VMS-𝜖 approach by Wang and Oberai (2010a) and the constant-𝜏 based MZ

method also exhibit an identical model form irrespective of the fact that they were derived

independently using two different approaches. We will also show in Chapter 5 that there

is an equivalence between the traditional wall-stress-based wall model and the slip-wall-

based wall model. The similarity between these methods suggests that a universal structure

generally exists in all these coarse-grained models independent of the method.

1.8 Dissertation setting

The outline of the dissertation is as follows: We introduce the relevant mathematical

formalisms and data-driven techniques in Chapter 2. Chapter 3 introduces the MZ-VMS

framework and derives continuous Galerkin (CG) MZ-VMS closures for non-linear multi-
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scale PDEs. Chapter 4 develops a data-driven framework that can be used for closure

modeling of both the continuous and discontinuous Galerkin (CG and DG) discretizations

of multi-scale PDEs. This framework is used to discover high-order CG closures for the

1-D convection-diffusion problem and DG closures for both the linear-advection and the

turbulent channel flow problems. Chapter 5 uses optimal finite element projections of the

DNS data obtained from turbulent channel flow simulations at different Reynolds numbers

to develop a unified understanding of scale-resolving simulations and perform the near-wall

modeling of turbulent flows.

Overall, the goal of this dissertation is to advance the state-of-art in coarse-grained

modeling of multi-scale PDEs by proposing novel formalism-driven and data-driven frame-

works that lend themselves to generalization and also improve our understanding of the

under-resolved simulation of wall-bounded flows. This is made possible by answering the

following questions:

1. How can ideas from the Mori-Zwanzig method and the variational multiscale (VMS)

method be combined to derive continuous Galerkin finite element closures directly

from the structure of the PDE?

2. Is there a link between the existing super-resolution work and the fine-scale solution

from the variational multiscale method?

3. Can data from high-resolution simulations be used efficiently to derive generalizable

closures? If yes, what role does non-dimensionalisation play in their generalisability?

4. Can projection onto finite element spaces give new insights into under-resolved tur-

bulence simulations of wall-bounded flows?

5. Can the no-slip boundary conditions be fully satisfied for under-resolved turbulent

flow simulations?
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Figure 1.7: Sketch of contributions in this dissertation.
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1.9 Contributions

To address the aforementioned questions, the key contributions (fig. 1.7) of this disser-

tation are as follows:

1. A non-linear model reduction strategy for the continuous Galerkin (CG) finite ele-

ment method based on the MZ-VMS framework proposed by Parish and Duraisamy

(2017c).

2. A dynamic-𝜏 based MZ-VMS closure that adapts to the instantaneous level of res-

olution to avoid the imposition of an ad-hoc memory length for the MZ-VMS-CG

framework was developed.

3. A link between the operator that super-resolves the coarse-grained solution of PDEs

and the fine-scale Green’s operator in the VMS method was established.

4. A unique neural network structure - the variational super-resolution N-N (VSRNN) -

was developed to construct a super-resolved model consistent with existing analytical

VMS closures.

5. Generalizable data-driven VMS closures were developed for both the continuous and

the discontinuous Galerkin methods. This work marks the first time a generalizable

closure for finite elements has been directly learned from data.

6. An optimal finite element projections technique was developed that acts as a lens to

quantitatively assess and augment a wide range of coarse-grained turbulence models,

viz. large eddy simulations (LES), hybrid Reynolds-averaged/LES methods, and

wall-modeled (WM)LES.

7. A link between near-wall under-resolution and the slip velocity obtained in WMLES

was established, and new slip-wall model forms were proposed.
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8. A new slip-wall model formwas proposed that generalises to different resolutions and

Reynolds numbers with minimal variation in the model coefficient for the channel

flow problem.

These contributions are also presented in the form of the following publications:

1. Pradhan, Aniruddhe, and Karthik Duraisamy. "Variational multiscale closures for

finite element discretizations using theMori–Zwanzig approach." ComputerMethods

inAppliedMechanics andEngineering 368 (2020): 113152. Pradhan and Duraisamy

(2020)

2. Xu, Jiayang, Aniruddhe Pradhan, andKarthikeyanDuraisamy. "Conditionally param-

eterized, discretization-aware neural networks for mesh-based modeling of physical

systems." In Advances in Neural Information Processing Systems. 2021. Xu et al.

(2021)

3. Pradhan, Aniruddhe, andKarthikDuraisamy. "VariationalMulti-scale Super-resolution:

A data-driven approach for reconstruction and predictive modeling of unresolved

physics." arXiv preprint arXiv:2101.09839 (2021). (Submitted to International Jour-

nal for Numerical Methods in Engineering) Pradhan and Duraisamy (2021)

4. Pradhan, Aniruddhe, and Karthik Duraisamy. "A unified understanding of scale-

resolving simulations of turbulent flows using optimal projections." arXiv preprint

arXiv:2207.13060 (2022). (Under revision, JFM) Pradhan and Duraisamy (2022)
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CHAPTER II

Mathematical Formalisms and Data-Driven Techniques

2.1 Introduction

As discussed in Chapter 1, a considerable amount of time and effort is required to

understand the physics of a PDE system and transfer this knowledge to develop accurate

coarse-grained models. We further discussed how the different multi-physics problems

arising in different aspects of fluid dynamics necessitate formal strategies for coarse-grained

model development. In this chapter, we will discuss two of these formal tools: (i.) the

Mori-Zwanzig (M-Z) formalism; (ii.) the variational multiscale (VMS). These tools are

called mathematical formalisms because they are a set of formal mathematical instructions

that require minimal knowledge of the physics of the problem. The physics knowledge

required by these formalisms is limited to the governing PDE or an ODE system obtained

after the semi-discretization of the PDE. This chapter aims to familiarize the readers with

some of these formal tools that will be extensively used in Chapters 3,4, and 5.

In addition to mathematical formalisms, another class of tools leverage data. The avail-

ability of data from experiments and high-resolution numerical simulations has sparked

new interest in these tools. However, these tools need to be efficient to ensure that they

can learn the complex nonlinear relationships between the closure terms and the resolved

variables. Additionally, these tools should be flexible enough to balancemodel performance

and complexity easily. The neural network is a function approximation that has demon-
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strated excellent performance on complex problems and allows seamless variation of model

complexity through hyperparameters turning. Hence, neural networks are extensively used

in Chapter 4 to learn various closures.

As we will see later in this dissertation, it is hard to segregate formal techniques from

data-driven methods precisely. For example, in Chapter 3, although the model form is

developed by combining the M-Z formalism with the VMS method, the coarse-graining

exponent required to implement the dynamic model is obtained by fitting data. In Chapter

4, the sub-scale model is a neural network model. However, the input and output features

of the model are derived by taking inspiration from existing VMS closures. Similarly, in

Chapter 5, the model form for the wall sub-scale (slip), derived formally by assuming a

differential filter, is assessed and improved using data.

Although a mix-and-match approach works best for these tools, we have separately

discussed them in this chapter for convenience. To this end, the outline of the chapter is

as follows: In the first half of the chapter, the M-Z formalism and the VMS method are

introduced. The second half of this chapter introduces data-driven techniques, specifically

neural networks.

2.2 Mathematical formalisms.

2.2.1 The Mori-Zwanzig (M-Z) formalism

2.2.1.1 Linear Dynamical System - An Example

In this section, we introduce the general principles of the M-Z formalism Chorin et al.

(2002). The concept of M-Z was first introduced in the context of statistical mechanics

Mori (1965); Zwanzig (1980) but was later extended by Chorin Chorin et al. (2002) to

more generalized systems. To demonstrate the basic idea of M-Z, we introduce it in a

simple linear dynamical system with two degrees of freedom. Following this, we present

the generalization of this concept to non-linear systems via the Generalized Langevin
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Equations (GLEs).

2.2.1.2 Linear Dynamical System - An Example

Consider a dynamical system with two degrees of freedom given by

𝑑𝑥

𝑑𝑡
= 𝐴11𝑥 + 𝐴12𝑦 (2.1)

𝑑𝑦

𝑑𝑡
= 𝐴21𝑥 + 𝐴22𝑦, (2.2)

where 𝑥 ∈ R and 𝑦 ∈ R are the state space, and time 𝑡 ∈ (0, 𝑇] with initial conditions: 𝑥(0)

and 𝑦(0) provided. Our aim is to write an exact evolution equation for just one variables,

say 𝑥, i.e.

𝑑𝑥

𝑑𝑡
= 𝐴11𝑥 + 𝐹 (𝑥). (2.3)

Using the appropriate integration factor and integrating Equation (2.2) we have the following

equation in 𝑥:

𝑑𝑥

𝑑𝑡
= 𝐴11𝑥 + 𝐴12

𝑡∫
0

𝑒𝐴22𝑠𝐴21𝑥(𝑡 − 𝑠)𝑑𝑠 + 𝐴12𝑒𝐴22𝑡𝑦(0). (2.4)

Equation (2.4) has three terms: (i.) the first term represents the Markovian term containing

the resolved variable; (ii.) the second term is the memory integral; and (iii.) the third

term represents the dependence on the initial condition of 𝑦 on 𝑥. Although Equation (2.4)

represents the evolution of 𝑥 without any dependence on the second variable 𝑦, the flow of

𝑥 at any point of time not only depends on the current values of 𝑥 but also on its history

weighted by an exponential factor. The two variable Markovian system is now converted to

a one variable non-Markovian system without loss of accuracy. For coarse-grained model

development for 𝑥, Equation (2.4) requires the inclusion of closure for the memory integral
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term.

2.2.1.3 The Generalized Langevin Equation

Although the discussion in the previous section was limited to a linear system, the M-Z

formalism can be generalized to non-linear problems as well. To this end, consider the

spatial discretization of a space-time problem leading to the following set of 𝑁 coupled

ODEs in time:

𝑑𝜙

𝑑𝑡
= 𝑅(𝜙), (2.5)

where 𝜙 = {𝜙, 𝜙}, 𝜙 ∈ R𝑀 and 𝜙 ∈ R𝑁−𝑀 are the modes we want to resolve and model

respectively. The choice of spatial discretization can be of non-tailored basis such as spectral

methodsParish and Duraisamy (2017a,b), continuous, and the discontinuous Finite Element

(FE) basis functions Parish and Duraisamy (2017c) or tailored basis obtained from purely

data driven techniques such as the proper orthogonal decomposition (POD) Parish et al.

(2018). By assuming the initial condition of the problem to be 𝜙0, we aim to solve for 𝜙

without solving for the un-resolved modes 𝜙 to reduce the computational cost. However,

non-linearity restricts us from using the integration factor approach previously used for

linear system of ODEs. The Mori-Zwanzig approach Chorin et al. (2002); Chorin and

Hald (2009); Chorin et al. (2000) circumvents this problem by allowing us to cast the above

non-linear problem (Equation (2.5)) in the form of a linear PDE in the space of initial

condition variables 𝜙0 and time 𝑡 as follows

𝜕

𝜕𝑡
𝑢(𝜙0, 𝑡) = L𝑢(𝜙0, 𝑡), (2.6)

where the Liouville operator L corresponding to Equation (2.5) is defined as

L =

𝑁∑︁
𝑘=1

𝑅𝑘 (𝜙0)
𝜕

𝜕𝜙0𝑘
, (2.7)
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and initial conditions 𝑢(𝜙0, 0) = 𝑔(𝜙(𝜙0, 0)), where 𝑔 : R𝑁 → R is a scalar valued

observable. Equation (2.6) can be shown to have the following solution Chorin et al.

(2002); Chorin and Hald (2009):

𝑢(𝜙0, 𝑡) = 𝑔(𝜙(𝜙0, 𝑡)). (2.8)

The above equation can be re-written using the semi-group notation as follows

𝑢(𝜙0, 𝑡) = 𝑒𝑡L𝑔(𝜙(𝜙0, 0)) = 𝑔(𝜙(𝜙0, 𝑡)), (2.9)

where 𝑒𝑡L is called the Koopman operator, which is an infinite dimensional linear operator

which when applied to an observable 𝑔(𝜙0, 0) evolves it in time 𝑡. As a special case, the

observables are chosen to be the same as the initial states 𝑔(𝜙0) = 𝜙0 𝑗 . As a consequence,

Equation (2.6) along with Equation (2.9) results in the following

𝜕

𝜕𝑡
𝑒𝑡L𝜙0 𝑗 = L𝑒𝑡L𝜙0 𝑗 = 𝑒𝑡LL𝜙0 𝑗 , (2.10)

where the last equality is a result of commutative propertyChorin and Hald (2009) between

L and 𝑒𝑡L . Next, we decompose the right hand side of Equation (2.10) into spaces of

resolved initial conditions and un-resolved initial conditions as follows:

𝜕

𝜕𝑡
𝑒𝑡L𝜙0 𝑗 = 𝑒

𝑡LPL𝜙0 𝑗 + 𝑒𝑡LQL𝜙0 𝑗 , (2.11)

where P : 𝐿2 → �̂�2 is the projection operator, where the spaces formed by all initial

conditions and resolved initial conditions are denoted by 𝐿2 and �̂�2 respectively and operator

Q is defined as Q = 𝐼 − P. Different forms of projectors P can be used Parish and

Duraisamy (2017a,b); Gouasmi et al. (2017). In the present work, we use a truncation

projector Chorin and Hald (2009); Parish and Duraisamy (2017c) which when applied to
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the function 𝑓 (𝜙0, 𝜙0) results in the truncation of the unresolved initial conditions 𝑓 (𝜙0, 0).

The projector P acts on the space formed by initial conditions and should not be confused

with the 𝐿2-projectors commonly used to project onto finite dimensional spaces. By

applying Duhamel’s formula Chorin and Hald (2009),

𝑒𝑡L = 𝑒𝑡𝑄L +
𝑡∫
0

𝑒(𝑡−𝑠)LPL𝑒𝑠QL𝑑𝑠, (2.12)

in Equation (2.11), which is equivalent to the integration factor approach for linear ODEs,

we obtain the generalized Langevin equation (GLE) Chorin et al. (2002); Chorin and Hald

(2009); Chorin et al. (2000) also known as the Mori-Zwanzig identity:

𝜕

𝜕𝑡
𝑒𝑡L𝜙0 𝑗 = 𝑒

𝑡LPL𝜙0 𝑗 + 𝑒𝑡QLQL𝜙0 𝑗 +
𝑡∫
0

𝑒(𝑡−𝑠)LPL𝑒𝑠QLQL𝜙0 𝑗𝑑𝑠. (2.13)

An important observation is that Equation (2.13) has a similar structure to Equation (2.4).

The first term is the Markovian term, the second term is the noise due to uncertainty in the

initial condition, and the last term is called the memory integral. The noise term which is

given by F𝑗 (𝜙0, 𝑡) = 𝑒𝑡QLQL𝜙0 𝑗 satisfies the orthogonal dynamics Chorin et al. (2002);

Zhu and Venturi (2018) equation given by

𝜕

𝜕𝑡
F𝑗 (𝜙0, 𝑡) = QLF𝑗 (𝜙0, 𝑡). (2.14)

It can also be shown Chorin and Hald (2009) that the noise F𝑗 (𝜙0, 𝑡) lies in the null space

of the projector P i.e. PF 𝑗 (𝜙0, 𝑡) = 0. As a result, application of P on Equation (2.13)

results in the following simplification

𝜕

𝜕𝑡
𝑒𝑡L𝜙0 𝑗 = 𝑒

𝑡LPL𝜙0 𝑗 +
𝑡∫
0

𝑒(𝑡−𝑠)LPL𝑒𝑠QLQL𝜙0 𝑗𝑑𝑠. (2.15)
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Equation (2.15) is exact and governs the evolution of the resolved modes 𝜙 without any

dependence on the unresolved modes. However, it does not lead to reduction in the overall

computational cost as the evaluation of the memory term requires the solution to the

orthogonal dynamics equation (Equation (2.14)) which is a high-dimensional PDE and is

intractable to solve. However, this marks the starting point for deriving coarse-grained

models based on different approximations Chorin and Hald (2009); Chorin et al. (2000);

Stinis (2015, 2012); Parish and Duraisamy (2017b); Zhu and Venturi (2018) to the memory

term. Examples on application of this formalism for non-linear model reduction of toy

problems can be found in Chorin et al. (2002).

2.2.2 The Variational Multiscale Method

We now present a brief overview of the variational multiscale (VMS) method, which

was originally formalized by Hughes et al. Hughes et al. (1998a) . Consider the following

PDE on an open and bounded domain Ω ⊂ R𝑑 , where 𝑑 ≥ 1 is the dimension of the

problem, with a smooth boundary Γ = 𝜕Ω:

𝜕𝑢

𝜕𝑡
+ R(𝑢) − 𝑓 = 0, (2.16)

where the operator R : R𝑑 → R𝑑 can be both linear or non-linear, the function 𝑓 : Ω → R

and the time varying from 𝑡 ∈ (0, 𝑇]. Let,V ≡ H1(Ω) denote the Sobolev space containing

square integral functions with square integral derivatives. We define the variational problem

as follows:

( 𝜕𝑢
𝜕𝑡
, 𝑤) + (R(𝑢), 𝑤) = ( 𝑓 , 𝑤), (2.17)

find 𝑢 ∈ V for all 𝑤 ∈ V, where (·, ·) denotes the 𝐿2 inner product. The solution and

weighting space are decomposed as follows:

V = Vℎ ⊕ V′, (2.18)
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where ⊕ represents a direct sum ofVℎ andV′. From the perspective of a numerical method,

Vℎ is the resolved finite dimensional space andV′ represents the space of functions which

is not resolved. This leads to a decomposition for 𝑢 and 𝑤:

𝑢 = 𝑢ℎ + 𝑢′, and 𝑤 = 𝑤ℎ + 𝑤′, (2.19)

where 𝑢ℎ, 𝑤ℎ ∈ Vℎ and 𝑢′, 𝑤′ ∈ V′. By substituting Equation (2.19) into the variational

problem given by Equation (2.17) the following is obtained,

( 𝜕 (𝑢ℎ + 𝑢
′)

𝜕𝑡
, 𝑤ℎ + 𝑤′) + (R(𝑢ℎ + 𝑢′), 𝑤ℎ + 𝑤′) = ( 𝑓 , 𝑤ℎ + 𝑤′). (2.20)

Due to the linear independency of 𝑤′ and 𝑤ℎ, equation (2.20) is separated into the coarse

scale and fine-scale equations, respectively:

( 𝜕 (𝑢ℎ + 𝑢
′)

𝜕𝑡
, 𝑤ℎ) + (R(𝑢ℎ + 𝑢′), 𝑤ℎ) = ( 𝑓 , 𝑤ℎ), (2.21)

( 𝜕 (𝑢ℎ + 𝑢
′)

𝜕𝑡
, 𝑤′) + (R(𝑢ℎ + 𝑢′), 𝑤′) = ( 𝑓 , 𝑤′). (2.22)

When the coarse-scale Equation (2.21) is rearranged, the following is obtained,

( 𝜕𝑢ℎ
𝜕𝑡
, 𝑤ℎ) + (R(𝑢ℎ), 𝑤ℎ) − ( 𝑓 , 𝑤ℎ) = −( 𝜕𝑢

′

𝜕𝑡
, 𝑤ℎ) − (R(𝑢ℎ + 𝑢′) − R(𝑢ℎ), 𝑤ℎ). (2.23)

The LHS of Equation (2.23) contains terms present in the standard Galerkin procedure.

However, it is also depends on the solution to the fine-scale equationwhich can be considered

as the error in the coarse scale approximation. The goal of VMS sub-grid modelling is

to approximate the fine-scale solution using Equation (2.22) and substitute it in Equation

(2.21). Different closures can be obtained for the fine-scales depending on the type of

approximation, especially when the problem is non-linear Codina et al. (2007); Codina
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(2002); Bazilevs et al. (2007);Wang and Oberai (2010a); Gravemeier et al. (2010);Masud

and Calderer (2011b). However, for linear problems Hughes et al. Hughes et al. (1998a)

demonstrated that the fine scale solution 𝑢′ is related to the Green’s function 𝑔′(𝑥, 𝑦) of the

adjoint operator R∗ and the coarse scale residual as follows:

𝑢′(𝑦) = −
∫
Ω

𝑔′(𝑥, 𝑦) (R(𝑢ℎ) − 𝑓 ) (𝑥)𝑑Ω𝑥 . (2.24)

The simplest approximation to which is given by

𝑢′ = −𝜏(R(𝑢ℎ) − 𝑓 ). (2.25)

Although, Equation (2.25) and Equation (2.24) have been derived for linear problems, the

idea that the coarse-scale residual can be linked to the fine-scale solution, remains the basis

for developing non-linear VMS models Codina et al. (2007); Codina (2002); Bazilevs et al.

(2007);Wang and Oberai (2010a); Gravemeier et al. (2010);Masud and Calderer (2011b)

as well.

2.3 Data-driven techniques.

2.3.1 Neural networks.

Neural networks (NNs) are computational algorithms that mimic the brain’s functions

by learning existing patterns in data. They have been used extensively for regression,

clustering, and classification tasks. A few types of commonly used NNs are: (a) fully

connected neural network (FNN), (b) convolutional neural network (CNN), (c) recurrent

neural networks (RNN), and (d) generative adversarial network (GAN).

In this dissertation, we will be using neural networks primarily for super-resolution.

The CNN architecture has been extensively used for performing super-resolution in the

literature. For the same number of trainable parameters, CNNs achieve better performance
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Figure 2.1: A Sketch of a sample FNN with 3 inputs, 2 output, and 2 hidden layers with
6 neurons each. The arrows are colored using the value of weights corresponsing to each
connection.

than FNNs by exploiting the spatial correlations in the data. However, CNNs are only ideal

when the model input or output data is present on a structured grid. As we will see in

Chapter 4, the coarse and fine solutions in the present work are present as basis coefficients

and not as an image. Hence, in this work, we will restrict ourselves to using variations of

the FNNs only.

As shown in figure 2.1, an FNN is a mapping between the input layer z0 ∈ 𝑅𝑛0 and the

output layer z𝑁 ∈ R𝑛𝑁 . There are multiple layers between z0 and z𝑁 , which are known as

hidden layers. Ideally, if the number of hidden layers, i.e., 𝑁 − 1 exceeds one, the FNN

network is called a deep neural network (DNN). However, the true power of a DNN can

only be harnessed when there are sufficiently many hidden layers. Each layer in an FNN is

connected to the previous layer through the following relation:

z𝑖 = 𝐴𝑖 (W𝑖−1z𝑖−1 + b𝑖) 𝑓 𝑜𝑟 𝑖 = 1, 2, 3, ...., 𝑁 (2.26)

whereW𝑖−1 is a matrix of weights of size R𝑛𝑖−1×𝑛𝑖 , b𝑖 is a column vector of biases of size
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R𝑛𝑖−1×1 and 𝐴𝑖 is the activation function. The activation function operates individually on

the elements of W𝑖−1z𝑖−1 + b𝑖−1. There exist various choices for the activation function,

such as the sigmoids, rectified linear units (ReLUs), leaky ReLU, exponential linear units

(ELUs), and Swish. In Chapter 4, we will use the ELU) activation function with 𝛼 = 1.0

for all the layers except the last layer, where no activation function is used. This ensures

that the network’s output can assume any values and is not just capped to positive values.

As a part of the training process, the values of the weights and biases present in equation

(2.26) are optimized to ensure that the output of the network minimizes this loss function.

This is done using the Adam optimizer Kingma and Ba (2014) which is part of the Keras

Chollet et al. (2015) library. For the loss function, the mean squared error (MSE) L𝑚𝑠𝑒 is

chosen, which is defined as:

L𝑚𝑠𝑒 =
1
𝑁𝑑𝑎𝑡

𝑁𝑑𝑎𝑡∑︁
𝑖=1

| |z𝑁,𝑖,𝑡𝑟𝑢𝑒 − z𝑁,𝑖,𝑝𝑟𝑒𝑑 | |22
𝑛𝑁

(2.27)

where z𝑁,𝑖,𝑡𝑟𝑢𝑒 is the truth, z𝑁,𝑖,𝑝𝑟𝑒𝑑 is the prediction by the neural network, 𝑛𝑑𝑎𝑡 is the size

of the output vector and 𝑁𝑑𝑎𝑡 is the number of data points over which the NN is trained.

The Adam optimizer requires the gradient of the loss function with respect to the weights

and biases, which is obtained through backpropagation.
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CHAPTER III

Closure Development for Finite Element Discretizations

Using the MZ-VMS Framework

3.1 Background and Motivation

Numerical simulation of multi-scale phenomena requires the development of coarse-

grained models, which attempts to resolve a sub-set of the scales while providing a model

for unresolved features. As discussed previously in Chapter 1, a popular approach employed

in the simulation of turbulent flows is large-eddy simulation Smagorinsky (1963); Vreman

(2004); Nicoud and Ducros (1999); Germano et al. (1991); Meneveau et al. (1996); You

and Moin (2007a), which filters the flow field to resolve the largest energy containing

scales and providing a model for the scales smaller than the filter length referred to as

the sub-grid scales (SGS). The success of these sub-scale models largely depends on the

validity of assumptions at simulated flow conditions. For example, the Smagorinsky model

Smagorinsky (1963), which is one of the most commonly employed SGS models, is based

on the assumption that modeled rate for turbulence kinetic energy transfer from large to

small scale balances dissipation Pope and Pope (2000). This assumption is clearly not

valid for all turbulent flows. An alternate approach to SGS modeling without employing

phenomenological assumption, which we pursue, is to derive sub-grid models directly from

the structure of the PDE and the numerical discretization.
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In addition to physics-based sub-grid scale models Smagorinsky (1963); Nicoud and

Ducros (1999); Vreman (2004); Nicoud et al. (2011) presented above, models based on the

variational multiscale method have proven to be quite successful for both linear Hughes

et al. (1998a, 1989); Brooks and Hughes (1982); Codina (2000); Hughes et al. (1986) and

non-linear problems Codina et al. (2007); Codina (2002); Bazilevs et al. (2007);Wang and

Oberai (2010a); Gravemeier et al. (2010); Masud and Calderer (2011b).

As we discussed in section 2.2.2, the variational multiscale method is based on a similar

idea of decomposing the flow field into resolved (coarse-scale) and un-resolved (fine-scale)

variables. The fine-scales are then approximated using simple algebraic operators acting

on the residual of the coarse scales which give rise to additional stabilization terms in the

standard Galerkin procedure Hughes et al. (1989); Brooks and Hughes (1982); Codina

(2000). A link between the stabilization terms and implicit sub-grid models Hughes et al.

(1998a) has been established. Different stabilization techniques such as the Galerkin least

square (GLS)Hughes et al. (1989), the streamwise upwind Petrov Galerkin (SUPG) Brooks

and Hughes (1982); Hughes et al. (1986), the adjoint-stabilized methods Codina (2000);

Franca et al. (1992); Codina (2002), and the orthogonal sub-scale stabilization Codina

(2002) can be derived based on the type of algebraic model for the fine-scales.

In the early days of the development of the VMS techniques, these methods were

formulated for linear problems, and their application to the non-linear multiscale problems

such as the Navier-Stokes equations though successful, depended on constructs such as

transformations to linear problems such as the Oseen equations at every non-linear iteration.

Recently, however, several attempts have been extended to develop non-linear VMS closure

models by Codina et al. Codina et al. (2007); Codina (2002), Bazilevs et al. Bazilevs

et al. (2007) and many others Wang and Oberai (2010a); Gravemeier et al. (2010); Masud

and Calderer (2011b). These methods utilize a stabilization parameter 𝜏 which is an

approximation to the inverse of the differential operator of the governing equation. This

model parameter 𝜏 is typically defined in terms of a local length-scale, elemental Reynolds
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and Courant numbers Franca et al. (1992) or derived from the Fourier analysis of the fine

scale equation Codina (2002). Further, it is chosen to aid optimal convergence and stability

of the method.

In this work, we aim to develop a general coarse-graining approach in the context

of the continuous Galerkin method, that is: (i) built using a non-linear model reduction

strategy akin to Greens functions for linear problems; (ii) capable of generating a fine-scale

description directly from the structure of the PDE and the underlying numerics; and (iii)

model parameters are adaptive to the resolution, and are dynamically determined.

The VMS decomposition of a PDE leads to a set of coupled equations which govern

the coarse-scales (resolved) and the fine-scales (un-resolved) respectively. However, the

fine-scale closure problem still persists. In our approach, the dependence of the fine-scale

variables on the coarse-scale variable is removed by using the optimal prediction framework

developed by Chorin Chorin et al. (2002); Chorin and Hald (2009). This framework,

originally developed in the context of non-equilibrium statistical mechanics, enables the

higher dimensional non-linear Markovian dynamical system to be written into an exactly

equivalent lower dimensional non-Markovian dynamical system Parish and Duraisamy

(2017a,b); Gouasmi et al. (2017). The advantage is that the evolution of any observable in

time can be represented solely in terms of the resolved variables. The cost of evaluating

the resulting closure term, however, is enormous. The possible simplifications will be

discussed later in this chapter. Similar ideas have been put forward by Stinis Stinis (2007),

Parish and Duraisamy Parish and Duraisamy (2017a,b) in context of spectral methods and

discontinuous Galerkin (DG) Parish and Duraisamy (2017c) methods.

The MZ-VMS philosophy presented herein closely follows the approach presented in

Parish and Duraisamy (2017c); Parish (2018). However, the derivation of the closure terms

in a continuous Galerkin setting requires specific approximations. As will be discussed in

this chapter, the contributing term to the final closure model in CG is different from that

in DG. The main contribution of this work is to extend these dynamic closure models to
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the continuous Galerkin (CG) method previously not explored by Parish and Duraisamy

Parish and Duraisamy (2017c); Parish (2018) and testing them on canonical turbulent flow

problems.

The outline of this chapter is as follows: In section 3.2, we develop the VMS-MZ

method in the context of a continuous Galerkin (CG) discretization. In section 3.3, we

derive a dynamic model for the estimation of the memory length of the convolution integral

to provide a parameter free closure to the model. In the section 3.4, we discuss results

for the burgers equation. We discuss results for canonical turbulence cases in section 3.5.

Finally, we conclude our work in section 3.6.

3.2 The CG-MZ-VMS Framework

We now present the derivation of the CG-MZ-VMS framework. We begin with the

governing equation in the domain Ω ⊂ R𝑑 with the boundary Γ = 𝜕Ω, where 𝑑 ≥ 1 is the

dimension of the problem as follows,

𝜕𝑢

𝜕𝑡
+ R(𝑢) − 𝑓 = 0, (3.1)

where 𝑢 = 𝑔 at the boundary Γ and time 𝑡 ∈ (0, 𝑇]. The weak form of the above PDE,

obtained after integration by parts, can be written as follows,

(
𝜕𝑢

𝜕𝑡
, 𝑤

)
Ω

+ (𝑅(𝑢), 𝑤)Ω + (𝑏(𝑢), 𝑤)Γ = ( 𝑓 , 𝑤)Ω ∀𝑤 ∈ V, (3.2)

where 𝑢 ∈ V. The Sobolev space of functionsV ≡ H1(Ω) and first derivatives are square

integrable. The functional space V is an infinite dimensional and must be approximated

by a finite dimensional approximation Ṽ. We consider the tessellation of Ω into non-

overlapping finite elements. The domain and boundary of an element marked by Ω𝑒 and Γ𝑒

respectively. Also consider the following notations:
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Ω′ =
𝑛𝑒𝑙⋃
𝑖=1

Ω𝑒 and Γ′ =
𝑛𝑒𝑙⋃
𝑖=1

Γ𝑒 . (3.3)

where Ω′, Γ′ denote the interior and boundaries of all the elements respectively. Let

Ṽ ⊂ 𝐶0 ∩H1(Ω) denote our finite dimensional FE approximation space containing basis

functions having 𝐶0 continuity everywhere including element boundaries. Approximating

𝑤 by �̃� and 𝑢 by �̃� in Equation (3.2), leads to the standard Galerkin procedure given by

(
𝜕�̃�

𝜕𝑡
, �̃�

)
Ω′

+ (𝑅(�̃�), �̃�)Ω′ + (𝑏(�̃�), �̃�)Γ′ = ( 𝑓 , �̃�)Ω′ ∀�̃� ∈ Ṽ, (3.4)

where �̃� ∈ Ṽ. The above method, although directly applicable to diffusion dominated

problems, encounters stability issues when applied to convection dominated problems. The

VMS procedure provides a solution to this problem by elegantly accounting for the sub-grid

scale effects. By splitting the space of the solution 𝑢 = �̃� + 𝑢′ and the weighting function

𝑤 = �̃�+𝑤′, and substituting it into Equation (3.4), we obtain the following integral equations

for the coarse and fine scales, respectively,

(
𝜕�̃�

𝜕𝑡
, w̃

)
Ω′
+(𝑅(�̃�), w̃)Ω′+(𝑅(𝑢)−𝑅(�̃�), w̃)Ω′+(𝑏(�̃�), w̃)Γ′+(𝑏(𝑢)−𝑏(�̃�), w̃)Γ′ = ( 𝑓 , w̃)Ω′,

(3.5)

(
𝜕𝑢′

𝜕𝑡
,w′

)
Ω′
+ (𝑅(�̃�),w′)Ω′ + (𝑅(𝑢) − 𝑅(�̃�),w′))Ω′ + (𝑏(�̃�),w′)Γ′ + (𝑏(𝑢) − 𝑏(�̃�),w′)Γ′ = 0,

(3.6)

where 𝑢′ and 𝑤′ lie in a space orthogonal to �̃� and �̃� i.e. 𝑢′, 𝑤′ ∈ V′ and 𝑓 ∈ Ṽ. This

idea of decomposing the full space into orthogonal spaces has previously been pursued,

for instance the Orthogonal Sub-Scale (OSS) method by Codina Codina (2002) and Parish

and Duraisamy Parish (2018); Parish and Duraisamy (2017b). By substituting the resolved

and un-resolved variables in terms of their modal coefficients and their basis function as
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follows,

�̃� = w̃Tã and 𝑢′ = w′Ta′, (3.7)

we get the following ODE systems for modal coefficients of the coarse and fine scales,

𝑑ã
𝑑𝑡

= M̃−1(−(𝑅(�̃�), w̃)Ω′−(𝑅(𝑢)−𝑅(�̃�), w̃)Ω′−(𝑏(�̃�), w̃)Γ′−(𝑏(𝑢)−𝑏(�̃�), w̃)Γ′+( 𝑓 , w̃)Ω′),

(3.8)

𝑑a′

𝑑𝑡
= M′−1(−(𝑅(�̃�),w′)Ω′ − (𝑅(𝑢) − 𝑅(�̃�),w′))Ω′ − (𝑏(�̃�),w′)Γ′ − (𝑏(𝑢) − 𝑏(�̃�),w′)Γ′),

(3.9)

where themassmatrices for resolved scales and un-resolved orthogonal scales can bewritten

as

M̃ = (w̃, w̃T) and M′ = (w′,w′T). (3.10)

By utilizing the Mori-Zwanzig procedure to integrate out variables in Equation (3.9)

from (3.8), we get the following system:

(
𝜕�̃�

𝜕𝑡
, w̃

)
Ω′

+ (𝑅(�̃�), w̃)Ω′ = M̃
𝑡∫
0

𝐾 (ã(𝑡 − 𝑠), 𝑠)𝑑𝑠, (3.11)

where the additional term to the RHS is due to the memory effects. In the present formu-

lation, we will use the finite memory model i.e.
∫ 𝑡

0 𝐾 (ã(𝑡 − 𝑠), 𝑠)𝑑𝑠 ≈ 𝜏𝐾 (ã(𝑡), 0) which

results in the following simplification:

(
𝜕�̃�

𝜕𝑡
, w̃

)
Ω′

+ (𝑅(�̃�), w̃)Ω′ = 𝜏M̃𝑒L𝑡PLQLã0, (3.12)
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where 𝜏 is thememory length. Thememory kernel M̃𝑒L𝑡PLQLã0 can be further simplified

as follows

M̃𝑒L𝑡PLQLã0 =

∫
Ω′

∫
Ω′

w̃𝑅′(Π′(𝑥, 𝑦) (𝑅(�̃�) − 𝑓 ))𝑑Ω′
𝑦𝑑Ω

′
𝑥

+
∫
Ω′

∫
Γ′

w̃𝑅′(Π′(𝑥, 𝑦) (𝑏(�̃�)))𝑑Γ′
𝑦𝑑Ω

′
𝑥

+
∫
Γ′

∫
Ω′

w̃𝑏′(Π′(𝑥, 𝑦) (𝑅(�̃�) − 𝑓 ))𝑑Ω′
𝑦𝑑Γ

′
𝑥

+
∫
Γ′

∫
Γ′

w̃𝑏′(Π′(𝑥, 𝑦) (𝑏(�̃�)))𝑑Γ′
𝑦𝑑Γ

′
𝑥 ,

(3.13)

where Π′ is the orthogonal projector onto the space of the the fine scales i.e,

Π′(𝑥, 𝑦) = w′𝑇 (𝑥)M′−1w′(𝑦). (3.14)

Detailed derivation of Equation (3.13) can be found in Appendix A. An important aspect of

the sub-scales 𝑢′ is that it is dynamic Codina (2002); Codina et al. (2007) in nature. When

these sub-scales are approximated with the inverse of the spatial operator, the resulting

VMS models are non-Markovian Codina (2002); Codina et al. (2007) and the sub-scales

𝑢′ have to be tracked in time. The M-Z formalism on the other hand, precisely integrates

out the time dependency of these sub-scales, making the final formulation Markovian on

the resolved variables only. To make this formulation computationally tractable, we assume

that the memory integral is correlated to its integrand at 𝑠 = 0 and has finite support in

time. This is the main reason an approximation to the inverse of the differential operator -

as is popularly used to derive VMS models - is not required here. This marks the end of

the derivation of the MZ-VMS framework that was originally developed by Parish (2018);

Parish and Duraisamy (2017c). This framework has been successfully applied to the DG

method Parish (2018); Parish and Duraisamy (2017c). In the rest of this chapter, we will

extend it to the CG method and validate its performance.
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As shown by Parish and Duraisamy Parish and Duraisamy (2017c); Parish (2018),

the main contributing term in Equation (3.13) to the final closure model in DG is Term 4.

However, in this formulation, we assume that the fine-scales vanish at the element boundaries

analogous to the concept of bubble functions Masud and Calderer (2011a); Franca and

Farhat (1995); Brezzi et al. (1992); Hughes (1995). This approximation has also been used

in the OSS model Codina (2002); Codina et al. (2007). By using this approximation, Term

2 and Term 4 in Equation (3.13) are neglected, resulting in the following equation:

M̃𝑒L𝑡PLQLã0 =

∫
Ω′

∫
Ω′

w̃𝑅′(Π′(𝑥, 𝑦) (𝑅(�̃�) − 𝑓 ))𝑑Ω′
𝑦𝑑Ω

′
𝑥

+
∫
Γ′

∫
Ω′

w̃𝑏′(Π′(𝑥, 𝑦) (𝑅(�̃�) − 𝑓 ))𝑑Ω′
𝑦𝑑Γ

′
𝑥 .

(3.15)

The scale separation by projection of the residual on the fine scale can be computed as

follows,

∫
Ω′

𝑦

Π′(𝑥, 𝑦) (𝑅(�̃�(𝑦)) − 𝑓 )𝑑Ω′
𝑦 = (𝑅(�̃�(𝑥)) − 𝑓 ) − Π̃(𝑅(�̃�(𝑥)) − 𝑓 ), (3.16)

where Π̃ is again the 𝐿2 projector on the finite dimensional space spanned by w̃. This

concludes the derivation of CG-MZ-VMS framework for the fixed memory type model.

3.3 Dynamic Memory Estimation

While the constant memory length model provides a closure to the memory term in the

M-Z expression, the parameter 𝜏 should adapt to the evolving resolution and not necessarily

remain constant. Another approach is to allow the parameter 𝜏 to dynamically vary in

time to attempt to represent the variations of the effects of the fine-scale quantities on

the coarse scales. To facilitate the stabilization of our method with fewer parameters and
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account for the temporal variations of the memory length, we seek a dynamic memory

length model using the variational counterpart of the Germano’s identity Germano et al.

(1991); Germano (1992); Oberai and Wanderer (2005); Akkerman et al. (2010). A similar

dynamic procedure has been previously used by Oberai et al. Oberai and Wanderer (2005)

and Akkerman et al. Akkerman et al. (2010) to estimate model coefficients. We begin by

applying a zero-variance phase space projector with a fully resolved initial condition with

the large-scale equation (Eqn (3.5)) to obtain an exact solution to the closure problem as

following:

M̃
𝑡∫
0

𝐾 (ã(𝑡 − 𝑠), 𝑠)𝑑𝑠 = (𝑅(�̃�) − 𝑅(𝑢), w̃)Ω′ + (𝑏(�̃�) − 𝑏(𝑢), w̃)Γ′ . (3.17)

By assuming that the memory term has a finite support we obtain

𝜏1M̃𝐾 (ã(𝑡), 0) = (𝑅(�̃�) − 𝑅(𝑢), w̃)Ω′ + (𝑏(�̃�) − 𝑏(𝑢), w̃)Γ′ . (3.18)

Similarly, for a separate coarser mesh with weighting function ŵ ∈ V̂, where ·̂ signifies a

coarser mesh than ·̃, the memory terms can be written as

𝜏2M̂𝐾 (â(𝑡), 0) = (𝑅(�̂�) − 𝑅(𝑢), ŵ)Ω′ + (𝑏(�̂�) − 𝑏(𝑢), ŵ)Γ′ . (3.19)

We choose w̃ such that it spans the weighting function on the coarser mesh ŵ i.e. V̂ ⊂ Ṽ,

which results in the following equation:

𝜏1GM̃𝐾 (ã(𝑡), 0) = (𝑅(�̃�) − 𝑅(𝑢), ŵ)Ω′ + (𝑏(�̃�) − 𝑏(𝑢), ŵ)Γ′ (3.20)

where G is a matrix which transforms w̃ to ŵ given by

Gw̃ = ŵ (3.21)
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Figure 3.1: 𝐿2 projection of an example full order solution on two meshes with element
sizes h and 2h respectively i.e �̃� and �̂�.

If the finer grid is obtained by element wise refinement of the coarse grid, the fine grid

w̃ basis functions span all the weighting functions on the coarser mesh ŵ. By subtracting

Equations (3.19) and (3.20) we obtain

𝜏1GM̃𝐾 (ã(𝑡), 0) − 𝜏2M̂𝐾 (�̂�(𝑡), 0) = (𝑅(�̃�) − 𝑅(�̂�), ŵ)Ω′ + (𝑏(�̃�) − 𝑏(�̂�), ŵ)Γ′ . (3.22)

To obtain �̂� project the �̃�

�̂� = Π̂�̃�, (3.23)

where Π̂ : �̃�2 → �̂�2 is the 𝐿2 projector on the coarse grid. Figure 3.1 shows the projection

of a fully-resolved simulation onto �̃� and �̂�. This is similar to test filtering in the dynamic

Smagorinsky model Germano et al. (1991) employed in LES. Here, we assume a scaling

law similar to the one proposed by Parish and Duraisamy Parish and Duraisamy (2017b)

relating the memory lengths 𝜏 at two different levels of coarsening as following

𝜏1
𝜏2

=

[
Δ1
Δ2

]1.5
, (3.24)
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where Δ1 and Δ1 denote the element sizes at the fine and coarse mesh. An important

observation is Equation (3.13) cannot be satisfied for all ŵ with a single value of 𝜏, but

is true only in the average sense. To satisfy this condition, three different possibilities are

considered here:

1. Dynamic-𝜏-AVG: Scale the modes with their respective modal values

𝜏1âTGM̃𝐾 (ã(𝑡), 0) − 𝜏2âTM̂𝐾 (â(𝑡), 0) = (𝑅(�̃�) − 𝑅(�̂�), �̂�)Ω′ + (𝑏(�̃�) − 𝑏(�̂�), �̂�)Γ′,

(3.25)

which gives the following final form for the dynamic memory length,

𝜏 =
(𝑅(�̃�) − 𝑅(�̂�), �̂�)Ω′ + (𝑏(�̃�) − 𝑏(�̂�), �̂�)Γ′

âTGM̃𝐾 (ã(𝑡), 0) −
(Δ2
Δ1

)1.5âTM̂𝐾 (â(𝑡), 0)
, (3.26)

2. Dynamic-𝜏-LS: Solve the overdetermined systembased on some optimality condition,

L = R𝜏, (3.27)

where L and R are given by

L = (𝑅(�̃�) − 𝑅(�̂�), ŵ)Ω′ + (𝑏(�̃�) − 𝑏(�̂�), ŵ)Γ′, (3.28)

R = GM̃𝐾 (ã(𝑡), 0) −
[
Δ2
Δ1

]1.5
M̂𝐾 (â(𝑡), 0). (3.29)

The above system can be solved using the least-squares approach which is commonly

used with the DSM Germano et al. (1991) LES model, resulting in the following

expression:

𝜏 =
LTR
RTR

. (3.30)
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3. Dynamic-𝜏-𝑙2: Approximate 𝜏 based on the following equation:

𝜏 =
| |L| |
| |R| | , (3.31)

where | | · | | denotes any kind of norm. In the present work, we have used 𝑙2 or

Euclidean norm for all our calculations. By using this averaging procedure, we

obtain a value of 𝜏 that is (i) always positive; and (ii) free from division errors.

Although the steps involved in derivation of the above formulation closely follow that of

the DSM Germano et al. (1991); Meneveau et al. (1996), our approach is valid for general

PDEs in that the functional form of the model is not chosen based on the underlying

physical phenomena. Unlike other traditional LES SGS models such as DSM Germano

et al. (1991); You and Moin (2007a); Meneveau et al. (1996), WALE Nicoud and Ducros

(1999), VREMEN Vreman (2004), and Sigma Nicoud et al. (2011) which are derived

exclusively for the Navier-Stokes equation or other scalar transport equations, our model is

not equation specific.

3.4 One-dimensional viscous Burgers equation

As a first step towards deriving coarse-grained models for the Navier-Stokes equation,

we apply our framework to a 1-D non-linear PDE exhibitingmultiscale features. To this end,

let V ≡ H1(Ω) denote the Sobolev space where our solution 𝑢 and weighting functions

𝑤 exist. The viscous Burgers equation in the domain Ω ⊂ R is given by the following

equation:
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
= a

𝜕2𝑢

𝜕𝑥2
, (3.32)

52



with periodic boundary conditions and the time varying from 𝑡 ∈ (0, 𝑇]. The weak form of

Equation (3.32) translates into a problem of finding 𝑢 ∈ V such that

(
𝜕𝑢

𝜕𝑡
, 𝑤

)
Ω

+
(
𝑢
𝜕𝑢

𝜕𝑥
, 𝑤

)
Ω

+ a
(
𝜕𝑢

𝜕𝑥
,
𝜕𝑤

𝜕𝑥

)
Ω

= 0 ∀𝑤 ∈ V . (3.33)

Using integration by parts we obtain Tezduyar (2001),

(
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
− a 𝜕

2𝑢

𝜕𝑥2
, 𝑤

)
Ω

+ (𝐽 (𝑢), 𝑤)Γ = 0, (3.34)

where, (𝑎, 𝑏)Γ′ =
∑
𝑘

∫
Γ′
𝑘

𝑎𝑏 𝑑Γ′ and 𝐽 (𝑢) = a𝑛1.∇𝑢1 + a𝑛2.∇𝑢2 (where subscripts 1 and

2 denote adjacent elements sharing a boundary). By utilizing the present coarse graining

procedure to Equation 3.33 we get

(
𝜕�̃�

𝜕𝑡
+ �̃� 𝜕�̃�

𝜕𝑥
− a 𝜕

2�̃�

𝜕𝑥2
, �̃�

)
Ω′

+ (𝐽 (�̃�), �̃�)Γ′ = 𝜏M̃𝐾 (ã(𝑡), 0), (3.35)

where the memory term M̃𝐾 (ã(𝑡), 0) is given by,

M̃𝐾 (ã(𝑡), 0) =
∫
Ω′

∫
Ω′

w̃𝑅′(Π′(𝑥, 𝑦) (𝑅(�̃�)))𝑑Ω′
𝑦𝑑Ω

′
𝑥 +

∫
Γ′

∫
Ω′

w̃𝐽 (Π′(𝑥, 𝑦) (𝑅(�̃�)))𝑑Ω′
𝑦𝑑Γ

′
𝑥

(3.36)

and 𝑅′ denotes the linearization of the non-linear operator about �̃�. Using integration by

parts and neglecting the sub-scale contributions at the elemental boundaries we have

M̃𝐾 (ã(𝑡), 0) =
∫
Ω′

𝑅∗(w̃(𝑥)) [
∫
Ω′

Π′(𝑥, 𝑦)𝑅(�̃�)𝑑Ω′
𝑦]𝑑Ω′

𝑥 , (3.37)

where 𝑅∗ is the adjoint of the linearized operator 𝑅′. The integrand is computed as follows:

∫
Ω′

𝑦

Π′(𝑥, 𝑦)𝑅(�̃�(𝑦))𝑑Ω′
𝑦 = 𝑅(�̃�(𝑥)) − Π̃(𝑅(�̃�(𝑥))). (3.38)
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The resulting closure is very similar to the adjoint stabilization method Codina (2000);

Hughes et al. (1998a); Franca et al. (1992) except 𝑅(�̃�(𝑥)) − Π̃(𝑅(�̃�(𝑥))) is present instead

of 𝑅(�̃�(𝑥)). Here, 𝑅∗ denotes the adjoint of the linearized operator 𝑅′. The adjoint operator

𝑅∗ is given by

𝑅∗(�̃�) = −�̃� 𝜕�̃�
𝜕𝑥

− a 𝜕
2�̃�

𝜕𝑥2
(3.39)

Substitution of Equation (3.37) into Equation (3.35) results in the following problem for the

coarse scales �̃� ∈ Ṽ:

(
𝜕�̃�

𝜕𝑡
+�̃� 𝜕�̃�
𝜕𝑥
, �̃�

)
Ω′
+a

(
𝜕�̃�

𝜕𝑥
,
𝜕�̃�

𝜕𝑥

)
Ω′

= 𝜏
∑︁
𝐾

∫
𝐾

𝑅∗(�̃�) [𝑅(�̃�(𝑥))−Π̃(𝑅(�̃�(𝑥)))]𝑑Ω′ ∀�̃� ∈ Ṽ .

(3.40)

Similarly the following coarse grained model can be derived for the linear advection-

diffusion equation:

(
𝜕�̃�

𝜕𝑡
+ 𝑎 𝜕�̃�

𝜕𝑥
, �̃�

)
Ω′

+ a
(
𝜕�̃�

𝜕𝑥
,
𝜕�̃�

𝜕𝑥

)
Ω′

= 𝜏
∑︁
𝐾

∫
𝐾

(
− 𝑎 𝜕�̃�

𝜕𝑥
− a 𝜕

2�̃�

𝜕𝑥2

)
[𝑅(�̃�(𝑥)) − Π̃(𝑅(�̃�(𝑥)))]𝑑Ω′ ∀�̃� ∈ Ṽ .

(3.41)

Equations (3.40) and (3.41) are first discretized in time using the \ family of methods

Donea and Huerta (2003). Equation (3.40) is then linearized using the standard Picard

algorithm.

3.4.1 Steepening of sine wave

To benchmark our coarse-grained model, the solution to the viscous Burgers equation is

computed at 𝑇 = 3.0 for an initial sine profileWang and Oberai (2010a); Parish (2018) on a

periodic domain of length 2𝜋. To discretize in time, we use the \ family of methods Donea
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and Huerta (2003) with \ = 0.5 (Crank-Nicolson). The simulation parameters for DNS

and coarse grained simulations are summarized in Table 3.1. When sufficient resolution is

available (i.e. DNS limit), the viscosity is responsible for dissipating energy at the shock.

However, when the resolution is insufficient, sub-grid models are responsible for dissipating

the energy. To ensure that the viscous dissipation due to large scales is negligible, viscosity

a has been set to a small value of 10−4. As a consequence, the primary contribution to the

total dissipation comes from the sub-grid model.

It can be observed in Figure 3.2, the coarse-grained model solution approaches the

projected DNS. Figures 3.3a and 3.3b show the time evolution of resolved KE and its rate

of dissipation. These results indicate that the performance of all the models are comparable

except the case when no sub-grid model was used or a fixed 𝜏 = 0.01 was used. A

comparison between the solutions on the space-time diagram obtained using our dynamic-𝜏

model, OSS, no-model and projected DNS has been presented in Figure 3.5. Among our

Finite Memory (FM) models, the case with 𝜏 = 0.01 performs the worst, as can be seen

in Figures 3.2, 3.3a and 3.3b. The solution at 𝑇 = 3 improves when 𝜏 is increased to 0.11

and becomes worse when further increased to 𝜏 = 0.23, which suggests the existence of an

optimum 𝜏 value. The uncertainty in choosing the value of 𝜏 close to its optimum value

can be reduced with a dynamic model. To this end, methods described in Section 3.3 are

used to compute 𝜏 dynamically in Figure 3.4. Results indicate that the Dynamic-𝜏-AVG,

the Dynamic-𝜏-LS and the Dynamic-𝜏-𝑙2 models predict a similar magnitude of 𝜏 for the

period of time considered. However, the Dynamic-𝜏-𝑙2 model, which ensures positivity of

the 𝜏, was found to be most stable and was used for all the following calculations in this

chapter. Although it is possible to use Method 1 and Method 2 by clipping 𝜏 above zero,

they were found to be unstable for the TGV problem which will be discussed later in Section

3.5.2.

At 𝑇 = 3, the Dynamic-𝜏-𝑙2 predicts 𝜏 ≈ 0.05, which supports our argument that an

optimum 𝜏 exists in the range of 0.01 and 0.23. The 𝑡-model which assumes 𝜏 = 𝑡 predicts
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Figure 3.2: Solution to the Burgers Equation at 𝑇 = 3.0 computed using different methods
compared to projected DNS for the sine wave problem.

a 𝜏 which does not perform well in this case and becomes unstable. However, as noted by

Stinis Stinis (2013), the t-model needs to be re-normalized with a coefficient for the correct

prediction of the memory length i.e. 𝜏 = 𝐶𝑁 𝑡. When renormalization is used, 𝜏 = 0.014𝑡 is

the correct representative of the memory length with 𝐶𝑁 = 0.014 as shown in Figure 3.4.

Case Domain Size 𝐿 Degrees of Freedom 𝑁 Grid Size 𝑑𝑥 Time Step 𝑑𝑡 Viscosity a Memory Length 𝜏

DNS (Spectral) 2𝜋 8192 modes 7.67 × 10−4 1.92 × 10−4 10−4 -
Dynamic 𝜏 2𝜋 32 elements 1.96 × 10−1 1.96 × 10−2 10−4 Dynamic
FM 𝜏=0.01 2𝜋 32 elements 1.96 × 10−1 1.96 × 10−2 10−4 0.01
FM 𝜏=0.11 2𝜋 32 elements 1.96 × 10−1 1.96 × 10−2 10−4 0.11
FM 𝜏=0.23 2𝜋 32 elements 1.96 × 10−1 1.96 × 10−2 10−4 0.23

OSS Codina (2002) 2𝜋 32 elements 1.96 × 10−1 1.96 × 10−2 10−4 -
No-Model 2𝜋 32 elements 1.96 × 10−1 1.96 × 10−2 10−4 0

Table 3.1: Simulation parameters for DNS and LES of the Burgers Equation for an initial
sine profile.

3.4.2 Burgers turbulence

To further assess the performance of our coarse-grainedmodel for turbulence, we use it to

study theBurgers turbulence problemParish and Duraisamy (2017a);Gouasmi et al. (2017).

The solution to the Burgers equations exhibits some similarities to realistic turbulence, both

having an inertial and a dissipation rangeWang and Oberai (2010a). However, the solution
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(a) Time evolution of kinetic energy.
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Figure 3.3: Time evolution of (a) kinetic energy and (b) rate of kinetic energy decay
computed using different methods compared to DNS for the sine wave problem .
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Figure 3.4: Evolution of memory length 𝜏 predicted using different dynamic models for the
sine wave problem.
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(a) Dynamic-𝜏 model.
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(b) Projected DNS.

0 2 4 6
0

1

2

3

-1.5

-1

-0.5

0

0.5

1

1.5

(c) OSS model Codina (2002). (d) No-Model.

Figure 3.5: Comparison of the wave system obtained using the dynamic-𝜏 model, projected
DNS, OSS and No-model on the x-t diagram.
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to Burgers turbulence is non-chaotic, unlike physically realistic turbulence obtained though

the Navier-Stokes equations. To obtain the initial flow field satisfying a given energy

spectrum, the following initial condition has been used

𝑈 (𝑥, 0) =
𝐾𝑐∑︁
𝑘=1

𝑈∗√︁2𝐸 (𝑘)𝑠𝑖𝑛(𝑘𝑥 + 𝛽), (3.42)

where, the phase 𝛽 is randomly set from [−𝜋, 𝜋] and the energy spectra 𝐸 (𝑘) is set to 5−5/3

for 𝑘 = 1 to 5 and 𝑘−5/3 thereafter. Two different test cases are considered here: (i.) a high

viscosity case A with 𝑈∗ = 1, 𝐾𝑐 = 8 and a = 0.01, and (ii.) a low viscosity case B with

𝑈∗ = 10, 𝐾𝑐 = 32 and a = 0.0005. Simulation parameters are summarized in Table 3.2.

The two cases are considered to demonstrate the effect of the sub-grid model on moderately

and highly under-resolved simulations respectively.

In the first case, when no sub-grid model is employed, the time variation of resolved

kinetic energy is close to the DNS solution. However, for the low viscosity case, a sub-grid

model becomes necessary. For comparison, DNS using the Fourier-Galerkin method is

performed using 1024 and 4096 modes for case A and case B, respectively. The de-aliasing

of the non-linear terms for the Fourier-Galerkin method is conducted by zero-padding (3/2-

rule). The LES is conducted using the present coarse grained model with just 32 and 64

linear elements, respectively. For each case, results from the FM model and dynamic-𝜏 are

compared to results obtained without using a sub-grid model, the OSS model and the DNS.

For the FM model, different values of 𝜏 are considered in the range where our simulations

are stable. Figures 3.6 and 3.7 show the time evolution of resolved KE and its rate of

dissipation for all these cases. Both these figures indicate that both the dynamic-𝜏 model

and OSS model accurately predict the time-evolution of the resolved kinetic energy in

comparison DNS. Figure 3.8 shows the variation of 𝜏 obtained from our dynamic model

which for both case A and B, predict a large variation of 𝜏 in time, suggesting the importance

of the adaptive selection of 𝜏. Figure 3.9 also shows the energy spectra at the final time. It
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Figure 3.6: Evolution of resolved KE using different methods compared to DNS for the
Burgers Turbulence problem.

can be observed for Case A, that all the models perform similarly and the resolved modes

are able to capture most of energy. For Case B, the present dynamic-𝜏 model performs

better than other models especially at lower wavenumbers (large scales).

Case 𝐿 𝑁 𝑑𝑥 𝑑𝑡 a 𝑈∗ 𝐾𝑐 FM 𝜏’s

Case A (DNS) 2𝜋 1024 modes 3.06 × 10−3 2.33 × 10−4 10−2 1 8 -
Case A (LES) 2𝜋 32 elements 1.96 × 10−1 8.5 × 10−3 10−2 1 8 0.01, 0.1 and 0.4
Case B (DNS) 2𝜋 4096 modes 7.66 × 10−4 3.41 × 10−6 5 × 10−4 10 32 -
Case B (LES) 2𝜋 64 elements 9.81 × 10−2 4.67 × 10−4 5 × 10−4 10 32 0.0001, 0.001 and 0.01

Table 3.2: Simulation parameters for DNS and LES of the Burgers Equation for the Burger
turbulence problem.

3.5 Application to the Navier-Stokes Equations

In this section, the coarse grainedmodel is extended to the incompressible Navier-Stokes

equations. Let V𝑑 ≡ (H1(Ω))𝑑 and K ≡ 𝐿2(Ω) denote the Sobolev and Lebesque spaces

where our solution and weighting functions exist and 𝑑 ≥ 2 in general. The weak form of

the Navier-Stokes equations consists of finding u : [0, 𝑇] → V𝑑 , 𝑝 : [0, 𝑇] → K such that

60



0 0.5 1 1.5 2
0

0.1

0.2

0.3

(a) Case A

0 0.1 0.2 0.3 0.4
-200

0

200

400

600

800

1000

(b) Case B

Figure 3.7: Rate of energy decay due to dissipation by the sub-grid model and viscous
dissipation by large scales using different methods compared to DNS for the Burgers
Turbulence problem.
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Figure 3.8: Evolution of memory length 𝜏 predicted using our dynamic model for the
Burgers Turbulence problem.
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Figure 3.9: Energy spectra obtained using different methods compared to DNS for the
Burgers Turbulence problem.

(𝜕𝑡u,w) + a(∇u,∇w) + (u · ∇u,w) − (𝑝,∇ · w) = (f,w) and (𝑘,∇.u) = 0, (3.43)

for all [w, 𝑘] ∈ V𝑑 × K.

We start by assessing how our coarse-grained model stabilizes the forced viscous Burg-

ers equation in higher dimensions. The weak form for the Burgers equations in higher

dimensions can be written as

(
𝜕u
𝜕𝑡
,w

)
Ω

+ (u · ∇u,w)Ω + a(∇u,∇w)Ω = (f,w) ∀w ∈ V𝑑 . (3.44)

By applying integration by parts to the viscous term we get

(
𝜕u
𝜕𝑡
,w

)
Ω

+ (u · ∇u,w)Ω − a(∇2u,w)Ω + (J(u),w)Γ = (f,w) ∀w ∈ V𝑑 , (3.45)

where J(u) = an1 · ∇u1 + an2 · ∇u2 is the diffusive flux from adjacent elements sharing a

boundary. Equations (3.44) and (3.45) can be equivalently written as,
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(
𝜕u
𝜕𝑡
,w

)
Ω

+ (R(u),w)Ω + (J(u),w)Γ = (f,w) ∀w ∈ V𝑑 . (3.46)

By decomposing the spaces intoV𝑑 = Ṽ𝑑 ⊕ V′
𝑑
and K = K̃ ⊕ K′, and applying our finite

memory based framework leads to the following formulation for the coarse scales ũ ∈ Ṽ𝑑:

(
𝜕ũ
𝜕𝑡
, w̃

)
Ω′
+ (R(ũ), w̃)Ω′ + (J(ũ), w̃)Γ′ = (f, w̃) +𝜏(R′(q), w̃)Ω′ +𝜏(J′(q), w̃)Γ′ ∀w̃ ∈ Ṽ𝑑 ,

(3.47)

where Ṽ𝑑 is our FE approximation space, andR′ and b′ represent the linearizations ofR and

b with respect to ũ. The fine-scale variable q ∈ V𝑑
′ involving projection of the residuals

on the fine-scales is given by

(q,w′)Ω′ = (R(ũ) − f,w′)Ω′ + (J(ũ),w′)Γ′ ∀w′ ∈ V𝑑
′. (3.48)

In the above equation, we assume that the fine-scales vanish at elemental boundariesMasud

and Calderer (2011a); Franca and Farhat (1995); Brezzi et al. (1992); Hughes (1995), a

thus neglect the second term. The quantity q is approximated as follows

q = Π′(R(ũ) − f) = (R(ũ) − f) − Π̃((R(ũ) − f)). (3.49)

By further simplifying the memory term we obtain the following:

𝜏(R′(q), w̃)Ω′ + 𝜏(J′(q), w̃)Γ′ = 𝜏[(q · ∇ũ, w̃)Ω′ + (ũ · ∇q, w̃)Ω′ − a(q,∇2w̃)Ω′] . (3.50)

Where the second term is simplified using the Green’s identity and calculated as follows

(ũ.∇q, w̃)Ω′ = −(q, ũ · ∇w̃) − (∇ · ũ, q · w̃). (3.51)
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From an implementation perspective, all the above terms are computed using numerical

integration at the quadrature points. This results in the following problem for the coarse

scales ũ ∈ Ṽ𝑑:

(
𝜕ũ
𝜕𝑡
, w̃

)
Ω′

+ (ũ · ∇ũ, w̃)Ω′ + a(∇ũ,∇w̃)Ω′ = (f, w̃) + 𝜏[(q · ∇ũ, w̃)Ω′+

(ũ · ∇q, w̃)Ω′ − a(q,∇2w̃)Ω′] ∀w̃ ∈ Ṽ𝑑 ,

(3.52)

q = (R(ũ) − f) − Π̃((R(ũ) − f)). (3.53)

The role of pressure herein is to impose the divergence free condition on the velocity field.

In this formulation, only the velocity sub-scales have been accounted for, and the pressure

terms arising from standard Galerkin procedure are retained and treated like a forcing

function. This leads to additional stabilization terms to the standard Galerkin procedure

given by,

(
𝜕ũ
𝜕𝑡
, w̃

)
Ω′

+ (ũ · ∇ũ, w̃)Ω′ + a(∇ũ,∇w̃)Ω′ − (𝑝,∇ · w̃) = (f, w̃)

+𝜏[(q · ∇ũ, w̃)Ω′ + (ũ · ∇q, w̃)Ω′ − a(q,∇2w̃)Ω′] ∀w̃ ∈ Ṽ𝑑 ,

(3.54)

q = (R(ũ) + ∇𝑝 − f) − Π̃((R(ũ) + ∇𝑝 − f)). (3.55)

Although closure terms were obtained for the momentum equations in Equation (3.54), the

effect of the velocity sub-scales on the continuity equation should also be accounted for.

Hence, an approximate form of the velocity sub-scales is required. To this end, consider

Equation (3.47) in a re-arranged form:

(
𝜕ũ
𝜕𝑡
, w̃

)
Ω′

+ (R(ũ) − 𝜏R′(q), w̃)Ω′ + (J(ũ − 𝜏q), w̃)Γ′ = (f, w̃) ∀w̃ ∈ Ṽ𝑑 , (3.56)
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where the operatorsR and J are non-linear and linear respectively andR′ is the linearization

of R about ũ. For small sub-scale u′ Bazilevs et al. (2007) approximation, we have,

R(ũ + u′) ≈ R(ũ) + R′(u′). (3.57)

Consequently, we can express velocity sub-scales approximately as

u′ ≈ −𝜏q. (3.58)

A similar form of sub-scales was also obtained byWang et al. Wang and Oberai (2010a) by

writing an asymptotic series in terms of residual Bazilevs et al. (2007). Finally, the effect

of the sub-scales on the continuity equation is taken into consideration as follows:

(∇ · (ũ + u′), �̃�)Ω′ = 0 ∀�̃� ∈ K̃, (3.59)

(∇ · (ũ − 𝜏q), �̃�)Ω′ = 0 ∀�̃� ∈ K̃ . (3.60)

By applying integration by parts and using the fact that sub-scales vanish at the elemental

boundaries, we have the following formulation for the continuity equation:

(∇.ũ, �̃�)Ω′ + 𝜏(q,∇�̃�)Ω′ = 0 ∀�̃� ∈ K̃, (3.61)

The next step is to discretize the above equation in time using the \ family of methods. This

resulting variational problem at each time step is to find ũ𝑛+\ ∈ Ṽ𝑑 and 𝑝𝑛+\ ∈ K̃ such that
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(
ũ𝑛+1 − ũ𝑛

Δ𝑡
, w̃

)
Ω′

+ (ũ𝑛+\ · ∇ũ𝑛+\ , w̃)Ω′ + a(∇ũ𝑛+\ ,∇w̃)Ω′ − (𝑝𝑛+\ ,∇ · w̃) =

(f𝑛+\ , w̃) + 𝜏[(q𝑛+\ · ∇ũ𝑛+\ , w̃)Ω′ + (ũ𝑛+\ · ∇q𝑛+\ , w̃)Ω′ − a(q𝑛+\ ,∇2w̃)Ω′] ∀w̃, ∈ Ṽ𝑑

(3.62)

q𝑛+\ = (R(ũ𝑛+\) + ∇𝑝𝑛+\ − f𝑛+\) − Π̃((R(ũ𝑛+\) + ∇𝑝𝑛+\ − f𝑛+\)), (3.63)

(∇.ũ𝑛+\ , �̃�)Ω′ + 𝜏(q𝑛+\ ,∇�̃�)Ω′ = 0 ∀�̃� ∈ K̃ . (3.64)

One way to linearize the above set of non-linear equations is by using Picard iteration based

technique given by(
ũ𝑛+\,𝑖+1 − ũ𝑛

\Δ𝑡
, w̃

)
Ω′

+ (ũ𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖+1, w̃)Ω′ + a(∇ũ𝑛+\,𝑖+1,∇w̃)Ω′ − (𝑝𝑛+\,𝑖+1,∇ · w̃) =

(f𝑛+\,𝑖, w̃) + 𝜏[(q𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖+1, w̃)Ω′ + (ũ𝑛+\,𝑖 · ∇q𝑎, w̃)Ω′ − a(q𝑎,∇2w̃)Ω′] ∀w̃ ∈ Ṽ𝑑 ,

(3.65)

where 𝑖 + 1 and 𝑖 denote the present and previous iteration respectively. It can be noted that

q𝑎 and q𝑛+\,𝑖 are defined differently. This has been done so that (ũ𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖+1, w̃)Ω′

and 𝜏(q𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖+1, w̃)Ω′ can be merged together. This is possible because q𝑛+\,𝑖 is

calculated from previous iteration variables. This is similar to Codina’s procedure Codina

(2002) of adding sub-scales to the convective velocity, and a direct consequence of retaining

the non-linearity in the VMS formulation Codina et al. (2007). Defining q𝑎 in this manner

allows for an implicit calculation of the memory terms which is similar to the stabilization
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term in Codina (2002); Brooks and Hughes (1982); Hughes et al. (1989, 1986) as follows:

q𝑎 = (ũ𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖+1 − a∇2ũ𝑛+\,𝑖+1 + ∇𝑝𝑛+\,𝑖+1 − f𝑛+\,𝑖)

−Π̃(ũ𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖 − a∇2ũ𝑛+\,𝑖 + ∇𝑝𝑛+\,𝑖 − f𝑛+\,𝑖),
(3.66)

q𝑛+\,𝑖 = (ũ𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖 − a∇2ũ𝑛+\,𝑖 + ∇𝑝𝑛+\,𝑖 − f𝑛+\,𝑖)

−Π̃(ũ𝑛+\,𝑖 · ∇ũ𝑛+\,𝑖 − a∇2ũ𝑛+\,𝑖 + ∇𝑝𝑛+\,𝑖 − f𝑛+\,𝑖),
(3.67)

Equations (3.64), (3.65), (3.66) and (3.67) are iterated until convergence of the relative

norm of the solution vector between two consecutive iterations is achieved.

3.5.1 Homogeneous Isotropic Turbulence (HIT)

In this section, we present results for decaying homogeneous isotropic turbulence (HIT)

and compare it to DNS. We choose the OSS model as a reference, as it has been shown

to be a good VMS closure for turbulence Colomés et al. (2015). The HIT problem has

been extensively studied in literature both numerically Mansour and Wray (1994); Orszag

and Patterson Jr (1972); Ishida et al. (2006) and experimentally Comte-Bellot and Corrsin

(1971). This problem is well defined in a 3-D periodic box and the initialization of the initial

velocity field for DNS is done using Rogallo’s procedure Rogallo (1981) which assumes the

following energy spectrum at initial time:

𝐸 (𝑘, 𝑡 = 0) = 𝑞2

2𝐴
1

𝑘𝜎+1𝑝

𝑘 𝑝𝑒𝑥𝑝(−𝜎
2

( 𝑘
𝑘 𝑝

)2), (3.68)

where 𝑘 𝑝 is the wavenumber at which the energy spectra peaks and A is defined as∫ ∞
0 𝑘𝜎𝑒𝑥𝑝(−𝜎𝑘2/2)𝑑𝑘 . The velocity in spectral space is given by

a(k) = ( 𝛼𝑘𝑘2 + 𝛽𝑘𝑘1
𝑘 (𝑘21 + 𝑘

2
2)1/2

)𝑖 + ( 𝛽𝑘2𝑘3 − 𝛼𝑘1𝑘3
𝑘 (𝑘21 + 𝑘

2
2)1/2

) 𝑗 − (
𝛽(𝑘21 + 𝑘

2
2)
1/2

𝑘
) �̂� , (3.69)
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where 𝑘 denotes the magnitude of the wavenumber vector and 𝛼 and 𝛽 are defined as

follows:

𝛼 = (𝐸 (𝑘)
4𝜋𝑘2

)1/2𝑒𝑖\1𝑐𝑜𝑠(𝜙), 𝛽 = (𝐸 (𝑘)
4𝜋𝑘2

)1/2𝑒𝑖\2𝑠𝑖𝑛(𝜙), (3.70)

where 𝜙, \1, \2 are uniformly distributed random numbers from 0 to 2𝜋. In all the

simulations, 𝑘 𝑝 = 3, 𝑞2 = 3 and 𝜎 = 4. Although, the initial velocity field satisfies the

divergence free condition, it does not represent a physical homogeneous isotropic turbulent

velocity field. To achieve this state, the field is allowed to decay to a lower 𝑅𝑒_ where the

field will resemble a more realistic velocity field due to redistribution of energy Mansour

and Wray (1994). Three different initial 𝑅𝑒_ have been considered here: 𝑅𝑒_ ≈ 65, 75

and 164 where 𝑅𝑒_ is defined as the Reynolds number based on the Taylor microscale _ as

follows:

𝑅𝑒_ =
𝑢′_

a
, (3.71)

where 𝑢′ is the velocity fluctuation/root mean square (rms) of the velocity field defined as√︁
2𝑘/3. The initial conditions for all these cases are generated from DNS simulations by

starting at a higher 𝑅𝑒_ and allowing it to reach our target 𝑅𝑒_ of 65, 75 and 164 respectively.

The kinematic viscosity for the three different cases are set to a = 0.001, 0.0005 and 0.0001

respectively. The LES simulations utilize 643 linear elements for all the three 𝑅𝑒_ cases,

the results of which are presented in Figures 3.10,3.11 and 3.12 respectively. This allows

us to study the effects of increasing 𝑅𝑒_ by retaining the same resolution.

At a relatively lower Reynolds number of 𝑅𝑒_ ≈ 65, all the models perform fairly well in

predicting the time history of the resolved kinetic energy except the fixed memory models

where an arbitrary choice of 𝜏 is used. As can be seen from the kinetic energy decay plots in

Figures 3.10b, 3.11b and 3.12b, for all the three different Reynolds numbers, the OSSmodel

is not stable and can be seen to oscillate initially. This indicates that for the initial time
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period, the OSS model incorrectly forces the turbulence. We compare the energy spectra at

two different times of T=2.0 and T=4.0 in Figure 3.11c and 3.11d respectively and observe

that all models perform very well at the lower wavenumber modes. However, the OSS is

clearly more dissipative at higher wave-numbers where it predicts a lower energy content

compared to the present model and DNS. At the higher 𝑅𝑒_ = 75 case, we find that both

the Dynamic-𝜏 and the OSS model predict reasonably the evolution of kinetic energy and

rate of kinetic energy decay. If we compare the energy spectra at T=2.0 in Figure 3.11c,

all the models predict a higher energy content across different wave-numbers compared

to the DNS solution with the dynamic-𝜏 again performing better at higher wave-numbers

again. However, at T=4.0, when it decays to a lower 𝑅𝑒_, the performance of all the models

improve, as can be seen in Figure 3.11d. At the highest 𝑅𝑒_ case, 𝑅𝑒_ = 174, we find that

the performance of all the model becomes worse compared to the DNS results. The energy

spectra for this case in presented is Figure 3.12c where only the lower wavenumber modes

are resolved accurately in comparison to DNS. One possible reason for the deterioration of

performance at high 𝑅𝑒_ cases is that the current VMS models are efficient in modeling

the cross-stress terms and not the Reynolds stress terms Wang and Oberai (2010a) which

dominate at higher 𝑅𝑒_ values.

The time variation of the predicted dynamic memory length for all the three cases is

shown in Figure 3.13. From the plots, it can be observed that the memory length increases

almost linearly with time similar to the viscous Burgers equation. This is consistent with

Stinis Stinis (2013) of re-normalizing the t-model for stability and accuracy. Also, the

predicted value for 𝜏 by our dynamic model is higher in comparison to the randomly chosen

𝜏 values for our fixed memory model. The differences in the temporal evolution between

the dynamically-selected 𝜏 and the imposed 𝜏 is a further indicate that the dynamic model

is necessary for calculating the memory length.
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Figure 3.10: (a) Kinetic energy, (b) dissipation, (c) energy spectra at T = 2 and (d) energy
spectra at T=4 for homogeneous isotropic turbulence at initial 𝑅𝑒_ ≈ 65.
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Figure 3.11: (a) Kinetic energy, (b) dissipation, (c) energy spectra at T = 2 and (d) energy
spectra at T=4 for homogeneous isotropic turbulence at initial 𝑅𝑒_ ≈ 75.
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Figure 3.12: (a) Kinetic energy, (b) dissipation and (c) energy spectra at T=4 for homoge-
neous isotropic turbulence at initial 𝑅𝑒_ ≈ 164.
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Figure 3.13: Evolution of memory length 𝜏 predicted using our dynamic model for homo-
geneous isotropic turbulence for different initial 𝑅𝑒𝜏.
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3.5.2 Taylor Green Vortex (TGV)

The next step in understanding the applicability of the proposed method is to employ

the model on a turbulent flow that undergoes complex dynamics such the Taylor-Green

vortex. This problem involves transition to turbulence-like flow, as well as decay. Models

such as the Smagorinsky which have been derived based on assumptions of homogeneity,

isotropy and balance between sub-grid production and dissipation Pope and Pope (2000)

might not optimally preform in such flows where there is non-homogenity and transition to

turbulence. Similar to HIT, this problem is well-defined on a 3-D periodic box with smooth

initial conditions which are given as follows:

𝑢 = 𝑈𝑜𝑐𝑜𝑠(𝑥)𝑠𝑖𝑛(𝑦)𝑐𝑜𝑠(𝑧), 𝑣 = −𝑈𝑜𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦)𝑐𝑜𝑠(𝑧), 𝑤 = 0 (3.72)

where𝑢, 𝑣, 𝑤 denote the velocity in 𝑥, 𝑦 and 𝑧 directions respectively and 𝑥, 𝑦, 𝑧 ∈ [−𝜋𝐿, 𝜋𝐿].

To study this problem, three different Reynolds numbers are considered: 𝑅𝑒 = 𝑈𝑜𝐿
a

= 400,

800 and 1600. The values for 𝐿 and 𝑈𝑜 are unity and the Re is changed solely by varying

the kinematic viscosity a. The initial conditions for the velocity field are kept the same for

all the cases.

The profiles for the resolved kinetic energy for 𝑅𝑒 = 400, 800 and 1600 are shown in

Figures 3.14a, 3.15a and 3.16a respectively. The evolution of the kinetic energy indicates

that both the OSS and Dynamic-𝜏 perform well with only 323 degrees of freedom. Similar

trends are also observed for the rate of KE energy decay for 𝑅𝑒 = 400, 800 and 1600 in

Figures 3.14b,3.15b and 3.16b respectively, where the fixed 𝜏 models fail to accurately

predict the correct results in comparison to DNS. When 483 and 643 degrees of freedoms

are used for 𝑅𝑒 = 800 and 1600 respectively, there is an overall improvement in the results

for the fixed memory model. The present dynamic model and the OSS model perform well

at finer resolutions.

Figures 3.14c, 3.15c and 3.16c, and Figures 3.14d, 3.15d and 3.16d show the energy
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spectra of the resolved velocity fields at two time instants𝑇 = 5.0 and𝑇 = 10.0 respectively.

At 𝑇 = 5.0, all the models are in agreement with DNS at the low wavenumber modes even

with just 323 degrees of freedom. However, the constant 𝜏 models produces a build-up

of energy which grows with 𝑅𝑒 at high-wavenumber modes. This suggests that either an

incorrect value of 𝜏 is used for the FMmodels or the assumption of constant memory length

throughout the simulation is not very accurate. As a result, model with constant memory

length is not capable of producing enough dissipation and the energy increases at the high

wavenumber modes. At a later time 𝑇 = 10.0, a similar trend is also observed with the

constant 𝜏 model where energy increases at high-wave numbers. On the other hand, the

dynamic 𝜏-model and OSS do not result in energy increase at high wavenumbers. Although

our dynamic model and OSS model perform closely for the 323 cases, at higher resolutions

OSS is clearly more dissipative wherein lower energy is present at high wavenumber

especially for the high Reynolds number case. In spite of the OSS model and the dynamic-𝜏

model performing closely, the stabilization parameter in OSS and the memory length in

dynamic-𝜏 is computed differently.

Case 𝐷𝑂𝐹𝑠 𝑑𝑥 𝑑𝑡 a 𝑈0 𝐿 FM 𝜏’s

DNS-400 643 9.81 × 10−2 2 × 10−2 2.5 × 10−3 1 1 -
LES-FM-400 323 1.96 × 10−1 1.96 × 10−2 2.5 × 10−3 1 1 0.01 and 0.002
LES-DY-400 323 1.96 × 10−1 1.96 × 10−2 2.5 × 10−3 1 1 Dynamic
DNS-800 1283 4.90 × 10−2 2 × 10−2 1.25 × 10−3 1 1 -
LES-FM-800 323, 483 1.96 × 10−1, 1.31 × 10−1 1.96 × 10−2 1.25 × 10−3 1 1 0.01 and 0.002
LES-DY-800 323, 483 1.96 × 10−1, 1.31 × 10−1 1.96 × 10−2 1.25 × 10−3 1 1 Dynamic
DNS-1600 2563 2.45 × 10−2 5 × 10−3 6.25 × 10−4 1 1 -
LES-FM-1600 323, 643 1.96 × 10−1, 9.81 × 10−2 1.96 × 10−2, 10−2 6.25 × 10−4 1 1 0.01 and 0.002
LES-DY-1600 323, 643 1.96 × 10−1, 9.81 × 10−2 10−2 6.25 × 10−4 1 1 Dynamic

Table 3.3: Simulation parameters for DNS and LES of the Taylor Green Vortex problem.

3.6 Conclusion

The Variational Multiscale method and the Mori-Zwanzig formalism are combined

within the Continuous Galerkin method to develop coarse grained models for multiscale

PDEs. This approach utilizes the Variational Multiscale method to separate scales with the
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Figure 3.14: (a) Kinetic energy, (b) dissipation, (c) energy spectra at T = 5 and (d) energy
spectra at T=10 for Taylor Green vortex at Re=400 using different coarse graining methods.
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Figure 3.15: (a) Kinetic energy, (b) dissipation, (c) energy spectra at T = 5 and (d) energy
spectra at T=10 for Taylor Green vortex at Re=800 using different coarse graining methods.
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Figure 3.16: (a) Kinetic energy, (b) dissipation, (c) energy spectra at T = 5 and (d) energy
spectra at T=10 for Taylor Green vortex at Re=1600 using different coarse grainingmethods.
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capability of the Mori-Zwanzig formalism to represent the impact of unresolved dynamics

on the resolved dynamics. This approach - in a similar spirit to existing non-linear VMS

models Codina et al. (2007); Codina (2002); Bazilevs et al. (2007); Wang and Oberai

(2010a); Gravemeier et al. (2010); Masud and Calderer (2011b) - is developed to provide

sub-grid scale/stabilizationmodelswithout phenomenological assumptions. This procedure

is generalizable and can be applied to arbitrarily complex non-linear multiscale PDEs. In

context of turbulent flows, this approach provides a general framework for large-eddy

simulation that eschews assumptions such as those based on energy balance between scale.

Sub-grid scale models are developed for the Burgers equation and the Navier-Stokes using

the proposed approach. The sub-grid scale models include a parameter called the memory

length, 𝜏, which represents the the time correlation of unresolved dynamics, and controls the

stabilization. We impose different memory lengths 𝜏 and observe that there is an optimum

memory length 𝜏 which provides results comparable to the full order solution Parish (2018).

To avoid the imposition of an adhoc memory length, and recognizing that the model should

adapt to the instantaneous level of resolution, we derived a dynamic-𝜏 model and found

that it can accurately predict the temporal evolution of 𝜏. The predicted value of 𝜏 was

observed to be generally linear in time, as conceptualized by the renormalized t-model Stinis

(2013). In general, for the range of problems that were investigated, the proposed technique

performs favorably in comparison to existing counterparts.
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CHAPTER IV

Data-Driven Reconstruction and Predictive Modeling of

Unresolved Physics

4.1 Background and Motivation

The availability of high resolution data from numerical simulations and experiments

in the past decade has led to an interest in data-based modeling. Applications of machine

learning augmentations have been used in RANS (e.g. Singh and Duraisamy (2016); Parish

and Duraisamy (2016); Ling et al. (2016);Wang et al. (2017) and LES (e.g. Sarghini et al.

(2003); Gamahara and Hattori (2017); Xie et al. (2019a); Beck et al. (2019)). In the LES

front, Maulik et al. (Maulik et al. (2019)) used machine learning to classify and blend

different LES models to select the most accurate model at run-time. Yang. et al Yang et al.

(2019) used physics-informed features to improve the performance of equilibrium LES

wall models in non-equilibrium cases. Similarly, many other notable attempts to improve

LES models using data have also been made by Maulik et al. Maulik and San (2017);

Maulik et al. (2018, 2019), Beck et al. Beck et al. (2019), Sarghini et al. Sarghini et al.

(2003), Ghamara and HattoriGamahara and Hattori (2017), Wang et. alWang et al. (2018)

and many more Xie et al. (2019a,b, 2020). These data-driven techniques have also found

application in developing closures for reduced-order models (ROMs)Mou et al. (2021); Xie

et al. (2018a); Mohebujjaman et al. (2019); Wang et al. (2020b).
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Very recently, super-resolution of turbulent-flow fields has been pursued using neural

networks Xie et al. (2018b); Deng et al. (2019); Liu et al. (2020); Fukami et al. (2019);

Kim et al. (2020); Fukami et al. (2021). Xie et al. Xie et al. (2018b) and Fukami et

al. Fukami et al. (2019) appear to be the first to introduce this idea in fluid dynamic

applications. These were followed by Deng et al. Deng et al. (2019) who improved

traditional GAN performance by augmenting the model architecture. Improvements in

flow field reconstruction were shown by Liu et al. Liu et al. (2020), using both spatial

and temporal information. Fukami et al. Fukami et al. (2021) performed super-resolution

and in-betweening to reconstruct a highly-resolved space-time solution using two low-

resolution snapshots taken at the start 𝑡 and the end 𝑡 + Δ𝑡 of an interval. These models

have demonstrated an ability to reconstruct fine scales from highly coarse-grained data for

either the same or similar data-set on which they have been trained both in a supervised

and an unsupervised setting Kim et al. (2020). However, applying the trained models to

super-resolve coarse flow-fields at different Reynolds numbers or another part of the flow,

is relatively unexplored.

The idea of using the super-resolved field to compute the closure terms is similar to

the ADM approach. However, compared to the approximately deconvolved solution that

lies on the same mesh as the filtered solution, the super-resolved solution lies on a higher

resolution mesh. A super-resolution model capable of reconstructing fine-space data for a

case where the fine-space data already exists and the same information is used for training

has no use in a predictive setting. This work attempts to improve predictive capabilities

by bringing in generalizable model forms and features. In addition to the generalizability

of these models, the definition of a coarse-space solution is ambiguous. This ambiguity

is because a variety of low-fidelity data, including LES solution, obtained using finite

difference method (FDM), finite volume method (FVM), spectrally filtered DNS solution,

and stabilized finite element (FE) solution on a coarse grid qualify as coarse-solutions.

The nodal or modal values in each of these methods represent different quantities. For
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example, Fukami et al. Fukami et al. (2019) used the max-pooling operation to obtain

coarse data. Consequently, the trained model is dependent on the type of method or filter

used to generate data, and the mapping learned by the network has no formal basis. To

resolve this ambiguity, we define both our coarse space and our fine space in terms of the

𝐿2 projection of the DNS solution on low and high order polynomial basis functions in

a similar spirit to the Variational Multiscale Method. As a result, the trained model will

approximate the function that maps the 𝐿2 projection of the DNS data on the two sub-spaces.

Additionally, the model should be preferably compact and applied patch-wise rather than

on the entire flow. This is because there is no guarantee that the coarse data that needs to be

super-resolved has the same size as that of the input layer, and interpolating it back to the

network size defeats the purpose of super-resolution. In this work, we develop N-N closures

that are: (i.) capable of extrapolating to unseen flow conditions and resolutions; (ii.) use

non-dimensional features rather than dimensional features for better generalizability; and

(iii.) can be applied patch-wise rather than on the entire field.

The outline of this chapter is as follows: We re-introduce the VMS methodology in

section 4.2. In section 4.3, we derive VMS consistent features. In section 4.4, we propose

a model form and a new network architecture for learning it. We describe the procedure of

generating training data in section 4.5. In section 4.6, we apply our approach to the linear

advection problem both in an online (numerical method) and offline (super-resolution)

setting. In section 4.7, we evaluate the performance of a model approach to the turbulent

channel flow. In section 4.8, we apply our approach to the 1-D convection diffusion equation

to discover high-order CG schemes. Finally, we summarize this chapter in section 4.9.

4.2 The Variational Multiscale (VMS) Method

This section re-summarizes the Variational Multiscale Method (VMS) Hughes et al.

(1998a), however, in the context of super-resolution. As discussed previously, this method

has been extensively used for developing closures for both linear Hughes et al. (1998a,
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1989); Brooks and Hughes (1982); Codina (2000); Hughes et al. (1986) and non-linear

PDEsCodina et al. (2007);Codina (2002);Bazilevs et al. (2007);Wang and Oberai (2010a);

Gravemeier et al. (2010); Masud and Calderer (2011b). This section will only discuss it

in the context of a linear problem and use it as a guiding principle for feature selection and

in shaping the network architecture. As discussed by Hughes et al. Hughes et al. (1998a),

the development of VMS closure can be broadly categorized into two different subsections

based on the type of basis functions used, which are detailed below, along with a context

for super-resolution.

4.2.1 Smooth Case

In the ‘smooth case’, the basis functions are sufficiently smooth so that the distributional

effects may be ignored Hughes et al. (1998a). Both the Fourier basis and the Chebyshev

spectral basis qualify as a smooth basis. For this case, consider the following PDE on an

open and bounded domain Ω ⊂ R𝑑 , where 𝑑 ≥ 1 is the dimension of the problem, with a

smooth boundary Γ = 𝜕Ω:

L(𝑢) = 𝑓 𝑖𝑛 Ω, 𝑢 = 𝑔 𝑜𝑛 Γ (4.1)

where the operator L can be linear or non-linear, the functions 𝑓 : Ω → R and 𝑔 : Γ → R

are given. The variational form of the above PDE is given by

(L(𝑢), 𝑤) = ( 𝑓 , 𝑤), (4.2)

such that 𝑢 ∈ V for all 𝑤 ∈ V, where (·, ·) denotes the 𝐿2(Ω) inner product, and V ≡

H1(Ω) is the Sobolev space. The solution and weighting space are decomposed as follows:

V = Vℎ ⊕ V′, (4.3)
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where ⊕ represents a direct sum ofVℎ andV′. Applying the VMS operation, we have

(L(𝑢ℎ + 𝑢′), 𝑤ℎ) + (L(𝑢ℎ + 𝑢′), 𝑤′) = ( 𝑓 , 𝑤ℎ) + ( 𝑓 , 𝑤′). (4.4)

While the above equation is valid for both non-linear and linear equations, further simplifi-

cations can be made if the differential operator is assumed to be linear. To this end, using

the linear independence of 𝑤ℎ and 𝑤′, and taking the differential operator to be linear, we

obtain the coarse and fine equations :

(L(𝑢ℎ), 𝑤ℎ) + (L(𝑢′), 𝑤ℎ) = ( 𝑓 , 𝑤ℎ) (4.5)

(L(𝑢′), 𝑤′) = −(L𝑢ℎ − 𝑓 , 𝑤′). (4.6)

The coarse and fine scale equations can be re-written as:

(L(𝑢ℎ) − 𝑓 , 𝑤ℎ) = −(L(𝑢′), 𝑤ℎ) (4.7)

Π′L(𝑢′) = −Π′(L𝑢ℎ − 𝑓 ), (4.8)

where Π′ is the 𝐿2-projector on the fine-scale basis functions. The Green’s function

corresponding to the adjoint of the fine-scale problem is found by solving the following

equations

Π′L∗(𝑔′(𝑥, 𝑦)) = Π′(𝛿(𝑥 − 𝑦)) ∀𝑥 ∈ Ω ; 𝑔′(𝑥, 𝑦) = 0 ∀𝑥 ∈ Γ. (4.9)

The fine-scale can be obtained by super-position as follows:

𝑢′(𝑦) = −
∫
Ω

𝑔′(𝑥, 𝑦) (L𝑢ℎ − 𝑓 ) (𝑥)𝑑Ω𝑥 . (4.10)
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In the current super-resolution approach, we do not seek 𝑢′. Rather, we seek 𝑢′
𝑓
, which

is the optimal projection of 𝑢′ on the finer-space 𝑤 𝑓 . The space of functions in 𝑤 𝑓 is

finer in-comparison to 𝑤ℎ or represents a different kind of space. To this end, the optimal

projection of 𝑢′ on 𝑤 𝑓 is given by:

𝑢′𝑓 (𝑦) = Π 𝑓 𝑢
′(𝑦) = −

∫
Ω

Π 𝑓 (𝑔′(𝑥, 𝑦)) (L𝑢ℎ − 𝑓 ) (𝑥)𝑑Ω𝑥 , (4.11)

where Π 𝑓 (𝑔′(𝑥, 𝑦)) is 𝐿2-projection of 𝑔′(𝑥, 𝑦) on 𝑤 𝑓 (𝑦). For this case, the fine space

can be constructed using higher wavenumber Fourier modes or higher-order Chebyshev

polynomials.

4.2.2 Rough Case

In the ’rough case’, the lack of continuity of derivatives at element interfaces requires us

to account for the distributional effects explicitly Hughes et al. (1998a). This case is typical

of the finite element method, where piece-wise continuous polynomial functions are used

within each element. Similar to the ’smooth case’, Hughes et al. Hughes et al. (1998a)

showed that the exact form of sub-scales in the case of finite elements is given by:

𝑢′(𝑦) = −
∑︁
𝑒

©«
∫
Ω𝑒

𝑔′(𝑥, 𝑦) (L𝑢ℎ − 𝑓 ) (𝑥)𝑑Ω𝑥 +
∫
Γ𝑒

𝑔′(𝑥, 𝑦) (𝑏𝑢ℎ) (𝑥)𝑑Γ𝑥
ª®®¬ . (4.12)

It has to be mentioned that the ’smooth case’ can be considered as a limiting case of the

’rough case’ when a single element is used and element interfaces are not present. The sub-

scale solution depends on the coarse-scale inside the element and its neighbors. Applying
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the projection operator on both sides of equation (4.12) we obtain

𝑢′𝑓 (𝑦) = Π 𝑓 𝑢
′(𝑦) = −

∑︁
𝑒

( ∫
Ω𝑒

Π 𝑓 (𝑔′(𝑥, 𝑦)) (L𝑢ℎ − 𝑓 ) (𝑥)𝑑Ω𝑥 (4.13)

+
∫
Γ𝑒

Π 𝑓 (𝑔′(𝑥, 𝑦)) (𝑏𝑢ℎ) (𝑥)𝑑Γ𝑥
)
.

An approximation to the above equation is given in the form of compact bubble functions

which vanish at the element boundaries Masud and Calderer (2011a); Franca and Farhat

(1995); Brezzi et al. (1992); Hughes (1995). For 1-D linear problems, solving the element

Green’s function leads to the coarse-scale solution being the endpoint interpolant of the

actual solution Hughes et al. (1998a). Assuming that the coarse-scale is given in the form

of the endpoint interpolant of the true solution, the fine-scale solution is given by

𝑢′𝑓 (𝑦) = Π 𝑓 𝑢
′(𝑦) = −

∫
Ω𝑒

Π 𝑓 (𝑔′(𝑥, 𝑦)) (L𝑢ℎ − 𝑓 ) (𝑥)𝑑Ω𝑥 . (4.14)

A point to note is that application of the projection operator Π 𝑓 (𝑦) on the element Green’s

function 𝑔′(𝑥, 𝑦) leads to the reduction of dimension only in y, i.e.

𝑔′𝑓 (𝑥, 𝑦) = Π 𝑓 𝑔
′(𝑥, 𝑦) =

∑︁
𝑖

𝑔′𝑥,𝑖 (𝑥)𝜓𝑖 (𝑦/ℎ), (4.15)

where the basis coefficients 𝑔′
𝑥,𝑖
(𝑥) are functions of 𝑥, which are not necessarily polynomials.

However, if the polynomial order 𝑝𝑐 of the coarse-scale is given, the coarse-scale residual

for (e.g.) the convection-diffusion equation will be of polynomial order 𝑝𝐶 − 1. Thus,

projecting
∑
𝑔′
𝑥,𝑖
(𝑥) onto the space of polynomials with order 𝑝𝐶 − 1 and representing

𝑔′(𝑥, 𝑦) onto tensor-product basis functions in 𝑥 and 𝑦 is sufficient. The polynomial order

of 𝑦 is determined by the polynomial order of fine-scales, whereas the polynomial order of

x is decided by the maximum polynomial order arising in the coarse-scale residual. For the
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convection-diffusion problem, the element Green’s function is given by:

𝑔(𝑥, 𝑦) =


𝐶1(𝑦)

(
1 − 𝑒−2𝛼𝑥/ℎ

)
, if 𝑥 ≤ 𝑦

𝐶2(𝑦)
(
𝑒−2𝛼𝑥/ℎ − 𝑒−2𝛼

)
, 𝑥 ≥ 𝑦

where 𝛼 is the cell Peclet number 𝛼 = 𝑎ℎ
2^ and the functions 𝐶1(𝑦) and 𝐶2(𝑦) are defined as

𝐶1(𝑦) =
1 − e−2𝛼(1−(𝑦/ℎ))

𝑎
(
1 − e−2𝛼

) , 𝐶2(𝑦) =
𝑒2𝛼(𝑦/ℎ) − 1
𝑎

(
1 − 𝑒−2𝛼

) . (4.16)

The element’s Green’s function approximated using different order tensor-product basis

functions in 𝑥 and 𝑦 is shown in Figure 4.1. The basis functions used here to approximate

the sub-scale do not necessarily vanish at the element boundary. However, one can also

select them to ensure that the sub-scales vanish at the element boundary, similar to a bubble

function, as shown in Figure 4.2. Hence, when the input and output order is fixed, the

Green’s function for the fine-scales can be represented in a finite number of dimensions.

This makes it easier to learn the mapping between the coarse-scale and fine-scale solutions.

On further inspection, we find that 𝑎𝑔′(𝑥, 𝑦) is a function of 𝛼, 𝑥/ℎ and 𝑦/ℎ. Consequently,

𝑎𝑔′
𝑓
(𝑥, 𝑦) can be written as follows:

𝑎𝑔′𝑓 (𝑥, 𝑦) =
∑︁
𝑖, 𝑗

𝑔𝑎𝑖 𝑗 (𝛼)𝜙𝑖 (𝑦/ℎ)𝜓 𝑗 (𝑥/ℎ), (4.17)

where 𝜙𝑖 (𝑦/ℎ) and 𝜓 𝑗 (𝑥/ℎ) are 1-D basis functions constituting the tensor-product basis

functions. Substituting back in equation (4.14), we obtain:

𝑢′𝑓 (𝑦) = −
∑︁
𝑖

𝜙𝑖 (𝑦/ℎ)
∑︁
𝑗

∫
Ω𝑒

𝑔𝑎𝑖 𝑗 (𝛼)𝜓 𝑗 (𝑥/ℎ) (
𝑑𝑢ℎ

𝑑𝑥
− ^

𝑎

𝑑2𝑢ℎ

𝑑𝑥2
)𝑑Ω𝑥 . (4.18)
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Next we introduce a constant 𝑢𝑚 in the coarse-scale residual calculation as follows:

𝑢′𝑓 (𝑦) = −
∑︁
𝑖

𝜙𝑖 (𝑦/ℎ)
∑︁
𝑗

∫
Ω𝑒

𝑔𝑎𝑖 𝑗 (𝛼)𝜓 𝑗 (𝑥/ℎ) (
𝑑 (𝑢ℎ − 𝑢𝑚)

𝑑𝑥
− ^

𝑎

𝑑2(𝑢ℎ − 𝑢𝑚)
𝑑𝑥2

)𝑑Ω𝑥 . (4.19)

It can be observed that subtracting 𝑢𝑚 from 𝑢𝑐 does not introduce any error in equation

(4.19) because we are taking derivatives of a constant. Writing the coarse-scale solution

and the constant 𝑢𝑚 in terms of the nodal Lagrange basis functions 𝑢ℎ =
∑
𝑘 𝑢ℎ,𝑘𝑤ℎ,𝑘 (𝑥/ℎ)

and 𝑢𝑚 =
∑
𝑘 𝑢𝑚𝑤ℎ,𝑘 (𝑥/ℎ), and substituting in equation (4.19) we get

𝑢′𝑓 (𝑦) = −
∑︁
𝑖

𝜙𝑖 (𝑦/ℎ)
∑︁
𝑗

∫
Ω𝑒

𝑔𝑎𝑖 𝑗 (𝛼)𝜓 𝑗 (𝑥/ℎ)
∑︁
𝑘

(𝑢ℎ,𝑘−𝑢𝑚) (𝑤′
ℎ,𝑘 (𝑥/ℎ)−

1
𝛼
𝑤′′
ℎ,𝑘 (𝑥/ℎ))

𝑑Ω𝑥

ℎ
.

(4.20)

Dividing both sides with a normalizing parameter 𝑢𝑟𝑚𝑠 (which will be defined later) and

re-arranging we obtain:

𝑢′
𝑓
(𝑦)

𝑢𝑟𝑚𝑠
= −

∑︁
𝑖

𝜙𝑖 (𝑦/ℎ)
∑︁
𝑘

𝑢ℎ,𝑘 − 𝑢𝑚
𝑢𝑟𝑚𝑠

∫
Ω𝑒

(
𝑤′
ℎ,𝑘 (𝑥/ℎ) −

1
𝛼
𝑤′′
ℎ,𝑘 (𝑥/ℎ)

)
(4.21)

∑︁
𝑗

(
𝑔𝑎𝑖 𝑗 (𝛼)𝜓 𝑗 (𝑥/ℎ)

) 𝑑Ω𝑥

ℎ
,

where the integral
∫
Ω𝑒

(
𝑤′
ℎ,𝑘

(𝑥/ℎ) − 1
𝛼
𝑤′′
ℎ,𝑘

(𝑥/ℎ)
) ∑

𝑗

(
𝑔𝑎
𝑖 𝑗
(𝛼)𝜓 𝑗 (𝑥/ℎ)

)
𝑑Ω𝑥

ℎ
is a function of

𝛼 which can be written as linear combinations of 𝑔𝑎
𝑖 𝑗
(𝛼) and

𝑔𝑎
𝑖 𝑗
(𝛼)
𝛼
.

With this normalization, the problem of learning the sub-scales reduces to learning

the projected element Green’s function basis coefficients 𝑔𝑎
𝑖 𝑗
(𝛼) which define the shapes

of the surfaces plotted in Figure 4.1. Equation (4.21) also suggests that the normalised

sub-scale basis coefficients can be written as sum of the products of normalized coarse

scales basis coefficients and functions of 𝛼. Further, the number of such functions of 𝛼

needed to be learnt are finite. Equation (4.21) also suggests for a linear problem that the

sub-scales depend linearly on the coarse-scale basis coefficients. The dependence on 𝛼,
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Figure 4.1: 𝐿2 optimal approximation of the fine-scale Green’s function on various tensor-
product polynomial basis function g’ for different cell Peclet number 𝛼.

however, can be non-linear. These insights will be used later in sections 4.3 and 4.4.

4.3 VMS-inspired feature selection

In this section, we will derive an appropriate feature set and the network architecture

for our model. To demonstrate the action of the super-resolution operator, we assume the

coarse space to be composed of piece-wise linear polynomials and the governing PDE to

be the linear convection-diffusion equation given by the following differential operator and

boundary condition

L ≜ 𝑎 𝑑
𝑑𝑥

− ^ 𝑑
2

𝑑𝑥2
𝑖𝑛 Ω = [0, 𝐿], 𝑢 = 0 𝑜𝑛 Γ = {0, 𝐿}. (4.22)
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Figure 4.2: 𝐿2-optimal approximation of the fine-scale Green’s function on 𝑝𝑥 = 0 and
𝑝𝑦 = 3 basis such that 𝑢′𝑓 (𝑦) is zero on the boundaries.

For a linear 1-D element of size ℎ existing between 0 ≤ 𝑥 ≤ ℎ in its local co-ordinates, the

coarse solution 𝑢ℎ in terms of the end-point values 𝑢(0) and 𝑢(ℎ) is given by:

𝑢ℎ (𝑥) = 𝑢(0) (1 − 𝑥/ℎ) + 𝑢(ℎ) (𝑥/ℎ). (4.23)

The space in which the fine scales are approximated can be a discontinuous finite element

space or a bubble function space. The 𝐿2-optimal approximation of the fine scales 𝑢′ on

any polynomial space existing inside an element is given by the projection Π 𝑓 :

𝑢′𝑓 (𝑦) = Π 𝑓 𝑢
′(𝑦) = −

∫
Ω𝑒

Π 𝑓 (𝑔′(𝑥, 𝑦))𝑎
(
𝑢(ℎ) − 𝑢(0)

ℎ

)
𝑑Ω𝑥 . (4.24)

The coarse solution considered here is an endpoint interpolant of the true solution. In that

case, one can determine the exact form of the sub-scale inside the element by assuming

the endpoint values as Dirichlet boundary conditions and by solving the equation inside the

element:

𝑢′(𝑦) = (𝑢(ℎ) − 𝑢(0))
(
1 − 𝑒2𝛼

𝑦

ℎ

1 − 𝑒2𝛼
− 𝑦

ℎ

)
. (4.25)
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The simplest approximation of the bubble function is obtained by projecting it on a 𝑝0

discontinuous space inside the element i.e.

𝑢′0(𝑦) =
ℎ∫
0

(𝑢(ℎ) − 𝑢(0))
(
1 − 𝑒2𝛼

𝑦

ℎ

1 − 𝑒2𝛼
− 𝑦

ℎ

)
𝑑𝑦 = −𝑎 (𝑢(ℎ) − 𝑢(0))

ℎ

ℎ

2𝑎

(
𝑐𝑜𝑡ℎ(𝛼) − 1

𝛼

)
,

(4.26)

where the first part is the residual when linear basis functions are used, and the second part

is the form of the stabilization parameter 𝜏 commonly used in stabilized methods. For the

linear CG finite element method, Equation (4.26) represents the closure for obtaining the

nodally exact solutionHughes et al. (1998a). Equation (4.26) can also be obtained by first

projecting the elements Green’s function on 𝑝 = 0 discontinuous space i.e.

𝑔′𝑓 ,0(𝑥, 𝑦) =
1
ℎ2

∫
Ω𝑒

∫
Ω𝑒

𝑔′(𝑥, 𝑦)𝑑Ω𝑥𝑑Ω𝑦 =
1
2𝑎

(
𝑐𝑜𝑡ℎ(𝛼) − 1

𝛼

)
, (4.27)

and using this result in equation (4.24) to evaluate the sub-scale as follows:

𝑢′0(𝑦) = Π 𝑓 ,0𝑢
′(𝑦) = −

∫
Ω𝑒

1
2𝑎

(
𝑐𝑜𝑡ℎ(𝛼) − 1

𝛼

)
𝑎
(𝑢(ℎ) − 𝑢(0))

ℎ
𝑑Ω𝑥 =

−𝑎 (𝑢(ℎ) − 𝑢(0))
ℎ

ℎ

2𝑎

(
𝑐𝑜𝑡ℎ(𝛼) − 1

𝛼

)
.

(4.28)

Next, we define the mean and r.m.s quantities of the coarse solution in an element as

follows:

𝑢𝑚 =

∫ ℎ

0 𝑢ℎ𝑑Ω

ℎ
; 𝑢𝑟𝑚𝑠 =

√︄∫ ℎ

0 (𝑢ℎ − 𝑢𝑚)2𝑑Ω
ℎ

. (4.29)

An important observation is that the solution is independent of the mean 𝑢𝑚:

𝑢′(𝑦) = ((𝑢(ℎ) − 𝑢𝑚) − (𝑢(0) − 𝑢𝑚))
(
1 − 𝑒2𝛼

𝑦

ℎ

1 − 𝑒2𝛼
− 𝑦

ℎ

)
. (4.30)
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If our approximation space is linear, then 𝑢𝑚 and 𝑢𝑟𝑚𝑠 are given by:

𝑢𝑚,1 ≜ (𝑢(0) + 𝑢(ℎ))/2 𝑢𝑟𝑚𝑠,1 ≜
|𝑢(ℎ) − 𝑢(0) |

√
12

. (4.31)

Re-arranging this form we get:

𝑢′0(𝑦)
𝑢𝑟𝑚𝑠,1

=
√
3( 1
𝛼
− 𝑐𝑜𝑡ℎ(𝛼))𝑠𝑔𝑛(𝑢(ℎ) − 𝑢(0)), (4.32)

where 𝑠𝑔𝑛 denotes the sign function. The above equation can be simplified as follows:

𝑢′0(𝑦)
𝑢𝑟𝑚𝑠,1

=


√
3( 1

𝛼
− 𝑐𝑜𝑡ℎ(𝛼)), 𝑢(ℎ)−𝑢(0)

|𝑢(ℎ)−𝑢(0) | ≥ 0

−
√
3( 1

𝛼
− 𝑐𝑜𝑡ℎ(𝛼)). 𝑢(ℎ)−𝑢(0)

|𝑢(ℎ)−𝑢(0) | ≤ 0
(4.33)

If we compute the the mean-subtracted basis-coefficients of the coarse solution 𝑢ℎ and

re-scale them with the r.m.s 𝑢𝑟𝑚𝑠,1 we get:

𝑢(0) − 𝑢𝑚
𝑢𝑟𝑚𝑠,1

=
√
3
𝑢(0) − 𝑢(ℎ)
|𝑢(ℎ) − 𝑢(0) | , ;

𝑢(ℎ) − 𝑢𝑚
𝑢𝑟𝑚𝑠,1

=
√
3
𝑢(ℎ) − 𝑢(0)
|𝑢(ℎ) − 𝑢(0) | . (4.34)

These parameters determine the sign of the sub-scale in equation (4.33). Hence, the

magnitude of the sub-scales is fully determined by the physics-informed parameter 𝛼 and

its sign (phase) is determined by these parameters. Consequently, an appropriate choice of

the feature will be:
𝑢′0(𝑦)
𝑢𝑟𝑚𝑠,1

= 𝑓

(
𝛼,
𝑢(0) − 𝑢𝑚
𝑢𝑟𝑚𝑠

,
𝑢(ℎ) − 𝑢𝑚
𝑢𝑟𝑚𝑠

)
. (4.35)

The two extra parameters, in this case, are redundant because they are the same inmagnitude

and opposite in sign. Hence, only one parameter can be used:

𝑢′0(𝑦)
𝑢𝑟𝑚𝑠,1

= 𝑓

(
𝛼,
𝑢(ℎ) − 𝑢(0)

𝑢𝑟𝑚𝑠

)
. (4.36)
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Although equations (4.26) and (4.36) are identical, the generalisibilty of a neural-network

model is considerably affected by the choice of the feature set and the normalization process.

For example, the model form

𝑢′0(𝑦) = 𝑔 (𝑎, ^, ℎ, 𝑢(ℎ), 𝑢(0)) , (4.37)

does not utilize the idea that only specific combinations of 𝑎, ^, ℎ i.e. cell Peclet number

𝛼 effect the sub-scale solution distinctively. To train this model, a big data-set with a large

stretch in the values of the input parameters is required. This equation is also not invariant

to the units or the scaling used for the input parameters. The proposed model form in

equation (4.36) tries to address some of these challenges. An important point to note is

that the functional form presented in equation (4.36) is derived for the advection-diffusion

problem. However, this structure will serve as the inspiration for applying this method to

other non-linear problems, as detailed in the following section.

4.4 Learning VMS-consistent subscales

In this section, we will attempt to derive a general model structure that can be used to

learn sub-scales arising in a wide range of multi-scale problems. In case of super-resolution,

the sub-scales contain the fine-scale information that is absent in the lower-resolution image.

When used as the closure, they are responsible for modeling the effect of unresolved fine-

scales on the coarse-scales. Irrespective of the mode of application, the model structure

should not be different. As a first step, we learn the mapping presented in equation (4.36)

and compare it to the analytical solution. Data is first obtained by solving the equation at

different Peclet numbers 𝑃𝑒 on very fine meshes (we refer to this as the DNS) for training

the network. Similarly, we can also generate data by dividing a single high 𝑃𝑒 DNS case

into multiple cases with different element sizes, i.e., different cell Peclet numbers. The

coarse-scale is obtained in the form of end-point interpolant, and the approximation to the
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Element size:

True solution
Coarse solution Sub-scale

Approximated sub-scale

Figure 4.3: Computation of 𝑢′0 by element-wise 𝐿2-projection of the sub-scale 𝑢
′ on the

𝑝 = 0 polynomial space.

sub-scale is then computed for each such element numerically as shown in figure 4.3. A

small network with a size of 3 × 8 × 8 × 8 × 1 is then trained using this data. Figure 4.4

shows the comparison between the sub-scale obtained analytically vs. that learned purely

from data using neural network (N-N). It can be observed that the small network could

learn the analytical solution accurately. The discussion in this section was mainly focused

on learning the sub-scales. In section 4.8, we demonstrate how these sub-scales can be

used as closures for the CG finite element method and further extend them to high order

discretizations.

One way of obtaining the exact form of the sub-scale is by keeping our approximating

space of the coarse-scale the same (linear) and increasing the order of the discontinuous

space 𝑝 in which 𝑢′ is approximated. In limit, 𝑝 → ∞ the approximate sub-scale should

approach 𝑢′(𝑦). However, the order of the polynomial 𝑝 required to learn the function

increases when 𝑃𝑒 is increased. By limiting the output order 𝑝 to the order of super-

resolution, we are reducing the complexity and size of the network, as discussed in the last

section. This is because, when 𝛼 → ∞, 𝑓 (𝛼) = |𝑢′ |
𝑢𝑟𝑚𝑠

=
√
3(𝑐𝑜𝑡ℎ(𝛼) − 1

𝛼
) is well-behaved,
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Figure 4.4: Comparison of sub-scales magnitude as a function of cell Peclet number 𝛼
obtained analytically vs. that learnt from data using a N-N.

whereas if 𝑢′(𝑦) given by the equation (4.25) is learnt directly as a function of 𝑦 and 𝛼,

the function becomes steep at 𝑦 = ℎ for 𝛼 → ∞. A solution to this problem is to use

features such as 1−𝑒
2𝛼 𝑦

ℎ

1−𝑒2𝛼 as inputs. However, this restricts the method to one kind of problem.

Similarly, the optimal form of the sub-scale on discontinuous 𝑝 = 1 basis functions is given

by:
𝑢′1(𝑦)
𝑢𝑟𝑚𝑠,1

= 𝐶′
1(𝛼)𝜓1(𝑦/ℎ) + 𝐶

′
1(𝛼)𝜓2(𝑦/ℎ). (4.38)

The form of the function to be learned for this case is:

[
𝐶′
1, 𝐶

′
2
]
= f (𝛼). (4.39)

The above analysis was performed for the continuous Galerkin (CG) method, but these

ideas can be extended to the discontinuous Galerkin (DG). Retaining the same structure, we

extend the technique to non-linear/linear problems for both CG/DG types of basis functions
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as follows:

[𝐶′
1,𝑝𝑠 , 𝐶

′
2,𝑝𝑠 , .., 𝐶

′
(𝑝𝑠+1)𝑑 ,𝑝𝑠 ] = f

(
𝛼,

[
�̃�1,𝑝𝑐 , �̃�2,𝑝𝑐 , .., �̃�(𝑝𝑐+1)𝑑 ,𝑝𝑐

]
, .. (4.40)

,
[
�̃�1,𝑝𝑐 , �̃�2,𝑝𝑐 , .., �̃�(𝑝𝑐+1)𝑑 ,𝑝𝑐

]
𝑚
, ..

)
,

where 𝑝𝑠 and 𝑝𝑐 are the polynomial orders of the spaces in which the sub-scale and

coarse-scale are optimally represented, and 𝑑 denotes the dimension of the problem. This

function, apart from 𝛼 (equivalent to cell 𝑅𝑒/ cell 𝑃𝑒) also contains the basis coefficients

of the current element and its neighbors. The term
[
�̃�1,𝑝𝑐 , �̃�2,𝑝𝑐 , .., �̃�(𝑝𝑐+1)𝑑 ,𝑝𝑐

]
𝑚
with sub-

script 𝑚 denotes the mean subtracted normalized basis coefficient of 𝑚𝑡ℎ neighbour. The

neighbour information is critical when discontinuous basis is used, or when bubble function

approximation are not employed in CG, or non-local transfer of information happens from

outside the element. These coefficients are first subtracted with the coarse scale mean 𝑢𝑚

and then normalised with the coarse scale R.M.S. 𝑢𝑟𝑚𝑠 as done previously. The output of

the function
[
𝐶′
1,𝑝𝑠 , 𝐶

′
2,𝑝𝑠 , .., 𝐶

′
(𝑝𝑠+1)𝑑 ,𝑝𝑠

]
denotes the basis coefficients of the sub-scale that

has been normalised with 𝑢𝑟𝑚𝑠 only i.e.

[
�̃�1,𝑝𝑐 , �̃�2,𝑝𝑐 , .., �̃�(𝑝𝑐+1)𝑑 ,𝑝𝑐

]
𝑚
=

[
𝐶1,𝑝𝑐 − 𝑢𝑚, 𝐶2,𝑝𝑐 − 𝑢𝑚, .., 𝐶(𝑝𝑐+1)𝑑 ,𝑝𝑐 − 𝑢𝑚

]
𝑚
/𝑢𝑟𝑚𝑠,

(4.41)

where 𝐶𝑖, 𝑗 denotes the actual basis coefficients. The quantities used for shifting and non-

dimensionalizing the input parameters,i.e., 𝑢𝑚 and𝑢𝑟𝑚𝑠 respectively, and non-dimensionalizing

the output parameters 𝑢𝑟𝑚𝑠 are calculated using the coarse-scale solution in the center el-

ement only. As will be seen later in this chapter, the non-dimensionalization process is

critical for the N-N model to generalize. The output coefficients are finally re-scaled with
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𝑢𝑟𝑚𝑠 and added to the coarse-scale to obtain the super-resolved solution as follows:

𝑢𝑠𝑟 = 𝑢𝑝𝑐 + 𝑢′𝑝𝑠 = 𝑢𝑝𝑐 + 𝑢𝑟𝑚𝑠
(𝑝𝑠+1)𝑑∑︁

𝑖

𝐶′
𝑖,𝑝𝑠
𝜓𝑖,𝑝𝑠 , (4.42)

where, 𝜓𝑖,𝑝𝑠 denotes basis function corresponding to the 𝑖𝑡ℎ node or mode. Division by

𝑢𝑟𝑚𝑠 in equation (4.41) is a problem when 𝑢𝑟𝑚𝑠 is precisely equal to zero. However, adding

a small positive number 𝜖 to 𝑢𝑟𝑚𝑠 while dividing was sufficient for all the cases presented

below.

4.4.1 The Variational Super-resolution Network architecture

In addition to the model features, the model architecture can be made consistent with

the VMS formulation. As proposed in equation (4.40), the input to the model are the

physics-informed parameters such as the cell Péclet number 𝛼, along with the normalized

mean-subtracted coarse-scale basis coefficients of an element and its neighbor. The output

to the network are the normalized sub-scale basis coefficients in that particular element.

The physics-informed parameter can also be other non-dimensional numbers such as the

CFL number or the cell Reynolds number 𝑅𝑒Δ specific to the problem. Given these sets

of input and output features, many possible ways of embedding them into the model exist.

Figure 4.5 shows two different kinds of network architectures to achieve this.

The traditional approach is based on the idea of training one single fully connected

N-N with both the normalized coarse-scale basis coefficients and the physics informed-

parameter as inputs. If the normalized sub-scale basis coefficients are denoted by u′, the

normalized input coarse basis coefficients of the element and its neighbors as u𝑐 and the

physics-informed parameter 𝛼, then the traditional model is given by:

u′ = f𝐹𝑁𝑁 (𝛼, u𝑐) , (4.43)

where f𝐹𝑁𝑁 denotes a fully-connected neural network (FNN). Another approach also called
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the variational super-resolution N-N (VSRNN), is based on a multiplicative strategy in

which the fine-scales are approximated by a sum of products of individual functions of the

parameters and the coarse-scales. The model form can be summarized as follows:

u′ = f𝐹𝑁𝑁 (g𝛼 ⊙ g𝑢), ; g𝛼 = h𝐹𝑁𝑁 (𝛼), ; g𝑢 = k𝐹𝑁𝑁 (u𝑐), (4.44)

where f𝐹𝑁𝑁 , h𝐹𝑁𝑁 and k𝐹𝑁𝑁 denote three different FNNs. The symbol ⊙ denotes element-

wise multiplication between two vectors of the same size. This architecture is inspired by

equation (4.21) and the analytical solution of the sub-scale provided in equations (4.32). In

this case, g𝛼 (Part B) learns the dependence of 𝛼 i.e.
√
3
(
1
𝛼
− 𝑐𝑜𝑡ℎ(𝛼)

)
and g𝑢 (Part A)

learns the dependence of the normalized coarse-scale basis coefficients, i.e., 𝑠𝑔𝑛(𝑢(ℎ) −

𝑢(0)). In sections 4.2-4.4 and section 4.8, we tried to develop insights into the working of

the VSRNN and demonstrated its application as a closures for the CG method. In sections

4.5-4.7, we use the VSRNN to perform super-resolution and sub-grid modelling for the

DG method. This does not imply that the exact sub-scales used for the CG method in

sections 4.2-4.4 are re-used in sections 4.5-4.7. Only the model form has been assumed to

be the same which is finally trained on the correct sub-scale that is consistent with the DG

approach. Details about the scale-decomposition used for the DG method are detailed in

section 4.5.

4.5 Data Generation

The generation of proper training and testing data is as critical as the model architecture

and features. For example, low-resolution data can be obtained from a variety of high fidelity

sources (simulations and experiment) and can be coarse-grained. There is no guarantee that

a model trained to perform super-resolution of the filtered solution will be useful unless

the filtering operation is consistent with the underlying numerics. To this end, consider the
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Figure 4.5: VMS-consistent architecture and features are used for learning the mapping in
VSRNN.
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VMS decomposition of the full-order solution 𝑢 as follows:

𝑢 = 𝑢ℎ + 𝑢′, (4.45)

where 𝑢ℎ ∈ Vℎ and 𝑢′ ∈ V′. The vector space of functions V ≡ H1(Ω) is a Sobolev

space where the functions and their derivative are square-integrable. This space is now

decomposed as follows:

V = Vℎ ⊕ V′, (4.46)

where ⊕ represents a direct sum of Vℎ and V′. Let us also define Tℎ to be a tessellation

of domain Ω into a set of non-overlapping elements, 𝐾 , each having a sub-domain Ω𝑘 and

boundary Γ𝑘 . Vℎ is now defined as:

Vℎ ≜
{
𝑢 ∈ 𝐿2(Ω) : 𝑢 |T ∈ 𝑃𝑘 (𝑇), 𝑇 ∈ Tℎ

}
, (4.47)

where the space of polynomials up to degree 𝑘 is denoted as 𝑃𝑘 . Defining Vℎ in this

manner allows discontinuity in the solution across element boundaries. Given 𝑢 from the

high-fidelity simulation, our goal is to find the optimal representation of 𝑢 in the coarse

sub-spaceVℎ. In our case, we will use the 𝐿2 projection to obtain 𝑢ℎ which minimises the

value of | |𝑢−𝑢ℎ | |22. This problem is equivalent to the problem of finding 𝑢ℎ ∈ Vℎ such that

(𝑢, 𝑤ℎ) = (𝑢ℎ, 𝑤ℎ) ∀𝑤ℎ ∈ Vℎ. (4.48)

For example, to generate training data for section 4.7, we use direct simulation (DNS)

results for a channel flow at 𝑅𝑒𝜏 ≈ 950 Lozano-Durán and Jiménez (2014). The 3-D data

is sliced into many 2-D planes at different 𝑦+ locations, and projection is performed in 2-D

for simplicity. The fine space and coarse space’s polynomial orders are chosen to be 3 and

1, respectively, i.e., we are super-resolving 𝑝 = 1 results to 𝑝 = 3 as shown in figure 4.6.

The computation of terms on the RHS of the equation (4.48) requires special care.
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Although 𝑢 has been assumed to exist in an infinitely high dimensional space, in reality, it is

not. For example, the Kolmogorov scale [ dictates the size of the smallest size eddy and the

size of 𝑢. Although the dimension of 𝑢 is finite, it is enormous when compared to 𝑢ℎ because

the size of our finite element grid ℎ is much greater than [. Hence, to accurately compute

these terms, the DNS data is first interpolated using cubic-splines to a much finer-grid𝑂 ([)

and then the inner products with the coarse finite element basis function (having dimension

𝑂 (ℎ)) are computed on these fine-meshes using the Simpson’s Rule. Interpolation of DNS

was done to ensure that the projected solution 𝑢ℎ did not change significantly due to the

numerical integration scheme. Sample 𝐿2-projected snapshots of the DNS data on elements

of different sizes and orders are shown in figure 4.6.

Figure 4.6: Example 𝐿2-projected snapshots of the DNS data for channel flow at 𝑅𝑒𝜏 ≈ 950
and wall normal distance of 𝑦+ ≈ 910.
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𝑁𝑥 𝑁𝑡 Δ𝑥 Δ𝑡 𝐶𝐹𝐿 ∥𝑢2 − 𝑢1∥2 ∥𝑢2,𝑁𝑁 − 𝑢1∥2 ∥𝑢2,𝑁𝑁 − 𝑢2∥2 ∥𝑢2−𝑢1∥2
∥𝑢2∥2

∥𝑢2,𝑁𝑁−𝑢1∥2
∥𝑢2∥2

∥𝑢2,𝑁𝑁−𝑢2∥2
∥𝑢2∥2

16 32 0.3927 0.19635 0.5 0.41684 0.41684 0.0018975 0.066344 0.066345 0.00030201
16 16 0.3927 0.3927 1 0.56984 0.57053 0.0044046 0.090699 0.090809 0.00070106
16 8 0.3927 0.7854 2 1.4709 1.4681 0.0066213 0.23456 0.23411 0.0010559
16 4 0.3927 1.5708 4 3.3222 3.3223 0.016548 0.56392 0.56394 0.0028089
16 2 0.3927 3.1416 8 3.115 2.9975 1.7061 0.75135 0.723 0.41152
32 64 0.19635 0.098175 0.5 0.1075 0.10755 0.00075342 0.01711 0.017117 0.00011991
32 32 0.19635 0.19635 1 0.14736 0.14738 0.0020468 0.023453 0.023457 0.00032576
32 16 0.19635 0.3927 2 0.41684 0.4157 0.005024 0.066344 0.066163 0.00079962
32 8 0.19635 0.7854 4 1.4235 1.4245 0.009266 0.22699 0.22716 0.0014776
32 4 0.19635 1.5708 8 3.3146 2.723 1.3326 0.5626 0.46219 0.2262

Table 4.1: Reconstruction error when super-resolved from 𝑝 = 1 to 𝑝 = 2 for the linear
advection problem with an unseen initial condition at different CFL numbers.

4.6 Application to Linear Advection

In this section, we apply our super-resolution methodology to the linear advection

equation in the domain Ω ⊂ R with the boundary Γ = 𝜕Ω as follows

𝜕𝑢

𝜕𝑡
+ 𝑎 𝜕𝑢

𝜕𝑥
= 0, (4.49)

with time 𝑡 ∈ (0, 𝑇], and spatially periodic boundary conditions on Γ. The parameter 𝑎

denotes the advection velocity. The required training data is generated by 𝐿2-projecting

the true solution on coarse and fine spaces. Unlike traditional methods, in which only the

spatial term in the PDE is discretized using finite elements, we will consider 2-D space-time

finite elements spanned by 𝑝 = 1, 2 degree tensor-product Lagrange basis functions in space

and time. The goal is to investigate the application of our super-resolution method in two

different settings. First, as a model to super-resolve coarse low-order finite element data

to high-order finer finite element data. Second, as a method to improve the existing finite

element method for this problem in a predictive setting on a problem with a very different

initial condition in comparison to the training data.

4.6.1 Super-resolution

To train the super-resolution model, we will generate the true solution on a fine grid.

The initial condition for this case is 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(2𝑥) + 𝑠𝑖𝑛(4𝑥), and the size of the grid
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Figure 4.7: High-resolution linear advection solution on a 512x512 mesh is 𝐿2-projected
on different finite element meshes for 𝑝 = 1, 2 to generate data for training the model.

is taken to be 𝑁𝑥 × 𝑁𝑡 : 512 × 512. This high-resolution mesh is to ensure that the true

solution remains highly resolved on this grid. For simplicity, periodic boundary conditions

are also applied in the 𝑥 direction. The true solution is then evaluated on all the grid points

to obtain the DNS solution. The next step is to obtain the coarse 𝑝 = 1 and fine 𝑝 = 2

𝐿2-projected solution for different meshes having spatial and temporal element sizes Δ𝑥 and

Δ𝑡 respectively as shown in figure 4.7. A non-dimensional parameter naturally arising in

this case is the𝐶𝐹𝐿 = 𝑎Δ𝑡
Δ𝑥
number which is similar to Peclet number in the 1-D convection-

diffusion problem. This solution is then projected on grids of various sizes corresponding

to CFL numbers of 0.25,0.5,1.0,2 and 4. These CFL numbers correspond to three sets of

grid-sizes: (i.) 𝑁𝑥 × 𝑁𝑡 : 32×128, 32×64, 32×32, 32×16 and 32×8; (ii.) 𝑁𝑥 × 𝑁𝑡 : 16×64,

16×32, 16×16, 16×8 and 16×4; and (iii.) 𝑁𝑥×𝑁𝑡 : 24×96, 24×48, 24×24, 24×12 and 24×6.

For each element in these grids, the basis coefficients corresponding to the coarse-space is

extracted along with its neighbors, excluding those which are part of the future time step,
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Figure 4.8: Comparison of the true 𝐿2-projected 𝑝 = 2 solution and that obtained by super-
resolution of 𝐿2-projected 𝑝 = 1 solution on the space-time plane.

i.e., only space-time elements present in the south, south-east, south-west, east, and west

of the central coarse element are extracted. The corresponding fine-space basis coefficients

are also extracted for the central element. As a first step towards normalization, a mean

value 𝑢𝑚 is first computed inside the element as follows:

𝑢𝑚 =

∬
Ω𝑒
𝑢1(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡∬
Ω𝑒
𝑑𝑥 𝑑𝑡

. (4.50)
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Figure 4.9: Different initial conditions are used for training, offline reconstruction and
online evaluation of the model.

𝑁𝑥 𝑁𝑡 Δ𝑥 Δ𝑡 𝐶𝐹𝐿 ∥𝑢3 − 𝑢1∥2 ∥𝑢3,𝑁𝑁 − 𝑢1∥2 ∥𝑢3,𝑁𝑁 − 𝑢3∥2 ∥𝑢3−𝑢1∥2
∥𝑢3∥2

∥𝑢3,𝑁𝑁−𝑢1∥2
∥𝑢3∥2

∥𝑢3,𝑁𝑁−𝑢3∥2
∥𝑢3∥2

16 64 0.3927 0.098175 0.25 0.40799 0.40956 0.029322 0.064934 0.065183 0.0046667
16 32 0.3927 0.19635 0.5 0.42022 0.42039 0.004307 0.066879 0.066907 0.00068548
16 16 0.3927 0.3927 1 0.57471 0.57558 0.0043912 0.091468 0.091606 0.00069888
16 8 0.3927 0.7854 2 1.5204 1.5228 0.0087391 0.242 0.24238 0.001391
16 4 0.3927 1.5708 4 3.8684 3.8747 0.018305 0.62236 0.62338 0.0029449
16 2 0.3927 3.1416 8 3.8513 3.6725 3.079 0.81524 0.77739 0.65176
32 128 0.19635 0.049087 0.25 0.108 0.10626 0.0096799 0.017188 0.016912 0.0015406
32 64 0.19635 0.098175 0.5 0.10772 0.10788 0.0011823 0.017145 0.017169 0.00018816
32 32 0.19635 0.19635 1 0.14764 0.14791 0.0015759 0.023498 0.02354 0.00025081
32 16 0.19635 0.3927 2 0.42022 0.42123 0.0037693 0.066879 0.06704 0.0005999
32 8 0.19635 0.7854 4 1.4737 1.4799 0.011139 0.23456 0.23554 0.0017729
32 4 0.19635 1.5708 8 3.8616 3.0788 1.266 0.62126 0.49532 0.20368

Table 4.2: Reconstruction error when super-resolved from 𝑝 = 1 to 𝑝 = 3 for the linear
advection problem with an unseen initial condition at different CFL numbers.

Similarly, an R.M.S value is also computed inside the element:

𝑢𝑟𝑚𝑠 =

√√√∬
Ω𝑒
(𝑢1(𝑥, 𝑡) − 𝑢𝑚)2 𝑑𝑥 𝑑𝑡∬

Ω𝑒
𝑑𝑥 𝑑𝑡

. (4.51)

A model is then sought in the following form

[
𝐶′
1,𝑝𝑠 , 𝐶

′
2,𝑝𝑠 , .., 𝐶

′
𝑝𝑠+1,𝑝𝑠

]
= f

(
𝑙𝑜𝑔(𝐶𝐹𝐿),

[
�̃�1,𝑝𝑐 , �̃�2,𝑝𝑐 , .., �̃�𝑝𝑐+1,𝑝𝑐

]
, .. (4.52)

,
[
�̃�1,𝑝𝑐 , �̃�2,𝑝𝑐 , .., �̃�𝑝𝑐+1,𝑝𝑐

]
𝑚
, ..

)
,
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Figure 4.10: Comparison of solution obtained using the traditional space-time method and
the super-resolved method to the projected DNS solution for initial condition 𝑢(𝑥, 0) =

𝑠𝑖𝑛(4𝑥) + 2𝑠𝑖𝑛(8𝑥).

where 𝐶′
𝑖, 𝑗
and �̃�𝑖, 𝑗 are defined in terms of 𝑢𝑚 and 𝑢𝑟𝑚𝑠 similar to equation (4.41) . For

learning this function, the VSRNN architecture is adopted with size 24×12 for part A,

1×6×12 for part B, and 12×9 for the post-multiplication part, respectively. The network

is first trained on data obtained by projecting a highly resolved DNS solution, as shown in

figure 4.7.

In the next step, the super-resolution model is evaluated on an unseen coarse solution

obtained by projecting the DNS solution for a different set of initial conditions, as shown in

figure 4.8. It can be observed that unless an extremely coarse model was used, the model

could efficiently super-resolve unseen coarse solution to its fine-solution with minimal

reconstruction error. This reconstruction error for the cases is reported in table 4.1. Except

for the case when the CFL number was as high as 8, the error in reconstruction ∥𝑢2,𝑁𝑁−𝑢2∥2
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Figure 4.11: Comparison of solution obtained using the traditional space-time method and
the super-resolved method to the projected DNS solution for initial condition 𝑢(𝑥, 0) =

2.5𝑒−20(𝑥−𝜋)2 .

is orders of magnitude smaller in comparison to the magnitude of the sub-scale ∥𝑢2 − 𝑢1∥2.

Hence, the super-resolution model is very efficient in reconstructing the fine-solution as

long as the CFL is not large. A separate model for super-resolving 𝑝 = 1 solution to 𝑝 = 3

solution is also trained by repeating the steps above. As reported in table 4.2, a similar

trend is again observed for this case where efficient reconstruction was obtained at lower

CFL values. Irrespective of the large reconstruction error at CFL values of 8 and above,

the magnitude of ∥𝑢3 − 𝑢1∥2 is still very close to ∥𝑢3,𝑁𝑁 − 𝑢1∥2 for all CFL numbers. This

indicates that the super-resolution model can also act as an efficient error indicator that can

be used for mesh adaption.
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Figure 4.12: Evolution of energy 𝐸 (𝑡) =
∫
𝑢(𝑥, 𝑡)2𝑑Ω𝑥 as a function of time for traditional

space-time method vs. super-resolution method for initial condition 𝑢(𝑥, 0) = 𝑠𝑖𝑛(4𝑥) +
2𝑠𝑖𝑛(8𝑥).

4.6.2 Sub-grid Modelling

In the previous section, we showed that the neural network could efficiently predict the

sub-scales as long as the grid is not highly under-resolved. In this section, we will use the

trained model from the previous section to improve the existing space-time based numerical

method. To this end, we start with the linear advection equation in the domain Ω ⊂ R with

the boundary Γ = 𝜕Ω as follows

𝜕𝑢

𝜕𝑡
+ 𝑎 𝜕𝑢

𝜕𝑥
= 0, (4.53)

with a periodic boundary condition at the boundary Γ and time 𝑡 ∈ (0, 𝑇]. The weak form

of the above equation is obtained by multiplying it with a test function 𝑤 and integrating it

over the space-time element as follows

∫
Ω𝑒

(
𝜕𝑢

𝜕𝑡
+ 𝑎 𝜕𝑢

𝜕𝑥

)
𝑤𝑑Ω = 0, (4.54)

such that 𝑢 ∈ V for all 𝑤 ∈ V. Let us also define Tℎ as a tessellation of the domain Ω into

a set of non-overlapping elements, 𝐾 , each having a sub-domain Ω𝑒 and boundary Γ𝑒. The
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Figure 4.13: Evolution of energy 𝐸 (𝑡) =
∫
𝑢(𝑥, 𝑡)2𝑑Ω𝑥 as a function of time for traditional

space-timemethod vs. super-resolution method for initial condition 𝑢(𝑥, 0) = 2.5𝑒−20(𝑥−𝜋)2 .

vector space of functions V ≡ H1(Tℎ) is a Sobolev space where the functions and their

derivatives are square-integrable inside each element. Simplifying the previous equation,

we obtain the following:

∫
Ω𝑒

(
𝜕𝑢𝑤

𝜕𝑡
+ 𝜕𝑎𝑢𝑤

𝜕𝑥

)
𝑑Ω −

∫
Ω𝑒

(
𝑢
𝜕𝑤

𝜕𝑡
+ 𝑎𝑢 𝜕𝑤

𝜕𝑥

)
𝑑Ω = 0. (4.55)

Application of the divergence theorem leads to the following

∫
Γ𝑒

(𝑎𝑢𝑤 î + 𝑢𝑤ĵ).(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑑Γ −
∫
Ω𝑒

(
𝑢
𝜕𝑤

𝜕𝑡
+ 𝑎𝑢 𝜕𝑤

𝜕𝑥

)
𝑑Ω = 0, (4.56)

where 𝑛𝑥 and 𝑛𝑡 denote the components of the outward normal on the surface of the element

along the space and time axis, respectively. The first term in the DG method is replaced

with a numerical flux as follows:

∫
Γ𝑒

(𝐹∗
𝑥 (𝑎𝑢, 𝑎𝑢−) î + 𝐹∗

𝑡 (𝑢, 𝑢−) ĵ).(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑤𝑑Γ −
∫
Ω𝑒

(
𝑢
𝜕𝑤

𝜕𝑡
+ 𝑎𝑢 𝜕𝑤

𝜕𝑥

)
𝑑Ω = 0. (4.57)
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The traditional space-time DG method can be obtained by applying the Galerkin approxi-

mation to the previous equation as follows:

∫
Γ𝑒

(𝐹∗
𝑥 î + 𝐹∗

𝑡 ĵ).(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑤ℎ𝑑Γ −
∫
Ω𝑒

(
𝑢ℎ
𝜕𝑤ℎ

𝜕𝑡
+ 𝑎𝑢ℎ

𝜕𝑢ℎ

𝜕𝑥

)
𝑑Ω = 0, (4.58)

where 𝐹∗
𝑥 = 𝑎𝑢ℎ

− when 𝑎𝑛𝑥 < 0 and 𝑎𝑢ℎ when 𝑎𝑛𝑥 > 0. The temporal flux on the bottom

face is based on previous space-time slab i.e. 𝐹∗
𝑡 = 𝑢ℎ

−. The effect of the numerical fluxes

is similar to that of a closure, which is dissipative in action due to the jump term, ensuring

the stability of the method. The numerical fluxes were originally developed for solving the

exact 1-D problem at the interface, and application to the DG method is generally made by

applying it along the normal direction of the interface. However, this might not be the most

optimal choice for the flux. To this end, we revisit the strong form of the DG i.e., equation

(4.57) through the VMS approach. The coarse-scale equation corresponding to equation

(4.57) is given by:∫
Γ𝑒

(
𝐹∗
𝑥 (𝑎(𝑢ℎ + 𝑢′), 𝑎(𝑢−ℎ + 𝑢

′−)) î + 𝐹∗
𝑡 (𝑢ℎ + 𝑢′, 𝑢−ℎ + 𝑢

′−) ĵ
)
.(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑤ℎ𝑑Γ−∫

Ω𝑒

(
(𝑢ℎ + 𝑢′)

𝜕𝑤ℎ

𝜕𝑡
+ 𝑎(𝑢ℎ + 𝑢′)

𝜕𝑤ℎ

𝜕𝑥

)
𝑑Ω = 0.

(4.59)

IfVℎ⊥V′, then the effect of the sub-scale on the interior flux is negligible i.e.∫
Γ𝑒

(
𝐹∗
𝑥 (𝑎(𝑢ℎ + 𝑢′), 𝑎(𝑢−ℎ + 𝑢

′−)) î + 𝐹∗
𝑡 (𝑢ℎ + 𝑢′, 𝑢−ℎ + 𝑢

′−) ĵ
)
.(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑤ℎ𝑑Γ−∫

Ω𝑒

(
𝑢ℎ
𝜕𝑤ℎ

𝜕𝑡
+ 𝑎𝑢ℎ

𝜕𝑤ℎ

𝜕𝑥

)
𝑑Ω = 0,

(4.60)

and the effect of un-resolved sub-scales is only through the flux. The true solution

𝑢ℎ + 𝑢′ is infinite-dimensional. However, only a few of its moments are required in the

form of inner-products with low-order basis functions on element faces. In this limit, we
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assume that the following approximation can be made: 𝑢𝑠 ≈ 𝑢ℎ + 𝑢′, where 𝑢𝑠 denotes the

super-resolved solution of 𝑢ℎ i.e.∫
Γ𝑒

(
𝐹∗
𝑥 (𝑎(𝑢ℎ + 𝑢′), 𝑎(𝑢−ℎ + 𝑢

′−)) î + 𝐹∗
𝑡 (𝑢ℎ + 𝑢′, 𝑢−ℎ + 𝑢

′−) ĵ
)
.(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑤ℎ𝑑Γ

≈
∫
Γ𝑒

(
𝐹∗
𝑥 (𝑎𝑢𝑠, 𝑎𝑢−𝑠 ) î + 𝐹∗

𝑡 (𝑢𝑠, 𝑢−𝑠 ) ĵ
)
.(𝑛𝑥 î + 𝑛𝑡 ĵ)𝑤ℎ𝑑Γ,

(4.61)

where 𝐹∗
𝑥 and 𝐹∗

𝑡 are traditional up-wind numerical fluxes but computed using the super-

resolved state 𝑢𝑠 instead of 𝑢ℎ. In this work, we choose the spaces of 𝑢ℎ and 𝑢𝑠 to be 𝑝 = 1

and 𝑝 = 2 respectively.

To obtain the super-resolved state, we will re-use the super-resolution network trained

in the previous subsection. Two different initial conditions are chosen:(i.) Case A with

an initial condition 𝑠𝑖𝑛(4𝑥) + 2𝑠𝑖𝑛(8𝑥) (ii.) Case B with an initial condition 2.5𝑒−20(𝑥−𝜋)2 .

These initial conditions are different from those used for training and testing. A comparison

of different initial conditions used in training, reconstruction, and online evaluation is

summarised in figure 4.9. The space-time slab is then discretized into 32 elements in

the spatial direction, and the CFL value is taken to be 1.0. Figure 4.10 and 4.11 shows

results obtained for the super-resolution model and the traditional model compared to the

optimal solution obtained by 𝐿2-projection of the DNS solution for the two different initial

conditions, respectively. The super-resolutionmodel is far more accurate than the traditional

method, where the sub-scales were recovered with a high level of accuracy for both cases. In

the case of the traditional method, extrema can be seen decreasing with time considerably

in comparison to the super-resolution space-time method both in figures 4.10 and 4.11.

This shows a higher dissipation characteristic of the traditional numerical method over the

super-resolution method. This can also be quantitatively seen in both the figures 4.12(a) and

4.13(a), where the red line denoting time evolution of energy i.e. 𝐸 (𝑡) =
∫
Ω𝑥
𝑢ℎ (𝑥, 𝑡)2𝑑Ω𝑥

decreases in time for the traditional approach in comparison to the optimal 𝑝 = 1 solution

which is oscillatory but energy conservative. Hence, the optimal solution oscillates about
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a fixed value because the true solution itself conserves energy. The reason 𝐸 (𝑡) oscillates

for the optimal solution is because it is computed by integrating 𝑢ℎ (𝑥, 𝑡)2 over only space 𝑥

and can still vary in time across the space-time slab.

In the next step, we obtain the space-time solution by first solving the problem using

the traditional approach and applying our super-resolution model on this coarse solution.

In this case, the super-resolution network has no contribution to the numerical simulation

stage. Rather, it is used offline when the solution is made available. As shown in figure

4.12(a) and 4.13(a), application of the super-resolution in an offline stage does not improve

the results. On the other hand, when the super-resolved states were used to compute the

flux in the numerical method online, a high level of 𝐿2-optimality was also obtained in the

coarse solution as shown in figures 4.12(b) and 4.13(b). Consequently, the corresponding

super-resolved solution was also accurate and close to the 𝑝 = 2 optimal solution.

As observed previously in this section, the super-resolution did not improve the result

when it was used on the data obtained using the traditional DG method. However, when

used in an online setting, it improved the performance of the numerical method. This can

be explained by figure 4.14, which shows the evolution of the DNS solution (red line) in

an infinite-dimensional space. When one trains the super-resolution model, the mapping

from a point on the green line (optimal LES) to its corresponding point on the red line

(DNS) is learnt. However, when running an online numerical simulation using a traditional

approach, the trajectory (blue line) taken by the solution (LES) is entirely different. The

model encounters input parameters that it has not encountered during training and outputs

an incorrect super-resolved solution in the evaluation stage. The blue line represents another

optimal representation of DNS solution on the coarse solution space and not the 𝐿2-optimal

solution for which the method has been trained. However, when the super-resolved state is

used to compute the fluxes, it forces the coarse resolution towards 𝐿2-optimality because

the closure has been formulated using the VMS method, where the coarse and fine spaces

are formally defined. As shown in the second part of figure 4.14, consistent numerical
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methods are required for the super-resolution models to work correctly. The VMS method

is an ideal candidate to help us in achieving this consistency.

Figure 4.14: Sources of errors in offline and online super-resolution.

4.7 p-Super-resolution of turbulent channel flow.

The assessment of super-resolution models for turbulent flows poses a stern challenge.

This is because, given limited measurements from a severely under-resolved coarse-grained

solution such as LES, there are infinitely many possible solutions for the fine-scales. This

problem is especially true for filtering using the sharp spectral filter, where the fine-scale

solution is lost after filtering, and it is impossible to recover the original field from filtered

data. The exact fine-scales are both functions of the coarse space and their time-history

Stinis (2007); Parish and Duraisamy (2017a,b,c); Pradhan and Duraisamy (2020). As

shown by Langford and Moser Langford and Moser (1999b) in their work on optimal LES,

to compute the correct single-time multi-point statistical quantity of the large-scale field

exact fine-scales might not be required. The Smagorinsky and the VMS models Hughes

et al. (1998a);Codina (2002);Codina et al. (2007); Bazilevs et al. (2007);Wang and Oberai

(2010a); Masud and Calderer (2011b); Pradhan and Duraisamy (2020), which perform

well online, are well-known to perform poorly in an a priori setting. Similarly, the N-N

generated super-resolved field is not point-wise exact. Rather it is an optimal representation

113



of the fine-space generating correct single-time multi-point statistics.

Our model being compact, the 𝐿2 error is computed only locally in a single element.

The training data consists of data from several elements, part of a 2-D DNS slice having

homogeneity in stream-wise and span-wise directions. During the optimization, these errors

from each element are averaged. As a result, the model output, in some sense, is an optimal

representation of the fine-scales for all possible realizations. To this end, we will be using

one-dimensional energy spectra that have been averaged over homogeneous directions as a

measure for model accuracy in-place of the 𝐿2 norm for the full field. The contours of the

reconstructed fine-space solution will only be presented for qualitative purposes.

The first step is to generate data for training the model. As described in section 4.5, a

single 2-D DNS snapshot (x-z plane) is extracted at a wall-normal height of 𝑦+ ≈ 850 and is

𝐿2-projected on discontinuous polynomial spaces spanned by order 𝑝 = 1, 3 tensor-product

Lagrange basis functions on meshes of different sizes. In this case, we project the DNS

solution on meshes with elements 𝑁𝑥 × 𝑁𝑧: 8×4, 16×8, 32×16, 64×32 in the 𝑥 (stream-

wise) and 𝑧 (span-wise) directions respectively. Once the 𝑝 = 1, 3 projected solutions are

obtained, for each element present in these meshes, 𝑝 = 1 coarse-scale basis coefficients are

extracted for both the element and its immediate neighbors along with the 𝑝 = 3 fine-scale

basis coefficients. The next step is to evaluate the normalising parameter for each element

i.e. 𝑢𝑟𝑚𝑠 =

√︂ ∫
Ω𝑒

(𝑢1−𝑢𝑚)2𝑑Ω𝑒∫
Ω𝑒
𝑑Ω𝑒

, where the mean velocity 𝑢𝑚 inside an element is given by

𝑢𝑚 =

∫
Ω𝑒
𝑢1𝑑Ω𝑒∫

Ω𝑒
𝑑Ω𝑒
. Finally, a functional form similar to equation (4.40) is assumed except the

parameter 𝛼 is replaced with the logarithm of cell Reynolds number i.e. 𝑙𝑜𝑔(𝑅𝑒Δ). The

physics-informed feature 𝑙𝑜𝑔(𝑅𝑒Δ) ensures that different orders of magnitude of 𝑅𝑒Δ in

training data is accounted for. Finally, the normalized input and output basis coefficient

data and the logarithmic cell Reynolds number 𝑙𝑜𝑔(𝑅𝑒Δ) for each element are assembled

into a single table as a training data-set.

A VSRNN architecture for the N-N model is then assumed with sizes: 37×32×32×32

for the part A, 16×32×32 for the part B, and a 32×64×64×16 sized post-multiplication
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part, respectively. Finally, the model performance is evaluated in figures 4.16 and 4.15 by

comparing the stream-wise and span-wise energy spectra obtained for the super-resolved

𝑝 = 3 solution and the 𝑝 = 3 𝐿2-optimal solution at different wall-normal heights of

𝑦+ ≈ 500, 800, 850. To compute the energy spectra, the solution in first obtained on a

uniform mesh with size (𝑝 + 1)𝑁𝑥 × (𝑝 + 1)𝑁𝑧 where the factor 𝑝 + 1 accounts for the

effective grid-size at higher orders. This also prevents the over-sampling of the data.

As can be observed in figures 4.16 and 4.15, the network can successfully recreate the

correct energy distribution across different wave-numbers both in the stream-wise and the

span-wise directions. This is true for both the cases: the plane at 𝑦+ ≈ 850, which was

used for training, and the unseen planes at 𝑦+ ≈ 500 and 𝑦+ ≈ 800. However, the energy at

the high wave-number modes for all these cases was slightly higher than the 𝐿2-projected

𝑝 = 3 optimal solution suggesting that a small amount of de-aliasing would be helpful.

A qualitative plot of the coarse 𝑝 = 1 solution, the super-resolved 𝑝 = 3 solution and the

𝐿2-optimally projected 𝑝 = 3 solution for different grid sizes at a wall-normal distance

of 𝑦+ ≈ 500 is shown in figure 4.17. It can be observed that the super-resolved solution,

similar to the optimal 𝑝 = 3 projected solution, has finer structures when compared to the

coarse 𝑝 = 1 solution at different mesh resolutions.

The generalizability of the model trained using a single snapshot of DNS data stems

from the fact that when the DNS image is projected on several finite element meshes with

different element sizes, the average value of the cell Reynolds number changes. As a result,

the training data contains an extensive range of cell Reynolds numbers. When the trained

model is evaluated at different wall-normal distances while retaining the same the grid size,

the cell Reynolds number changes due to changes in 𝑢𝑟𝑚𝑠. However, this new cell Reynolds

number can also be obtained at a previous wall-normal height by changing the grid-size

alone. This can also be observed in equation (4.33) for the normalized sub-scales. The

normalized sub-scales only depend on the cell Peclet number𝛼 and the non-dimensionalized

inputs rather than the grid size or the diffusion coefficient separately.
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Figure 4.15: Stream-wise energy spectra obtained for the 𝐿2-projected stream-wise velocity
solution on 𝑝 = 1, 𝐿2-projected stream-wise velocity solution on 𝑝 = 3, N-N super-resolved
𝑝 = 3 solution and DNS at different wall normal height 𝑦+ and mesh resolutions.

4.7.1 Sub-grid Modelling

The previous subsection showed that the super-resolution model accurately reconstructs

the high-order optimal solution from the low-order optimal solution. We consider LES of

the compressible Navier–Stokes equation, but for simplicity of presentation, we only detail

the development for the inviscid terms. The domain Ω ⊂ R𝑑 is used with the boundary

Γ = 𝜕Ω, where 𝑑 ≥ 1 is the dimension of the problem as follows,

𝜕u
𝜕𝑡

+ ∇ · F(u) = 0, (4.62)
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Figure 4.16: Span-wise energy spectra obtained for the 𝐿2-projected stream-wise velocity
solution on 𝑝 = 1, 𝐿2-projected stream-wise velocity solution on 𝑝 = 3, N-N super-resolved
𝑝 = 3 solution and DNS at different wall normal height 𝑦+ and mesh resolutions.

with appropriate boundary conditions on Γ and time 𝑡 ∈ (0, 𝑇]. The state vector u is given

by:

u = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸]𝑇 , (4.63)

and the matrix F(u) corresponding to the flux is given by:

F(u) =



𝜌𝑢 𝜌𝑣 𝜌𝑤

𝜌𝑢2 + 𝑝 𝜌𝑢𝑣 𝜌𝑢𝑤

𝜌𝑣𝑢 𝜌𝑣2 + 𝑝 𝜌𝑣𝑤

𝜌𝑤𝑢 𝜌𝑤𝑣 𝜌𝑤2 + 𝑝

𝜌𝑢𝐻 𝜌𝑣𝐻 𝜌𝑤𝐻


. (4.64)
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Figure 4.17: Stream-wise Velocity contours of the coarse solution, super-resolved fine
solution and the corresponding optimal fine solution. The y-axis is aligned with the wall-
normal direction.

Let us also defineTℎ as a tessellation of the domainΩ into a set of non-overlapping elements,

𝐾 , each having a sub-domainΩ𝑘 and boundary 𝜕Ω𝑘 . The DGweak form is then obtained by

multiplying with weighting functions w and performing integration by parts on an element:

∫
Ω𝑘

(
𝜕u
𝜕𝑡

+ ∇ · F(u)
)
· w𝑑Ω = 0. (4.65)

After application of integration by parts we obtain:

∫
Ω𝑘

𝜕u
𝜕𝑡

· w𝑑Ω −
∫
Ω𝑘

∇w : F(u)𝑑Ω +
∫
𝜕Ω𝑘

w · F∗(u, u−)𝑑Γ = 0. (4.66)
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Using the Galerkin approximation we have,

∫
Ω𝑘

𝜕uh
𝜕𝑡

· wh𝑑Ω −
∫
Ω𝑘

∇wh : F(uh)𝑑Ω +
∫
𝜕Ω𝑘

wh · F∗(uh, u−
h )𝑑Γ = 0, (4.67)

where components of uh, i.e., 𝑢ℎ,𝑖 ∈ Vℎ,3 and Vℎ,3 is the space of 𝑝 = 3 tensor-product

polynomial basis functions as follows:

Vℎ,3 ≜
{
𝑢 ∈ 𝐿2(Ω) : 𝑢 |T ∈ 𝑃3(𝑇), 𝑇 ∈ Tℎ

}
. (4.68)

The numerical flux F∗ is assumed to be the Roe flux, and an under-resolved model results

in a sub-optimal solution uh, i.e.,

uh ≠ u3 = Π3u, (4.69)

where Π3 denotes 𝐿2-projection on Vℎ,3. Similarly, the large-scales in uh will also be

inconsistent i.e.

uh,1 = Π1uh ≠ u1 = Π1u3 = Π1u, (4.70)

where Π1 is a 𝐿2-projects onto a coarse-space formed by tensor-product of 𝑝 = 1 basis

functions in the stream-wise and the span-wise directions and 𝑝 = 3 basis function in

the wall-normal direction. This results in coarsening in the stream-wise and the span-wise

directions only. The coarse part of the solution uh obtained after projection i.e. uh,1 = Π1uh

is better resolved in the coarse spaceVℎ,1 in comparison to uh in the fine spaceVℎ,3. This

is because the numerical dissipation due to the standard numerical flux is more likely to

corrupt the smaller scales in comparison to the larger, resolved scales. We can now use our

model to super-resolve uh,1 back to us ∈ Vℎ,3. as follows

us = 𝑓𝑁𝑁 (uh,1, ...), (4.71)
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where us is the super-resolved state in the element when the coarse-scale solution in the

element and its neighbours are given by {uh,1, ...}. The super-resolution of each state is

performed independently on 2-D planes (wall-parallel planes). The size of the network

used for super-resolution is reduced to 36×32×16×16 to ensure computational efficiency.

Finally, in a similar approach to section 4.6.2, the super-resolved state is used to compute

the flux terms in the DG formulation as follows:

∫
Ω𝑘

𝜕uh
𝜕𝑡

· wh𝑑Ω −
∫
Ω𝑘

∇wh : F(uh)𝑑Ω +
∫
𝜕Ω𝑘

wh · F∗(us, u−
s )𝑑Γ = 0. (4.72)

The application of the super-resolved state us directly in the boundary flux term makes it

unstable when used with the explicit R-K type time-stepping methods. To stabilize this

approach (SR-LES), the super-resolution process is relaxed as follows:

∫
Ω𝑘

𝜕uh
𝜕𝑡

· wh𝑑Ω −
∫
Ω𝑘

∇wh : F(uh)𝑑Ω (4.73)

+
∫
𝜕Ω𝑘

wh · F∗ ((1 − _)uh + _us, (1 − _)uh
− + _us

−)𝑑Γ = 0. (4.74)

A value _ = 0.1 − 0.2 is chosen for the following numerical simulations. Although a

higher value of the relaxation factor _ is desirable, stability generally demands _ ≤ 0.2. The

discretization of the viscous terms in the compressible Navier-Stokes equation is performed

using the second form of Bassi and Rebay Bassi and Rebay (2000b) scheme. The boundary

terms arising due to the viscous fluxes are also evaluated using the under-relaxed super-

resolved state similar to the inviscid fluxes.

To compare the performance of different models, we perform LES of channel flow at

𝑅𝑒𝜏 ≈ 395. The number of elements in stream-wise (𝑥), wall-normal (𝑦) and span-wise

(𝑧) directions are 𝑁𝑥 = 24, 𝑁𝑦 = 24 and 𝑁𝑧 = 12 respectively. Similarly, the size of the

domain in these directions is taken to be [𝐿𝑋 , 𝐿𝑦, 𝐿𝑧] : [2𝜋𝛿, 2𝛿, 𝜋𝛿], respectively. The
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stream-wise and span-wise element sizes in wall-units are Δ𝑥+ ≈ 103.41 and Δ𝑧+ ≈ 103.41

respectively. The element sizes in wall-normal direction vary from Δ𝑦+
𝑚𝑖𝑛

≈ 3.37 near the

wall to Δ𝑦+𝑚𝑎𝑥 ≈ 51.55 at the center of the channel. Since, high-order basis functions are

used, the effective grid size can be approximated by Δ𝑒 𝑓 𝑓 ≈ Δ
𝑝
, where Δ is the element

size and 𝑝 is the order of the polynomial i.e. 𝑝 = 3. Time marching was performed using

the explicit RK3-TVD scheme for all the cases. Figure 4.18 shows the velocity statistics

obtained for the channel flow problem using ILES, SR-LES and DNS. The performance

improves as _ is increased to 0.2. This is observed both in the mean velocity profile, and the

stream-wise root mean square (RMS) velocity profile. The RMS peak of the stream-wise

velocity obtained for both _ = 0.1 and _ = 0.2 is closer to DNS and lower than ILES. The

span-wise and wall-normal RMS velocity statistics and the turbulent shear-stresses obtained

are comparable for all three LES cases.

A maximum relaxation factor of _ = 0.2 also suggests that additional stabilization

is required for the model to work at higher values of _ where the model is expected to

work better. One of the reasons for the constraint in _ is due to the explicit time-stepping

scheme was used. No such factor was needed for the linear advection case in the previous

section, where an implicit space-time method was employed. As discussed further in

the perspectives section (Chapter 6), additional challenges have to be addressed to ensure

success of super-resolution networks for predictive modeling of turbulent flows.

4.8 ’Nodally exact’ high-order CG schemes for 1-D Convection-Diffusion

To demonstrate the action of sub-scales in 4.3, we assumed that the coarse space to be

composed of piece-wise linear polynomials. However, this approach can be extended to

higher-order polynomials as well. In this section, we will use the VSRNN architecture to

learn closures for high order CG discretizations where the coarse-scale is ’nodally exact’.

The governing PDE is again taken to be the linear convection-diffusion equation as follows:

121



10
0

10
2

0

5

10

15

20

25

(a) Stream-wise mean velocity profile 𝑈+ vs.
channel wall normal height 𝑦+ in wall units.
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(c) Resolved turbulent shear-stress -< 𝑢𝑣 >+ vs.
channel wall normal height 𝑦/𝛿 normalised with
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Figure 4.18: Velocity statistics for channel flow using ILES and SR-LES at 𝑅𝑒𝜏 ≈ 395. The
x-axis, y-axis and z-axis are aligned with the stream-wise, wall-normal and the span-wise
directions, respectively.
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L ≜ 𝑎 𝑑
𝑑𝑥

− ^ 𝑑
2

𝑑𝑥2
𝑖𝑛 Ω = [0, 𝐿] (4.75)

with Dirichlet boundary conditions: 𝑢(0) = 𝑢0 and 𝑢(𝐿) = 𝑢𝐿 . To derive VSRNN closures

for ’nodally exact’ coarse-scales, we start with the variational form:

(𝑎 𝑑𝑢
𝑑𝑥

− a 𝑑
2𝑢

𝑑𝑥2
, 𝑤) = 0 (4.76)

The weak form after integration by parts is obtained as follows:

(
𝑎
𝑑𝑢

𝑑𝑥
, 𝑤

)
+ ^

(
𝑑𝑢

𝑑𝑥
,
𝑑𝑤

𝑑𝑥

)
= 0 (4.77)

The next step is to apply the VMS decomposition such that the coarse-scale is exactly the

interpolate of the true solution at nodal points i.e.

(𝑎 𝑑𝑢ℎ
𝑑𝑥

, 𝑤ℎ) + ^(
𝑑𝑢ℎ

𝑑𝑥
,
𝑑𝑤ℎ

𝑑𝑥
) + (𝑎 𝑑𝑢

′

𝑑𝑥
, 𝑤ℎ) + ^(

𝑑𝑢′

𝑑𝑥
,
𝑑𝑤ℎ

𝑑𝑥
) = 0 (4.78)

Since the coarse-scale is the true interpolant of the solution, the sub-scales should vanish

at the nodal points. Hence, integration by parts can be performed as follows:

(𝑎 𝑑𝑢ℎ
𝑑𝑥

, 𝑤ℎ) + ^(
𝑑𝑢ℎ

𝑑𝑥
,
𝑑𝑤ℎ

𝑑𝑥
) +

∑︁
𝑒

∫
Ω𝑒

𝑢′(−𝑎 𝑑𝑤ℎ
𝑑𝑥

− ^ 𝑑
2𝑤ℎ

𝑑𝑥2
)𝑑Ω = 0 (4.79)

It can be recognized that the sub-scale lies in an infinite dimensional space. However,

for each element only its inner-product with −𝑎 𝑑𝑤ℎ

𝑑𝑥
− ^ 𝑑

2𝑤ℎ

𝑑𝑥2
needs to be computed inside

each element. Hence, if 𝑝 is the order of the polynomial used to describe the coarse-

scales, 𝐿2-projecting 𝑢′ in a discontinuous polynomial space inside the element consisting

of polynomials up to order 𝑝 − 1 is sufficient. To learn these projected sub-scales, the
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VSRNN is used as follows:

[
𝐶′
1,𝑝−1, 𝐶

′
2,𝑝−1, .., 𝐶

′
𝑝,𝑝−1

]
= f

(
𝑙𝑜𝑔(𝛼),

[
�̃�1,𝑝, �̃�2,𝑝, .., �̃�𝑝+1,𝑝

] )
,

where,
[
𝐶′
1,𝑝−1, 𝐶

′
2,𝑝−1, .., 𝐶

′
𝑝,𝑝−1

]
represents the sub-scale basis coefficients normalised by

coarse-scale R.M.S 𝑢𝑟𝑚𝑠, [�̃�1,𝑝, �̃�2,𝑝, .., �̃�𝑝+1,𝑝] represents the mean 𝑢𝑚𝑒𝑎𝑛 subtracted and

𝑢𝑟𝑚𝑠 normalised coarse-scale basis coefficients, and 𝛼 is the Peclet number.

It is noted that although 𝑢′ is infinite dimensional,
[
𝐶′
1,𝑝−1, 𝐶

′
2,𝑝−1, .., 𝐶

′
𝑝,𝑝−1

]
is not. It

is sufficient to learn these projected sub-scales to precisely compute the required inner-

products. For example, when the coarse solution is linear (𝑝 = 1), the sub-scale can

be represented by 𝑝 = 0 constant functions which corresponds to commonly used 𝜏 =

ℎ
2𝑎 (𝑐𝑜𝑡ℎ(𝛼) −

1
𝛼
). The online evaluation of the 𝑝 = 1 closure presented in Figure 4.4 is

shown in figure 4.19. As expected, the VSRNN is able to precisely recreate the results

obtained using the analytical expression for 𝜏.

The data generation procedure used here for deriving closures for higher order poly-

nomials is same as that used in section 4.4 for the 𝑝 = 1 case. The model is trained and

applied to equation (4.79). Two different cases with global Peclet numbers 𝑃𝑒𝑔 = 𝑎𝐿
^

=20

and 40 are considered here. For each case, two CG elements with different polynomial

orders 𝑝 = 3, 4, 7 and 8 are used to discretize the domain. Figure 4.20 and 4.21 shows the

comparison of the present VSRNN closure to existing closures and no-model for global

Peclet numbers of 20 and 40 respectively. The VSRNN model in both the cases accurately

learns the sub-scales and ensures that the coarse-scale is the interpolate of the true solution.

As expected, 𝜏 = ℎ
2𝑎 (𝑐𝑜𝑡ℎ(𝛼) −

1
𝛼
) based on low-order discretization is not accurate at

high-orders and the no-model discretization (Galerkin) is oscillatory when resolution is not

sufficient. The no-model performance increases at high-order because effective resolution

increases with 𝑝.
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(a) 𝑃𝑒𝑔 = 20.

(b) 𝑃𝑒𝑔 = 40.

Figure 4.19: Comparison of VSRNNclosure to existing closure for 𝑝 = 1CGfinite elements
at different Peclet numbers.
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(a) 𝑝 = 3. (b) 𝑝 = 4.

(c) 𝑝 = 7. (d) 𝑝 = 8.

Figure 4.20: Discretizations of the 1-D Convection-Diffusion equation at 𝑃𝑒𝑔 = 20 using
two CG elements 𝑁𝑒𝑙𝑒 = 2 and different polynomial orders 𝑝 = 3, 4, 7, 8.
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(a) 𝑝 = 3. (b) 𝑝 = 4.

(c) 𝑝 = 7. (d) 𝑝 = 8.

Figure 4.21: Discretizations of the 1-D Convection-Diffusion equation at 𝑃𝑒𝑔 = 40 using
two CG elements 𝑁𝑒𝑙𝑒 = 2 and different polynomial orders 𝑝 = 3, 4, 7, 8.
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4.9 Conclusions

We proposed a strategy for multi-scale modeling in which the coarse and the fine scales

are defined in terms of projection onto their respective finite element spaces, and segregated

using a variational multiscale formulation. Existing variational multiscale formulations

provide guiding principles for the construction of consistent features and network archi-

tecture to define a super-resolution model of the fine scales. Particularly, we define an

architecture - called the Variational super-resolution neural network (VSRNN) - which ap-

proximates the sub-scales as a sum of products of individual functions of coarse-scales and

the physics-informed parameters. This model form and network structure is inspired by

analytical expression for the sub-scales as given by the convection-diffusion equation. It is

emphasized that traditional architectures - such as a fully connected neural network - are

not ideal for this purpose because they combine heterogeneous quantities (e.g. coarse-scale

basis coefficients and physics informed-parameters) as inputs. The input features and out-

put quantities are obtained by appropriately non-dimensionalizing the coarse-scales and the

sub-scale basis coefficients. By applying the super-resolved state to compute the Discontin-

uous Galerkin (DG) fluxes, we ensure that the online coarse-scale solution is forced towards

its 𝐿2-optimal state.

We verify that when the present approach is applied to the convection-diffusion problem,

it can learn the analytical solution to a high degree of accuracy. Similarly, for the 1-D linear-

advection space-time problem, the model could accurately super-resolve low-order coarse

solutions to high-order fine-solution. The network could also reproduce super-resolved

velocity fields with the proper energy distribution across different wave-numbers in the

stream-wise and the span-wise direction for the turbulent channel case.

Next, we assessed the predictive capability of these models. Super-resolution was

used to determine the DG fluxes for the linear-advection problem, and shown to result in

higher accuracy and optimality of the method over traditional space-time methods for the

same number of degrees of freedom. When applied to LES of turbulent channel flow, this
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approach led to a more modest performance improvement. This improvement stems from

the fact that the present model has been trained using 𝐿2-optimal fine and coarse solutions,

leading to sub-grid models that are consistent with the type of optimality sought. The

present method was found to generalize to out-of-sample initial conditions and Reynolds

numbers for both the linear advection and the turbulent channel flow cases. Similarly, when

the fine scales from the VSRNN model were used to compute the sub-grid terms arising

in the high-order continuous Galerkin discretization of the convection-diffusion equation,

highly accurate numerical schemes were obtained.

In addition to reconstruction and sub-grid modeling, the super-resolution model can

be used as an error indicator for adaptive grid refinement : Regions in which the high

magnitude of the sub-scale values can be used as a measure for under-resolution. Finally,

the authors would like to point out that effective implementation of this approach solvers

requires the development of efficient non-linear solvers and preconditioners to handle the

additional non-linearity and stiffness due to the model.
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CHAPTER V

Optimal Finite Element Projections of Scale-Resolving

Turbulent Flow Simulations

5.1 Background and Motivation

As discussed in the previous chapters, the simulation of turbulent flows remains a

challenge inmost practical flows because of the disparate range of spatial and temporal scales

that need to be resolved (Pope, 2000). An alternative to directly solving the Navier-Stokes

equations is to solve its reduced complexity versions. Reynolds averaged Navier-Stokes

(RANS) models solve for the ensemble average or time average of the true solution. Large

Eddy Simulations (LES) (Germano et al., 1991; You and Moin, 2007a; Meneveau et al.,

1996; Nicoud et al., 2011; Vreman, 2004; Nicoud and Ducros, 1999; Codina, 2002; Codina

et al., 2007; Bazilevs et al., 2007;Wang and Oberai, 2010a;Gravemeier et al., 2010;Masud

and Calderer, 2011b; Parish and Duraisamy, 2017c) resolve the spatio-temporal dynamics

of the large scales. The cost of LES is, however, still prohibitive near the wall. To alleviate

the need of mesh refinement near the wall, boundary conditions are imposed weakly in

a wall-modeled LES (WMLES) (Piomelli and Balaras, 2002; Bose and Moin, 2014; Bae

et al., 2019). Alternate approaches to WMLES are hybrid RANS-LES techniques like

DES (Spalart, 2009) and IDDES (Shur et al., 1999), where the inner-layer is solved using

RANS and the rest using LES. Consequently, the cost associated with resolving the near-
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wall structures in the stream-wise and span-wise directions is no longer present. However,

the cost associated with resolving the wall-normal gradient in hybrid RANS-LES is still

present.

Over the past few decades, various contributions have beenmade in the development and

application of these methods to highly complex problems (e.g. Goc et al. (2020); Lozano-

Duran et al. (2020); Park and Moin (2016); Iyer and Malik (2020); Goc et al. (2021); Kiris

et al. (2022)). Our view is that, since all of the scale-resolving methods are coarse-grained

from the Navier–Stokes equations, there must exist a unified view. The Partially-averaged

Navier Stokes (PANS) approach brings together several turbulence closures of various

modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes (RANS)

to Navier-Stokes (direct numerical simulations (DNS)) into one formulation (Girimaji and

Abdol-Hamid, 2005). The behavior of the PANS equations can be varied smoothly from the

RANS equations to the Navier-Stokes (DNS) equations by changing the filter-width control

parameters. The unified RANS-LES approach Heinz (2007); Gopalan et al. (2013) is an

optimal hybrid RANS–LES framework that uses different time-scales to switch between

the RANS and LES approaches. In pursuit of similar unified models and in an effort to

augment existing frameworks, we propose a filtering technique using optimal finite element

projections which: (i) offers a unifying perspective through a common coarse-graining

strategy; (ii) provides optimal solutions for the existing coarse-grained methods to improve

upon.

The use of filtered DNS data to perform a priori analysis of closure models for RANS

and LES is indeed not new. LES models such as the scale-similarity or Smagorinsky

models have also been frequently evaluated against sub-grid stresses obtained from filtered

DNS data (Vreman et al., 1995; Bou-Zeid et al., 2008;Meneveau and Katz, 2000; Girimaji

and Abdol-Hamid, 2005). In most of the prior studies, filtering is either performed in

the Fourier space using the sharp spectral cutoff or Gaussian filters when the problem has

periodic directions or the box-filter in more complex problems. In case of filters that are
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applied in spectral space, the filter width remains the same along the periodic directions

in which it is applied. However, as observed in most coarse grained simulations, the filter

width can vary considerably. In fact, filter sizes define these methods. For example, in

case of a LES of channel flow that is performed on a structured grid, the filter size in the

span-wise and stream-wise directions can be a constant. However, the filter width in the

wall-normal direction can vary from a few wall units near the wall to 0.1𝛿 at the center of

the channel or the edge of the boundary layer. In WMLES, the filter width is approximately

of the order of 0.1𝛿 throughout in all directions. For hybrid RANS-LES approaches (such

as DES and IDDES), the filter width is of the order of 𝛿 in the span-wise and stream-wise

directions, and similar to LES in the wall-normal direction. The non-uniform filtering

requirement in LES and RANS-LES methods stems from the fact that in both the cases,

the wall-stress is resolved which requires a near-wall grid that scales with wall units. In

addition to the filter size, the type of filter can also change the nature of the solution. For

example, both the box and spectrally (sharp) filtered DNS both qualify as synthetic LES

solutions. In the case of finite element projections, the quality of the filter is linked to the

order of polynomial used to filter the solution. In this work, we aim to address some of

these issues by using finite element projections which allow for variation in the filter width

in the domain and also provide the required flexibility to change the quality of the filter by

changing the order of the polynomial.

The idea of projection is at the core of the variational multiscale method (VMS) (Hughes

et al., 1998b; Codina, 2002; Codina et al., 2007; Bazilevs et al., 2007; Wang and Oberai,

2010a; Gravemeier et al., 2010; Masud and Calderer, 2011b; Parish and Duraisamy,

2017c). In VMS, projections are used to formally distinguish the coarse-scales from

the fine-scales. The coarse-scale (filtered) solution that is obtained after the projection

operation represents the ‘best’ coarse-grained solution 𝑢 on the coarse-space based on some

optimality condition, for example, the 𝐿2−optimality condition. In this work, we perform

𝐿2-projections on finite element basis functions. It is pertinent to mention that the current
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idea of optimal projections should not be confused with optimal LES (Langford and Moser,

1999b). Our work optimally represents the DNS solution 𝑢 on a finite dimensional coarse-

space, whereas, optimal LES is an ideal LES model that computes accurately single-time

multi-point statistics of the coarse-solution.

Projections of the DNS data on finite element basis have been previously used to both

improve existing finite element methods (Pradhan and Duraisamy, 2021) and turbulence

models (Vreman et al., 1995; Bou-Zeid et al., 2008;Meneveau and Katz, 2000;Girimaji and

Abdol-Hamid, 2005). In this chapter, however, we employ them as an alternate to traditional

filters for scale-separation. As discussed previously, the present approach has an advantage

in cases where the filter length is anisotropic, varies rapidly, or when non-homogeneous

directions are present, as in wall-bounded flows. The filtering strategy that has some

similarities to the present approach is the differential filter (Germano, 1986; Najafi-Yazdi

et al., 2015), which consists of a filtering length scale 𝑙𝑝. This length scale 𝑙𝑝 can be varied

along the domain to have a similar effect.

In the past few years, several efforts have been made to train sub-grid models using

machine learning approaches both in an offline and model-consistent setting (Maulik and

San, 2017;Maulik et al., 2018, 2019; Beck et al., 2019; Sarghini et al., 2003;Gamahara and

Hattori, 2017;Wang et al., 2018; Xie et al., 2019a,b, 2020). Such data-driven LES models

require a filtered form of the DNS, which in turn will depend on the filter size. Similarly,

in WMLES, the model cannot be trained using the mean solution in the first few grid

points where the influence of the slip condition will be observed. By applying projections

and obtaining statistics from the optimal solution, one can obtain more reasonable targets

to training the model (Beck et al., 2019; Duraisamy et al., 2019; Chung and Freund,

2022) on more complex problems. Note that this is a first step towards addressing model

consistency Duraisamy (2021). Finite element projections are not restricted to simple

geometries (Appendix D) and can be applied to more complex flows, and provide the

additional flexibility of choosing polynomial orders for the geometry and the solution
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Figure 5.1: Schematic of the projection of the DNS solution 𝑢 on coarse finite element
spacesVℎ to obtain the 𝐿2−optimal LES, WMLES or hybrid-RANS solution 𝑢ℎ.

independently.

The main objective of the present work is to develop a unified framework that can be

used as a lens to quantitatively assess, augment and calibrate a wide range of coarse-grained

models. Particular attention is paid to the behavior of various models in the proximity of

the wall, and to ascertain whether scaling relationships exist.

In section 5.2 of this chapter, we describe the procedure of performing 𝐿2-projection

and provide a discussion on the choice of coarse basis functions that will be used. In section

5.3, we compute filtered solutions for the channel flow problem in the LES, WMLES and

hybrid RANS-LES limit, and compute the coarse-scale statistics in each of these cases. In

section 5.4, we show that the slip velocity in case of WMLES is a natural consequence of

under-resolution in the wall-normal directions and guiding principles for improved slip wall

models are proposed. In section 5.5, we propose a new slip-wall model and assess it online

performance against the traditional method. Finally, we summarize our work in section 5.6.
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5.2 Finite element projection

In this section, we will describe the DNS dataset and the procedure of computing the

filtered/coarse-scale solution. For our purpose, we use the channel flow data at friction

Reynolds numbers of 𝑅𝑒𝜏 ≈ 1000 and 𝑅𝑒𝜏 ≈ 5200 from the Johns Hopkins Turbulence

Database (JHTDB) (Li et al., 2008; Perlman et al., 2007; Lee and Moser, 2015) and a

smaller channel 𝑅𝑒𝜏 ≈ 950 case form the Texas turbulence file server (Hoyas and Jiménez,

2006; Del Alamo et al., 2004). To this end, consider the decomposition of the full-order

(DNS) solution 𝑢 into coarse and fine scales as follows:

𝑢 = 𝑢ℎ + 𝑢′, (5.1)

where 𝑢ℎ ∈ Vℎ and 𝑢′ ∈ V′. The vector space of functions V ≡ 𝐿2(Ω) is the space of

square-integrable functions. This space is decomposed as follows:

V = Vℎ ⊕ V′, (5.2)

where ⊕ represents a direct sum of Vℎ and V′. Let us also define Tℎ to be a tessellation

of domain Ω into a set of non-overlapping elements, 𝐾 , each having a sub-domain Ω𝑘 and

boundary Γ𝑘 . The functional spaceV is infinite dimensional and must be approximated by

a finite dimensional approximation Vℎ. The domain and boundary of an element marked

by Ω𝑒 and Γ𝑒 respectively. Also consider the following notations:

Ω′ =
𝑛𝑒𝑙⋃
𝑖=1

Ω𝑒 and Γ′ =
𝑛𝑒𝑙⋃
𝑖=1

Γ𝑒, (5.3)

where Ω′, Γ′ denote the interior and boundaries of the elements, respectively. In case of

the continuous Galerkin (CG) method, the coarse space basis functionsVℎ ⊂ 𝐶0 ∩ 𝐿2(Ω)

have 𝐶0 continuity everywhere including element boundaries. In the case of discontinuous
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Galerkin (DG) methods, the coarse spaceVℎ is defined as:

Vℎ ≜
{
𝑢 ∈ 𝐿2(Ω) : 𝑢 |𝑇 ∈ 𝑃𝑘 (𝑇), 𝑇 ∈ Tℎ

}
, (5.4)

where the space of polynomials up to degree 𝑘 is denoted as 𝑃𝑘 . DefiningVℎ in this manner

allows for discontinuities in the solution across element boundaries. The DG space is a

more richer space compared to CG space if the number of element and polynomial order

is kept fixed. Irrespective of the choice of basis functions used (CG or DG), given 𝑢 from

the high-fidelity simulation, our goal is to find the optimal representation of 𝑢 in the coarse

sub-spaceVℎ. In our case, we will use the 𝐿2-projection to obtain 𝑢ℎ which minimises the

value of | |𝑢−𝑢ℎ | |22. This problem is equivalent to the problem of finding 𝑢ℎ ∈ Vℎ such that

(𝑢, 𝑤ℎ) = (𝑢ℎ, 𝑤ℎ) ∀𝑤ℎ ∈ Vℎ. (5.5)

In the case of CG basis functions, the mass matrix is global and a large matrix needs to be

inverted to obtain the final filtered solution. The DG mass matrix on the other hand is local

to the element and lends itself to easy parallelization. In section 5.3, the a priori analysis

for LES, WMLES and hybrid RANS-LES is performed using CG basis functions using

𝑅𝑒𝜏 ≈ 1000 data. Depending on the application, projection on DG basis functions might

be more efficient sometimes. For example, in section 5.4, we will use DG basis to obtain

slip velocity estimates for WMLES for both 𝑅𝑒𝜏 ≈ 1000 and 𝑅𝑒𝜏 ≈ 5200. The slip velocity

is obtained by evaluating the coarse-scale solution at the wall. As a result, for DG, the

projection operation need to be only performed on those elements which share a face with

the wall, leading to computational efficiency. Similar estimates can also be obtained using

CG basis at a higher computational cost. This is challenging especially for the 𝑅𝑒𝜏 ≈ 5200

case. The computation of 3-D projections even for the 𝑅𝑒𝜏 ≈ 1000 case is expensive and

has been approximated by performing a sequence of 1-D projections along the wall-normal,

stream-wise and span-wise directions as shown in figure 5.2.
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1-D Projection
along wall-normal
direction 1-D Projection

along stream-wise 
direction. 1-D Projection

along span-wise
drection.

DNS

Filtered DNS

Figure 5.2: The projected solution is obtained by performing a sequence of 1-D projections
along the wall-normal, stream-wise and span-wise directions.

The next step is the computation of inner products in equation 5.5. The right hand part

of the equation is easy to compute because both 𝑢ℎ and 𝑤ℎ are finite dimensional and can

be computed precisely using quadrature rules. The left hand side of equation 5.5 requires

the computation of inner products of 𝑢 and the coarse basis functions 𝑤ℎ. The computation

of this integral needs special care because 𝑢 is extremely high dimensional in comparison

to 𝑤ℎ. The high-dimensionality of 𝑢 is restricted by the size of DNS which exists on a very

fine mesh capable of resolving the Kolmogorov scales O([). To compute this term precisely,

we interpolate the coarse-scale basis functions and the DNS solution on a very fine mesh of

the size of O([) and apply numerical integration to compute the inner products. The size

of the numerical integration mesh is adjusted till the final projected solution is independent

of the numerical integration mesh size. Additional details on the procedure to compute the

𝐿2-procedure is given in Appendix C.

The final comment is on the imposition of the near-wall behavior of the coarse-space.

There are two choices: (i.) project on a spacewhich strongly satisfies the boundary condition

at the nodal points, or (ii.) keep the boundary DOFs free and make no such assumptions.

The second choice appears more reasonable because when the solution is coarse-grained

in the wall-normal direction, the solution might no longer satisfy the boundary conditions

strongly. This is especially true for WMLES where the coarse-solution no longer satisfies

the boundary condition and slip is observed. However, as the grid is refined near the wall,
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the no-slip boundary condition is naturally satisfied.

5.3 Application to channel flow.

5.3.1 Effect of projection

As afirst step towards obtaining the projectedDNS solution for the channel flowproblem,

we discuss the effect of the choice of the coarse-space basis functions on the coarse-scale

solution obtained after the projection operation. After projection, the coarse space can only

represent an optimal version of the DNS solution. However, depending on the coarse-space

basis, the projected solution can be either a low-dimensional compressed representation of

the original solution or a spatially filtered version of it. The low-dimensional compressed

representation is obtained when the coarse basis is tailored using data (Rowley et al., 2004;

Carlberg et al., 2017) or existing analytical solutions (Krank and Wall, 2016). To ensure

that the projection step leads to a more general spatial filtering approach, non-tailored basis

functions commonly used in the finite element method are used. The projection operation

onto these coarse finite element grids will lead to filtering.

The resulting coarse solution after filtering might be considerably different from the

DNS solution due to truncation of the high-frequency components present originally in the

DNS solution. In the near-wall region, the effect of projection can vary with the size of the

filter in each direction. One manifestation of under-resolution in the wall-normal direction

is the occurrence of a slip velocity. This slip-velocity can - in fact - be tracked down to the

mean-profile itself. To resolve the mean solution, a near-wall grid spacing of Δ𝑦+ ≈ 1 is

required in the wall-normal direction. However, if a grid size of Δ𝑦 ≈ 0.1𝛿 is used, even

the mean solution can no longer be resolved and a slip velocity at the wall will be observed.

This is true unless the solution is artificially forced to go from a large value to zero over just

one grid point. A solution to make the coarse-scale solution satisfy the no-slip boundary

condition is to enrich the coarse-space with a tailored basis (Krank and Wall, 2016). As a
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consequence, the tailored basis mimics the mean profile between the wall and the first grid

point and ensures that the no-slip is satisfied collectively by the coarse non-tailored basis

and the enriched tailored basis.

5.3.2 Selection of the Coarse space.

The next step is to define the coarse space onto which the DNS will be projected. To

define this coarse space, we first construct a finite element mesh and chose the polynomial

order of the basis functions. The idea here is that by selecting the grid and the polynomial

order of the basis functions, we are enforcing our desired filter size distribution. A variety

of coarse spaces have been generated as shown in table 5.1. The ’A’-type grids are the DNS

grids on which the high-resolution solution 𝑢 exists. Two different DNS solutions at friction

Reynolds numbers of 𝑅𝑒𝜏 ≈ 950 and 𝑅𝑒𝜏 ≈ 1000 are used and their corresponsing grids

are marked as 𝐴1 and 𝐴2, respectively. The 𝑅𝑒𝜏 ≈ 950 solution (Hoyas and Jiménez, 2006;

Del Alamo et al., 2004) is obtained from a relatively smaller domain having a stream-wise

size of 𝐿𝑥 ≈ 2𝜋𝛿 and a span-wise sizes of 𝐿𝑧 ≈ 𝜋𝛿 , whereas, the 𝑅𝑒𝜏 ≈ 1000 solution

(Li et al., 2008; Perlman et al., 2007; Lee and Moser, 2015) is obtained as a cutout from a

simulation performed on a larger domain.

The goal here is to not to make any distinctions between the different coarse-grained

simulationmethods (i.e. WRLES,WMLES, hybrid RANS-LES) and show that 𝐿2− optimal

solutions for all these approaches can be obtained by projecting the same DNS solution on

different meshes appropriate for these methods. However, for the sake of convenience of

the readers, we have divided these grids into four different types: ’B’,’C’,’D’ and ’E’-type

grids suitable for different types of coarse-grained methods. A representative grid for each

type is shown in figure 5.3. The distinguishing characteristic between the various grids are

the mesh sizes that are used in each direction and their relative scaling with respect to the

inner and outer length scales.

As discussed earlier, the grids marked by the letter ’A’ represent the DNS grid. These
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Figure 5.3: Near-wall grids used for cases B,C,D and E.

grids have a mesh size that scales with the wall units throughout the domain i.e. Δ𝑥+ ≈ 10,

Δ𝑦+ ≈ 0.1 − 10 and Δ𝑧+ ≈ 5 (Lee and Moser, 2015). The ’B’-type grids, on the other

hand, are tailored for performing wall-resolved LES, where, the near-wall mesh resolution

still scales with the order of the wall units i.e Δ𝑦+ ≈ 0.1 − 1 and Δ𝑥+,Δ𝑧+ ≈ 20 − 50.

As a result of the size of the largest energy containing eddies scaling with the distance

from the wall (Yang and Griffin, 2021) outside the viscous sub-layer, a mesh resolution of

Δ𝑦 ≈ 0.1𝛿 − 0.25𝛿 is used for the type-’B’ grids at the center of the channel. Similarly,

the ’C’-type grids are tailored for performing WMLES simulations using the wall-stress or

the slip-wall based approaches. A mesh resolution of approximately Δ𝑦 ≈ 0.1𝛿 is ideally

required for this approach. The type-’D’ grids are more suitable for assessing the WMLES

branch of the hybrid RANS-LES methods (Shur et al., 2008). For type-’D’, the resolution

in the stream-wise and the span-wise direction is similar to the ’C’-type grid. However,

in the wall-normal direction, a grid spacing similar to type-’B’ grid has been assumed i.e.

Δ𝑦+ ≈ 0.1 − 1 in the near wall region and Δ𝑦 ≈ 0.1𝛿 − 0.25𝛿 at the center of the channel.

The type-’E’ grid is an extremely coarse grid with resolutions of Δ𝑥 ≈ 0.35𝛿,Δ𝑦 ≈ 0.334𝛿

and Δ𝑧 ≈ 0.35𝛿 in the stream-wise, span-wise and the wall-normal directions, respectively.

For all the grid types, the mesh is uniform in the stream-wise and the span-wise directions.

However, in the wall normal direction, the mesh has been stretched geometrically for cases

’B’ and ’D’. In case of ’C’ and ’E’ type grids, uniform mesh is assumed in the wall normal

directions as well. For each type of grid, two different polynomial orders 𝑝 = 1, 2 are used

to construct the projection coarse-space. The stretch rates (SR) and the polynomial orders

for different cases have been summarised in table 5.1.
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5.3.3 Results.

The DNS solutions are projected onto the coarse-spaces formed by the different grids

and the 𝐿2-optimal coarse-scale solutions are obtained using the procedure described in

section 5.2. Figure 5.4 shows the filtered solutions (from A2) obtained after projection on

meshes B2, C2 and D2, and plotted on a plane formed by the stream-wise and the wall-

normal directions. Similarly, the projected solutions are also plotted on a plane formed by

the span-wise and the wall-normal directions in figure 5.5. On closer observation, it can be

seen in both figure 5.4 and figure 5.5 that the projection operation leads to a loss of fine-scale

structure. The effect of filtering is more prominent in figure 5.5 compared to figure 5.4,

suggesting a higher span-wise resolution requirement compared to the stream-wise direction.

Figure 5.5 suggests that the fine scales near the wall for case B2 (wall-resolved LES) are

well-represented in comparison to case C2 (WMLES) and case D2 (hybrid RANS-LES).

However, at the center of the channel, C2 is slightly better in resolving the flow-features

compared to B2 and D2 due to a finer mesh. Figure 5.6 shows the plot of the projected

solution at the center of the channel i.e. 𝑦

𝛿
≈ 1 on a plane formed by the stream-wise and

the span-wise directions. The main features of the flow at the center of the channel appear

to be well-resolved in all the cases. These observations will be explored later through the

energy spectra.

A plot of the sub-scales i.e. 𝑢′ = 𝑢 − 𝑢ℎ for the cases B1, C1 and D1 is shown in figure

5.7 for the near-wall region. The sub-scale can be considered to be a measure of the error

in the coarse-scale solution and hence, a indicator of under-resolution. The sub-scales for

cases C1 (WMLES) and D1 (hybrid RANS-LES) was found to be be identical for 𝑦
𝛿
> 0.1.

On close inspection, it can be observed that the sub-scales for cases B1 and D1, are close

to zero at the wall i.e. 𝑢′ ≈ 0. However, for the case C, the sub-scales deviate significantly

from zero at the wall suggesting the existence of a slip-velocity since the true solution

precisely satisfies the no-slip boundary condition.

Figure 5.8 shows the mean and second-order statistics computed using the projected
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Figure 5.4: Contours of the stream-wise velocity plotted on a x-y plane for cases A2, B2,C2
and D2.

Figure 5.5: Contours of the stream-wise velocity plotted on a y-z plane for cases A2, B2,C2
and D2.
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Figure 5.6: Contours of the stream-wise velocity plotted on a x-z plane for cases A2, B2,C2
and D2 at 𝑦/𝛿 ≈ 1.

Case B1

Case C1

Case D1

Figure 5.7: Contours of the stream-wise velocity sub-scales 𝑢′ = 𝑢 − 𝑢ℎ for cases B1,C1
and D1.
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solution for the cases B1,C1,D1 and E1. The goal is to compare the optimal solutions for

different grids that correspond to different coarse-grained approaches, except for E1, which

is an extremely coarse mesh and is not suitable for any existing method. From figures

5.8(a) and 5.8(b), it can be observed that the mean velocity is well-resolved for cases B1

and D1. For case C1, which represents an optimal WMLES solution, the mean velocity is

well-resolved only after the first grid point i.e. 𝑦/𝛿 > 0.05. As can be observed in 5.8(b),

Case E1 is extremely coarse and fails to resolve the mean velocity until the outer limit of the

log-layer is reached. For these cases with wall-normal under-resolution, the effect of under-

resolution results in slip velocity 𝑢𝑠 at the wall. Themagnitude of the slip velocity was found

to increase with the under-resolution i.e. < 𝑢𝑠 >+≈ 6 for cases C1 to < 𝑢𝑠 >+≈ 12 for cases

E1. It can also be observed in figures 5.8(c), 5.8(d) and 5.8(e) that all the methods except

E1 resolve the second-order statistics outside the inner layer. Inside the near-wall region,

only B1 is capable of accurately resolving the turbulence stresses. Among the second-order

statistics, the effect of filtering is most strongly felt on the wall-normal fluctuations. It can

be observed for both cases C1 and D1 that the wall-normal fluctuations far away from the

inner layer are under-represented even when stream-wise and the span-wise fluctuations as

close to the DNS solution.

Figure 5.9 shows the stream-wise velocity energy spectra of the projected solution in

the span-wise and stream-wise directions for cases A2, B4, C2 and D4 at two different wall-

normal locations. The choice of cases plotted here is based on the most commonly used

mesh sizes for various methods. As can be seen from figures 5.9(a) and 5.9(b), the large

scales are well-represented at the center of the channel ( 𝑦
𝛿
≈ 1.0) both in the stream-wise

and the span-wise directions, for all the methods. This was also inferred from figure 5.6.

However, as can be seen in figure 5.9(c), the large scales are not represented accurately by

the C2 (WMLES) and D4 (hybrid RANS-LES) cases in the near-wall region (𝑦+ ≈ 15).

However, in the span-wise direction (figure 5.9(d)), the large scales are relatively well

represented in D4 in comparison to C2. In the next part, the effect of the projection order
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Figure 5.8: Comparison of mean and second-order statistics for cases B1,C1,D1 and E1.
The symbols in all the plots correspond to the value at the nodal point. In sub-plot (b), the
solutions for cases C1 (WMLES) and E1 (extremely coarse), are interpolated to the DNS
mesh using the coarse finite element basis functions to show the slip velocity. Identical
symbols are used for the sub-plots (c) and (e).

145



Figure 5.9: Comparison of the stream-wise velocity energy spectra at the near-wall region
and the center of channel for cases A2,B4,C2 and D4.

and the stretching ratio will be discussed individually for each type of mesh.

The wall-resolved LES limit In this subsection, we will compare the cases B2, B3 and B4,

which is representative of the typical grids for performing wall-resolved LES. The effective

stream-wise and the span-wise resolution for all the three cases are approximately equal to

Δ𝑥+𝑒 ≈ 36.71 and Δ𝑧+𝑒 ≈ 36.71, sufficient enough to resolve the near-wall energy containing

scales. A very high stretch ratio of 1.33 is used to discretize the elements in the wall-normal

direction for grids B2 and B3. However, for the case B3 we use a 𝑝 = 2 basis function

with a uniform node distribution inside each element, resulting in an effective lower stretch

rate. The grid B4 is stretched using a stretch ratio of 1.1, which is a more acceptable value.

Since, the span-wise and stream-wise are almost identical, the main distinguishing factor

between the three grids is the order of polynomial used and the nodal point distribution in
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Case 𝑅𝑒𝜏 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 𝑝 𝑆𝑅 Δ+
𝑥 Δ𝑥/𝛿 Δ+

𝑦 Δ𝑦/𝛿 Δ+
𝑧 Δ𝑧/𝛿

A1 1000 512 × 512 × 512 Sp. - 12.24 0.0122 0.016 − 6.14 1.65E-5 − 0.006 6.12 0.006
A2 950 512 × 384 × 512 Sp. - 11.47 0.0122 0.031 − 7.64 3.35E-5 − 0.008 5.73 0.006
B1 1000 121 × 41 × 81 1 1.33 39.11 0.0391 1.10 − 248.45 0.001 − 0.248 39.11 0.039
B2 950 121 × 41 × 81 1 1.33 36.71 0.0393 1.03 − 232.55 0.001 − 0.248 36.71 0.039
B3 950 121 × 81 × 81 2 1.33 36.71 0.0393 0.51 − 116.27 5.54E-4 − 0.124 36.71 0.039
B4 950 121 × 97 × 81 1 1.10 36.71 0.0393 0.97 − 85.80 0.001 − 0.091 36.71 0.039
C1 1000 61 × 41 × 31 1 1.00 104.3 0.1045 49.90 0.05 104.3 0.1045
C2 950 61 × 41 × 31 1 1.00 97.91 0.1048 46.7 0.05 97.91 0.1048
C3 950 61 × 81 × 31 2 1.00 97.91 0.1048 23.3 0.025 97.91 0.1048
C4 950 61 × 97 × 31 1 1.00 97.91 0.1048 19.46 0.021 97.91 0.1048
D1 1000 61 × 41 × 31 1 1.33 39.11 0.1045 1.10 − 248.45 0.001 − 0.248 104.3 0.1045
D2 950 61 × 41 × 31 1 1.33 97.91 0.1048 1.03 − 232.55 0.001 − 0.248 97.91 0.1048
D3 950 61 × 81 × 31 2 1.33 97.91 0.1048 0.51 − 116.27 5.54E-4 − 0.124 97.91 0.1048
D4 950 61 × 97 × 31 1 1.10 97.91 0.1048 0.97 − 85.80 0.001 − 0.091 97.91 0.1048
E1 1000 19 × 7 × 10 3 1.00 326.3 0.3500 311.27 0.334 326.3 0.35

Table 5.1: Summary of mesh parameters. Here, Δ+
𝑥 , Δ+

𝑦 and Δ+
𝑧 are the effective grid sizes

in different directions Δ𝑥 , Δ𝑦 and Δ𝑧 normalised with wall units, 𝛿 is the half channel height,
𝑁𝑥 , 𝑁𝑥 and 𝑁𝑧 represents the number of degrees of freedom in the stream-wise, wall-normal
and span-wise directions respectively, 𝑝 is order of polynomial used, 𝑆𝑅 is the stretching
ratio used to generate the grid. The effective grid sizes Δ𝑥 , Δ𝑦 and Δ𝑧 for the finite element
grid are defined as Δ𝑥 = Δ𝑒𝑥/𝑝, Δ𝑒𝑦/𝑝 and Δ𝑒𝑧/𝑝 respectively. The quantities Δ𝑒𝑥 , Δ𝑒𝑦 and Δ𝑒𝑧
represent the actual element sizes in the finite element mesh.

the wall-normal direction. The number of degrees of freedom for B3 and B4 in the wall-

normal direction is almost twice the number of grid points in the wall-normal direction.

Coarse-scale statistics for B2, B3 and B4 are provided in figure 5.10. It can be observed in

figure 5.10(a) that all the cases performwell in resolving themean profile. Similar trends are

observed in figures 5.10(b) and 5.10(c), where the cases B3 and B4 only slightly outperform

the case B2 in resolving the second-order statistics. This suggests that the sensitivity of the

coarse-scale statistics to the wall-normal stretch rate is not as high as the sensitivity to the

mesh resolution in the stream-wise and the span-wise directions.

The WMLES limit In this subsection, we will compare the results for cases C2, C3

and C4, which represent the typical grids used for performing wall-stress/slip-wall based

WMLES. The effective stream-wise and the span-wise resolution are approximately equal

to Δ𝑥𝑒/𝛿 ≈ 0.1 and Δ𝑧𝑒/𝛿 ≈ 0.1 for the all the cases i.e. C2, C3 and C4. These resolutions

are sufficient to resolve the large energy containing scales outside the inner layer. Again,

for the case C3, 𝑝 = 2 basis functions are used in place of 𝑝 = 1 for C2 and C4. Uniform

147



Figure 5.10: Comparison of mean and second-order statistics for wall-resolved cases B2,B3
and B4
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mesh elements have been used in the wall normal direction for all the cases. This leads

to a wall-normal resolutions of Δ𝑦𝑒/𝛿 ≈ 0.05, Δ𝑦𝑒/𝛿 ≈ 0.025 and Δ𝑦𝑒/𝛿 ≈ 0.021 for

cases C2, C3 and C4, respectively. Clearly, these mesh resolutions in wall units are much

larger than unity and cannot resolve the mean velocity profile accurately near the wall. As

a consequence, a slip velocity 𝑢𝑠 is observed for all the cases after the projection step as

shown in figure 5.12. It can also be observed from the figure 5.12 that the magnitude of

slip velocity is highest for the case with the maximum wall-normal under-resolution i.e.

C2. This magnitude goes down as the wall-normal mesh is refined from C2 to C3 or C2

to C4. Similar observations can also be made from the mean velocity profiles plotted in

figures 5.11(a) and 5.11(b). Apart from mean velocity profiles, second-order statistics are

plotted in figures 5.11(c), 5.11(d) and 5.11(e). As expected, the second-order coarse-scale

statistics are only accurate outside the inner layer towards the center of the channel. It can

also be observed that the stream-wise and span-wise velocity fluctuations computed using

the coarse solution do not go to zero near the wall. The wall-normal velocity fluctuations,

however, go to zero at the wall. This near-wall behavior of the coarse-scales is consistent

with existing WMLES simulations in the literature (Wang et al., 2020a; Carton de Wiart

and Murman, 2017; Kawai and Larsson, 2012).

The Hybrid RANS-LES limit In this part, we will present results for cases D2, D3 and

D4, which represent the grids for hybrid RANS-LES (HRLES) methods such as IDDES

(Shur et al., 2008). Since our discussion here is only restricted to the channel flow problem,

we are only assessing the ’WMLES’ branch of the hybrid RANS-LES methods. The grids

used for cases D2, D3 and D4 in the wall-normal direction are identical to the grids used for

performing the wall resolved cases i.e. B2, B3 and B4, respectively. The difference between

the two types of grids is the mesh resolution in the stream-wise and the span-wise directions.

In the stream-wise and the span-wise directions, the ’D’-type grids have a grid-spacing that

is identical to the ’C’-type grids. As a result. the energy containing near-wall structures can

no longer be resolved and the turbulent stresses will be under-represented . However, the
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Figure 5.11: Comparison of mean and second-order statistics for WMLES cases C2,C3 and
C4. In sub-plot (b), the solutions for all the cases are interpolated to the DNSmesh by using
the coarse finite element basis functions to show the slip velocity.
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Figure 5.12: Contours of the stream-wise slip velocity at the bottom wall for the cases C1,
C2,C3 and C4 which have insufficient resolution in the the wall-normal direction.

grid is still capable of resolving the mean velocity profile. Coarse-scale statistics for D2,

D3 and D4 are provided in figure 5.13. It can be observed in figures 5.13(a) and 5.13(b)

that for all the cases the mean profile was resolved accurately. In addition to the mean

velocity profile, figures 5.13(c),5.13(d) and 5.13(e) also show the second-order statistics.

If we compare the second-order statistic obtained for the present case to that obtained for

the ’C’-type grids in figure 5.11 in the region that is outside of 10 − 20% of the boundary

layer, they are almost identical. However, near the wall, unlike the ’C’-type WMLES cases,

all the velocity fluctuations go to zero due to the no-slip condition being satisfied by the

hybrid RANS-LES cases. These observations are consistent with previous results from the

literature (Friess and Davidson, 2020).

In this section, we have used the labels LES, WMLES and HRLES above to distinguish

between the various methods. However, the difference between the later two is subtle. The

traditional WMLES method essentially uses RANS knowledge to compute the wall-stress

at the wall and can also be called a hybrid RANS-LES approach. Similarly, the HRLES
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Figure 5.13: Comparison of mean and second-order statistics for HRLES cases D2,D3 and
D4
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approaches (such as IDDES) by virtue of solving the RANS equations near the wall reduce

the computational cost associated with resolving the wall and can also be considered a

WMLES. However, the context in which the labels WMLES and HRLES have been used

in this chapter is based on whether these models integrate to the wall or not in a single

domain, in other words if the size of the filter in the wall-normal direction is large or not in

wall-units.

It is worthwhile to mention that the results presented in this section appear to be more

accurate in comparison to those in the literature. For instance, a large stretching ratio

of 1.33 has been used for some of the meshes which do not induce a significant error in

the filtered solution, however, this stretch rate is more than the suggested limit for many

methods. Additionally, no log-layer mismatch (LLM) was obtained in any of these cases.

The resolution considered here for WMLES and hybrid RANS/LES is of the order of 10

points per semi-channel height 𝛿 in the streamwise and the spanwise directions, which

is coarse compared with the guidelines for these approaches. A comparison between the

optimal solution for the C3 case and a WMLES solution using the traditional wall-stress-

based approach computed on the same grid is presented in figure 5.14. The mean solution

for both cases begins to deviate from the DNS at similar locations. The resolved turbulent

shear stress is under-represented near the wall, starting almost identically, however, differing

in their peaks. Similarly, the wall-normal velocity fluctuations are almost identical. On the

other hand, the velocity inside the first element is slightly under-predicted in the traditional

WMLES approach in comparison to projected DNS. Additionally, both the stream-wise and

span-wise velocity fluctuations reveal an overshoot near the second off-wall grid point in

the traditional WMLES method.

One possible reason for the discrepancies between the results from the true simulation

and the filtered DNS is the lack of accurate closures. With a poor model, the LLM may

persist until a DNS-like resolution is reached. This is - in principle - similar to attributing

inaccuracies in a wall resolved LES with a standard Smagorinsky model when a dynamic
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Figure 5.14: Comparison of projected DNS and solution from the traditional WMLES
method at similar resolutions.

Smagorinsky model might yield near-optimal performance. However, using the optimal

projection framework presented here, it is now possible to perform an analysis of the

closure terms and evaluate modeling errors. By reducing the modeling errors, the goal

is to force the solution to reach a near-optimal state. Ideally, we would have wanted to

improve all three approaches using our optimal projection framework. However, to have a

compact presentation, we only consider evaluating themodeling errors in the slip-wall-based

WMLES models and improve its a posteriori performance.

5.4 Analysis of slip-based wall models.

The slip-velocity at the wall in WMLES is related to under-resolution in the wall-

normal direction. In this section, we seek to quantify this slip-velocity to ensure that the

resultingmodel generalises well to different Reynolds numbers. To understand the Reynolds

number dependence, DNS from two different friction Reynolds numbers of 𝑅𝑒𝜏 ≈ 1000

and 𝑅𝑒𝜏 ≈ 5200 are used. As mentioned earlier, the computation of the 3-D projection of

the 𝑅𝑒𝜏 ≈ 5200 case by sequential 1-D projections in the wall-normal, stream-wise and

the span-wise directions is computationally expensive. To ensure computational efficiency

and utilizing the fact that this is a near-wall phenomenon, we project the DNS solution on

uniform elements of size Δ with polynomial basis functions as shown in figure 5.15. This

is equivalent to performing a full 3-D projection on a DG finite element solution space.

The element shares its bottom face with the wall of the channel to mimic a near-wall grid.
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It can be further observed that by moving the position of this element on the wall surface,

different realizations of the slip velocity and coarse solution gradients in the wall normal

direction can be obtained. This is possible due to the statistical homogeneity present in the

stream-wise and span-wise directions.

For each realization, the projection of the DNS solution on the finite dimensional DG

space leads to filtering of the DNS solution as shown in figure 5.16. Figure 5.16(a) shows

the contour of the DNS solution of the stream-wise velocity component for a sample 3-D

element. The projected DNS solution for the same element is shown in figure 5.16(b) shows

t. The projected DNS solution does not satisfy the no-slip boundary condition at the wall

and does not contain the fine-scale information present in the original DNS solution. The

goal is to access the slip-wall based wall model proposed by Bose and Moin (2014):

𝑢𝑠 = 𝐶𝑤Δ
𝜕𝑢ℎ

𝜕𝑛
, (5.6)

and obtain an estimate of the model coefficient 𝐶𝑤. However, this requires the computation

of 𝑢𝑠 and the pre-multiplied gradient Δ 𝜕𝑢ℎ
𝜕𝑛
. The slip-velocity 𝑢𝑠 is obtained by evaluating

the coarse-scale solution at the wall as shown in the figure 5.16(c). The pre-multiplied

gradient Δ 𝜕𝑢ℎ
𝜕𝑛
is obtained by computing the derivatives of the coarse-scale in the wall-

normal direction and multiplying with the normalized resolution Δ =
Δ𝑒

𝑝
as shown in figure

5.16(d). However, this results in not only an over-determined system for𝐶𝑤 but the value of

𝐶𝑤 is linked to the filter size Δ used for the projection operation. The problem of this system

being over-determined is solved by performing a least-squares minimization over many such

realizations till convergence in the estimates of 𝐶𝑤 was obtained. To solve the problem

of the model coefficient 𝐶𝑤 being dependent on the filter size Δ, we perform dimensional

analysis. Other parameters that could affect 𝐶𝑤 are a) the order of polynomial used for

projection 𝑝, the viscosity a; and b) the wall stress 𝜏𝑤. After non-dimensionalization, the
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following model form for 𝐶𝑤 can be obtained:

𝐶𝑤 = 𝑔𝑝 (Δ+), (5.7)

where 𝑔𝑝 is a function of the grid resolution normalized with wall units Δ+ and the subscript

𝑝 denotes the coarse space polynomial order used for projection. The parameter Δ+ can be

considered to be an indicator of the near-wall grid resolution. Similarly, the order of the

numerical method can be encoded in 𝑝. Higher 𝑝 implies that a more accurate numerical

method has been used to compute the LES solution. However, this implies that for every

polynomial order 𝑝 we have to learn a new function. In addition to this, the numerical

methods used to perform LES might work sub-optimally and the exact order might not be

preserved. Hence, it is necessary that the effect of the numerical method be parameterized

through a model constant similar to the Smagorinsky model coefficient 𝐶𝑠.

As discussed in the previous section, the inability to resolve themean profile near thewall

causes a slip velocity. Before investigating the slip velocity due to the full 3-D projection of

the DNS solution, it is important to consider the contribution from the mean profile itself.

As a first step, we will apply 1-D projection to the Reichardt profile which describes the

mean profile in the inner layer. Since the mean solution is invariant in the stream-wise and

span-wise direction for a channel, the 3-D projection is reduced to a 1-D projection in the

wall-normal direction only. Figure 5.17(a) shows the estimates for 𝐶𝑤 obtained from the

Reichardt profile for different orders of projection. It can be observed that the 𝐶𝑤 profiles

for different orders are distinct even after normalisation of the element size Δ𝑒 by 𝑝 to obtain

Δ =
Δ𝑒

𝑝
. Inspired by the Smagorinsky model, which consists of a model constant 𝐶𝑠 that

pre-multiplies the grid-size in the final model form, we introduce a new model constant _

which in its inverted form i.e. 1
_
pre-multiplies the grid-size in our proposed model. Figure

5.17(b) shows the estimated valued for 𝐶𝑤,_ for different polynomial orders along with the

_ values for which all the curves collapse to the 𝑝 = 1 curve with _ = 1. As a result, it is
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possible to learn just one curve and parameterize it with an additional factor _ to obtain the

𝐶𝑤 curves for different cases i.e.

𝐶𝑤 = 𝐶𝑤,_/_ = 𝑔1(
Δ+

_
)/_, (5.8)

where 𝐶𝑤,_ =
_𝑝𝑢𝑠

Δ𝑒
𝜕𝑢ℎ
𝜕𝑛

. It is also important to check if similar relations also hold true for the

3-D projected solution.

Figure 5.18 compares the 𝐶𝑤 curves obtained through the 3-D projection of DNS

solutions to that obtained using the Riechardt mean profile for two different projection orders

𝑝 = 1, 3. For each projection order, results for two different friction Reynolds numbers of

𝑅𝑒𝜏 ≈ 1000 and 𝑅𝑒𝜏 ≈ 5200 are plotted. To obtain these curves, large variations in the

element sizes have been considered. We use element sizes with Δ𝑒 ≈ 0.011𝛿 − 0.28𝛿 for

projecting the 𝑅𝑒𝜏 ≈ 1000 data and element sizeswithΔ𝑒 ≈ 0.033𝛿−0.30𝛿 for projecting the

𝑅𝑒𝜏 ≈ 5200 data. The effective filter sizes corresponding to these grids can be approximated

by normalizing the element size with 𝑝 to obtain Δ =
Δ𝑒

𝑝
The results indicate that for the

individual polynomial orders, the𝐶𝑤 estimates for different 𝑅𝑒𝜏 at a particular Δ+ are same,

suggesting that 𝐶𝑤 is a universal function of Δ+. Further, the 𝐶𝑤 values obtained through

1-D projections of the mean profile are already good approximations to that obtained though

the 3-D projections of the DNS solution at moderate resolutions. However, at higher Δ+,

there appears to be a minor discrepancy between the two profiles in the form of a constant

shift. The 𝐶𝑤 for the span-wise velocity component is found to be negative and has a slight

Δ+ dependence. Similar to the stream-wise velocity, the𝐶𝑤 curves for different 𝑅𝑒𝜏 suggest

a Δ+ dependence in the span-wise direction as well. The 𝐶𝑤 in the wall normal direction

is approximately zero and does not depend on the mesh resolution. This suggests that the

wall normal slip can be set to zero without the loss of any generalisability. Finally, to obtain

a single model form that works for different projection orders, we re-introduce the _ factor.

As shown in figure 5.19, by re-using the _ values from figure 5.17(b), similar collapse in
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Figure 5.15: Near-wall domains located at random locations are used for projection of DNS
solution on the discontinuous finite element basis functions.

the 𝐶𝑤,_ curves was also obtained for the 3-D projection cases for the stream-wise and the

span-wise velocity components. The 𝐶𝑤 values in the wall-normal direction do not need

similar scaling because they are approximately zero irrespective of the mesh resolution.

5.5 Towards accurate slip-wall models.

While the state-of-the-art dynamic slip-wall model by Bae et al. (2019) is found to be

better in comparison to the case with no wall-model, it is found to be lacking in accuracy

when compared to the traditional WMLES approach. In addition, the slip-wall model has

been reported to suffer from instability issues when used with certain high-order methods

Carton de Wiart and Murman (2017). Thus, there is a need to improve the stability and

performance of slip-wall models on canonical turbulent flow problems before it can be

confidently used in more complex flows. Indeed, it is recognized that one disadvantage

of the traditional approach is that unlike the dynamic slip-wall model, it requires a priori

specification of tunable coefficients. The authors are of the opinion, however, that tunable

coefficients should not be used as a reason to replace the traditional WMLES approach

which has been shown to perform well across a wider range of problems. To this end, we

try to use data from existing WMLES simulations and our optimal projection techniques

to improve the performance of existing slip-wall models to the level of traditional WMLES

for the channel flow problem.
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Figure 5.16: 3-D Projection of near-wall 𝑅𝑒𝜏 ≈ 5200 channel data on finite element basis
functions.

Figure 5.17: 𝐶𝑤 computed using Reichardt profile by projecting on different polynomial
basis.

159



0 1 2 3 4 5

Normalized resolution: log10(∆+
e

p )

0

1

2

3

4

M
o
d

el
co

effi
ce

n
t

in
it
h

d
ir

ec
ti

on
:
C
w
,i

=
p
u
s
,i

∆
e
∂
u
i

∂
x

Streamwise p=1 Reτ ≈1000

Streamwise p=1 Reτ ≈5200

Streamwise p=1 Reichardt

Streamwise p=3 Reτ ≈1000

Streamwise p=3 Reτ ≈5200

Streamwise p=3 Reichardt

Spanwise p=1 Reτ ≈1000

Spanwise p=1 Reτ ≈5200

Spanwise p=3 Reτ ≈1000

Spanwise p=3 Reτ ≈5200

Wall-normal p=1 Reτ ≈1000

Wall-normal p=1 Reτ ≈5200

Wall-normal p=3 Reτ ≈1000

Wall-normal p=3 Reτ ≈5200

Figure 5.18: 𝐶𝑤 computed by 3D projection of DNS on different polynomial spaces com-
pared to 1-D projection of Reichardt profile.
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Figure 5.19: _-normalized 𝐶𝑤 computed by 3D projection of DNS on different polynomial
spaces compared to 1-D projection of Reichardt profile.
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As we observed in section 5.3, if the grid resolution is sufficiently coarse, a slip velocity

is present at the wall. Hence, it is expected that even the solution from the traditional wall-

stress based WMLES will have a slip-velocity at the wall. Given the excellent performance

of the traditionalWMLES approach for the channel flow problem, it is also expected that the

universal relationship given in figure 5.17 should also hold true for the traditional WMLES

approach.

Traditional WMLES solutions were computed using a DG solver with 𝑝 = 3 discretiza-

tion on different meshes using two different sub-grid models: (i.) a constant coefficient

Smagorinsky model with 𝐶𝑠 = 0.12; (ii.) Vreman (2004) model. Figure 5.20 shows the

comparison of𝐶𝑤,_ computed using 1-D projection of the Reichardt profile to that computed

using the solutions obtained using the traditional WMLES approach. To compute 𝐶𝑤 for

a traditional WMLES solution, the solution and its wall normal-gradients are evaluated at

the wall to obtain the slip velocity and the pre-multiplied wall-normal gradient. Finally, a

least-square fit is performed to obtain a single value of 𝐶𝑤. While computing 𝐶𝑤, the size

of the element Δ𝑒 is required. However, for all the traditional wall-model cases, the size of

the element varies in each direction unlike the grids used for projection of DNS. As a first

attempt, Δ𝑒 is taken to be the size of the element in the wall-normal direction. Finally, an

optimal value of _ is found such that the curves collapse asymptotically. By changing the

value of _ only the slope of the asymptotic part of the 𝐶𝑤,_ curve can be changed. However,

when the slope of the 𝐶𝑤,_ curve in the asymptotic part was made parallel to the 𝐶𝑤,_ curve

obtained for the Reichardt profile by projecting on the 𝑝 = 1 basis functions, the intercepts

were also found to match. This can be seen in figure 5.20 where the profiles appear identical

at large resolutions. However, small discrepancies exist near the lower resolution limit (i.e.

the wall-resolved LES limit), suggesting that either the traditional WMLES approach is

inaccurate or the sub-grid model is not accurate. Figure 5.20 also suggests that a universal

slip-wall model form exists irrespective of the sub-grid model or the numerical scheme as

long as _ is known .
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Figure 5.20: _-normalized 𝐶𝑤 vs. normalized grid-size
Δ+
𝑒

𝑝_
. The _-normalized 𝐶𝑤 are

computed by 1-D projection of Reichardt profile and compared to the same obtained using
the traditional WMLES solution. The plots marked by "FGP" use only the explicit sub-
grid models inside the first element and gradually change to implicit LES outside the first
element.

Even if _ is known prior to the simulation or is dynamically determined, a model for

𝐶𝑤,_ which takes as input the normalized grid-size
Δ+
𝑒

𝑝_
is not useful. This is because the value

of Δ+ is not known unless the wall stress is also known. One option is to use the traditional

wall model to obtain the friction velocity 𝑢𝜏 to compute Δ+ Whitmore et al. (2021). A

better choice would be to represent the slip-wall model coefficient 𝐶𝑤,_ as a function of the

mean slip-velocity < 𝑢𝑠 > based Reynolds number i.e. 𝑅𝑒𝑠𝑙𝑖𝑝 =
<𝑢𝑠>Δ

𝑝_a
, as a consequence

of which the wall-stress will no longer be required to predict 𝐶𝑤,_. Figure 5.21 shows

the _-normalized slip-wall model coefficient 𝐶𝑤,_ as a function of the slip-velocity (mean

stream-wise) based Reynolds number. As can be observed in figure 5.21, a universality

in the model form similar to the curves in figure 5.20 also exists in the case when the

slip-Reynolds number is used as a feature in place of the normalized grid-size. In addition,

the curves were found to collapse to the 𝑝 = 1 Reichardt curve for exactly the same value of

_ used in the case of 𝐶𝑤,_ vs. Δ+. In addition to the plots for 𝐶𝑤,_ for the various traditional

approach obtained using various sub-grid models, a model fit is also provided in the figure

5.20. This fit can be used as a model to specify 𝐶𝑤 at the wall as a function of the slip-wall

Reynolds number once _ is known.

As a first step, we will apply the 𝐶𝑤 computed using the traditional approach and apply

162



0 2 4 6 8

Slip Re: log10(
<us>∆e

pλν )

0

1

2

3

4

C
w
,λ

:S
tr

ea
m

-w
is

e

Reichardt Wall-model p=1, λ =1.0

Rescaled Reichardt Wall-model p=3, λ =1.632

Rescaled Reichardt Wall-model p=5, λ =2.278

Traditional Wall Model Vreman FGP fine (64x12x32) p=3, λ =1.705

Traditional Wall Model Smag. FGP coarse (12x12x12) p=3, λ =0.475

Traditional Wall Model Smag. coarse (12x12x12) p=3, λ =0.460

Traditional Wall Model Vreman coarse (12x12x12) p=3, λ =1.8

Traditional Wall Model Vreman FGP coarse (12x12x12) p=3, λ =1.09

Model fit

Figure 5.21: _-normalized 𝐶𝑤 vs. the slip-velocity 𝑢𝑠 based Reynolds number <𝑢𝑠>Δ𝑝_a
. The

_-normalized 𝐶𝑤 are computed by 1-D projection of Reichardt profile and compared to the
same obtained using the traditional WMLES solution. The plots marked by "FGP" use the
explicit sub-grid models inside the first element only and gradually change to implicit LES
outside the first element.

it as a slip-boundary condition to check if the traditional WMLES results can be recreated

with the slip boundary condition. At this stage, we are applying the same value of 𝐶𝑤 for

the stream-wise and the span-wise components. In this implementation, it is assumed that

the there is no transpiration i.e. no flow through the wall. To apply the slip-wall boundary

condition we first use the slip velocity components 𝑢𝑠,𝑖 at the wall to compute the wall

normal derivatives of the velocity components 𝑢ℎ,𝑖 as follows:

𝜕𝑢ℎ,𝑖

𝜕𝑛
=
𝑢𝑠,𝑖

Δ𝐶𝑤
, (5.9)

and finally compute the wall stress at any location using the following formula:

𝜏𝑤,𝑖 = a
𝜕𝑢ℎ,𝑖

𝜕𝑛

����
𝑤

− 𝜏𝑆𝐺𝑆𝑖,𝑛

��
𝑤
. (5.10)

Hence, contribution of the mean wall stress is only present from the viscous and the sub-

grid stresses. In addition to the 𝐶𝑤 obtained by post-processing the traditional approach

solutions, the𝐶𝑤 computed using the slip-Reynolds number based model are also used. The

value of _, required for implementing the slip-Reynolds number based approach is obtained
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Figure 5.22: Comparison of the first-order and second-order statistics using the traditional
method (Trad.), by re-using the slip-wall model with 𝐶𝑤 computed from the traditional
WMLES solution (Slip), and with the 𝐶𝑤 computed using the slip Reynolds number for-
mulation (𝑅𝑒𝑠𝑙𝑖𝑝) at different friction Reynolds number. The vertical dashed lines show the
locations of the first, second and third grid points. For the traditional wall-model, velocity
is sampled at the third off-wall grid point.

from the traditional method. The slip-Reynolds number based model does not require the

specification of different 𝐶𝑤’s for each 𝑅𝑒𝜏 case, however, requires one _ which remains

constant across all the cases with different 𝑅𝑒𝜏. Figure 5.22 shows the stream-wise mean

velocity profiles, the R.M.S of different velocity components and the Reynolds shear stress

profiles at different friction Reynolds numbers. The vertical dashed lines show the location

of the 1st, 2nd and 3rd off-wall grid points. For the traditional wall model, the wall-stress is

computed using the velocity components at the 3rd off-wall grid point. The slip wall model

does not require any such exchange location. It is clear from figure 5.22 that when the

correct _ is used, the Reynolds number dependence is captured accurately and the statistics

obtained using the slip-wall model are identical to the traditional wall model.

The previous tests presented in figure 5.22 showed that the model is able to capture the
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Reynolds number dependence on a single grid. The next step is to change the grid-resolution

and check if similar results also hold true for the new grid. Before performing numerical

experiments with our proposed slip-wall model, an a priori study could be performed by

using the results from the traditionalWMLES solutions. Two different meshes are now used

with 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 : 12 × 12 × 12 and 18 × 12 × 18 elements, respectively. The resolution

in the wall normal direction is kept the same, whereas, the resolution in the span-wise and

stream-wise case are smaller in case of the 18×12×18mesh because the size of the channel

is kept constant.

Figure 5.23 shows the _-normalized 𝐶𝑤 obtained for different resolutions for two differ-

ent types of normalizations. Different normalizations are used because the effective Δ is not

known in the case where the element is not cubic. The plots marked by "WN" and "VOL"

use the wall-normal grid-spacing and the cube root of the cell volume as Δ𝑒, respectively. It

can be observed that when the wall-normal grid-spacing is used as Δ𝑒, the _ values required

for the two different resolutions are different. This suggests that if the wall-normal grid

resolution is used for Δ𝑒, our proposed slip-wall model will not generalise to a different grid

for the same _ value. On the other hand, when the cell volume was used for Δ𝑒, the _ values

required to ensure that both the curves collapse was found to be same. This suggests that, for

the resolutions considered here, the cube root of the cell volume is an ideal candidate for Δ𝑒

to ensure that the slip-wall model generalises to a new grid for the same value of _. Hence,

the proposed model will require the specification of the model constant _ and it is expected

to work on different grids and Reynolds numbers. Figure 5.23 also shows plot of 𝐶𝑤,_ at

two other resolutions of 12 × 16 × 12 and 32 × 12 × 16. While constructing the model-fit

these resolutions have not been considered. These plots for these specific resolutions will

be later used to explain the success of the slip-wall model on these unseen resolutions.

Figures 5.24 shows the stream-wise mean velocity profiles, the R.M.S of different

velocity components and the Reynolds shear stress profiles at different friction Reynolds

numbers on two different meshes with 12×16×12 and 32×12×16 elements, respectively,
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Figure 5.23: _-normalized 𝐶𝑤 vs. the mean slip-velocity < 𝑢𝑠 > based Reynolds number
<𝑢𝑠>Δ

𝑝_a
. The _-normalized 𝐶𝑤 are computed by 1-D projection of Reichardt profile and

compared to the same obtained using the traditional WMLES solution. The plots marked
by "WN" and "VOL" use the wall-normal grid-spacing and the cube root of the cell volume
for specification of Δ𝑒, respectively.

that are not part of the data used for fitting the model for 𝐶𝑤,_. Clearly, the model not only

captures the effect of 𝑅𝑒𝜏 but also generalises to a new resolution. The performance of

the proposed slip-wall model is comparable to the traditional wall model which is a major

improvement over the dynamic slip-wall model proposed by Bae et al. (2019). The results

indicate that the proposed wall-model is able to work reasonably well even at considerably

different resolutions. The excellent performance of the slip-wallmodel can be also explained

by computing 𝐶𝑤,_ using the traditional WMLES solutions on these grids. The 𝐶𝑤,_ values

estimated using the traditionalWMLES solutions from two differentmesheswith 12×16×12

and 32 × 12 × 16 elements, respectively, are plotted in figure 5.23. The accurate prediction

of𝐶𝑤,_ by the model fit explains the excellent predictive performance of our slip-wall model

.

5.6 Conclusion.

The projection-based scale-separation approach is an essential part of the variational

multiscale method and uses the grid effectively as a filter. It is applicable to cases where the

filter length is anisotopic, varies in space or filtering needs to performed on an unstructured
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Figure 5.24: Comparison of the first-order and second-order statistics obtained using the
traditional method (Trad.) and the proposed slip-wall model at different friction Reynolds
numbers. The solution is computed on two differentmesheswith 12×16×12 and 32×12×16
elements, respectively, that is not part of the data used for fitting the model. The vertical
dash-dotted and dashed lines show the locations of first, second and third grid points for
the meshes with 12 × 16 × 12 and 32 × 12 × 16 elements, respectively. For the traditional
wall-model, velocity is sampled at the third off-wall grid point.
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grid. These filter properties were found to be essential for a priori assessment of existing

coarse-grained methods for wall-bounded turbulent flows, where the grids can be highly

anisotropic and vary in size along a particular direction.

An a priori assessment of the optimal solutions at three different limits: thewall-resolved

LES, the hybrid RANS-LES and the WMLES limit, was performed by projecting DNS on

different grids suitable for these scale-resolving approaches. For each of these cases, while

projecting the DNS on to the coarse-space, weak imposition of the boundary condition was

made by not enforcing no-slip boundary conditions at the boundary nodes. In the wall-

resolved LES limit, the mean velocity was found to be well-resolved, no-slip was naturally

satisfied and the turbulent stresses were well represented. In the hybrid RANS-LES limit,

which was obtained by coarsening the wall-resolved LESmesh in the span-wise and stream-

wise directions, the mean velocity was well-resolved and the no-slip boundary condition

was naturally satisfied. However, the turbulent stresses were found to be well represented

only at the center of the channel and under-represented in the near-wall region where

sufficient resolution was not present. In the WMLES limit, which is obtained by further

coarsening the hybrid RANS-LES grid in the wall normal direction, the mean profile is no

longer represented accurately near the wall and a slip-velocity is obtained. The turbulent

stresses in WMLES are relatively well-represented at the center of the channel compared

to the near-wall region. In the near-wall region, the stream-wise and the span-wise velocity

fluctuations were found to be non-zero at the wall, whereas, the the resolved wall-normal

fluctuations and the turbulent shear-stress were found to be under-represented. All these

trends were found to be consistent with existing solutions in the literature suggesting that

the present framework can be utilized to assess, augment and calibrate existing methods.

The ability to obtain slip-velocity directly from 3-D projection of DNS on coarse near-

wall meshes enabled further assessment of the existing slip-wall based wall-models. As

a first step, estimates of the slip-wall model coefficient 𝐶𝑤 were obtained from the mean

velocity profile in the inner-layer through 1-D projections of the Reichardt profile. The

168



𝐶𝑤 estimates from the mean-profile were found to be strongly dependent on the order of

projection suggesting that the numerical method has considerable impact on the optimal

value of 𝐶𝑤. In addition to this, the resolution for a given slip velocity and projection order

was found to scale with the wall units. To make modeling more tractable, we introduced

an extra resolution normalizer _ to express the effect of projection order through a single

coefficient, similar in scope to the Smagorinsky model coefficient 𝐶𝑠. When this analysis

was extended to 3-D, similar dependence on the polynomial order 𝑝 on 𝐶𝑤 was found for

the stream-wise and the span-wise velocity components. However, on re-introduction of

resolution normalizer _ and reusing the _ values corresponding to the 1-D projections,

similar collapse in the 𝐶𝑤,_ values was also observed for the 3-D case. The value of 𝐶𝑤,_

was also found to be different for the stream-wise, span-wise and the wall-normal velocity

components.

The ultimate goal of any a-priori analysis is to improve the model performance in a

posteriori calculations. As a first step towards better slip basedwallmodels, the performance

of existing slip-based wall models was compared to traditional WMLES for channel flows.

To establish an equivalence between the two methods, 𝐶𝑤,_ curves were evaluated using the

solution of the traditional WMLES approach and compared with the curves obtained for

the Reichardt profile. The 𝐶𝑤,_ curves for the traditional WMLES solutions were found to

be identical to those obtained using the Reichardt profile at high Δ+
𝑒

_𝑝
. However, at low Δ+

𝑒

_𝑝
,

the 𝐶𝑤,_, the curves were found to differ suggesting the presence of sub-grid modeling and

wall-modelling errors in the solution. To reduce the implementation challenges associated

with using Δ+
𝑒

_𝑝
as a feature, a slip Reynolds number-based (𝑅𝑒𝑠𝑙𝑖𝑝) feature was introduced.

Finally, by choosing Δ𝑒 to be the cube root of the cell volume and re-using _ from the

traditional WMLES solution, a model form was constructed by fitting the 𝐶𝑤,_ vs. 𝑅𝑒𝑠𝑙𝑖𝑝

curve. The resulting model was shown to generalize to different resolutions, element aspect

ratios and Reynolds numbers in a posteriori simulations.
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CHAPTER VI

Perspectives.

6.1 Conclusions.

Efficient simulation of multi-scale problems requires the development of coarse-grained

models which allow the computation of relevant quantities of interest at a fraction of the cost

of solving the original system. This dissertation developed various coarse-grainedmodeling

strategies, with the variational multi-scale (VMS) method as the overarching theme.

• First, the VMS method was combined with the optimal prediction framework of

Chorin to develop a coarse-graining strategy for the continuous Galerkin finite element

method that applies to non-linear PDEs. At a fraction of the cost of solving the full order

solution, the resulting model was shown to predict the correct evolution of the large-scale

dynamics for various problems such as the Burgers turbulence, the 3-D homogeneous

isotropic turbulence, and the 3-D Taylor green vortex.

• Second, the VMS method was combined with a novel sub-scale neural network

structure - the variational super-resolution N-N (VSRNN) to discover sub-grid closures

directly from data. The structure of the VSRNN was constructed to approximate the

unresolved scales as a sum of the products of individual non-dimensional functions of

coarse scales and physics-informed parameters. This model was trained on a sequence of

projected data and finally used to compute the continuous Galerkin subgrid terms and super-

resolved state to compute the discontinuous Galerkin fluxes. The resulting formulation led

170



Statistical Mechanics Coarse-grained modeling Data-driven methods

PREVIOUS WORKS

CONTRIBUTIONS

Mori-Zwanzig VMS Wall-modeling Neural Networks

MZ-VMS

DG method

            Chap. III
CG-MZ-VMS method

               Chap. V
Improved understanding
of near-wall under-resolution

         Chap. IV
Variational Multiscale
Super-resolution

Towards generalisable formalism-driven and data-driven 
coarse-graining frameworks for sub-grid modelling, and an 
improved understanding of coarse-grained simulation of 
wall-bounded turbulent flow.

`

Figure 6.1: Sketch of contributions in this dissertation.

to the improvement in the optimality and the accuracy of present methods for the convection-

diffusion, linear advection, and turbulent channel flow problems.

•Third, inspired by theVMSmethod, exact scale decompositionwas performed through

𝐿2-projection of the channel flow data on various finite element spaces leading to a newfinite

element-based filtering technique. The proposed filtering technique was found to explain

the occurrence of slip velocity in WMLES simulations and provide further insights into the

shortcomings of the slip-wall models by Bose and Moin (2014) and Bae et al. (2019). These

insights were used to construct a new slip-wall wall model that uses the Reynolds number
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based on the slip velocity and mesh resolution as a feature and demonstrates excellent

performance by generalizing to different Reynolds numbers and mesh resolutions.

In the following few sections of this chapter, we will outline the significant contributions

of this work and discuss future research opportunities.

6.2 Contributions.

The major contributions of the work are as follows:

1. Extension of MZ-VMS to derive closures for continuous Galerkin finite element

discretizations of PDEs. In extension to work by Parish and Duraisamy (2017c)

for spectral methods and the discontinuous Galerkin method, we apply the MZ-VMS

framework to the continuous Galerkin method. This is the first continuous Galerkin

closure that is built entirely using a non-linear model reduction strategy. Application

of the current approach to non-linear problems does not require constructs such as

transformations to linear problems such as the Oseen equations at every non-linear

iteration. The current formulation does not require one to assume a particular model

form for the sub-scales, as most non-linear VMS closures require.

2. Development of a dynamic procedure for adapting the memory length present

in the MZ-VMS closures for the CG method. A robust formulation based on

Germano’s identitywas derived for dynamically obtaining thememory length required

in our finite memory-based MZ-VMS model. The test filtering methodology was

adapted to the continuous Galerkin method by performing 𝐿2-projection on a coarser

grid. We further established that the predicted value of 𝜏 using this dynamic procedure

was linear primarily in time, as conceptualized by the re-normalized t-model by Stinis

(2013).

3. Extensive evaluation of the dynamic MZ-VMS closures for the continuous Galerkin

finite element method on canonical turbulent flow problems . The dynamic MZ-
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VMS framework for the continuous Galerkin approach was assessed in detail for the

1-D viscous Burgers equation and in many canonical 3-D flow problems, such as ho-

mogeneous isotropic turbulence and the Taylor-green vortex. The performance of our

dynamic MZ-VMS framework for these cases was found to be better or comparable

to the state-of-the-art VMS models.

4. Discovering a link between super-resolution and the Greens functions approach

used in the development of VMS closures for linear problems. A connection

between the super-resolution operator, used for up-scaling coarse-grained PDE so-

lutions, and the fine-scale solution obtained using the Greens function approach in

VMS was established. Using the learned super-resolution operator as a model for the

fine-scales, data-driven sub-grid modeling was performed using the VMS formalism.

In this work, we demostrated the reconstructive and predictive performance of the

super-resolution models.

5. First generalizable data-driven closure learning framework for the Variational

multiscale method. To the authors’ knowledge, this is the first data-driven VMS

closure learning approach that, for a limited class of problems investigated herein,

can generalize to different grids and physics-informed parameters, making the current

approach truly predictive. The present approach achieves generalization using a

unique neural network structure called the variational super-resolutionN-N (VSRNN),

which uses non-dimensional input and output features and takes into account the

physics-informed parameters. We demonstrated in Chapter 4 how a closure in the

form of a singly trained VSRNN works for different resolutions, physics-informed

parameters, and initial conditions.

6. Improving the optimality and accuracy of existing finite element discretizations

though the development of data-driven sub-grid models for various PDEs. In

our data-driven framework, the required optimality is imposed by the projection
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operation used to generate the coarse-scale and the fine-scale data for training the

VSRNN network. In the linear advection problem, close to 𝐿2-optimal solution

was obtained. Similarly, in the advection-diffusion problem, the closure was trained

such that the coarse scale was nodally exact. In addition to optimality, the resulting

numerical method was highly accurate in comparison to the traditional methods.

The VSRNN also provides the ability to learn closures for high-order finite element

discretizations.

7. Development of a finite element based filtering approach for the a priori analysis

of coarse-grained scale-resolving simulations of wall turbulence. A new filtering

approach for non-homogeneous flows was developed, which allows the filtering of

high-resolution DNS data when non-periodic directions are present or when the mesh

is stretched. The present approach enables a priori assessment of coarse-grained

scale-resolving methods for wall-bounded flows, such as the wall-resolved LES,

hybrid RANS-LES, and WMLES methods.

8. Discovery of a new scaling parameter that allows the construction of a universal

model form for the model coefficient present in the slip-wall based wall-models.

The effect of the sub-grid model and the numerical scheme on the slip velocity was

effectively captured through the introduction of a resolution normalizer _, which

allowed the construction of a universal model form for the model coefficient in the

slip-wall-based wall models.

9. Improving the performance of the state-of-the-art slip wall model. By capturing

the effect of Reynolds number and grid resolution, the proposed wall model with a

constant model coefficient outperforms the state-of-the-art dynamic slip wall models

by Bae et al. (2019) and Bose and Moin (2014) on the turbulent channel flow problem.

10. Development of caslabDG. The high-order discontinuous Galerkin (DG) code with

explicit RK3/RK4-based time-stepping is developed using MPI (Message Passing
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Interface), a communication protocol for distributed parallel computing. The code

shows a strong scale up to 512 processors on problems with a size comparable to that

considered in this dissertation. The code is built with both traditional and slip-wall-

based WMLES capabilities. Additional details are provided in appendix E.

6.3 Perspectives and future work.

6.3.1 Formalism-driven discovery of sub-grid closures

The MZ-VMS provides a general framework for obtaining the exact form of the closure

for the correct evolution of the coarse scales. However, the evaluation of the memory

term in the closure requires the solution to a highly high-dimensional PDE known as the

orthogonal dynamics equation. As we saw in Chapter 3, the memory term needs to be

modeled for all practical purposes. The accuracy of the memory model is critical to the

success of the coarse-grained model. To this end, we outline the following ingredients for

performing accurate memory modeling:

1. The memory model needs to be generalizable, i.e., it should adapt to the grid, time

step, and problem. The constant-𝜏 model is not adaptive to the grid, time-step, and

problem. The 𝜏 in the constant-𝜏 memory model is a time scale with the dimension

of time. If the units of the time change, the value of the constant 𝜏 must be adjusted

accordingly. Hence, its value cannot be universal. One solution is to scale it with

the time-step Δ𝑡 or a local time scale such as Δ
|𝑢ℎ | , where |𝑢ℎ | is a local velocity scale.

Given the similarity in the structure of the VMS-𝜖 model and the constant-𝜏 model,

and the similarity between the memory length and the stabilization parameter, Δ
|𝑢ℎ |

seems a natural choice. Consequently, the memory length can be assumed to have

the following form:

𝜏 = 𝐶
Δ𝑥

|𝑢ℎ |
. (6.1)

where𝐶 is a non-dimensional constant. An alternate approach is to perform dynamic

175



modeling for 𝜏 as described in Chapter 3. At an additional cost, the dynamics model

adapts to the grid, time-step, and problem automatically.

2. The present dynamicmodel requires the specification of an ad-hoc scaling law relating

the memory lengths 𝜏 at two different levels of coarsening i.e.

𝜏1
𝜏2

=

[
Δ1
Δ2

]1.5
. (6.2)

As described in Chapter 3 and Parish and Duraisamy (2017c), this law is obtained

by computing the ratio between the integrated memory and the memory at s = 0 at

different levels of coarse-graining a priori using high-resolution data from a variety

of flows. Although the model form of the present finite memory-based MZ-VMS

closure was formally developed, the specification of a scaling law for 𝜏 makes the

final model phenomenological. Hence, it is necessary to construct models that do

not require the specification of scaling laws with exponents obtained directly from

existing theory or data. One approach is to assume a scaling law of the following

form:
𝜏1
𝜏2

=

[
Δ1
Δ2

]𝑚
. (6.3)

However, the exponent 𝑚 is also dynamically obtained.

3. In this dissertation, coarse-grained model development using MZ was focused on

fixedmemory typemodels leading toMarkovian closures. However, other approaches

leading to non-Markovian type closures can be implemented Parish (2018). Alterna-

tively, different approximations to the orthogonal dynamics Zhu and Venturi (2018);

Gouasmi et al. (2017) can be used to construct models.

4. The final comment is on the use of a single memory length for all the modes. For

complex flows, the value of 𝜏 can vary across different regions and cannot be assumed

constant. The single memory length model was successful - in part - because of the
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nature of the problems investigated herein. Hence, extensions to highly anisotropic

and inhomogeneous problems will require the development of local definitions for

memory length. One candidate is the memory length form proposed in point #1, i.e.,

𝜏 = 𝐶 Δ
|𝑢ℎ | , which is based on a local definition of a time scale. In this case, the value

of the 𝜏 depends on the velocity magnitude and grid size and is not uniform across all

the modes. Finally, to make this model fully predictive, the dynamic procedure can

be performed on the non-dimensional parameter 𝐶 in place of the memory length 𝜏.

6.3.2 Data-driven discovery of sub-grid closures

Inspired by successes in the machine vision community, there has recently been consid-

erable interest in the use of super-resolution in the physical sciences. Much of the existing

literature has, however, focused on reconstruction performance and not on predictive model-

ing. Truly predictive models should not be restricted to a single mesh or flow configuration,

and should generalize to a class of flows. Despite the success in the canonical problem in

section 4.6, the results in section 4.7 suggest that there is much to be done before a truly

predictive capability can be realized for a problem as challenging as turbulent flow. We

view our work as a first step in moving towards a predictive LES capability. Along these

lines, we outline the following ingredients for the discovery of sub-grid closures:

1. The model should be constructed using features that lend themselves to generalization

2. The structure of the learning model should allow one to embed physics-informed

parameters efficiently.

3. The closure model should be intimately linked to the underlying numerical discretiza-

tion.

4. The training should be performed in a manner that the super-resolution is consistent

with the coarse scales during the prediction.
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In our work, we addressed points #1 #2 above by choosing non-dimensional features

that are inspired by VMS closures, and by choosing a compositional neural network struc-

ture. Further work is required to design features that satisfy additional physics-informed

invariances.

Regarding point #3, in contrast to implicitly filtered approaches in which coarse space

is defined ambiguously Lund (2003), the VMS approach formally segregates the coarse and

fine spaces, thus setting a clean environment for super-resolution. Other candidates include

explicitly filtering Lund (2003) with a large test filter.

Point #4 refers to establishing consistency between the learning and prediction en-

vironments Duraisamy (2020). In essence, the training is performed on DNS data, i.e.

𝑢′ = 𝑓 (𝑢𝐷𝑁𝑆
ℎ

), whereas in the online prediction stage, it is used as 𝑢′ = 𝑓 (𝑢𝐿𝐸𝑆
ℎ

). As the

error between the coarse scales in the LES and DNS grows, the super-resolution becomes

less accurate. In other words, the parameters of the learning model have not been inferred

for online performance. Model-consistent training has been successfully demonstrated in

RANS closures Parish and Duraisamy (2016); Singh and Duraisamy (2016);Holland et al.

(2019), the authors are aware of only one such attempt in the context of LES Sirignano et al.

(2020). However, as mentioned above, and in more detail in Ref. Sirignano et al. (2020),

implicitly filtered approaches are associated with other challenges. The VMS approach,

on the other hand, allows for both numerics-consistent and model-consistent training, but

the implementation of such a capability is a major undertaking is yet to be pursued by the

authors in an LES context.

As a final point, while the appeal of VMS is the segregation of scales and the prospects of

deriving closures with few phenomenological assumptions, structural models (e.g.,Pradhan

and Duraisamy (2020)) generally perform poorly when the simulation is severely under-

resolved. Several attemptsHughes et al. (2000);Wang and Oberai (2010b) have been made

to combine traditional VMS approaches with phenomenological models like Smagorinsky

in the form of mixed models. The use of data-driven techniques potentially allows us to
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account for these phenomenological relationships in the data directly in the VMS model,

thus, bridging the gap between phenomenological and structural modeling.

6.3.3 Improved slip-wall models.

Slip-based wall models Bose and Moin (2014); Bae et al. (2019);Whitmore et al. (2021)

allow for easy implementation of the wall boundary condition without the need to sample

velocity components at a few grid points away from the wall and also allows the possibility

to model flow separation. The dynamic slip-wall model proposed by Bae et al. (2019) shows

excellent performance on the zero-pressure gradient flat plate case, albeit for a narrow range

of 𝑅𝑒\ . However, this model requires improvements compared to traditional wall models

for the equilibrium channel flow case at similar resolutions. Section 5.4 provided a priori

results on the model form for 𝐶𝑤 for equilibrium channel flows. In Section 5.5, we used

some of the insights obtained from section 5.4 to improve the performance of the existing

slip-wall model to at least the traditional WMLES level. Although the performance of our

proposed slip wall model was acceptable, more insights from section 5.4 can be used to

improve further the accuracy of both the proposed and the existing slip wall models. To

this end, we outline the following ingredients for the construction of a more generalizable

slip-based wall model form:

1. The slip model coefficients can be different in the stream-wise, span-wise, and wall-

normal directions as observed in figure 5.19. In a more complex 3-D case, the

choice of stream-wise, span-wise, and wall-normal direction is slightly ambiguous.

However, the mean flow can be used to identify these directions. However, this needs

to be iteratively done since the mean flow can change when changing these directions.

Another approach is to use the flow direction at the first off-wall grid point, similar

to how the traditional wall models are implemented. In Section 5.5, we used the

same 𝐶𝑤 for all directions. The effect of using different 𝐶𝑤 for different velocity

components on our proposed model is a topic of further research .
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2. If a dynamic modeling procedure is performed to obtain 𝐶𝑤, the value of 𝐶𝑤 cannot

be assumed to be the same at the original grid and the test filtered grid. Figure 5.19

shows that𝐶𝑤 changes when the resolution is changed from Δ+ to the test filtered grid

resolution 2Δ+. In addition to𝐶𝑤 being not constant across different grid levels, there

is a dependence on the wall units. This dependence is generally not considered in the

existing slip-wall model forms. However, this dependence is present in traditional

wall models, which are found to perform excellently for equilibrium wall-bounded

flow cases. In Section 5.5, we were able to improve the performance of the dynamic

slip-wall model of Bae et al. (2019) by just augmenting the model form without

performing any dynamic procedure.

3. The discrepancy in figures 5.20 and 5.21 between the 𝐶𝑤,_ curves obtained by the

optimal projection of the Reichardt profile and that obtained using the solutions of

the traditional WMLES approach suggests that the current WMLES approaches are

sub-optimal due to the presence of wall-modeling and sub-grid modeling errors. This

discrepancy also suggests that there is ample scope for improvement. Our optimal

projection framework can be used to assess the WMLES performance of the different

combinations of sub-grid and wall models.

4. The final comment is on the choice of the parameter that should be used to perform the

dynamic procedure. We saw in section 5.4 that the value of _ effectively captures the

effect of the order of projection and hence the numerical method. The corresponding

function 𝑔1 is fairly universal for different orders. Hence, it is imperative that the

dynamic modeling be performed on _ rather than 𝐶𝑤. The model form for 𝑔1 can

be empirically obtained from DNS data, Reichardt profile, or from the solution of an

existing model such as the wall-stress-based WMLES models. We further observed

in section 5.5 that if the cube root of the cell volume is used for Δ𝑒, _ remains

fairly constant across different resolutions and Reynolds numbers for a given sub-grid
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model. A dynamic model that determines _ without requiring the solutions from the

traditional model is a topic of further research.

In this work, two different model forms for 𝐶𝑤,_ were proposed as shown in figure 5.20

and figure 5.21. The first model uses Δ+ as a feature, whereas the second uses the Reynolds

number based on the slip velocity. The implementation of the first model is slightly more

complex because the proposed expression for𝐶𝑤 is a function of two parameters: _ and Δ+.

Although the grid size Δ is known, to compute Δ+ from Δ, an estimate of the average wall

stress < 𝜏𝑤 > is required:

⟨𝜏𝑤⟩ = 𝑣
〈
𝜕𝑢ℎ,1

𝜕𝑦

����
𝑤

〉
−

〈
𝑢ℎ,1𝑢ℎ,2

��
𝑤

〉
−

〈
𝜏𝑆𝐺𝑆12

��
𝑤

〉
. (6.4)

This average quantity influences the slip velocities through 𝐶𝑤, affecting the average itself.

As discussed earlier, an alternate approach is to use the equilibrium wall profile to obtain 𝜏𝑤

as done inWhitmore et al. (2021). However, this requires sampling the velocity fields from

the off-wall grid points, whichmakes the implementation of slip-wallmodels as cumbersome

as the traditional wall model. An alternate approach is using the Reynolds number based

on the slip velocity described in section 5.5. In this work, the optimal estimates of 𝐶𝑤 were

obtained from the DNS solution by projecting onto the spaces formed by uniform elements

of different sizes. However, our projection framework, by using anisotropic elements, also

allows us to study the effect of the grid aspect ratios. As discussed in section 5.5, one

approach to account for mesh anisotropy is to replace Δ𝑒 with an effective grid size, such

as the cube root of the cell volume. However, it is advisable to include the aspect ratio in

the model form to ensure optimal performance across different meshes. Finally, the present

model form has been derived from the channel flow data, and its accuracy in the spatially

developing flows, such as the flat plate or the separated flow regions, has not been assessed.

Given the excellent performance of the traditional wall models on the flat-plat cases, we

expect similar performance from our proposed model; however, this is a topic of further
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research.

6.3.4 Definition of accuracy of coarse-grained models and potential data-driven im-

provements.

As is well-recognized, the projected solution 𝑢ℎ is no longer a solution to the Navier-

Stokes equations and requires additional modeling in the form of closure. In context of

VMS (Hughes et al., 1998b), the coarse-scale equation is given by

(
𝜕𝑢ℎ

𝜕𝑡
, 𝑤ℎ

)
+ (𝑅(𝑢ℎ), 𝑤ℎ) + (𝑅(𝑢) − 𝑅(𝑢ℎ), 𝑤ℎ) = 0 ∀𝑤ℎ ∈ Vℎ, (6.5)

where the fine scales are considered orthogonal to the coarse-scales (Codina, 2002). The

orthogonality condition is required to ensure that ( 𝜕𝑢ℎ
𝜕𝑡
, 𝑤ℎ) = ( 𝜕𝑢

𝜕𝑡
, 𝑤ℎ). Equation 6.5

after sub-grid modelling represents the evolution equation for 𝑢ℎ and requires boundary

conditions on 𝑢ℎ. As observed in previous sections, boundary conditions applicable for 𝑢

do not always translate to 𝑢ℎ. This is especially true in the WMLES limit, where slip is

observed for 𝑢ℎ. The focus of the present work is not on closure modeling. However, as the

first step towards closure modeling, one can use the present optimal projection to estimate

the closure term when the filter length is anisotropic and changes in space. We also assess

the impact of coarse-graining on the boundary conditions required for 𝑢ℎ.

Irrespective of how closely these guidelines are followed, the results from different

coarse-grained simulations (i.e., WRLES, WMLES, and hybrid RANS-LES) are extremely

sensitive to the grid and the numerical method. It is challenging to define grid convergence

for thesemethods. In this scenario, there exists no formalway to define an accurateWMLES,

LES, or hybrid-RANS LES. By projecting the DNS on the same coarse mesh that is used

for the coarse-grained simulation, it is possible to obtain an optimal solution for that mesh.

The accuracy of the underlying coarse-graining method can be assessed by computing the

difference between the coarse-scale statistics obtained from the optimally projected solution
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and that obtained using the coarse-grained model. The sub-grid model can be trained in a

way to minimize the difference between the optimal and the modeled coarse-scale outputs

This approach is called the model consistent approach (Duraisamy et al., 2019; Duraisamy,

2021) which requires the solver to be part of the model training process.
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APPENDIX A

Derivation of the memory kernel for the finite memory

model.

Different ways to model the memory term have been explored in the literature Chorin

and Hald (2009); Chorin et al. (2000); Stinis (2015, 2012); Parish and Duraisamy (2017b);

Zhu and Venturi (2018). In the present formulation, we will derive the memory kernel for

the finite memory model i.e.
∫ 𝑡

0 𝐾 (ã(𝑡 − 𝑠), 𝑠)𝑑𝑠 ≈ 𝜏𝐾 (ã(𝑡), 0) where the memory kernel

𝐾 (ã(𝑡 − 𝑠), 𝑠) at 𝑠 = 0 is given by

𝐾 (ã(𝑡), 0) = 𝑒L𝑡PLQLã0. (A.1)

First, we apply L on ã0, resulting in the RHS of Equation (3.8) given by

𝑒L𝑡Lã0 = M̃−1(−(𝑅(�̃�), w̃)Ω′−(𝑅(𝑢)−𝑅(�̃�), w̃)Ω′−(𝑏(�̃�), w̃)Γ′−(𝑏(𝑢)−𝑏(�̃�), w̃)Γ′+( 𝑓 , w̃)Ω′),

(A.2)

Second, we apply the projectionQ = I − P to Equation (A.2) which results in the following

expression,

𝑒L𝑡QLã0 = M̃−1(−(𝑅(𝑢) − 𝑅(�̃�), w̃)Ω′ − (𝑏(𝑢) − 𝑏(�̃�), w̃)Γ′). (A.3)
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Third, we apply the Liouville operator L to obtain 𝑒L𝑡LQLã0. The effect of application

of the Liouville operator L to any scalar function results in the Frechet derivative evaluated

in the direction of the RHS i.e. La0. For example, for a scalar function g we have the

following:

L𝑔(𝑢(a0)) =
𝜕𝑔

𝜕a0
La0 (A.4)

Recognising that 𝑢 = w𝑇a and applying chain rules we get

L𝑔(𝑢(a0)) =
𝜕𝑔

𝜕𝑢0
w𝑇La0 (A.5)

Finally 𝑒L𝑡LQLã0 is obtained by linearising w.r.t to 𝑢 and evaluating the the RHS of

Equation (3.8) and (3.9) as follows:

𝑒L𝑡LQLã0 = −M̃−1(𝑅′(wT [M−1(−(𝑅(�̃�) − 𝑓 ,w)Ω′ − (𝑅(𝑢) − 𝑅(�̃�),w)Ω′ − (𝑏(�̃�),w)Γ′

−(𝑏(𝑢) − 𝑏(�̃�),w)Γ′)]) − 𝑅′(w̃T [M̃−1(−(𝑅(�̃�) − 𝑓 , w̃)Ω′ − (𝑅(𝑢) − 𝑅(�̃�), w̃)Ω′ − (𝑏(�̃�), w̃)Γ′

−(𝑏(𝑢) − 𝑏(�̃�), w̃)Γ′)]), w̃)Ω′ − M̃−1(𝑏′(wT [M̃−1(−(𝑅(�̃�) − 𝑓 ,w)Ω′ − (𝑅(𝑢) − 𝑅(�̃�),w)Ω′

−(𝑏(�̃�),w)Γ′ − (𝑏(𝑢) − 𝑏(�̃�),w)Γ′]) − 𝑏′(w̃T [M̃−1(−(𝑅(�̃�) − 𝑓 , w̃)Ω′ − (𝑅(𝑢) − 𝑅(�̃�), w̃)Ω′−

(𝑏(�̃�), w̃)Γ′ − (𝑏(𝑢) − 𝑏(�̃�), w̃)Γ′)]), w̃)Γ′ .

(A.6)

Finally, we apply the projector P which removes the dependence on un-resolved variables

a′ and results in

M̃𝑒L𝑡PLQLã0 = −(𝑅′(wT [M−1(−(𝑅(�̃�) − 𝑓 ,w)Ω′ − (𝑏(�̃�),w)Γ′)])

−𝑅′(w̃T [M̃−1(−(𝑅(�̃�) − 𝑓 , w̃)Ω′ − (𝑏(�̃�), w̃)Γ′)]), w̃)Ω′−

(𝑏′(wT [M−1(−(𝑅(�̃�) − 𝑓 ,w)Ω′ − (𝑏(�̃�),w)Γ′])−

𝑏′(w̃T [M̃−1(−(𝑅(�̃�) − 𝑓 , w̃)Ω′ − (𝑏(�̃�), w̃)Γ′)]), w̃)Γ′,

(A.7)
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Equation (A.7) can be compactly written as,

M̃𝑒L𝑡PLQLã0 =

∫
Ω′

∫
Ω′

w̃𝑅′(Π′(𝑥, 𝑦) (𝑅(�̃�) − 𝑓 ))𝑑Ω′
𝑦𝑑Ω

′
𝑥

+
∫
Ω′

∫
Γ′

w̃𝑅′(Π′(𝑥, 𝑦) (𝑏(�̃�)))𝑑Γ′
𝑦𝑑Ω

′
𝑥

+
∫
Γ′

∫
Ω′

w̃𝑏′(Π′(𝑥, 𝑦) (𝑅(�̃�) − 𝑓 ))𝑑Ω′
𝑦𝑑Γ

′
𝑥

+
∫
Γ′

∫
Γ′

w̃𝑏′(Π′(𝑥, 𝑦) (𝑏(�̃�)))𝑑Γ′
𝑦𝑑Γ

′
𝑥 ,

(A.8)

where Π′ is the orthogonal projector onto the space of the the fine scales i.e,

Π′(𝑥, 𝑦) = w′𝑇 (𝑥)M′−1w′(𝑦). (A.9)

For a simpler derivation for a smooth orthogonal basis, readers are encouraged to explore

Appendix A of Parish and Duraisamy (2017c).

187



APPENDIX B

The VMS-OSS coarse grain model.

In this part, we review the Othogonal Sub-Scale (OSS) Codina (2002) method which

has been used as a model for comparison throughout Chapter 3. We start with the linearized

form of the N-S equation obtained from the Picard algorithm leading to an Oseen problem

at every non-linear iteration as follows

𝜕𝑡u − aΔu + a · ∇u + ∇𝑝 = f 𝑖𝑛 Ω, 𝑡 ∈]0, 𝑇 [, (B.1)

∇ · u = 0, (B.2)

where a is the convective velocity which is defined later. The above set of equations can be

written in the following form:

M𝜕𝑡U + L (U) = F, (B.3)

where U,M,L (U), 𝐹 are given by
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U =


u

𝑝

 , M = 𝑑𝑖𝑎𝑔(I, 0), L (U) =

−aΔu + a · ∇u + ∇𝑝

∇ · u

 ,F =


f

0

 . (B.4)

The \ family of methods is used for the temporal discretization of Equation B.3 as follows

M𝛿𝑡Un + L (Un+\) = Fn+\ , (B.5)

where 𝛿𝑡Un and Un+\ are defined as

𝛿𝑡Un =
U𝑛+1 − U𝑛

𝛿𝑡
, (B.6)

Un+\ = \U𝑛+1 + (1 − \)U𝑛. (B.7)

The variational form of Equation (B.5) is given by

(M𝛿𝑡Un,V) + (L (Un+\),V) = (Fn+\ ,V), (B.8)

where the weighting functions V is defined as

V =


w

𝑘

 . (B.9)

The next step is to decompose U and V into resolved and sub-grid parts i.e. U = Uh + U′

and V = Vh + V′ where Uh and Vh both belong to the subspaces spanned by the piecewise

polynomial basis functions in a typical finite element calculation. Whereas, U′ and V′

can assume functions which belong to a space orthogonal to Vℎ i.e. V′. The above

decomposition leads to the following equation:
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(M𝛿𝑡 (Uh
n + U′n),Vh + V′) + (L (Uh

n+\ + U′n+\),Vh + V′) = (Fn+\ ,Vh + V′). (B.10)

By applying the standard VMS procedure we get

(M𝛿𝑡 (Uh
n + U′n),Vh) + (L (Uh

n+\ + U′n+\),Vh) = (Fn+\ ,Vh), (B.11)

(M𝛿𝑡 (Uh
n + U′n),V′) + (L (Uh

n+\ + U′n+\),V′) = (Fn+\ ,V′). (B.12)

On further simplification due to orthogonality of the two spaces and using integration by

parts we obtain

(M𝛿𝑡Uh
n,Vh) + (L (Uh

n+\),Vh) + (U′n+\ ,L ∗(Vh)) = (Fn+\ ,Vh), (B.13)

(M𝛿𝑡 (Uh
n + U′n),V′) + (L (Uh

n+\ + U′n+\),V′) = (Fn+\ ,V′). (B.14)

Using Equations (B.6) and (B.7), the equation for sub-scales can be equivalently written as

(( M
\𝛿𝑡

+ L )U′n+\ ,V′) = ( M
\𝛿𝑡

U′n,V′) + (Fn+\ − [M𝛿tUh
n + L (Uh

n+\)],V′). (B.15)

The above equation is true for any function V′ ∈ W ′. Consequently the above equation can

be re-written as

( M
\𝛿𝑡

+ L )U′n+\ =
M
\𝛿𝑡

U′n + Fn+\ − [M𝛿tUh
n + L (Uh

n+\)] + Vℎ,𝑜𝑟𝑡 , (B.16)
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The solution to Equation (B.16) can approximated by

U′n+\ = 𝝉𝑡 (
M
\𝛿𝑡

U′n + Fn+\ − [M𝛿tUh
n + L (Uh

n+\)] + Vℎ,𝑜𝑟𝑡). (B.17)

To find an expression for Vℎ,𝑜𝑟𝑡 , the sub-scales are made orthogonal to the finite element

space and the 𝜏-Projection is approximated as 𝐿2-projection resulting in the following

expression:

Vℎ,𝑜𝑟𝑡 = −Πℎ [Fn+\ − (M𝛿𝑡Uh
n + L (Uh

n+\))] . (B.18)

Substituting back Vℎ,𝑜𝑟𝑡 in Equation (B.17) we get

U′n+\ = 𝝉𝑡 (
M
\𝛿𝑡

U′n + Π
′ (Fn+\ − [M𝛿tUh

n + L (Uh
n+\)])), (B.19)

where Π ′
=I−Πℎ projects it into the subspace orthogonal to the finite element subspace.

Moreover, Π ′ (M𝛿𝑡Uh
n) = 0 because the two subspaces are orthogonal. This results in the

following final expression for the sub-scales:

U′n+\ = 𝝉𝑡 (
M
\𝛿𝑡

Un − Π′(L (Uh
n+\))). (B.20)

Substitution of equation (B.20) in the coarse equation (B.13) results in the following for-

mulation

(𝛿𝑡Uh
𝑛,Vh) + (a · ∇Uh

𝑛+\ ,Vh) + a(∇Uh
𝑛+\ ,∇Vh) − (𝑝ℎ𝑛+\ ,∇ · Vh) + (𝑞ℎ,∇ · Uh

𝑛+\)+

(a · ∇Uh
𝑛+\ + ∇𝑝ℎ𝑛+\ , a · ∇Vh + ∇𝑞ℎ)𝜏1,𝑡 + (∇ · Uh

n+\ ,∇ · Vh)𝜏2 = (f,Vh)

+ 1
\𝛿𝑡

(u′𝑛, a · ∇Vh + ∇𝑞ℎ)𝜏1,𝑡 + (bℎ, a · ∇Vh + ∇𝑞ℎ)𝜏1,𝑡 + (𝛿ℎ,∇ · Vh)𝜏2 ,
(B.21)

where bℎ and 𝛿ℎ are given by

bℎ = Πℎ (a · ∇Uh
𝑛+\ + ∇𝑝ℎ𝑛+\), (B.22)
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𝛿ℎ = Πℎ (∇ · Uh
𝑛+\), (B.23)

and the convective velocity a is defined as

a = Uh
𝑛+\ + u′𝑛+\ . (B.24)

As suggested by Codina Codina (2002), equation (B.24) adds non-linearity to the formula-

tion.
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APPENDIX C

Numerical computation of 𝐿2-projection.

The problem of finding an 𝐿2 projection is equivalent to the problem of finding a

𝑢ℎ ∈ Vℎ such that

(𝑢ℎ, 𝑤ℎ) = (𝑢, 𝑤ℎ) ∀𝑤ℎ ∈ Vℎ. (C.1)

The first step is to determine the coarse space Vℎ. The coarse space should be low-

dimensional in comparison to the original solution to ensure that the projection operation

acts as a filter. The low dimensionality of the coarse-space can be ensured by using lesser

number of grid points or modes. There are many choices for the coarse space (for e.g, the

Fourier basis functions, the global Chebyshev polynomial basis functions and the piece-

wise polynomial basis functions). Once the coarse space is fixed, the coarse solution can

be written as a linear combination of the basis functions as follows:

𝑢ℎ = w𝑇
ℎaℎ (C.2)

where w𝑇
ℎ
is a vector of coarse-scale basis functions spanning the coarse-space and aℎ

is vector containing the corresponding basis coefficients. Substituting equation (C.2) in

equation C.1 we obtain:

Maℎ = r, (C.3)
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where the mass matrixM and the right hand side vector r is given by,

M =

∫
wℎw𝑇

ℎ𝑑Ω, and r = (𝑢,wℎ). (C.4)

The coarse-scale basis coefficients are obtained as aℎ = M−1r. The mass matrixM is local

(block diagonal) when DG basis functions are used. In the case of CG basis functions, the

mass matrix has to be assembled by adding contributions from individual element mass

matrices. The computation ofM is not as expensive as compared to the right hand side vector

r, especially when 𝑢 is high dimensional. The elements of the matrix M can be precisely

computed using a Gauss quadrature rule appropriate for the order of the polynomial used to

define the coarse-space. The computation of (𝑢,wℎ), however, needs special care because

it requires the computation of the inner-product of a high dimensional solution 𝑢 with the

coarse basis functions 𝑤ℎ as shown in figure C.1. The high dimensional solution 𝑢 can

come from a finite difference, finite volume, spectral or finite element simulation.

A more general approach to compute the elements of the right hand side vector r is

by using numerical integration. As can be observed in figure C.1, the solution obtained

after multiplication of the coarse basis functions 𝑤ℎ,𝑖 with 𝑢 still contains high-dimensional

features and requires a fine-grid for numerical integration. The grid on which 𝑢 exists

is assumed to be sufficiently fine for performing the numerical integration. In case the

projected solution depends on the order of numerical integration used or the grid size, the

solution can be injected on a more finer grid to perform the numerical integration. Once

the integration grid is set, the Trapezoidal rule or the Simpson’s formula can be applied to

compute the integral over the 𝑢𝑤ℎ,𝑖 fields to obtain the right hand side vector r. In case 𝑢

lies on an unstructured mesh, the integration of the 𝑢𝑤ℎ,𝑖 fields has to be performed over

these fine unstructured elements. This can be done by first evaluating the coarse space on

the unstructured mesh element and finally computing the integrals in the reference space of

the unstructured mesh elements.
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Figure C.1: The high dimensional solution 𝑢 is multiplied with coarse-scale basis 𝑤ℎ,𝑖 to
obtain 𝑢𝑤ℎ,𝑖. The right hand side r is finally computed by evaluating

∫
𝑢𝑤ℎ,𝑖𝑑Ω for all

basis function 𝑤ℎ,𝑖 spanning the coarse space.
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APPENDIX D

Filtering on unstructured meshes.

A majority of the work on explicitly-filtered LES is limited to structured grids where

1-D filters are applied repeatedly in each direction. Exceptions include Bose et al. (2011)

and Najafi-Yazdi et al. (2015). The luxury of using dimensional splitting to perform 3-D

filtering is not present in case of unstructured grids. An alternate approach is to create

filters for unstructured grid is by using the neighbouring points as suggested by Marsden

et al. (2002) andHaselbacher and Vasilyev (2003). In all these approaches, the basic idea is

that a low dimensional interpolant is sought which is made to satisfy the high-dimensional

data present at the grid points of the high dimensional data. This generally leads to an over-

determined system and is solved using the least-squared approach. Another cost efficient

filtering approach for unstructured grids is through the aggregation of neighboring cells to

implement a top-hat filter (Kim, 2004).

The present projection-based approach is similar to existing approaches, except, the

low dimensional space is a finite element solution having 𝐶0 continuity at the element

boundaries and it 𝐿2-optimally satisfies the high-dimensional solution. As a result, the

error is evaluated not just at the nodal points but across the domain. This high-dimensional

solution can either come from a solution obtained on a finer grid or the DNS solution. The

coarse finite element grid spanning the same computational domain can be un-structured
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Fine grid

Coarse Grid

Figure D.1: The filtered solution on the coarse grid (red sides) can be obtained by 𝐿2-
projection of fine-grid solution (red and black sides).

and made of mesh elements like triangles, quadrilaterals or tetrahedrals as shown in figure

D.1. The filter width Δ ≈ Δ𝑒/𝑝 in this case can be controlled using an approximate measure

of the size of the coarse grid element Δ𝑒 and the order of the polynomial 𝑝 used for the

shape function.
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APPENDIX E

caslabDG: A high-order parallel DG-SEM code.

The caslabDG solver is an in-house parallel discontinuous Galerkin spectral element

method (DG-SEM) code Cockburn and Shu (2001); Reed and Hill (1973); Bassi and Rebay

(1997); Hartmann and Houston (2002) developed at CASLAB. The code is written in C

and uses the MPI library for parallel computations on distributed-memory systems. The

current implementation only supports a single structured block with variable order curved

finite elements. Load balancing is performed by uniformly distributing 𝑁𝑝𝑥 ,𝑁𝑝𝑦, and 𝑁𝑝𝑧

processors in the x,y, and z directions of the block, respectively, as shown in figure E.1.

The governing equations that are solved by caslabDG are the compressible Navier-Stokes

equations which can be written in the following form:

𝜕u
𝜕𝑡

+ ∇ · F(u) − ∇ · G(u,∇u) = 0, (E.1)

where u ∈ R5 is a state vector of the conservative flow variables given by

u = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸]𝑇 . (E.2)

In equation E.1, F and G denote the in-viscid and viscous fluxes corresponding to the

governing equations for the state variables u. In the present approach, the viscous flux
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X

Y

Z

Figure E.1: Processors are distributed uniformly in each direction.

is assumed to be quasi-linear in the state gradients, i.e., G(u,∇u) = K(u)∇u, where K

denotes the diffusivity tensor. This assumption does not hold when an explicit sub-grid

model is used where the eddy-viscosity is also a function of ∇u. In this work, to ensure that

the existing discretization schemes for DG can be used with the explicit sub-grid models,

we assume the quasi-linearity of G(u,∇u) = K(u)∇u , even when K(u) is a function of

∇u. An alternative approach is to linearize the non-linear diffusive fluxes with respect to

∇u as done in Lv et al. (2021).

Next, we perform discretization of equation (E.1) using the DG-SEM approach. This

high-order numerical method allows the possibility of performing both ℎ and 𝑝 refinement

of a mesh. The DG-SEM method makes it possible to obtain spectral-like accuracy on

complex geometries, i.e., it keeps the flexibility of the finite volume method while allowing

extremely accurate discretizations. The first step in applying the DG-SEM method is to

tesselate the computational domain Ω into a set of 𝑁𝑒 non-overlapping elements as follows:

Tℎ = {Ω𝑒 : ∪Ω𝑒 = Ω,∩Ω𝑒 = ∅}. (E.3)

The state is approximated by piece-wise polynomials lying on the approximation spaceVh

having no continuity between adjacent elements. The approximation space Vh is defined
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asVh = [Vℎ]5, where

Vℎ = {𝑢 ∈ 𝐿2(Ω) : 𝑢 |Ω𝑒 ∈ P 𝑝,∀Ω𝑒 ∈ Tℎ}, (E.4)

and P 𝑝 denotes polynomials of order 𝑝 on the reference space of element Ω𝑒. Currently,

caslabDG only supports polynomials up to order 𝑝 = 4. Next, the weak form of (E.1) is

obtained by multiplying the equation (E.1) with the test functions present in the approxima-

tions spaceVh and performing integration by parts. Finally, the Galerkin discretization of

the weak form is performed to obtain the following set of equations:∫
Ω𝑒

w𝑇
ℎ

𝜕uh
𝜕𝑡

𝑑Ω −
∫
Ω

∇w𝑇
ℎ · [F(uℎ) − G(uℎ,∇uℎ)] 𝑑Ω

+
∫
𝜕Ω

w𝑇
ℎ

[
F(u+

ℎ, u
−
ℎ ) − G(u+

ℎ, u
−
ℎ ,∇u+

ℎ,∇u−
ℎ )

]
· ®𝑛𝑑𝑆

−
∫
𝜕Ω𝑒

(u+
ℎ − {uℎ})𝑇G(u+

ℎ,∇w+
ℎ) · ®𝑛𝑑𝑆 = 0, ∀wℎ ∈ Vh.

(E.5)

On the element boundaryΩ𝑒, the sub-scripts (·)+and (·)− denote, respectively, the quantities

taken from inside the element and its neighbor. The bracket {·} denotes the face/edge average

or the boundary value, and ˆ(·) · ®𝑛 represents the uniquely defined normal flux on element

boundaries. Next, the actual fluxes are replaced with element coupling numerical fluxes.

In caslabDG, we use the Roe approximate Riemann solver Roe (1981) to numerically

approximate the inviscid flux F, while for the viscous flux G, we use the second form of

Bassi and Rebay Bassi and Rebay (2000a), popularly known as the BR-2 scheme. The

last term on the left-hand side (LHS) of (E.5) is to symmetrize the weak form to ensure

the adjoint consistency of the final formulation. The stabilization parameter [ in the BR-2

scheme was varied between 1.0 and 4.0 to ensure the stability of all the cases presented in

this dissertation. This ends the spatial discretization of the PDE.

Finally, writing uℎ in terms of the basis functions wℎ and the corresponding basis
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coefficientsUℎ, equation (E.5) can be rewritten as a system of ordinary differential equations

(ODEs) as follows:
𝑑Uℎ

𝑑𝑡
+ fℎ (Uℎ) = 0, (E.6)

where fℎ = M−1
ℎ

Rℎ (Uℎ), Uℎ ∈ R𝑁ℎ represents the discrete vector of the unknown basis

function coefficients, Mℎ is the global mass matrix which is block diagonal, and Rℎ is

the discrete spatial residual vector. Due to the block diagonal nature of the global mass

matrixMℎ, its inverseM−1
ℎ
can be evaluated by computing locally the inverse of the mass

matrix for each element. Equation E.6 can now be discretized in time with a method

of our choice. Currently, 𝑐𝑎𝑠𝑙𝑎𝑏𝐷𝐺 only supports the explicit third-order Runge-Kutta

TVD (RK3-TVD) and the fourth-order Runge-Kutta (RK4) time-stepping schemes. All the

simulations presented in this dissertation have been performed using the Runge-Kutta TVD

(RK3-TVD) scheme.

E.1 Parallel performance.

This part evaluates the parallel performance of caslabDG. The parallel performance is

evaluated through a strong scaling test on a 323 element mesh for two different polynomial

orders 𝑝 = 2, 3. The size of this grid is comparable to most of the cases presented in

this thesis. Hence, the present test indicates how effectively the computational resources

have been used for this work. These tests have been performed on NASA’s Pleiades

supercomputer on the Intel Broadwell nodeswith 28 processors. Figure E.2 shows the speed-

up vs. processors curve for the two cases. It can be observed that near-optimal performance

was observed for both cases for the range of processors considered here. However, the

performance became slightly sub-linear as the 512 processor mark was approached.
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Figure E.2: Effect of 𝑝-refinement on the strong scaling performance of caslabDG.

E.2 A novel implict-explicit WMLES formulation.

WMLES has been previously performed within the DG-SEM framework by Frère et al.

(2017); Lv et al. (2021); Carton de Wiart and Murman (2017). In all these works, implicit

LES was performed with an implicit time-stepping scheme, or an explicit time-stepping

scheme was used with an explicit sub-grid model (Smagorinsky or VREMAN). We found

that the simulation was not stable when WMLES was performed using an explicit time

stepping scheme without any explicit sub-grid model (implicit LES). Indeed, implicit time-

stepping schemes can improve stability; however, explicit schemes benefitWMLES because

the grid size can be much coarser than WRLES, making the time step less restrictive. In

addition, implementing implicit methods requires developing non-linear solvers, linear

solvers, and pre-conditioners. An alternate fix is to use an explicit sub-grid model Lv

et al. (2021). However, the DG methods already have good implicit-LES properties, even

outperforming explicit LES models in some cases.

As a first step to resolving this problem, the cause of the instability was identified, which

was tracked down to the near-wall elements. Hence, explicit sub-gridmodeling is performed
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only at the first element in our formulation. The model coefficient decays linearly to zero at

the start of the second element to ensure that the explicit sub-grid model turns off outside

the first element. This is shown in figure E.3, where implicit LES is performed at the center

of the channel, and explicit LES is performed at the first element. The resulting method

has two benefits: (i.) it is stable with explicit time-stepping schemes, and (ii.) minimal

dissipation at the center of the channel for high-order discretizations. The explicit sub-grid

model used at the first element is the constant coefficient Smagorinsky model, which has a

free parameter in the form of a model coefficient 𝐶𝑠. The effect of the model coefficient is

tested by varying from 𝐶𝑠 = 0.1 − 0.2 and found to have minimal effect on the solution. In

addition to the model coefficient, explicit models also require the specification of grid size,

which is slightly tricky in the case of the DG method. In this work, the adequate grid size

is taken to be:

Δ𝑝 =
Δ

𝑝
(E.7)

where 𝑝 is the polynomial order and Δ is the cube root of the cell volume.

Figure E.3: An implicit-explicit approach is used to stabilize the WMLES method for DG.

To validate our model, we perform WMLES of channel flow at 𝑅𝑒𝜏 ≈ 8000. Two

different resolutions are considered: (i.) a low resolution case with 12 × 12 × 12 elements;

(ii) a high resolution case with 24 × 16 × 24 elements. In both cases, the size of the first

element in the wall-normal direction has been ensured to have a size of Δ𝑦 ≈ 0.1𝛿. The

channel size is taken to be 2𝜋𝛿, 𝜋𝛿, and 2𝛿 in the stream-wise (x), span-wise (z), and

wall-normal (y) directions, respectively, for all the cases. For each resolution, WMLES is
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performed using two different polynomial orders of 𝑝 = 2, 3. Figure E.4 and E.5 shows

velocity statistics obtained for 𝑝 = 2 and 𝑝 = 3 for the low resolution mesh. Similarly,

Figure E.6 and E.7 shows velocity statistics obtained for 𝑝 = 2 and 𝑝 = 3 for the high

resolution mesh. Normalized errors are computed for different types of statistics using the

following expression:

𝐸𝑠 =
|u𝑊𝑀𝑠 − u𝐷𝑁𝑆𝑠 |

|u𝐷𝑁𝑆𝑠 |
(E.8)

where u𝑊𝑀𝑠 and u𝑊𝑀𝑠 denote the statistics of a particular type obtained from the WMLES

and DNS at the quadrature points, respectively, and |.| denotes the 𝑙2-norm. A common

observation is that when resolution is increased by increasing the order (𝑝 = 2 to 𝑝 = 3) or

the resolution 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 (12 × 12 × 12 to 24 × 16 × 24), the normalized error in mean

velocity profile 𝑈+, the wall-normal velocity R.M.S 𝑣+𝑟𝑚𝑠, the span-wise velocity R.M.S

𝑤+
𝑟𝑚𝑠 and the turbulent shear stress < 𝑢𝑣 >+ decreases. However, the normalized error

in the stream-wise velocity R.M.S 𝑢+𝑟𝑚𝑠 increases slightly and becomes constant. These

results indicate that the traditional equilibrium wall-stress-based models is inconsistent,

i.e., refinement does not always lead to better results in all the quantities, especially the

stream-wise velocity fluctuations 𝑢+𝑟𝑚𝑠. This inconsistency is not a problem specific to

the present solver and is a problem with the traditional WMLES approaches in general.

Irrespective, the performance was satisfactory for all the orders and resolutions.

The validated model is finally applied to a slightly more complex case: the periodic hill.

The periodic hill case is very similar to the channel flow, i.e., periodic boundary conditions in

the stream-wise and span-wise directions and no slip in the top and bottom walls. However,

in this case, the bottom wall is modified to mimic a periodic hill pattern. Due to this pattern,

the flow separates from the back side of the hill. The flow again re-attaches downstream,

thus, creating a sizeable re-circulation bubble. Once the flow re-attaches, it flows over the

hill again. This pattern is repeated due to the periodic nature of the stream-wise boundary

condition. To test our wall-modeling approach, we simulate the moderately high Reynolds

number with 𝑅𝑒𝑏 ≈ 37000. The Reynolds number is defined based on the hill height ℎ and
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Figure E.4: 𝑅𝑒𝜏 ≈ 8000: Low-resolution 𝑝 = 2.

the bulk velocity at the crest. The Mach number based on this bulk velocity is set to 0.2 to

keep the compressibility effects minimal while at the same time ensuring that the time-step

is not too restrictive. As shown in figure E.9, the x-axis, y-axis, and z-axis are made to

align with the stream-wise, span-wise, and wall-normal directions, respectively, w.r.t to the

bottom wall between the hills (different from the channel flow cases).

As shown in E.8, two different grids C1 and C2, are used for all the numerical ex-

periments presented here. Figure E.9 shows the plot of the conservative variables for the

coarsest case, i.e., grid C1 discretized using polynomial order 𝑝 = 2 basis functions. As

expected, it can be observed from figure E.9(a.) that a separation region is present at the

back side of the hill, which eventually re-attaches further downstream. A comparison be-

tween the mean velocity profiles obtained on the meshes C1 and C2 using different orders of

discretization is shown in E.10. Additionally, the experimental measurements and the 𝑝 = 7
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Figure E.5: 𝑅𝑒𝜏 ≈ 8000: Low-resolution 𝑝 = 3.

high resolution WMLES solution from 𝑒𝑑𝑑𝑦 E.10 are also plotted. It is observed that the

performance on the C2 grid is slightly better than on the C1 grid. It is further observed that

as the DOFs are increased by increasing the discretization order 𝑝, the WMLES solutions

from 𝑐𝑎𝑠𝑙𝑎𝑏𝐷𝐺 approach the experimental observation, and the high-resolution WMLES

results from 𝑒𝑑𝑑𝑦. In all the WMLES cases, the solution after the separated region is

slightly incorrect, suggesting that the present wall-stress-based WMLES methods must be

improved for separated flows.
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Figure E.6: 𝑅𝑒𝜏 ≈ 8000: High-resolution 𝑝 = 2.
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Figure E.7: 𝑅𝑒𝜏 ≈ 8000: High-resolution 𝑝 = 3.

C1 C2

Figure E.8: Two different grids are used for WMLES of the periodic hill case: C1 and C2.
The grid C2 has a lower stretching compared to C1 at the bottom wall and a smaller wall
normal grid size at the top wall. The grid C1 has a smaller grid size at the center of the
channel compared to C2.
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Figure E.9: Snapshots fromWMLES simulation of the periodic hill case at 𝑅𝑒𝑏 ≈ 37000 at
𝑀𝑎 ≈ 0.2 (based on the bulk velocity). Solution is computed using 𝑁𝑥×𝑁𝑦×𝑁𝑧:50×9×24
elements with polynomial order 𝑝 = 2 (DOFs: 150 × 27 × 72). The x-axis, y-axis, and z-
axis are aligned with the stream-wise, span-wise, and wall-normal directions, respectively,
w.r.t to the bottom wall between the hills. (a.) stream-wise momentum, (b.) span-wise
momentum and (c.) wall-normal momentum, and (d.) density.

Figure E.10: Mean velocity profiles fromWMLES of the periodic hill case at 𝑅𝑒𝑏 ≈ 37000
for different meshes and polynomial orders. The x-axis, y-axis, and z-axis are aligned with
the stream-wise, span-wise, and wall-normal directions, respectively, w.r.t to the bottom
wall between the hills.
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