
R E S E A R CH A R T I C L E

P r o c e s s S y s t e m s E n g i n e e r i n g

Sustainable decision making for chemical process systems via
dimensionality reduction of many objective problems

Justin M. Russell | Andrew Allman

Department of Chemical Engineering,

University of Michigan, Ann Arbor,

Michigan, USA

Correspondence

Andrew Allman, Department of Chemical

Engineering, University of Michigan, Ann

Arbor, MI 48109, USA.

Email: allmanaa@umich.edu

Abstract

Recent global events and the rise of sustainable investing have made clear that the

chemical and energy industry must consider sustainability goals beyond profit maxi-

mization to remain competitive. Multiobjective optimization provides an ideal frame-

work for analyzing sustainability tradeoffs, but when four or more objectives are

considered, the ability to rigorously solve problems and interpret results is lost. This

necessitates an approach to systematically reduce the dimensionality of many objec-

tive problems to three or fewer objectives. In this work, an algorithm to group objec-

tives based on their correlating nature a priori to solving the full space problem is

proposed. It utilizes community detection on a novel weighted objective correlation

graph to identify two or three groups of correlated objectives. Results from three

representative case studies demonstrate that objective groupings obtained from this

algorithm minimize the amount of tradeoff information lost and outperform intuitive

groupings by economics or the environment.
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1 | INTRODUCTION

In recent times, the idea of sustainable investing has come into the

mainstream.1 In this scheme, shareholders and board members judge

industrial performance not just by the traditional economic bottom

line of profits, but also emphasizing environmental, social, and gover-

nance (ESG) issues. Indeed, looking at the events of the last 5 years

illustrates the pitfalls of making decisions solely based on economics,

as a pandemic has exposed vulnerabilities in global supply chains,2

social unrest and lawsuits have occurred due to inherently inequitable

decisions that disproportionately harm minority communities,3 and

the effects of climate change, largely driven by the use of economi-

cally preferred fossil fuels, are becoming more apparent.4 The realities

of today make it clear that a modern chemical industry cannot remain

competitive by solely maximizing profits as is traditionally done, and

that decisions made at all levels in the chemical enterprise, including

process design, strategic planning, and real time operation and control,

must weigh the tradeoffs of a large number of different objectives

within the scope of both economics and ESG.

One approach to sustainable decision making is to attempt to

monetize ESG outcomes to arrive at a single, profit-based objective.5,6

This approach is commonly applied for carbon emissions via either a

carbon tax7–9 or through a social cost of carbon.10 A few approaches

within the life cycle assessment framework attempt to be more sys-

tematic about how monetization is performed, usually by attempting

to define a marginal or opportunity cost for each sustainability objec-

tive.11 An analogous approach to monetization is the use of multi-

attribute decision making methods,12 which attempt to quantify the

objective preferences of a decision maker by generating weights that

correspond to these preferences. These approaches are beneficial in
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that the optimization algorithm returns a single solution that can be

directly implemented. However, a key limitation of any monetization

or multi-attribute approach is that the solution obtained is typically

highly sensitive to how different objectives are weighted: for example,

considering social costs of carbon which may vary over orders of mag-

nitude depending on the source,13 or using different LCA-based

approaches, can result in very different decisions being made. As such,

the question of what makes a solution sustainable can vary wildly

between decision makers who may hold different values, including

between different organizations as well as individuals at the same

organization.

An alternative approach to monetization is to solve a multiobjec-

tive optimization problem. Here, the solution is not a single decision

but is a manifold of possible decisions representing tradeoffs between

objectives (the Pareto frontier), where each point along the Pareto

frontier represents the best one can do for one objective without

making any of the others worse. While this approach does not give a

single implementable solution, obtaining and visualizing the full Pareto

frontier of objective tradeoffs enables making fully informed sustain-

able decisions, the responsibility of which ultimately lies with human

actors and can be supported by preference ranking algorithms.14

Multiobjective approaches have been applied quite broadly in chemical

process systems research.15 With respect to sustainability, it is

most common to analyze the tradeoffs between a single environmental

and a single economic objective, with example applications in plant

design,16–18 supply chain management,19,20 and process operations,21,22

to name a few.

A limitation of multiobjective approaches for sustainable decision

making is that for problems of four or more objectives (many-

objective problems, or MaOPs), visualization of the objective tradeoffs

becomes unintuitive and rigorously generating a complete set of solu-

tion points becomes computationally prohibitive. A common approach

to addressing this challenge is to lump different sustainability goals

into intuitive groupings, such as economic, environmental, and social

groupings based on the three pillars of sustainability.23 Examples of

this include work by Santibanez-Aguilar et al.,24 who combine metrics

for damages to human health, the ecosystem, and resource extraction

using a life cycle assessment derived tool in the planning and site

selection of biorefineries. Garcia et al.25 propose combining the

effects of agricultural wastes, land use, and ecosystem services into a

single environmental green GDP objective when designing food-

energy-water-waste nexus systems. Wheeler et al.26 propose an

environmental objective that takes into account the potential for a

process or supply chain to cause key outputs, such as ozone depletion

or ocean acidification, to exceed “planetary boundaries” or upper

bounds beyond which deleterious impacts on the planet are observed.

Mota et al.27 propose a social objective that combines the goals of

creating jobs and limiting inequity by weighting job creation activity in

lower GDP regions, which they used in analyzing possible locations

for expansion of an electronics manufacturer. Alternatively, one can

also try to aggregate all outcomes into a single objective: a popular

method for doing this is the eco-efficiency concept which normalizes

the various economic and environmental objectives and assigns

weights based on social relevance and a process' impact on a specific

outcome relative to known global parameters.28

As an example that demonstrates the shortcomings of the afore-

mentioned approach, consider the design of an ammonia production

system in a water scarce region where one could choose either to pro-

duce requisite hydrogen from fossil fuels (resulting in inherent carbon

emissions) or from electrolysis of water (using large quantities of

water). For such a system, there is a clear tradeoff between the two

objectives of carbon emissions and water usage, but information

about this tradeoff would be lost if both quantities were aggregated

into a single environmental objective. This example demonstrates the

importance of choosing objective groupings more systematically

based on their correlating (i.e., both objectives point to similar solu-

tions) vs. competing (i.e., a large tradeoff exists between objectives)

nature to preserve tradeoff information. While there exist methods to

achieve this which utilize principal component analysis,29 aggregation

trees30 or dominance preservation strategies,31 these methods require

the generation of at least part of the high-dimensional Pareto frontier

for the original MaOP. As such, they may be susceptible to bias based

on which solution points are generated and are not particularly helpful

in reducing the computational burden of solving the problem.

In this work, we assert that systematic objective dimensionality

reduction for (mixed-integer) linear MaOPs can be performed a priori

to obtaining any part of the solution of the MaOP on the basis of

problem structure. We propose a graph structure to represent

variable-constraint-objective connectivity, which we use to develop

an objective correlation graph with edge weights corresponding to

the competing vs. correlating nature of the two objectives. From the

objective correlation graph, we apply a community detection

approach to identify 2–3 groups of objectives, such that objectives in

the same group are correlated and those in different groups are com-

peting. We also present an information loss metric and demonstrate

that our approach is able to choose groupings that preserve as much

information about objective tradeoffs as possible. The remainder of

this article is structured as follows: Section 2 will provide background

on solving multiobjective optimization problems, as well as on identi-

fying and exploiting optimization problem structure using graph the-

ory. Section 3 will provide the details of the proposed algorithm and

how it utilizes the problem structure of MaOPs to determine the

strength of links between objective functions. Section 4 will examine

three case studies adapted from the sustainable process systems liter-

ature and utilize the proposed algorithm to analyze the structure of

MaOPs adapted from the original formulations. Finally, Section 5 will

include some concluding remarks and discussion of areas for

future work.

2 | BACKGROUND

2.1 | Multiobjective optimization

A general multiobjective optimization problem can be written as

follows:
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min
x

f1 xð Þ, …, fI xð Þf g
s:t: x�X ,

ð1Þ

where fi represents the function for objective i, x are the decision vari-

ables, and X is the set of all values x that are feasible to the problem.

Typically, it is impossible to optimize each objective fi simultaneously,

such that no single solution exists for problem (1). Instead, the solu-

tion to this problem is a set of points, known as the Pareto frontier,

where each point represents the best one can do in one objective

without sacrificing another. A critical concept for understanding the

Pareto frontier is the idea of dominance. Consider two feasible points

to problem (1), bx and x. Solution bx is said to dominate solution x if the

following two relationships hold:

fi bxð Þ≤ fi xð Þ 8i� 1, …, If g ð2Þ

9i� 1, …, If g : fi bxð Þ< fi xð Þ ð3Þ

In words, this means that solution bx performs no worse than x in all

objectives, and strictly better in at least one objective. Using this con-

cept, the Pareto frontier can be defined as the set of all feasible solu-

tions that are not dominated by any other feasible solution.

Solution approaches to multiobjective problems seek to find the

Pareto frontier by identifying nondominated solutions. The most com-

mon approaches can be broken into two categories. The first is scalar-

ization approaches, which generate Pareto optimal points through

solving a set of single objective optimizaiton problems. Examples of

methods in this classification include weighted sum,32 epsilon

constraint,33 and Chebyshev scalarization approaches.34 While rigor-

ous deterministic global optimization can be used to solve each single

objective problem and guarantee that each point found is Pareto opti-

mal, the number of single objective problems to solve scales exponen-

tially with number of objectives, such that these approaches are

impractical to implement for MaOPs. The second class of approaches

is evolutionary algorithms, which use biological principles of natural

selection such as mutation and recombination to drive a population of

feasible points toward optimal solutions.35 While these methods tend

to work reasonably well in practice and are more scalable than scalari-

zation approaches, they are ultimately stochastic and heuristic

approaches which do not provide any guarantees of solution quality.

As such, an important goal of this work is to systematically reduce the

dimensionality of MaOPs to three objectives or fewer, in order to

apply a rigorous scalarization method for the determination of the

Pareto frontier.

2.2 | Graph representation of optimization
problems

For complex optimization problems that cannot be readily solved by

off-the-shelf solvers in relevant amounts of time, such as the MaOPs

of interest in this work, it is often useful to identify and exploit

problem structure to derive an approach that makes solving the prob-

lem easier. A natural way to achieve this is by representing the optimi-

zation problem as a graph, or a set of nodes and edges that capture

the connectivity of different objects (i.e., variables and constraints)

within the optimization problem.36 Once such a graph is developed,

an effective approach for structure identification is community detec-

tion, which identifies subgroups within a graph on the basis of maxi-

mizing a quantity called modularity, effectively generating subgroups

such that nodes within the same subgroup interact strongly, while

minimal interaction occurs between nodes in different subgroups.37

While modularity maximization is a known NP-hard problem, several

well-known greedy algorithms give good heuristic solutions such as

spectral partitioning,38 the Louvain algorithm (or fast unfolding),39 and

the Leiden algorithm,40 the latter of which is used in this work.

Community detection has been shown to be a powerful tool for

identifying structure in optimization problems amenable to decompo-

sition. Early work in this area looked at identifying distributed optimi-

zation structures for augmented Lagrangian solution approaches,41 as

well as structure within a model predictive control problem for obtain-

ing distributed controller architectures.42 This approach was later gen-

eralized to identify communities that correspond to optimization

subproblems with minimal complicating variables or constraints, and

thus amenable to various decomposition approaches.43 This approach

was extended using a stochastic block modeling approach to identify

both community and core-periphery structure in optimization prob-

lems that can be exploited using various decomposition solution

approaches.44 Other recent work in this area developed a new over-

lapping Schwarz type decomposition rooted in a problem's graph

structure and the exponential decay of sensitivity propagation

through graphs.45 Beyond identifying structures for decomposition,

graph-theoretic methods can also be used to identify symmetry in

optimization problems,46 which can degrade performance of global

nonconvex solvers. In this work, we seek to build a graph structure

relating multiple objectives with weights corresponding to their corre-

lating vs. competing nature. From this, a community detection

approach can be applied to determine subgroups of objectives such

that objectives in the same subgroup are correlated, while those in

different subgroups are competing.

3 | PROPOSED ALGORITHM

This section provides the framework and details of the mathematical

algorithm to reduce objective space dimensionality in many objective

optimization problems. The algorithm assumes an optimization prob-

lem with I objectives, V variables, M inequalities, and N equality con-

straints. In particular, we consider the linear many objective

optimization problem formulated as follows:

min
x

cT1x, …, cTI x
� �

s:t: Ax≤ b

Dx¼ e,

ð4Þ
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Here, ci are known cost vectors of size V for the different objectives,

A is a M�V matrix of known constraint coefficients, b is a known

M dimensional vector, D is a N�V matrix of known coefficients, and

e is a known N dimensional vector. The decision variables x can be

either continuous or integer. Without loss of generality, objective

functions are formulated as all minimization problems. The only

assumption made about the problem is that the inequality constraint

matrix A fully bounds the problem, such that no decision variables or

objectives can feasibly diverge to �∞; we note that for most prob-

lems of practical interest, this assumption is not restrictive. The algo-

rithm takes the three coefficient matrices, C¼ c1j� � �jcI½ �T , A, and D, as

input and identifies groups of objectives with expected correlating

behaviors with respect to the optimization/decision variables. To do

this, we propose a weighted objective correlation graph, whereby

nodes correspond to different objectives in the MaOP and edges con-

necting the different objectives are weighted between 0 and 1, corre-

sponding to strongly conflicting to strongly correlating objectives. The

general weighted objective correlation graph structure and proposed

weighting scheme are depicted in Figure 1. The challenge of con-

structing this graph is intelligently and systematically determining the

edge weights, as once these are obtained, community detection can

be used to identify groups of objectives such that objectives in the

same group are strongly correlated, while those in different groups

conflict with each other.

3.1 | Edge weight determination

To determine the edge weights of the objective correlation graph, we

recall that for a linear programs like the MaOP (4) we are considering

in this work, the optimal solution is guaranteed to lie on the boundary

of the feasible region. Thus, to determine if two objectives are likely

to be competing or correlating, it is useful to consider the projections

of their cost vectors onto active constraint hyperplanes of the optimi-

zation problem. If these projections point in (nearly) the same direc-

tion along all surfaces, it is likely the objectives will be correlated,

while if the projections point in different directions on at least some

surfaces, conflict and tradeoffs are likely to occur. We formalize the

approach mathematically as follows: consider two objective cost vec-

tors ci and cj interacting along inequality constraint with normal vector

ak (a row of the matrix A). For each cost vector, we obtain the vector

components normal (cNik) and projected (cPik ) onto the constraint sur-

face, using the following equations:

cNik ¼
�cTi ak
k akk22

ak ð5Þ

cPik ¼�ci�cNik ð6Þ

A graphical representation of these various vectors is displayed in

Figure 2. For normal and projected components, the vectors are nor-

malized to bcNik and bcPik , respectively, such that they point in the same

direction as the original vectors but are of length 1. In the case where

there is no normal or projected component, the normalized vector is

F IGURE 1 General structure of the weighted objective correlation graph. Strong weights (near one) correspond to objective pairs which are
correlated such that minimizing one inherently minimizes the other (left), while weak weights (near zero) correspond to objective pairs that have
inherent conflict (right).

F IGURE 2 Graphical representation of vectors ci , cj, ak , cPik , c
N
ik , c

P
jk ,

and cNjk . The rectangle represents the constraint surface akx¼ bk .

4 of 13 RUSSELL AND ALLMAN



left as the zero vector. The normal components are used to determine

if the constraint is likely to be active in determining a tradeoff

between objectives i and k. If both normal components bcNik and bcNjk
point inwards from the constraint surface, then both cost vectors pull

away from the constraint, rendering the constraint inactive for the

objective pair and allowing us to neglect interaction along this surface

by giving it a weight Wijk of zero. Otherwise, the normalized projected

component vectors are used to determine a correlation strength of

two objectives along the constraint hyperplane, Sijk :

Sijk ¼ bcPik� �TbcPjk ð7Þ

Since conflict along any constraint surface can cause a tradeoff

between objectives, while correlation requires overlap on all con-

straint surfaces, it makes sense to weight findings of conflict more

heavily when combining the interactions along different constraints.

As such, we weight each interaction (Wijk) using a logistic function

that provides high weights when conflicts are found, and lower

weights when correlation is found:

Wi,j,k ¼1�α
1

1þ exp �β�Si,j,k
� � !

ð8Þ

In this equation, α and β represent hyperparameters to the algorithm.

The hyperparameter α should vary between 0 and 1 and represents a

maximum “discount rate” for correlated objective-constraint-

objective triplets to ensure that many correlated constraints do not

overwhelm a smaller number of more informative competing con-

straints. The hyperparameter β should be positive, and governs the

smoothness of the logistic curve, with larger values making the curve

more step-like at Sijk ¼0. Empirically, we have determined that values

of α¼0:9 and β¼100 tend to work well in practice.

Equality constraints will always be active, so the component of

the cost vector normal to the constraint surface is unimportant. Equa-

tions (5)–(6) are used with dk (a row of the matrix D) in place of ak to

determine the component of the cost vector projected onto the con-

straint surface. Strengths along equality constraint are then found

again using (7). Since the Pareto solution will always lie along the

equality constraint surface, weights Wijk are set to 1 for all equality

constraints.

To determine the total correlation strengths, which we denote SAij ,

we calculate a weighted average of strengths along all constraints

determined to be possibly active, and rescale values such that they

are between 0 and 1:

SAij ¼0:5 1þ
PMþN

j¼1 Wi,j,kSi,j,kPMþN
j¼1 Wi,j,k

 !
ð9Þ

Note that the matrix of SAij values is the adjacency matrix of the objec-

tive correlation graph, that this matrix will always be symmetric (i.e.,

SAij ¼ SAji ), and that by convention, diagonal elements of this adjacency

matrix are always set to zero (i.e., SAii ¼0). Values of this adjacency

matrix near zero correspond to an objective pair with a large expected

amount of conflict, while values close to one imply that the two objec-

tives are expected to be correlating.

Note that for large-scale problems, it can be inefficient to com-

pute the effect of every constraint on every objective pair. In such

cases, we provide in this algorithm the option of being more system-

atic about which values of Sijk are obtained by using a variable-con-

straint-objective graph. This graph is a tripartite graph where nodes

correspond to variables, constraints, or objectives in the original opti-

mization formulation, and edges exist between variable and con-

straint/objective nodes if the variable appears within the constraint/

objective. From this, we can identify primary linking constraints, which

contain one or more variable shared by two objectives, and secondary

linking constraints which contain at least one variable unique to both

of the two objectives considered. An example of the variable-con-

straint-objective graph of a simple problem is shown in Figure 3, dis-

playing examples of both primary and secondary linking constraints.

As primary and secondary linking constraints comprise the shortest

paths from objective to constraint to objective in the graph, it

expected that they capture the most important objective interactions.

This argument aligns with recent findings that for large scale, struc-

tured optimization problems, the sensitivity of the optimal solutions at

one node with respect to perturbations at another decays with

respect to the distance between nodes,47 although this approach can

be obfuscated by formulations with a large number of “auxiliary” vari-
ables or constraints.

3.2 | Determination of objective groups

Now that a way to systematically determine edge weights in the

objective correlation graph has been presented, groupings of corre-

lated objectives are obtained by performing community detection

using the Leiden algorithm.40 This algorithm takes as input the adja-

cency matrix of the objective correlation graph, as well as a hyper-

parameter which governs the resolution of communities. In most

cases, it is desirable to identify two or three communities of objec-

tives, since two or three-objective optimization problems are not

computationally prohibitive to solve and give interpretable Pareto

frontiers. To achieve this, we begin by setting the resolution hyper-

parameter so high that each objective is in its own community, and

then gradually decrease this value until the desired number of com-

munities are achieved. Once the community structure is obtained, the

dimensionality of the original MaOP is reduced by combining objec-

tives within the same community into a single objective. There are a

variety of ways that this can occur: two popular approaches are to

simply add all of the objectives in the same group together, or to

neglect all but one objective from the group.29 Different approaches

can be more beneficial depending on the application and how the

Pareto frontier will be used; however, the remainder of this article will

consider grouping by adding together objectives, and comparison of

different grouping approaches will be considered beyond the scope of

this work.
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3.3 | Information loss metric

Assuming grouped objectives are combined either by neglecting all but

one objective, or using a weighted sum, Pareto frontiers obtained using

the reduced-space formulation will be a subset of the full-space Pareto

frontier. A good performing objective reduction will retain a larger propor-

tion of full-space Pareto optimal solutions in its Pareto frontier, or equiva-

lently, each point on the reduced space Pareto frontier will have embed

only a small amount of tradeoff information from grouped variables. Here,

we propose an information loss metric to quantify this performance. First,

a solution set that is a representative sample of the full-dimensional

Pareto frontier is required. Two sets of objectives are identified: the set C
is all objectives that are being combined and the set ℛ is all objectives

that are kept as individuals. From the Pareto frontier solution set,

unique solution values are recorded for the objectives in set ℛ, this

gives a set of P unique points that are each a combination of values

for objectives in ℛ. At each unique point p, one can often find multi-

ple different Pareto optimal solutions that vary the values of objec-

tives in C that are grouped together, giving another set of points J p.

Matrix Kp is created that contains all Pareto optimal values for objec-

tives in C at all points j�J p where the objective values for objectives

in ℛ are held constant. In each Kp the values are scaled using:

bKp,i,j ¼Kp,i,j� li
ui� li

ð10Þ

where bKp,i,j is the scaled value from objective i at point j, Kp,i,j is the

original value, li is the lower bound or minimum value found for objec-

tive i through the entire full space Pareto, and ui is the upper bound

or maximum value found for objective i through the entire full space

Pareto. Equation 10 gives us scaled values for each objective in C,

such that they range between 0 and 1. With these scaled values, we

can determine the total information lost at each point p. Total infor-

mation loss for each point p is determined by:

Bp ¼
X
i � C

bKmax

p,i � bKmin

p,i

� �
ð11Þ

where Bp is the information lost at unique point p, bKmax

p,i is the maxi-

mum scaled value for objective i, and bKmin

p,i is the minimum scaled

value for objective i. A Bp value of 0 tells us that no tradeoff exists

between grouped objectives at point p, while a larger value of Bp, up

to a maximum of j C j indicates that a wider range of tradeoffs

between combined objectives is being neglected by combining them.

Finally, the average of all Bp values is taken to obtain the total average

information loss. This is a single value that describes the information

lost by grouping the chosen set of objectives together. Its utility is in

comparing different choices of grouping objectives together to deter-

mine which group results in a lower average information loss and a

more valuable and informative Pareto frontier.

4 | CASE STUDIES

The proposed algorithm will be demonstrated on three representative

studies adapted from the sustainable process systems literature. Each

of the studies has been chosen to represent MaOP formulations

which include varying numbers of variables and constraints as well as

integer and binary variables. These cases will demonstrate the ability

of this method to identify and group objectives which are most

strongly correlated in a range of problem formulations. All optimiza-

tion and calculating were completed using an Intel i9-10900 CPU with

64 GB of RAM using CPLEX 20.1,48 JuMP v0.21.10,49 and Julia

v1.5.50

4.1 | UK energy mix

This case study is included as it is a relatively simple problem for-

mulation that has only three objectives with a full three dimen-

sional Pareto frontier presented in the original work, Limleamthong

and Guillen-Gosalbez.51 This work studies the energy sector in the

UK, analyzing total energy mix including conventional sources and

a variety of alternatives. Energy technologies including nuclear,

wind, natural gas, coal, and biomass are studied. The objectives

within the formulation of this study are cost, global warming poten-

tial, and worker injuries. Variables model the total electricity gener-

ated by each of the studied technologies. This leads to a 6-variable,

3-objective study with the only constraints being that the total

generation is equivalent to the demand of the nation and bounds

F IGURE 3 Example variable-constraint-objective graph. In red, f1 is a primary constraint link between objectives 1 and 2, as it contains x1,

which appears in both objectives. In blue, f2 is a secondary constraint link between objectives 1 and 3, as it contains x2 from objective 1 and x4
from objective 3.
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on the possible values for each variable. The full optimization prob-

lem formulation is:

min
Gj

X
j � J

cjGj

� �
,
X
j � J

wjGj

� �
,
X
j � J

ijGj

� �( )
s:t: Gmin

j ≤Gj ≤G
max
j 8 j�JX

j � J
Gj ¼D

ð12Þ

where Gj is the amount of energy generated using technology j, cj is

the cost in per kWh, wj is the global warming potential in kg CO2

equivalent per kWh, ij is worker injuries in number of injuries per

kWh, Gmin
j and Gmax

j are the lower and upper bounds for energy gen-

erated with each technology, and D is the total energy demand which

must be satisfied. Pareto frontiers presented in the article and shown

in Figure 4, with each objective rescaled to lie between 0 (the single

objective minimum) and 1 (the worst case for each objective observed

on the Pareto frontier), indicate that there is no strong agreement

among the three objectives. However, our goal for this case study

was to see if our algorithm could successfully identify the objective

pair resulting in the least tradeoff information lost. After running this

problem formulation through the proposed algorithm, the correlation

strength weights shown in Figure 5 were found between each pair of

objectives.

Running the Leiden algorithm to detect the best grouping into

two communities trivially groups the two objectives with the largest

edge weight, giving one community with only the cost objective and

one community with both the global warming potential and worker

injury objectives. The complete algorithm of determining edge

weights and objective groupings takes 0.36 s for this case study.

Physically, the results suggest that there is some agreement between

how much an energy technology emits and how many worker injuries

it typically incurs. Looking at the input data, we can confirm this find-

ing: the lowest emitting technology (nuclear) also has the second few-

est worker injuries, while the highest emitting technology (coal) also

has the highest worker injuries. Similarly, the second strongest pair

also makes sense to have high correlation, as the natural gas is the

technology with both the lowest cost and worker injuries. However,

the constraints limit the ability of natural gas to meet all of the

demand, and the second lowest cost technology (coal) is the worst

with worker injuries. Finally, it makes sense that cost and emissions

are the most competing constraints, as the two lowest cost technolo-

gies are the highest emitting, and vice versa. The results of the algo-

rithm are aligned with the calculated average information lost for each

of the possible pairs from the full space Pareto frontier. If cost and

global warming potential are grouped, the average information loss is

0.736. Combining cost and worker injury objective results in an aver-

age information loss of 0.213. The algorithm's identified group of

global warming potential and worker injury objectives together results

in an average information loss of 0.105. The results of our algorithm

are also supported by Figure 4, where the red points are the parts of

the full space Pareto frontier obtained for each of the three possible

groupings of two objectives. It is evident that the selected grouping of

global warming potential and worker injuries retains points that cap-

ture the largest range of values of the three objectives. Based on

these results, the algorithm has successfully identified the best objec-

tive grouping if one were to be chosen. Furthermore, the identifica-

tion of the worker injury-global warming potential grouping as best

F IGURE 4 Three dimensional Pareto frontier for UK energy case study. Points highlighted in red indicate solutions retained in the two-
dimensional Pareto frontier when (left) cost and global warming potential, (center) cost and worker injuries, or (right) global warming potential and

worker injuries, are grouped together.

F IGURE 5 Objective correlation graph with correlation strengths
as edge weights and identified communities in each color. Objectives
are cost (EC), global warming potential (GW), and worker injuries (WI).
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also matches results of using the principal component analysis method

from Saxena et al.,29 which identified the emissions objective for

removal, by, for example, grouping it with worker injuries.

4.2 | Sustainable ammonia supply chain in
Minnesota

To demonstrate the application of the proposed algorithm to a MaOP

with many variables and few objective functions, the optimization of

the ammonia supply chain as presented in Palys et al.9 will be used.

Specifically, we adapt the formulation for modular production units by

considering the additional objectives of carbon emissions and water

usage, while separating capital and operating costs into their own

objectives. For a full listing of the notation for this problem, we refer

the reader to the original work. We review the problem formulation

below, with the operating cost objective function given by:

cost ¼ ζþ
XR
r¼1

σxr þ
XR
r¼1

XF
f¼1

τr,f yr,f þ
XP
p¼1

XD
d¼1

τp,dþαp
� �

yp,d

þ
XD
d¼1

XF
f¼1

τd,f yd,f ð13Þ

where ζ is the capital cost of constructed renewable plants, σ is oper-

ating cost factor for renewable plants, xr is installed renewable capac-

ity at site r, τi,j is transportation cost and yi,j is amount transported

from site i (renewable production, r, conventional production, p, distri-

bution facility, d) to j (distribution facility, d, consumption site, f ). The

capital cost for modular, renewable-powered production is given by

the following:

ζ¼
XM
m¼1

ρm
XN
n¼1

nγm zn,m

 !
ð14Þ

where ρm is the cost of one module size m, zn,m is the a binary

variable which is one when n is modules of size m are built and

zero otherwise, and γm is the mass production factor. An emission

model is also included as an objective and is drawn from a study using

a related optimization study.20 Emissions of the supply chain are

given by:

emissions ¼
XR
r¼1

XF
f¼1

εr,f yr,f þ
XP
p¼1

XD
d¼1

εp,dþηp
� �

yp,dþ
XD
d¼1

XF
f¼1

εd,f yd,f

ð15Þ

where εi,j are emissions resulting from transporting ammonia from i to

j, and ηp are the emissions from conventional production of ammonia at

site p. Creating the bounds for this problem are the following constraints.

Linearizing the capital cost objective yields the two constraints:

XN
n¼1

zn,m ≤1 8m ð16Þ

XN
n¼1

nzn,m ¼
XR
r¼1

wm,r 8m ð17Þ

where wm,r is the number of modules size m at renewable production

site r. The production at each site is defined from this variable:

xr ¼
XM
m¼1

πmwm,r 8r ð18Þ

where πm is the amount of ammonia produced by a module of size m.

A requirement that the supply chain meets the demand at each site:

XD
d¼1

yd,f þ
XR
r¼1

yr,f ≥ δf 8f ð19Þ

where δf is the ammonia demand at site f. At each conventional pro-

duction site, there is an upper bound on the production capacity:

XD
d¼1

yp,d ≤ ξp 8p ð20Þ

where ξp is the capacity at each production site. A mass balance is

imposed on distribution facilities:

XP
p¼1

yp,d ≥
XF
f¼1

yd,f 8d ð21Þ

Additionally, there is an upper bound placed on the amount of renew-

able ammonia production at each site which arises from available

wind-power:

xr ≤ ξr 8r ð22Þ

where ξr is the maximum ammonia production at site r. An additional

objective of water usage for each production site was modeled:

water¼
XP
p¼1

XD
d¼1

ωpyp,dþ
XR
r¼1

XM
m¼1

ωryr,m ð23Þ

where ωi is the water consumed in ammonia production at site i. A

simplifying assumption was made in the modeling of this objective

that the only significant difference in water consumption among pro-

duction methods was the stoichiometric amount of water needed for

hydrogen production with either an electrochemical technology for

renewable production or a fossil fuel-based technology. Additionally,

capital cost and operating costs were split into separate objectives. The

resulting problem formulation is a MILP with four objectives: capital cost,

operating cost, carbon emissions, and water consumption. Implementing

the proposed algorithm on the linear reformulation of this case study

yields the objective correlation graph shown in Figure 6.
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The algorithm identifies operating cost and carbon emissions

objectives as the best pair to combine, with the total algorithm requir-

ing 3.34 s to determine graph edge weights and best objective group-

ings. While this finding suggests to combine of an economic and an

environmental objective which traditionally is not done, we note that

this grouping intuitively makes sense for this particular problem: when

deciding to reduce carbon emissions by building new distributed

wind-powered ammonia facilities, we are inherently reducing opera-

tion costs as the feedstocks of onsite wind power, water, and air are

essentially free, and transportation costs are significantly lower as

these facilities are built closer to the farms which use the ammonia

produced. As combining these objectives is not a traditional grouping,

the information lost was compared with the conventional grouping

that combines both economic objectives using the classical notion of

net present value. Using a single dimension resolution of 40 steps, a total

of 64,000 optimization iterations, the information lost by combining eco-

nomic objectives was found to be an average of 0.0883. Following the

combination suggested by community detection on the correlation

strength graph, the average information lost was found to be 0.0159.

This is an 82% decrease in the information lost on the Pareto frontier. As

such, using the algorithm's identified groups in place of the conventional

groups results in additional information about the tradeoff between

emissions and capital cost by grouping operating cost with emissions,

which it is correlated with, rather than capital cost, which it competes

with. This additional information can provide decision makers with a

more complete view of tradeoff options when determining sustainability

preferences and making a final design decision.

4.3 | Energy technology selection optimization

The multiobjective energy storage system selection optimization

study presented in Li et al.52 contains three objectives. The objectives

are to minimize both levelized cost of energy storage (EC) and an envi-

ronmental impact metric, ReCiPe, (RE), while the technology deploy-

ment number (TE) objective is maximized. The problem is formulated

to have technologies' feasibility for different use cases determined by

discharge duration and rated power parameters. These parameters are

varied in order to explore what technologies are best for large-scale

energy management, transmission and distribution support, customer

energy management, and distributed energy systems applications. The

full optimization formulation is:

min
zij

�
Xp
i¼1

TEizij,
Xp
i¼1

ECijzij
Xp
i¼1

REizij

( )

s:t
Xp
i¼1

zij ¼1

0≤
Dmax
i �Dmin

i

� �
þ Dmax

j �Dmin
j

� �
2

� Dmin
i þDmax

i

2

�����
�����

0@

� Dmin
j þDmax

j

2

�����
�����
!
zij

0≤
Pmax
i �Pmin

i

� �
þ Pmax

j �Pmin
j

� �
2

0@ � Pmin
i þPmax

i

2

�����
�����

� Pmin
j þPmax

j

2

�����
�����
!
zij ð24Þ

where zij is a binary variable representing the selection of technology i

in use case j, TEi is the number of deployments of the technology i,

ECij is the levelized cost of storage, REi is the combined environmental

impact of each technology, Di is the discharge duration, and Pi is the

rated power. Practically, this problem can be simplified by identifying

infeasible solutions by calculating the values of coefficients on

the inequalities and eliminating any technology that is infeasible prior

to optimization. This calculation and removal of infeasible techno-

logies will be performed prior to implementation of the proposed

algorithm.

Within the original environmental objective, fossil-fuel depletion

(FD), particulate matter formation (PM), human toxicity (HT), and cli-

mate change impact (CC) are the individual factors that are added

together. Combining these metrics gives an understanding of the

overall behavior of the specific solution with respect to the environ-

ment, but separating them allows a more detailed understanding of

how the different energy technologies have varied impacts on certain

environmental metrics. In Oliveira et al.53 the underlying data from

these four metrics is presented for several of the studied technolo-

gies. Extracting this data and expanding the objective formulation of

the optimization problem in Li et al. gives a 6-objective optimization

with the original technology and cost objectives and the newly sepa-

rated four environmental measures. This case study neglects technol-

ogies whose ReCiPe component values were not given by Oliveira

et al. but were assumed in Li et al. giving energy storage technology

options of pumped hydro storage (PHS), compressed air energy

F IGURE 6 Objective correlation graph with correlation strengths
as edge weights and identified communities in each color. Objectives
are capital cost (CC), water use (WU), operating cost (OC), and carbon
emissions (EM).
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storage (CAES), lead-acid batteries, sodium sulfur batteries (NaS),

sodium nickel chloride batteries (NaNiCl), and lithium-ion batteries.

Two use cases from the original study are examined. The first use

case is in transmission and distribution support, use case A3 in the

original work. Running the algorithm takes 0.38 s and gives correlation

strength weights and objective groups shown on the objective corre-

lation graph in Figure 7.

The groups that result from community detection are one with

only the TE objective, the next with the FD and CC objectives, and

the final group contains EC, PM, and HT objectives. This grouping

indicates that combining all environmental objectives into one gives

misleading results that a single technology, pumped hydro, is superior

in this use case when instead there is an embedded tradeoff such that

other technologies perform better for specific environmental metrics.

Next, the case where the energy storage technology is being used for

customer energy management is explored; this is use case A8 in the

original work. Figure 8 shows the weighted objective correlation graph

and the communities identified by the algorithm, which takes 0.41 s

to run.

Groups that result from community detection are one with only

the TE objective, one with only the CC objective, and the final con-

taining EC, PM, FD, and HT objectives. Aside from correlation

strengths that link the technology objective to any other, the lowest

correlation strength is 0.68. This indicates that the CC objective could

be reasonably switched with the economic objective, returning the

original RE objective.

Since only a small selection of technologies are available for each

of these use cases, the entire Pareto frontier can be examined to

understand the resulting objective groups and demonstrate the physi-

cal insights generated by our algorithm. Figure 9 shows the optimal

technology choices using the objective groups determined by the

algorithm, each individual objective, and the original objective func-

tions for both use cases. In the transmission and distribution support

case, the original objectives all result in PHS as the optimal choice.

Looking at the individual objectives shows that in order to minimize

both the FD and CC objectives, NaNiCl is chosen. The algorithm's

resulting objective groups capture this behavior by combining the EC

objective with the PM and HT objectives, leaving FD and CC in their

own combined objective. The CAES technology also gives optimal

performance for the individual HT objective; however, this technology

is only weakly Pareto optimal as it is dominated by PHS, which per-

forms equally well in HT and better in the other objectives. Overall, it

is apparent that our algorithm is able to preserve tradeoff information

that is lost when all environmental objectives are grouped together

using the ReCiPe formulation, and gives results that make physical

sense based on the environmental impacts of the various technologies

considered.

In the customer energy management use case, original EC and TE

objectives result in the choice of PHS while the RE objective results in

choosing NaS. Examining individual objectives, it is apparent that the

NaS technology optimizes all four environmental metrics, but FD, PM,

and HT perform equally well when choosing PHS. HT is also optimal

using CAES. The algorithm assigned FD, PM, and HT to a group with

the EC objective. The overlap in technologies optimizing many objec-

tives explains the high correlation strengths in the objective-strength

graph for this use case excluding the technology objective.

5 | CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel algorithm for reducing the dimen-

sionality of linear MaOPs a priori to generating points which are

Pareto-optimal in the original full space problem. This was achieved

on the basis of a weighted objective correlation graph, where weights

were determined based on the overlap of cost vector projections on

constraint surfaces. From this graph, community detection using the

Leiden algorithm was performed to identify two to three groups of

objectives whereby objectives in the same group are correlated, while

objectives in different groups are competing. The algorithm provides a

F IGURE 7 Objective correlation graph with correlation strengths
as edge weights and colors representing detected communities for
transmission and distribution support use case.

F IGURE 8 Objective correlation graph with correlation strengths
as edge weights and colors representing detected communities for
customer energy management use case.
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method to reduce an intractable, uninterpretable high dimensional

MaOP to a tractable two or three objective problem that generates

Pareto frontiers which are interpretable and retain as much informa-

tion as possible from the original full-space problem. Through the

analysis of three representative case studies relevant to sustainable

chemical and energy production, we demonstrated the efficacy of our

algorithm to systematically generate objective groups which preserve

more information about tradeoffs than “intuitive” groupings of all

economic or environmental objectives. As such, decision makers ana-

lyzing the Pareto solutions will be able to make more informed deci-

sions based on full knowledge of the scope of tradeoffs among

various sustainability outcomes.

Future work will attempt to extend this algorithm to nonlinear

MaOPs, which provide the additional challenges that single-objective

optimal points are no longer guaranteed to lie on the boundary of the

feasible space, and constraint normals and objective gradients are no

longer constant. We also intend to apply this framework to distributed

and decomposed optimization problems in order to identify correla-

tion between subproblem objectives, which can be useful in building

minimal communication architectures which still give convergence of the

decomposition solution algorithm. Finally, we plan to examine more

deeply the parametric sensitivity of objective correlations, which will be

important for moving horizon scheduling and control problems which

must be solved repeatedly with different initial conditions over time.

NOTATION
Objective Reduction Algorithm
A coefficient matrix for inequality constraints

ak the kth row of matrix A

b vector of upper bounds for inequality constraints

C matrix of all objective cost vectors

ci cost vector of ith objective

cNik component of cost vector ci normal to constraint surface

defined by ak

cPik component of cost vector ci along the plane of the constraint

surface defined by akbcNik component of cost vector ci normal to constraint surface

defined by ak , normalized to length 1

bcPik component of cost vector ci along the plane of the constraint

surface defined by ak , normalized to length 1

D coefficient matrix for equality constraints

dk the kth row of matrix D

e vector of constants for right hand side of equality constraints

Sijk strength of correlation between objectives i and j along con-

straint surface k

SAij total correlation strength between objectives i and j

Wijk weight of contribution of Sijk for calculating total correlation

strength SAij
α hyperparameter for discounting correlating constraints in

weighting

β hyperparameter governing smoothness of weighting logistic

curve

Information Loss Metric
Bp information loss at point p

C set of all objectives combined into a new grouped objective

J p set of Pareto optimal points found when keeping objectives

values for objectives in ℛ constant at point p value.

Kp matrix of objective values at point p

Kpij value of objective i at point p in the reduced space Pareto, and

point j in the full space Pareto with constant objectives values

in ℛbKpij objective value Kpij rescaled to be between 0 and 1

li minimum value of objective i in entire full space Pareto frontier

P set of points on the reduced space Pareto frontier

ℛ set of all objectives retained as individual objectives

ui maximum value of objective i in entire full space Pareto frontier

UK Energy Mix Case Study
cj cost of generating energy by technology j

D total energy demand

Gj amount of energy generated by technology j

Gmin
j minimum amount of energy generated by technology j

Gmax
j maximum amount of energy generated by technology j

ij worker injuries caused by technology j

J set of energy technologies

wj global warming potential of emissions from technology j

F IGURE 9 Results of many-objective energy technology selection. Technologies that optimize a combined or individual objective are
highlighted and those deemed infeasible due to inadequate discharge duration and rated power are grayed out. Lighter blue highlighting indicates
that the solution is weakly Pareto optimal. Individual objectives listed multiple times are optimal for multiple technologies. In both cases, O1, O2,
and O3 represent the green, orange, and pink objective groups, respectively, on each objective correlation graph.
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Energy Storage Selection Case Study
Dmax
i maximum discharge duration for technology i

Dmax
j maximum discharge duration for use case j

Dmin
i minimum discharge duration for technology i

Dmin
j minimum discharge duration for use case j

ECij levelized cost of storage for technology i in use case j

Pmax
i maximum rated power for technology i

Pmax
j maximum rated power for use case j

Pmin
i minimum rated power for technology i

Pmin
j minimum rated power for use case j

REi ReCiPe-determined environmental impact for technology i

TEi number of deployments of technology i

zij binary variable, 1 if technology i is selected in use case j
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