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Rhinovirus C Infection Induces Type
2 Innate Lymphoid Cell Expansion
and Eosinophilic Airway Inflammation
Charu Rajput†‡, Mingyuan Han‡, Tomoko Ishikawa, Jing Lei , Adam M. Goldsmith,
Seyedehzarifeh Jazaeri , Claudia C. Stroupe, J. Kelley Bentley and Marc B. Hershenson*

Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States

Rhinovirus C (RV-C) infection is associated with severe asthma exacerbations. Since type
2 inflammation is an important disease mechanism in asthma, we hypothesized that RV-C
infection, in contrast to RV-A, preferentially stimulates type 2 inflammation, leading to
exacerbated eosinophilic inflammation. To test this, we developed a mouse model of RV-
C15 airways disease. RV-C15 was generated from the full-length cDNA clone and grown
in HeLa-E8 cells expressing human CDHR3. BALB/c mice were inoculated intranasally
with 5 x 106 ePFU RV-C15, RV-A1B or sham. Mice inoculated with RV-C15 showed lung
viral titers of 1 x 105 TCID50 units 24 h after infection, with levels declining thereafter. IFN-a,
b, g and l2 mRNAs peaked 24-72 hrs post-infection. Immunofluorescence verified
colocalization of RV-C15, CDHR3 and acetyl-a-tubulin in mouse ciliated airway
epithelial cells. Compared to RV-A1B, mice infected with RV-C15 demonstrated higher
bronchoalveolar eosinophils, mRNA expression of IL-5, IL-13, IL-25, Muc5ac and Gob5/
Clca, protein production of IL-5, IL-13, IL-25, IL-33 and TSLP, and expansion of type 2
innate lymphoid cells. Analogous results were found in mice treated with house dust mite
before infection, including increased airway responsiveness. In contrast to Rorafl/fl

littermates, RV-C-infected Rorafl/fl Il7rcre mice deficient in ILC2s failed to show
eosinophilic inflammation or mRNA expression of IL-13, Muc5ac and Muc5b. We
conclude that, compared to RV-A1B, RV-C15 infection induces ILC2-dependent type 2
airway inflammation, providing insight into the mechanism of RV-C-induced
asthma exacerbations.

Keywords: asthma, rhinovirus, innate cytokine, viral infection, exacerbation, ILC2
INTRODUCTION

First reported in 2006 (1, 2), rhinovirus C (RV-C)4 has been associated with severe respiratory
illnesses in children and adults, often requiring hospitalization (3–15). Infections with RV-C are
more likely to occur in children with a history of asthma or who develop asthma (6, 10–14). In
addition, compared to RV-A, children with RV-C have been reported to have severe lower
respiratory tract infections including wheezing, oxygen supplementation and intensive care unit
admission (7, 8, 10, 11, 15).
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Despite increasing recognition of RV-C as a cause of severe
exacerbation, little is known about the pathogenesis of RV-C
infections. Thus far, 55 RV-C genotypes have been reported
which are believed to be synonymous with serotypes (16, 17). In
contrast to major and minor group RV-A and RV-B viruses, RV-
C does not utilize intercellular adhesion molecule (ICAM)-1 or
low density lipoprotein family receptors (LDL-R). This is likely
due to the fact that the hydrophobic pocket in VP1 is filled with
multiple bulky residues (18). Instead, RV-C utilizes cadherin
related family member 3 (CDHR3) as a receptor (19). Individuals
with CDHR3 C529Y variants (AG and AA genotype) appear to
be more susceptible to RV-C infection, as this variant is localized
on the airway epithelial cell surface, where it is accessible to viral
infection, in contrast to the more common GG genotype which is
mostly localized to the cytoplasm (19–21).

RV-C has been refractory to study in part because it is difficult
to grow in vitro. RV-C has been grown in primary mucociliary-
differentiated human airway epithelial cells grown at air-liquid
interface (22, 23) and HeLa cells transduced with the CDHR3 AA
allele (HeLa-E8 cells) (24).

The mechanisms by which RV-C promotes severe respiratory
illness are unknown. Since type 2 inflammation is an important
disease mechanism in a large subgroup of individuals with
asthma [reviewed in (25)], we hypothesized that RV-C
infection, in contrast to RV-A infection, preferentially
stimulates type 2 inflammation, leading to exacerbated
eosinophilic inflammation. Mouse models have been utilized to
study the host response against respiratory enteroviruses such as
Frontiers in Immunology | www.frontiersin.org 2
major group RV-A16 (26), minor group RV-A1B (26, 27) and
enterovirus D68 (28). To study underlying mechanisms, we
obtained cDNA encoding RV-C15 and HeLa-E8 cells from
James Gern and Yury Bochkov (University of Wisconsin). We
inoculated mature BALB/c mice with RV-C15, comparing
inflammatory responses to those induced by RV-A1B. In
addition, we compared the response of allergen-sensitized and
challenged mice to the two viruses.
MATERIAL AND METHODS

Generation of RV-C15 and RV-A1B
Full length cDNA encoding RV-C15 and HeLa-E8 stable cells
expressing human CDHR3 C529Y (19) were provided by James
Gern and Yury Bochkov, University of Wisconsin. The cDNA
was reverse transcribed and resulting full-length vRNA
transfected into HeLa-H1 cells (ATCC, Manassas, VA) using
lipofectamine (ThermoFisher Scientific, Waltham, MA). Virus
was harvested from the HeLa-H1 cell supernatants and used to
infect HeLa-E8 cells. Initial RV-C15 from transfected HeLa-H1
cells does not cause obvious cytopathic effects or form plaques in
HeLa-E8 cells. However, upon close inspection, areas of cellular
damage matched staining with Alexa Fluor 555-conjugated anti-
mouse EV-D68 VP3 (Figure 1A). Anti EV-D68 VP3 (GeneTex,
Irvine, CA) recognizes VP3 from EV-D68, RV-A1B and RV-C15
(Figure 1B). RV-C15 replicated in HeLa-E8 cells but not HeLa-
H1 cells (Figure 1C). RV-A1B (ATCC), a minor group virus that
A

B C

FIGURE 1 | Generation of RV-C15. Full-length cDNA encoding RV-C15 was reverse transcribed, and the resulting vRNA transfected into HeLa-H1 cells. Virus was
harvested from the cell supernatants and used to infect HeLa-H1 cells or HeLa-E8 cells expressing human CDHR3 C529Y. (A) RV-C15 induces cytopathic effects on
HeLa-E8 cells. Areas of cell damage matched staining with AlexaFluor-labeled anti-VP3. The white bar is 100 µ (B) Anti-VP3 immunoblots of HeLa cell lysates
infected with RV-A1B, RV-C15 and enterovirus D-68. Concentrated viral preparations were resolved by SDS-PAGE and probed with anti-VP3. (C) Infection of Hela-
E8 and HeLa-H1 cells with RV-C15. RV copy number was determined by qPCR. Data shown are mean ± SD, n =3.
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infects mouse cells (29) was grown in Hela-H1 cells. The two
viruses were propagated, concentrated and partially purified
from infected HeLa cell lysates by means of ultrafiltration with
a 100-kDa cutoff filter assay, as described previously (27).
Similarly concentrated and purified HeLa cell lysates were used
for sham infection. With propagation and concentration needed
to produce sufficient quantities for animal experiments, we
observed amplified cytopathic effects in RV-C15-infected
HeLa-E8 cells. We took advantage of this result to test for live
virus in the lungs of infected mice (see Results below).

RV-C15 Infection and Treatment
All animal usage was approved by the Institutional Animal Care
and Use Committee of University of Michigan and performed
under National Institutes of Health guidelines. Eight-to-twelve-
week-old female BALB/c mice (Jackson Laboratories, Bar
Harbor, ME) were inoculated with 5 x 106 PFU equivalents
(ePFU) of RV-C15 in 50 µL PBS by intranasal instillation. RV-C
ePFU was calculated based on a calibrated standard curve for
RV-A1B (18). Additional mice were inoculated with 5 x 106

ePFU RV-A1B (in 50 µL PBS) or an equal volume of sham HeLa
cell lysate. In additional experiments, we examined RV-C15-
induced mRNA expression in Rorafl/flIl7rCre mice and Rorafl/fl

littermates (from Dr. Andrew McKenzie, MRC Laboratory of
Molecular Biology, Cambridge, UK). Based on the requirement
of RORa for ILC2 development (30), Rorafl/flIl7rCre mice are
ILC2 deficient (31). Il7rCre mice were originally generated by Dr.
Hans-Reimer Rodewald (Division of Cellular Immunology,
German Cancer Research Center, Heidelberg) (32).

Using specific forward and reverse primers, RNA from
passaged virus was used to produce random primed first
strand cDNA and overlapping products using Phusion high
fidelity DNA polymerase (New England Biolabs, Ipswich, MA)
of about 2 kB each. These products were agarose gel purified and
processed for Sanger sequencing (University of Michigan DNA
Sequencing Core). Primers used for PCR production and
sequencing are shown in the Supplemental Table. Sequencing
through nucleotide 7042 of the W-10 RV-C15 reference
sequence GU219984, we did not detect the previously
described mutations in VP1 or 3A (24).

Model of Allergic Airways Disease
BALB/c mice were sensitized through the intranasal route with
100 mg D. pteronyssinus house dust mite (HDM) extract in 50 ml
PBS (Greer Labs, Lenoir, NC) by intranasal installation on day 1
and challenged with 10 mg HDM on days 11 and 12 (33). On day
13, mice were inoculated through the intranasal route under
Forane anesthesia with RV-C15, RV-A1B or sham, as noted above.

Real-Time Quantitative PCR
Lungs were harvested at different points and RNA was extracted
with Trizol (Invitrogen, Carlsbad, CA). Lung RNA was isolated
using an RNAeasy kit (Qiagen). cDNA was synthesized from 2
mg of RNA using high capacity cDNA synthases kit (Applied
Biosystems, Foster City, CA) and subjected to quantitative real-
time PCR using specific primers for mRNA (Table 1). The level
of gene expression for each sample was normalized to GAPDH
Frontiers in Immunology | www.frontiersin.org 3
unless otherwise specified. RV copy number (vRNA) was
determined by qPCR using previously published primers (34).

Generation of a Peptide Directed Anti-
CDHR3 Antibody
The CDHR3 protein has extracellular calcium binding domains
and a sialic-acid modified Asn186 important for RV-C15 binding
(19). Hopp-Wood hydrophilicity analysis (DNASTAR, Madison
WI) of the NIH BLAST sequence alignments of NP_689963.2
(human) and NP_001019649.1 (mouse) revealed a short conserved
peptide (human amino acids 154-167, YQVEAFDPEDTSRN) in
the second calcium binding domain representing a possible
selective antigen for both human and mouse CDHR3. A rabbit
polyclonal antibody was produced and purified using affinity
chromatography (Genscript, Piscataway, NJ).

HeLa-H1 cells, HeLa-E8 cells, and mouse lungs were lysed,
cellular proteins resolved by 10% SDS-PAGE, and proteins
transferred to a nitrocellulose membrane. Membranes were
probed with anti-CDHR3. Signals were amplified and visualized
with horseradish peroxidase-conjugated secondary antibody
TABLE 1 | Primer sequences for real-time PCR.

Gene Primer sequences

CCL2 Forward:5’-GCTCTCTCTTCCTCCACCAC-3’
Reverse:5’-GCGTTAACTGCATCTGGCT-3’

CCL24 Forward:5’-ACCTCCAGAACATGGCGGGC-3’
Reverse:5’-AGATGCAACACGCGCAGGCT-3’

CXCL1 Forward:5’-TGCACCCAAACCGAAGTCAT-3’
Reverse:5’-CAAGGGAGCTTCAGGGTCAAG-3’

CXCL2 Forward:5’-GCGCTGTCAATGCCTGAAG-3’
Reverse:5’-CGTCACACTCAAGCTCTGGAT-3’

CXCL10 Forward:5’-GCTGCAACTGCATCCATATC-3’
Reverse:5’-TTTCATCGTGGCAATGATCT-3’

GAPDH Forward:5’-GTCGGTGTGAACGGATTTG-3’
Reverse:5’GTCGTTGATGGCAACAATCTC-3’

GOB5 Forward:5’-CTGTCTTCCTCTTGATCCTCCA-3’
Reverse:5’-CGTGGTCTATGGCGATGACG-3’

IFN-a1 Forward:5’-CCATCCCTGTCCTGAGTG-3’
Reverse: 5’-CCATGCAGCAGATGAGTCCTT-3’

IFN-b Forward:5’-CAGCCCTCTCCATCAACTATAAG-3’
Reverse:5’-CCTGTAGGTGAGGTTGATCTTTC-3’

IFN-g Forward:5’-ACGCTACACACTGCATCTTGG-3’
Reverse:5’-GTCACCATCCTTTTGCCAGTTC-3’

IL12b Forward:5’-CTCCTGGTTTGCCATCGTTT-3’
Reverse:5’-GGGAGTCCAGTCCACCTCTA-3’

IL13 Forward:5’-CCTGGCTCTTGCTTGCCTT-3’
Reverse:5’-GGTCTTGTGTGATGTTGCTCA-3’

IL-17a Forward:5’-GCCTGAGAGCTGCCCCTTCAC-3’
Reverse:5’-GGCTGCCTGGCGGACAATCG-3’

IL-5 Forward:5’-CTCTGTTGACAAGCAATGAGACG-3’
Reverse:5’-TCTTCAGTATGTCTAGCCCCTG-3’

IL-25 Forward:5’-ACAGGGACTTGAATCGGGTC-3’
Reverse:5’-TGGTAAAGTGGGACGGAGTTG-3’

IL-33 Forward: 5’-GGCTGCATGCCAACGACAAGG-3’
Reverse: 5’-AAGGCCTGTTCCGGAGGCGA-3’

Muc5ac Forward:5’-AAAGACACCAGTAGTCACTCAGCAA-3
Reverse:5’-CTGGGAAGTCAGTGTCAAACC-3’

Muc5b Forward:5’-GAGCAGTGGCTATGTGAAAATCAG-3’
Reverse:5’-CAGGGCGCTGTCTTCTTCAT-3’

TNF-a Forward:5’-GCAGGTTCTGTCCCTTTCAC-3’
Reverse:5’-GTCGCGGATCATGCTTTCTG-3’
April 2021 | Volume 12 | Article 649520

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rajput et al. RV-C Induces ILC2s and Eosinophils
(BioRad, Hercules, CA) and chemiluminescence solution (Pierce,
Rockford, IL). To determine the specificity of the observed bands,
primary antibody was incubated with cysteine-conjugated
YQVEAFDPEDTSRN peptide. Anti-CDHR3 (1 µg/mL)
recognized 100 kD bands in CDHR3-expressing HeLa-E8 cells
and mouse lung lysate but not HeLa-H1 cells (Supplemental
Figure 1A). Recognition of these bands was abolished by addition
of YQVEAFDPEDTSRN peptide (10 µg/mL). Other bands,
perhaps representing proteins with calcium binding domains,
remained. HeLa-E8 cells, but not HeLa-H1 cells on glass
coverslips stained positively with AF488-conjugated anti-
CDHR3. Staining was blocked with addition of either unlabeled
rabbit IgG or YQVEAFDPEDTSRN (Supplemental Figure 1B).

Lung Histology and Immunofluorescence
Lungs were harvested at different points, fixed with 10%
formaldehyde overnight and paraffin embedded. Blocks were
sectioned at 500 mm intervals at a thickness of 5 mm, and each
section was deparaffinized, hydrated and stained. To visualize
inflammation, sections were stained with H&E. Other lung
sections were incubated with anti-CDHR3, anti-EV-D68 VP3,
mouse anti-acetyl a-tubulin (MilliporeSigma, Burlington, MA),
rat anti-IL-25 (Biolegend), goat anti-IL-33 (eBioscience), rat
anti-TSLP (Biolegend), rat anti-CD123 (Biolegend) or isotypic
IgG. Antibodies and IgGs were labeled with AlexaFluor NHS
esters (ThermoFisher) according to manufacturer’s instructions.
ILC2s were identified as IL-13- and GATA3-positive, and T cells
were identified as IL-13-, GATA3- and CD3-positive. Images
were visualized using an ApoTome microscope (Carl Zeiss,
Thornwood, NY) or a Leica SP5 inverted laser confocal
microscope (Buffalo Grove, IL).

Flow Cytometric Analysis
Lungs were harvested 2 days after sham, RV-C15 and RV-A1B
treatment. Lungs were perfused with PBS containing EDTA and
minced and digested in collagenase IV. Cells were filtered and
washed with red blood cell lysis buffer, and dead cells were
stained with Pacific Blue Live/Dead fixable dead staining dye
(Invitrogen). Nonspecific binding was blocked by 10% FBS with
1% LPS-free BSA and 5-µg rat anti-mouse CD16/32 (BioLegend,
San Diego, CA) added. To identify ILC2s, cells were then stained
with FITC-conjugated antibodies for lineage markers [CD3ϵ, T-
cell receptor- b (TCR b), B220/CD45R, Ter-119, Gr-1/Ly-6G/Ly-
6C, CD11b, CD11c, F4/80, and FcϵRIa; all from BioLegend],
anti-CD25-peridinin- chlorophyll-protein complex (PerCP)-
Cy5.5 (eBioscience), anti-CD127-allophycocyanin (APC;
eBioscience) and anti-ST2-phycoerythrin (PE)-Cy7
(BioLegend), as described (35). Cells were fixed, subjected to
flow cytometry, and analyzed on a LSR Fortessa (BD Biosciences,
San Jose, CA). Positive/negative staining was determined using
fluorescence minus one (FMO) controls. Data were collected
using FACSDiva software (BD Biosciences) and analyzed using
FlowJo software (Tree Star, Ashland, OR).

Bronchoalveolar Lavage
Bronchoalveolar lavage (BAL) was performed using 1 ml PBS
aliquots. Cytospins were stained with Diff-Quick (Dade Behring,
Frontiers in Immunology | www.frontiersin.org 4
Newark, DE) and differential counts determined from 200
cells (36).

ELISA
Mouse lungs were harvested, homogenized in PBS plus Roche
Complete Protease Inhibitors (MilliporeSigma), and snap frozen
in liquid nitrogen. After thawing and resuspension at 4°C,
particles were centrifuged at 10,000 x g for 30 min, and the
supernatant was diluted serially in the homogenization buffer for
ELISA of IFN-b, IFN-l, IL-5, IL-13, IL-25, IL-33 and TSLP
according to the manufacturer’s instructions (R&D Systems,
Minneapolis, MN and eBioscience).

Measurement of Airway Responsiveness
Mice were anesthetized, intubated, and ventilated with a Buxco
FinePointe System (Wilmington, NC). Mice were administered
nebulized saline and increasing doses of nebulized methacholine
to assess airways responsiveness (27).

Airway Epithelial Cell Culture
Mouse airway epithelial cells were purchased from Cell Biologics
(Chicago, IL). Primary airway epithelial cells were cultured in
Transwells at air-liquid interface as described previously, with
some modifications (37). Briefly, airway epithelial cells were
cultured under submerged condit ions in complete
PneumaCult-Ex Plus medium (Stemcell Technologies,
Vancouver, CA) for 1 week. Cells were transferred to
Transwells and cultured with complete medium in both basal
and apical wells until confluence was reached. Cells were then
maintained at air-liquid interface for three weeks in
PneumaCult-ALI maintenance medium. Cells were infected
with sham, RV-C15 or RV-A39 at a multiplicity of infection
(MOI) of 2 for 12 hrs. RV-A39 was purchased from ATCC and
purified from infected HeLa-H1 cell lysates by ultrafiltration with
a 100-kDa cutoff filter. Selected cell cultures were fixed and
stained with AlexaFluor 488-conjugated anti-acetyl a-tubulin
(MilliporeSigma, Burlington, MA) and AlexaFluor 555-
conjugated anti-VP3. Immunoreactivity was visualized with a
NikonA1 laser confocal microscope.

Data Analysis
Normality was tested using the Shapiro-Wilk test. Group mean
data are represented as mean ± SEM or median ± interquartile
range as appropriate. Statistical significance was assessed by
unpaired t-test, Mann-Whitney test, one-way analysis of
variance (ANOVA) or Kruskal-Wallis test as appropriate.
Group differences were pinpointed by the Tukey or Dunn’s
multiple comparison test.
RESULTS

RV-C15 Persists in Lungs at Similar
Levels as RV-A1B
Female adult BALB/c mice were inoculated sham HeLa cell
lysate, 5 x 106 PFU RV-C15 or 5 x 106 PFU RV-A1B (50 µl at
108 PFU/ml) by intranasal instillation. Mice were sacrificed,
April 2021 | Volume 12 | Article 649520
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and the lungs were analyzed by qPCR at 0-96 h after infection
for the presence of viral RNA. Viral RNA levels peaked 12 h
after inoculation (Figure 2A). RV-A1B and RV-C15 infectivity
was assessed by homogenizing lungs from virus- or sham-
inoculated mice, overlying this material onto confluent
monolayers of HeLa-H1 or HeLa-E8 cells, and assessing viral
infectivity. Clarified supernatants from lung homogenates of
RV-C15-infected mice caused cytopathic effects in HeLa-E8
cells. Fifty percent tissue culture infectivity doses (TCID50) of
RV-A1B and RV-C15 were determined by the Spearman-
Karber method (38). Lung RV-A1B and RV-C15 titers
peaked 24 h after inoculation (Figure 2B, left panel). There
was no difference in lung viral titers 48 h after inoculation
(Figure 2B, right panel). In addition, lungs from RV-A1B- and
RV-C15-infected mice showed significant increases in IFN-a,
b and l2 mRNA expression (Figure 2C) and IFN-b and IFN-l
protein expression (Figure 2D), consistent with the presence
of viral RNA. Lung homogenates of RV-C15-infected mice also
formed small plaques on HeLa-E8 cells up to 48 h after
infection, but homogenates from sham-infected mice did not
(Figure 2E).

Lungs were also formalin-fixed and paraffin-embedded 24 h
after exposure, and sections stained with fluorescent tagged anti-
VP3, anti-CDHR3 and acetyl-a-tubulin. RV-C15 was localized
to CDHR3+ ciliated airway epithelial cells (Figure 3A). Confocal
microscopy using anti-YQVEAFDPEDTSRN showed
colocalization of CDHR3 with RV-C15 but not RV-A1B
(Figure 3B). However, it is important to note that this
antibody did not block RV-C15 replication in vitro or in vivo
(not shown).

Infection of Cultured Mouse Airway
Epithelial Cells With RV-C15
To confirm that RV-C15 infects mouse airway epithelial cells, we
cultured differentiated mouse airway epithelial cells at air-liquid
interface with sham, RV-C15 or RV-A39, a major group virus
which does not infect mouse cells. Selected cell cultures were
fixed and stained for AlexaFluor-conjugated anti-acetyl a-
tubulin and anti-VP3. Cultures stained for acetylated tubulin
indicating the presence of cilia (Figure 4, upper panel). Cultured
inoculated with RV-A39 showed no VP3 present (middle panel).
Cultures inoculated with RV-C15 showed colocalization of VP3
and acetyl a-tubulin, indicating infection of ciliated cells
(lower panel).

RV-C15 Induces Neutrophilic and
Eosinophilic Inflammation and Expression
of Type 2 Cytokines
Forty-eight h post-inoculation, lungs were stained with
hematoxylin and eosin. Sham-inoculated mice showed no
inflammation (Figure 5A). However, RV-C15 exposed mice
showed leukocyte infiltration around large airways, which was
similar to RV-A1B. Next, we determined bronchoalveolar lavage
inflammatory cell counts in RV-C15- and sham-infected mice 24
and 48 h after treatment. We also examined the effects of
Frontiers in Immunology | www.frontiersin.org 5
replication-deficient UV-irradiated virus. Selected RV-C15
preparations were irradiated with ultraviolet (UV) light at
1200 mJ/cm2 for 30 mi using a UVB CL-1000 cross-linker
(39). Forty-eight h after inoculation, RV-C15-infected mice
had significantly greater monocyte, neutrophil, lymphocyte and
eosinophil recruitment into the bronchoalveolar fluid than
sham-treated mice (Figure 5B). Mice infected with UV-
irradiated virus showed significantly reduced viral copy
number and fewer neutrophils, lymphocytes and eosinophils in
the airways (Figures 5B, C).

Lungs were also harvested for mRNA expression 24 and
48 h after treatment, as measured by qPCR. Compared to
sham treatment, RV-C15 infection significantly increased
mRNA expression of IFN-g, CXCL10, CXCL1, CXCL2,
TNF-a, IL-12, IL-25, IL-13 and IL-5 (Figure 5D). UV
irradiation significantly reduced RV-C15-induced IFN-g,
CXCL10, CXCL1, CXCL2, IL-13 and IL-5 transcript levels,
and UV-irradiated virus failed to induce TNF-a or IL-25
mRNA expression.

Comparison of RV-C15 and
RV-A1B Responses
We compared lung inflammatory responses 48 h after infection
with RV-C15 and RV-A1B, a minor group virus which infects
mouse cells (29, 40) and constitutes a well-established model of
RV infection (26, 27). As noted above, RV-C induced
significant eosinophilic inflammation, whereas RV-1B did
not (Figure 6A). Compared to RV-A1B, RV-C15 infection
induced significantly higher mRNA expression of CXCL1,
CXCL2, IL-5 and IL-13 (Figure 6B). Only RV-C15 induced
significant mRNA expression of the IL-13-responsive genes
Muc5ac, Muc5b and Gob5/Clca1. Finally, only RV-C15
significantly increased protein expression of the type 2
cytokines IL-5 and IL-13 (Figure 7A).

We also examined lungs for elaboration of IL-25, IL-33 and
TSLP, innate cytokines that promote ILC2 expansion (41–47).
Compared to RV-A1B, RV-C15 infection induced significantly
higher mRNA expression of IL-25 (Figure 6B). Only RV-C15
significantly increased mRNA expression of IL-33 and TSLP.
In addition, compared to RV-A1B, RV-C15 infection induced
significantly higher protein expression of IL-25, IL-33 and
TSLP (Figure 7A). Lungs were formalin-fixed and paraffin-
embedded 2 days post-exposure, and sections stained for
IL-25, IL-33 and TSLP immunofluorescence. Abundant
staining for IL-25, IL-33 and TSLP was seen in the airways of
mice inoculated with RV-C15 but not RV-A1B (Figure 7B).
IL-25 and TSLP were localized to the airway epithelium
whereas IL-33 was found in both airway epithelial and
peribronchial cells.

RV-C15 Inoculation Enhances mRNA
Expression of Type 2 Cytokines, Mucus
Genes and Airway Responsiveness in
Allergen-Challenged Mice
RV-C15-induced respiratory illnesses have been associated with
a previous history of asthma (3–6, 11, 13). We therefore
April 2021 | Volume 12 | Article 649520
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determined the response to RV-C15 infection in mice with
allergic airways disease and compared the responses with RV-
A1B. As described previously (33), wild-type BALB/c mice were
Frontiers in Immunology | www.frontiersin.org 6
sensitized with house dust mite (HDM) and challenged with
HDM 10 and 11 days after sensitization. Two days later, mice
were inoculated with sham, RV-C15 or RV-A1B. Forty-eight h
A B

C

E

D

FIGURE 2 | Viral RNA is detectable in the lungs of RV-C15 treated mice. (A) Female 8-10-week-old BALB/c mice were inoculated with 5 x 106 ePFU of RV-C15 or
RV-A1B by intranasal instillation and lungs were examined by RT-PCR for viral RNA at the indicated time points. Graph showing RV-C15 and RV-A1B copy number
at the indicated time points up to day 4. Data are mean ± SEM, n = 2-16 mice/group from five different experiments. (B) Left panel. Time course of lung viral titers in
mice infected with RV-C15 and RV-A1B (7 mice per virus). Viral titer was assessed by TCID50. Right panel. Group mean data from an additional 5 mice at the 48 hr
time point are also shown. Median ± interquartile range, n = 5 mice per group from one experiment are shown. (C) Graphs showing IFN mRNA expression analysis
at indicated time points. The level of gene expression for each sample was normalized to GAPDH. Data represent mean ± SEM, n = 6 mice in each group from two
different experiments, *P<0.05 by two-way ANOVA. (D) Graphs showing IFN expression analysis 48 hr after infection. Data represent mean ± SEM, n = 7 mice in
each group from one experiment, *P<0.05 by one-way ANOVA. (E) Plaque assays show live virus in the lungs of RV-A1B and RV-C15-infected mice, as evidence by
plaque formation in HeLa-H1 and HeLa-E8 cells, respectively.
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after infection, mice were sacrificed for bronchoalveolar lavage
and lung mRNA determination or anesthetized and
endotracheally intubated for measurement of methacholine
responsiveness. As noted above, RV-C15 infection of naïve
mice increased BAL monocytes, neutrophils, eosinophils and
lymphocytes (Figure 8A), while inducing mRNA expression of
Frontiers in Immunology | www.frontiersin.org 7
IFN-g, CXCL10, IL-17A, IL-13 and IL-5 (Figure 8B). HDM
sensitization and challenge induced lung infiltration with
monocytes, lymphocytes and eosinophils (Figure 6A), and
lung mRNA expression of the eosinophil chemoattractant
CCL24, the type 2 cytokines IL-5 and IL-13 and the mucus-
related genes Muc5AC and Gob5 (Figure 8B).
A

B

FIGURE 3 | Colocalization of RV-C15 and CDHR3 in airway tissues of RV-C15-infected mice. (A) Airways from RV-C15-infected mice were stained with anti-VP3
(red), anti-acetyl a-tubulin (blue) and anti-CDHR3 (green). To stain mouse CDHR3, we identified a peptide (YQVEAFDPEDTSRN, human AAs 154-167) in the second
extracellular calcium-binding domain identical in mouse and human. Polyclonal antiserum was generated and purified by affinity chromatography. Acetyl a-tubulin
was localized to the epithelial cell apical surface. Colocalization is white. RV-C15 was localized to CDHR3+ ciliated airway epithelial cells. The white bar is 10 µ.
(B) Airway sections from sham-, RV-A1B and RV-C15-infected mice stained for viral protein 3 (VP3, shown in orange/red) and CDHR3 (green). Colocalization is
yellow. The white bar is 50 µ.
FIGURE 4 | RV-C15 co-localizes with mouse epithelial cell acetyl-a-tubulin and induces expression of pro-inflammatory cytokines. Mouse airway epithelial cells were
differentiated at air-liquid interface for 21 days. Cells were infected with sham HeLa cell lysate, RV-C15 or RV-A39 at MOI 2 and harvested 5 min after infection for
immunofluorescence staining with anti-mouse acetyl a-tubulin (red) and anti-VP3 (green). Nuclei are stained with DAPI (blue). Confocal microscopy shows
colocalization of cilia and RV-C15 (yellow). The white bar is 50 µ.
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Infection of HDM-treated mice with either RV-A1B or RV-
C15 had additive effects on airway inflammation (Figure 8A).
RV-A1B and RV-C15 each increased neutrophilic and
eosinophilic inflammation; however, the increase in eosinophils
was significantly greater in mice infected with RV-C15. In
addition, RV-C15 infection of mice with allergic airways
disease had additive effects on BAL lung IL-13, IL-5 and
CCL24 expression, which were greater than induced by RV-
Frontiers in Immunology | www.frontiersin.org 8
A1B (Figure 8B). Thus, RV-C15 infection enhanced allergen-
induced type 2 inflammation to a greater extent than RV-A1B.
On the other hand, RV-C15-induced neutrophilic inflammation
and mRNA expression of CXCL10 and IL-17 tended to be lower
in allergen-challenged mice.

Next, we examined the effects of RV infection on the airway
responsiveness in naïve and HDM-sensitized and -challenged
mice. Increasing doses of nebulized methacholine were given by
A

A

B

C D

FIGURE 5 | RV-C15 induces airway inflammation in naïve mice that is partially dependent on viral replication. Female 8-10-week-old BALB/c mice were treated with
sham HeLa cell lysate, 5 x 106 ePFU RV-C15 or UV-irradiated RV-C15. (A) Hematoxylin- and eosin-stained lung tissue. Bar = 50 µ. (B) Lungs were harvested 24 or
48 h after inoculation and processed for BAL inflammatory cell counts. (C, D) Twenty-four or 48 hr after inoculation, lungs were harvested for vRNA and mRNA
expression. For mRNA, the level of gene expression for each sample was normalized to GAPDH. (For panels B-D, data are mean ± SEM except for lymphocytes,
neutrophilis and Tnfa, n = 3-4 mice in each group from one experiment, *P < 0.05 by one-way ANOVA; for lymphocytes, neutrophils and Tnfa, data are median ±
IQR, *P < 0.05 by Kruskal-Wallis test).
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inhalation and respiratory system resistance measured. In naïve
mice, RV-C15 increased airways responsiveness compared to
RV-A1B (Figure 8C). In HDM-treated mice, only RV-C15
increased airway responsiveness compared to HDM alone.

Potential Contribution of ILC2s to RV-C-
Induced Airway Inflammation
Next, we examined lung ILC2s by flow cytometry. Cells were
sorted for size, live/dead and surface markers for the various
hematopoietic lineages (Figure 9A). Lungs from sham-treated
mice showed a large number of lineage- CD25- CD127- cells,
likely representing lung structural (epithelial and mesenchymal)
cells. Two days after infection, RV-C15 infection was associated
with a small but significant increase the number of lung lineage-
negative, CD25-, CD127-double positive ILC2s (Figures 9B, C).
There was no increase in the lungs of RV-A1B-infected mice.
Identification of ILC2s was confirmed by co-staining with ST2,
the IL-33 receptor (Figures 9D, E).
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We examined RV-C15-induced cytokine responses in ILC2-
deficient Rorafl/flIl7rCre mice and Rorafl/fl littermates. We previously
found that six day-old Rorafl/flIl7rCre mice fail to show ILC2
expansion after RV-A1B infection despite a small increase in viral
load, demonstrating the effectiveness of this knockout (48). RV-C15
infection increased airway eosinophilic inflammation (Figure 10A)
and mRNA expression of IL-13, Muc5ac and Muc5b in Rorafl/fl

mice but not Rorafl/flIl7rCre littermates (Figure 10B). In contrast,
RV-C15-induced neutrophils, lymphocytes and mRNA expression
of IFN-g and CXCL10 were preserved.
DISCUSSION

Despite increasing recognition of RV-C as a cause of severe asthma
exacerbation, little is known about the pathogenesis of RV-C
infections. To accomplish this, we infected BALB/c mice with
RV-C15, and compared responses to our previously established
A

B

FIGURE 6 | Comparison of RV-C15- and RV-A1B-induced airway inflammation in naïve mice. Female 8-10-week-old BALB/c mice were treated with sham HeLa
cell lysate, 5 x 106 ePFU RV-C15 or 5 x 106 ePFU RV-A1B. (A) Lungs were harvested 48 hr after inoculation and processed for BAL inflammatory cell counts.
(B) Forty-eight h after inoculation, lungs were harvested for mRNA expression. The level of gene expression for each sample was normalized to GAPDH. For panels
(A, B) data are mean ± SEM except for monocytes and Ccl2, n = 7-8 mice in each group from two experiments, *P < 0.05 by one-way ANOVA; for monocytes and
Ccl2, data are median ± IQR, *P < 0.05 by Kruskal-Wallis test).
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RV-A1B model (27). Following intranasal inoculation with RV-
C15, we isolated positive-strand viral RNA from the lungs of mice
up to four days after exposure. We detected RV-C15 protein in
airway epithelial cells. We also showed that lung homogenate from
RV-C15-exposed mice 48 hr after infection causes cytopathic effects
and plaque formation in HeLa-E8 cells. RV-C exposure induced a
robust type I and type III interferon response which peaked 48-72
hrs after infection, evidence of viral replication (49). UV-irradiated
virus had significantly reduced effects on airway inflammation and
cytokine expression. RV-C15 exposure induced airway
inflammation, as demonstrated by lung histology, increased BAL
cells, and increased cytokine expression. Airways inflammation was
accompanied by a functional state of hyperresponsiveness. Finally,
RV-C15 but not RV-A39 infected ciliary-differentiated mouse
airway epithelial cells cultured at air-liquid interface. Together,
these data suggest that mouse lower airways may be infected with
RV-C15. However, the steep reduction in viral RNA we observed in
our model, similar to that previously observed for RV-A16 (26),
minor group RV-A1B (26, 27) and enterovirus D68 (28), speaks
against a substantial replicative infection.

In addition, we found that RV-C15 infection induced
quantitatively and qualitatively different airway responses than
RV-A1B. RV-C15-infected mice showed significantly higher
CXCL1 and CXCL2 mRNA expression than RV-A1B-infected
mice. In addition, only RV-C-infected mice showed increases in
lung mRNA expression of IL-5, IL-13 and CCL24, indicating a
Frontiers in Immunology | www.frontiersin.org 10
type 2 inflammatory response. While at times the differences
between RV-C15 and RV-A1B responses were small, RV-C-
induced type 2 cytokine responses were sufficient to generate
robust airway eosinophilia and mucous gene expression. We also
found increased mRNA expression and peribronchial deposition
of the innate cytokines IL-25, IL-33 and TSLP. This response is
distinctly different from the response to RV-A1B or RV-A16,
which have been shown by five different laboratories to be a
classic type 1 antiviral response (26, 27, 50–55). Only Tbet-
deficient mice show IL-13 expression after RV-A1B-infection
(56). Similarly, after human experimental RV-A16 infection,
only subjects with asthma, but not controls, show elevation of
IL-5, IL-13, IL-25 or IL-33 (51, 57, 58). Similar differential IL-25
and TSLP expression has been noted in asthmatic epithelial cells
(51, 59). This pattern of increased type 2 and innate cytokine
expression could explain why infections with RV-C are more
likely to occur in children with a history of asthma or who
develop asthma (6, 10, 11, 13, 14).

The precise mechanism by which RV-C15 induces greater
type 2 and innate cytokine expression than RV-A1B is unclear. A
previous study examining the effects of various respiratory
viruses on airway epithelial cell replication kinetics, cell
tropism, tissue integrity, and cytokine secretion showed no
differences between RV-C15 and other RVs (23). Similarly, we
did not notice more cell loss in cultures infected with RV-C15
(data not shown). We speculate that differential innate cytokine
A

B

FIGURE 7 | Comparison of RV-C15 and RV-A1B-induced cytokine expression in naïve mice. (A) Effects of RV-C15 and RV-A1B on cytokine expression measured
by ELISA. Data are mean ± SEM, n = 5-12 mice in each group from one or two experiments, *P < 0.05 by one-way ANOVA. (B) Immunofluorescence images of
mouse lungs infected with 5 x 106 ePFU RV-C15 or 5 x 106 ePFU RV-A1B. Staining for IL-25, IL-33 and TSLP is shown. Scale bar is 50 µm. These images are
representative of four mice.
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expression following RV-C15 reflects the receptor-linked
signaling pathways that establish the inflammatory response.
In support of this hypothesis, differences in macrophage gene
expression between two rhinovirus serotypes, RV-A16 and RV-
A1A, have been traced to differential kinase and transcription
factor phosphorylation following initial RV binding (60). Also in
support of this hypothesis are the robust increases in cytokine
expression we observed in mice treated with UV-irradiated RV-
C15, more than we observed previously with RV-A1B (27).
Responses to replication-deficient virus are likely to reflect
receptor binding and endocytosis of virus, rather than later
replication-dependent responses. Previous in vitro studies have
also shown responses to replication-deficient RV (61–63),
suggesting that binding and endocytosis of RV is sufficient,
and viral replication unnecessary, for a subset of inflammatory
Frontiers in Immunology | www.frontiersin.org 11
responses, to be followed by a second set of replication-
dependent responses.

We found colocalization of RV-C and acetyl a-tubulin, a
microtubule protein that is enriched in the axonemes of most
cilia. Thus, these data confirm that RV-C binds to ciliated airway
epithelial cells (64). We found that CDHR3 preferentially
colocalizes with RV-C15 compared to RV-A1B. Mouse
CDHR3 is highly homologous to human CDHR3 and includes
the N186 glycosylation site (19) and EC-1 domain (65) required
and sufficient for RVC15 binding to the human protein.
However, we were unable to block RV-C binding or replication
with anti-CDHR3 (not shown). We are therefore unable to state
with certainty that CDHR3 is the RV-C receptor in mice. Since
structural analysis suggests that, similar to enterovirus-D68, RV-
C15 binds to a sialic acid moiety of a CDHR3-bound glycan (18),
A

B

C

FIGURE 8 | Comparison of RV-C15- and RV-A1B-induced airway inflammation in house dust mite-sensitized and -challenged mice. Female 8-12 week-old BALB/c
mice were challenged with house dust mite (HDM) and treated one day after the last HDM treatment with sham HeLa cell lysate, 5 x 106 ePFU RV-C15 or 5 x 106

ePFU RV-A1B. Forty-eight hrs later lungs were harvested for BAL analysis and qPCR. A separate set of mice were similarly treated and were anesthetized and
endotracheally intubated for measurement of airways responsiveness. (A) Graphs showing BAL cell counts. (B) Graphs showing qPCR analysis of lung mRNA
expression. The level of gene expression for each sample was normalized to GAPDH. For panels (A, B), data are mean ± SEM except for Ifng, n = 3-8 mice/group
for 1-3 experiments, *p<0.05, one-way ANOVA; for Ifng, data are median ± IQR. (C) Airways methacholine responsiveness of the indicated treatment groups. Data
are mean ± SEM of 3-4 mice/group from two experiments, *P < 0.05, two-way ANOVA.
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it is conceivable that RV-C binds to other glycan-binding
proteins. A recent study in human airway epithelial cells
showed that, while CDHR3 knockdown blocks RV-C
replication, it does not affect binding of RV-C (66), suggesting
that a co-receptor is required for binding of the virus.

As noted above, RV-C15 infection induced airway expression
of IL-25, IL-33 and TSLP, innate cytokines responsible for
activation of IL-5- and IL-13-producing ILC2s expansion (41–
47). IL-25 production was mostly limited to airway epithelial
cells, whereas IL-33 was noted in epithelial and subepithelial
cells. A similar pattern of IL-33 deposition was observed in
children with steroid-resistant asthma (67). Accordingly, we
found increased lineage-negative, ST2+, CD25- and CD127
ILC2s in the lungs of RV-C15-, but not RV-A1B-infected mice.
ILC2 depletion blocked RV-C15-induced mRNA expression of
Frontiers in Immunology | www.frontiersin.org 12
IL-13 and the mucus-related genes Muc5ac and Muc5b.
Previously we noted expansion of ILC2s in RV-A1B-infected 6
day-old mice but not mature mice (35). Lung ILC2 expansion
has also been shown after influenza infection (68, 69) and
allergen-induced airway inflammation (44–46, 70–72).

A limitation of our study is the transient nature of viral infection
in our model. Species differences restrict viral replication, requiring
a high inoculum. However, we have previously shown that infection
with RV-A1B increases lung type 1 IFN and negative-strand viral
RNA expression (27), markers of viral replication. In addition,
MDA5 is required for RV-A1B-induced inflammatory responses
(73), inferring a role for double-stranded RNA, a form of viral RNA
which is only made during viral replication. Inhibition of
inflammasome activation (55) and corticosteroids (74) each
increase viral load in RV-infected mice, consistent with the notion
A

B C

D E

FIGURE 9 | Flow cytometric analysis (A–E) for ILC2s was carried out in RV-A1B- and RV-C15-infected mice. For flow cytometry, ILC2s were identified as lineage-
negative, CD25- and CD127-double positive cells (B, C) and lineage-negative, CD25+, CD127+, ST2+ cells (D, E). For (C), data are mean ± SEM, n = 12 mice in
each group from three different experiments, *P < 0.05 by one-way ANOVA. For (E), data are median ± IQR, n = 5 mice in each group from one experiment, *P <
0.05 by Kruskal-Wallis test.
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that antiviral immunity plays a significant role in our model. In
addition, we have observed differences in the inflammatory
response to RV-A1B, RV-C15 and EV-D68 (28) which are
qualitative in nature and resemble responses in human subjects.
Taken together, these results suggest that while replication of
human RV is minimal in mice, the resulting host-induced innate
immune response and immunopathology is worthy of study.
Indeed, replication-deficient viral vectors are a useful tool for
studying the innate immune response to acute viral infection
without ongoing cytopathic effects (75).

We conclude that RV-C15 exposure induces airways
inflammation in mice, binding to ciliated airway epithelial
cells. Compared to RV-A1B infection, the inflammatory
response to RV-C15 is characterized by greater eosinophils,
epithelial-derived innate cytokines and IL-13-producing ILC2s.
Further characterization of this model, combined with studies of
human subjects, will provide insight into the pathogenesis of
rhinovirus C infections.
Frontiers in Immunology | www.frontiersin.org 13
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