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ABSTRACT

In hybrid electric vehicles (HEV), the added degree of freedom from multiple power
sources providing the demanded traction power allows for more efficient utilization of
a downsized internal combustion engine (ICE). This thesis investigates the opportunity
for hybridization to maximize the potential benefits of the opposed piston (OP) engine,
leveraging the unique downsizing capabilities, reduced heat transfer losses, and increased
power to weight ration of this engine by advancing the state of modeling and developing
novel control algorithms. The powertrain architecture studied is a dual motor series hybrid
design. Each crankshaft is directly coupled to a single electric motor, eliminating the
conventional geartrain linking the two crankshafts along with the associated friction and
weight. In this way, the electric motors can directly extract the work generated by the
engine and regulate the crankshaft dynamics, introducing the capability to dynamically
vary compression ratio, combustion volume, and scavenging dynamics. To realize these
potential benefits, coordination between the engine, control actuators, and motor torque is
necessary.

For intra-cycle operation, meaning the operation of the engine within a single cycle,
a novel scheme utilizing nonlinear optimization of a 0-D model iteratively coupled to a
high fidelity model is formulated to capture the system dynamics while also computing
the optimal crankshaft motion profile which maximizes the work generated by the system.
This iterative approach reduces the model complexity used in the optimal control problem
(OCP) while capturing the gas exchange dynamics critical to the 2-stroke cycle of the
OP engine. Results from this optimization process show that a crankshaft motion profile
with near constant motor torque maximizes the work extraction efficiency of the system.
Model uncertainty created challenges for linear quadratic state feedback control used to
regulate the desired piston motion profile. Fortunately, we could leverage the repetitive
nature of the OP engine to develop an iterative trajectory optimization (ITO) algorithm.
This allows a new tracking reference of the crankshaft motion to be determined in real-
time Which could optimize the system efficiency in the presence of disturbances and model
uncertainty. Experimental results demonstrate the rapid convergence and near optimal
crankshaft motion profiles for the ITO strategy as well as its proficiency under both motored
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and fired cycle operation. While the general ITO algorithm developed here has application
beyond the hybrid OP engine, the intra-cycle analysis showed that the electric machine
efficiency was the dominant factor in system efficiency. Therefore, a piston motion profile
which minimizes the motor torque amplitude maximizes the system efficiency over an
engine-centric profile.

This thesis also considered the inter-cycle operation of this system. In a series
HEV, the engine operating setpoint, including the engine speed, load, and phasing of
the crankshafts, is decoupled from the instantaneous power demands of the vehicle. The
engine calibration problem is addressed by implementing an onboard setpoint optimization
algorithm, highlighting the ability to use crankshaft phasing as a controllable parameter
impacting scavenging dynamics thermal efficiency. Finally, an optimization framework for
the component sizing and energy management of a vehicle utilizing a dual-motor controlled
OP engine in a series hybrid format is introduced. The onboard setpoint optimization
enables ECL and crankshaft motion profiles to support higher system level operation such
as hybrid topology design and fuel agnostic operation as these control actuators have little
influence on the OP engine performance under normal operating conditions.
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CHAPTER 1

Introduction

1.1 Background

In the United States, the transportation sector is the second largest sector of energy
consumption, comprising 28% of the total U.S. primary energy use and accounting for 22%
of total U.S. CO2 emissions [1]. Of the transportation sector energy consumption, light
duty passenger vehicles are responsible for 61% [1], making personal mobility a central
focus in reducing greenhouse gas (GHG) emissions. For the past century, improvement
in transportation efficiency through the advancement of vehicle and internal combustion
engine (ICE) technologies has been significant. Yet, in the face of these ever growing
environmental concerns, continued improvement of engine efficiency at the historical rate
has become exponentially more difficult as the field has matured [2]. Motivated by this
challenge, several low emission vehicle (LEV) technologies are in development, including
hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV), and battery electric
vehicles (BEV). Of these, HEVs are an auspicious powertrain design in the near future
due to the trend of technological convergence in the automotive industry as HEVs benefit
from ongoing research in both internal combustion engines vehicles (ICEV) and BEVs [3].

1.2 Hybridization of Opposed Piston Engines

Hybridization offers an approach to improve vehicle fuel economy through diversification
of the powertrain with multiple power sources. This allows for downsizing of the internal
combustion engine while also decoupling the engine operation from the speed and load
demands of a drive cycle. However, smaller engines also increase heat transfer losses and
can yield lower peak efficiency. While the conventional four-stroke ICE provides an energy
dense and relatively low-cost power source in a hybrid, the lower peak engine efficiency
limits the overall potential of the hybrid system. Therefore, the opposed piston (OP) engine
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has been proposed as an alternative internal combustion (IC) engine design to maximize
the potential efficiency of hybrid powertrains [4–6]. Along with several thermodynamic
benefits [7–9], the OP engine is inherently balanced in nature due to the two crankshafts
operating opposite each other, allowing for downsizing though reduction in cylinder count
rather than individual cylinder volume. This lends itself well to lower power, downsized,
hybrid powertrain applications, without incurring the increased heat transfer losses of a
conventional, four stroke internal combustion engine.

1.2.1 Opposed Piston Engines

Opposed piston engines have been commercialized since the late 1800’s, and a detailed
history of the development of these engines is given by Pirault et al. [9]. Several
fundamental advantages of OP engines are well documented in literature [7, 10–14], and
because of these, OP engines have been deployed in a wide variety of applications and
remain a research interest. The general advantages of the OP engine design are:

• Smaller surface area to volume ratio to reduce heat transfer

• For the same power output, the energy input per cycle is reduced which leads to
shorter combustion duration without excessive pressure rise rates

• Leaner operating conditions improve thermal efficiency and lower engine-out emis-
sions

Several challenges that restricted the wide spread use of OP engines have recently been
overcome by modern technology and innovative designs. For example, the inclusion of
a biaxial wrist pin can compensate for the lack of load reversal and help lubricate the
bearing between the piston and connecting rod [15]. Advances such as this have allowed
OP engines to be reintroduced as a viable engine design with significant advantages over
conventional four-stroke engine designs. While many variations of the OP engine exist, the
main difference between designs is the method of work extraction. The types discussed
here include the free piston OP engine and the OP engines with two crankshafts.

1.2.1.1 Free Piston Opposed Piston Engine

Free piston (FP) engines replace the conventional crankshaft of internal combustion engines
with either hydraulic or electric power take-off. It is important to note that only a small
subset of FP engines employ an OP architecture. However, some works [16–18] utilize
an opposed piston, opposed cylinder (OPOC) design where two OP cylinders are linearly
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orientated with hydraulic chambers between the cylinders to extract work. Due to the lack
of a crankshaft to regulate the motion of the pistons, FP engines are capable of variable
piston trajectories and compression ratios as well as a large reduction in friction losses. This
provides significant opportunities for real-time control of in-cylinder conditions [10, 18].
However, this flexibility demands robust control of the piston motion as FP engines are
highly susceptible to cycle-to-cycle variation as well as the possibility of pistons colliding
with other engine components.

1.2.1.2 Crankshaft Based Opposed Piston Engine

For OP engines with a crankshaft, there are a wide variety of designs used to extract power
from the pistons, ranging from a single crankshaft to designs with as many as four [9].
However, the double crankshaft designs appear to be the most prevalent [19,20]. Similarly,
most OP engine designs operate on a two-stroke cycle with the exception of the more
complex sleeve valve design proposed by Pinnacle Engines which operates on a four-
stroke cycle [8, 21]. Typically, the two crankshafts in an OP engine are linked externally
through a geartrain and lead to a single power take-off, as depicted in Fig. 1.1a. While
this design lends significant robustness to the engine operation where the FP engine design
does not, there are certain trade-offs. First, the geartrain provides a significant source
of friction, noise, and vibration. Additionally, coupling the crankshafts fixes the relative
phasing between the two cranks. This operating parameter, known as exhaust crankshaft
lead (ECL), along with the relative sizes of the intake and exhaust ports, determines the
scavenging dynamics of a uniflow scavenged OP engine. Typically, the exhaust ports are
traversed by the corresponding crankshaft (referred to as the exhaust crankshaft) before
the opposing crankshaft (intake crankshaft) opens the intake ports for adequate blowdown
of the burned gasses. This can be achieved by either the port height in the cylinder
or an ECL, or both. As detailed by Naik et al. [12] the magnitude of the blowdown
process is directly proportional to the energy released during combustion and thus the
cylinder pressure. Therefore, for high power applications, a larger ECL is desired to ensure
sufficient blowdown and limit backflow into the intake manifold. However, at low power
setpoints a larger ECL reduces the expansion ratio, reducing fuel efficiency.

With these aspects in mind, this thesis investigates the control and optimization of a
series hybrid architecture utilizing a uniflow scavenged OP engine in which the geartrain
that couples the two crankshafts of the OP engine is eliminated. A motor-generator on
each crankshaft extracts mechanical work from combustion and converts it to electricity,
as shown in Fig. 1.1b. Not only can this configuration greatly reduce geartrain friction
losses, but the electric motors can regulate the angular velocity of the crankshafts.
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Figure 1.1: Schematic of a.) a hybrid OP engine design with a conventional geartrain
linking the crankshafts and b.) a novel hybrid OP engine architecture decoupling the
relative motion of each crankshaft.

With independent control of the piston trajectories, the capability to dynamically vary
compression ratio, combustion volume, and scavenging dynamics is introduced, similar
to FP engine designs, while maintaining the robustness provided by the crank slider
mechanism and rotating inertia of the motor.

To realize these opportunities, control and optimization of both the intra-cycle oper-
ation, on the scale of crank angle degrees, and inter-cycle operation, on the scale of both
minutes for engine setpoint and drive cycles for power management, requires consideration
for the control and optimization of the entire system.

1.3 Intra-Cycle Operation

As the geartrain linking the two crankshafts of an OP engine has been removed in this
work, it is necessary to maintain the relative positioning between the two pistons through
control over the instantaneous crankshaft position. Therefore, the challenge is not only to
control each crankshaft to a desired trajectory, but also to define the optimal position and
velocity trajectories which the physical system is being to control to.

The first works to address the idea of optimizing piston motion in an internal
combustion engine are from Mozurkewich et al. [22] and Hoffmann et al. [23], which
optimized the finite-time thermodynamics of the irreversible Otto and Diesel cycles,
respectively. More recent research in this area has largely focused on free piston engines
due to the unconstrained nature of the engine design. Work from Xu et. al. [24] investigates
the effects of various piston trajectories on the in-cylinder temperature and pressure as

4



well as oxides of nitrogen (NOX) formation, but neglect discussion of the impact of
piston trajectory on any efficiency metric. Several works on the opposed piston, opposed
cylinder (OPOC) free piston engine design, including Zhang et al. [11] and Zhang et
al. [18], investigate the effects of variable piston trajectory on emissions as well as thermal
efficiencies. Yet, this work was limited to a sweep of predetermined trajectories rather
than optimizing for a free piston trajectory input. Further, the ability to change the phasing
of the pistons relative to each other was not addressed. As noted by Naik et al. [12], the
ECL directly affects the timing of intake and exhaust port actuation and the scavenging
performance of the engine. Further, this phasing of the piston position also changes the
minimum volume of the cylinder during the compression stroke, making it a variable of
interest when optimizing the piston trajectory.

In work from Eriksson et al. [25, 26], the indicated work output of a single cylinder
engine was maximized by selecting a completely free heat release input while also applying
constraints on emissions and engine performance. This input, however, was not translated
to the corresponding directly controllable inputs. Further, all the works mentioned here are
limited to discussion of indicated results and do not discuss the efficiencies associated with
extracting the generated work. In this thesis, we show that the method of extracting work
from the system is a critical component in the overall system efficiency [27]. Specifically,
maximization of the indicated thermal efficiency of the engine while neglecting the electric
motor efficiency can result in a net negative amount of work from the system.

1.4 Inter-Cycle Operation

In a series HEV, supervisory control is required to maintain system operation near areas of
high efficiency. This includes controlling both the instantaneous operating setpoint as well
as the power management of each powertrain component over entire drive cycles.

Several optimization based techniques exist for calibrating engine operation and are
detailed in a recent survey [28]. These consist of both offline and online optimization
processes. For offline optimization, the data is first collected on the engine and then run
through regression or optimization techniques to determine optimal setpoints as well as
future test points. An example of this is provided by Pal et al. [29] where Bayesian
optimization is used to inform the selection possible optimal operating points through
a trade-off between exploitation and exploration. This can be achieved with evaluation
of the posterior distribution of the regressed non-parametric system model, but incurs a
heavy computational cost. Online optimization processes utilize streaming data from the
engine in real-time to shift engine operation to higher efficiency areas. This approach
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includes extremum seeking methods [30], as well as other local regression and optimization
schemes [31]. Additionally, techniques such as those presented by Malikopoulos et al. [32]
use full exploration of the design space to learn a decentralized system model with which
to optimize engine operation. In the pursuit of reducing calibration time and maintaining
the ability to adjust to system disturbances or aging in real time, this work implements an
online optimization routine.

For the power management strategy, physics based modeling was utilized to implement
nonlinear optimization over a full drive cycle profile while minimizing fuel consumption
and battery capacity fade in the vehicle system. While this analysis is not implementable
online, it is used as an analysis tool for sizing the engine, electric machines, and battery
components.

1.5 Contributions and Organization

This thesis presents the optimization and control techniques of a novel series hybrid design
utilizing an OP engine. This consists of regulating the crankshaft motion during individual
cycles to improve work extraction efficiency, as well as supervisory control for determining
the engine operating point and power management between the engine and battery in the
powertrain. The contributions of this thesis are as follows:

• Modeling and Optimization of the Crankshaft Motion for a Dual Motor Controlled

OP Engine

The system level efficiency of the hybrid OP engine is largely dependent on the
harmonious operation of both the electric motors extracting work from the OP engine
as well as the OP engine itself. Therefore, a methodology optimizing the motion
of each crankshaft in an opposed piston engine utilizing compression ignition to
maximize brake output power is developed, including the mechanical to electrical
conversion efficiency for extracting the rotational work from the crankshafts and
utilizing the motor torque as the input to the system. The conversion efficiency in
this case is the electric motor efficiency for the motor attached to each crankshaft and
is shown to be a dominant factor in the brake system efficiency. To avoid the model
complexity necessary to adequately capture the gas exchange of the two stroke engine
in the numerical optimization problem, an iterative procedure between a 0D and 1D
co-simulation and the numerical optimization routine is developed. The optimization
problem and the numerical techniques used to solve it are presented in Chapter 2
along with the proposed integrated framework of the high fidelity modeling and
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optimization procedure is introduced. The iterative optimization process and results
are published in:

– Drallmeier, J., Siegel, J. B., Middleton, R., Stefanopoulou, A. G., “Optimizing
Fuel Efficiency of an Opposed Piston Engine for Electric Power Generation”
International Journal of Engine Research, 2022 [33]

These results highlight the importance of accounting for electric machine efficiency
in the optimization process as well as the insensitivity of the OP engine operation to
changes in intra-cycle crankshaft motion. This suggests the novel control authority
over ECL and crankshaft motion can be better exploited in the inter-cycle operation.

• Control Implementation and Experimental Validation of a Hybrid OP Engine

Chapter 3 presents the experimental test setup used to provide a proof of concept for
this system as well as the control architecture to regulate the independent crankshaft
motion. The position regulator was developed as a linear quadratic regulator
with augmented integrator states for the position error of each crankshaft and the
crankshaft motion represented as a double integrator. To account for the impact of
engine torque on the crankshaft dynamics and provide a faster control response, a
feedforward control input estimating the required motor torque based on cylinder
pressure and crankshaft location is implemented. The controller design is published
in:

– Drallmeier, J., Siegel, J. B., Middleton, R., Stefanopoulou, A. G., Salvi, A.,
Huo, M. “Modeling and control of a hybrid opposed piston engine” in 2021

ASME Internal Combustion Engine Fall Technical Conference (ICEF) [27]

The experimental results show significant sensitivity to model uncertainty due to
high cylinder pressure and reversal of piston motion near minimum volume. This
causes the motor torque required to track the optimized trajectory obtained through
the solution of the optimal control problem in Chapter 2 to be significantly different
from the input predicted in simulation. This ill-conditioned nature of the system is
quantified by linearizing the system at multiple points near minimum volume and
evaluating the condition number in:

– Drallmeier, J., Siegel, J. B., Stefanopoulou, A. G. “Comparison of Estimation
Techniques for the Crankshaft Dynamics of an Opposed Piston Engine” in 2019

ASME Dynamic Systems and Control Conference (DSCC) [34]
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To further evaluate the interaction between the electric motor and the OP engine,
detailed electrical loss simulations were used in conjunction with measured engine
torque data to calculate efficiency of the individual components responsible for
extracting work from the engine. This work compared the dual motor design shown
in Fig 1.1b to the more robust system design shown in Fig 1.1a to assess whether
an efficiency improvements could be achieved by removing the geartrain of the
OP engine. While the geartrain adds stability to the OP engine regardless of the
torque generated on each crankshaft, the maximum work extraction efficiency can
be improved nearly 10% by removing the geartrain to reduce frictional losses and
using appropriately sized motors. However, this improvement is highly dependent
on electric motor operation. This analysis is detailed in:

– Drallmeier, J., Hofmann, H., Middleton, R., Siegel, J. B., Stefanopoulou, A. G.
“Work Extraction Efficiency in a Series Hybrid Opposed Piston Engine” 2021

SAE Technical Paper Tech Rep 2021-01-1242 [6]

• Online Technique for Iterative Trajectory Optimization

As shown in Chapter 3, the dual-motor system efficiency is highly dependent on the
operation and required torque input from the electric motors. Any gains in efficiency
from removing the geartrain can be lost to poor motor performance. Results
from Chapter 2 show a near constant torque profile maximizes the work extraction
efficiency of this system. However, the necessity to maintain the relative positioning
between the two pistons requires control over the instantaneous crankshaft position
and prohibits the use of constant intra-cycle torque control to maintain the desired
engine speed. The challenge then is not only in controlling the crankshaft to a desired
position trajectory; It is also in defining the optimal position and velocity trajectory
to control to while avoiding the model uncertainty limiting the effectiveness of offline
optimization. Chapter 4 details the development of an iterative learning algorithm to
optimize the parameterized trajectory of a system in real time utilizing constrained
optimization of a cost function generated from the performance values of the previous
cycle. In this way, the repetitive nature of the OP engine can be leveraged to use
the information rich signals from previous cycles to mitigate the effects of model
uncertainty. The theory for this iterative trajectory optimization (ITO) algorithm is
published in:

– Drallmeier, J., Siegel, J. B., Stefanopoulou, A. G. “Iterative Learning-Based
Trajectory Optimization Using Fourier Series Basis Functions” IEEE Control
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Systems Letters, 2022 [35]

The theory for this algorithm was published separately from the application as this
learning scheme has a generic formulation and can be applied outside the specific
application of a hybrid OP engine system. The ITO scheme is then demonstrated
experimentally and is shown to converge rapidly to near optimal crankshaft motion
profiles while being applicable under both motored and fired cycle operation. These
results are presented in:

– Drallmeier, J., Siegel, J. B., Middleton, R., Solbrig, C., Stefanopoulou, A. G.
“Maximizing Efficiency of a Hybrid Opposed Piston Engine Through Iterative
Trajectory Optimization” IFAC Symposium on Advanced in Automotive Con-

trol, 2022

• Inter-Cycle Analysis including Setpoint Optimization and Energy Management

With a robust intra-cycle control structure and a reliable real-time motion planing
scheme for the OP engine crankshafts, inter-cycle operation of the opposed piston
engine can be explored. Conventionally, the ECL is fixed by a geartrain linking
the exhaust and intake crankshafts and the boost pressure is the only viable control
actuator to regulate the airflow through the cylinder during engine operation.
However, Chapters 1-4 demonstrate the feasibility of controlling the motion of the
two crankshafts separately, introducing the ECL as a controllable parameter in the
hybridized OP engine which allows for variation in the effective compression and
expansion ratio of the engine, along with scavenging performance. The introduction
of this novel control actuator as well as the adjustable speed and load setpoint in
a series hybrid OP engine powertrain architecture necessitates intensive calibration
effort to realize any possible efficiency improvements. Therefore, Chapter 5 initiates
this calibration process by exploring two power setpoints for the system, sweeping
speed and ECL to evaluate the value of ECL as an actuator. Further, these two
operating points are then used to validate an onboard setpoint optimization strategy
to automate the calibration process. Again, the OP engine used in this work remained
robust against changes in ECL even in inter-cycle operation. This suggests ECL and
crankshaft motion profiles can be used to support higher system level operation such
as hybrid topology design and fuel agnostic operation as these control actuators have
little influence on the OP engine performance under normal operating conditions.

Finally, using the operating characteristics of the OP engine captured in Chapter
5, Chapter 6 develops a framework for integrating the hybrid OP engine into a
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vehicle system and sizing the individual components accordingly. This optimization
procedure is then used to evaluate the relative operational cost of fuel consumption
of the OP engine and the capacity fade within the hybrid vehicle battery pack.
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CHAPTER 2

Modeling and Crankshaft Motion Optimization
for a Series Hybrid OP Engine

The objective of this chapter is to outline a method of finding the optimal crankshaft
motion of a hybrid OP engine which maximizes system efficiency using motor torque as
the control input. To that end, the iterative approach for optimization including a numerical
optimal control problem (OCP) coupled with a high fidelity model is outlined below. As
this is still a fairly complex model with a large number of states, an analytical solution
would be extremely difficult to provide, motivating the following numerical optimal control
problem. The individual models as well as the coupling between the high fidelity model
and the optimization model are also discussed [27]. Results and insights from the OCP are
presented at the end of the chapter.

2.1 Optimal Control Problem

It is beneficial to describe the optimization problem setup before detailing the models used
in the optimization process as this will inform the structure of the model. Therefore, the
modeling of the system will first be described, followed by an outline of the optimization
process.

2.1.1 System Description

The OP engine design used here implements two crankshafts to regulate the motion of two
pistons moving in a single cylinder, as shown in Fig. 2.1. This engine operates on a two-
stroke cycle with uniflow scavenging. The scavenging process is governed by the pressure
ratio across the intake and exhaust ports while the ports are actuated by the motion of the
pistons translating across them. The crankshaft which moves a piston across the exhaust
ports is then denoted as the exhaust crankshaft, colored red in Fig. 2.1, with the intake
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Figure 2.1: Schematic of a uniflow scavenged two-stroke opposed piston engine

crankshaft labeled in the same manner and colored blue in Fig. 2.1. The phasing of the
two pistons’ motions is denoted in Fig. 2.1 as θECL, quantifying exhaust crankshaft lead
(ECL), or the difference between the exhaust crankshaft and intake crankshaft position. As
noted by Naik et al. [12], the ECL directly affects the timing of intake and exhaust port
actuation and the scavenging performance of the engine. Further, this phasing of the piston
position also changes the minimum volume of the cylinder during the compression stroke,
making it a variable of interest when optimizing the piston trajectory. Electric motors are
coupled directly to each crankshaft and provide an input torque to regulate the motion of
the crankshafts as well as absorb the energy generated by the engine.

2.1.2 Problem Formulation

The brake efficiency of the hybrid OP engine system is defined as

ηb =
Wout

m f QLHV
(2.1)

where Wout is the output work of the system, including any engine or motor losses. The
amount of work put into the system is denoted as the mass of fuel, m f , multiplied by the
lower heating value of the fuel, QLHV. If the amount of fuel used is fixed, the output power
can be denoted as the difference of motor torque multiplied by the motor speed and any
power losses from the motor. Therefore, the system efficiency can be maximized using the
cost function

max
u∈U

J =
∫ t1

t0

(
Texh(u(t))ωexh(x(t),u(t))−

Plossexh(x(t),u(t))+Tint(u(t))ωint(x(t),u(t))−

Plossint(x(t),u(t))
)

dt

(2.2)
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with the integral term being an expansion of the system output work. Here, T represents
the motor torque for either the exhaust or intake motor, ω denotes the motor and crankshaft
speed, and Ploss is the instantaneous power loss of the motors. The power loss is defined as

Ploss =
3
2

i2R+Cω
2 (2.3)

which accounts for the resistive losses and frictional losses, respectively. The current,
i, used in the equation represents the quadrature current of the motor and is approximately
proportional to the motor torque while R is the motor resistance. The coefficient C is
used to scale the friction losses of the motor and is set to 0.038 here, estimated from the
efficiency map of the electric motors used in experimentation. Any losses from the engine
are included in the engine torque for a given setpoint and thus the motor torque through
the torque balance on each crankshaft. It is important to note here that the motor losses are
included as a power loss rather than an efficiency applied to the torque and speed term as
T ∗ω ∗η

sgn(T )
motor . If using an efficiency term as shown, there is a discontinuity in the cost

function when there is a zero crossing of the motor torque. By defining the power loss term
that is always positive as in Eqn. 2.3, the cost function is more well conditioned with the
inclusion of a quadratic term with respect to torque and speed.

The system constraints are defined as

ẋ = f (x(t),u(t), t) ∀t ∈ [t0, t1] (2.4a)

|T (t)| ≤ Tmax (2.4b)

|θexh(t)−θint(t)| ≤ ECLlim (2.4c)

|u(t)|= 2.56e5
Nm

s
(2.4d)

P(t0) = P0 (2.4e)

ω(t1)−ω(t0) = 0 (2.4f)

T (t1)−T (t0) = 0 (2.4g)

θexh(t0)+π = 0 (2.4h)

|θexh(t0)−θint(t0)|−ECLset ≤ ECL0 (2.4i)

θexh(t1)−π = 0 (2.4j)

t1 =
2π

ωset
(2.4k)

where Eqn. 2.4a denotes the system dynamics with x representing the states, defined
further in Eqn. 2.5. Constraint Eqn. 2.4b limits the instantaneous torque magnitude to
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±1200Nm. The ECL at any point over the cycle is limited by Eqn. 2.4c, considered
to be approximately 0.2 radians (12 degrees) here. The input, defined as u(t) = dT (t)

dt

which is the rate of change of motor torque, is bounded in Eqn. 2.4d. This ensures the
trajectory reference obtained from the optimization process can be tracked in the high
fidelity simulation. The limit is set to 2.56e5Nm

s , which allows the motor torque to change
from a maximum torque of 1200Nm to a minimum of -1200Nm in approximately 90 crank
angle degrees at 1600 RPM. The initial time t0 is assumed to be time 0 and the initial
pressure P(t0) is constrained to the value P0 in Eqn. 2.4e, which is obtained from the high
fidelity simulation. The initial and final speed and torque values in Eqn. 2.4f and 2.4g are
held equal as the process should be repeatable for a steady state engine operating point.
Note, subscripts denoting intake and exhaust crankshaft and motor are not included for
speed and torque as the constraints are identical for each assembly. The initial position
of the exhaust crankshaft, θexh(t0) is set to bottom dead center in Eqn. 2.4h. The intake
crankshaft is then initialized in Eqn. 2.4i near the ECL setpoint, with a slight deviation of
ECL0 = 0.0175 radians (1 degree) allowed. The final position in Eqn. 2.4j ensures a full
revolution of the exhaust crankshaft, and similarly, the intake crankshaft due to the ECL
constraint. Further, the final time is fixed in Eqn. 2.4k to ensure a constant average engine
speed, denoted as ωset. The model states represented as x are defined as

x = [θexh,ωexh,θint,ωint,P,Texh,Tint

tcomb1, tcomb2,AI]T
(2.5)

where θ and ω define position and velocity of each crankshaft and motor, respectively.
To reduce the number of states in the model, the motor and crankshaft position and velocity
are considered identical, meaning the shafts are rigidly coupled, which in reality they are
not. The cylinder pressure is denoted by P and torque by T . The states tcomb1 and tcomb2 are
used to reference the duration of each stage of the combustion process and AI denotes the
value of the auto-ignition integral. Further details will be provided in the modeling section.

2.1.3 Solving Methodology

The numerical optimal control software used to solve Eq. 2.2 was GPOPS-II [36], which
implements a version of the Legendre-Gauss-Radau collocation method with adaptive
mesh refinement techniques to discretize the optimal control problem. The resulting finite
dimensional optimization problem is solved using IPOPT [37]. The system dynamics
referred to in Eqn. 2.4a, is a simplified version of the modeling described elsewhere [27]
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in regards to the coupling between engine crankshaft and motor as well as the open
cycle breathing and thermodynamic models. However, despite this simplification, discrete
changes are still present in the system dynamics due to the intake and exhaust port
actuation, fuel injection, and the combustion process. To accommodate the changes in
system dynamics over a single engine cycle, the problem was constructed as five sequential
phases, each linked through identical state and input values at the terminus and start of
adjacent phases. The phases, in order are:

1. intake

2. compression

3. pilot heat release

4. main heat release and expansion

5. exhaust

The start of the intake phase is considered to be at θexh = −π radians after top
dead center (aTDC) for the exhaust crankshaft while the starting location for the intake
crankshaft can vary ±0.0175 radians (1 degree) around the ECL setpoint.

To ensure a continuous and well conditioned optimization problem, the gas exchange
process is neglected in the model used for numerical optimization. While several semi-
empirical models exist that adequately capture the scavenging dynamics [38], these models
require crank angle resolved values for mass flow from the intake manifold and into the
exhaust manifold. Modeling these flow can produce complex values and discontinuities that
are not well suited for optimization. Therefore, we employ an iterative optimization scheme
wherein a high-fidelity co-simulation provides the closed cycle boundary conditions of the
pressure (Ptr), temperature (Ttr), and mass (mtr) of the trapped mass to the optimization
problem. As the cylinder pressure during the gas exchange process has little impact on
the crankshaft dynamics, the assumption of constant cylinder pressure is used during this
portion of the optimization problem. In the high-fidelity model, a 1D GT-Power simulation
[39] captures the gas exchange process and thermodynamics while a 0D Matlab/Simulink
model provides the unique crankshaft dynamics and combustion profile, in this case the
mass fraction burned (MFB) fitted to experimental results, to supply boundary conditions
to the optimization problem. The workflow for this process is shown in Figure 2.2 with
the superscript * denoting the solution to the optimal control problem. The modeling
framework provided in the following sections first describes the modeling used in the
optimization problem. Then, a description of the portion of the model unique to the
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Figure 2.2: Realization of the iterative optimization of crankshaft motion

high-fidelity co-simulation is given. Iterations between the high-fidelity modeling and the
optimization process are repeated until the pressure and temperature of the high-fidelity
model at the port closing event are within 0.01 bar and 0.1 K, respectively, of the previous
iteration values. Further, the peak cylinder pressure in the optimization model must be
within 0.1 bar of the previous cycle, showing convergence of the optimization process.

As the optimization problem presented here is non-convex, the solution provided by the
numerical software is possibly a local extrema rather than the globally optimal solution.
Thus, the initial guesses of a constant rotational velocity as well as a constant motor torque
were compared. Both cases converged to the same results, substantiating the optimization
methodology. Note, for the constant torque case, the average torque was taken from the
constant velocity case and used as the motor torque setpoint. However, this is only an
approximation of constant torque control and over a single cycle, the ECL and average
velocity in the open loop unstable system were not identical to the desired setpoint. This,
however, is not critically important for the initial guess.

2.2 Optimization Problem Modeling

An outline of the model used in the optimal control problem is provided in Fig. 2.3 with
the alternative dynamics for each model phase listed. Note that the crank angle reference is
shown with respect to degrees after minimum volume (aMV), where the pistons are closest
together. For an OP engine, using top dead center of a single crankshaft can be misleading,
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Figure 2.3: Outline of the modeling phases in the numerical optimization problem. Each
phase is temporally sequential with identical state and input values at the transition of
connected phases. Highlighted here are the varying dynamics defined in each phase of the
model.

especially in the case presented here where the ECL is not a fixed value. This section will
provide a short description of the relevant features of the model while discussion of the
specific dynamics of each subsystem is provided in the following subsections.

During the intake and exhaust phases, the pressure dynamics are neglected as previously
discussed. The effect of pressure on the rotational dynamics of the crankshafts during this
portion of the cycle is negligible as the torque required to change the velocity profile is
largely dependent of the system inertia as compared to the relatively low cylinder pressure.
It is worth noting that this assumption does eliminate the impact of changes in ECL at port
opening and closing on the scavenging process in the optimization problem. However, the
optimal ECL setpoint during port actuation is highly dependent on the operating point [12].
Further, as will be shown in the results, the torque input required to drastically shift the ECL
over a single cycle is detrimental to brake efficiency. Therefore, optimization of the ECL
is well suited to a simple sweep of initial conditions. The intake phase ends when both
the intake and exhaust pistons have completely covered the respective ports. The exhaust
phase ends when the exhaust crankshaft reaches θexh = π radians, which corresponds to
t = 2π

ωset

In the compression phase, a hyperbolic tangent function is used to activate the auto-
ignition integral only after the exhaust crankshaft has passed the pilot injection reference
θpilot. For the OP engine considered in this work, we utilize a model of gasoline
compression ignition (GCI) using a pump gasoline with an 87 anti-knock index (AKI)
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due to the advantages detailed previously by Salvi et al. [14]. Therefore we consider a
pilot and main heat release event where the start of combustion for the pilot heat release
is governed by the chemical kinetics of the fuel and is modeled here using an ignition
delay correlation. The ignition delay value in this case, τid, is provided by the ignition
delay correlation where the parameters were selected based on previous experimental data
with the same 87 AKI gasoline. The use of the hyperbolic tangent function smooths the
discontinuity of introducing the ignition delay value. However, the dynamics for the auto-
ignition integral have no impact on the cylinder pressure or rotational dynamics of the
crankshafts and simply provide a means to estimate the start of the pilot heat release. The
compression phase ends when the auto-ignition integral reaches 1.

The start of the pilot and main heat release are separated into two phases as the
combustion process is represented using a double Weibe function to describe the mass
fraction of fuel burned, denoted as xb. The term β in Figure 2.3 refers to the percentage
of the total fuel mass consumed by the pilot heat release. During phase 3, only the pilot
heat release is active and contributing to the heat release rate. This phase ends when the
exhaust crankshaft has gone 0.0175 radians, or 1 degree, past the crank angle at which the
main injection starts. At this time, the rate of heat release contains the differential form
of the Wiebe function for both the pilot and main heat release. The heat release process
is completed as the mass fraction of fuel burned reaches 1 and the volume of the cylinder
continues to expand. The main heat release and expansion phase ends when either the
intake or exhaust ports are opened.

It should be noted here that the end conditions for each phase are dependent on the
position of the crankshafts or other relevant dynamics. The independent variable of time
can vary at the beginning of each phase from iteration to iteration. Thus, as the combustion
process is modeled with respect to a given duration of time, additional states tcomb1 and
tcomb2 are used to create a time reference for each combustion process that starts at 0 for
each of the respective phases.

The following subsections provide the detailed modeling used for the numerical
optimization problem described in this work and will define the dynamics and the state
values θ , ω , P, and AI defined in Eqn. 2.5. Note however, that the states of motor torque
and time for each combustion phase are left out as torque can be obtained directly from the
control input and the time simply requires an integrator in the respective model phase. The
majority of this model is described previously [27] with a modification of the in-cylinder
thermodynamic model for use in the optimization process. This engine model combines the
thermodynamic and kinematic models presented by Eriksson et al. [25] and Yar et al. [40],
respectively. The parameters for the OP engine used in this work are provided in Table 2.1.
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Table 2.1: Single cylinder OP engine parameters

Parameter Value Units
Displacement 1.64 L
Crank Radius 54 mm

Connecting Rod Length 258 mm
Bore 98.425 mm

Clearance Volume 7.6e4 mm3

Inlet Port Closing -129.5 deg
Exhaust Port Opening 121.0 deg

2.2.1 Pressure

Using the first law of thermodynamics, the energy balance for the closed cylinder system
can be described as

dUs = dQcomb −dQht −dW (2.6)

where the derivatives are with respect to time unless otherwise specified. Note this is
a representation of the closed system as a constant pressure is assumed during the open
portion of the cycle. The high-fidelity model provides the boundary conditions of trapped
pressure temperature, and charge mass when the ports close. The crevice flow introduced
by Eriksson et al. [25] is neglected and a constant charge mass is assumed. The change
in sensible internal energy is denoted by dUs, heat transfer is denoted as dQht, and heat
addition due to combustion is denoted as dQcomb. Work extracted from the system,
represented as dW , is equal to

dW = pdV. (2.7)

Using the ideal gas assumption, the change in internal sensible energy is given as

dUs = mcCv(T )dT (2.8)

where mc is the charge mass, T is the temperature, and the mass average specific heat at a
constant volume, Cv is a function of charge temperature. Using the differential form of the
ideal gas law with a constant mass

mcRdT = pdV +V dP (2.9)

where R is the gas constant. Here the gas constant of air (287 J/kg K) is used, similar
to the 290 J/kg K used by Eriksson et al. [25]. Solving for dP, the pressure dynamics can
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be explicitly given as

dP =
dQcomb −dQht − Cv(T )+R

R pdV
Cv(T )

R V
(2.10)

Due to the opposed piston architecture of the engine, the change in volume is dependent on
the dynamics of both the exhaust and intake crankshafts. This can be solved for explicitly
from knowledge of the position and velocity of the crankshafts as

dV =
dV

dθint
ωint +

dV
dθexh

ωexh (2.11)

where volume and rate of volume change with respect to the crankshaft position can be
derived from the engine properties given in Table 2.1.

Now, models for the gas property Cv, combustion Qcomb, and heat transfer Qht are
provided. The constant volume specific heat, Cv, is estimated using the gas property model
from Eriksson et al. [25] where

Cv(λ , T̃ ) =
1

1000
(l1λ +2l2λ T̃ +2l3λ

2T̃+

c1 +2c2T̃ +3c3T̃ 2 +4c4T̃ 3 +5c5T̃ 4)
(2.12)

where λ is the air to fuel equivalence ratio and T̃ is given as

T̃ =
T −300

1000
(2.13)

with T in Kelvin calculated as
T = Tpc

pV
ppcVpc

. (2.14)

The pc subscript denotes port closing. The constant terms in Eqn. 2.12, are

c1 = 8.26159·105 l1 = -0.39486·105

c2 = 1.65422·105 l2 = -0.90978·105

c3 = 1.02150·105 l3 = 0.26322·105

c4 = -0.85770·105

c5 = -0.21236·105
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2.2.1.1 Heat Transfer

Heat transfer is assumed to occur purely through convection and is estimated using the
Woschni correlation [41]. As such, the rate of heat transfer is given as

dQht = hcA(T −Tw). (2.15)

where A is the surface area of the cylinder and can be calculated using the knowledge of
cylinder geometry and piston position. The wall temperature, Tw, is held at a constant
450K. The coefficient hc is obtained from the correlation

hc =
0.013p0.8

(
C1up +

C2(p−p0)TpcV
ppcVpc

)0.8

B0.2T 0.53 . (2.16)

The cylinder pressure, p, is in [Pa], p0 is considered the motored pressure trace in [Pa] and
can be estimated as an isotropic process. The mean charge temperature represented as T

is in [K], and the mean piston speed up is in [m/s]. The coefficient C1 has a unitless value
of 2.28 and C2 has a value of 3.24 ·10−2 with units assumed to be [m/(s K)]. These values
were tuned to match the GT-Power model in previous work to account for differences in the
relative velocity of the boundaries in an OP engine due to the motion of two pistons [27].
The volume of the system, V, is in [m3] and any value with the subscripts pc are again
reference conditions at port closing.

2.2.1.2 Combustion

The combustion process modeled here is based on experimental results from an Achates
Power single cylinder OP engine utilizing gasoline compression ignition including sweeps
of the speed, load, ECL, injection timing, and intake pressure. The values swept for each
parameter are given in Tab. 2.2. The intake pressure sweep was only performed at SOI
values of 12 degrees before minimum volume (bMV). A double injection strategy is used
with a constant 38 degree split between the pilot and main injection. It is worth noting
here that the crankshafts in experimentation were linked by a crankshaft, making the ECL
a static parameter.

The heat release, modeled as a pilot and main heat release due to the split injection
strategy implemented, is represented as

dQcomb = (βdxbp +(1−β )dxbm)mfQLHV. (2.17)
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Table 2.2: Swept parameters for the geared OP engine experiments used to fit the heat
release and ignition delay models

Parameter Swept Values
Speed [RPM] 1600, 1800, 2000

Brake Power [kW] 20, 35
ECL [deg] 0, 4, 8, 12

SOI [deg bMV] 10, 11, 12, 13, 14
Intake Pressure [bar] 1.9, 2, 2.1, 2.2

The rate of heat release is made up of the pilot and main rates, represented as dxbp

and dxbm respectively. The fraction of heat released in the pilot combustion process
is represented as β and is dependent upon the engine setpoint as well as the trapped
conditions. Using the experimental results discussed, the value of β was determined for
each setpoint given a double Wiebe approximation for the heat release. Then, a linear
function for β was determined using a forward step-wise regression over all the swept
parameters. This ensures there is an appreciable linear relationship between the predictor,
the swept variables, and the response variable β . The resulting function for β is

β = a1 +a2ECL+a3N +a4L+a5θSOI +a6Pipc (2.18)

where ECL is the exhaust crankshaft lead, N is the engine speed in [RPM], L is the load
or power setpoint in [kW], θSOI is the start of injection timing in degrees, and Pipc is the
cylinder pressure in [bar] at intake port closing. All variables in this case were found to
have a nonzero coefficient.

The magnitude of energy input is determined from the mass of the fuel, mf, and the
lower heating value of the fuel, QLHV. The dxbp and dxbm in this work are prescribed with
the derivative of the well known Wiebe function [42]

dxb =
a(m+1)

∆t

(
tcomb − tign

∆t

)m

e−a
( tcomb−tign

∆t

)m+1

. (2.19)

The value of a is used to fix the burn fraction xb at the end of combustion and is set to
a = 6.908 [42]. Equation 2.19 is calculated with respect to time to fix the combustion
duration, ∆t, independent of crankshaft position. As the velocity of the crankshafts can
fluctuate, the assumption is made that the combustion duration will be with respect to
time, not position. As with β , the variables of m and ∆t are first fit to each experimental
setpoint. For the fitting, a brute force methodology is used, comparing a range of possible
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Figure 2.4: Parity plot comparing the estimated and measured start of combustion for
the experimental data set used to tune the ignition delay model. The points are colored
according the the ECL setpoint. Good agreement is shown between experimentation and
estimated pilot SOC, with a maximum error of 6 degrees.

m and ∆t values and selecting the best fit. Then, both variables are regressed over all the
experimental values using the same forward step-wise regression technique to obtain linear
approximations of ∆t and m similar to Eqn. 2.18.

The value of tcomb is obtained from the state values defined in Eqn. 2.5 and will be
the main or pilot heat release, depending on the phase of the model. The value of tign for
the main heat release is a function only of the main injection timing as combustion of the
pilot injection has already started. To find the start of combustion for the pilot injection, an
ignition delay correlation with an Arrhenius form was adapted from Zhou et al. [43] and
has the form

τ = 2.5∗10−3 p−5
φ
−3
pilotχ

−1.41
02

exp
(

Ea

RT

)
(2.20)

where p is the pressure in bar, φpilot is the fresh air equivalence ratio after the pilot injection,
χ02 is the oxygen molar percentage, set to 21%, the activation energy Ea is coupled with the
gas constant R and set to Ea

R = 8198K, and T is temperature of the charge. This correlation
is used to provide the ignition delay for the Livengood, Wu integral [44]

AI =
∫ t1

t0

dt
τ

(2.21)

When the auto-ignition integral value reaches 1, t1 is considered to be tign. A comparison
between the estimated and actual start of combustion for the pilot injection is shown in
Figure 2.4 with the color of each point denoting the ECL for that point.
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Figure 2.5: Configuration of the crank slider with inputs highlighted in red.

2.2.2 Crankshaft Dynamics

Each crankshaft has an individual trajectory while the pressure is assumed to be identical
on each piston and is the only force coupling the two crankshafts. Here, equations for
only a single crankshaft will be presented, but note the simulation contains two crankshaft
models.

The electric motor is used to supply the load torque to the engine and control the
crankshaft to the desired motion through what will be considered here as a rigid coupling.
A positive motor torque, Tm, denotes work extraction from the engine. The motor shaft and
crankshaft dynamics are then given as

Jα = Teng −Tm (2.22)

where α is the motor shaft and engine acceleration and J is the combined rotational inertia
of the motor and crankshaft. To calculate the motion resulting from the balance between
cylinder pressure creating the engine torque, Teng, and the load torque, a crank slider
mechanism is used, and a representation is given in Fig. 2.5. The crankshaft converts
the gas force in the cylinder to torque at the crankshaft which the motor extracts as work.
The mechanism here was modeled using the dynamics given by Yar et al. [40] where the
motion of the crankshaft is described as

m1ẍ1 +λ1 = 0 (2.23a)

m1ÿ1 +λ2 = 0 (2.23b)

J1α1 +λ1

(
l1
2
− cog1

)
sinθ1 −λ2

(
l1
2
− cog1

)
cosθ1+

λ3l1 sinθ1 −λ4l1 cosθ1−λ5l1 sinθ1 +λ6l1 cosθ1 = Teng

(2.23c)
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and the motion of the connecting rod is described as

m2ẍ2 +λ3 = 0 (2.24a)

m2ÿ2 +λ4 = 0 (2.24b)

J2α2 +λ3

(
l2
2
− cog2

)
sinθ2 −λ4

(
l2
2
− cog2

)
cosθ2+

λ5l2 sinθ2 +λ6l2 cosθ2 = 0
(2.24c)

The rotational inertia of each component about its axis of rotation is denoted as J, l1 is
the crank radius, l2 is the connecting rod length, and the cog term refers to the distance
between the center of gravity and the center point of the crankshaft and connecting rod,
(x1,y1) and (x2,y2), respectively. The angular position of the crankshaft and connecting
rod are represented as θ1 and θ2 with the acceleration of each given as α . Note, the torque
due to bearing or piston ring friction is neglected. The piston motion is described as

−m3ẍ3 +λ5 = Fgas (2.25)

where m3 is the mass of the piston and x3 is the distance of the piston from the crank axis.
Fgas is the gas force calculated using cylinder pressure and the piston surface area. The
Lagrangian multipliers λi, i = 1,2, ...,6 can be replaced using six kinematic constraints of
the crank slider mechanism, as shown in Eqn. 2.26, which limit the crank slider to 1 degree
of freedom. A second order differential equation for θ1 can then be obtained to model the
state of crankshaft position. The full derivation of these terms can be found elsewhere [40].

x1 −
l1
2

cosθ1 = 0 (2.26a)

y1 −
l1
2

sinθ1 = 0 (2.26b)

x2 −
(

l1 cosθ1 +
l2
2

cosθ2

)
= 0 (2.26c)

y2 −
(

l1 sinθ1 +
l2
2

sinθ2

)
= 0 (2.26d)

−x3 + l1 cosθ1 + l2 cosθ2 = 0 (2.26e)

l1 sinθ1 + l2 sinθ2 = 0 (2.26f)

Then, the value of crankshaft velocity, defined by the state value ω can be obtained
by directly differentiating θ1. By combining the thermodynamic and kinematic models
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Figure 2.6: Representation of a uniflow scavenged OP engine detailing the source of each
modeling subsystem term.

provided in the previous sections, state values θ , ω , P, and AI defined in Eqn. 2.5 can be
calculated for use in the numerical optimization procedure presented in this thesis.

2.3 High Fidelity Modeling

As stated previously, a GT-Power model [39] is used to capture the 1D manifold gas
dynamics, scavenging and port flow results, heat transfer, and other details required for
an accurate engine simulation. However, capturing the instantaneous crankshaft dynamics
for two independent crankshafts is difficult in this framework. As our application is
structured around decoupled motion of the two crankshafts, the dynamics are modeled
in a separate yet parallel simulation. The crankshaft motion is calculated using a model in
Matlab/Simulink using the pressure from GT-Power and the control torque from the electric
motors. This co-simulation also allows for the use of the same combustion model fitted to
experimental results to be implemented in Matlab/Simulink with the signal sent to GT-
Power for the pressure modeling. Figure 2.6 identifies the source of each modeling term
within the high fidelity model. The following sections provide a description for the relevant
subsystems modeled in GT-Power. The subsystems contained in Simulink are identical to
the models used for the optimization problem modeling defined previously.

2.3.1 Open Cycle Breathing

A GT-Power model using inlet flowrate and exhaust back pressure as the boundary
conditions was used to capture the 1D gas dynamics, port flow behavior, and scavenging
performance of a single cylinder OP engine. The model contains the intake and exhaust
plenum volume as well as individual connections for each port in the cylinder wall. A
position dependent lookup table of port areas is used to quantify the cross sectional flow
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area according to port geometry. A more detailed description of the experimental engine
setup used to validate the model has been published elsewhere [15].

The most significant contribution of this portion of the model is the quantification of
the scavenging performance. This allows for an accurate estimate of the concentration of
fresh air and residuals within the cylinder when the ports close. As detailed in Regner et
al. [15], a correlation between scavenging ratio and scavenging efficiency was determined
experimentally using in-cylinder sampling of CO2. Consider the scavenging ratio defined
as

SR =
mass of air delivered

mass of trapped cylinder charge
(2.27)

and the scavenging efficiency as

ηsc =
mass of delivered air retained

mass of trapped cylinder charge
. (2.28)

The scavenging ratio can be calculated directly from the modeled flow through the intake
and exhaust ports. The scavenging efficiency, obtained from the experimental correlation,
can be used to determine the cylinder residual ratio as scavenging efficiency is a measure
of how effectively the delivered air replaces the burned gases in the cylinder.

Thermodynamic Model

As the GT-Power model is responsible for providing the cylinder pressure calculation, we
introduce the pertinent variables with the first law of thermodynamics, written as

dU =−dQht −dW +dmfhf (2.29)

where the derivatives are with respect to time. Note the only mass flow considered here is
the fuel injection and the corresponding enthalpy is given by dmf and hf as this defines only
the closed portion of the engine cycle. The change in internal energy is denoted by dU and
heat transfer as dQht. Work extracted from the system, represented as dW , is equal to

dW = pdV (2.30)

As fuel is the only mass flow in the system, we can expand dU = dmfu + dumf. By
representing the internal energy as the sum of chemical and sensible components, u =

uc +us, heat addition due to combustion be introduced as

dQcomb = mfduc (2.31)
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Using Eqns. 2.30 and 2.31 in Eqn. 2.29 we obtain

dQcomb −dQht = pdV +dm f (us −h f )+m f dus (2.32)

from which we can derive the pressure dynamics that drive the engine crankshaft. For
the sake of brevity, this derivation is not included here as the variable of pressure is given
explicitly from GT-Power. However, it is relevant to note the source of the heat transfer
term. Heat transfer is estimated using the Woschni correlation and this term is provided
by GT-Power [41]. The convection multiplier is scaled in the formulation to account for
the relative velocity of the boundaries in an OP engine being twice that of a conventional
engine operating at the same average RPM.

The combustion event is modeled in the Matlab/Simulink environment using the same
fitted model as provided in Section 2.2 and the mass fraction burned value is used in GT-
Power as an input. Similarly, the crankshaft dynamics supplying the cylinder volume and
crankshaft torque in the Simulink model are previously defined in Section 2.2.

2.4 Optimal Control Problem Solutions

2.4.1 Comparison of Loss Mechanisms

Using the optimization methods as modeling presented above, the baseline case of a
nominally 0 degree ECL, 1600 RPM average speed setpoint, and a constant fueling rate
of 78 mg per cycle is investigated. The brake thermal efficiency (BTE) of the system is
defined as in Eqn. 2.1 and the indicated thermal efficiency (ITE) is defined as

ηi =

∫
π

−π
PdV

mfQLHV
(2.33)

where P is the cylinder pressure and V is the cylinder volume. The integral is the complete
two stroke cycle as this refers to the net indicated efficiency. In the following discussion,
the efficiency values are calculated from the results of the high-fidelity simulation rather
than the optimization model, meaning they will include the effects of system losses whether
or not the optimization model accounts for them. Further, trajectories are typically shown
with respect to degrees aMV.

Shown in Figure 2.7 are the optimal trajectories for a lossless case, a case considering
the heat transfer losses of the OP engine (Qht), and a case considering both the heat transfer
losses as well as the electrical losses of the motor extracting the work from the engine
(PML). It is first interesting to consider the ideal case, meaning no losses from the engine
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Figure 2.7: Optimal trajectories of the engine cycle.Top to bottom: crankshaft velocity,
motor torque, exhaust crankshaft lead. Results from a lossless case (red), a case including
heat transfer (purple), and the optimal case considering both heat transfer and motor losses
(green) are provided for each subfigure, illustrating the impact of the individual losses.

or motor are included in the optimization problem with heat transfer and the motor loss set
to zero. For both crankshafts in this case, the minimum velocity is near minimum volume.
The motor input torque during the compression stroke is positive, indicating the decrease in
velocity is not only due to the increase in cylinder pressure, but the motor is also extracting
work from the system. For a lossless optimization case, these results are expected as the
relatively longer time near minimum volume due to the lower crankshaft velocity shifts
the combustion regime closer to a constant volume approximation. This also increases the
pressure at minimum volume as shown in the pressure-volume plot from the high-fidelity
model given in Figure 2.8. This higher pressure in turn increases the peak temperature and
thus the work output of the cycle, if considering an ideal cycle.

The ECL trajectory, conversely, is slightly counter-intuitive. An ECL of 0 degrees
would produce the smallest minimum volume possible for the engine, increasing the
compression ratio. Despite this, the ECL is approximately 5 degrees at minimum volume,
which is an increase of about 0.95cm3 for the miminum volume compared to a 0 degree
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Figure 2.8: Cylinder pressure with respect to volume for multiple optimization cases.
After introducing heat transfer to the optimal control problem, peak cylinder pressure is
significantly reduced to lower in cylinder temperatures.

Table 2.3: Indicated and brake thermal efficiency for optimization cases

ITE [%] BTE [%]
OPT Qht = PML = 0 46.9 4.1

OPT PML = 0 49.1 1.8
Optimal 48.6 45.1
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Figure 2.9: Distribution of torque and speed operating points for trajectory optimization
case with the respective power loss overlaid. By introducing motor losses, the range of
motor torque values is drastically reduced to improve the work extraction efficiency of the
system. This can be seen by comparing the reduced range of torques for the optimal case
in subplot c. (a) Qht = PML = 0, (b) PML = 0, and (c) optimal

ECL setpoint. However, due to the offset nature of the intake and exhaust ports where
the intake port closes before the exhaust ports, an ECL of around 4 degrees increases the
trapped volume of the engine by 21.26 cm3 compared to a 0 degree ECL case. While the
motor input to the system could reduce the ECL as the pistons approach minimum volume,
this would require speeding up the exhaust crankshaft and reducing the residence time of
the pistons near minimum volume. During expansion, the ECL goes to 0, increasing the
expansion ratio, similar to an Atkinson cycle.

Despite all of the intended thermodynamic improvements from the optimized motion
profile, the results from the high-fidelity simulation in Table 2.3 for the ideal case where
Qht = PML = 0 show the ITE result is the lowest of the three cases investigated. The
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increase in peak pressure and temperature that improve the ideal cycle efficiency actually
decrease the ITE for the simulation due to increased heat transfer losses. When including
heat transfer in the optimization process, the resulting torque profile is nearly a reflection of
the lossless torque profile over the x-axis. As the pistons approach minimum volume, the
motors put work into the system to increase the velocity past minimum volume. As shown
in Fig. 2.8, the case with only heat transfer considered has the lowest peak pressure. This is
similar to the findings of Eriksson et al. [25]. In their work, the reduction in peak pressure
is achieved by extending the heat release profile in the crank angle domain. Here, the ∆θ

over which the heat release takes place is not directly controllable. Instead, increasing the
crankshaft velocity effectively increases ∆θ , assuming the heat release profile in the time
domain is relatively constant. As such, the results in Tab. 2.3 show the case considering
only heat transfer losses to have the highest ITE.

However, for the cases of both Qht = PML = 0 and PML = 0, the BTE is near zero. The
motor torque input for each case is a rough approximation of bang-bang control, switching
between the minimum and maximum motor torque of ±1200Nm. Noting that quadrature
current, I, is approximately proportional to motor torque in Eqn. 2.3, operating at the peak
torque values for the motor will be highly inefficient as the power loss is a function of I2.
Therefore, when including PML in the optimization problem, the operating regime moves
toward constant torque control. As shown in Fig. 2.7, the optimal case, where both heat
transfer and motor losses are considered, the motor torque remains close to 125 Nm the
entire cycle and the velocity profile fluctuates naturally with the cylinder pressure. The ECL
does not increase near port closing to increase the trapped volume, as this would require the
motors to move away from the nominal operating torque. The impact of power losses from
the motor on the optimal operating regime can be visualized in torque density plots for
each case, shown in Fig. 2.9. While there is a decrease in ITE due to the longer residence
time of the pistons near minimum volume, the optimal case shows motor efficiency to be
the dominant factor when maximizing the system efficiency.

2.4.2 Exhaust Crankshaft Lead

From the previous results, it is clear that intra-cycle variation of the ECL through
manipulation of the motor torque is severely detrimental to the motor efficiency, and
therefore brake system efficiency. However, the optimal crankshaft motion profile at
different ECL setpoints and the corresponding system efficiency is of interest as the ECL
can still be varied between steady state operating points on an inter-cycle basis.

Using the optimal case structure from the previous section where both motor loss
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Figure 2.10: Optimal trajectories of the engine cycle for varying exhaust crankshaft
lead setpoints at 1600 RPM. Top to bottom: crankshaft velocity, motor torque, exhaust
crankshaft lead. At higher ECL initialization points, the ECL decreased during the
compression stroke, but must increase during expansion to meet the continuity constrains
for the engine cycle.

and heat transfer are considered in the system, ECL setpoints of 0, 4, and 8 degrees are
investigated. It should be noted again that the ECL setpoint is implemented at the start
of the trajectory, where |θexh − θint| ≤ ECLlim where ECLlim = 1 degree. Therefore, for
example in the 8 degree ECL case, the optimal profile actually starts at an ECL of 7
degrees. The resulting crankshaft motion and torque trajectories are shown in Fig. 2.10. As
expected, the motor torque required to produce the resulting crankshaft motion is relatively
constant to reduce motor losses. However, as an ECL is introduced to the system, the
proportion of energy extracted from the engine is no longer evenly split between the intake
and exhaust crankshaft. Due to the exhaust crankshaft passing top dead center ahead of the
intake crankshaft, more work is extracted by the exhaust motor as the ECL increases, as
illustrated in the motor torque shown in Fig. 2.10.

From the efficiency results given in Tab. 2.4, the ECL setpoint of 0 degrees again shows
the highest ITE and BTE. This is also reflected in the ECL profiles for the higher ECL
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Table 2.4: Indicated and brake thermal efficiency for sweep of exhaust crankshaft lead at
1600 RPM

ITE [%] BTE [%]
ECL = 0 48.8 45.1
ECL = 4 48.3 44.8
ECL = 8 47.7 44.2

Table 2.5: Indicated and brake thermal efficiency for sweep of exhaust crankshaft lead at
2000 RPM

ITE [%] BTE [%]
ECL = 0 47.5 42.2
ECL = 4 47.6 42.5
ECL = 8 47.2 42.1

cases, where the ECL decreases toward minimum volume to increase the compression ratio.
However, as the final ECL must meet the initial condition for the cyclic process, the ECL
must increase again during expansion, reducing the expansion ratio of the engine.

While the 0 degree ECL case does maintain a higher BTE than the other two cases,
the margin is less than 0.4% BTE. Further, as the engine speed setpoint is increased, this
margin is reduced, and the 4 degree ECL case in fact achieves a higher BTE, as shown in
Tab. 2.5. At the higher speed setpoint, the blowdown process becomes more influential as
the time the engine has to replace the burned gasses with fresh air is reduced. Therefore,
as speed increases, the trapped temperature at port closing increases for the 0 degree ECL
case, resulting in higher cylinder temperatures and increased heat transfer.

However, what is not captured in this optimization framework is the air handling
system. In an OP engine, the scavenging process is largely controlled by the exhaust
crankshaft lead and pressure ratio between intake and exhaust manifold as the pistons are
decoupled from the pumping process. Thus, a compressor upstream of the engine, whether
that is in the form of a supercharger or turbocharger, must supply boost pressure to meet the
airflow demands of the engine operating point. Therefore, if changing the ECL has little
impact on the thermodynamic efficiency, benefits in the form of reduced pumping losses,
coupled with a reduced trapped cylinder temperature, may be obtained by increasing ECL
and reducing the boost pressure required to meet the airflow demands at high power or
speed setpoints.
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2.5 Conclusions

The optimal control of the crankshaft motion for an OP engine in a novel hybrid
architecture is investigated in this Chapter. To adequately capture the gas exchange process,
an iterative optimization technique was utilized, using a high-fidelity simulation to provide
the boundary conditions of trapped pressure, temperature, and charge mass to the numerical
optimization problem. The optimization problem was then constructed as five sequential
phases including intake, compression, pilot heat release, main heat release and expansion,
as well as exhaust processes. Direct collocation and a Gauss Psuedo-Spectral method are
used to reduce the optimization problem to a finite dimensional problem which can then be
solved using an interior points method.

The results from this optimization process show indicated thermodynamic benefits can
be achieved through manipulation of the crankshaft velocity with the torque of the electric
motors. However, these improvements in ITE come at a high cost in motor efficiency.
When the efficiency of work extraction is neglected during the trajectory optimization, the
BTE is near 0%.

With the elimination of the conventional geartrain linking the two OP engine crankshafts,
the ECL can also be dynamically varied during engine operation. The motor losses incurred
from the large torque input required to alter the ECL over a single cycle limit the practicality
of large changes in ECL during a single cycle. However, when engine speed and power
setpoints are increased, increasing the ECL to reduce pumping losses and trapped cylinder
temperature can provide provide a system level efficiency increase.

The following chapter will define the position controller used to regulate the position of
each crankshaft, experimentally verify the control algorithm, and compare the experimental
results with the modeling results for a given trajectory. The purpose is to investigate the
performance of the optimal crankshaft motion references derived in this chapter on an
experimental engine.
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CHAPTER 3

Control Design, Implementation, and
Experimental Validation of a Hybrid OP Engine

In this Chapter, the position control architecture used to regulate the motion of the two
independent OP engine crankshafts is introduced. Experimental validation of the controller
and proof of concept for the entire hybrid OP engine architecture is then provided with a
comparison to the modeled results for identical operating points. This comparison reveals
the significant sensitivity to model uncertainty due to high cylinder pressure and the reversal
of piston motion near minimum volume of the engine. To evaluate the feasibility of this
proposed architecture and further evaluate the integration of the electric machines with the
OP engine, detailed electrical loss simulations were used to compare this dual motor design
to a single motor design which includes a geartrain to link the two crankshafts. While the
single motor design presents a more robust system design, the dual motor design is capable
of higher maximum system efficiencies. This peak efficiency, however, is highly dependent
on the electric machine operation.

3.1 Position Regulator

In a single cylinder engine, significant crankshaft velocity fluctuations are expected over
a single cycle [45]. Therefore, to maintain the stability of this system and track the
desired crankshaft motion trajectory, a feedback controller is designed with an additional
feedforward estimation of the motor torque to provide the instantaneous torque demand
to the electric motors. This control design assumes measurements of cylinder pressure
and crankshaft position are available. The velocity and position tracking references are
supplied in lookup tables with cycle time as the independent variable. This tracking
reference is derived from the work in Chapter 2. It is important to note here that a constant
speed and load setpoint refers to the average speed and power over a cycle. However, as
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noted previously, the instantaneous engine speed and torque will fluctuate with the cylinder
pressure and motor torque applied to the crank slider mechanism. The demanded motor
torque input, um, can therefore be given as

um = ufeedback +ufeedforward (3.1)

where each of these components are described in the following sections. A field-oriented
controller [46] is used to regulate the motor torque. Further discussion of this low level
controller is outside the scope of this work.

3.1.1 Feedback Control

A discrete time linear quadratic regulator (LQR) is used for the feedback control. The
states for this controller are given as x = [θexh θint ωexh ωint ]

T where ω represents rotational
velocity and the inputs are u = [Tmexh Tmint ]

T with the subscripts of exh and int denoting
the exhaust and intake crankshafts. The discrete control model used is shown below. The
feedback model is a set of double integrators used to represent the crankshaft motion with
motor torque as the input.

xk+1 =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A

xk +


0 0
0 0
∆t
J 0
0 ∆t

J


︸ ︷︷ ︸

B

uk

yk =

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C

xk

(3.2)

However, as the goal is for Cxk −→ r where r is the reference, a new set of variables are
defined as

ζk = xk − xk−1

ek+1 =Cxk − r =Cζk + ek
(3.3)

where e denotes the position tracking error. Note, in the following derivation r is assumed
constant. In practical applications however, it can vary with time and indeed does later
in this work. With these new variables, an augmented system with the state and error
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dynamics can be given as[
ζk+1

ek+1

]
=

[
A 0
C I

][
ζk

ek

]
+

[
B

0

]
(uk −uk−1) (3.4)

Consider a control law for this system to be

uk −uk−1 = K

[
ζk

ek

]
(3.5)

where the feedback gain K can be calculated using LQR control design with an infinite
horizon. The cost function is defined as

J =
∞

∑
k=0

eT
k Qek +∆uT

k R∆uk (3.6)

where Q and R are positive semi-definite and positive definite matrices, respectively, used
for tuning the controller. The control law can now be given as

uk = uk−1 +K1(xk − xk−1)+K2ek (3.7)

assuming a decomposition of K following Eqn. 3.5. Substituting in the control expression
for values of uk−n for n = 1, ..,k, the feedback control simplifies to

u f b = uk = u0 +K1(xk − x0)+K2

k

∑
i=1

ei (3.8)

To track a time varying trajectory as mentioned previously, x0 is replaced with xr.

3.1.2 Feedforward Control

To account for the engine torque’s impact on crankshaft dynamics and provide a faster
response to the tracking demand, a feedforward estimate of the required motor torque is
calculated, uff. Here the effect of the torsional crankshaft coupler is neglected as the natural
frequency of the coupler is well above the controller bandwidth. The motor torque can then
be estimated directly through the torque balance

uff = T̂m = T̂eng − Jαk (3.9)
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where J is the rotational inertia of the flywheel, shaft coupling system, and electric motor
and αk is the acceleration of the crankshaft at that sample point. The desired acceleration
can easily be obtained from differentiation of the velocity trajectory. The engine torque,
Teng, can be calculated using Eqns. 2.23 through 2.25. As Eqn. (2.25) contains the gas force
calculated from cylinder pressure and piston surface area, the feedforward term can adapt
to fired or motored traces using the in-cylinder pressure measurements.

3.2 Experimental Validation for Control and Optimiza-
tion Process

To validate the engine model and optimization process constructed in Chapter 2 as well as
the controller developed for the crankshaft motion, simulation predictions of steady state
operating points were compared to experimental data. The experimental engine used in
this study was provided by Achates Power and the specifications are listed on Tab. 2.1. A
gasoline compression ignition strategy using pump gasoline with an 87 anti-knock index
was used for this testing. A split injection strategy consisting of a pilot injection 38
degrees advanced from the main injection identical to the strategy used for creating the
combustion model detailed in Chapter 2 was adopted. Each crankshaft was coupled to
an Avid AF240 axial flux surface mount permanent magnet (SMPM) motor/generator with
Semikron SKiiP 1814 GB17E4-3DUW V2 switching units for the inverter. An HBM T40B
torque transducer was mounted inline with the shaft coupler for the electric machine and
engine crankshaft to provide instantaneous torque measurements for model validation. An
image of the engine and motors installed in the test cell is shown below in Fig. 3.1(a) and
Tab. 3.1 details the relevant electric machine parameters of the AF240s used.

An external air handling system as well as an external oil and coolant system are
used to maintain relevant operating conditions for the hybrid system. Air is supplied by
an external screw type compressor which maintains a 250 gallon air tank to the desired
reservoir pressure (350 kPa). This then feeds the conditioning system consisting of a 20 kW
air heater, and a pressure regulation valve as shown in Fig. 3.1(b). The engine intake air
pressure at the intake plenum is controlled via the pressure regulation valve to a value of
2 bar while the intake air temperature is maintained at 50◦C, or 323 K for all tests. Air flow
through the engine is controlled with the exhaust throttle valve.

To implement the control strategy, an AVL GH14D pressure sensor was used to measure
the cylinder pressure and a Heidenhain ROD 420 TTL quadrature encoder with 720 lines
was used measure each crankshaft position. The initial experimental and modeling results
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Figure 3.1: (a) Gearless series hybrid OP engine design installed in the test cell. Torque
transducers are installed inline with each crankshaft between the engine and electric
machines to validate the estimated engine torque produced by the engine and input by
the electric machines. (b) Layout of the experimental testcell including the air handling
system.

Table 3.1: Electric Machine Parameters

Parameter Value
Maximum Speed 5000 RPM

Peak Torque ±1200 Nm
Nominal Power 188 kW

were compared at an operating setpoint of 1600 rpm, a constant fueling rate generating
approximately 35kW of power, measured at the engine crankshafts, and an exhaust
crankshaft lead of approximately 0 degrees. The mass flow rate of air through the engine
as well as the injection quantity and timing in the model are set to match the experimental
values. As single engine cycles are being compared for the intra-cycle dynamics, it is
relevant to note that the coefficient of variation for the indicated mean effective pressure
was approximately 1% for the setpoint being analyzed.

Figure 3.2 presents the apparent heat release rate and cylinder pressure around
minimum volume. The results are shown with respect to minimum volume as the
independent crankshafts may not reach top dead center at the same time. The model
captures the split between pilot and main heat release events well with the double Wiebe
function used to represent the combustion process. However, the small premixed spike in
the main heat release event is not captured in the modeled combustion event, leading to
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Figure 3.2: Apparent heat release and cylinder pressure profile for model and experiemntal
results.

some small discrepancies in the pressure trace.
The advantage of the hybrid OP engine design is largely in the capability of indepen-

dently regulating the crankshaft motion. Thus, the instantaneous crankshaft dynamics and
tracking control capabilities are of great interest. The crankshaft rotational profile used
as the controller reference for this initial validation is provided in Fig. 3.3 along with the
resulting velocities for the model and experiment. This profile is a result of the optimization
process defined in Chapter 2. The experimental velocity is filtered here using a cubic
spline to remove the noise generated by differentiation. Note that this tracking profile has
significant variation in instantaneous crankshaft velocity. As expressed in Eqn. 3.9, the
amplitude of motor torque required to follow the desired motion trajectory is a function
of the engine torque and crankshaft acceleration. If a constant velocity for the crankshaft
trajectory was selected and perfect tracking was achieved, the acceleration would be zero
and the instantaneous motor torque demand would be equal to that of the instantaneous
torque generated by the engine. Filipi and Assanis [45] showed that the instantaneous
torque of a single cylinder engine exhibits large fluctuations over an engine cycle. Further,
the peak torque corresponds to the peak cylinder pressure during combustion. Therefore,
the velocity profile used here is roughly a reflection of the pressure trace, reducing the
demand on the electric motors. The velocity reference as well as the resulting velocity
profile are shown in the top plot in Fig. 3.3 as well as the tracking error of the crankshaft
position in the bottom plot for both the exhaust (exh) and intake (int) crankshafts. As the
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Figure 3.3: Rotational velocity of the exhaust (Exh) and intake (Int) crankshaft for the
model and experimental results, including the shared reference and the positional tracking
error.

tracking error is maintained within approximately ±0.5 degrees for the crankshaft position,
these results validate the proposed control architecture and the feasibility of controlling the
motion of the OP engine crankshafts with electric motors.

However, it is important to note the increased velocity error near minimum volume for
the experimental results, which is not present in the modeled results. From the difference
in the velocity profile, it is apparent there are unmodeled dynamics resisting the change
in velocity of the crankshaft. The modeled torque input as well as the raw experimental
motor torque signal for both crankshafts are shown in Fig. 3.4. The modeling results can
be considered the nominal torque profile required to track the given trajectory and the
experimental profile is the result of disturbances and model uncertainty. As the pistons
approach minimum volume, the combustion process begins and the cylinder pressure
increases rapidly. The experimental velocity does not experience as dramatic of a decrease
in velocity as the model. The motor torque spikes to extract more work from the engine
and slow the crankshafts. Similarly, as the crankshafts pass minimum volume, the expected
increase in velocity is largely damped in the experimental results, indicating a larger
rotational inertia than in the model.

From the near 700 Nm discrepancy in motor torque around minimum volume and the
difference in crankshaft velocity between modeled and experimental results, it is apparent
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Figure 3.4: Instantaneous torque required to track the desired crankshaft motion profile.

Figure 3.5: Feedforward control inputs for the experimental and modeling results.
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there is parametric uncertainty in the system inertia. However, the discrepancy can also
be attributed to differences in the cylinder pressure. Indeed, as the cylinder pressure
increases, the system becomes ill-conditioned [34]. This means small variations in the
system parameters or states can cause the control input to deviate significantly from the
nominal value. As noted previously, the complex nature of the GCI combustion event was
not completely captured in the modeled combustion event, leading to a small deviation in
the cylinder pressure. The pressure trace shown in Fig. 3.2 exhibits a modest pressure error
during compression and a smaller pressure rise rate after combustion in the modeled results
due to the lack of a premixed spike in the modeled heat release. While these errors appear
visually to be insignificant, the feedforward control terms, shown in Fig. 3.5, highlight the
large impact on instantaneous motor torque that this error can have. Recall from Eqn. 3.9
that the feedforward term is simply an estimation of the motor torque required to balance
the engine torque and follow the reference trajectory. As the reference trajectory is the same
for both the experimental and modeled cases, the Jαk term will be identical. Similarly, the
same parameters are used to estimate the engine torque in Eqns. 2.23 through 2.25. The
large difference in the feedforward control shown in Fig. 3.5 is then generated purely from
the position and pressure measurements used to make this estimate. Therefore, the small
perturbations in cylinder pressure with respect to piston position have a remarkably large
impact on the instantaneous engine torque generation and thus, the motor torque required
to track a crankshaft motion profile.

The significant sensitivity of the experimental system to model uncertainty limits
the effectiveness of a direct translation of offline optimization trajectories to online
implementation. Further, the need to maintain crankshaft phasing requires position control
over the entire cycle and prevents the use of simple speed control with inter-cycle torque
control updates to smooth the torque profile. Therefore, future chapters will develop
a method of defining optimal crankshaft motion trajectories during engine operation,
eliminating the model uncertainty from the optimization process. However, it is first
important to evaluate the theoretical performance benefits even possible with this dual
motor controlled OP engine design. Therefore, utilizing experimental results from this
section combined with detailed electric machine simulations, a parametric study of motor
and engine characteristics was conducted to project the efficiency potential of this dual
motor controlled hybrid OP engine design compared to a hybrid OP engine design that
retains the conventional geartrain linking the two crankshafts.
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Figure 3.6: Hybrid opposed piston engine a) utilizing a geartrain and b) directly coupling
the engine to motor/generators.

3.3 Feasibility of a Dual Motor Hybrid OP Engine

The purpose of this section is to investigate two hybrid designs utilizing electric machines
attached directly to the power takeoff (PTO) of the OP engine. The electric machines
can operate as both a generator, extracting the work from the crankshaft, and as a motor
to input work to the crankshaft to regulate the engine speed. The first design, shown in
Fig. 3.6(a) utilizes a conventional geartrain to link the crankshafts of the engine. The second
design in Fig. 3.6(b) eliminates the geartrain, directly coupling an electric machine to each
crankshaft. Before evaluating drive cycle efficiencies for this type of system, it is important
to understand the interaction between the OP engine and the electric machines in the
novel hybrid powertrain. While the OP engine itself may provide a high efficiency power
generation platform [14], the means by which the work is absorbed from the crankshafts
will highly influence the overall efficiency of the system, as detailed previously. Therefore,
the focus in this analysis is the extraction efficiency of each concept.

In the following sections, the potential benefits and tradeoffs of each design are
discussed and experimental results for a steady state operating condition of the engine are
presented for both designs. A model of the electric components of the hybrid powertrain
is then introduced to evaluate the power losses associated with each component of the
electrical system. By combining the results of the engine testing, including torque and
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speed measurements, with the electrical loss model, insights into the dynamic coupling
between the OP engine and electric machines are developed. As expected, removing the
geartrain of the OP engine significantly reduces the friction losses of the driveline and
the maximum possible system efficiency is increased. A breakdown of frictional losses in a
three-cylinder OP engine is provided by Salvi et al. [14], and shows the geartrain represents
approximately 8% of the frictional losses. This percentage is substantially higher in a single
cylinder engine as the friction due to the piston assembly, which is the main contributor
of friction losses, is reduced proportionally to the number of cylinders, increasing the
percentage of losses contributed by the geartrain. However, without the inertia of the
geartrain, the electric machines must absorb the undamped torque pulsations of a single
cylinder engine. The rapid change in torque demand from the electric machines to maintain
stability of the OP engine can have a significant impact on the operating efficiency if not
mitigated, and can negate any potential benefits of friction reduction.

3.3.1 Hybrid Opposed Piston Engine Systems

To analyze the trade-off in robustness and friction losses produced by the geartrain, two
hybrid designs are considered. As shown in Fig. 3.6 (a), the first design, denoted here as
the geared design, implements a geartrain to couple the crankshafts of the OP engine, and
a single electric machine is coupled to the PTO of the geartrain. In this study, the geartrain
is made up of five gears, one attached to each crankshaft, one gear used as the PTO, and
an idler gear between each crankshaft gear and the PTO. The torque balance of the system
between points P1 and P2 in Fig. 3.6 (a) can be described as

Texh +Tint −Tg −Tfric = Jα (3.10)

assuming the gear ratio of the geartrain is 1:1, Texh and Tint represent the torque of the
exhaust and intake crankshaft, Tg is the torque applied by the electric machine, and Tfric is
the torque generated by the friction in the geartrain. Due to the relatively large magnitude
of the inertia, J, for this design, small accelerations in the crankshaft are amplified. The
fluctuations in electric machine torque required to regulate the changes in average engine
speed is therefore reduced as the large inertia of the system resists changes in speed. The
electric machine efficiency, which for steady-state operation can be mapped by speed and
load, is also adversely affected by transience in the electric machine operation, meaning the
increase in inertia improves work extraction efficiency. The efficiency loss due to transient
operation will be quantified in the results section. Further, the ECL is fixed regardless of
the torque balance in Eqn. 3.10, adding stability to the OP engine’s operation as the electric

46



machine does not have to precisely regulate the relative crankshaft position.
In the second design considered, shown in Fig. 3.6(b) and denoted as the gearless

design, the geartrain is removed and an electric machine is coupled directly to each
crankshaft. This design exhibits a higher supremum of system efficiency due to the reduced
frictional losses, but the electric machines are now required to control the instantaneous
crankshaft dynamics. With the relative motion between the two crankshafts no longer
fixed, the electric machines must now control the crankshaft motion to ensure the ECL is
maintained. For each crankshaft, the torque balance is

Tc −Tg = Jα (3.11)

where Tc is the engine torque on one crankshaft and α is the corresponding crankshaft
acceleration. However, because this torque balance is applied independently on both
crankshafts, the electric machine torque must regulate the system to follow a specific
acceleration profile so the intake and exhaust pistons remain synchronized and can still
facilitate combustion. Furthermore, a disturbance in the torque to one crankshaft impacts
the other through cylinder pressure, which in turn depends on the individual crank positions
and the state of combustion. In the geared design, the electric machine only has to maintain
an average constant speed. It should be noted here that the decoupling of the crankshafts
can pose other benefits specific to the engine operation, such as varying the ECL setpoint to
adjust the engine operating regime between maximum power output or maximum indicated
efficiency. However, this section focuses on the impact of the geartrain on work extraction
efficiency over a single cycle of the engine and assumes the indicated thermodynamic
efficiency of the engine as well as the frictional losses due to the piston and crankshafts
remains constant in both designs.

The points of interest when comparing the work extraction efficiency of each design
are given in Fig. 3.6. These represent the points of instantaneous power either measured or
simulated and are defined as follows:

P1. Mechanical power delivered at each crankshaft of the OP engine (measured)

P2. Mechanical power delivered to the shaft of the electric machine (measured)

P3. Electrical three-phase power developed by the electric machine and delivered to the
inverter (simulated)

P4. Electrical DC power output from the inverter and considered the final output power
(simulated)
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The geartrain efficiency, ηgt, is defined as P2/P1 and is only relevant to the geared design as
P2 and P1 are equivalent in the gearless design. Similarly, the electric machine efficiency,
ηg, is defined as P3/P2 and the inverter efficiency, ηi, is defined as P4/P3.

3.3.2 Baseline Engine Testing

To provide the experimental baseline results for each hybrid configuration, testing was
completed using the same Achates Power single cylinder OP engine detailed in previous
sections utilizing gasoline compression ignition (GCI). The objective of the engine testing
was to supplement experimental torque and speed measurements for modeling of the
electrical components of the system. Additionally, with the geartrain implemented on the
OP engine, it is difficult to measure the torque of the individual crankshafts. Without
a measured torque at the crankshafts, the friction losses due to the geartrain cannot be
distinguished from the other friction losses of the engine. Therefore, steady state operating
points were replicated between the geared and gearless designs to determine the friction
losses attributed to the geartrain. The geared design testing was completed first and the
fueling was adjusted to provide a 35 kW power output measured at P2. The same points
were then run with the gearless design using the same fueling rate. The indicated thermal
efficiency between the two tests showed good agreement with a difference of less than
1.5% for each point tested. These points included three speeds of 1600, 1800, and 2000
RPM. The injection timing was swept to include five different test points at each speed
setting including -10, -11, -12, -13, -14 degrees after minimum volume (aMV). All tests
were completed using an ECL of 0 degrees, as this is the setpoint typically used in low
load, high fuel efficiency applications.

For the geared design testing, a dynamometer was used in place of the electric machine
to regulate the speed of the engine. The position and speed of each crankshaft was measured
along with the torque at the location of P2, between the geartrain and dynamometer. It
should be noted that the velocity of the dynamometer is assumed constant due to the large
inertia of the geartrain as well as the inertia of the dynamometer. With this assumption, the
torque measured with the torque flange can be used as the torque from the electric machine
in the geared design without having to account for changes in acceleration.

In the gearless design testing, each engine crankshaft was coupled to an Avid AF240
electric machine and the same instrumentation as in the geared experimentation is utilized
for position and speed determination. A torque transducer was mounted inline with the
motor and crankshaft coupler to measure the instantaneous torque on the shaft and calculate
the power at P1. To determine the torque delivered by or to the electric machine, the
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Figure 3.7: Cycle average mechanical power measured at point P2 for both configurations.
Filled points represent the gearless design and unfilled points represent the geared design.

quadrature current of the motor rather than the torque measured on the engine crankshaft
is used. The quadrature current of the electric machine is essentially proportional to the
electric machine torque. Using the measured torque on the crankshaft would require the
acceleration of the crankshaft to be computed, as noted in Eqn. 3.11 due to the velocity
fluctuations present in this design, to relate the shaft torque to the electric machine torque.
This can be noisy due to differentiation of the velocity signal.

As noted earlier, the electric machines in the gearless design are required to regulate the
motion of the OP engine crankshafts. The velocity reference for both the intake and exhaust
crankshafts are the result of the optimization process detailed in Chapter 2. Due to model
uncertainty and the ill conditioned nature of the system, the electric machine torque still
experiences large changes in instantaneous values, though significantly less than if trying
to track a constant velocity reference. The significance of these torque fluctuations will be
illustrated in the following sections.

The resulting cycle-averaged power for both series hybrid configurations is shown in
Fig. 3.7. While the friction losses of the geartrain are similar for the 1600 and 1800 RPM
test cases, averaging around 2.1 kW, it clearly scales with speed when engine velocity is
increased to 2000 RPM, where the average losses are 3 kW. It should be noted, however,
that the geartrain in use here is a prototype, meaning the gears are oversized and not
optimized for efficiency.

While the gearless design clearly benefits from reduced frictional losses, the torque
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Figure 3.8: Electric machine torque used to regulate the motion of the power takeoff from
the engine.

waveform which the electric machine is required to absorb from the PTO in each
configuration is significantly different. Shown in Fig. 3.8, the torque profile for the geared
design is relatively smooth, fluctuating ±125 Nm around the average 200 Nm value. In the
gearless design however, the torque experiences a large spike just after minimum volume
due to combustion. While only half the power is being delivered from each crankshaft in
the gearless design as compared to the single PTO in the geared design, the peak torque
from the electric machine is doubled. The following section will discuss the electrical
loss simulation used to assess the performance of the electric machine and inverter for
these different torque profiles. Using this tool, we then further investigate the impact of
electric machine and engine parameters on work extraction efficiency using the setpoint
of 1600 RPM and an SOI of -10 deg after minimum volume (aMV) as the representative
operating point. This was chosen due to the frictional losses of approximately 2.5 kW,
which represents a median value of the losses observed in testing.

3.3.3 Modeling of Work Extraction

To evaluate the power loss of each electrical component in the proposed series hybrid
designs, a simulation of dynamic models for the electric machine, three phase inverter,
and torque regulator were implemented in Simulink. In the geared design, the full power
generated by the engine is passed through a single electric machine and inverter. In the
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Figure 3.9: Two-phase equivalent model of a three-phase permanent magnet machine
including winding and core losses.

gearless design, however, the power level is halved as each crankshaft is coupled to an
electric machine, as depicted in Fig. 3.6(b).

3.3.3.1 Electric Machine

The permanent magnet motor/generator (Avid AF240) model is shown in Fig. 3.9, where
the electrical variables are the two-phase equivalents of the three-phase machine in vector
form. The vector λm represents the flux-linkage of the machine windings due to the
permanent magnets and iron in the machine. This flux linkage is a nonlinear function
of the magnetizing current im and rotor position θr and was determined through an off-
line characterization experiment and implemented in the simulation via a lookup table.
The inductance Ll represents leakage inductance associated with the machine and cables
connecting the machine to the electric drive. The resistances Rw and Rc capture the losses
in the machine windings and iron core, respectively, and were extracted from the efficiency
map provided in the machine’s datasheet using a least-squares parameter fitting. The
instantaneous machine winding and core losses are therefore estimated as

Ploss−winding =
3
2

Rw||is||2 (3.12)

Ploss−core =
3
2

Rc||ic||2 (3.13)

3.3.3.2 Three-Phase Inverter

The Simulink model of the three-phase inverter used in this work was originally presented
by Song and Hofmann [47]. This model accurately captures the voltages and currents of
the insulated-gate bipolar transistors (IGBT) of the inverter in their “on” and “off” states.
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The instantaneous conduction power loss of the IGBTs is given by

Ploss−conduction = ∑
x=a,b,c

(vx+ix++ vx−ix−) (3.14)

where vx and ix denote the individual phase voltage and current while the + and - subscripts
denote the high and low side of the half bridge switching unit, respectively. Energy loss
is also generated during the switching transitions of the transistors. However, accurately
capturing the voltage and current waveforms of the transistors during a switching transition
would require a more complex transistor model as well as relatively small time steps in the
simulation, both of which would dramatically increase the simulation time. To avoid this,
the switching energy loss of the two transistors in a phase leg is calculated based upon the
phase current and voltage at the time of the switching transition

Eloss−switching = f (ix,vbus) (3.15)

where ix is the phase leg output current. This energy is then extracted from the simulation.
The IGBT v-i curves in the “on” and “off” states and switching loss function are
generated using lookup tables with the datapoints extracted from the datasheet of the
IGBTs (Semikron SKiiP 1814 GB17E4-3DUW V2). A junction temperature of 150°C
was assumed due to the availability of data.

3.3.3.3 Torque Regulator

A field-oriented controller is used in the simulation to determine the switching transitions
of the inverter IGBTs in such a way as to cause the output torque of the permanent magnet
machine to track a torque reference. The performance of the electrical system in the
proposed application was then determined by using the experimental torque profile (such as
those in Fig. 3.8) as the torque reference of the regulator and integrating the corresponding
crankshaft velocity to determine the rotor position θr of the permanent magnet machine.
Average power and power losses in the electrical system are then calculated as

P =
∫

τ

0
p(t)dt (3.16)

where τ is the period of the crankshaft rotation and p(t) represents the power losses
previously described.

An outline of the electrical simulation is provided Fig. 3.10, combining each of the
subsystems discussed in the previous sections. From the provided torque and rotational
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Figure 3.10: Schematic of electrical simulation using a torque and speed reference as
inputs.

velocity profile, the torque regulator calculates the direct and quadrature voltage in the
rotor reference frame using current feedback to decouple the equivalent two-phase motor
dynamics. Using an inverse park transformation and space vector modulation, a pulse width
modulation (PWM) reference is developed from the voltage signals to drive the inverter
model. The resulting three-phase voltages are used to drive the electric machine model
and the losses from both the inverter and electric machine are extracted from the respective
subsystems.

3.3.4 Results

The operating point of 1600 RPM and an SOI of -10 aMV, labeled as case 1 in Fig. 3.7,
along with a frictional loss of 2.5 kW for the geartrain is used for the detailed design
comparison. To eliminate any impacts of indicated efficiencies of the OP engine and to
provide a straightforward comparison of the work extraction efficiency, the brake power
at point P1 for a single crankshaft in each design is considered to be 18.6 kW. Note
however that P1 for the geared design encompasses both crankshafts, so P1 is 37.2 kW.
This value comes from the cycle average power measured experimentally at the crankshafts
for the gearless design. The electrical component efficiencies are obtained by applying the
electrical loss simulation to the experimental torque and speed waveforms of each design.

Table 3.2 provides a summary of the results for the baseline designs. Initially, the
overall efficiencies are similar. However, the motor efficiency for the geared system is
much higher due to the smaller torque fluctuations. In fact, the magnitude of core losses in
the electric machine are larger for the gearless design, despite this configuration transferring
only half of the total power through the individual motors. As mentioned previously, the
geartrain implemented on this engine is also of research grade, suggesting the 93.3%
geartrain efficiency can be improved upon. If we consider the peak efficiency of the
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Table 3.2: Electrical loss simulation results at baseline operating conditions for both hybrid
OP engine designs

Geared Design Gearless Design
P1 [kW] 37.2 18.6
P2 [kW] 34.7 18.6
P3 [kW] 31.7 16.0
P4 [kW] 30.1 15.1

Total Electrical Losses [kW] 4.6 3.5
Electric Machine Losses [kW] 3.0 2.6
Winding; Core Losses [kW] 1.7;1.3 0.4;2.2

Inverter Losses [kW] 1.6 0.9
Geartrain ηgt [%] 93.3 n.a.

Electric Machine ηg [%] 91.3 86.0
Inverter ηi [%] 94.8 94.7
Overall η [%] 80.8 81.4

geartrain to be 98%, approximately the maximum efficiency of a spur or helical gear, the
overall efficiency of the geared design can be improved to 85%, well above the gearless
design efficiency of 81.4% for the baseline motor and engine parameters. From this point
forward, the geartrain efficiency of 98% will be used to illustrate the ceiling for efficiency
potential in the geared design.

3.3.4.1 Motor Sizing

The electric machines initially selected for this work, the Avid AF240s, were oversized
to allow for a large domain of crankshaft motion profiles to be investigated. However,
this selection is not ideal for maximizing the system efficiency. Therefore, a downsized
motor/generator is considered in this section. Due to the nature of the AF240, which
operates essentially as two smaller AF140 electric machines coupled in parallel, simulating
a downsized motor can be achieved simply by doubling the magnitude of the torque demand
from experimentation. This also allows the experimentally determined parameters in the
electrical loss simulation to remain constant rather than reverting to manufacturer specified
electric machine parameters. Results for the simulation using a downsized motor with half
of the capacity previously utilized are given in Tab. 3.3. Note, the downsized motor inertia
is considered identical to the full-sized motor. This allows the simulation to use the same
experimental velocity profiles. The gearless case experiences the largest improvement in
electric machine efficiency of approximately 3%. This is expected as the electric machines
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Table 3.3: Electrical loss simulation results for both hybrid OP engine designs with
downsized electric machines and improved geartrain efficiency for the geared design.

Geared Design Gearless Design
P1 [kW] 37.2 18.6
P2 [kW] 34.7 18.6
P3 [kW] 31.7 16.5
P4 [kW] 30.0 15.6

Total Electrical Losses [kW] 4.7 3.0
Electric Machine Losses [kW] 3.0 2.1
Winding; Core Losses [kW] 1.7;1.3 0.8;1.3

Inverter Losses [kW] 1.6 0.9
Geartrain ηgt [%] 98.0 n.a.

Electric Machine ηg [%] 91.4 88.8
Inverter ηi [%] 94.6 94.3
Overall η [%] 84.7 83.7

in the gearless design experience only half of the power levels than that of the single
machine in the geared design and can therefore benefit more from downsizing.

While the overall efficiency of the gearless design improved, it is still less efficient than
the geared design when considering the improved geartrain. Again, the core losses are
proportionally much larger for the gearless design than for the geared design. The core
losses in the electric machine occur due to time varying magnetic fields which are applied
to the stator to produce the torque demanded from the machine. The large fluctuation in
electric machine torque in the gearless design then leads to an increase in time varying
magnetic field, and thus, the core losses of the machine. The significance of the magnitude
of torque fluctuation on electric machine efficiency is captured by the ratio of peak to mean
torque. For the geared design, the ratio is 1.67, and in this case the winding losses are
greater in magnitude than the core losses. The ratio for the gearless design is nearly 4 times
that at 6.56 and the core losses are then the dominant loss term for the electric machine.
The following section provides a discussion for methods of reducing these core losses to
improve the gearless design efficiency.

3.3.4.2 Engine Inertia

From the previous results, it is apparent the motor efficiency can be greatly improved by
smoothing the electric machine torque required to control the piston motion. The most
straight forward approach to achieve this would be to allow the engine crankshaft speed
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to fluctuate such that the acceleration in Eqn. 3.11 accounts for change in torque from the
engine, allowing the electric machine torque to maintain a constant value of the average
engine out torque. However, due to the constraints of maintaining the ECL, this type of
control remains infeasible. The system requires a predefined tracking reference over the
entire cycle with which the feedback control strategy discussed previously can regulate the
electric machine torque. The next possible means of smoothing the torque is to define a
tracking reference for the crankshaft motion a priori. This is complicated by the sensitivity
of the system to model uncertainty, as discussed in previous sections. Therefore, to fully
develop the efficiency potential for the gearless series hybrid design, the hybrid OP engine
model used Chapter 2 was implemented to explore the benefits of increased flywheel inertia
and torque smoothing on the electric machine efficiency for the same 1600 RPM and
0 degree ECL setpoint as studied experimentally here. By increasing the inertia of the
flywheel from 0.24 kg/m2 to 0.49 kg/m2 for the exhaust crankshaft and from 0.20kg/m2

to 0.45 kg/m2 for the intake crankshaft, the crankshaft motion becomes less sensitive to
nonperiodic disturbances to the engine torque. Note the motor and crankshaft inertias
are identical to the previous cases. The gains for the tracking controller can therefore be
reduced, dampening the changes in electric machine torque demanded. Further, it should
be noted that by using the model to complete this testing, the factor of model uncertainty
is eliminated for the design of the crankshaft motion. The efforts described in the engine
testing section for creating a crankshaft motion profile to reduce the demands on the electric
machine are therefore more impactful in smoothing the torque as well.

The resulting torque and speed profiles from the model using the same setpoint as the
experimental tests are provided in Fig. 3.11. The electric machine torques vary slightly
as the inertia of the original flywheels are different. When an ECL is introduced to the
system, the exhaust crankshaft experiences a larger peak in torque as the exhaust piston is
past its respective top dead center (TDC) at minimum volume while the intake piston is
still approaching its TDC. Thus, in the OP engine used in this study was designed with a
larger inertia on the exhaust flywheel.

By employing this methodology, the full potential of the gearless hybrid OP engine
design can be evaluated against the geared design. The efficiency predictions obtained by
applying the electrical simulation to this torque and speed profile are provide in Tab. 3.4 for
the gearless design and compared to previous geared design results, again defining P1 based
on the experimental power level for the gearless design. Note that these results also include
the benefits of the downsized electric machines. Of all the design changes, the smoothing
of the electric machine torque created the largest system efficiency improvement at 10%.
As expected with the smoothed torque profile, the core losses of the electric machine are
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Figure 3.11: Crankshaft velocity and electric machine torque from the OP engine
simulation with increased crankshaft inertia.

Table 3.4: Electrical loss simulation results for downsized electric machines and the
gearless OP engine simulated with increased crankshaft inertia.

Geared Design Gearless Design
P1 [kW] 37.2 18.6
P2 [kW] 34.7 18.6
P3 [kW] 31.7 18.1
P4 [kW] 30.0 17.4

Total Electrical Losses [kW] 4.7 1.2
Electric Machine Losses [kW] 3.0 0.5
Winding; Core Losses [kW] 1.7;1.3 0.2;0.3

Inverter Losses [kW] 1.6 0.7
Geartrain ηgt [%] 98.0 n.a.

Electric Machine ηg [%] 91.4 97.1
Inverter ηi [%] 94.6 96.3
Overall η [%] 84.7 93.5
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reduced by nearly one kilowatt. Similarly, the winding losses are also reduced. As the
winding losses are created by the resistance in the motor and are proportional to the squared
magnitude of current, a more constant torque demand on the electric machine correlates
to a more constant current, and therefore a reduction in the winding losses. Another
improvement in the gearless design efficiency is the inverter efficiency. Previous results
have all maintained inverter efficiencies near 94%. However, while these losses are heavily
dependent on the phase current, the transistor voltage drop also slightly increases with
current. This can be attributed to the v-i relation of the conduction power loss. As the
magnitude of the phase currents increase, so does the voltage. Therefore, as shown in
Eqn. 3.14, the losses are not simply proportional to the current but also a function of phase
voltage and will be minimized if the magnitude of the current and voltage is constant.

3.4 Conclusions

In this Chapter, particular focus was given to the feasibility of the dual motor controlled
hybrid opposed piston architecture. A proof of concept experimental test cell was first
constructed and a feedback controller with feedforward estimation of the motor torque was
shown to adequately control the independent motion of the two crankshafts. However,
the sensitivity of the system to model mismatch diminished the ability of the optimal
crankshaft motion profiles developed in Chapter 2 to translate well to the experimental
engine. Therefore, to evaluate the work extraction efficiency of the system, two designs for
a series hybrid architecture utilizing an opposed piston engine were compared. By utilizing
a detailed electrical loss simulation, the efficiency of the components responsible for
extracting work from the engine were evaluated in each design. The design implementing
a geartrain to couple the motion of the OP engine crankshafts presents a more robust
system with the large inertia of the geartrain dampening speed fluctuations and reducing
the fluctuations in electric machine torque required to maintain a constant average engine
speed. Further, the crankshaft adds stability to the OP engine operation by fixing the ECL
for the two crankshafts, regardless of the torque generated on each crankshaft. However, the
peak system efficiency is limited by the frictional losses in the geartrain. By eliminating
the geartrain and coupling electric machines directly to the OP engine crankshafts, the
maximum work extraction efficiency can be significantly improved. This improvement,
however, is highly dependent on the electric machine operation and any work extraction
efficiency gains can be diminished by poor electric machine performance, as highlighted
in Tab. 3.5. In the baseline case, the large electric machines and rapidly fluctuating torque
used to control the motion of the engine crankshafts resulted in an overall efficiency lower
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Table 3.5: Electric machine and inverter efficiency of the gearless hybrid OP engine for the
alternative design parameters.

Baseline Motor Sizing Motor Sizing and Increase Inertia
Electric Machine ηg [%] 86.0 88.8 97.1

Inverter ηi [%] 94.7 94.3 96.3
Overall η [%] 81.4 83.7 93.5

than that of the geared design. When sizing the electric machine appropriately for the power
level of the engine and, more significantly, implementing some methodology to smooth the
electric machine torque, the full potential of the gearless design for a series hybrid OP
engine is realized.

As the peak electric machine efficiency was obtained for a near constant torque profile,
the following Chapter details the methodology used to define optimal crankshaft motion
profiles to smooth the motor torque as opposed to increasing the inertia and therefore the
mass of the system.
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CHAPTER 4

Maximizing Work Extraction Efficiency of a
Hybrid Opposed Piston Engine Through

Iterative Trajectory Optimization

This Chapter presents the real-time optimization of the crankshaft motion in a hybridized
opposed piston (OP) engine using an iterative learning-based trajectory optimization
scheme. The powertrain is oriented in a series hybrid design with each crankshaft
directly coupled to electric motors, eliminating the conventional geartrain linking the two
crankshafts along with the associated friction and weight. In this way, the electric motors
can directly extract the work generated by the engine and regulate the crankshaft dynamics,
introducing the capability to dynamically vary compression ratio, combustion volume, and
scavenging dynamics on an inter-cycle basis. This control freedom increases the system’s
maximum potential efficiency, yet requires highly optimized intra-cycle crankshaft motion
profiles to realize the improved work extraction efficiency of the dual motor-controlled
OP engine. Leveraging the repetitive nature of the internal combustion engine, an
iterative trajectory optimization (ITO) algorithm is used to define the optimal crankshaft
motion profile in real-time for steady state operation. First, an algorithm to optimize the
parameterized trajectory of a system in real time utilizing constrained optimization of a
cost function generated from the performance values of the previous cycle is developed.
Then, simulation results are used to illustrate the implementation of this iterative trajectory
optimization framework on a toy problem while also benchmarking the performance
against a norm optimal iterative learning controller with perfect system knowledge. Finally,
this algorithm is applied to the problem of developing motion trajectories of the crankshafts
in a hybrid OP engine. The rapid convergence and near optimal crankshaft motion profiles
for the ITO strategy as well as its proficiency under both motored and fired cycle operation
is demonstrated experimentally. Note, the theory presented in the first portion Chapter was
published as [35].
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4.1 Introduction

There are several applications performing repetitive processes such as airborne wind
energy systems [48], robotic manipulators [49, 50], series hybrid powertrains [27], and
UAV surveillance missions [51] where the shape of the trajectory used as a tracking
reference has a dramatic impact on system performance. Typically, these applications
use offline optimization to find the desired trajectory. However, these trajectories may
not perform well on the actual system due to model mismatch and uncertainty. Further,
this offline strategy does not take advantage of the information from previous cycles.
When considering a repetitive process, the information rich signals from previous cycles
can help to mitigate the effects of model uncertainty as well as adapt to slowly varying
environmental disturbances or sensor drift [52].

A well documented strategy to improve the performance of repetitive systems is
iterative learning control (ILC) [53, 54]. ILC has been effectively used in several
applications where the optimal tracking reference in each application is know a-priori
[55–57]. This work, however, focuses on applications where the system performs a
repetitive task, but the performance of the system is not wholly dependent on the reduction
in tracking error as it is in traditional ILC schemes. Rather, we focus on an economic
performance index resembling that of offline trajectory optimization.

Recently, norm optimal ILC has enabled other control objectives to be incorporated into
the ILC framework and leverage the flexibility in point-to-point applications [58–60]. In
such cases, opportunity exists in the time between the mission-critical points to incorporate
secondary task objectives, such as minimizing energy consumption in pick and place
operations [50]. However, these algorithms are memory intensive and generally require
a lifted representation of the system [61]. This again relies on the model fidelity. Several
instances of ILC exist in literature which do not require the use of a lifted system, and
therefore reduce the computational burden but still retain knowledge of the control or
plant dynamics. In work published by Gorinevsky et al. [62], the ILC design problem is
formulated in the frequency domain using a Fourier coordinate transform to represent the
plant dynamics. In Tang et al. as well as Qin and Cai [63, 64], the inverse plant dynamics
and desired tracking reference were parameterized using a Fourier series approximation,
which was then used to update the ILC feedforward control law by matching the inverse
plant dynamics to minimize tracking error. Further, Blanken et al. [56] used a norm-optimal
ILC formulation to find the optimal parameters of non-causal rational orthonormal basis
functions defining a feedforward control law to minimize tracking error. However, control
signal parameterizaiton lacks the ability to prioritize tracking at certain waypoints as is
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possible in the lifted system description and point-to-point ILC [58].
Therefore, rather than parameterizing the control input, it is suggested to parameterize

the reference trajectory directly and use measured performance variables to optimize the
next cycle reference trajectory, rather than the next cycle control. Previous work from
Cobb et al. [52] demonstrated this iterative trajectory learning for the application of an
airborne wind energy system. A parametric form of the desired trajectory reference was
optimized using a gradient descent algorithm according to the prescribed cost function.
While the figure eight trajectory parameterization proposed by Cobb et al. [52] is specific
to their application, a more generic parameterization could be implemented. However,
as the learning technique implements a gradient descent optimization strategy, trajectory
constraints could not be included when using a more generic parameterization.

In the following sections, a novel method of iterative learning based online trajectory
optimization is presented, referred to here as iterative trajectory optimization (ITO).
To reduce the computational expense of a lifted system description, we utilize the
Fourier series to provide a parameterization of the system trajectory where only the basis
parameters are optimized rather than all the discrete points contained in the reference
trajectory. A Fourier series was selected due to its inherent ability to approximate periodic
functions, as is noted in previous ILC work [63, 64]. The optimization problem is then
formulated as a quadratic programming (QP) problem which presents the opportunity to
integrate constraints on the optimized trajectory, similar to the online trajectory generation
presented by Mellinger and Kumar [65] which optimizes the parameterized path of a
quadrotor while ensuring constraint satisfaction. However, by utilizing performance values
from the previous cycle iteration, the influence of model uncertainty and slowly varying,
non-periodic disturbances can be significantly reduced.

4.2 Problem Description

Here we will consider a system of discrete time dynamics defined by

x j(k+1) = f (x j(k),u j(k),k)

y j(k) = g(x j(k),u j(k),k)
(4.1)

where j represents the iteration index and k = 1,2, ...,N is the cycle time index. The system
states are given as x ∈ Rn, the outputs of interest are y ∈ Rp, and the inputs are u ∈ Rq.
The value of u j(k) represents the control input required for following the desired output
trajectory r j(k) ∈Rp, which, in the ideal case with no tracking error, is equivalent to y j(k).
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To simplify notation, we will assume p = 1. Also, assume the system is stable or stabilized
through feedback control with bounded input and output. The objective in this Chapter is
to alter the time varying trajectory reference r j+1 of the next cycle, which is defined as the
vector

r j+1 = [r j+1(1) r j+1(2) . . . r j+1(N)]T (4.2)

so as to minimize a given cost function subject to the pertinent system constraints. We
assume a stabilizing low level controller with good tracking performance already exists.

The cost function for trajectory optimization is

min
r(k)

L =
N

∑
k=1

l(x(k),r(k),k)

s.t. mi(x(k),r(k),k)≤ 0

(4.3)

where i = 1,2, . . . ,w with w representing the number of constraints. The discrete-
time trajectory optimization problem defined in Eqn. 4.3 can be solved by transcribing the
problem as a finite dimensional mathematical programming problem. The variables being
optimized and the state variables of the model, in this case r(k) and x(k), can be stacked
in a vector, X, and the system dynamics between the reference r(k) and states x(k) are
enforced in the problem constraints. This method, however, is not well suited for real-time
applications. Significant computational resources are required as the vector X can become
large depending on the number of steps N. Further, convexity is not guaranteed in the cost
function Eqn. 4.3 which makes it impossible to guarantee convergence. The results are also
subject to model uncertainty as the relation between x and r is assumed to be explicitly
known. Therefore in this section, an iterative learning algorithm is developed to exploit
measurements of the previous cycle’s performance to improve the reference trajectory for
the next cycle. The formation of a cost function and path parameterization are presented so
as to meet the following requirements:

(R1) A relatively small number of basis parameters are needed compared to discrete
sampling points in an iteration.

(R2) The parameters of the basis function explicitly define the reference trajectory and its
higher order derivatives.

(R3) The basis parameters can be found by solving a constrained, convex optimization
problem.
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4.3 ITO Structure

In this section, the proposed iterative trajectory optimization scheme is defined along with
the properties that satisfy the requirements listed above.

4.3.1 Path Parameterization

The parameterization used to defined the reference trajectory variable r is key to the
formulation of the ITO problem. While parameterization of the trajectory variable may
result in a sub-optimal trajectory reference, as discussed by Cobb et al. [52], this allows for
a reduction in the optimization terms and trajectory design space. A Fourier series is used
to represent the approximate trajectory variable as

r̂(k) = γ0 +
m

∑
n=1

(γn,1 cos(n∗wk)+ γn,2 sin(n∗wk)) (4.4)

which now becomes the tracking reference for the lower level tracking control. The r̂(k)

notation is used to denote the sub-optimality associated with the parameterization of r(k).
For this approximation, w = 2π f ∆t where f is the frequency of the periodic function and
∆t is the sampling period. The number of frequencies contained in the Fourier series
parameterization is denoted as m. Factoring out the γ coefficients, the trajectory variable
can be written as

r̂(k) = h(k)T
Γ (4.5)

where h(k) and the basis parameters Γ are

h(k) = [1 cos(wk) sin(wk) cos(2wk) sin(2wk)

. . . cos(m∗wk) sin(m∗wk)]T
(4.6)

Γ = [γ0 γ1,1 γ1,2 γ2,1 γ2,2 . . . γm,1 γm,2]
T . (4.7)

Remark 1. The trajectory reference using r̂(k) can be defined using only a 2m+ 1
quantity of γ parameters rather than the N discrete points required to define the trajectory
in Eqn. 4.2. Increasing the number of harmonic frequencies, m, improves the ability of r̂(k)

to approximate the ideal trajectory but increases the number of basis parameters. Shown in
the example provided, satisfactory results can be obtained with values of m= 4,6 compared
to N = 100, satisfying (R1). Additionally, it is important to note that the bandwidth of the
stable closed loop system defined in Eqn. 4.1 limits the benefits of increasing the number
of frequencies contained in the reference trajectory beyond the bandwidth frequency.
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Remark 2. Using the notation of Eqn. 4.5, it is straight forward to differentiate the
trajectory as

r̂(d)(k) = h(d)(k)T
Γ (4.8)

where d is the order of the derivative as h(k) is continuously and infinitely differentiable
while Γ remains constant, therefore satisfying (R2).

Remark 3. For practical applications, it may be beneficial to define h(d)(k), with d

being the highest order derivative, as the trigonometric function vector given in Eqn. 4.6.
Then, integration, rather than differentiation, can be used to find the lower order terms
where h(d−1)(k) is now

h(d−1)(k) =
[

k
sin(wk)

w
−cos(wk)

w
sin(2wk)

2w

−cos(2wk)
2w

. . .
sin(m∗wk)

m∗w
−cos(m∗wk)

m∗w

]T

.

(4.9)

Now, the non-periodic time dependent term k in the lower order trajectory variable term
relaxes the necessity of the trajectory to be periodic for such instances where the repetitive
process is non-continuous.

4.3.2 ITO Update Scheme

The iterative trajectory optimization scheme proposed in this Chapter is formulated as a QP
problem and can be solved as a linear system of equations when only equality constraints
are considered [66]. Therefore, the optimization problem is posed as

min
Γ

J =
1
2

Γ
T
j Ω jΓ j +Ψ jΓ j + c j

s.t. AΓ j −b = 0.
(4.10)

The trajectory update law utilizes the resulting parameters Γ j to update the next cycle
reference and is given as

r̂ j+1(k) = h(k)T (Γ j). (4.11)

with the definitions of h(k) and Γ from Eqn. 4.6 and 4.7. The weighting matrices Ω j and
Ψ j are defined as

Ω j = 2
N

∑
k=1

βq0, j(k)h(k)h(k)T +βq1, j(k)ḣ(k)ḣ(k)T+

...+βqd, j(k)h(d)(k)h(d)(k)T

(4.12)
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Figure 4.1: Block diagram showing interaction between the optimization process in the
iteration domain and the lower level control system in the time domain.

Ψ j =
N

∑
k=1

βl0, j(k)h(k)T +βl1, j(k)ḣ(k)T+

...+βld, j(k)h(d)(k)T

(4.13)

and the derivation of these matrices will be provided in the following section. The block
diagram illustrating this ITO strategy is shown in Fig. 4.1, where the summation of the
cost parameters at each time step in the cyclic process is then provided to the optimization
solver as Ω j and Ψ j. The solution of the optimization problem then provides Γ j to define
the following cycle reference.

Remark 4. The optimization problem defined in Eqn. 4.10 provides strict convexity
under certain, rather mild, assumptions, as will be discussed later for the convergence of
Γ j. With feasible A and b constraints, this satisfies (R3).

4.3.3 ITO Derivation

The formulation of a trajectory optimization problem defined in Eqn. 4.3 with the cost
function L is not well suited for online implementation. Therefore, this section presents the
transformation of the simplified cost function into the ITO scheme defined by Eqn. 4.10.
The derivation considers only the base trajectory r̂(k) for simplification, but extension to
higher order derivative terms is trivial, as shown in Eqn. 4.12 and 4.13.
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First, the cost function is given in terms of the trajectory variable r(k) and is shown as

J =
N

∑
k=1

βq, j(k)r j+1(k)2 +βl, j(k)r j+1(k)+βc, j(k). (4.14)

It should be noted that this form of the cost function is more limiting than that of the
form given by L in Eqn. 4.3, but improves the solution properties. The new cost in
Eqn. 4.14 is formulated as a QP problem that is linear with respect to the trajectory
variable r(k). The coefficients of βc, j(k), βl, j(k), and βq, j(k), collectively referred to
as β j(k) = [βc, j(k) βl, j(k) βq, j(k)]T , are applied as coefficients for a constant term, a
linear trajectory variable term r j+1(k), and a quadratic trajectory variable term r j+1(k)2

respectively. The determination of these β terms is application specific. These values can
represent constant parameters such as component mass or lengths, time varying terms such
as torque, or a combination required to formulate the cost J. For the sake of the generic
problem derivation, β j(k) will be considered time dependent.

Using the path parameterization defined by Eqn. 4.5, the cost can be written as

J =
N

∑
k=1

Γ
T
j (βq, j(k)h(k)h(k)T )Γ j+

... βl, j(k)h(k)T
Γ j +βc, j(k).

(4.15)

Here, h(k) as well as the β (k) terms are time dependent over a given cycle. However, Γ j is
time invariant over each cycle, which means it can be removed from within the summation.
Now, using the notation

Ω j = 2
N

∑
k=1

βq j(k)h(k)h(k)T (4.16)

Ψ j =
N

∑
k=1

βl j(k)h(k)T (4.17)

the QP problem outlined in Eqn. 4.10 can be recovered. The derivation for any higher order
derivative terms of the trajectory reference, r̂(d)(k), follows from above and are included as
in the forms of Ω j and Ψ j used in Eqn. 4.12 and 4.13.

4.4 ITO Convergence Analysis

This section provides a discussion of convergence for the ITO scheme given in Eqn. 4.10
and 4.11. Here, convergence of the path parameters Γ to the optimal parameters Γ∗, which
minimize the cost function J, is of interest. This is similar to the convergence analysis
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presented by Cobb et al. [52] where the tracking reference, not the control input, is being
optimized. First, the definitions and assumptions required are stated, then Proposition 1
is used to show the positive definiteness of Ω and the strict convexity of J in Eqn. 4.10,
leading to the convergence of Γ j.

The following assumptions are made for this analysis:
Assumption 1. The values of βqi used in the quadratic term Ω, where i = 0,1, ...,d, are

strictly positive and the number of sample points, N, in a cycle is larger than the number of
parameters in the Γ vector, 2m+1.

Assumption 2. The constraints defined in Eqn. 4.10 are feasible at Γ∗ and the Linear
Independence Constrain Qualification (LICQ) condition holds for AT [66].

Assumption 3. The initial conditions, x(0), and any disturbances to the system are
iteration invariant and β j(k) for k = 1,2, ...,N converges to β∞(k) as r̂ j(k)→ r̂∞(k).

Assumption 1 is used to show the positive definiteness of Ω. Assumption 2 simplifies
the solution of the QP problem as well as the convergence proof as the active set of
constraints are known. Assumption 3, the most severe assumption made, ensures the values
of β , which define the response surface J, converge to some fixed point β∞(k). Under these
assumptions, it is possible to guarantee convergence of Γ j to Γ∗.

Proposition 1. (Convergence of Γ): Suppose Assumption 1, 2, and 3 hold. Then, under
the Γ j update from the QP problem defined in Eqn. 4.10 and the reference trajectory update
in Eqn. 4.11, the sequence of Γ j converges to Γ∗

Proof. Consider a single instant k in the summation denoted in Eqn. 4.12. Taking the outer
product of the vector h, it can be shown that ∀x ∈ R2m+1

xT hhT x = (hT x)T (hT x) = (hT x)2 ≥ 0

meaning hhT is symmetric positive semi-definite. Similarly, any derivatives of the vector h

with respect to sample time are also symmetric positive semi-definite due to the nature of
the outer product.

Now, consider the summation of these terms for k = 1,2, ...,N. It is important to note
that the vector h(k) is composed of cos(wk) and sin(wk) terms. As these terms, for different
values of k, are mutually orthogonal functions, the summation of the

Ω j =
N

∑
k=1

h(k)h(k)T

is rank 2m+ 1, or full rank, for any N > 2m+ 1. As the value of βqi, ∀i = 0,1, ..,d is a
scalar, and from assumption 2, strictly positive, this does not affect the linear independence
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or positive semi-definiteness of any of the individual outer product values. Therefore, as the
nullspace of Ω j is now only the zero vector, xT Ω jx > 0 ∀x ̸= 0 ∈R2m+1 given N > 2m+1.

As the constraints are affine and linearly independent from Assumption 2 and the cost
function J is strictly convex using the positive definiteness of Ω j, the first order conditions
for optimality are sufficient. Therefore, the Γ j update from the QP problem defined in Eqn.
4.10 is immediately Γ∗

j for the parameters β j(k). From Assumption 3, we can assume β j(k)

converge to β∞(k). Thus, it follows Γ j converge to Γ∗.

4.4.1 Discussion of ITO Convergence

The first two assumptions rely on the formulation of the cost function and system
constraints, which can be satisfied relatively easily. Assumption 3, however, will almost
certainly be violated in practical applications, especially for continuous applications where
the final conditions of the previous cycle become the initial conditions of the next
cycle. Firstly, identical initial conditions are difficult to guarantee when the tracking of
the reference is dependent upon a lower level, stabilizing controller. Further, external
disturbances can vary from iteration to iteration, affecting the initial conditions and creating
non-periodic disturbances. Lastly, and most importantly, it can not be assumed the unique
β∞ at Γ∗ are the values which allow for the global minimization for the response surface J.
Rather, it is a local approximation based on the initial guess of the optimal trajectory. If the
β j(k) values in the cost function are time varying functions of the path r̂(k), changes in the
path geometry can change the values of β j(k). Therefore, when designing a cost function
for ITO applications, care must be given in the selection of the β j(k) terms to ensure they
are at least bounded in their response to changes in Γ j.

4.5 Example Problem

To demonstrate this ITO scheme, a comparison to norm-optimal ILC is provided as a
benchmark for performance. A problem similar to the one posed by Lim and Barton [58]
illustrates the proposed algorithm’s capabilities as well as limitations. In this example, a
servo-positioning system is considered with a discrete-time transfer function of

G(z) =
z−0.5

(z−1)(z−0.925)
(4.18)

for the plant with a sample time of 1 second. This plant is stabilized using a proportional
feedback controller with a gain of 0.425. The premise of this problem is a traditional

69



position tracking control problem where a reference trajectory for position is provided over
a 100 second period. However, only 3 specific points at time 40, 65, and 100 seconds in
the predefined trajectory are critical for tracking as shown in Fig. 4.2(a). Therefore, it is
desired to leverage the additional control freedom during the rest of the cycle to minimize
the energy consumption of the system for a cycle period. Here, the energy of the system is
taken to be E = 1

2mv2 where m is the system mass and v is the velocity.

4.5.1 Benchmark Control Design

In reference Lim and Barton [58], a modified norm optimal ILC algorithm is proposed
utilizing a Pareto optimization approach wherein both point-to-point tracking performance
and energy consumption are included in the cost function. The resulting ILC update law
and cost function are given as

u j+1 = Luu j +Lee j +Lvv j (4.19)

J =(Ψe j+1)
T Q(Ψe j+1)+uT

j+1Su j+1

+(u j+1 −u j)
T R(u j+1 −u j)+vT

j+1Wv j+1
(4.20)

where Lu, Le, Lv are the learning matrices applied to the control, error, and velocity vectors
of each iteration to provide the next iteration’s control input. The velocity, v j, is related to
the control input u j through v j = XHu j where X is the first difference matrix and H is the
lifted system representation. Refer to Lim and Barton [58] for a detailed derivation.

4.5.2 Iterative Trajectory Optimization Design

As this methodology alters the reference trajectory and the tracking control is completed
with the lower level proportional control, the cost function no longer contains control input
values and can simply be represented as

J =
N

∑
k=1

v j(k)2 (4.21)

where the 1
2m terms have be dropped as they remain constant and v j(k) represents

the true system velocity. Therefore, it is of interest to use the reference and tracking
error to approximate the true velocity. To include reference velocity in the trajectory
parameterization, we define the reference velocity as ˙̂r j+1(k) = ḣ j(k)T Γ j+1 where ḣ j(k)

replaces h j(k) in Eqn. 4.6. Similarly, as the reference provided to the closed loop system
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is in terms of position, the position reference is defined as r̂ j+1(k) = h j(k)T Γ j+1 +C1 with
h j(k) defined in Eqn. 4.9 and C1 is the constant of integration. In this case, as the initial
position is assumed to be 0, this values becomes

C1 =
γ1,2

w
+

γ2,2

w
+ ...+

γm,2

w
(4.22)

As the constant is a function of Γ, it can be combined into Eqn. 4.9. Then, by defining
v j(k)≈ ṙ j+1(k)− ev

j(k) where ev is the velocity error, we can define Ω and Ψ as

Ω j = 2
N

∑
k=1

ḣ(k)ḣ(k)T (4.23)

Ψ j = 2
N

∑
k=1

ev
j(k)ḣ(k)

T (4.24)

which can be used in the QP problem in Eqn. 4.10 and defines βq1, j = 1 and βl1, j(k)= ev
j(k).

All other β j terms are 0. As the duration of the repetitive process is 100 seconds, w for this
application is taken as w = 2π

100 . Additionally, to ensure the critical points of the tracking
task are met, three equality constraints are introduced for r j+1(40,65,100) = pc. Note, by
integrating to find position, the position profile is no longer constrained as periodic and
the initial and final points of the position trajectory can differ to meet these constraints as
discussed in remark 3. To account for any steady state tracking error that may be present
for the closed loop system at these points, the iterative nature of the system can again be
leveraged to adjust the constraints using the update

pc, j+1 = pc, j + e j(40,65,100) (4.25)

where e j is the position tracking error and pc,1 = [7,−5,10].

4.5.3 Results

The Pareto ILC and the ITO results are shown in Fig. 4.2(b). Two different ITO trajectory
parameterizations containing 4 and 6 frequencies are shown after 15 cycle iterations. The
optimized position trajectories which reduce energy consumption are all similar, but deviate
significantly from the baseline feedback controller tracking the full reference trajectory
shown in the top subplot. The Pareto optimization-based ILC has perfect knowledge of
the system and therefore the lowest cost which results in a constant velocity trajectory
between critical points, shown in Fig. 4.2(b). Further, it is able to converge in one cycle.
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Figure 4.2: Baseline tracking reference for the system and the three critical position points
at 40, 65, and 100 seconds. Simulation results for the ILC and ITO schemes with reference
to the baseline feedback control. Critical points are denoted with an + and m represents the
number of frequencies in the trajectory parameterization.

However, this performance degrades as model uncertainty is introduced resulting in a trade-
off between robustness and performance [61]. The ITO scheme has no knowledge of the
system, yet provides a close approximation of the ILC results after only 15 iterations.

The quantitative metrics of root mean square error (RMSE) at the critical points and
the cost function value described in Eqn. 4.21 are used to compare the ITO to the ILC
in to Tab. 4.1. Note, as the true model is assumed known, the learning gains of S and
R for the ILC scheme are set to 1e-8 in Eqn. 4.19. This provides a direct comparison of
the energy consumption of the system, assumed here to be ∑

N
k=1 v j(k)2. For both the ITO

and ILC, the RMSE at the critical points and cost function value are significantly reduced
from the baseline feedback controller. As the number of harmonics included in the ITO is
increased, the optimal parameterized trajectory converges to that of the ILC and the cost
reduces. However, this trend is not monotonic due to bandwidth limitations for the closed
loop system as well as the presence of tracking error in the cost function.

Clearly, increasing the frequency content of the reference above the system bandwidth
of 0.885 rad/s, which in this case corresponds approximately to m = 14, will not provide
any appreciable benefit to system. However, when using m = 14 in this application, the
cost value after 15 iterations is 41.530 due to the inability to track the reference, and does
not improve with increased iteration counts. The ITO method obtained the minimum cost
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Table 4.1: RMSE and Cost Function Results

Method RMSE Cost
Feedback 0.250 12.688
ITO m=4 2.29e-4 7.716
ITO m=6 1.60e-3 7.334

Pareto ILC 6.92e-4 6.705

value of 7.323 with m = 7 after 15 iterations, which results in a highest harmonic frequency
of 0.440 rad/s in the reference trajectory which is below the system bandwidth.

The proposed ITO framework was implemented for a servo positioning application and
benchmarked against Pareto-optimization based ILC. Without any prior knowledge of the
system, ITO was able reduce the cost by 42%, relative to the feedback controller, using m

= 7 frequencies and only 15 iterations. The ITO method achieved approximately 90% of
the ILC performance, which utilized perfect knowledge of the closed loop system. Now,
in the following sections this online trajectory optimization scheme will be applied to the
problem of finding the optimal crankshaft motion profile for the dual motor controlled OP
engine powertain.

4.6 ITO for a Hybrid OP Engine

As discussed in Chapter 3, the dual-motor system efficiency is highly dependent on the
operation and required control torque from the electric motors. Any gains in efficiency
from removing the geartrain can be lost to poor motor performance. Results from Chapter 2
show a near constant motor torque profile maximizes the work extraction efficiency of this
system. Yet, the necessity to maintain the relative positioning between the two pistons
requires control over the instantaneous crankshaft position and prohibits the use of constant
intra-cycle torque control to maintain the desired engine speed. The challenge then is not in
controlling the crankshaft to a desired position trajectory. Rather, it is defining the optimal
position and velocity trajectory to control to. However, the system has shown significant
sensitivity to model uncertainty, limiting the effectiveness of offline optimization. Instead,
the repetitive motion of the reciprocating IC engine can be leveraged to implement a
learning-based scheme for ITO. In this way, the information rich signals from the previous
engine cycle can be used to improve the tracking reference of the next cycle based on the
performance criteria. Further, the use of the previous cycle data reduces the reliance of the
optimization process on the fidelity of the system model while still maintaining the required
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Figure 4.3: Control architecture of the hybridized OP engine. Solid lines represent
mechanical connections, dotted lines represent electrical connections, and dashed lines
represent control or measurement signals. The trajectory optimization algorithm provides
the basis parameters Γ defining the tracking reference to the lower level controls.

constraint on the relative phasing of the two crankshafts. This method of defining the
crankshaft motion on an experimental engine test-bench represents a complex combination
of the operating principles outlined in Chapter 2, feedback control and feasibility analysis
completed in Chapter 3, and the ITO theory defined earlier in this Chapter. The resulting
control structure to be implemented is shown in Fig. 4.3.

The following sections derive the path parameterization and cost function coefficient
necessary to implement the ITO scheme on a dual motor controlled hybrid OP engine.
Note, however, the derivation of this ITO problem will be completed with respect to a
single crankshaft as the problem objective and dynamics for each crankshaft are identical.
Then, as the ECL must be constrained, the final form of the optimization problem will be
given with respect to both the intake and exhaust crankshafts.

4.6.1 Crankshaft Path Parameterization

With the trajectory of the system, rather than the control input, used as the optimization
variable, it is necessary to parameterize the the trajectory variable. This variable is
defined as θd(k), the desired position of the crankshaft, and replaces r j+1(k) in Eqn. 4.11.
Again, the subscript j denotes the cycle index and k denotes the time index within the
cycle. Rather than directly optimizing θd(k) for all discrete points k = 1,2, . . . ,N in a
cycle, parameterization reduces the design space and optimization terms for this problem,
creating a tractable problem for online implementation. The Fourier series was selected
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to parameterize θd(k) due to its innate ability to approximate periodic functions. Further,
as the Fourier series is made up of infinitely differentiable trigonometric functions, θ(k)

and all of its higher order derivatives can be defined using the same basis parameters,
increasing the cost function design space without increasing the number of optimization
variables. However, it should be noted that any type of parameterization restricts the form
of the path and may result in a sub-optimal reference.

The highest order derivative of the trajectory variable, in this case θ̈d , is defined using
the Fourier series and the lower order terms θ̇d and θd are defined through integration,
where

θ̈d(k) = ḧ(k)T
Γ (4.26a)

θ̇d(k) = ḣ(k)T
Γ+ω (4.26b)

θd(k) = h(k)T
Γ+ωk+

m

∑
n=1

γn,1

(nω)2 −π (4.26c)

with ḧ(k) and the basis parameters Γ given as

ḧ(k) = [1 cos(wk) sin(wk) cos(2wk) sin(2wk)

. . . cos(m∗wk) sin(m∗wk)]T
(4.27)

Γ = [γ0 γ1,1 γ1,2 γ2,1 γ2,2 . . . γm,1 γm,2]
T . (4.28)

The form of ḣ(k) and h(k) follow directly from integration of Eqn. 4.27. In Eqn. 4.26b,
the constant of integration is w which denotes the desired average velocity setpoint. The
subscript j is not used for this term as the assumption of a steady state operating point is
made. Similarly, in Eqn. 4.26c, the summation of the Γ terms corresponding to cosine terms
in h(k) ensures the position at k=0 is −π radians, meaning the piston is at bottom dead
center (BDC). If a nonzero ECL is desired, the value can then become −(π +ECL) for the
intake crankshaft, ensuring the intake reference trails the exhaust reference by the desired
ECL. In Eqn. 4.27 ω is the same as defined above and can also be given as ω = 2π f ∆t

where f is the frequency of the periodic function and ∆t is the sampling period. The
number of frequencies contained in the Fourier series parameterization is denoted by m

and the number of basis parameters is equal to 2m+1. This tunable parameter m presents
a trade-off between the computational burden and precision of the path parameterization
which will be discussed further in the results section. It is also important to note the 0th

harmonic, or the DC component, of the Fourier series defining acceleration. This is the
first term in the inner product shown in Eqn. 4.26a and is equal to γ0. This value is used
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to set the mean of the Fourier series over a given period and for the following steady state
analysis is set to 0.

4.6.2 Cost Function Derivation

The objective of this optimization process is to maximize the system efficiency. This can be
approximated by minimizing any losses from the electric motors as they absorb the torque
generated by the engine, assuming a fixed fueling input. While this neglects any possible
indicated efficiency improvements for the engine, it was shown in Chapter 3 that the motor
efficiency is the dominant term for intra-cycle efficiency. This leaves the thermal efficiency
to be improved through inter-cycle operation, which is outside the scope of this Chapter.
Therefore, this problem, for each crankshaft independently, can be stated mathematically
as

min
Γ

J =
N

∑
k=1

Ploss, j(k) (4.29)

To transcribe this optimization problem into the form provided in Eqn. 4.10, the power
loss term, Ploss, needs to be expressed in terms of the basis parameters Γ. As this term
represents instantaneous power lost through the electric motors when extracting work from
the crankshaft, it is defined as

Ploss, j(k) =
3
2

i j(k)2R+C(θ̇d, j(k)− e j(k))2 (4.30)

which accounts for the resistive and frictional losses of the electric motor. The winding
resistance is denoted as R and the coefficient C is used to scale the friction losses by the true
rotational velocity where θ̇ j(k) = θ̇d, j(k)− e j(k) with e j(k) representing velocity tracking
error. The quadrature current, i(k), of the electric motors is proportional to the torque
generated through the relationship

i j(k) =
Tm, j(k)

9λm
(4.31)

where λm represents the flux-linkage of the motor windings due to the permanent magnets
and iron in the motors and Tm is the motor torque. For the specific electric motors, the
values of R = 23.3∗10−3 Ω, C = 0.038 and λm = 0.137 Nm/A are used. Now, we can use
Eqn. 4.30 and 4.31 to write the power loss function in terms of Tm(k) and θ̇d(k). However,
Tm(k) is the control input to the system, obtained from feedback control which is a function
of the crankshaft motion defined in Chapter 3. Therefore, the lower level control law for
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tracking the desired reference, defined by the expression

Tm, j(k) = T̂eng, j(k)− Iθ̈d, j(k)+Ke, j (4.32)

can be used to replace Tm(k) as a function of θ̈d(k). The value T̂eng(k) − Iθ̈d(k)

represents the feedforward term based on an approximation of engine torque and the
desired crankshaft acceleration multiplied by the rotating inertia of the system, I, while Ke

represents the error feedback value accounting for any errors in the torque estimation. Now,
changes in θd(k) can be used to manipulate the required Tm(k) for control and improve the
work extraction efficiency, resulting in a power loss function of

Ploss, j(k) =
R(T̂eng, j(k)− Iθ̈d, j(k)+Ke, j)

2

54λ 2

+C(θ̇d, j(k)− ev, j)
2.

(4.33)

Substituting in the trajectory parameterization defined in Eqn. 4.26 and expanding the
squared terms in the Eqn. 4.33, the cost function in terms of Γ can be defined as

J =
N

∑
k=1

(
βq2Γ

T
j ḧ(k)ḧ(k)T

Γ j +βq1Γ
T
j ḣ(k)ḣ(k)T

Γ j

+βl2, jΓ
T
j ḧ(k)+βl1, jΓ

T
j ḣ(k)+ c j

) (4.34)

where the β coefficients are defined as

βq2 =
RI2

54λ 2 (4.35a)

βq1 =C (4.35b)

βl2, j =− 2IR
54λ 2 (T̂eng, j +Ke, j) (4.35c)

βl1, j = 2C(ωset − ev, j) (4.35d)

(4.35e)

and the term c, although independent of Γ and not influential on the optimization, is
included here for completeness as

c j =
R

54λ 2

(
T 2

eng, j +K2
e, j +2Teng, jKe, j

)
+C

(
ω

2
set + e2

v, j −2ev, jωset
)
.

(4.36)
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Note, for the β coefficients scaling the quadratic Γ terms, the cycle index dependence can
be dropped as these coefficients are constant. Further, as the basis parameters Γ are time
invariant during a cycle, they can be moved outside of the summation term in Eqn. 4.34,
thus recovering the form provided in Eqn. 4.10.

4.6.3 ECL Constraint

The previous section provides the parameterized cost function for a single independent
motor/crankshaft coupling. However, if the relative motion between the two crankshafts in
this hybrid OP engine design is to be constrained, the power loss term should be duplicated
for the second crankshaft, which is trivial as the dynamics are identical. This results in a
cost function

min
Γ

J =
N

∑
k=1

(
Pexh

loss, j(k)+Pint
loss, j(k)

)
(4.37)

where the superscripts denote the exhaust and intake crankshafts and each term can be
expressed in terms of Γ using Eqn. 4.34 and 4.35. However, each crankshaft will use
independent Γ parameters as each motion profile can be unique, increasing the number of
basis parameters now to q = 4m+2.

With each crankshaft included in the optimization problem, the ECL reference can be
fixed at certain points during the cycle using the parameterized form of θ exh

d (k)−θ int
d (k) =

ECL to populate A ∈ Rg×q and b ∈ Rg defined in Eqn. 4.10 where q is the number of
parameters and g is the number of constraints. Intake and exhaust port closing was selected
as the point to constrain the ECL as this point in the cycle is highly influential on the
breathing dynamics while also determining the trapped volume and thus the effective
compression ratio of the engine. Additional points could be selected if necessary, but
optimization results show little fluctuation elsewhere in the cycle. Additionally, to ensure a
constant average velocity during steady state operation, the value of γ0 for both the intake
and exhaust crankshafts is constrained to 0, which sets the total acceleration of a cycle to
0.

4.7 Results and Discussion

This trajectory learning method was tested experimentally under both motored and fired
conditions at a speed setpoint of 1600 RPM. For steady state operation, the learning
algorithm was triggered once every 30 cycles to reduce the computational load on the
dSPACE Microlabbox and allow any tracking error to reach a steady state point before
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Figure 4.4: Results detailing the transition to a learned motion profile at a 4 degree ECL. (a)
Motor control torque used to track desired trajectory. (b) Velocity reference. (c) Cylinder
pressure. (d) Tracking error of crankshaft. (e) Evolution of the basis parameters during
larger timescale to show the rapid convergence of parameters.

triggering an additional learning cycle. The sampling rate used for collecting measurements
for Eqn. 4.23 and 4.24 is 5 kHz. For the motored test, an ECL of 4 degrees was maintained
to demonstrate the ability to learn with a nonzero ECL present. A value of m = 6 is used for
this test. During the fired tests, engine out power was held constant at 35 kW and the ECL
was set to 0 degrees. Results quantifying the ITO performance are provided from averaged
results of 950 cycles. Note that a positive motor torque denotes work being extracted from
the engine, and a negative torque denotes work being put into the engine.

4.7.1 Motored Conditions

The results in Fig. 4.4 showing the transition from a constant velocity crankshaft motion
reference to a motion reference learned using the ITO method for a motored case. The
first highlighted section identifies the cycle over which Eqn. 4.23 and 4.24 were calculated.
The next cycles are then used to calculate Γ j and then near the 6.72 second mark, the new
reference trajectory is implemented at BDC of the exhaust crankshaft. From Fig. 4.4a it
is apparent the learned trajectory provides a drastic reduction in the motor torque required
for tracking control of the crankshaft motion while still maintaining an acceptable level
of tracking error of less than ±1 degree for crankshaft position, shown in Fig. 4.4d. This
follows again the conclusions in Chapters 2 and 3 that a near constant motor torque profile
maximizes the work extraction efficiency. The new crankshaft velocity reference, provided
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in Fig. 4.4b, shows the optimal velocity reference fluctuates nearly opposite that of cylinder
pressure, shown in Fig. 4.4c, with a slight difference between the intake and exhaust
crankshaft as each will experience a different engine torque due to the ECL. For a constant
velocity reference, the motor is required to supply increasing torque to the crankshaft as
cylinder pressure increases, only extracting work as each crankshaft passes top dead center
(TDC). Rather, the learned trajectory allows the crankshaft to slow during compression
and accelerate during expansion, smoothing out the motoring torque required to maintain
an average cycle velocity. Further, as the ECL is maintained with the learned trajectory,
there is negligible impact to the cylinder pressure after enabling learning.

The basis parameters, Γ, are shown in Fig. 4.4e over the full recording length rather than
only the cycles where learning was enabled. As the quadratic β coefficients in Eqn. 4.35a
and 4.35b are positive and the number of samples for each cycle is larger than the number
of basis parameters used, the optimization problem given by Eqn. 4.10 is guaranteed to
be strictly convex (see Proposition 1 in [35]). As such, the first values obtained for the
Γ parameters are near the optimal location. However, as Eqn. 4.35c and 4.35d are time
varying and dependent on measured values, a few learning iterations are required before Γ

reaches steady state.

4.7.2 Fired Conditions

The ITO method can also be utilized during fired engine cycles to improve system
efficiency while extracting positive work from the engine. Figure 4.5 provides a single
cycle comparison of ITO method results under fired conditions with increasing values of m

which denotes the number of frequencies contained in the Fourier series parameterization.
This figure only shows the exhaust crankshaft results as each crankshaft operates similarly
for the 0 ECL setpoint. A constant velocity baseline cannot be utilized here as the engine
torque which the motor would have to match exceeds the capabilities of the electric motors.
As m is increased, the trajectory can better approximate the ideal reference and a significant
reduction in the peak-to-peak motor torque is achieved. The mean value of peak-to-peak
torque amplitude from 950 engine cycles for each case is quantified in Tab. 4.2.

An additional performance index to quantify these results is the electric machine
efficiency, and indeed from m= 4 to m= 8, there is an increase in efficiency of 9.1% for the
mechanical to electrical conversion of power through the electric machines, including the
inverter losses, as shown in Tab. 4.2. Further improvement beyond m = 8 is limited due to
the quadratic computational complexity associated with the matrix multiplication required
in Eqn. 4.23 and 4.24 which must be calculated at each sample point for the summation.
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Figure 4.5: Single cycle results for the exhaust crankshaft of the (a) learned velocity
reference and (b) required motor torque input for tracking the reference for fired cases
at 1600 RPM and 35kW engine out power.

Table 4.2: Cycle average results for the fired cases over 950 cycles.

m = 4 m = 6 m = 8
Motor Torque Amplitude [Nm] 1072.8 613.8 297.1

Electric Machine η [%] 72.3 78.0 81.4

However, it should be noted that this quantification of efficiency here underestimates the
improvements capable for this system as the current motors are extremely oversized for the
application. They were sized for peak torque rather than nominal power ratings with each
AVID AF240 rated for a nominal power of 188 kW. The engine in this case is operating at
a 35 kW setpoint, meaning each crankshaft is producing approximately 17.5 kW.

4.8 Transient Trajectory Planning

The theory behind ITO is largely based on iterative learning control, and as such, the
usage of this ITO algorithm has focused on steady state operating conditions for the
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hybridized OP engine where the previous cycle is always identical to the current cycle.
As the proposed usage of this OP engine powertrain is in a series hybrid architecture,
steady state operation characterises the majority of operating conditions for this system.
However, there will inevitably be a need for this engine to transition between different
operating states depending on the level of power demanded by the system, similar to series
hybrid powertrains traversing an ”optimal operating line” as discussed by Gupta et al. [67].
Therefore, it is relevant to provide a discussion of the practical capabilities and alterations
of this ITO algorithm to change speed setpoints for the engine crankshafts which are outside
the theoretical bounds placed on it through convergence proofs.

4.8.1 Inter-cycle Acceleration

In the Eqn. 4.26a, the 0th harmonic is no longer set to 0 when defining the acceleration of
the crankshafts. This value is used to set the acceleration, which will be denoted as α , over
a single cycle. It is important to denote the distinction between θ̈ which is the instantaneous
crankshaft acceleration at each k point in a cycle, and the average acceleration of a cycle,
α . Now, when changing the velocity of the crankshafts, several cycles of the engine will
occur during the transition to the new setpoint. The most simple setting for α during this
transience would be a constant value for every cycle. However, an instantaneous change in
acceleration can be overly demanding for the lower level position regulator of the system.
Rather, to smooth the change of speed, a sigmoid function is used to define the velocity
trajectory rather than a ramp function, meaning the derivative of a sigmoid function will
define the average cycle acceleration over the transient period. The sigmoid function is
given as

σ =
1

1+ e−x (4.38)

and the derivative of the sigmoid function given as

σ̇ =
1

1+ e−x

(
1− 1

1+ e−x

)
(4.39)

which, when x is centered around a value of 0, provide a profile as shown in Fig. 4.6. In this
figure, σ represents the normalized shape of the inter-cycle velocity trajectory of the engine
crankshafts between two engine speed setpoints if the inter-cycle acceleration trajectory is
assumed to be represented by σ̇ . Using this function shape, it is clear to see that the velocity
presents a smooth transition between two setpoints.

82



Figure 4.6: Values for σ and σ̇ when the x value is centered around 0. Here, σ represents
the shape of the inter-cycle velocity trajectory between two setpoints, while σ̇ represents
the inter-cycle acceleration trajectory.

To apply this to the crankshaft acceleration term, the variable xω is defined as

xω =
∆ω

2
− (ω −ω j) (4.40)

which creates an indexing variable centered around 0 and dependent on the new engine
speed setpoint, ω , the actual current average cycle engine speed, ω j, and the magnitude of
the speed setpoint change, ∆ω . It should be reiterated here that the velocity term ω used
without a subscript is the desired steady state velocity setpoint. The velocity term with the
subscript j denotes the varying, intermediate velocity setpoints used to traverse between
steady state setpoints. Then, each time the exhaust crankshaft reaches BDC, the average
acceleration for that cycle can be updated using

α j+1 = m
1

1+ e−xω

(
1− 1

1+ e−xω

)
sgn(∆ωset) (4.41)

where m is a scaling factor for the engine acceleration and sgn(∆ωset) is used to account
for cases of deceleration. A scaling factor of 400 is used in this case.
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4.8.2 Cycle-to-Cycle Transition

With the inter-cycle acceleration profile now defined, it is important to account for the non-
zero average intra-cycle acceleration and how that effects the intra-cycle crankshaft motion
defined in Eqn. 4.26. While the position of the crankshafts will always traverse through
a full 360 degrees of rotation, the time in which that rotation takes will start to change as
the engine speed, and therefore the frequency of the periodic functions in Eqn. 4.27, will
change from cycle-to-cycle. Therefore, to find the timespan of each new cycle, constant
acceleration dynamics of

2π = ω j+1∆t j+1 +
α j+1∆t2

2
(4.42)

can be used to solve for ∆t j+1, the time elapsed for cycle j+1, using the quadratic form

∆t j+1 =
−ω j+1 +

√
ω2

j+1 +4πα j+1

α j+1
. (4.43)

Similarly, as the motion profile defined by Eqn. 4.26 includes a 0th harmonic to induce
a non-zero acceleration, the starting value of velocity for a given cycle will not match its
ending velocity. Ideally, the average velocity for the intermediate cycles between setpoints,
ω j, could be set to the value defined by the sigmoid function in Eqn. 4.38 similar to the
method of defining the average acceleration. However, to avoid over-defining the trajectory,
the initial velocity setpoint of the current cycle can be defined by using Eqn. 4.26b with k

set to 0 and θ̇d, j+1(0) set to the value of θ̇d, j(N) where we are using the subscript j to again
define the cycle index and N is the last time index within a cycle. Then, solving for ω j+1,
Eqn. 4.26b becomes

ω j+1 = θ̇d, j(N)− ḣ(0)T
Γ (4.44)

However, when Eqn. 4.27 is integrated to find ḣ(k) as

ḣ(k) =

[
k

sin
(
ω j+1k

)
ω j+1

−cos
(
ω j+1k

)
ω j+1

sin
(
2ω j+1k

)
2ω j+1

−cos
(
2ω j+1k

)
2ω j+1

. . .

sin
(
m∗ω j+1k

)
m∗ω j+1

−cos
(
m∗ω j+1k

)
m∗ω j+1

]T (4.45)

it is apparent that ḣ(0)T Γ will contain a w j term, even when k = 0. This can be accounted
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for by defining ḣ(0)T Γ as

ḣ(0)T
Γ =

1
ω j+1

m

∑
i=1

−Γ(2i+1)
i

. (4.46)

Now, the value of ω j+1 can be solved for as a quadratic equation similar to the elapsed time
for each cycle.

Now that the cycle time, average velocity, and average acceleration can be determined
for each cycle, this transient trajectory planning can be applied to the experimental system
with the results shown in Fig. 4.7. As the engine speed changes from 1600 to 2000 RPM
during fired conditions, the average crankshaft velocity is increasing as required to make
the desired speed change. However, the intra-cycle variations of crankshaft velocity are
still present to smooth the torque throughout the transient operation. Therefore the motor
torque amplitude remains between ±300 Nm. Further, tracking error is maintained at low
enough values to maintain combustion and stable engine operation. Note, however that
the tracking error does grow as speed changes, as shown in Fig. 4.7. This is due to the
increased engine friction at higher speeds. As this is not modeled in the feedforward term
detailed in Chapter 3, the integrator in the feedback term must grow to compensate for this
DC component in the tracking error. Increasing the integrator gain could reduce the time
required for this error to move back to near 0 values.

4.9 Conclusion

In this Chapter, a novel method of optimizing the tracking reference for a repetitive system
by formulating the cost as a QP problem was developed. Constraints can then be applied
to meet cycle requirements, enabling the use of Fourier series parameterization for the
trajectory and reducing the number of optimization variables. Then, this theory was
applied as a method for learning, in real-time, the optimal crankshaft motion profile of
a hybrid opposed piston engine. The ITO method can be implemented with little prior
knowledge of the system and reduces the need for offline optimization and the impact of
model uncertainty on online performance. The effectiveness of the learning algorithm is
dependent largely on the precision of the trajectory parameterization which is limited by
the computational time allowed by the physical system. Utilizing the experimental test
cell detailed previous chapters, the rapid convergence and near optimal crankshaft motion
profiles for the ITO strategy as well as its proficiency under both motored and fired cycle
operation was demonstrated.

This and previous chapters have focused largely on the intra-cycle operation of the dual-
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Figure 4.7: Results for a transition between engine speed setpoint of 1600 to 2000 RPM.
The average velocity of the crankshafts increase between each cycle, but the intra-cycle
velocity trend observed for steady state operation is still present. This allows the motor
torque amplitudes to remain small. Further, the tracking error is maintained within
sufficient limits to maintain stable operation.

motor hybrid OP engine. With the implementation of the ITO scheme to determine the near
optimal crankshaft motion in real time, focus can now shift to the inter-cycle opportunities
possible with this powertrain.
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CHAPTER 5

Inter-Cycle Operation of an Opposed Piston
Engine Range Extender

This chapter presents the exploration and local optimization of the hybridized opposed
piston (OP) engine operation at two constant power operating points. In previous chapters,
the feasibility of controlling the motion of the two crankshafts separately was demonstrated,
introducing the ECL as a controllable parameter in the hybridized OP engine which allows
for variation in the effective compression and expansion ratio of the engine, along with
scavenging performance. The introduction of this novel control actuation as well as the
adjustable speed and load setpoint in a series hybrid OP engine powertrain architecture
necessitates intensive calibration effort to realize any possible efficiency improvements.
However, the OP engine within this series hybrid powertrain does not operate in highly
transient conditions, but rather its operating point is fixed or slowly varying. This property
permits using online calibration techniques. After manually sweeping speed and ECL
values at two power setpoints, the use of an extremum seeking type inter-cycle optimization
algorithm to optimize the operating setpoint is validated.

5.1 Introduction

Rigorous calibration effort is usually carried out during the development phase of an
engine to determine the best combination of actuator set points at each operating point.
Traditionally, engine calibration was done by discretizing the control parameter space and
sweeping the entire resulting grid on an engine dynamometer experimental setup. The
calibration goal is to realize the target performance metrics such as fuel consumption,
emissions, and transient performance [28]. Nevertheless, this method searches all
combinations of control parameters and thus suffers from the curse of dimensionality
and clearly is not an economic method to calibrate modern ICEs with various control
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actuators. Advanced calibration techniques use Design of Experiments (DOE) [68] along
with optimization and extreme seeking methods [30] to reduce the required effort. These
methods often use the DOE concept to produce a sizable set of data points for engine
operation that will be used for training data driven models or tuning physics-based models
of the engine [69, 70]. These models are used as a surrogate for the engine dynamometer
testing and are coupled with optimization algorithms in the next step to find the best
actuator set points. This process is usually executed offline but the solution is eventually
validated through experiments. Different surrogate models are used in literature for this
purpose such as 1D GT-Power models [71,72], data driven models such as neural networks
[73], Gaussian process [74], and NARX models [75]. Gradient free approaches such as
genetic algorithms are among the most popular optimization algorithms used for offline
calibration of ICEs [72, 73]. Yu et al. [28] provides a comprehensive survey on calibration
methods for internal combustion engines.

Recently, a new group of intelligent calibration schemes have emerged that are capable
of finding the optimal operation parameters on-board [28]. These methods can adapt the
engine calibration to aging [76] and driving style of the driver [77, 78] and thus provide
a more optimal operation compared to offline calibration. Moreover, in a range extender
powertrain as instantaneous vehicle speed and load are decoupled from the engine operating
point, the engine’s operational envelope can be limited to what is referred to as the optimal
operating line rather than a complete operating map [67]. This line defines a single speed
and load setpoint that minimizes fuel consumption for each power setpoint of the engine.
Therefore, on-board calibration is a suitable choice for the opposed piston engine in a
range extender configuration since it would reduce the development time of the engine
significantly.

Similar to offline calibration schemes, some on-board calibration methods incorporate
a model of the engine in their algorithm. These methods formulate the engine calibration
as an optimal control problem to be solved online [79, 80]. These schemes need extensive
modeling effort and the quality of the calibration solution that they find depends on the
accuracy of the models. The model-free extremum seeking methods address these issues
by iteratively perturbing the operating variables and monitoring the response [30, 81, 82].
However, these approaches can be slow for on-board calibration if not designed well. As
an example, the automated engine calibration method introduced by Ma et al. [83] takes
around 20 minutes to find the best set of actuator set points for one engine operating point.
To overcome this deficiency Tan et al. [84] introduced a model guided extremum seeking
approach to optimize the fuel injection timing of a diesel engine. In a different direction
Malikopoulos et al. [77] modeled the engine operation as a Markov decision problem, in
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which the states are the engine operation and the actions are calibration parameters. The
authors proposed a Predictive Optimal Stochastic Control Algorithm (POSCA) to solve
the Markov decision problem. Although this method is capable of adjusting the engine
calibration to the style of the driver, it suffers from the curse of dimensionality and thus
the authors proposed a decentralized learning control scheme in a later work to address this
issue [32]. Further, this method also requires an initial full exploration of the operating
space to populate the reward matrix of the Markov decision problem.

In this chapter, the model-free setpoint optimization strategy proposed by Gupta et
al. [67] is leveraged to determine the optimal speed, load, and exhaust crankshaft lead
of an opposed piston engine. This method finds the optimal actuator setpoints efficiently
by estimating the gradient of the performance metric with respect to control parameters.
This calibration approach is modified and adapted for an opposed piston engine and the
effectiveness of the method is experimentally demonstrated on an physical engine test
bench, which to the authors’ knowledge, has not yet been completed. Therefore, an
abbreviated experimental sweep of speed and ECL settings are completed at two separate
power setpoints to find the optimal combination of speed and ECL. These two points are
used to validate the onboard setpoint optimization and evaluate the practicality of this
onboard setpoint optimization process for a hybridized opposed piston engine powertrain.

5.2 System Description

A schematic of the experimental test setup used in this work is provided in Fig. 5.1. This is
the same experimental setup as used in previous chapters, but Fig. 5.1 now highlights the
specific locations for power measurements of interest for this study. A compression ignition
strategy using F-24, which is a base of commercial Jet A aviation fuel plus additives, was
employed for this testing using a single injection strategy with a fuel rail pressure of 1000
bar. This is an important distinction from previous chapters which utilized gasoline for the
compression ignition combustion. An external air handling system as well as an external
oil and coolant system are used to maintain relevant operating conditions for the hybrid
system. The following sections describe the relevant experimental setup. Discussion of the
control structure and trajectory planning for the crankshaft motion regulation through the
electric machines can be found in previous chapters.
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Figure 5.1: Layout of the experimental test cell including the air handling system as well
as specific locations of power measurements within the system.

5.2.1 Air Handling System

Air is supplied by an external screw type compressor which maintains a 250 gallon air
tank to the desired reservoir pressure (350 kPa). This then feeds the conditioning system
consisting of a 20 kW air heater, and a pressure regulation valve as shown in Fig. 5.1. The
engine intake air pressure at the intake plenum is controlled via the pressure regulation
valve while the intake air temperature is maintained at 30◦C, or 303 K for all tests. Air
flow through the engine is controlled with the exhaust throttle valve. In-cylinder pressure is
measured with an AVL GH14D pressure transducer while the intake and exhaust manifold
pressures are measured using Kistler 4045 series sensors.

An objective of this chapter is to evaluate the benefits of dynamically varying ECL
and how that impacts the thermal efficiency of the system along with the auxiliary power
required to supply sufficient boost pressure to the engine. As air is supplied to the single
cylinder engine from an external compressor in this experimental setup, a turbocharger
model is augmented onto the experimental setup to determine a realistic back pressure
on the engine. Furthermore, the two stroke single cylinder operation cannot sustain the
power demanded by the compressor purely through work extracted from the exhaust by
the turbine. Therefore, an electric turbocharger (e-turbo) model is assumed which can then
quantify the auxiliary power needed to provide the required boost pressure.

First, to determine the back pressure on the turbine, an exponential fit was created to

90



obtain a pressure ratio across the turbine based on the mass flow through the engine. This
fit was created using the turbine map from a Continental turbocharger used with the Ford
EcoBoost 1.5L engines and is given as

∆pturb = x1 ∗ exp(x1 ∗ ṁpar)+x3 ∗ exp(x4 ∗ ṁpar) (5.1)

where ṁpar is the corrected mass flow based on temperature and pressure with the units
[kg/hr ∗

√
K/bar] and the coefficients of x are given as x = [0.64,2.66e − 4,5.00e −

15,8.30e− 3]. The calculated back pressure on the engine is then controlled using the
exhaust throttle valve.

The power recuperated through the turbine is calculated as

Pturb = ṁturbCpT [∆p
k−1

k
turb −1]∗ηturb. (5.2)

where Cp is the specific heat of the exhaust, T is the temperature of the exhaust gases, and
k is the ratio of specific heats, assumed to be 1.35 for the exhaust. The turbine efficiency,
ηturb, is calculated based on an exponential fit of the same functional form as Eqn. 5.1 but
as a function of the turbine pressure ratio rather than corrected mass flow with coefficients
x= [5.84,−1.86,−8.50e−3,15.00]. This fit is again based on the Continental turbocharger
assuming the e-tubro design can maintain the maximum efficiency for all turbine speeds.

Then, the boost pressure required by the engine is determined by regulating the intake
manifold pressure to maintain a desired delivered air-to-fuel ratio (AFR), which also
determines the mass flowrate through the compressor. With the boost pressure and flow
rate specified, the power consumption of the compressor can be calculated using the same
equation as shown in Eqn. 5.2 but with a ratio of specific heats of 1.4 and by dividing by
the compressor efficiency. Compressor efficiency is again determined by a exponential fit
as in Eqn. 5.1 and as a function of mass flow through the compressor. The coefficients are
given as x = [0.85,−1.27,−1.13,−34.16].

At steady state conditions, the power consumed by the compressor can be assumed
equal to the power generated by the turbine. However, as this is a two-stroke, single
cylinder engine and the power extracted from the exhaust by the turbo may not provide
enough power to the compressor to maintain the desired boost pressure, the power balance
now becomes

Pcomp = Pturb +Paux (5.3)

where Pcomp is the power required by the compressor, and Paux is the auxiliary power
required by the e-turbo to provide the remaining power to the compressor. This provides a
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quantifiable power loss associated with the demanded boost pressure for the engine.

5.2.2 Efficiency Calculations

Now, the power measurements and efficiencies of interest can be defined using the locations
denoted in Fig. 5.1. The net indicated thermal efficiency (ITE) is calculated by integrating
the indicated power, denoted as P1 in the figure, and dividing by the fuel energy added to
the system as

ηITE =

∫
π

−π
PdV

mfQLHV
(5.4)

where P is the cylinder pressure, V is the cylinder volume, mf is the quantify of fuel injected
each cycle, and QLHV is the lower heating value of the fuel. Similarly, the mechanical
brake thermal efficiency (BTEmech) is quantified using the cycle average mechanical output
power P2 as

ηBTE =
P2/ωeng

mfQLHV
(5.5)

where ωeng is the engine speed. The auxiliary power consumed by the e-turbo can by
included in this BTE calculation by subtracting Paux from P2.

It is worth noting here that the mechanical-to-electrical conversion efficiency of the
motors on each crankshaft were neglected in this analysis, meaning the value of P3
in Fig. 5.1 is not used. Due to the severe oversizing of the electric machines, their
losses dominate the efficiency map when included. Any sensitivity to changes in ECL
is overwhelmed by the efficiency improvement of the electric machine at lower speeds. As
such, motor efficiency is neglected here to focus on the OP engine operating characteristics
with the ability to dynamically vary the ECL setpoint.

5.3 Engine Performance

For the validation of the onboard setpoint optimization algorithm proposed by Gupta et
al. [67] and Filev et al. [31], a set of ECL and engine speed sweeps were completed for a
pair of electrical output power setpoints of 16 and 28kW. The range of variables swept is
detailed in Tab. 5.1 along with the delivered air to fuel ratio (AFR) and location of 50%
fuel mass fraction burned (CA50) maintained over the sweeps. It should be noted that the
ECL setpoints of -4 and -2 degrees were not used with the 2000 and 2200 RPM setpoints
due to excessive combustion noise. The location of CA50 was controlled rather than the
timing of fuel injection to minimize the effect of combustion phasing on system efficiency
over a range of speeds. The delivered AFR was set to 30 as this reduced concern for soot
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Table 5.1: Experimental Engine Sweeps

Test Variable Setpoints
Engine Speed [RPM] 1200, 1400, 1600,

1800, 2000, 2200
ECL [deg] -4, -2, 0, 2, 4, 6, 8
CA50 [deg] 6
AFR [-] 30
Brake Electrical Power [kW] 16, 28

generation. Further, by fixing the delivered AFR, the efficiency trade-off between ECL and
boost pressure can be evaluated. In a two-stroke OP engine, there is no pumping stroke for
the engine and the air flow through the cylinder is controlled by the pressure ratio between
the intake and exhaust manifolds along with the relative area of exposed intake and exhaust
ports. Typically, increasing the ECL provides a longer blowdown process and reduces
the auxiliary pumping work required by the compressor. However, the advanced timing
for opening the exhaust ports also reduces the expansion ratio of the engine, reducing the
indicated thermodynamic efficiency [12].

5.3.1 Engine Sweep Results

5.3.1.1 16kW Power Setpoint

The results of the ECL and engine speed sweeps for the power setpoint of 16kW are
shown in Fig. 5.2. In each subfigure, the efficiency of the system is evaluated at different
power take-off locations. The operating point of 1800 RPM and 4 degree ECL is used as
the baseline point with all other points represented as a difference in efficiency from the
baseline. In Fig. 5.2 (a), the ITE of the OP engine is shown to be relatively flat with the peak
efficiency near the operating point of 1400 RPM and 0 deg ECL. As speed decreases, heat
transfer increases, reducing the ITE. Additionally, increasing ECL reduces the expansion
ratio of the engine, while decreasing the ECL reduces the trapped volume and therefore the
effective compression ratio of the engine.

Figure 5.2(b) shows the variation in the mechanical BTE where the output power is
considered the mechanical power output from the engine crankshafts, labeled P2 in Fig. 5.1.
While there is little sensitivity in the mechanical BTE to changes in ECL until the low speed
range, speed has a larger impact. As speed decreases from 1800 RPM, the mechanical BTE
increases, as would be expected due to the reduced frictional losses. Similarly, increasing
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Figure 5.2: Results from engine sweeps for the 16 kW power setpoint. The results shown
are the (a) indicated thermal efficiency (ITE), (b) brake thermal efficiency (BTE) with
output power measured at the engine crankshafts, and (c) BTE with power measured at
the engine crankshafts while also including the auxiliary power loss due to the e-turbo.
The efficiency values are normalized with respect to the baseline operating point denoted
by the black “X”. The increase expansion ratio maintains the optimal ECL near 0 to 2
degrees while friction losses drive the speed to the minimum setpoint. Auxiliary power
demand from the compressor narrows the ideal operating range for the ECL to 2 degrees.

speed to 2200 RPM exhibits a near 2% decrease in the mechanical BTE. At low speeds, the
influence of the ECL on effective compression and expansion ratio of the engine discussed
previously limits the optimal ECL to between an ECL of 0 and 2 degrees. However, at the
optimal speed setpoint of 1200 RPM, the range in BTE over the full ECL range is only
0.9%.

Then, in Fig. 5.2(c), the auxiliary power required by the e-turbo to supply the required
boost pressure is also included in the BTE calculation. While the contour plot remains
largely unchanged with the optimal operation located at the minimum speed of 1200 RPM,
the maximum BTE starts to shift towards higher ECL points, centered around 2 degrees
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ECL rather than the 1 degree ECL when neglecting the e-turbo auxiliary power. These
results illustrate a trade-off between the larger expansion ratio of the engine achieved at
smaller ECLs, the peak compression ratio near 4 degrees for this port design, and the
reduced boost pressure required at larger ECLs. However, the impact on the location of the
optimal operating point is small.

5.3.1.2 28kW Power Setpoint

The same set of speed and ECL points as discussed for the 16kW power output setpoint
were also run at a higher power of 28kW with the results shown in Fig. 5.3. The ITE
results show a similarly flat operating map with higher indicated losses experienced at low
speeds and ECL. This is expected at higher power setpoints as the low speed increases heat
transfer loses. Furthermore, as noted by Niak et al. [12], the required blowdown period,
the time when only the exhaust ports are open after combustion to allow the burnt gasses to
exit the engine cylinder, is proportional to the fuel energy released during combustion. At
this higher power setpoint, the low and even negative ECL setpoints limit this gas exchange
process and push the optimal ECL to near 2 degrees.

In Fig. 5.3 (b), the peak mechanical BTE is no longer at the minimum speed of 1200
RPM but increased to 1400 RPM due to the higher heat transfer losses at low speeds.
However, the range of efficiency values across this operating map is reduced as compared
to the 16kW setpoint. For the 28kW setpoint, the mechanical BTE values have a range of
2.9% compared to the 3.4% range at 16kW.

In Fig. 5.3(c), when incorporating the e-turbo power into the BTE calculation, the
optimal ECL shifts higher to 4 degrees, again illustrating the trade-off between the power
required for boost pressure and the improved indicated efficiency for low ECL points.
Compared to the 16 kW operation, the sensitivity to changes is ECL is decreased at 28kW.
At 1400 RPM, there is a range of 1.5% for the BTE values in Fig. 5.3 (c). The range in
efficiency values at the optimal speed for the 16 kW operation is 1.7%. While this is a
rather small difference, this reduced sensitivity to operating conditions impacts the real-
time optimization procedure discussed in later sections of this work.

Figure 5.4 provides a more explicit comparison of the impact of ECL on expansion
and compression ratio, as well as the auxiliary power. Auxiliary power is plotted for each
power setpoint at the 1200 RPM speed setpoint. As the ECL increases, the compression
ratio increases until an ECL of 4 degrees. Past this point, the increasing ECL starts to
shrink the trapped volume of the engine as the exhaust ports are starting to close before the
intake ports. Similarly, the auxiliary power required decreases until around 4 degree ECL.
Then, as the exhaust ports now start to close before the intake, the time period in which both
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Figure 5.3: Results from engine sweeps for the 28 kW power setpoint. The results shown
are the (a) indicated thermal efficiency (ITE), (b) brake thermal efficiency (BTE) with
output power measured at the engine crankshafts, and (c) BTE with power measured at
the engine crankshafts while also including the auxiliary power loss due to the e-turbo.
The efficiency values are normalized with respect to the baseline operating point denoted
by the black “X”. At the higher power setpoint, the optimal ECL shifts to to higher values
betwee n 2 and 4 degrees will the optimal speed also increases to 1400 RPM due to the
increased heat transfer losses.

ports are simultaneously open starts to shrink. For the expansion ratio, the exhaust port will
always open first, meaning increasing ECL creates a continual decline in expansion ratio.

With the sweeps of the hybrid OP engine system completed for two power setpoints,
the learning methodology to calibrate the system operation can now be validated.

5.3.2 Setpoint Optimization

Using the information provided by the initial baseline testing of the hybrid OP engine,
the approach to engine calibration proposed by Gupta et al. [67] and Filev et al. [31] can
now be validated. This methodology consists of two parts as highlighted in Fig. 5.5 which
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Figure 5.4: Comparison of the effects of ECL on compression ratio, expansion ratio, and
the auxiliary power required for the demanded boost pressure at 1200 RPM for each power
setpoints. The peak compression ratio occurs near a 4 degree ECL while the expansion
ratio decreases with increasing ECL, similar to the required auxiliary power.

provides a block diagram to show how the onboard setpoint optimization methodology
was implemented. First, an approximate model relating the engine output to changes in
engine input must be learned from measured real-time values. In this case, the output is
considered the brake specific fuel consumption (BSFC) and the inputs are engine speed
and ECL. Second, constrained optimization utilizing the learned model updates the control
inputs to improve system performance while remaining within safe operating limits. The
value of BSFC is used rather than BTE as minimization of BSFC fits more readily into the
optimization scheme proposed while accomplishing the same goal of maximizing BTE.
The following sections further develop the methods used in the onboard learning and
setpoint optimization.

5.3.2.1 Jacobian Learning

For this model approximation, the engine is assumed to be a nonlinear but smooth system
represented as

y = F(u, p) (5.6)
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where u is the control input, u = [N ECL]T and p is the power setpoint of the engine. The
output, y, is the BSFC of the system, calculated as

BSFC =
ṁfuel

Pout
(5.7)

where Pout is the power output from the mechanical system, including the auxiliary power
losses.

To simplify the optimization problem and make it tractable for online implementation,
a surrogate model linearized about the current operating point is defined as

∆y(k) = Ĵu∆u(k)+ Ĵp∆p(k) (5.8)

where the changes of these values are represented as

∆y(k) = y(k)− y(k−1)

∆u(k) = u(k)−u(k−1)

∆p(k) = p(k)− p(k−1).

The estimated Jacobians of the system, Ĵu and Ĵp, are defined as

Ĵu =
∂y
∂u

Ĵp =
∂y
∂ p

and represent the change in the output y due to changes in the control input and power
setpoint. As y is the scalar output of BSFC, Ĵu is a row vector and Ĵp is a scalar.

To estimate the value of the Jacobians, Kalman filtering is applied to a linear system
given as

ĴT
i (k+1) = ĴT

i (k)+w(k)

∆y(k) = ∆iT (k)JT
i (k)+ v(k)

(5.9)

which can be obtained using the relation described in Eqn. 5.8 and rearranging to represent
the individual components of the Jacobian as the linear system states. The term i ∈ [u, p]

as each Jacobian can be found separately as detailed elsewhere [31]. The variable w(k)

represents process noise while v(k) is the measurement noise. The Kalman filter updates
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Figure 5.5: Block diagram showing the implementation of the setpoint optimization
technique. Feedback values are used along with a Kalman filter to estimate a linearized
approximation of the system. Constrained optimization is then performed with this
approximation to determine the control inputs for the system.

for the Jacobians follow as

ĴT
i (k+1) = ĴT

i (k)+Pi(k)∆i(k)(∆y−∆iT (k)ĴT
i (k))...

(Ri +∆iT (k)Pi(k)∆i)−1

Pi(k+1) = P(k)+Qi − (Pi(k)i(k)iT (k)Pi(k))...

(Ri +∆iT (k)Pi(k)∆i)−1

(5.10)

where Qi represents the variance of the process noise and Ri the variance of the sensor
noise. As these values are not completely known, they can be determined through heuristic
tuning. Filev et al. [31] use the value of Qi in a similar manner as the forgetting factor
in other parameter identification schemes such as recursive least squares. If changes in
the control update cause large changes in the estimated Jacobian, decreasing the value of
Qi can slow the learning rate of the Kalman filter. While this can avoid poor estimates in
the Jacobian for large changes in control input, it also limits the convergence rate of the
Jacobian estimation.

Remark 1. As noted by Filev et al. [31], an advantage in the use of a Kalman
filter is that the Jacobian can be estimated using only the general input excitation when
other system identification techniques require a persistent excitation term in the system
input. However, in this experimental implementation, an additional persistent excitation
term is found to be beneficial for exploration of the control space, especially during the
initialization period when knowledge of the Jacobian is weak.

Remark 2. Different values of Qi were used for learning the response to changes in
speed and ECL. As the system efficiency has a generally weaker response to changes in
ECL and also a heavy dependence on the engine speed, it is advantageous to have the
setpoint algorithm converge to a speed setpoint faster than the ECL setpoint. As such,
the value of Qu corresponding to the change in ECL is set to 0.001 while the value

99



Table 5.2: Jacobian Learning Parameter Values

Parameters Values
Qu [0.01 0; 0 0.001]
Qp 0.0001
Ru 15
Rp 15

corresponding to the change is speed is set to 0.01. The values used for the tunable
parameters within the Kalman filter are provided in Table 5.2.

Now, with values for the estimated Jacobians relating changes in control and power
setpoints to changes in BSFC, a constrained optimization problem can be formulated to
minimize BSFC.

5.3.2.2 Constrained Optimization

Using the linear model described in Eqn. 5.8, the objective of the optimization problem is
to find the optimal control inputs u(k) defined by

u(k) = argmin(||yd − ŷ(k)||2Ω + ||u(k)−u(k−1)||2Γ)+ r(k) (5.11)

where r(k) is the persistent excitation term on the control inputs. This term is defined as

r(k) = [AN(k)(WN −0.5) AECL(k)(WECL −0.5)]T (5.12)

with AN(k) and AECL(k) representing the range of the persistent excitation term on engine
speed and ECL, respectively. The WN and WECL terms are randomly generated values
between 0 and 1. The cost function, the function within the argmin operation in Eqn. 5.11,
can be written as

F =(yd − ŷ(k))T
Ω(yd − ŷ(k))+

(∆u(k))T
Γ(∆u(k))

(5.13)

where yd is the desired BSFC output value. The purpose of the first term in the cost function
is to penalize the difference between the desired output value, yd , and the estimated value
ŷ(k). The second term penalizes the difference between the previous and current control
input values. The relative importance of these penalties is determined through the Ω and
Γ weighting factors. In this case, as the output is BSFC, yd = 0. As there is only one
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Table 5.3: Quadratic Programming Parameter Values

Parameters Values
Ω 37
Γ [300 0; 0 1150]
AN(k) 10 RPM
AECL(k) 0.25 degrees

output value, Ω is a scalar weighting factor to penalize the size of the estimated BSFC,
ŷ(k). However, the transpose terminology is kept to maintain generality in the problem
derivation. Similarly, using the positive definite weighting matrix Γ, the rate at which the
input values are changed can also be penalized to limit the control step sizes. Too large of
a change in the control input results in the local Jacobian estimates no longer being valid,
but small step sizes increase the time spent at sub-optimal control setpoints.

Remark 3. Heuristic tuning of the the weights of Ω and Γ, as used in this work, can
be a time consuming process. The value of Ω should be large enough to influence the
system performance without being concealed by the persistent excitation term. However,
too large of an Ω value can cause large steps in the control input value, drastically changing
Jacobian values and providing poor robustness against noisy measured performance values.
Similarly, Γ should be sized large enough to limit the step size of the control values without
allowing the persistent excitation to be the dominant factor in the control input. The values
utilized here for Ω and Γ as well as the persistent excitation term are given in Table 5.3.

To find the current control input u(k), the cost function needs to be a quadratic function
with respect to u(k), meaning the estimate of ŷ(k) should be replaced by

ŷ(k) = y(k−1)+ Ĵu(∆u(k))+ Ĵp(∆p(k)). (5.14)

Combining Eqns. (5.13) and (5.14), the cost function can be written in a conventional
quadratic programming problem (QP) form of

min
u(k)

F =
1
2

uT (k)Hu(k)+gT u(k) (5.15)

where the terms H and g are defined as

H = 2(ĴT
u ΩĴu +Γ) (5.16)
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g =2((−yT
d + yT (k−1)− (Ĵuu(k−1))T

+(Ĵp∆p)T )ΩĴu −uT (k−1)Γ)T
(5.17)

Furthermore, linear constraints can be included in the QP problem to restrict the range of
the inputs u(k). These bounds are defined as

[1200 −4]T ≤ u(k)≤ [2200 8]T (5.18)

where speed is given in RPM and ECL in degrees. To solve this optimization problem in
an online manner, the Matlab function “quadprog” was used with the active-set algorithm
due to the constraints.

Remark 4. Changing the input values of speed and ECL will create small disturbances
in the BSFC and power output of the system. Therefore, the setpoint optimization algorithm
is only updated once every 300 engine cycles to allow the system to settle after each input
change.

Remark 5. In the implementation described in Filev et al. [31], all control values
contained in u are changed at each iteration of the algorithm. However, this can obfuscate
the response of the system to any one particular input. As such, the manipulated control
input is alternated for each iteration in this work, meaning only one control variable changes
at a time.

5.4 Results

The learning algorithm described in the previous section was implemented on the hy-
bridized opposed piston engine at the same two power setpoints where the engine sweeps
were completed. At each power setpoint, the algorithm was initialized at a pair of sub-
optimal speed and ECL operating points of 1800 RPM, 4 degree ECL and 2000 RPM, 6
deg ECL.

The dynamic response of the system to the learning algorithm starting at 1800 RPM, 4
degrees ECL at the 16 kW power setpoint is shown in Fig. 5.6. On the left, the evolution
of the measured speed and ECL of the engine is shown. After each change in the speed
setpoint, the torque produced by the engine must adjust to maintain a constant power output
from the system. As the speed is shifted incrementally to lower values, the torque increases.
By only running the optimization algorithm once every 300 cycles, the controller regulating
the power output of the hybrid powertrain has time to adjust the fuel input to the system,
increasing the torque and maintaining the 16 kW electrical output power. On the right of
Fig. 5.6, the engine speed setpoint starts by taking small steps around the initial 1800 RPM
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Figure 5.6: Learning trajectory of the system at a 16 kW setpoint using an initialization
of 1800 RPM and 4 degree ECL. On the left, the evolution of engine speed and ECL are
provided to show how the system can maintain a constant output power. On the right,
the trajectories for the ECL and speed setpoints are provided, along with the BSFC at each
setpoint. The BSFC shows a fairly constant decrease as the setpoint optimization algorithm
adjust speed and ECL towards the optimal setpoint.

setpoint, largely motivated by the excitation term in the control input. However, the speed
quickly starts to decrease towards the minimum speed of 1200 RPM, which in the case of
the 16kW power setpoint is the optimal speed point. At 1800 RPM, ECL has little impact
on the system and starts to drift upwards. However, as speed decreases, so does ECL,
eventually settling around 3 degrees which is close to the optimal ECL setting of 2 degrees
as shown in Fig. 5.2.

Next, at the 16 kW operating setpoint, the speed and ECL were initialized at 2000
RPM and 6 degrees ECL. Shown in Fig. 5.7, after an initial increase in speed, it decreases
monotonically to the optimal speed of 1200 RPM. However, ECL takes a much longer time
to converge. As discussed previously, the learning rate for ECL was tuned to be slower than
that of speed as the response of BSFC to changes in ECL can vary according to the speed
setpoint. Similarly, from the BSFC plot in Fig. 5.7 it is evident that speed has a much
larger impact on efficiency than ECL does. As ECL decreases, as it starts to do near 800
seconds, the required boost pressure decreases, decreasing the auxiliary power required to
drive the compressor. However, this also increases the expansion ratio of the engine. As
show in Fig. 5.2 c, while an ECL of 2 degrees provides the highest efficiency for the system,
between 6 and -2 degree ECL at 1200 RPM, there is only a range of 0.2% BTE efficiency
when including the auxiliary power. This is reflected in the near constant BSFC curve as
the ECL setpoint decreases in Fig. 5.7. However, the poor performance of the engine at
large negative ECL values prevents the learning algorithm from passing below a -2 degree
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Figure 5.7: Learning trajectory of the system at a 16 kW setpoint using an initialization of
2000 RPM and 6 degree ECL. The top figure shows the trajectory of the ECL and speed
setpoints. The lower figure displays the corresponding BSFC. The speed of the engine is
adjusted more rapidly than the ECL due to the tuning of the Kalman filter for Jacobian
approximation. The BSFC response is much more sensitive the changes in engine speed do
to the relatively flat efficiency map corresponding to ECL at 1200 RPM.

ECL. It is worth noting here the relatively noisy BSFC used by the learning algorithm to
adjust the estimated Jacobian for the system. To reduce the impact of noise on the learned
values, a moving window average of the past 45 cycles is used when evaluating the change
in BSFC from one control input to the next. Further, while the learning algorithm converged
in approximately 5 minutes from the first setpoint, it took nearly 25 minutes for the system
to converge from the speed and ECL setpoint that were further from the optimal operating
point. Yet, when only evaluating the convergence rate of BSFC, the performance metric of
interest, the BSFC converges to its minimum point at similar rates for each case. Although
the ECL takes a long time to converge, it has little impact on performance.

After implementing the learning algorithm at two different initialization points at 16kW
brake power output, the power level was increased to 28kW and the same initialization
points were analyzed. Figure 5.8 provides the ECL and speed trajectories as well as the
BSFC response of the system when initialized at 1800 RPM and a 4 degree ECL. Again,
the change in speed is quicker than that of ECL. However, in the case of the 28kW setpoint,
the optimal speed is around 1400 RPM. The learning algorithm starts to slow the decent
of speed as the engine approaches 1400 RPM, but continues on to 1200 RPM. As shown
in Fig. 5.3, the operating map for the hybridized OP engine system at 28 kW is relatively
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Figure 5.8: Variation in the control inputs and BFSC of the hybridized OP engine system
implementing the setpoint optimization algorithm at an initialization point of 1800 RPM
and 4 degree ECL for a 28 kW power setpoint. Speed passes the optimal operating point
of 1400 RPM and settles on the boundary of 1200 RPM due to the relatively flat operating
map. Changes in ECL slow near 2 degree ECL but make small continued steps downward
as there is only a range of 0.9% in BTE between the ECL setponts of -2 to 8 degrees at
1200 RPM.

flat over the speed and ECL of interest. As such, the gradient of BSFC around 1200 RPM
is not large enough to change the Jacobian value of the system approximation learned by
the Kalman filter. Additionally, as a speed constraint of 1200 RPM is applied to the OP
problem used to define the control input, only the persistent excitation term can shift the
speed control off the boundary of the operating space. The noise associated with the BSFC
values used by the learning algorithm are too large compared to the change in BSFC which
can be attributed to the persistent excitation of 10 RPM used for the speed control. This
poor signal to noise ratio limits the effectiveness of the learning algorithm when it reaches
a boundary in a fairly insensitive portion of the operating map. The ECL setting during
this process drifts slowly downward from an inital setting of 4 degrees. As there is only
a range of 0.9% BTE at 1200 RPM, the ECL has little impact on fuel consumption for
this operating point. The changes slow near 2 degrees, but still continue to drift slowly
downward. The learning algorithm at this 28 kW operating setpoint also took over double
the amount of time to reach a near optimal operating point than it did for the 16 kW setpoint
with the same initialization point, highlighting again the relatively flat performance map of
the engine at this power output.
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Figure 5.9: Variation in the control inputs and BFSC of the hybridized OP engine system
implementing the setpoint optimization algorithm at an initialization point of 2000 RPM
and 6 degree ECL for a 28 kW power setpoint. Again speed passes the optimal setpoint of
1400 RPM and settles at 1200 RPM. The setpoint of ECL oscillates around the original
value of 6 degrees for the entire test due to the insensitivity of BSFC to ECL at this
operating point.

Finally, speed and ECL were initialized at 1800 RPM and 6 degrees, respectively, for
the 28 kW setpoint. The results of the speed and ECL setpoint along with BSFC are shown
in Fig. 5.9. At this initialization point, both speed and ECL remain near the initial values for
nearly 7 minutes. Finally, speed decreases from 2000 RPM and again passes the optimal
1400 RPM setting to stop at the 1200 RPM boundary. However, as shown in the BSFC
response, fuel consuption decreased continually with speed. This indicates that 300 cycles
between control input may not be a sufficient length of time to allow the BSFC to stabilize.
Similarly, the ECL setpoint for this case has a negligible change from the initial setpoint
due to the insensitivity of the system efficiency to changes in BSFC due to the trade-off
between ECL’s impact on ITE and the auxiliary power required to drive the compressor.

5.5 Conclusions

In this chapter, the inter-cycle operating characteristics of an opposed piston engine utilized
in a range extender powertrain are investigated. Due to the decoupling of the crankshafts,
the ECL becomes a novel actuator to improve the efficiency of the system, balancing trade-
offs between ITE and auxiliary boost power requirements. Further, as the speed and load
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setpoint of the engine are decoupled from the instantaneous power demand of the vehicle
in this hybrid powertrain, a method of on-board learning of the optimal calibration of the
speed and ECL setpoint is experimentally analyzed.

As shown in the initial speed and ECL sweeps, ECL becomes more influential on the
BTE of the system at lower speed operating points. However, due to the trade-off between
ECL and the auxiliary power required to produce the necessary boost pressure, the system
remains relatively insensitive to changes in the ECL over the operating range investigated.
While this resulted in poor convergence performance for the ECL input for the on-board
learning algorithm, the BSFC of the engine was consistently decreased to near minimum
values for the engine power setpoints analyzed.
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CHAPTER 6

Control and Design Optimization of a Series
Hybrid Powertrain

This chapter investigates the energy management and optimal powertrain and drivetrain
component sizing to complete the discussion of a hybrid powertrain utilizing an OP engine
in a series hybrid or range extender architecture. The motivation behind this final technical
chapter is to provide a tool or process framework with which to integrate the hybrid OP
engine operation into a full vehicle model, thereby elevating the usefulness of the previous
chapters in this thesis. Therefore, a co-design problem combining the energy management
and component sizing optimization is formulated and solved in this chapter. Of specific
interest is the trade-off between the cost of fuel consumption of the OP engine and the cost
of battery degradation in the hybrid powertrain.

6.1 Introduction

Transitioning to Electric Vehicles (EVs) presents a direct method of decarbonizing tailpipe
emissions in the transportation sector and combating climate change. However, the
adoption of EVs has been rather slow; such that in 2020 less that 2% of all vehicles sold in
the U.S. were electric [85]. One of the key obstacles hindering widespread EV acceptance
is their limited range causing range anxiety. While evidence suggests that a range of about
100 miles per charge will address most daily transportation needs [86], consumers usually
prefer vehicles with substantially higher range [87]. A larger battery delivers a larger range
at the cost of a larger ecological footprint [88], a higher energy consumption due to the
higher weight, and a reduced affordability because of the higher initial cost. Therefore,
from the environmental and economic point of view the smallest battery that provides
sufficient range is the optimal battery size. This dilemma between EV range, cost, and
environmental impact defines the EV range paradox, studied by Franke and Krems [89].
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Range extender Hybrid Electric Vehicles (HEVs) address this paradox by including an
onboard charging system to EVs while adopting the smallest battery size for daily needs.

It is shown that range extender HEVs can be even more effective when coupled with
advanced highly efficient engine technologies [90]. This chapter studies the combined
design and control optimization (co-design) for a range extender HEV coupled with an
Opposed Piston (OP) engine. In an opposed piston engine, two pistons operate opposite
each other to control the combustion chamber volume as defined in previous chapters. Due
to the removal of the traditional cylinder head the heat transfer is significantly lower in
OP engines leading to a higher thermal efficiency. Furthermore, the opposite movement
of the pistons within these engines creates an intrinsic stability allowing a reduction in
the displacement volume of the engine by reducing the number of cylinders rather than
reducing the displacement of each cylinder resulting in a higher thermal efficiency again.

Optimal sizing and design of components that accounts for the dependency of optimal
energy management strategies on the powertrain design is necessary to fully exploit the
advantages of a flexible and highly efficient powertrain such as a range extender HEV.
Combined design and control optimization (co-design) has been used in the past for
finding the optimal sizing of HEV powertrain components [91, 92]. The traditional design
approach designs the plant first and then the optimal control laws are found next. However,
this sequential optimization does not consider the coupling between the plant design and
control variables and produces a suboptimal solution [93]. The co-design methods on the
other hand, incorporate these inter-dependencies by solving the optimal design and control
problem simultaneously or by embedding the optimal control problem into the optimal
design problem [93, 94].

The resulting co-design problem usually has a large dimensionality and is difficult to
solve. To address this problem, Bayrak et al. [95] decomposed the co-design problem into
hierarchical optimization problems and in another work [96] the authors used heuristic
methods to search the design space of an HEV powertrain with nested Equivalent
Consumption Minimization Strategy (ECMS). Convexification of the simultaneous optimal
design and control problem [97, 98] and using gradient-free optimization techniques such
as multiobjective self-adaptive differential evolution (MOSADE) [99] are among other
approaches used to find solutions to the co-design problems of HEVs. Stochastic and
robust combined design and optimization methods that account for the variations in the
manufacturing process, model simplification, and the uncertainty surrounding vehicle
operation have also been introduced for co-design of HEVs [100, 101]. A comprehensive
review of system-level optimization for hybrid electric vehicles is provided by Silvas et
al. [91].
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However, few works detail the impact of battery capacity fade, or degradation, on the
component sizing and energy management for an HEV. In most automotive applications,
the battery pack is considered defunct when it reaches 80% of its original capacity. As
the battery pack makes up a large portion of the principal cost for an HEV, minimizing
fuel consumption of the internal combustion engine in the vehicle must be balanced with
minimizing the capacity fade of the battery pack. As such, this chapter presents scalable
models for each subsystem of an HEV suitable for nonlinear optimization techniques. The
battery model is able to accommodate usage degradation to include the price of batteries
within the cost function, while allowing the nominal state of charge (SOC) to shift and
help reduce capacity loss. Then, a combined design and optimization method similar to
the approach utilized by Azad and Alexander-Ramos [100] is used to integrate the OP
engine, which has been the focus of this entire work, into an optimally sized series hybrid
powertrain.

6.2 Combined Sizing and Control Optimization Problem

A schematic of the powertrain architecture is provided in Fig. 6.1 with the associated
inputs, states, and parameters for each system component. This system consists of a OP
engine coupled to electric motors on each crankshaft to act as a generator, a lithium-
ion battery pack to buffer the power provided by the engine and store any recaptured
power from regenerative braking, a traction motor to provide power to the wheels, and
a gear set representing the final drive for the drivetrain. The objective of this optimization
process is not only to coordinate the operation of the OP engine with the rest of the series
hybrid powertrain, but also to size the components according to the vehicle and drive cycle
demands. Therefore, the optimization problem can be formulated as

min
d,u(t)

J(d,x(t),u(t), t)

subject to :

g(d,x(t),u(t), t)≤ 0

h(d,x(t),u(t), t) = 0

ẋ(t)− f (d,x(t),u(t), t) = 0

(6.1)

where the function J(d,x(t),u(t), t) represents the cost function of the optimization
problem. This function is dependent on the sizing of the design parameters, d, the state
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Figure 6.1: Schematic of the series hybrid vehicle model used for the component sizing
and energy management analysis.

values, x(t), and the control inputs, u(t). This optimization problem is also subject to
constraints defined by the functions g and h along with the system dynamics defined by
the function f . The design parameters in this optimization problem are the displacement
volume of the engine, Vd , the radial, kr, axial, ka, and winding, kw, size of the traction motor,
the final drive gear ratio, rFD, the number of cells in parallel, np, and in series, ns, in the
lithium ion battery pack, and lastly the nominal SOC operating point of the battery pack,
SOC0. The states are the normalized engine power, P̄eng, the traction motor speed, ωm, and
current, I, along with the cell state of charge, SOC, temperature, T , voltage V1 across the
resistor, capacitor (RC) pair in the equivalent circuit model, and finally the accumulated
charge throughput for each cell, Qt .

6.2.1 Optimization Problem Formulation

In this analysis, the cost function will only account for the running cost of the vehicle and
not the initial cost for all the components involved. As such, the cost function is defined as

J =
∫ t1

t0
ṁ f p f +

Q̇loss

20
Qc pcV0npns (6.2)

where the first term represents the fuel costs of the engine from the mass flow rate of
fuel, ṁ f , and the price of fuel, p f . The second term represents the battery degradation
costs assuming the battery will be replaced after 20% capacity loss. The capacity loss is
represented as Q̇loss in [%/s]. In order to convert this to a cost equivalent to fuel price,
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the nominal capacity of a cell within the pack, Qc, is multiplied by the nominal operating
voltage, V0, providing a Watt hour, [Wh], value. This can then be used with the price of a
cell, pc, in [price/Wh] and the number of cells in the pack, nc, to find the equivalent battery
cost for the vehicle operation.

The system constraints are defined as

ẋ = f (d,x(t),u(t), t) ∀t ∈ [t0, t1] (6.3a)

xmin ≤ x(t)≤ xmax (6.3b)

umin ≤ u(t)≤ umax (6.3c)

|Vveh(t)−Vdem(t)| ≤Vdi f f (6.3d)

Vmot ≤Vmot,max (6.3e)

Vbat ≤Vbat,max (6.3f)

|SOC−SOC0| ≤ SOCdi f f ,max (6.3g)

SOC(t1)−SOC(t0) = 0 (6.3h)

where Eqn. 6.3a represents the constraints of the vehicle dynamics while Eqns. 6.3b and
6.3c represent the limits on the state and control values. In Eqn, 6.3d, the vehicle velocity,
Vveh is constrained to within a set difference of ±2 mph from the demanded vehicle speed of
the selected drive cycle, Vdem, at all times. The motor terminal voltage, Vmot , is constrained
by a factor of the DC bus voltage in Eqn. 6.3e and the battery cell terminal voltage, Vbat , is
constrained based on the cell chemistry. As this is a series hybrid vehicle model operating
in a charge sustaining mode, the instantaneous SOC is constrained to ±20% around the
nominal SOC operating range in Eqn. 6.3g. Finally, the initial and ending SOC must be
equal as defined by Eqn. 6.3h.

6.3 Series Hybrid Model

The sub-models for all of the components shown in Fig. 6.1 as well as a vehicle model to
provide the terms within the cost function and system dynamics defined in Eqn. 6.2, are
provided in the following sections.
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6.3.1 Vehicle Model

The longitudinal vehicle dynamics are given as

me f f V̇veh =
τw

Rw
−FRL (6.4)

which represents a force balance between the road load, FRL and the torque applied to
the wheels, τw, multiplied by the wheel radius, Rw. This then calculates the vehicle
acceleration, V̇veh, given the effective mass of the vehicle, me f f , is known. The effective
mass takes into account the inertia of the rotating components as well as the vehicle mass
and is given as

me f f = mv +
Jw + Jmr2

FD
R2

w
(6.5)

where mv is the vehicle mass while Jw and Jm are the inertia of the wheels and traction
motor, respectively. The final drive ratio is denoted as rFD and is a sizing parameter of the
optimization process. The mass of the vehicle is a sum of the base vehicle weight along
with the battery, engine, and motor components. The road load is calculated using

FRL =C0 +C1Vveh +C2V 2
veh (6.6)

where the coefficients C0, C1, and C2 are the EPA reported dynamometer correction factors
for a 2010 Nissan Leaf, the assumed vehicle model for this work.

The dynamics of the vehicle must now be linked to the traction motor operation, which
is not obvious from Eqn. 6.4. However, the speed of the vehicle and torque applied to the
wheels can also be converted into a motor torque and speed utilizing the final drive ratio.
The longitudinal dynamics can then be converted to

ω̇m =
rFD

Rwme f f

(
τmrFD

Rw
−FRL

)
(6.7)

where the motor toque, τm, can be determined from the current applied to the motor and
motor speed, ωm, is a state.

6.3.2 Motor

The traction motor model represents an interior permanent magnet synchronous machine
(IPMSM) based in the 2004 Toyota Prius motor. This motor was selected due to the
abundant literature detailing the operation of this machine design. The model selected
from this work was developed by Goss et al [102]. Furthermore, to include the scaling
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parameters outlined in Fig. 6.1, the electric machine scaling laws detailed by Stipetic et
al. [103] are implemented. Nominally, axial and radial scaling factors are used to scale the
performance capabilities and size of the electric motor while the winding factor adjusts the
base speed of the electric machine to comply with the predetermined inverter voltage limit,
in this case set to VDC√

3
where VDC is the bus voltage of the system, set to 500 volts as is

similar to the work by Azad et al. [100]. The scaling laws will be defined after the model
is outlined.

The electric motor torque is calculated as

τem =
3
2

p(ΨdIq −ΨqId) (6.8)

where Ψd,q are the direct and quadrature axis flux linkages, Id,q are the direct and quadrature
axis currents and p denotes the number of pole pairs in the motor, which is 4 in this case.
The current values in the rotating two-phase reference frame are calculated from the peak
phase current, Is as Id = −Is sin(γ) and Iq = Is cos(γ) where Is is a state and γ is an input
to the model. The value of Is is considered a state in this model and is obtained from the
input İs as this allows for constraints to be placed on the rate of change of the phase current
and therefore the rate of change of torque developed from the electric machine. The input
γ allow for the maximum torque per current input while also utilizing flux weakening at
high speeds to maintain the voltage limit applied to the motor. The values of Ψ(d,q) are
calculated from polynomial fits defined by Goss et al. [102] which are fucntions of Id,q.

The peak phase voltage of the motor, Vmot , which must be constrained, is calculated as

Vmot =
√
(RphId −ωm,eΨq)2 +(RphIq −ωm,eΨd)2 (6.9)

where Rph is a per phase resistance, assumed to be 9.3 mΩ as from Goss et al. [102]. The
electrical motor speed, ωm,e is related to the mechanical speed of the motor through the
pole pairs and is calculated as ωm,e = ωm ∗ p.

With these dynamics, the electric machine torque and voltage can be calculated.
However, the power loss of the motors must also be considered to determine the power
requirements from the engine and motor. The power delivered to the motor is denoted as
P and is positive when power is delivered to the wheels and negative during regenerative
braking when power flows from the wheels to the motor. The power which reaches the
motor is denoted as Pem and is related to P by

P = Pem +Pcu (6.10)
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where Pcu denotes the copper loss in the electric machine. The value of Pem = τemωm while
the copper losses are calculated as

Pcu =
3
2

Rph(I2
q + I2

d ) (6.11)

providing a means to calculate P, the combined power demanded from the battery and
engine in the vehicle.

Finally, mechanical as well as core losses in the motor (Pmech,Pc), must be considered
when calculating τm, the shaft torque of the motor that is translated to the wheels, from
τem, the electric machine torque, similar to the modeling structure presented by Stipetic et
al. [104]. The mechanical losses are calculated using a polynomial fit of the mechanical
losses as a function of motor speed. These losses are based on a report from Hsu et al. [105]
in which a Prius motor was dismantled and evaluated. The core losses are calculated as

Pc = g1(Vmot)+g2(Vd) (6.12)

where Vd is the magnetizing voltage given as

Vd =−ωm,e(Ψ(Id, Iq)−Ψ(0, Iq)) (6.13)

and the functions g1 and g2 are defined by Goss et al. [102]. With the mechanical and core
losses, an electric machine efficiency, ηem, can be used to find the output motor toque as

τm = τemη
sign(τem)
em . (6.14)

Note, however, that this form of τm causes a discontinuity as τem crosses 0. Therefore, the
function is modified with a hyperbolic tangent function as

τm = τemη
−1
em +

1+ tanh(104τem)

2
(τemηem − τemη

−1
em ). (6.15)

Now, to provide a scalable model of the motor, the pertinent scaling laws as detailed by
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Table 6.1: Motor Parameters

Parameters Values
Mass of copper (mcu) 0.5 [kg]
Mass of stator iron (m f e,s) 19.0 [kg]
Mass of rotor iron (m f e,r) 3.1 [kg]
Mass of permanent magnets (mmag) 0.6 [kg]
Inner Diameter of rotor (dri) 13.7 [cm]
Outer Diameter of rotor (dro) 16.1 [cm]

Stipetic et al. [103] are:

Vmot = kwkakrVmot,0 (6.16a)

Pc = k2
r kaPc,0 (6.16b)

Pmech = k2
r kaPmech,0 (6.16c)

τem = k2
r kaPmech,0 (6.16d)

mmot = k2
r kamcu + k2

r ka(m f e,s +m f e,r)+ k2
r kammag +mh (6.16e)

Jmot =
1
2
(k2

r kam f e,r + k2
r kammag)0.25((krdri)

2 +(krdro)
2)+0.5ρs(

π

4
(krdri)

2kal)
(krdri)

2

4
(6.16f)

By only scaling the variables that interact with other model subsystems, the internal
variables within the motor model, such as Is, remain unscaled and the fitted functions for
the motor model remain valid. These unscaled values calculate the base values, denoted by
the subscript 0, as in the motor voltage Vmot,0. The mass and inertia of the motor, mmot and
Jmot , are dependent on the individual copper, magnetic, and iron components of the motor
as well as the original dimensions of the motor. These values are provided in Tab. 6.1

6.3.3 Engine

The engine model used in this vehicle simulation uses an optimal operating line defined
by the experimental work in Chapter 5. An optimal operating line (OOL), as defined
by Gupta et al. [67], is a drive cycle independent operating map for an IC engine in
which the operation of the engine has slow transients and the instantaneous speed and
load of the engine is decoupled from the instantaneous vehicle demands, as in this vehicle
architecture. The OOL defines the speed and load setpoint of the engine that provides the
minimum BSFC for a given power setpoint. As such, to simplify the model used here for
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Figure 6.2: The minimum specific fuel consumption (SFC) of the OP engine can be defined
using the online optimization process outlined in Chapter 5. The value of this line depends
on the point at which the power is measured. The Eng SFC denotes the SFC with the power
measured at the engine crankshafts. The Mot SFC denotes the power that is extracted from
the system by the electric motors.

optimization, the speed and torque of the OP engine is not modeled. Rather, the power
demanded from the engine is defined as

Pe,dem = (1−α)P (6.17)

where P is the power delivered to the motor as defined in Eqn. 6.10. The control input α

defines the power split between the battery and the engine. The value of α ranges between
-1:1 as the engine can deliver power to the motor and battery simultaneously, but is limited
by the peak power of the engine. Utilizing the optimization methodology from last chapter,
a relation between the minimum fuel consumption and the power output of the engine can
be determined and is shown in Fig. 6.2. In this case, rather than considering just the power
output from the engine as in Chapter 5, the motor efficiency must also be accounted for to
determine the accurate fuel consumption. Therefore, the brake power is considered to be
after the motor generators used to extract the power from the OP engine, shown as “Mot
SFC” in the figure.

While the fuel consumption of the engine can now be determined, using the the BSFC
and power relation shown in Fig. 6.2 is not conducive to optimization. If a power of 0
is demanded from the engine, the fuel consumption will be undefined as BSFC must be
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Figure 6.3: Fuel consumption of the OP engine system with respect to power output. This
relationship can be normalized by the displacement volume (in liters) to allow for simple
scaling of the engine while maintaining the same brake mean effective pressure.

divided by power to find the fuel flow rate. Furthermore, it is desirable to use a model that
can be scaled to optimally size the engine. Therefore, by normalizing the power output
of the engine by the displacement volume and using this normalized power, denoted as
P̄e =

Pe
Vd

, multiplied by the BFSC, the fuel flow and power output of the engine can be
determined while scaling the displacement volume, Vd , of the engine as shown in Fig.
6.3. The displacement volume of the engine now becomes a scaling parameter within the
optimization problem.

To ensure a slow engine response that remains on the OOL, the normalized actual power
from the engine is modeled as a first order response where

˙̄Pe =
1

teng
(P̄e,dem − P̄e) (6.18)

where P̄e is a state variable and teng denotes the time constant of the engine, which here will
be set to 10 seconds for a slow engine response. Then, the rate of fuel consumption can be
calculated from a fitted polynomial as

ṁ f = N0 +N1P̄e +N2P̄2
e (6.19)

where N = [3.777e−1, 3.440e−2, 8.809e−4] using P̄e in kilowatts and ṁ f in grams
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per second. To provide a mass estimate of the engine for the vehicle model, a base engine
mass of 130 kg is used for the 1.64 liter engine. For the sake of simplicity, the change in
mass of the engine is considered proportional to the change in displacement volume.

6.3.4 Battery

Finally, with the power demand from the traction motor as well as the power supplied by
the engine, the power supplied by the battery pack can be calculated as

Pb = P−Pe. (6.20)

It is worth noting that the α input term utilized to set the engine power output can request an
engine power larger than the power demand from the motor. This is an important distinction
as this allows the engine to provide power to the traction motor while simultaneously
charging the battery. Assuming a fully balanced battery pack, each cell contributes an
equal amount of power for the battery pack where the cell power is Pcell = Pb/(npns). The
values of np and ns denote the number of cells in parallel and series, respectively, and are
used as parameters in the optimization process. Note, np and ns are treated as continuous
variables for optimization, but as the cell count is a discrete value, are rounded for the
solution. Using the power required from the battery, the current applied to an individual
cell can be calculated as

Icell =
VOCV (z)−V1 −

√
(VOCV (z)−V1)2 −4RPcell

2R
(6.21)

where VOCV is the open circuit voltage (OCV) and is a function of SOC, represented as z,
and is determined through coulomb counting. The value of resistance, R, is set to 4mΩ.
The battery dynamics are modeled at the cell level utilizing an equivalent circuit model
of a Nickel-Manganese-Cobalt(NMC)/Graphite Li-ion prismatic cell based on the work
from Samad et al. [106]. An OCV-R-RC model is used, meaning the equivalent circuit is
made up of an OCV source connected in series with resistor (R) followed by a resistor-
capacitor (RC) pair. To simplify the model, the resistance and capacitance in the RC pair
is considered constant at R1 = 1mΩ and C1 = 5e3F . As this is a charge sustaining hybrid
model and the SOC varies only slightly, this assumption has a relatively small impact on
the cell dynamics. The dynamics of the RC pair is calculated as

V̇1 =
−1

R1C1
V1 +

Icell

C
(6.22)
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Table 6.2: OCV Model Parameters

Constant V0 α β δ ζ ε

Value 3 4.3e-1 -20.5 4.4e-1 2.1e-1 1/5e-1

Table 6.3: Capacity Fade Model Parameters

Constant σ δ c µ Ea Rg
Value 125.2 -1925 2.618 0.5361 22406 8.314

where V1 is considered to be the voltage drop across the resistor-capacitor pair.
The OCV curve is parameterized as

VOCV =V0 +α(1− exp(−β z))+ γz+ζ (1− exp(
−ε

1− z
)) (6.23)

where V0, α , β , γ , ζ , and ε are tuning parameters from the OCV model proposed by Hu
et al. [107]. The parameters used to represent the NMC/Graphite cell are specified in Tab.
6.2.

To capture the capacity loss of the battery pack, the capacity fade model developed by
Samad et al. [106] is

Qloss = σ +δ (0.66−SOC0)
c)exp(

−Ea

RgT
)Ahµ (6.24)

which is dependent on the nominal operating SOC, SOC0, which is a parameter of the
optimization problem. The current throughput of the cell in amp hours is represented as
Ah, and cell temperature as, T . The remaining parameters are specified in Tab. 6.3. The
thermal model for the cell temperature is given by

Ṫ =
1

mcp

(
Q̇gen +hA(T∞ −T )

)
(6.25)

where m is the mass of the cell, cp is the lumped heat capacity, h is the convection
coefficient and A is the surface area of the cell. These values are specified in Tab. 6.4.

However, for the capacity loss to be included in the cost function of the optimization
process, as in Eqn. 6.2, a capacity loss rate is required. Therefore, assuming a constant
temperature for this derivation and denoting that Ah =

∫ T
0 Icelldt/3600, the derivative of Eqn.
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Table 6.4: Thermal Model Parameters

Constant m [kg] cp
[ J

kgK

]
h
[ W

m2K

]
A [m2]

Value 3.0e-2 1280 27.6 4.4e-1

Figure 6.4: Resulting trajectories for the energy management in the HEV co-design
problem. From top to bottom: Vehicle reference and actual speed, battery SOC, and the
power supplied to the traction motor from the battery and engine. Due to the slow response
of the engine, the battery is mainly used for load leveling while the engine provides smooth
and relatively constant power to the traction motor.

6.24 is given as

Q̇loss =

(
σδ (0.66−SOC0)

c

3600µ

)
exp

(
−Ea
RgT

)
µAsµ−1|Icell| (6.26)

where the current throughput is now in amp seconds, As. Thus, As now becomes a state
whose integral is simply the absolute value of Icell .

6.4 Preliminary Results and Conclusions

The optimal control software used to solve Eqn. 6.2 subject to the constraints in Eqn.
6.3 was GPOPS-II [36], using the LuiRao-Legendre adaptive mesh refinement techniques
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Table 6.5: Parameter Results for the HEV Powertrain Co-design Problem

Parameter Vd kr ka kw rFD SOC0 np ns
Value 1 1.1 1.24 0.75 3.11 0.4 1 51

to discretize the optimal control problem. The resulting finite dimensional optimization
problem is solved using IPOPT [37] with a mesh tolerance of 1e− 3 and an nonlinear
programming problem (NLP) tolerance of 1e− 2. The objective of this chapter was to
develop a flexible optimization framework to integrate the OP engine into a vehicle level
design. Ideally, this tool can be directed to various vehicle models and drive cycles to
investigate operating characteristics pertinent to those specific situations. As preliminary
analysis, a smaller vehicle architecture in the Nissan Leaf was selected with the objective
of analysing the influence of battery capacity fade and fuel consumption on the optimal
operation of a series hybrid or range extender vehicle model.

For this initial analysis, the US06 drive cycle was selected as the velocity reference
for the vehicle. The resulting vehicle speed, SOC, and power supplied by the engine and
battery are shown in Fig. 6.4. The vehicle speed was constrained to maintain a tracking
error of less than ±2 mph from the reference velocity supplied by the US06 drive cycle.
During the majority of the cycle, the vehicle maintains the reference speed well. However,
it is interesting to note that at points where the reference demands 0 speed, the vehicle speed
never comes to a complete stop. By maintaining a non-zero speed, the vehicle reduces the
required power in the next acceleration.

In the sub-figure containing engine and battery power, it is clear that the battery is
operating as a load leveling tool while the engine response is much slower and nearer the
average power requirements of the vehicle. The slow response of the engine is in part
due to the large time constant placed on the dynamics to ensure slow transients. However,
by allowing the battery to cover the peak power demands, the engine can be downsized
according to Fig 6.3, therefore reducing the overall fuel consumption but allowing the
engine to operate near full load where the minimum BSFC is located.

Table 6.5 contains the sizing parameters selected. The engine is downsized to the
minimum displacement volume allowed of 1 L. For the traction motor sizing, the radial and
axial scaling increases. As shown in Eqn. 6.16d, this increases the torque capabilities of the
motor. Further, the smaller winding parameter increases the base speed of the motor, which,
when combining these three parameters, is effectively increasing the power capabilities of
the motor. As the base motor model selected was used in a power split hybrid, it is expected
that the motor model needs increased power capabilities to drive this vehicle in a series
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Figure 6.5: Torque and speed operating points for the traction motor over the drive cycle.
The points are colored according to the current angle used.

hybrid format. However, the scaling is balanced with the increased losses as well as the
increased mass for the electric machines.

The resulting torque and speed operation for the traction motor is shown in Fig. 6.5 with
the color of the points indicating the current angle (γ) used at each point. The general trend
of the figure shows an increase in γ as the speed of the motor increases, limiting the phase
voltage of the motor under the set bus voltage. When not at the higher speeds, the majority
of points operate near a γ of 45 degrees. As this is an interior permanent magnet motor,
the saliency of the direct and quadrature axis means the peak torque per current angle is
slightly below 45 degrees. However, there are areas within the map where the current angle
is near 80 to 90 degrees when is does not need to be. These appear to be artifacts in the
optimization algorithm and may require an increase in the tolerance of the NLP solution.
However, as shown in Fig.!6.6, the time spent during the cycle with these gamma values
is quite small and the losses resulting from the suboptimal current angle are negligible.
Increasing the tolerances on the NLP can become computationally prohibitive in highly
nonlinear and non-smooth problems such as this one. The large current angle values are
typically utilized in high acceleration or deceleration areas within the drive cycle where
flux weakening is expected for these high power demand situations.

Finally, the operational costs for both the engine and the battery are provided in Fig. 6.7.
While the fuel cost from the engine operation is the larger contributor to the overall cost,
the battery capacity fade presents a significant cost, even on such a short drive cycle. For
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Figure 6.6: Vehicle speed and current angle trajectories during the drive cycle analysis.
During periods of large acceleration or deceleration, γ is increased to limit the phase voltage
of the motor.

the approximately 8 miles traveled for the US06 drive cycle, the cumulative fuel cost was
$0.77 while the battery cost was $0.13.

From the initial results of the co-design framework, it is clear that an increase in the
NLP tolerance is necessary to improve the accuracy of the resulting state and control
trajectories from this co-design framework. However, the computational burden of such
a large and nonlinear problem is limiting. Nonetheless, it is clear that the included battery
capacity fade contributes to a significant portion of the total operating cost for the hybrid
vehicle under consideration, highlighting the importance of this cost for future analysis.
Further, capacity fade is not linear over the lifespan of the battery, suggesting that this
analysis should be completed using different initial conditions for the charge throughput of
the battery pack.
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Figure 6.7: Operational costs for both the engine and battery pack. The engine cost is
calculated from the fueling rate, while the battery cost is calculated from the capacity
fade model. While the larger cost is associated with the engine, the battery operating
cost presents a non-negligible cost, showing the importance of including battery cost in
the optimization cost function.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In the current transition to low emission vehicle (LEV) technologies, hybrid electric
vehicles (HEV) present a bridging vehicle architecture between internal combustion engine
and battery technologies. These HEV powertrains are capable of capturing and also
amplifying the benefits of each technology due to the diversified power sources on board
the vehicle. This thesis investigates the use of a OP engine in a hybrid powertrain format
in a effort to maximize the potential of hybridization. The OP engine was chosen for this
study as it presents several advantages in a hybrid vehicle over a conventional ICE, with
the focus of this work being on the inherently balanced nature of the OP engine; therefore,
engine downsizing can be achieved by reducing the number of cylinders while keeping
the combustion volume per cylinder the same and heat losses to a minimum. This work
proposed eliminating the geartrain that couples the two crankshafts of a single cylinder OP
engine and used a motor-generator on each crankshaft to directly extract mechanical work
from combustion and convert it to electricity. The resulting analysis can be segregated into
two domains: intra-cycle (Chapters 1-4) and inter-cycle (Chapters 5-6).

7.1.1 Intra-cycle Analysis

First, an optimization process of a 0-D model for the dual motor controlled OP engine
intra-cycle dynamics to compute the crankshaft motion profile that maximizes the work
generated by the system was formulated. This optimization was then iteratively coupled
with a high fidelity model which supplied the cylinder flow boundary conditions. The
iterative approach reduced the model complexity used in the optimal control problem
(OCP) while capturing the gas exchange dynamics critical to the 2-stroke cycle of the
OP engine. The results show crankshaft velocity slows during the compression stroke
and conversely accelerates during the expansion stroke, reducing the peak motor torque
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required for control and thus reducing the motor losses. The extended residence time at top
dead center, however, leads to an increase in heat transfer, illustrating the trade-off between
the work extraction efficiency and the indicated engine efficiency. However, the most
consequential finding from this optimization process was the importance of accounting for
the operating characteristics of the electric machines extracting work from the crankshafts.
When neglecting the electric machine efficiency in the optimization problem, the BTE of
the system was near 0%. When including the electric machine losses in the optimization, a
BTE of 45% could be achieved.

With a better understanding of the coupling of crankshaft dynamics and electric
machine operation, the next step was to evaluate the physical feasibility of this system.
To that end, a linear quadratic regulator with an augmented integrator and feedforward
estimation was developed to track the crankshaft motion profile on an experimental single
cylinder OP engine utilizing electric machine torque as the control input. While the
controller showed sufficient tracking capabilities, maintaining a position error of less than
±1 degree, the physical system exhibited significant sensitivity to model uncertainty. Small
perturbations in cylinder pressure with respect to piston position have a remarkably large
impact on the instantaneous engine torque generation and thus, the motor torque required to
track a crankshaft motion profile. The electric machine torque profile from experimentation
showed a near 700 Nm discrepancy in peak amplitude to the torque expected from the
offline optimization process.

At this point, it was relevant to question the theoretical performance benefits and limits
of the dual motor controlled hybrid OP engine design. Therefore, a study was completed
to compare the proposed dual motor design and a similar hybrid OP engine platform that
utilized a geartrain to couple the crankshafts. While the dual motor design possessed the
highest ceiling for work extraction efficiency of 93.5%, this level of efficiency was highly
dependent on the ability to smooth the electric machine torque required to maintain control
of the OP engine.

From these analyses, it was clear that this system does present a feasible series hybrid
architecture which can be adequately controlled to a given crankshaft motion profile.
However, the accuracy of the simplified models used for the optimization were limited
in order to make the problem numerically tractable in an optimal control problem, thereby
limiting the ability of the calculated crankshaft motion trajectories to be translated to the
physical setup. Thus, a novel, real-time trajectory optimization scheme was developed.
Theoretical convergence criteria was provided for this new iterative trajectory optimization
scheme, followed by the practical application to the crankshaft motion planning of the
OP engine. The algorithm was able to reduce the peak to peak electric machine torque
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amplitude to 297 Nm, an approximate 57% reduction in the torque oscillations as compared
to the initial experimental tests with trajectories from offline optimization.

7.1.2 Inter-cycle Analysis

With a reliable intra-cycle control structure developed, consideration was then given
to the inter-cycle operation and the capability of varying the exhaust crankshaft lead
(ECL) of the engine during operation. As calibration of ICEs is typically a very time
intensive process, this work implemented an onboard setpoint optimization technique to
investigate the optimal operating setpoint of engine speed and ECL for two different
output power setpoints. While the optimization scheme reliably reduced the BSFC at all
initialization points considered, the operation of the OP engine showed very little sensitivity
to changes in ECL at these operating conditions due to the trade-off between boost pressure
requirements and the effective compression and expansion ratio of the engine. For the
optimal speed conditions, the BTE varied less than 2% for a sweep of ECL from -4 to 8
degrees.

Finally, the last technical chapter in this thesis provided a optimization framework
for the component sizing and energy management of a vehicle utilizing a series hybrid
powertrain featuring an OP engine on a drive cycle timescale. An optimal operating line
for the OP engine was used to define the fuel consumption for the vehicle and a preliminary
analysis investigated the relative operational costs of fuel consumption of the engine and
capacity fade within the hybrid vehicle battery pack. For the drive cycle considered, 13% of
the operating cost for the vehicle was due to capacity fade within the vehicle, showing the
importance of including the cost due to battery capacity loss when attempting to minimize
the cost of operating an HEV.

7.2 Future Work and Open Challenges

In this work, the potential of a series hybrid OP engine powertrain architecture was
investigated. It would be interesting to consider other available hybrid powertrain
topologies that can highlight the novel attributes of the OP engine such as the two
crankshafts available on an OP engine. Adding this additional degree of freedom to
the design of a hybrid powertrain presents significant challenges, but also significant
opportunities to expand the design space of current hybrid topologies. The iterative
trajectory optimization algorithm developed here is easily adaptable to other power take-
off strategies. However, sizing of the hybrid drive components and OP engine should also
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be addressed in that future work as the results in Chapter 3 highlight the importance of
properly sized electric machines. Further, future electric machine design could enable
higher system efficiency for cyclic torque profiles by re-distributing the machine windings
across the crank angles of interest near minimum volume of the engine.

In addition, this powertrain design has a significant disposition towards fuel agnostic
operation. For example, the majority of Chapters 1-4 was completed using a GCI
combustion strategy. However, the Chapter 5 was completed using F24 rather than gasoline
with only a slight change to the injection strategy. Use of the ECL as an actuator to
regulate combustion stability for fuels of varying reactivity would also be interesting. Salvi
et al. [14] have already proposed varying the boost pressure supplied to the OP engine
as a means to regulate internal exhaust gas recirculation (EGR) and maintain combustion
stability for GCI. Could the ECL actuation be used to extend the possible operating range
of such strategies?

Finally, the developed ITO algorithm can certainly have applications beyond that of
the hybrid OP engine. In particular, the Fourier series parameterization implemented in
the ITO scheme may lend itself well to identifying harmonics within the induced voltage
of interior permanent magnet synchronous machines, helping to inject the phase currents
with the same harmonic content to maximize the torque generated by the same current
amplitude.
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