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Key Points: 

• We attribute variability in XCO2 retrieved from NASA’s OCO-2 satellite to surface flux 

gradients, atmospheric transport, and error. 

• Seasonal and synoptic-scale XCO2 variability reflects hemispheric and continental-scale 

surface carbon flux gradients.  

• Correlated errors impart spatially coherent fine-scale variability that significantly 

increases standard error in XCO2 aggregates. 
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Abstract 

Variations in atmosphere total column-mean CO2 (XCO2) collected by the National Aeronautics 

and Space Administration’s Orbiting Carbon Observatory-2 satellite can be used to constrain 

surface carbon fluxes if the influence of atmospheric transport and observation errors on the data 

is known and accounted for. Due to sparse validation data, the portions of fine-scale variability 

in XCO2 driven by fluxes, transport, or retrieval errors remains uncertain, particularly over the 

ocean. To better understand these drivers, we characterize variability in OCO-2 Level 2 version 

10 XCO2 from the seasonal scale, synoptic-scale (order of days, 1000s of kms), and mesoscale 

(within-day, 100s kms) for ten biomes over North America and adjacent ocean basins. Seasonal 

and synoptic variations in XCO2 reflect real geophysical drivers (transport and fluxes), following 

large-scale atmospheric circulation and the north-south distribution of biosphere carbon uptake. 

In contrast, geostatistical analysis of mesoscale and finer variability shows that real signals are 

obscured by systematic biases across the domain. Spatial correlations in along-track XCO2 are 

much shorter and spatially-coherent variability is much larger in magnitude than can be 

attributed to fluxes or transport. We characterize random and coherent along-track XCO2 

variability in addition to quantifying uncertainty in XCO2 aggregates across typical lengths used 

in inverse modeling. Even over the ocean, correlated errors decrease the independence and 

increase uncertainty in XCO2. We discuss the utility of computing geostatistical parameters and 

demonstrate their importance for XCO2 science applications spanning from data reprocessing 

and algorithm development to error estimation and carbon flux inference.  

 

Plain Language Summary 
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The National Aeronautics and Space Administration’s Orbiting Carbon Observatory-2 satellite 

collects measurements of atmosphere total column-mean CO2 (XCO2), providing a constraint on 

surface carbon fluxes. Fluxes of carbon into Earth’s surface by the ocean and land biosphere 

(uptake) counteract the rising levels of atmospheric CO2 caused by increased anthropogenic 

emissions. To use XCO2 for flux estimation in inverse models, variability in the data must be 

attributed to either gradients in surface carbon fluxes, atmospheric transport, or retrieval errors. 

We decompose OCO-2 XCO2 variability over North America and adjacent ocean into seasonal, 

synoptic (order of days, 1000s of km) and finer scales to uncover the relative influences of these 

processes on XCO2. Spatial patterns in seasonal and synoptic-scale XCO2 variability follow 

large-scale atmospheric circulation and reflect the mean north-south distribution of biosphere 

carbon uptake in the Northern Hemisphere rather than underlying local surface flux variability. 

On finer scales, geostatistical analysis shows that patterns in XCO2 variability are driven by 

correlated retrieval errors, obscuring the influence of transport and error. We compute new 

estimates of XCO2 uncertainty for inverse model studies that assimilate the data and discuss the 

impact of errors over different land and ocean regions.  

1 Introduction 

Carbon flux accounting forms the basis of climate-science applications that guide policy, 

track fossil fuel emissions, monitor the biosphere, and project global change. Spatiotemporal 

variations in atmospheric carbon dioxide, CO2, reflect the underlying uptake and release of CO2 

by surface processes and atmospheric transport. Consequently, atmospheric CO2 measurements 

can provide a top-down constraint for carbon flux inference, given that the signal from surface 

fluxes is disentangled from transport-induced variability. Top-down flux inference, achieved 

through atmospheric inverse modeling, requires a quantitative description of transport-induced 
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variability and error in CO2 measurements across a wide range of spatial and temporal scales. 

While there is currently good confidence in surface carbon fluxes estimated from inversion 

studies on hemispheric and annual scales, there is still disagreement in the corresponding surface 

fluxes on sub-annual and regional scales (Peiro et al., 2022; Gaubert et al., 2019; Baker et al., 

2006; Gurney et al., 2002). Uncertainties arise due to the limited spatiotemporal coverage of 

observations, differing model representations of atmospheric transport and mixing, and poorly 

constrained regional surface flux heterogeneity. In the past decade, space-based instruments such 

as the National Aeronautics and Space Administration’s Orbiting Carbon Observatory-2 (NASA 

OCO-2) satellite have provided a more complete global picture of total column average 

atmospheric CO2, XCO2 (Eldering et al., 2017).  

Since its launch in July 2014, OCO-2 has measured XCO2 with a high level of precision 

(between 0.1–0.5% or ~1 ppm error per individual sounding) (O’Dell et al., 2018; Wunch et al., 

2017) capable of reducing uncertainties in regional carbon flux inference (Rayner and O’Brien, 

2001; Miller et al., 2007). Because XCO2 captures the CO2 abundance throughout a total 

atmospheric column, including the planetary boundary layer and free troposphere, it is less 

sensitive to vertical mixing and entrainment than measurements made near the surface. This 

mediates the uncertainties in transport models that arise when representing small-scale vertical 

mixing and ties XCO2 more directly to surface fluxes via mass balance (Basu et al., 2018; Olsen 

& Randerson, 2004; Rayner & O’Brien, 2001). However, XCO2 is sensitive to rapid horizontal 

transport in the free troposphere, giving these measurements a large footprint that reflects large-

scale flux patterns more than local processes (Keppel-Aleks et al., 2011). Atmospheric 

inversions of XCO2 can thus constrain surface fluxes at regional and continental spatial scales, 
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bridging the gap between small-scale direct flux measurements, which must be extrapolated to 

other areas, and global constraints, which cannot capture regional dynamics.  

Transport-induced XCO2 variability arising from the mixing of XCO2 concentration 

gradients must be resolved in inverse model frameworks to reveal surface flux information. The 

influence of transport on XCO2 variability has been well-documented in time-series such as that 

from the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011). TCCON is a 

network of ground-based spectrometers with coverage that is more temporally-dense and 

spatially-sparse in comparison to space-based XCO2 observing instruments. On sub-seasonal 

scales the most significant variations in simulated XCO2 are driven by synoptic-scale advection 

(occurring over 1000s of km and lasting a few days to weeks) of continental-scale spatial XCO2 

gradients, as opposed to local flux variability (Keppel-Aleks et al., 2011). Specifically, local 

fluxes are not the dominant influence on TCCON XCO2 variability, even on diurnal timescales. 

Sub-seasonal variations in midlatitude TCCON XCO2 are primarily driven by synoptic-scale 

advection across the hemispheric summertime north-south gradient in XCO2, shaped by the 

mean distribution of growing season biosphere carbon uptake (Keppel-Aleks et al., 2012). 

Synoptic-scale TCCON XCO2 variability could reach up to half the peak-to-trough amplitude of 

the seasonal cycle. XCO2 variability at midlatitude TCCON sites differed during the summer 

based on the strength of the north-south gradient in the area (Keppel-Aleks et al., 2012). Outside 

of summer months, synoptic XCO2 variability is more similar across midlatitude TCCON sites 

when the gradient is weaker. Significant sub-seasonal variability in TCCON XCO2 is also 

attributed to advection by mesoscale weather systems (occurring over ~10s km and lasting one 

day or less). Mesoscale variability at TCCON sites is typically between 0.2 ppm and 0.5 ppm, 

30% to 50% the magnitude of synoptic-scale variability (Torres et al., 2019). The observed 
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mesoscale variability was about half the magnitude of diurnal fluxes at Northern Hemisphere 

midlatitude TCCON sites but could be greater in magnitude than diurnal variability outside the 

growing season.  

The temporal duration of individual OCO-2 overpasses is too short and the repeat cycle 

of OCO-2 orbits is too long to sample synoptic or mesoscale systems' time-variability directly.  

The satellite has a repeat cycle of 16 days, acquiring at each time step a narrow swath of up to 

eight cross-track samples that have individual spatial footprints of 2.4 km along-track by 1.25 km 

cross-track. While synoptic-scale atmospheric transport is often explicitly resolved in inversion 

techniques, simulation of mesoscale transport is less common and errors/gaps in coverage inhibit 

OCO-2 XCO2’s ability to capture real local gradients. For instance, clouds that obscure OCO-2 

measurements are often present in mesoscale weather systems. Some inverse frameworks have 

improved the spatial resolution of transport models to simulate mesoscale atmospheric transport 

despite the great required computational expense (Wesloh et al., 2020), but inversions on this 

scale require accurate representations of subgrid-scale spatially coherent variability in 

assimilated XCO2.  

To verify fine-scale variability in OCO-2 XCO2, recent studies have compared observed 

variability with simulated XCO2 or high-resolution validation XCO2 collected from in-situ sites 

or aircraft. Torres et al. (2019) used space for time substitution to characterize the influence of 

mesoscale transport on OCO-2 v8 XCO2 by comparing high-pass-filtered (<250 km) along-track 

spatial XCO2 variations to temporal mesoscale variations in TCCON XCO2. They observed 

greater spatially coherent along-track variability in OCO-2 XCO2 than what could be attributed 

to mesoscale transport (~0.4 ppm along 250 km of orbit track). Combined with correlation length 

scales much shorter (~10–30 km) than those associated with mesoscale systems, they concluded 
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systematic bias contributes significant along-track spatially coherent variability to OCO-2 v8 

XCO2. Baker et al. (2022) found similar OCO-2 v10 XCO2 error correlation length scales of 20 

km and ~10km,  noting the two distinct length scales that fit much of the data may be driven by 

different sources of error (fast-changing errors related to surface parameters versus slow-

changing errors related to atmospheric parameters). Bell et al. (2020) compared along-track 

OCO-2 v9 XCO2 variations with aircraft underflights equipped with a Multifunctional Fiber 

Laser Lidar (MFLL). They found agreement between OCO-2 and MFLL on synoptic scales but 

disagreement on local scales (0.35 correlation with MFLL), supporting the finding that 

systematic errors contribute significant spatially coherent non-transport structures at fine scales 

in OCO-2 XCO2. Worden et al., (2017) used the NASA GMAO high-resolution free-running 

GEOS-5 CO2 simulation to estimate natural fine-scale variability in XCO2 (owing to wind or 

fluxes) and compared that to observed variability in OCO-2 V7 XCO2 occurring along 100 km of 

orbit track. They found larger observed variability than simulated natural variability occurring 

over that small ~100 km neighborhood (simulated variability was ~0.1 ppm and observed 

variability was ~1.28 ppm). These studies have shown real signals driven by mesoscale transport 

or fluxes are entangled with fine-scale correlated errors in OCO-2 XCO2 . Fine-scale variability 

and correlations must be explicitly represented in inverse model frameworks or used to inflate 

observation error estimates. Model misrepresentation of subgrid-scale variability can impart 

errors in inverted fluxes on urban to global scales (Chevallier , 2007; Lauvaux et al., 2016; 

Corbin et al., 2008).  

The effect of spatially coherent biases on inverted flux uncertainty is largely dependent 

on the spatial and temporal scale of the bias and aggregation scheme. When assimilating XCO2 

into inversions, soundings are often averaged over some distance of orbit track, typically close to 
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the length of a model grid cell (for example, ~110 km for a 1x1 degree grid). Standard error 

estimates of the aggregated data are then used to evaluate model biases. For example, Hu et al. 

(2020) evaluated biases in monthly mean high-resolution WRF-VPRM model-simulated XCO2 

to time-matched OCO-2 v9 XCO2 data pairs aggregated in 1x1 degree grid boxes. Dong et al. 

(2021) used OCO-2 v9 data integrated onto a weather-biosphere-online-coupled model WRF-

Chem and CarbonTracker 2019 grids (20 km grid and 1 x 1 degree grids, respectively) for 

validation of simulated XCO2. Byrne et al. (2021) used OCO-2 v10 XCO2 to optimize fluxes 

from the NASA Carbon Monitoring System – Flux (CMS-Flux) inversion at 2 x 2.5 degree 

spatial resolution. In the OCO-2 v9 Model Intercomparison Project (MIP), XCO2 were averaged 

along 10 s spans of orbit track (~70 km) before assimilation into the inverse model, assuming 

errors were not correlated within the 10 s span (Peiro et al., 2022). XCO2The assumptions made 

about the data and employed in bias correction are made due to the long decorrelation length of 

atmospheric CO2 (500-1000 km) (Chevallier , 2007). However, observed XCO2 correlation 

lengths are much shorter than these typical averaging lengths, resulting in correlated groups of 

data and error within the aggregate (Torres et al., 2019, Baker et al., 2022). Making false 

assumptions about the independence of each along-track XCO2 sounding and its associated error 

leads to overconfidence in the XCO2 and incorrect error reductions (Baker et al., 2010).  

Recent studies have tried to address fine-scale error correlations to varying degrees, but 

challenges remain in representing and attributing the uncertainty they produce in inverted fluxes. 

Intermediate averaging, such as averaging 1s or 2s spans before averaging the full 10 s span, was 

tried in the v7 MIP (Crowell et al., 2019) and shown to improve aggregate error estimates (Baker 

et al., 2022). Using Lidar MFLL underflight validation data, Baker et al. (2022) evaluated flux 

errors that arise from representing measurement and error correlations in v10 XCO2. They 
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employed an Observing System Simulation Experiment (OSSE) and found retrieval biases were 

much larger and more variable than parameterized biases and derived a 1D error estimation 

model that represented correlations between the data as exponentially decaying. The error model 

showed improvement upon constant correlation models such as that used in the V9 MIP, which 

set constant correlation coefficients of +0.3 for adjacent land retrievals and doubled this value to 

+0.6 for adjacent ocean retrievals. While the constant correlation model proved to be sufficient, 

the correlation coefficients are somewhat arbitrary. Baker et al., (2022) also used this twice-the-

land relationship to double correlations over the ocean in their model because they did not have 

MFLL data over the ocean. Due to lacking validation data and assumptions that XCO2 statistics 

over the ocean should be fairly uniform, XCO2 correlation lengths over the ocean have typically 

been approximated using correlations that have been better characterized in retrievals over land. 

Correlations in OCO-2 XCO2 imparted by systematic bias have not been explicitly studied to the 

extent needed to represent aggregate uncertainty in flux inversions. 

Identifying sources of error in OCO-2 XCO2 and correcting systematic biases is an 

ongoing effort. In bias correction, systematic error in XCO2 that correlates with retrieval 

parameters (for example, aerosol quantities, albedo, or surface pressure) is corrected using 

multivariate regression. Improvements in the retrieval algorithm and parametric bias correction 

reduce these biases with each data release (Wunch et al., 2011; Wunch et al., 2017; O’Dell et al., 

2018; Kulawik et al., 2019; Kiel et al., 2019).  Wunch et al. (2017) found generally good 

agreement with v7 XCO2 and TCCON validation data at global scales (RMS differences less 

than 1.5 ppm) but noted that significant spurious variability remains on local scales. Residual 

biases are greater above 45° N, over areas subject to pathlength errors due to scattering from 

clouds or aerosols, and over areas where errors in assumed surface pressure arise due to rough 
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topography (Wunch et al., 2017). Erroneous surface pressure estimates can also occur in the 

meteorological reanalysis used in bias correction when sampled at incorrect times or if there are 

small misspecifications of instrument pointing, particularly over regions with rough topography 

(Kiel et al., 2019). Despite improvements in the retrieval algorithm, systematic biases over 

regional and finer scales in the latest version (v10) XCO2 can be large enough to impede surface 

flux estimation. Rastogi et al. (2021) compared bias-corrected v10 XCO2 retrievals with in situ 

data-constrained simulated XCO2 over North America. They found differences between the 

retrieved and simulated quantities on local scales (tens of kilometers) of the same magnitude as 

the imprint of surface fluxes in the total column and were able to attribute these differences to 

persisting fine-scale systematic errors in XCO2. Error analysis and uncertainty quantification 

remain areas of active research that strive toward reaching the level of accuracy and precision 

required for XCO2 measurements to detect exceptionally subtle flux-driven variations in the 

atmospheric column. 

Until the variance budget is fully resolved and applied within inverse modeling 

frameworks, the representation of aggregated OCO-2 XCO2 will cause large uncertainties in 

inverted fluxes on regional and sub-seasonal scales. To understand the influence of atmospheric 

transport, surface processes, and error on different spatial and temporal scales, we characterize 

variability in OCO-2 v10 XCO2 over North America and adjacent ocean basins. We evaluate 

spatial patterns in seasonal and synoptic-scale variability that illustrate the relative impact of 

atmospheric circulation and surface flux gradients on XCO2 on different scales. On mesoscale 

and finer scales, we conduct an along-track geostatistical analysis of variability to reveal possible 

retrieval errors and improve the representation of aggregated XCO2 and associated uncertainty in 

inverse frameworks. Relationships between variability and season, surface type, and pointing 
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mode help narrow down the specific processes driving real and spurious XCO2 variability. Our 

analysis provides insight into both the dynamics of atmospheric CO2 and the applications and 

limitations of XCO2 measurements.  

2 Materials and Methods 

2.1 Characterizing Seasonal and Sub-seasonal Variability in XCO2 

We use the OCO-2 Lite Level 2 data product, which provides geolocated, bias-corrected 

XCO2 aggregated into daily files. OCO-2 spectrometers collect 24 spectra per second and yield 

over 100,000 XCO2 observations each day, about 10% of which are sufficiently cloud-free 

scenes and have the precision required for scientific applications. We include all XCO2 

soundings marked with a “good” quality warning flag from September 2014 to December 2019 

and spanning between 180° W - 30° W and 14° N - 89° N. This study domain encompasses 

North America and extends into the adjacent Pacific and Atlantic Ocean basins. XCO2 is derived 

from version 10 (V10) of the Atmospheric Carbon Observations from Space (ACOS) retrieval 

algorithm (O’Dell et al., 2012, 2018), and results include soundings collected in glint and nadir 

observation modes. We characterize average seasonal and sub-seasonal variability in XCO2 

within bins spanning 5° latitude and longitude. Results are compared by observation mode, 

season, and biome in Section 3. We use a TransCom regional mask that divides the domain into 

boreal, temperate and tropical regions of N.A., the North Pacific, and the North Atlantic, 

publically available by the current OCO-2 V10 MIP (Figure S1 in the Supporting Information). 

Across the study domain, there are about ~500,000 – 700,000 observations per month, with 

fewer observations (~300,000 – 500,000) in December, January, and February.  



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

We compute a series of anomalies to characterize v10 XCO2 variability on seasonal and 

sub-seasonal scales (Figure 1a). First, we detrend the long-term anthropogenic temporal increase 

in XCO2 using a linear regression computed on the time series of all XCO2 in the domain (�̅�). 

We subtract the long-term temporal trend �̅� from the XCO2 time series and remove the 

detrended mean of each box 〈𝑋〉 from the corresponding XCO2 in equation (1). 

(1) 

𝑋′ =  𝑋𝑟𝑎𝑤 − �̅� − 〈𝑋〉 

From the resulting detrended, spatial annual anomalies (denoted as 𝑋′), we compute the 

average seasonal cycle for each bin in equation (2) (Figure 1b). We fit the mean annual cycle of 

each bin with a 1st and 2nd harmonic (𝑋𝑎). Average seasonal amplitudes for each bin are 

computed as the peak-to-trough difference of 𝑋𝑎. To account for additional interannual variation, 

we compute a 6-month low-pass filter on annual anomalies (𝑋𝑙𝑝). Sub-seasonal XCO2 anomalies, 

𝑋′′, are calculated by removing the annual cycle and low-pass filter from 𝑋′ (equation (3)).  

(2) 

𝑋𝑎 =  𝑋′(𝑡, 𝑏) = 𝑏1 𝑠𝑖𝑛(2𝜋(𝑡 + 𝑏2)) + 𝑏3sin (4𝜋( 𝑡 + 𝑏4)) 

(3) 

𝑋′′ =  𝑋′ −  𝑋𝑎 − 𝑋𝑙𝑝 
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Figure 1. For each 5° bin, raw XCO2 is detrended to compute a series of anomalies. For a bin 

over Hawai’i, we show (a) time series of raw XCO2, annual 𝑋′ and sub-seasonal 𝑋′′ XCO2 

anomalies. (b) 𝑋′′ are computed by removing the spatial bin means �̅�, the low-pass filter 

representing interannual variability 𝑋𝑙𝑝, and the mean annual cycle of annual XCO2 anomalies 

𝑋𝑎. Note: (b) shows the full XCO2 timeseries grouped by month, not the average over all years. 

Data density was lower earlier in the mission (fewer than 500,000 observations per month in 

2014 and 2015) as sampling patterns, decontamination cycling, calibration, and ground station 

communication were being optimized. Starting in the summer of 2015, the OCO-2 team 

employed the V7/7r algorithm to reprocess the data record and develop corrections for these 

different issues, summarized in Crisp et al. (2017).” The large gap in observations spanning late 

July 2017 through September 2017 occurred due to band tracking and potentiometer issues, 

leading to an instrument reboot and extended period during which XCO2 data was not created or 

invalid. 
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2.2 Geostatistical Analysis of Fine-Scale Variability in XCO2 

We use geostatistical methods to characterize the magnitude and spatial coherence of 

variability in XCO2 on two sub-seasonal scales corresponding to synoptic and mesoscale 

atmospheric circulation because sub-seasonal variability in XCO2 is largely driven by 

atmospheric transport. We divide sub-seasonal variability into synoptic and finer scales as 

variability in 𝑋′′ occuring on spatial scales longer and shorter than 250 kilometers. Torres et al. 

(2019) demonstrated the 250 km spatial cutoff isolates mesoscale and finer variability in OCO-2 

XCO2 from synoptic-scale variations. We compute a 250 km low-pass filter on 𝑋′′ along each 

orbit track (Figure 2a) using the spherical distance between two coordinates on Earth’s surface as 

distance along orbit. To apply the filter, up to 8 cross-track soundings were centered onto a one-

dimensional track and gap-filled using 1-D linear interpolation on a spherical surface. Variations 

passed by the 250-km digital low-pass filter are subtracted from XCO2 in their original position 

to compute fine-scale XCO2 anomalies that capture variations on the atmospheric mesoscale 

(Figure 2b). 

 

For each orbit pass through a 5° bin, we compute the experimental and theoretical 

semivariogram for fine-scale XCO2 anomalies (Figure 2c). The experimental semivariogram, 

𝛾(ℎ) (equation (4)), measures how related two points are to one another at different separation 

(lag, h) distances (Cressie, 1993). We compute the average semivariance for a total number of 

pairs 𝑁 at 50 lag distances ℎ centered between 0 and 100 km. An orbit has sufficient 

observations to compute the semivariogram if the spatial span of the retrievals in a 5x5 degree 

bin is at least 100 km along-track and there are at least 50 good observations for each along-track 

step (up to 8 cross-track footprints are retrieved for each along-track step). 𝑋𝑘 and 𝑋𝑘+ℎ 
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represent the fine-scale XCO2 anomaly at locations 𝑘 and 𝑘 + ℎ. We fit each experimental 

semivariogram with a spherical model (equation (5)) to compute the theoretical semivariogram 

(Figure 2c). The theoretical semivariogram estimates the total sample variance (sill, 𝑐∞), the 

random variance (nugget, 𝑐0), the resolved variance (sill minus nugget, 𝑐𝑠), and the length at 

which two soundings become independent (range, 𝑎𝑠𝑝𝑎𝑐𝑒).  

(4) 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑[𝑋𝑘 − (𝑋𝑘+ℎ)2]

𝑁ℎ

𝑘=1

 

(5) 

𝛾(ℎ) =  {
𝑐0 + (𝑐∞ − 𝑐0)(

3ℎ

2𝑎𝑠𝑝𝑎𝑐𝑒
−

1ℎ3

2𝑎𝑠𝑝𝑎𝑐𝑒
3

) 𝑓𝑜𝑟 ℎ ≥ 𝑎𝑠𝑝𝑎𝑐𝑒

𝑐∞ 𝑓𝑜𝑟 ℎ < 𝑎𝑠𝑝𝑎𝑐𝑒

 

 

From all modeled parameter estimates and associated errors, we compute weighted 

averages of 𝑐∞, 𝑐0, and 𝑎𝑠𝑝𝑎𝑐𝑒 for each bin (equation (6)) using two approaches. The variable 𝑥 

represents the modeled parameter estimate (𝑐∞, 𝑐0, or 𝑎𝑠𝑝𝑎𝑐𝑒)  and the variable 𝜎𝑥 represents 

error in estimated 𝑐∞, 𝑐0, or 𝑎𝑠𝑝𝑎𝑐𝑒. Because errors scale with the magnitude of estimated 

parameters, we computed averages using the inverse of error (𝜎) as well as the proportionate 

error (𝜎/𝑥). Weighted averages computed from the two approaches were only significantly 

different for range estimates (Section 3), and we present results computed using inverse error. 

Average spatially coherent fine-scale variance, 〈𝑐𝑠〉, is calculated in equation 7 as the random 

variance subtracted from the average total variance. 

(6) 
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𝑁
𝑖=1 ∗

1

𝜎𝑖
𝑥/𝑥𝑖

∑
1

𝜎𝑖
𝑥/𝑥𝑖

𝑁
𝑖=1

 

    (7) 

〈𝑐𝑠〉 = 〈𝑐∞〉 − 〈𝑐0〉   

 

We use error estimates computed from the spherical model to assess the goodness of fit 

of each modeled parameter to the experimental semivariogram. If error for each estimated 𝑐∞, 𝑐0 

, 𝑎𝑠𝑝𝑎𝑐𝑒 is larger than the value of the estimated parameter, we omit those poorest fits from the 

computation of the total bin averages. The majority of errors on included 𝑐∞ were less than 10% 

the parameter value, ~10% of the estimated 𝑐0 parameter, and less than 30% of the estimated 

𝑎𝑠𝑝𝑎𝑐𝑒 parameter. Using inverse error to weight the parameters ensured that the results we 

present can be interpreted in good confidence because values with the best spherical model fits 

are given more weight than values with poorer spherical model fits. 

Average synoptic-scale variance for each bin is computed as the remainder of total sub-

seasonal variance after subtracting average total fine-scale variance 〈𝑐∞〉.  To compare variance 

by surface type, we repeat the geostatistical analysis using orbit passes over either majority land, 

water, or mixed surface types. We present our results in terms of variability, the square root of 

spatially coherent and random variance: 〈𝑐∞〉1/2 , 〈𝑐𝑠〉1/2, and 〈𝑐0〉1/2.  
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Figure 2. (a) Sub-seasonal XCO2 anomalies 𝑋′′ collected within a 5° bin during one orbit pass 

are (b) high pass filtered to remove variations occurring on spatial scales longer than 250-km to 

isolate mesoscale and finer variations. (c) The average semivariance of high pass filtered 𝑋′′ 

anomalies for 50 lag distances between 0 and 100 km is measured by the experimental 

semivariogram and fit with a spherical model. The theoretical semivariogram estimates the total 

sample variance (sill, 𝑐∞), the random variance (nugget, 𝑐0), the resolved variance (sill minus 

nugget, 𝑐𝑠), and the length at which two soundings become independent (range, 𝑎𝑠𝑝𝑎𝑐𝑒).  
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3 Results & Discussion 

3.1 Mean Spatial XCO2 Anomalies  

Mean spatial anomalies by season (Figure 3) indicate where average XCO2 

concentrations were relatively enriched (positive) or depleted (negative) from 9-2014 to 12-2019 

compared to the domain mean. During the summer (June, July, and August), there is a large 

increasing gradient of ~4 ppm from north to south, centered around 39° N. Summertime 

anomalies exhibit the most pronounced gradient across all seasons and most closely follow mean 

zonal circulation. During the fall (September, October, and November), XCO2 anomalies across 

the domain are negative, with the most negative anomalies occurring above 54° N. There is an 

east-west contrast across the continent where greater detrended XCO2 concentrations occur over 

the western U.S. and adjacent Atlantic Ocean and lower detrended XCO2 occur over the western 

U.S. and tropics. During the winter (December, January, and February), anomalies across the 

domain are positive and the same east-west contrast is present (lower anomalies to the western 

U.S. and tropics and greater anomalies to the eastern U.S.). Over the ocean, there is a decreasing 

north-south gradient in anomalies. Certain high latitude bins are omitted due to OCO-2’s 

wintertime data collection gaps. Anomalies are most positive during the spring (March, April, 

and May). The most negative anomalies occur over the boreal continental region (Table 1). The 

most positive anomalies occur over the northern Pacific temperate region. Average seasonal 

anomalies are compared by region in Table 1.  

 

Mean seasonal anomalies exhibit an annually reversing north-south gradient shaped by 

zonal circulation of north-south distribution of surface fluxes. During the summer, there is 

greater carbon uptake by the terrestrial biosphere in higher latitudes, creating an increasing 
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north-south gradient bounded by the jet stream. During the winter, respiration outweighs 

photosynthesis and fossil fuel emissions are concentrated in higher latitudes, creating a 

decreasing north-south gradient. Summertime anomalies follow dominant wind patterns and 

constant potential temperature surfaces at 700 hPa. Outside of summer months, east-west 

contrasts over the continent suggest the influence of meridional flow. High velocity westerly 

winds travel south over the coastal Pacific adjacent to the west coast, diverting air away from the 

continent. The east-west contrasts we observe could also be influenced by easterly trade winds 

deflecting off the North Pacific High, a semi-permanent subtropical anticyclone, and circulating 

lower latitude air northward along the western continent. During the springtime, we observe the 

largest land-ocean contrast in XCO2 at the west coast boundary (XCO2 over 2 ppm greater over 

the Pacific Ocean than immediately across the coastline). We expect patterns to reflect mean 

atmospheric patterns and the large-scale north-south carbon flux distribution rather than local 

underlying carbon fluxes due to rapid horizontal mixing in the free troposphere and XCO2’s 

large footprint. Consequently, the magnitude and sharp boundary of this land-ocean difference is 

difficult to interpret, given that underlying fluxes over the continent are larger and more 

seasonally variable than those over the adjacent ocean. Ongoing discussion in the OCO-2 

community focuses on differences between land and ocean XCO2 observations. These results 

prompt investigation into whether the divergence of easterly and westerly winds, a land-ocean 

retrieval bias, or systematic bias related to underlying surface properties are driving land-ocean 

XCO2 differences across the west coast, particularly during spring months. 
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Figure 3. Long term temporally detrended anomaly averages for winter (a), spring (b), summer 

(c), and fall (d). 

3.2 Seasonal Variability in XCO2  

We present the average peak-to-trough amplitude (Figure 4a) and phasing (Figures 4c-d) 

of the mean seasonal cycle in XCO2 (𝑋𝑎). Seasonal amplitudes generally increase with latitude 

while also exhibiting substantial east-west variation over the continent. The greatest amplitudes 

(reaching 11.5 ppm) are concentrated from the highest latitudes over the Northern Ocean and 

boreal continental region (Table 1) to a meandering southern boundary that follows the jet stream 

and gradient in potential temperature θ at 700 hPa, a dynamical tracer in the free troposphere 

computed using Poisson’s equation and 700 mb temperatures provided in the OCO-2 lite files 
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(Figure 4b). Land and ocean tropical regions have the lowest amplitudes on average, forming a 

north-south gradient of ~5 ppm. Seasonal amplitudes also decrease on average from west to east, 

from the North Pacific Temperate region (7.6 ppm) to the continental Temperate region (7.1 

ppm) to the North Atlantic Temperate region (6.8 ppm). The exception to these large-scale 

patterns occurs over the western U.S, which has the lowest amplitudes in the domain (under 5 

ppm). A sharp land-ocean contrast in amplitudes manifests across the western coastline; bins 

over the western continent have distinctly lower amplitudes (up to 4 ppm) than the adjacent bins 

over the coastal Pacific. This feature may be driven by transport, with greater and lesser potential 

temperature (Figure 4b) over the Pacific Northwest and adjacent Pacific Ocean, respectively. 

Alternatively, this feature may be caused by low biases in retrievals over the western continent 

and prompts further investigation. 

Across the domain, the maximum in 𝑋𝑎 occurs between April and May (Figure 3c) and 

the minimum occurs between August and October (Figure 3d). Bins with greater amplitudes in 

Figure 3b tend to reach an earlier maximum and minimum than bins with lower amplitudes. The 

seasonal cycle in XCO2 lags behind that of surface fluxes due to the time required for surface 

fluxes to mix into the free troposphere, enabling OCO-2 XCO2 to capture both extrema of the 

seasonal cycle even in many locations with wintertime data gaps. The root mean square error of 

𝑋𝑎, representing average deviation from the average annual cycle fit, was 2.7 ppm on average 

and ranged from 0.5 ppm to 4.4 ppm, scaling with amplitude.  

Spatial patterns in 𝑋𝑎 seasonal amplitudes resemble average zonal circulation winds 

rather than patterns in underlying surface flux seasonality, supporting findings from Keppel-

Aleks et al. (2011) that the seasonal cycle in XCO2 is shaped by the large-scale north-south flux 

distribution. The spatial pattern we observe is consistent with XCO2 amplitudes modeled by 
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Sweeney et al. (2015), who showed the high-latitude feature of greater amplitudes extends across 

the globe. Areas such as the Arctic tundra with large seasonal amplitudes despite having small 

biospheric and anthropogenic fluxes are influenced by transported fluxes. Zonal transport of 

highly seasonal fluxes from boreal regions has been used to explain increasingly large seasonal 

cycles in column CO2 over the Arctic (Keppel-Aleks et al., 2011, 2012; Olsen and Randerson, 

2004). Sweeney et al., (2015) suggested that northward transport from lower latitudes, in 

addition to zonal transport of boreal fluxes, contributes to large seasonal cycle amplitudes 

observed in high latitudes. Western U.S. anomalies that depart from mean zonal circulation in 

Figure 3a suggest the influence of meridional transport along the western continent, which could 

carry northwestern U.S. fluxes and the imprint of their seasonality to higher latitudes. Average 

characteristics of seasonal variability are compared by region in Table 1. 
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Figure 4. (a) Average peak-to-trough seasonal cycle amplitudes follow mean wind patterns and 

spatially correlate with changes in (b) average potential temperature at 700 hPa. The seasonal 

cycle reaches a maximum (c) between April and May and a minimum (d) between August and 

October. Bins with greater amplitudes generally reach an earlier seasonal cycle maximum and 

minimum. 

Table 1: Average XCO2 anomaly by season and characteristics of seasonal variability compared 

by region. 

 
Winter 

mean 

(ppm) 

Spring 

mean 

(ppm) 

Summer 

mean 

(ppm) 

Fall 

mean 

(ppm) 

Seasonal 

amplitude 

(ppm) 

Seasonal 

maximum 

(decimal 

yr) 

Seasonal 

minimum 

(decimal 

yr) 

N. A. 

Boreal 

1.0 2.3 -3.8 -3.7 9.8 0.36 0.66 

N Pacific 

Temperate 

1.5 3.3 -0.9 -2.1 7.6 0.36 0.72 

W Pacific 

Tropical 

0.2 2.1 0.5 -1.9 4.6 0.39 0.79 

E Pacific 

Tropical 

0.2 2.1 0.3 -2.0 4.9 0.39 0.78 

N. A. 

Temperate 

1.0 2.4 -1.8 -2.2 7.1 0.35 0.70 

Northern 

Ocean 

2.4 2.8 -3.0 -3.7 9.9 0.37 0.67 

N Atlantic 

Temperate 

1.0 2.9 -0.7 -2.1 6.8 0.36 0.73 

Atlantic 

Tropical 

0.3 2.1 0.2 -2.1 5.1 0.39 0.78 

Tropical 

S.A. 

0.2 2.1 0.2 -2.1 5.3 0.40 0.77 

All 1.2 2.8 -1.6 -2.5 7.7 0.37 0.75 
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3.3 Synoptic-scale Variability in XCO2 

Average synoptic-scale variability in XCO2, computed as average sub-seasonal anomaly 

variability occurring on spatial scales longer than 250 km, and fine-scale variability (<250 km) 

comprise total sub-seasonal variability in XCO2 The components of fine-scale variability are 

summarized in Table 2. In Table 3, synoptic variability and fine-scale variability are compared 

by region. Average synoptic variability was greatest over the continental Boreal region, reaching 

a maximum of1.5 ppm along the west coast of Canada. Over the continent, synoptic variability 

decreases on average from the Boreal region to the tropics, but a cluster of greater variability 

also occurs over eastern bins in the Temperate region. Over the ocean, synoptic variability 

exhibits more uniform latitudinal patterns and is greater (over 0.5 ppm) in middle and high 

latitudes. Synoptic variability was lowest (under 0.5 ppm) over the subtropical and tropical 

ocean.  

Synoptic variability exhibited a strong seasonal and moderate surface type dependence. 

The greatest variability occurred during the summer months over the continental midlatitudes in 

a northwest to southeast pattern (Figure 5b). This pattern is similar to the gradient in mean 

spatial summer anomalies (Figure 3c) and average potential temperature, both illustrating mean 

atmospheric circulation. Outside of the summer, synoptic variability is lower on average and 

more uniform across the domain, decreasing into the fall and reaching a minimum over both the 

continent and ocean during the winter and spring. On average, summertime synoptic variability 

was 1.0 ppm for dominantly continental bins compared to dominantly marine bins, which were 

0.5 ppm on average. The land-ocean difference was most pronounced in the tropics. Synoptic 

variability in mixed surface type coastal bins was typically 0.2 ppm – 0.5 ppm greater when 

computed using observations over land versus when we only used observations over water. 
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Though smaller in magnitude, we still observe regional patterns of increased variability in 

soundings over water coastal bins, supporting they are not entirely driven by a land-ocean bias.  

Our results support findings from Keppel-Aleks et al. (2011) that XCO2 variations on the 

atmospheric synoptic-scale are driven by disturbances of continental-scale XCO2 gradients rather 

than underlying surface flux variability. During the summer, great synoptic-scale XCO2 

variability exceeding 2 ppm occurs at the boundary of southern CO2-enriched and northern CO2-

depleted air (refer to the asymmetrical northwest-southeast spatial XCO2 gradient of ~4 ppm in 

Figure 3c). The  location of increased variability correlates with the mean gradient in potential 

temperature θ at 700 hPa (Figure 4b), above which XCO2 depleted air caused by growing season 

drawdown follows large scale atmospheric circulation patterns. Synoptic advection across the 

pronounced XCO2 gradient creates a northwest-southeast trending band of high synoptic 

variability due to the difference in XCO2 concentrations on either side of the large scale 

circulation-driven gradient. Because greater differences between XCO2 to the north and south 

increase synoptic-scale variability, greater synoptic-scale variations could reflect greater carbon 

fluxes into the northern biosphere. Outside the midlatitudes, synoptic variability does not exhibit 

the same seasonality. In the high latitudes, synoptic variability is greater outside of summer 

months when climatological cyclone frequency is greater. In the subtropics and tropics, synoptic-

scale variability is greater around the continent where there is zonal disruption in wind direction 

(Figure S2 in the Supporting Information). Differences in air from the westerlies transported 

south along the western side of the continent and air carried by the trade winds could drive 

synoptic XCO2 variability in this area. 
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Figure 5. (a) Average synoptic-scale variability. (b) Average synoptic-scale variability during 

June, July, and August. We note that more scatter in summertime synoptic-scale variability is 

caused by less data to compute the average; it does not indicate real features of variability 

changing over small scales. 

 

3.4.1 Fine-scale Variability in XCO2 

Fine-scale variability (computed as total along-track variability occurring on spatial 

scales shorter than 250 km) and synoptic-scale variability comprise total sub-seasonal variability 

in XCO2. In the following sections, we partition total fine-scale variability 〈𝑐∞〉1/2 into two 

components: spatially-coherent and random variability. Spatially coherent fine-scale variability, 

〈𝑐𝑠〉1/2 (Section 3.4.1) in XCO2 reflects variations driven by fine-scale transport, flux variability, 

or systematic bias. Random fine-scale variability, 〈𝑐0〉1/2, (Section 3.4.3) reflects instrument 

noise. In Section 3.4.2, we quantify the average geostatistical spatial range, 〈𝑎𝑠𝑝𝑎𝑐𝑒〉, the distance 

at which two points become independent. 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 quantifies the average length scale of 

mechanisms driving spatially coherent fine-scale variability in XCO2.  
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These parameters are relevant to flux inversion because errors present in spatially-

coherent fine-scale variability 〈𝑐𝑠〉1/2 cannot be effectively reduced by averaging multiple 

soundings like random fine-scale variability 〈𝑐0〉1/2 (noise). Fine-scale spatially-coherent 

variability can be substantially larger than reported sounding errors alone and the coherent 

mesoscale signal (Torres et al., 2019), leading to large representation errors in inverse modeling 

that have been shown to arise when mesoscale variations are not accurately constrained (Corbin 

et al., 2008). The geostatistical range 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 will inform modelers the distance at which XCO2 

observations become independent of one another, which shapes the degrees of freedom in the 

computation of aggregate standard error. We present average characteristics and spatial patterns 

in these geostatistical metrics to help modelers understand the fine-scale statistics of XCO2 and 

how they change across the domain or by season. At the end of Section 3.4.3, a comparison of 

these parameters for XCO2 collected in nadir or glint observation mode in five continental bins 

(Table 3) shows only minimal differences between the two modes. The comparison is limited to 

continental bins because nadir mode observations are only collected over land.  

 

Table 2. Description of geostatistical parameters presented in Section 3.4. 

Symbol Long Name Description 

〈𝑐∞〉1/2 Total fine-scale 

variability  

Average total fine-scale (<250 km) 

variability estimated from the sill (where 

semivariance levels off at the decorrelation 

length) of spherical fits to the semivariogram 
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〈𝑐𝑠〉1/2 Spatially-coherent 

fine-scale 

variability  

Average correlated fine-scale (<250 km) 

variability estimated from the partial sill of 

spherical fits to the semivariogram (sill – 

nugget) 

〈𝑐0〉1/2 Random fine-scale 

variability 

Average random fine-scale (<250 km) 

variability estimated from the nugget (y-

intercept) of spherical fits to the 

semivariogram 

〈𝑎𝑠𝑝𝑎𝑐𝑒〉 Geostatistical 

range 

Decorrelation length estimated from the 

distance at which the slope of the spherical 

model fit to the semivariogram levels 

becomes 0. 

 

Table 3. Average characteristics of sub-seasonal XCO2 variability; synoptic, synoptic variability 

during the summer months (June, July, and August) and total fine-scale variability 〈𝑐∞〉1/2 

compared by biome. 

 

Synoptic 

variability 

(ppm) 

Synoptic 

Variability 

JJA (ppm) 

 

  (ppm) 
 

N. A. 

Boreal 
0.96 0.98 1.14 

N Pacific 

Temperate 
0.59 0.53 0.56 

W Pacific 

Tropical 
0.32 0.32 0.51 

E Pacific 

Tropical 
0.3 0.23 0.58 

N. A. 

Temperate 
0.9 1.12 0.85 
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Northern 

Ocean 
0.79 0.74 0.70 

N Atlantic 

Temperate 
0.53 0.54 0.55 

Atlantic 

Tropical 
0.29 0.23 0.53 

Tropical 

S.A. 
0.37 0.11 0.77 

All 0.68 0.69 0.71 

 

3.4.2 Total Fine-scale Variability in XCO2 

Average fine-scale variability in OCO-2 XCO2, 〈𝑐∞〉1/2, computed as total along-track 

variability occurring on spatial scales shorter than 250 km, ranged from 0.5 ppm to 2.1 ppm 

(Figure 6a). Compared to synoptic variability, 〈𝑐∞〉1/2 exhibited less seasonal variation and 

showed a much more robust dependence on surface type. We observed low and uniform 〈𝑐∞〉1/2 

(generally between 0.5 and 0.7 ppm) over the ocean. 〈𝑐∞〉1/2 was greater (1.0 ppm on average) 

and more irregular over the continent. It also exhibits some of the same regional features as 

synoptic variability (great variability along the west coast of Canada) while lacking the large-

scale variation with latitude.  

 

3.4.3 Spatially Coherent Fine-scale Variability in XCO2 

Average spatially coherent fine-scale variability 〈𝑐𝑠〉1/2 in XCO2 ranged from 0.4 ppm to 

2.1 ppm (Figure 6b). While 〈𝑐𝑠〉1/2 exhibited significant spatial heterogeneity over land, 〈𝑐𝑠〉1/2 

was robustly low and uniform over the ocean (typically 0.4-0.5 ppm). Over the continent, 〈𝑐𝑠〉1/2 

was greatest in the boreal region (1.1 ppm on average), 0.8 ppm in the temperate region, and 0.7 
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ppm in the tropical region (Table 4). We observe the greatest 〈𝑐𝑠〉1/2 (exceeding 2 ppm) along 

the west coast of Canada, twice as large as the average for all continental bins (0.9 ppm). Over 

many bins in the middle of the continent over the Great Plains, adjacent interior lowlands west of 

the Great Lakes, and shrublands and desert southwestern U.S.,〈𝑐𝑠〉1/2 was relatively low.  

Compared to synoptic-scale variability, 〈𝑐𝑠〉1/2 showed much greater surface type dependence 

and far less seasonal dependence. Seasonal variations in 〈𝑐𝑠〉1/2 were ~0.1 ppm for all biomes 

except the N.A. temperate region. Over the southeastern U.S., 〈𝑐𝑠〉1/2 was ~0.2 ppm greater 

during the summer and winter. Over the north eastern U.S., 〈𝑐𝑠〉1/2 was ~0.4 ppm greater during 

the winter. The feature of large 〈𝑐𝑠〉1/2 over British Columbia and the Yukon was present during 

spring, summer, and fall. There was insufficient data to compute an average 〈𝑐𝑠〉1/2 over winter 

months. We compared 〈𝑐𝑠〉1/2 by surface type in these coastal bins and found 〈𝑐𝑠〉1/2 over water 

was much lower (0.5 ppm or below) compared to over land (1 ppm to 2 ppm). Our geostatistical 

analysis of version 9 data also revealed this feature, equal in magnitude to the v10 results. For 

other bins that had sufficient land and water retrievals for comparison, we found land-ocean 

differences varied geographically. Over the east coast of Canada, 〈𝑐𝑠〉1/2 was generally 0.5 ppm 

over water and 1 ppm over land.  Over the tropical continent and islands, 〈𝑐𝑠〉1/2 was generally 

below 0.5 ppm when computed over water. When computed over land, 〈𝑐𝑠〉1/2 was closer to 1 

ppm and exceeded 1.5 ppm in one bin over Hawaii. Land and water 〈𝑐𝑠〉1/2  were most similar 

over the midlatitudes. Across the full domain, there is an average land-ocean bias of 0.4 ppm. 

The average 〈𝑐𝑠〉1/2 for bins that have greater (>50%) land surface type fractions was 0.9 ppm, 

nearly twice as large as the average for bins that have greater water surface type fractions (0.5 

ppm). 
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Across the continent, especially in the high latitudes, 〈𝑐𝑠〉1/2 is larger than expected for 

natural variations (imparted by winds or fluxes) alone (Torres et al., 2019; Worden et al., 2017). 

Further, we observe a distinct land-water contrast in 𝑐𝑠, and while fluxes are generally smaller 

and less variable over the ocean, it is likely the contrast is enhanced by systematic error. Larger 

systematic errors can occur in XCO2 over land, where greater heterogeneity in surface properties 

like topography and albedo complicates retrieval. In particular, the exceptionally large 〈𝑐𝑠〉1/2 we 

observe in bins near the west coast of Canada was only present for land retrievals, prompting 

investigation into sources of regional systematic bias. We found that these bins also had the 

greatest average standard deviation of surface elevation, a variable provided in the sounding 

group of the OCO-2 data product (Figure S2 in the Supporting Information), suggesting a 

possible unresolved retrieval error related to topographic roughness. The western coast of 

Canada is also exceptionally cloudy, which inhibits retrieval. It is also possible the high 

variability is increased by a real signal related to transport as this part of the coast serves as the 

boundary on the atmospheric path of the jet stream between the low pressure zone in the North 

Pacific and higher pressure continent. We observed this feature in v9 XCO2 as well.  

 

3.4.4 Geostatistical Range of Fine-scale Variability in XCO2 

The geostatistical range 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 of spatially coherent fine-scale variability in XCO2 was 

16 km on average for the full domain and spanned from 7 km to 27 km (Figure 6c). 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 was 

spatially irregular across the domain, though slightly more coherent within a latitude circle over 

the ocean. The boreal region had the shortest 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 on average (11 km), followed by the 
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Northern Ocean (14 km) (Table 4). The southeastern U.S. had relatively short 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 (under 15 

km) compared to the rest of the temperate continental region. Bins over the continental tropics 

also had relatively short 〈𝑎𝑠𝑝𝑎𝑐𝑒〉.  Over the ocean, 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 varied from 9 to 27 km over the 

tropical ocean and North Pacific, respectively. 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 over the Pacific Ocean were shorter on 

average and more variable than over the Atlantic Ocean. 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 could be up to twice as large 

when weighted using proportional error as opposed to inverse error (Equation 6) but remained 

below 40 km and spatial patterns were consistent. 

 

We find shorter 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 than those expected from mesoscale weather systems, further 

supporting that spatially coherent error is present in XCO2 and depresses along-track correlation 

lengths. For all bins, especially in high latitudes, ranges were significantly skewed, with a peak 

of smaller values (< 20 km) and a long tail of larger values more similar to the length scale of 

mesoscale systems (up to 70 km). Recent studies (Torres et al., 2019, Bell et al, 2020, Baker et 

al., 2022.) support that spatially coherent error depresses satellite XCO2 ranges, particularly over 

land. We compared 〈𝑎𝑠𝑝𝑎𝑐𝑒〉  computed using either majority land or water retrievals, finding 

〈𝑎𝑠𝑝𝑎𝑐𝑒〉 was significantly larger when computed over water (~10-20 km) in the tropics and 

midlatitudes. While ranges over the ocean were longer than those over land on average, they 

were equally as short (under 15 km) over the ocean in high latitudes. This suggests a retrieval 

covariate over the high latitude ocean is resulting in correlated error, such as cloud cover or 

aerosols transported from Eurasia. There was an exception for a few bins around the Hudson 

Bay, where 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 was longer using water retrievals. But due to data issues, this feature may 

not be robust; fine-scale statistics over this particular area should be interpreted with caution 

given the relatively sparse number of observations and signal-to-noise issues at high latitudes. 
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Over land, we observe an inverse relationship between shorter ranges and spatially coherent 

variability (shorter 〈𝑎𝑠𝑝𝑎𝑐𝑒〉  and higher 〈𝑐𝑠〉1/2 in the southeastern U.S. and western Canada). 

However, shorter 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 in high latitude ocean bins did not coincide with greater spatially 

coherent variability. Seasonal differences in 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 were all below 5 km when averaged by 

biome and insignificant compared to standard deviation of 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 within bins. The largest 

seasonal difference occurred over the midlatitudes, with 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 ~3-5 km greater on average 

during summer compared to winter. Our results suggest that systematic biases are present over 

all times of the year across the domain.  

 

3.4.5 Random Fine-scale Variability in XCO2 

Random fine-scale variability 〈𝑐0〉1/2 in XCO2 was 0.2 ppm on average for the full 

domain and ranged from 0.1 ppm to 0.4 ppm (Figure 6d). For all bins, 〈𝑐0〉1/2 was under 1 ppm, 

consistent with reported error from v10 OCO-2 ACOS data product. The boreal region had lower 

〈𝑐0〉1/2 (0.27 ppm on average) compared to the continental temperate region which had the 

greatest 〈𝑐0〉1/2 (0.35 ppm on average) of all regions (Table 3). We note that the average for high 

latitude bins do not include winter months when there are gaps in data due to insufficient light.   

Over the ocean, 〈𝑐0〉1/2 was under 0.3 ppm and lower in high latitudes as well (Table 2). 

Compared to spatially coherent variability, 〈𝑐𝑠〉1/2, 〈𝑐0〉1/2 was a generally lesser portion of total 

fine-scale variability. Over the ocean, the fraction of random to total fine-scale variability 

decreases with latitude from ~30% in the subtropics to ~18% in high latitudes. We found a 

robust surface type dependence in 〈𝑐0〉1/2, which was typically twice as large when computed in 

soundings over land than ocean in mixed surface type coastal bins (0.1 ppm on average versus 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

0.3 ppm). Bins that have dominantly land surface type fractions tend to have twice as large 

〈𝑐0〉1/2 compared to water bins, with the exception of some land bins in the high latitudes which 

have 〈𝑐0〉1/2 that is lower and more similar to the adjacent high latitude ocean. Our results 

suggest a land bias of ~0.1 – 0.2 ppm in random fine-scale XCO2 variability, which is smaller in 

magnitude but more geographically robust than the potential land bias we observe in spatially 

coherent variability.  

We observed very small seasonal differences in 〈𝑐0〉1/2 (below 0.1 ppm) over the ocean 

and greater seasonal differences over the continent (the majority of land bins had ~50% lower 

〈𝑐0〉1/2during the winter months compared to the average across all seasons). These results are 

consistent with Torres et al. (2019) who reported slightly lower random variability (0.5 ppm vs. 

0.6 ppm) in 250-km high pass filtered v8 OCO-2 XCO2 during winter months at Park Falls, WI 

and Lamont, OK. Despite low light/long path length conditions, 〈𝑐0〉1/2 was lower during the 

winter at higher latitudes of the domain, supported by Torres et al. (2019) findings that random 

variability near their northernmost TCCON site (Bialystok, Poland) was 0.2 ppm lower during 

the winter (they were only able to report an average for February) compared to summer months. 

The greatest seasonality occurred in bins over the southeastern U.S., where 〈𝑐0〉1/2 decreased by 

half (~0.2 ppm) from fall to winter. Averaged over the full continent, 〈𝑐0〉1/2 was greatest during 

summer and lowest during winter. In contrast, 〈𝑐0〉1/2 over the Great Lakes and following the 

Rockies was ~0.1 ppm greater during the winter compared to other seasons and relatively large 

compared to the rest of the continent. The seasonal differences we observe are on the order of 

reported posterior v10 L2 error estimates, which were only ~0.1 ppm over land (0.5 ppm in June 

vs. 0.6 ppm in December) and less than 0.1 ppm over the ocean (ranged from 0.39 ppm to 0.45 
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ppm, without a clear trend by season). Seasonality in 〈𝑐0〉1/2 may point to seasonally varying 

sensitivity to cloud cover or surface heterogeneity, such as vegetation and ice. 

 

 

 

 

Figure 6. Average characteristics of fine-scale (<250 km) variability. (a) total fine-scale 

variability 〈𝑐∞〉1/2, (b) spatially coherent fine-scale variability, 〈𝑐𝑠〉1/2, the square root of the 

difference between total variance and random variance 〈𝑐∞〉 −  〈𝑐0〉, (c) geostatistical range 

〈𝑎𝑠𝑝𝑎𝑐𝑒〉, the separation distance at which soundings become uncorrelated, and (d) random fine-

scale variability, 〈𝑐0〉1/2.   

Table 4. Spatially-coherent fine-scale variability 〈𝑐𝑠〉1/2, random variability 〈𝑐0〉1/2, and 

geostatistical range 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 by biome. 
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Region 
〈𝒄𝒔〉𝟏/𝟐 

(ppm) 

〈𝒄𝟎〉𝟏/𝟐 

(ppm) 

〈𝒂𝒔𝒑𝒂𝒄𝒆〉 

(km) 

N. A. Boreal 1.11 0.27 12 

N Pacific 

Temperate 
0.52 0.21 16 

W Pacific 

Tropical 
0.46 0.24 21 

E Pacific 

Tropical 
0.54 0.22 20 

N.A. 

Temperate 
0.76 0.35 15 

Northern 

Ocean 
0.67 0.17 14 

N Atlantic 

Temperate 
0.49 0.23 18 

Atlantic 

Tropical 
0.48 0.22 21 

N Tropical 

S.A. 
0.72 0.26 17 

All 0.66 0.24 16 

 

Table 5. Differences in average parameters of fine scale-variance computed using either nadir or 

glint observations for five bins in different continental zones. 

Bin Location Total variance 

〈𝒄𝒔〉𝒏𝒂𝒅𝒊𝒓- 〈𝒄𝒔〉𝒈𝒍𝒊𝒏𝒕 

(ppm2) 

Spatially coherent 

Variance 

〈𝒄𝟎〉𝒏𝒂𝒅𝒊𝒓 - 〈𝒄𝟎〉𝒈𝒍𝒊𝒏𝒕 

(ppm2) 

Geostatistical range 

〈𝒂𝒔𝒑𝒂𝒄𝒆〉𝒏𝒂𝒅𝒊𝒓 – 

〈𝒂𝒔𝒑𝒂𝒄𝒆〉𝒈𝒍𝒊𝒏𝒕 

(km) 

Mexico 

24-29° N 105-100° W 

-0.08 0.01 -0.03 

Eastern U.S. 

34-39° N 85-80° W 

-0.02 0.02 0.70 
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Western U.S.  

39-44° N 120-115° W 

0.01  0.02 -0.68 

Eastern Canada 

49-54° N 70-65° W 

0.29 0.06 2.02 

Western Canada 

49-54° N 115-110° W 

0.06 -0.02 -1.63 

 

3.5 Relevance to Uncertainty Estimation in Inverse Modeling  

Although most inverse model have a horizontal resolution sufficient to resolve synoptic 

scale variability, these models would still require estimates of the mean and error of fine-scale 

anomalies for each orbit with valid soundings in each model grid. One possible approximation of 

error would be to use standard error of the fine-scale anomalies for all soundings being averaged, 

N, assuming errors are independent for each sounding.  

(8) 

𝜎𝑠𝑡𝑑𝑒𝑟𝑟 = √
𝜎𝑓𝑖𝑛𝑒𝑠𝑐𝑎𝑙𝑒

2

𝑁
= √

〈𝑐∞〉

𝑁
 

 

Because of the large number of soundings, 𝑁, the standard error could be substantially 

underestimated if not all soundings are independent. We show that soundings are not all 

independent but instead correlated in groups within the separation distances estimated by 

geostatistical ranges. The observed ranges are much shorter than typical along-track averaging 

lengths used in inverse frameworks, such as across a 1x1 degree grid cell (~110 km) or the 
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length scale of 10 second averages (~70 km) (as in Crowell et al., 2019 and Peiro et al., 2022). 

To account for the spatial correlation of the soundings in the standard error estimate, one 

approach would be to include separate terms for random and spatially coherent variability. For 

the standard error of the spatially coherent variability, an effective degrees of freedom could be 

computed that better represents the independence of the data, 𝑁𝑒𝑓𝑓. 𝑁𝑒𝑓𝑓 could be estimated 

using the along track averaging length, compared to the range. This assumes that each block of 

data equal to the size of the range is independent. 

(9) 

𝜎𝑠𝑡𝑑𝑒𝑟𝑟 = √
〈𝑐0〉

𝑁
+

〈𝑐𝑆〉

𝑁𝑒𝑓𝑓
 

(10) 

𝑁𝑒𝑓𝑓 =
Δ𝑥

〈𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙〉
 

 

We compute standard error using both approaches (Eq. 8 and 9) for three averaging 

lengths of XCO2; across a 5x5 degree box, a 1x1 degree box, and for a 10 second average (~70 

km). In Figure 7a, we show the three different averaging lengths over which we compute fine-

scale variability and spatial coherence for one orbit. Figure 7b shows the semivariogram and 

modeled 𝑐∞, 𝑐0, and 𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙 computed over one orbit through a 5x5 degree box. The modeled 

parameter estimates computed over a 5x5 degree box were consistent with those computed on 

anomalies within the 1x1 degree box and the 10-second track length shown in Figure 7a. Model 

estimated 𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙 was 20.6 km, 𝑐∞ was 0.32 ppm2 and 𝑐0 was 0.06 ppm2. Computed without 

incorporating fine-scale spatial coherence, 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 was 0.03 ppm for the 5x5 degree aggregate, 
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0.04 for the 1x1 degree aggregate, and 0.05 ppm for the 10 second average. With spatial 

coherence incorporated, 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 was 0.14 ppm for the 5x5 degree aggregate, 0.22 ppm for the 

1x1 degree aggregate, and 0.29 ppm for the 10 second average.  

Using the average modeled fine-scale variance parameters for all 5x5 degree bins 

(depicted in Figure 6), we compute an average 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 for all 5x5 degree bins using both 

approaches over the three averaging lengths. In Table 6, we present these results by biome. 

When spatial coherence is not incorporated in the standard error calculation,  𝜎𝑠𝑡𝑑𝑒𝑟𝑟 is 

underestimated on average by 0.22 ppm for 10 second aggregates, 0.14 for 1x1 degree 

aggregates, and 0.07 for 5x5 degree aggregates. Standard error was largest for 10s aggregates in 

the North American Boreal region (0.45 ppm) when incorporating geostatistical parameters into 

the computation, significantly larger than standard error computed without geostatistical 

parameters, 0.14 ppm (Table 5). All other regions in the domain had 10s aggregate standard error 

between 0.2 and 0.4 ppm and were underestimated by ~0.2 ppm by the computation without 

geostatistical parameters. For the other aggregation lengths, standard error (ranging from less 

than 0.1 ppm to 0.3 ppm) was typically increased by 0.1 ppm when geostatistical parameters 

were incorporated. 

Figure 8 shows that 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 exhibits a linear relationship with 〈𝑐∞〉. For 10 second 

aggregates, the linear slope is 0.36 with spatial coherence incorporated and 0.12 without. 

Because bins with large 〈𝑐∞〉 (>0.5 ppm) are shaped by large spatially coherent variability, 〈𝑐𝑠〉, 

rather than random variability, 〈𝑐0〉, it is reasonable to assume their 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 is increased by 

correlated errors. Despite ocean bins having lower spatially coherent variability, indicating less 

spatially coherent bias, 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 is still typically underestimated by 0.1-0.2 ppm over the three 

averaging lengths, largely due to short geostatistical ranges.  
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Figure 7. For XCO2 aggregated over one orbit through a 5x5 degree box, a 1x1 degree box, and 

over 10 seconds (a), 250km high pass filtered anomalies are fit with a semivariogram to estimate 

standard error (b). The experimental and modeled semivariogram, estimating total fine-scale 

variance 𝑐∞,  random variance 𝑐0, and the geostatistical range 𝑎𝑠𝑝𝑎𝑐𝑒. Parameter estimates were 

consistent across all three averaging lengths. 
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Figure 8. Comparison of average standard error 𝜎𝑠𝑡𝑑𝑒𝑟𝑟 computed for 70 km XCO2 aggregates 

(corresponding to a typical 10-second average) for all orbit passes through 5x5 degree bins either 

with or without spatial coherence incorporated. Standard error scales with average fine-scale 

variability 〈𝑐∞〉. 

Table 6. Comparison of standard error in XCO2 over typical averaging lengths (aggregated over 

10 seconds, 1 degree latitude, and 5 degrees latitude) computed with or without spatial coherence 

by biome. 

 
 
10s 

(ppm) 
 

 
10s 

(ppm) 
 

 

1°x1°(ppm) 
 

 
1°x1° 

(ppm) 
 

 
5°x5° 

(ppm) 
 

 
5°x5° 

(ppm) 
 

N. A. 

Boreal 
0.45 0.14 0.22 0.07 0.1 0.03 

N Pacific 

Temperate 
0.24 0.06 0.13 0.03 0.06 0.01 

W Pacific 

Tropical 
0.25 0.05 0.24 0.05 0.11 0.02 

E Pacific 

Tropical 
0.29 0.06 0.3 0.06 0.13 0.03 

N.A. 

Temperate 
0.35 0.09 0.25 0.06 0.11 0.03 

Northern 

Ocean 
0.3 0.08 0.17 0.05 0.08 0.02 

N Atlantic 

Temperate 
0.25 0.06 0.19 0.04 0.09 0.02 

Atlantic 

Tropical 
0.26 0.05 0.26 0.05 0.12 0.03 

Tropical 

S.A. 
0.35 0.09 0.38 0.1 0.17 0.04 

All 0.30 0.08 0.19 0.05 0.09 0.02 

 

4 Conclusions 

We characterized the average seasonal cycle in OCO-2 v10 XCO2 and partitioned sub-

seasonal XCO2 variability into synoptic and finer scales within 5x5 degree bins from 9-2014 to 
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12-2019 over North America and adjacent ocean basins. Using geostatistical analysis, we then 

quantified the magnitudes of spatially-coherent and random fine-scale (<250 km) along-track 

variability. Our results illustrate average variability on different scales and diagnose the relative 

influence of transport, patterns in surface fluxes, and error in the data.  The primary motivation 

for our decomposition of variability was the present lack of understanding of fine-scale 

variations and correlations in XCO2. Filtering out the main lower frequency modes of variability 

in XCO2 (interannual, seasonal, and synoptic scales) uncovers local patterns in XCO2 variability 

that are influenced by correlated error. While we uncovered new patterns in seasonal and 

synoptic-scale XCO2 variability in this process, we will first discuss the implications of our fine-

scale variability characterization as this is the least-resolved component of the XCO2 variance 

budget and presents a large barrier in estimating inverted flux uncertainty.  

Geostatistical parameters indicate where fine-scale (<250 km along-track distance) XCO2 

variability and correlations are driven by spatially-coherent biases. Over much of the continent, 

particularly in high latitudes, average spatially coherent fine-scale variability 〈𝑐𝑠〉1/2 reaches or 

exceeds 1 ppm. The large magnitude of 〈𝑐𝑠〉1/2  (computed as the mean from 9-2014 to 12-2019) 

cannot be reasonably explained by natural drivers like transport or local flux variability, which 

should produce spatially coherent variations on the order of 0.5 ppm or smaller over this short 

distance (Torres et al., 2019; Worden et al., 2017). In combination with length scales 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 

shorter than that of mesoscale weather systems or spatial gradients driven by flux variability, we 

find that fine-scale XCO2 over certain regions of the continent largely reflects correlated errors 

as opposed to real geophysical signals. Spatially coherent biases are larger over land (〈𝑐𝑠〉1/2 was 

0.9 ppm on average) than ocean (〈𝑐𝑠〉1/2 was 0.5 ppm on average), but this relationship is not 

totally uniform. Correlated retrieval errors are widely known to be more prevalent over land, 
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where surface properties like albedo or topography are more variable. However, we find that 

spatial coherent biases also affect XCO2 over the ocean, as shown by the short 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 values 

(17 km on average). Because ocean surface properties are less variable, correlated errors related 

to atmospheric parameters such as weather, clouds, or scatterers like aerosols may be driving the 

observed patterns. Errors over the ocean do not result in the large 〈𝑐𝑠〉1/2 as observed over land, 

but they do depress 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 and affect the independence of aggregated data.  

Geostatistical analysis can improve estimates of XCO2 aggregate uncertainty and help 

inform how different aggregation lengths cause correlated errors to have a greater or lesser effect 

on flux uncertainty. XCO2XCO2We recommend modeling groups increase aggregate uncertainty 

for aggregates with larger 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 and greater 〈𝑐𝑠〉1/2 by incorporating these metrics into their 

error computation as in Eqn. 9. In 10-second along-track XCO2 aggregates (~70 km), standard 

error was underestimated on average by 0.22 ppm when geostatistical metrics were left out of the 

uncertainty computation. Standard error was also underestimated to a lesser degree in 1x1 degree 

aggregates (0.14 ppm greater on average using geostastical metrics) and in 5x5 degree 

aggregates (0.07 ppm greater). While the effect of correlated errors on aggregate uncertainty may 

be considered negligible for some of the domain, aggregates in bins that have very large 

〈𝑐𝑠〉1/2and long 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 such as over western Canada can be underestimated by a significant 

amount. The greatest underestimation of uncertainty occurred when using the shortest averaging 

length (10-s aggregates) in these bins; standard error increased by over 0.5 ppm on average when 

incorporating geostatistical parameters into the uncertainty computation. Correlated errors 

depress 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 to distances shorter than even the shortest averaging length typically used to 

assimilate the data and increase uncertainty the most in those 10-s aggregates. When comparing 

OCO-2 data with high-resolution simulations of XCO2 such as CarbonTracker-Lagrange or WRF 
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forward model runs, 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 could be used to assess whether the spatial gradients in XCO2 are 

valid (observations correlated at reasonable length scales versus too-short scales that reflect 

correlated errors). 

We find distinct, coherent, geostatistical characteristics in XCO2 over regions spanning 

over 1000s of kilometers. For example, 〈𝑐𝑠〉1/2is consistently lower across the southeastern U.S. 

and greater over the continental tropics. Over the ocean, 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 tend to decrease with 

increasing latitude. This indicates semivariogram analysis does not necessarily have to be 

performed on each individual satellite overpass assimilated into inverse models. Computing 

semivariogram parameters can show what areas have related geostatistical characteristics due to 

either surface or atmospheric properties affecting the retrieval. Modelers could then choose 

representative areas to assign with unique fine-scale statistics and correlations to improve 

estimates of aggregate uncertainty in OCO-2 XCO2 XCO2for comparison with simulated XCO2 

in the model grid. Average geostatistical characteristics should also be computed by season; 

correlated errors produce features in 〈𝑐𝑠〉1/2 and 〈𝑎𝑠𝑝𝑎𝑐𝑒〉 that emerge at different times of the 

year. Other features are present for most of the year, such as the great 〈𝑐𝑠〉1/2 over western 

Canada (we were only able to compute 〈𝑐𝑠〉1/2 during spring, summer, and fall, due to lacking 

winter observations in high latitudes). At minimum, geostatistical parameters should be 

computed to identify geographic locations like this with exceptionally large 〈𝑐𝑠〉1/2 and 

incorporate geostatistical metrics into error estimation.  

The geostatistical parameters we computed show sharp, prominent land-ocean differences 

that emerge across coastlines. Inversion studies should consider how grid cells with both land 

and ocean surface types such as those over a coastline will represent two distinctly different 

XCO2 distributions. In coastal bins, 〈𝑐𝑠〉1/2 could be up to twice as large when computed using 
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land versus water observations. Characterizing the different fine-scale statistics between XCO2 

retrieved over land and water is critical for regional emissions monitoring especially over coastal 

urban cities. These sharp contrasts do not emerge on scales that reflect real geophysical 

differences, as flux or transport variations create a smoother, larger spatial gradient in total 

column XCO2. In the following paragraphs, we describe how real geophysical drivers create 

patterns in seasonal and synoptic-scale XCO2. 

The transport of large-scale flux patterns, rather than local flux seasonality, drives the 

seasonal cycle in OCO-2 XCO2. The most pronounced spatial gradient in XCO2 occurs during 

summer, with XCO2-enriched air concentrated to the south of the jet stream and XCO2-depleted 

air to the north caused by the hemispheric north-south distribution of biospheric carbon uptake. 

XCO2 reaches a minimum during the fall, increases during the winter when biosphere respiration 

and fossil fuel emissions outweigh carbon uptake, and reaches a maximum in the spring with 

greatest XCO2 to the north. This seasonally reversing gradient is acted on by mean zonal and 

synoptic-scale atmospheric circulation, driving the greatest variations in XCO2 on seasonal and 

sub-seasonal scales. Average peak-to-trough seasonal cycle amplitudes in XCO2 were between 

4.5 ppm and 11.5 ppm and consistent with amplitudes over corresponding TCCON sites and 

estimated by model studies (Jacobs et al., 2021; Sweeney et al., 2015; Keppel-Aleks et al., 2012). 

Bins with negligible flux seasonality experience some of the greatest seasonal XCO2 variability; 

the greatest amplitudes are concentrated in a band that extends from the Arctic to the mean path 

of the jet stream. Lower amplitudes are concentrated below this boundary and gradually decrease 

from north to south.  

Seasonal XCO2 amplitudes reflect the Northern Hemisphere north-south biospheric flux 

distribution and are spatially smoothed by large-scale atmospheric circulation, following mean 
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zonal flow and asymmetries. The otherwise smooth pattern in seasonal amplitudes arranged in 

east-west belts is disrupted over the western continent. A distinct land-ocean contrast manifests 

across the western coastline with seasonal amplitudes up to 2 ppm lower over the continent. 

Springtime detrended spatial means over the continent reach a lower maximum over the western 

continent that could result from dispersal of CO2-enriched westerly air to the north and south of 

the coastline or a meridional transport pathway from lower latitudes up the western continent. 

This interesting feature prompts further scientific investigation to determine if the cause is not 

atmospheric circulation but instead a quasi-stationary systematic bias related to surface type, 

aerosols, or an interaction between retrieval variables. 

Large-scale surface flux gradients are also responsible for XCO2 variability on the 

synoptic-scale. Synoptic-scale advection of XCO2 depleted air from higher latitudes and XCO2 

enriched air from southern latitudes during the summer produced average variability over 2 ppm. 

Because summertime synoptic variability is greater than other seasons due to differential north-

south biologic uptake, its magnitude can be used for inferring trends in the strength of the 

biologic sink (Keppel-Aleks et al., 2012; Wunch et al., 2013). These variations are sufficiently 

large compared to background noise and fine-scale correlated errors in the midlatitudes to be 

captured by OCO-2 (1 – 2 ppm). While they are greater over the continent, they extend over the 

midlatitude Pacific and Atlantic ocean basins as well. Summertime synoptic variability correlates 

with the mean gradient in potential temperature at 700 hPa, indicating that dynamical tracers can 

be used to validate sub-seasonal variability in posterior XCO2 fields produced by inverse models. 

Synoptic-scale XCO2 variability was also significant outside the midlatitudes and summer 

months, over 0.5 ppm on average across the domain. Filtering out fine-scale variability, which 
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can be even larger than synoptic-scale variability at a given time and space, will help reveal the 

real flux and transport driven signals contained in synoptic-scale variability.  

Our results show spatially-coherent retrieval biases still have a significant effect on the 

most recent version of XCO2 (V10) over land and ocean biomes, despite great improvements in 

bias correction since previous versions of the data. Because each data version are known to be 

affected by correlated errors and each version of the algorithm is insensitive to correlations on 

small (<100 km) scales, the results of this study are relevant to previous and future versions of 

OCO-2 data. We observed the same feature of great 〈𝑐𝑠〉1/2 over British Columbia in v9 data. 

Future efforts to separate the influence of systematic errors from real variability would benefit 

from greater spatial coverage of in-situ or aircraft high resolution total column measurements, 

particularly near coastlines and the continental areas where we found greater 〈𝑐𝑠〉1/2. We suggest 

tracking changes in geostatistical parameters with each updated version of the retrieval algorithm 

changes in these key areas of interest. Though the challenge of attributing error-driven and real 

fine-scale variability in OCO-2 XCO2 remains, our results show that geostatistical analysis can 

be used to diagnose biases, improve the representation of subgrid-scale XCO2, and compute 

more accurate estimates of aggregate uncertainty in inverse modeling. With ongoing efforts to 

characterize the geostatistics of dense satellite observations like OCO-2 XCO2 across multiple 

continents and ocean basins, researchers will be better equipped to link the growing wealth of 

data with surface measurements and model simulations, and will be able to more accurately 

constrain the unique spatial and temporal patterns of surface carbon flux regions. 
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