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Abstract

Recent global events and the rise of sustainable investing has made clear that the

chemical and energy industry must consider sustainability goals beyond profit maxi-

mization to remain competitive. Multi-objective optimization provides an ideal frame-

work for analyzing sustainability tradeoffs, but when four or more objectives are con-

sidered, the ability to rigorously solve problems and interpret results is lost. This ne-

cessitates an approach to systematically reduce the dimensionality of many objective

problems to three or fewer objectives. In this work, an algorithm to group objectives

based on their correlating nature a priori to solving the full space problem is pro-

posed. It utilizes community detection on a novel weighted objective correlation graph

to identify two or three groups of correlated objectives. Results from three represen-

tative case studies demonstrate that objective groupings obtained from this algorithm

minimize the amount of tradeoff information lost and outperform intuitive groupings

by economics or the environment.

Introduction

In recent times, the idea of sustainable investing has come into the mainstream1. In this

scheme, shareholders and board members judge industrial performance not just by the tra-

ditional economic bottom line of profits, but also emphasizing environmental, social, and

governance (ESG) issues. Indeed, looking at the events of the last 5 years illustrates the

pitfalls of making decisions solely based on economics, as a pandemic has exposed vulnera-
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bilities in global supply chains2, social unrest and lawsuits have occurred due to inherently

inequitable decisions that disproportionately harm minority communities3, and the effects of

climate change, largely driven by the use of economically preferred fossil fuels, are becoming

more apparent4. The realities of today make it clear that a modern chemical industry cannot

remain competitive by solely maximizing profits as is traditionally done, and that decisions

made at all levels in the chemical enterprise, including process design, strategic planning,

and real time operation and control, must weigh the tradeoffs of a large number of different

objectives within the scope of both economics and ESG.

One approach to sustainable decision making is to attempt to monetize ESG outcomes to

arrive at a single, profit-based objective5;6. This approach is commonly applied for carbon

emissions via either a carbon tax7;8;9 or through a social cost of carbon10. A few approaches

within the life cycle assessment framework attempt to be more systematic about how mon-

etization is performed, usually by attempting to define a marginal or opportunity cost for

each sustainability objective11. An analogous approach to monetization is the use of multi-

attribute decision making methods12, which attempt to quantify the objective preferences

of a decision maker by generating weights that correspond to these preferences. These ap-

proaches are beneficial in that the optimization algorithm returns a single solution that can

be directly implemented. However, a key limitation of any monetization or multi-attribute

approach is that the solution obtained is typically highly sensitive to how different objectives

are weighted: for example, considering social costs of carbon which may vary over orders of

magnitude depending on the source13, or using different LCA-based approaches, can result

in very different decisions being made. As such, the question of what makes a solution sus-

tainable can vary wildly between decision makers who may hold different values, including

between different organizations as well as individuals at the same organization.

An alternative approach to monetization is to solve a multi-objective optimization prob-

lem. Here, the solution is not a single decision but is a manifold of possible decisions repre-

senting tradeoffs between objectives (the Pareto frontier), where each point along the Pareto

2



frontier represents the best one can do for one objective without making any of the others

worse. While this approach does not give a single implementable solution, obtaining and

visualizing the full Pareto frontier of objective tradeoffs enables making fully informed sus-

tainable decisions, the responsibility of which ultimately lies with human actors and can be

supported by preference ranking algorithms14. Multi-objective approaches have been applied

quite broadly in chemical process systems research15. With respect to sustainability, it is

most common to analyze the tradeoffs between a single environmental and a single economic

objective, with example applications in plant design16;17;18, supply chain management19;20,

and process operations21;22, to name a few.

A limitation of multi-objective approaches for sustainable decision making is that for

problems of four or more objectives (many-objective problems, or MaOPs), visualization

of the objective tradeoffs becomes unintuitive and rigorously generating a complete set of

solution points becomes computationally prohibitive. A common approach to addressing this

challenge is to lump different sustainability goals into intuitive groupings, such as economic,

environmental, and social groupings based on the three pillars of sustainability23. Examples

of this include work by Santibanez-Aguilar et al.24, who combine metrics for damages to

human health, the ecosystem, and resource extraction using a life cycle assessment derived

tool in the planning and site selection of biorefineries. Garcia et al.25 propose combining the

effects of agricultural wastes, land use, and ecosystem services into a single environmental

green GDP objective when designing food-energy-water-waste nexus systems. Wheeler et

al.26 propose an environmental objective that takes into account the potential for a process

or supply chain to cause key outputs, such as ozone depletion or ocean acidification, to

exceed “planetary boundaries” or upper bounds beyond which deleterious impacts on the

planet are observed. Mota et al.27 propose a social objective that combines the goals of

creating jobs and limiting inequity by weighting job creation activity in lower GDP regions,

which they used in analyzing possible locations for expansion of a electronics manufacturer.

Alternatively, one can also try to aggregate all outcomes into a single objective: a popular

3



method for doing this is the eco-efficiency concept which normalizes the various economic

and environmental objectives and assigns weights based on social relevance and a process’

impact on a specific outcome relative to known global parameters28.

As an example that demonstrates the shortcomings of the aforementioned approach,

consider the design of an ammonia production system in a water scarce region where one

could choose either to produce requisite hydrogen from fossil fuels (resulting in inherent

carbon emissions) or from electrolysis of water (using large quantities of water). For such a

system, there is a clear tradeoff between the two objectives of carbon emissions and water

usage, but information about this tradeoff would be lost if both quantities were aggregated

into a single environmental objective. This example demonstrates the importance of choosing

objective groupings more systematically based on their correlating (i.e. both objectives point

to similar solutions) vs. competing (i.e. a large tradeoff exists between objectives) nature

to preserve tradeoff information. While there exist methods to achieve this which utilize

principal component analysis29, aggregation trees30 or dominance preservation strategies31,

these methods require the generation of at least part of the high-dimensional Pareto frontier

for the original MaOP. As such, they may be susceptible to bias based on which solution

points are generated and are not particularly helpful in reducing the computational burden

of solving the problem.

In this work, we assert that systematic objective dimensionality reduction for (mixed-

integer) linear MaOPs can be performed a priori to obtaining any part of the solution of

the MaOP on the basis of problem structure. We propose a graph structure to represent

variable-constraint-objective connectivity, which we use to develop an objective correlation

graph with edge weights corresponding to the competing vs. correlating nature of the two

objectives. From the objective correlation graph, we apply a community detection approach

to identify 2-3 groups of objectives, such that objectives in the same group are correlated

and those in different groups are competing. We also present an information loss metric and

demonstrate that our approach is able to choose groupings that preserve as much information
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about objective tradeoffs as possible. The remainder of this paper is structured as follows:

section* 2 will provide background on solving multi-objective optimization problems, as

well as on identifying and exploiting optimization problem structure using graph theory.

section* 3 will provide the details of the proposed algorithm and how it utilizes the problem

structure of MaOPs to determine the strength of links between objective functions. section*

4 will examine three case studies adapted from the sustainable process systems literature and

utilize the proposed algorithm to analyze the structure of MaOPs adapted from the original

formulations. Finally, section* 5 will include some concluding remarks and discussion of

areas for future work.

Background

Multi-Objective Optimization

A general multi-objective optimization problem can be written as follows:

min
x

{f1(x), ..., fI(x)}

s.t. x ∈ X , (1)

Where fi represents the function for objective i, x are the decision variables, and X is the

set of all values x that are feasible to the problem. Typically, it is impossible to optimize

each objective fi simultaneously, such that no single solution exists for problem (1). Instead,

the solution to this problem is a set of points, known as the Pareto frontier, where each

point represents the best one can do in one objective without sacrificing another. A critical

concept for understanding the Pareto frontier is the idea of dominance. Consider two feasible

points to problem (1), x̂ and x̄. Solution x̂ is said to dominate solution x̄ if the following
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two relationships hold:

fi(x̂) ≤ fi(x̄) ∀ i ∈ {1, ..., I} (2)

∃ i ∈ {1, ..., I} : fi(x̂) < fi(x̄) (3)

In words, this means that solution x̂ performs no worse than x̄ in all objectives, and strictly

better in at least one objective. Using this concept, the Pareto frontier can be defined as the

set of all feasible solutions that are not dominated by any other feasible solution.

Solution approaches to multi-objective problems seek to find the Pareto frontier by iden-

tifying non-dominated solutions. The most common approaches can be broken into two

categories. The first are scalarization approaches, which generate Pareto optimal points

through solving a set of single objective optimizaiton problems. Examples of methods in

this classification include weighted sum32, epsilon constraint33 and Chebyshev scalarization

approaches34. While rigorous deterministic global optimization can be used to solve each

single objective problem and guarantee that each point found is Pareto optimal, the num-

ber of single objective problems to solve scales exponentially with number of objectives,

such that these approaches are impractical to implement for MaOPs. The second class of

approaches are evolutionary algorithms, which use biological principles of natural selection

such as mutation and recombination to drive a population of feasible points towards optimal

solutions35. While these methods tend to work reasonably well in practice and are more scal-

able than scalarization approaches, they are ultimately stochastic and heuristic approaches

which do not provide any guarantees of solution quality. As such, an important goal of this

work is to systematically reduce the dimensionality of MaOPs to 3 objectives or fewer, in

order to apply a rigorous scalarization method for the determination of the Pareto frontier.
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Graph Representation of Optimization Problems

For complex optimization problems that cannot be readily solved by off-the-shelf solvers

in relevant amounts of time, such as the MaOPs of interest in this work, it is often use-

ful to identify and exploit problem structure to derive an approach that makes solving the

problem easier. A natural way to achieve this is by representing the optimization problem

as a graph, or a set of nodes and edges that capture the connectivity of different objects

(i.e. variables and constraints) within the optimization problem36. Once such a graph is

developed, an effective approach for structure identification is community detection, which

identifies subgroups within a graph on the basis of maximizing a quantity called modularity,

effectively generating subgroups such that nodes within the same subgroup interact strongly,

while minimal interaction occurs between nodes in different subgroups37. While modularity

maximization is a known NP-hard problem, several well-known greedy algorithms give good

heuristic solutions such as spectral partitioning38, the Louvain algorithm (or fast unfold-

ing)39, and the Leiden algorithm40, the latter of which is used in this work.

Community detection has been shown to be a powerful tool for identifying structure in

optimization problems amenable to decomposition. Early work in this area looked at identi-

fying distributed optimization structures for augmented Lagrangian solution approaches41,

as well as structure within a model predictive control problem for obtaining distributed con-

troller architectures42. This approach was later generalized to identify communities that

correspond to optimization subproblems with minimal complicating variables or constraints,

and thus amenable to various decomposition approaches43. This approach was extended

using a stochastic block modeling approach to identify both community and core-periphery

structure in optimization problems that can be exploited using various decomposition so-

lution approaches44. Other recent work in this area developed a new overlapping Schwarz

type decomposition rooted in a problem’s graph structure and the exponential decay of

sensitivity propagation through graphs45. Beyond identifying structures for decomposition,

graph-theoretic methods can also be used to identify symmetry in optimization problems46,
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which can degrade performance of global nonconvex solvers. In this work, we seek to build

a graph structure relating multiple objectives with weights corresponding to their correlat-

ing vs. competing nature. From this, a community detection approach can be applied to

determine subgroups of objectives such that objectives in the same subgroup are correlated,

while those in different subgroups are competing.

Proposed Algorithm

This section* provides the framework and details of the mathematical algorithm to reduce

objective space dimensionality in many objective optimization problems. The algorithm

assumes an optimization problem with I objectives, V variables, M inequalities, and N

equality constraints. In particular, we consider the linear many objective optimization prob-

lem formulated as follows:

min
x

{cT1 x, ..., cTI x}

s.t. Ax ≤ b

Dx = e, (4)

Here, ci are known cost vectors of size V for the different objectives, A is a M ×V matrix of

known constraint coefficients, b is a known M dimensional vector, D is a N × V matrix of

known coefficients, and e is a known N dimensional vector. The decision variables x can be

either continuous or integer. Without loss of generality, objective functions are formulated

as all minimization problems. The only assumption made about the problem is that the

inequality constraint matrix A fully bounds the problem, such that no decision variables or

objectives can feasibly diverge to ±∞; we note that for most problems of practical interest,

this assumption is not restrictive. The algorithm takes the three coefficient matrices, C =

[c1|...|cI ]T , A, and D, as input and identifies groups of objectives with expected correlating
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Figure 1: General structure of the weighted objective correlation graph. Strong weights (near
one) correspond to objective pairs which are correlated such that minimizing one inherently
minimizes the other (left), while weak weights (near zero) correspond to objective pairs that
have inherent conflict (right).

behaviors with respect to the optimization/decision variables. To do this, we propose a

weighted objective correlation graph, whereby nodes correspond to different objectives in

the MaOP and edges connecting the different objectives are weighted between 0 and 1,

corresponding to strongly conflicting to strongly correlating objectives. The general weighted

objective correlation graph structure and proposed weighting scheme is depicted in Figure

1. The challenge of constructing this graph is intelligently and systematically determining

the edge weights, as once these are obtained, community detection can be used to identify

groups of objectives such that objectives in the same group are strongly correlated, while

those in different groups conflict with each other.

Edge Weight Determination

To determine the edge weights of the objective correlation graph, we recall that for a linear

programs like the MaOP (4) we are considering in this work, the optimal solution is guar-

anteed to lie on the boundary of the feasible region. Thus, to determine if two objectives

are likely to be competing or correlating, it is useful to consider the projections of their cost

vectors onto active constraint hyperplanes of the optimization problem. If these projections
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Figure 2: Graphical representation of vectors ci, cj, ak, c
P
ik, c

N
ik, c

P
jk, and cNjk. The rectangle

represents the constraint surface akx = bk.

point in (nearly) the same direction along all surfaces, it is likely the objectives will be corre-

lated, while if the projections point in different directions on at least some surfaces, conflict

and tradeoffs are likely to occur. We formalize the approach mathematically as follows: con-

sider two objective cost vectors ci and cj interacting along inequality constraint with normal

vector ak (a row of the matrix A). For each cost vector, we obtain the vector components

normal (cNik) and projected (cPik) onto the constraint surface, using the following equations:

cNik =
−cTi ak
∥ak∥22

ak (5)

cPik =− ci − cNik (6)

A graphical representation of these various vectors is displayed in Figure ??. For normal

and projected components, the vectors are normalized to ĉNik and ĉPik, respectively, such that

they point in the same direction as the original vectors but are of length 1. In the case

where there is no normal or projected component, the normalized vector is left as the zero

vector. The normal components are used to determine if the constraint is likely to be active

in determining a tradeoff between objectives i and k. If both normal components ĉNik and

ĉNjk point inwards from the constraint surface, then both cost vectors pull away from the
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constraint, rendering the constraint inactive for the objective pair and allowing us to neglect

interaction along this surface by giving it a weight Wijk of zero. Otherwise, the normalized

projected component vectors are used to determine a correlation strength of two objectives

along the constraint hyperplane, Sijk:

Sijk = (ĉPik)
T ĉPjk (7)

Since conflict along any constraint surface can cause a tradeoff between objectives, while

correlation requires overlap on all constraint surfaces, it makes sense to weight findings of

conflict more heavily when combining the interactions along different constraints. As such,

we weight each interaction (Wijk) using a logistic function that provides high weights when

conflicts are found, and lower weights when correlation is found:

Wi,j,k = 1− α

(
1

1 + exp(−β × Si,j,k)

)
(8)

In this equation, α and β represent hyperparameters to the algorithm. The hyperparameter

α should vary between 0 and 1 and represents a maximum “discount rate” for correlated

objective-constraint-objective triplets to ensure that many correlated constraints do not over-

whelm a smaller number of more informative competing constraints. The hyperparameter

β should be positive, and governs the smoothness of the logistic curve, with larger values

making the curve more step-like at Sijk = 0. Empirically, we have determined that values of

α = 0.9 and β = 100 tend to work well in practice.

Equality constraints will always be active, so the component of the cost vector normal

to the constraint surface is unimportant. Equations (5)-(6) are used with dk (a row of the

matrix D) in place of ak to determine the component of the cost vector projected onto the

constraint surface. Strengths along equality constraint are then found again using (7). Since

the Pareto solution will always lie along the equality constraint surface, weights Wijk are set

to 1 for all equality constraints.
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To determine the total correlation strengths, which we denote SA
ij , we calculate a weighted

average of strengths along all constraints determined to be possibly active, and rescale values

such that they are between 0 and 1:

SA
ij = 0.5

(
1 +

∑M+N
j=1 Wi,j,kSi,j,k∑M+N

j=1 Wi,j,k

)
(9)

Note that the matrix of SA
ij values is the adjacency matrix of the objective correlation graph,

that this matrix will always be symmetric (i.e. SA
ij = SA

ji), and that by convention, diagonal

elements of this adjacency matrix are always set to zero (i.e. SA
ii = 0). Values of this

adjacency matrix near zero correspond to an objective pair with a large expected amount of

conflict, while values close to one imply that the two objectives are expected to be correlating.

Note that for large scale problems, it can be inefficient to compute the effect of ev-

ery constraint on every objective pair. In such cases, we provide in this algorithm the

option of being more systematic about which values of Sijk are obtained by using a variable-

constraint-objective graph. This graph is a tripartite graph where nodes correspond to

variables, constraints, or objectives in the original optimization formulation, and edges exist

between variable and constraint/objective nodes if the variable appears within the con-

straint/objective. From this, we can identify primary linking constraints, which contain one

or more variable shared by two objectives, and secondary linking constraints which con-

tain at least one variable unique to both of the two objectives considered. An example of

the variable-constraint-objective graph of a simple problem is shown in Figure 3, displaying

examples of both primary and secondary linking constraints. As primary and secondary

linking constraints comprise the shortest paths from objective to constraint to objective in

the graph, it expected that they capture the most important objective interactions. This

argument aligns with recent findings that for large scale, structured optimization problems,

the sensitivity of the optimal solutions at one node with respect to perturbations at an-

other decays with respect to the distance between nodes47, although this approach can be
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min 

𝑜1 = 5𝑥1 + 3𝑥2,
𝑜2 = 2𝑥1 + 3𝑥2 + 5𝑥3 + 2𝑥4

𝑜3 = 2𝑥3 + 3𝑥4
s.t. 𝑥1 + 𝑥3 ≥ 1 (𝑓1)

𝑥2 − 𝑥4 ≥ 0 (𝑓2)

Figure 3: Example variable-constraint-objective graph. In red, f1 is a primary constraint
link between objectives 1 and 2, as it contains x1, which appears in both objectives. In blue,
f2 is a secondary constraint link between objectives 1 and 3, as it contains x2 from objective
1 and x4 from objective 3.

obfuscated by formulations with a large number of “auxiliary” variables or constraints.

Determination of Objective Groups

Now that a way to systematically determine edge weights in the objective correlation graph

has been presented, groupings of correlated objectives are obtained by performing commu-

nity detection using the Leiden algorithm40. This algorithm takes as input the adjacency

matrix of the objective correlation graph, as well as a hyperparameter which governs the res-

olution of communities. In most cases, it is desirable to identify two or three communities of

objectives, since two or three-objective optimization problems are not computationally pro-

hibitive to solve and give interpretable Pareto frontiers. To achieve this, we begin by setting

the resolution hyperparameter so high that each objective is in its own community, and then

gradually decrease this value until the desired number of communities are achieved. Once

the community structure is obtained, the dimensionality of the original MaOP is reduced by

combining objectives within the same community into a single objective. There are a variety

of ways that this can occur: two popular approaches are to simply add all of the objectives

in the same group together, or to neglect all but one objective from the group29. Different

approaches can be more beneficial depending on the application and how the Pareto frontier
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will be used; however, the remainder of this paper will consider grouping by adding together

objectives, and comparison of different grouping approaches will be considered beyond the

scope of this work.

Information Loss Metric

Assuming grouped objectives are combined either by neglecting all but one objective, or

using a weighted sum, Pareto frontiers obtained using the reduced-space formulation will

be a subset of the full-space Pareto frontier. A good performing objective reduction will

retain a larger proportion of full-space Pareto optimal solutions in its Pareto frontier, or

equivalently, each point on the reduced space Pareto frontier will have embed only a small

amount of tradeoff information from grouped variables. Here, we propose an information

loss metric to quantify this performance. First, a solution set that is a representative sample

of the full-dimensional Pareto frontier is required. Two sets of objectives are identified: the

set C is all objectives that are being combined and the set R is all objectives that are kept

as individuals. From the Pareto frontier solution set, unique solution values are recorded

for the objectives in set R, this gives a set of P unique points that are each a combination

of values for objectives in R. At each unique point p, one can often find multiple different

Pareto optimal solutions that vary the values of objectives in C that are grouped togeter,

giving another set of points Jp. Matrix Kp is created that contains all Pareto optimal values

for objectives in C at all points j ∈ Jp where the objective values for objectives in R are

held constant. In each Kp the values are scaled using:;

K̂p,i,j =
Kp,i,j − li
ui − li

(10)

where K̂p,i,j is the scaled value from objective i at point j, Kp,i,j is the original value, li is

the lower bound or minimum value found for objective i through the entire full space Pareto,

and ui is the upper bound or maximum value found for objective i through the entire full
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space Pareto. Equation 10 gives us scaled values for each objective in C, such that they

range between 0 and 1. With these scaled values, we can determine the total information

lost at each point p. Total information loss for each point p is determined by:

Bp =
∑
i∈C

(K̂max
p,i − K̂min

p,i ) (11)

where Bp is the information lost at unique point p, K̂max
p,i is the maximum scaled value for

objective i, and K̂min
p,i is the minimum scaled value for objective i. A Bp value of 0 tells us

that no tradeoff exists between grouped objectives at point p, while a larger value of Bp, up

to a maximum of |C| indicates that a wider range of tradeoffs between combined objectives is

being neglected by combining them. . Finally, the average of all Bp values is taken to obtain

the total average information loss. This is a single value that describes the information

lost by grouping the chosen set of objectives together. Its utility is in comparing different

choices of grouping objectives together to determine which group results in a lower average

information loss and a more valuable and informative Pareto frontier.

Case Studies

The proposed algorithm will be demonstrated on three representative studies adapted from

the sustainable process systems literature.. Each of the studies have been chosen to represent

MaOP formulations which include varying numbers of variables and constraints as well as

integer and binary variables. These cases will demonstrate the ability of this method to

identify and group objectives which are most strongly correlated in a range of problem

formulations. All optimization and calculating was completed using an Intel i9-10900 CPU

with 64 GB of RAM using CPLEX 20.148, JuMP v0.21.1049, and Julia v1.550.
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UK Energy Mix

This case study is included as it is a relatively simple problem formulation that has only

three objectives with a full three dimensional Pareto frontier presented in the original work,

Limleamthong and Guillen-Gosalbez51. This work studies the energy sector in the UK,

analyzing total energy mix including conventional sources and a variety of alternatives.

Energy technologies including nuclear, wind, natural gas, coal, and biomass are studied. The

objectives within the formulation of this study are cost, global warming potential, and worker

injuries. Variables model the total electricity generated by each of the studied technologies.

This leads to a 6-variable, 3-objective study with the only constraints being that the total

generation is equivalent to the demand of the nation and bounds on the possible values for

each variable. The full optimization problem formulation is:

min
Gj

{∑
j∈J

(cjGj),
∑
j∈J

(wjGj),
∑
j∈J

(ijGj)

}

s.t. Gmin
j ≤ Gj ≤ Gmax

j ∀ j ∈ J∑
j∈J

Gj = D (12)

where Gj is the amount of energy generated using technology j, cj is the cost in £per kWh,

wj is the global warming potential in kg CO2 equivalent per kWh, ij is worker injuries in

number of injuries per kWh, Gmin
j and Gmax

j are the lower and upper bounds for energy

generated with each technology, and D is the total energy demand which must be satisfied.

Pareto frontiers presented in the paper and shown in Figure 4, with each objective rescaled

to lie between 0 (the single objective minimum) and 1 (the worst case for each objective

observed on the Pareto frontier), indicate that there is no strong agreement among the

three objectives. However, our goal for this case study was to see if our algorithm could

successfully identify the objective pair resulting in the least tradeoff information lost. After

running this problem formulation through the proposed algorithm, the correlation strength
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Figure 4: Three dimensional Pareto frontier for UK energy case study. Points highlighted
in red indicate solutions retained in the two-dimensional Pareto frontier when (left) cost
and global warming potential, (center) cost and worker injuries, or (right) global warming
potential and worker injuries, are grouped together.

weights shown in Figure 5 were found between each pair of objectives. Running the

Figure 5: Objective correlation graph with correlation strengths as edge weights and identi-
fied communities in each color. Objectives are cost (EC), global warming potential (GW),
and worker injuries (WI).

Leiden algorithm to detect the best grouping into two communities trivially groups the two

objectives with the largest edge weight, giving one community with only the cost objective

and one community with both the global warming potential and worker injury objectives.

The complete algorithm of determining edge weights and objective groupings takes 0.36

seconds for this case study. Physically, the results suggest that there is some agreement

between how much an energy technology emits and how many worker injuries it typically
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incurs. Looking at the input data, we can confirm this finding: the lowest emitting technology

(nuclear) also has the second fewest worker injuries, while the highest emitting technology

(coal) also has the highest worker injuries. Similarly, the second strongest pair also makes

sense to have high correlation, as the natural gas is the technology with both the lowest cost

and worker injuries. However, the constraints limit the ability of natural gas to meet all of

the demand, and the second lowest cost technology (coal) is the worst with worker injuries.

Finally, it makes sense that cost and emissions are the most competing constraints, as the

two lowest cost technologies are the highest emitting, and vice versa. The results of the

algorithm are aligned with the calculated average information lost for each of the possible

pairs from the full space Pareto frontier. If cost and global warming potential are grouped,

the average information loss is 0.736. Combining cost and worker injury objective results

in an average information loss of 0.213. The algorithm’s identified group of global warming

potential and worker injury objectives together results in an average information loss of

0.105. The results of our algorithm are also supported by Figure 4, where the red points are

the parts of the full space Pareto frontier obtained for each of the three possible groupings

of two objectives. It is evident that the selected grouping of global warming potential and

worker injuries retains points that capture the largest range of values of the three objectives.

Based on these results, the algorithm has successfully identified the best objective grouping

if one were to be chosen. Furthermore, the identification of the worker injury-global warming

potential grouping as best also matches results of using the principal component analysis

method from Saxena et al.29, which identified the emissions objective for removal, by, for

example, grouping it with worker injuries.

Sustainable Ammonia Supply Chain in Minnesota

To demonstrate the application of the proposed algorithm to a MaOP with many variables

and few objective functions, the optimization of the ammonia supply chain as presented in

Palys et al.9 will be used. Specifically, we adapt the formulation for modular production
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units by considering the additional objectives of carbon emissions and water usage, while

separating capital and operating costs into their own objectives. For a full listing of the

notation for this problem, we refer the reader to the original work. We review the problem

formulation below , with the operating cost objective function given by:

cost = ζ +
R∑

r=1

σxr +
R∑

r=1

F∑
f=1

τr,fyr,f +
P∑

p=1

D∑
d=1

(τp,d + αp)yp,d +
D∑

d=1

F∑
f=1

τd,fyd,f (13)

where ζ is the capital cost of constructed renewable plants, σ is operating cost factor for

renewable plants, xr is installed renewable capacity at site r, τi,j is transportation cost and

yi,j is amount transported from site i (renewable production, r, conventional production, p,

distribution facility, d) to j (distribution facility, d, consumption site, f). The capital cost

for modular, renewable-powered production is given by the following:

ζ =
M∑

m=1

ρm

(
N∑

n=1

nγmzn,m

)
(14)

where ρm is the cost of one module size m, zn,m is the a binary variable which is one when n

is modules of size m are built and zero otherwise, and γm is the mass production factor. An

emission model is also included as an objective and is drawn from a study using a related

optimization study20. Emissions of the supply chain are given by:

emissions =
R∑

r=1

F∑
f=1

ϵr,fyr,f +
P∑

p=1

D∑
d=1

(ϵp,d + ηp)yp,d +
D∑

d=1

F∑
f=1

ϵd,fyd,f (15)

where ϵi,j are emissions resulting from transporting ammonia from i to j, and ηp are the

emissions from conventional production of ammonia at site p. Creating the bounds for this

problem are the following constraints. Linearizing the capital cost objective yields the two

constraints:
N∑

n=1

zn,m ≤ 1 ∀m (16)
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N∑
n=1

nzn,m =
R∑

r=1

wm,r ∀m (17)

where wm,r is the number of modules size m at renewable production site r. The production

at each site is defined from this variable:

xr =
M∑

m=1

πmwm,r ∀r (18)

where πm is the amount of ammonia produced by a module of size m. A requirement that

the supply chain meets the demand at each site:

D∑
d=1

yd,f +
R∑

r=1

yr,f ≥ δf ∀f (19)

where δf is the ammonia demand at site f . At each conventional production site, there is

an upper bound on the production capacity:

D∑
d=1

yp,d ≤ ξp ∀p (20)

where ξp is the capacity at each production site. A mass balance is imposed on distribution

facilities:
P∑

p=1

yp,d ≥
F∑

f=1

yd,f ∀d (21)

Additionally, there is an upper bound placed on the amount of renewable ammonia produc-

tion at each site which arises from available wind-power:

xr ≤ ξr ∀r (22)
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where ξr is the maximum ammonia production at site r. An additional objective of water

usage for each production site was modeled:

water =
P∑

p=1

D∑
d=1

ωpyp,d +
R∑

r=1

M∑
m=1

ωryr,m (23)

where ωi is the water consumed in ammonia production at site i. A simplifying assump-

tion was made in the modeling of this objective that the only significant difference in water

consumption among production methods was the stoichiometric amount of water needed

for hydrogen production with either an electrochemical technology for renewable production

or a fossil fuel-based technology. Additionally, capital cost and operating costs were split

into separate objectives. The resulting problem formulation is a MILP with four objectives:

capital cost, operating cost, carbon emissions, and water consumption. Implementing the

proposed algorithm on the linear reformulation of this case study yields the objective corre-

lation graph shown in Figure 6: The algorithm identifies operating cost and carbon emissions

Figure 6: Objective correlation graph with correlation strengths as edge weights and identi-
fied communities in each color. Objectives are capital cost (CC), water use (WU), operating
cost (OC), and carbon emissions (EM).

objectives as the best pair to combine, with the total algorithm requiring 3.34 seconds to

determine graph edge weights and best objective groupings. While this finding suggests to
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combine of an economic and an environmental objective which traditionally is not done, we

note that this grouping intuitively makes sense for this particular problem: when deciding

to reduce carbon emissions by building new distributed wind-powered ammonia facilities, we

are inherently reducing operation costs as the feedstocks of onsite wind power, water, and

air are essentially free, and transportation costs are significantly lower as these facilities are

built closer to the farms which use the ammonia produced. As combining these objectives is

not a traditional grouping, the information lost was compared with the conventional group-

ing that combines both economic objectives using the classical notion of net present value.

Using a single dimension resolution of 40 steps, a total of 64, 000 optimization iterations, the

information lost by combining economic objectives was found to be an average of 0.0883.

Following the combination suggested by community detection on the correlation strength

graph, the average information lost was found to be 0.0159. This is an 82% decrease in the

information lost on the Pareto frontier. As such, using the algorithm’s identified groups in

place of the conventional groups results in additional information about the tradeoff between

emissions and capital cost by grouping operating cost with emissions, which it is correlated

with, rather than capital cost, which it competes with. This additional information can

provide decision makers with a more complete view of tradeoff options when determining

sustainability preferences and making a final design decision.

Energy Technology Selection Optimization

The multi-objective energy storage system selection optimization study presented in Li et

al.52 contains three objectives. The objectives are to minimize both levelized cost of en-

ergy storage (EC) and an environmental impact metric, ReCiPe, (RE), while the technology

deployment number (TE) objective is maximized. The problem is formulated to have tech-

nologies’ feasibility for different use cases determined by discharge duration and rated power

parameters. These parameters are varied in order to explore what technologies are best

for large-scale energy management, transmission and distribution support, customer energy
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management, and distributed energy systems applications. The full optimization formulation

is:

min
zij

{−
p∑

i=1

TEizij,

p∑
i=1

ECijzij,

p∑
i=1

REizij}

s.t

p∑
i=1

zij = 1

0 ≤
(
(Dmax

i −Dmin
i ) + (Dmax

j −Dmin
j )

2
−
∣∣∣∣Dmin

i +Dmax
i

2

∣∣∣∣− ∣∣∣∣Dmin
j +Dmax

j

2

∣∣∣∣) zij

0 ≤
(
(Pmax

i − Pmin
i ) + (Pmax

j − Pmin
j )

2
−
∣∣∣∣Pmin

i + Pmax
i

2

∣∣∣∣− ∣∣∣∣Pmin
j + Pmax

j

2

∣∣∣∣) zij (24)

where zij is a binary variable representing the selection of technology i in use case j, TEi

is the number of deployments of the technology i, ECij is the levelized cost of storage, REi

is the combined environmental impact of each technology, Di is the discharge duration, and

Pi is the rated power. Practically, this problem can be simplified by identifying infeasible

solutions by calculating the values of coefficients on the inequalities and eliminating any

technology that is infeasible prior to optimization. This calculation and removal of infeasible

technologies will be performed prior to implementation of the proposed algorithm.

Within the original environmental objective, fossil-fuel depletion (FD), particulate matter

formation (PM), human toxicity (HT), and climate change impact (CC) are the individual

factors that are added together. Combining these metrics gives an understanding of the

overall behavior of the specific solution with respect to the environment, but separating

them allows a more detailed understanding of how the different energy technologies have

varied impacts on certain environmental metrics. In Oliveira et al.53 the underlying data

from these four metrics is presented for several of the studied technologies. Extracting this

data and expanding the objective formulation of the optimization problem in Li et al. gives

a 6-objective optimization with the original technology and cost objectives and the newly

separated four environmental measures. This case study neglects technologies whose ReCiPe

component values were not given by Oliveira et al. but were assumed in Li et al. giving
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energy storage technology options of pumped hydro storage (PHS), compressed air energy

storage (CAES), lead-acid batteries, sodium sulphur batteries (NaS), sodium nickel chloride

batteries (NaNiCl), and lithium-ion batteries.

Two use cases from the original study are examined. The first use case is in transmission

and distribution support, use case A3 in the original work. Running the algorithm takes 0.38

seconds and gives correlation strength weights and objective groups shown on the objective

correlation graph in Figure 7. The groups that result from community detection are one with

Figure 7: Objective correlation graph with correlation strengths as edge weights and colors
representing detected communities for transmission and distribution support use case.

only the TE objective, the next with the FD and CC objectives, and the final group contains

EC, PM, and HT objectives. This grouping indicates that combining all environmental ob-

jectives into one gives misleading results that a single technology, pumped hydro, is superior

in this use case when instead there is an embedded tradeoff such that other technologies

perform better for specific environmental metrics.

Next, the case where the energy storage technology is being used for customer energy

management is explored; this is use case A8 in the original work. Figure 8 shows the

weighted objective correlation graph and the communities identified by the algorithm, which

takes 0.41 seconds to run. Groups that result from community detection are one with only

the TE objective, one with only the CC objective, and the final containing EC, PM, FD,
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Figure 8: Objective correlation graph with correlation strengths as edge weights and colors
representing detected communities for customer energy management use case.

and HT objectives. Aside from correlation strengths that link the technology objective to

any other, the lowest correlation strength is 0.68. This indicates that the CC objective could

be reasonably switched with the economic objective, returning the original RE objective.

Since only a small selection of technologies are available for each of these use cases, the

entire Pareto frontier can be examined to understand the resulting objective groups and

demonstrate the physical insights generated by our algorithm . Figure 9 shows the optimal

technology choices using the objective groups determined by the algorithm, each individual

objective, and the original objective functions for both use cases. In the transmission and

distribution support case, the original objectives all result in PHS as the optimal choice.

Looking at the individual objectives shows that in order to minimize both the FD and

CC objectives, NaNiCl is chosen. The algorithm’s resulting objective groups capture this

behavior by combining the EC objective with the PM and HT objectives, leaving FD and

CC in their own combined objective. The CAES technology also gives optimal performance

for the individual HT objective; however, this technology is only weakly Pareto optimal as it

is dominated by PHS, which performs equally well in HT and better in the other objectives.

Overall, it is apparent that our algorithm is able to preserve tradeoff information that is lost

when all environmental objectives are grouped together using the ReCiPe formulation, and
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Figure 9: Results of many-objective energy technology selection. Technologies that opti-
mize a combined or individual objective are highlighted and those deemed infeasible due to
inadequate discharge duration and rated power are grayed out. Lighter blue highlighting
indicates that the solution is weakly Pareto optimal. Individual objectives listed multiple
times are optimal for multiple technologies. In both cases, O1, O2, and O3 represent the
green, orange, and pink objective groups, respectively, on each objective correlation graph.

gives results that make physical sense based on the environmental impacts of the various

technologies considered.

In the customer energy management use case, original EC and TE objectives result in

the choice of PHS while the RE objective results in choosing NaS. Examining individual

objectives, it is apparent that the NaS technology optimizes all four environmental metrics,

but FD, PM, and HT perform equally well when choosing PHS. HT is also optimal using

CAES. The algorithm assigned FD, PM, and HT to a group with the EC objective. The

overlap in technologies optimizing many objectives explains the high correlation strengths

in the objective-strength graph for this use case excluding the technology objective.

Conclusions and Future Work

In this work, we presented a novel algorithm for reducing the dimensionality of linear MaOPs

a priori to generating points which are Pareto-optimal in the original full space problem.

This was achieved on the basis of a weighted objective correlation graph, where weights were

determined based on the overlap of cost vector projections on constraint surfaces. From

this graph, community detection using the Leiden algorithm was performed to identify two

to three groups of objectives whereby objectives in the same group are correlated, while
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objectives in different groups are competing. The algorithm provides a method to reduce an

intractable, uninterpretable high dimensional MaOP to a tractable two or three objective

problem that generates Pareto frontiers which are interpretable and retain as much informa-

tion as possible from the original full-space problem. Through the analysis of three represen-

tative case studies relevant to sustainable chemical and energy production, we demonstrated

the efficacy of our algorithm to systematically generate objective groups which preserve

more information about tradeoffs than “intuitive” groupings of all economic or environmen-

tal objectives. As such, decision makers analyzing the Pareto solutions will be able to make

more informed decisions based on full knowledge of the scope of tradeoffs among various

sustainability outcomes.

Future work will attempt to extend this algorithm to nonlinear MaOPs, which provide

the additional challenges that single-objective optimal points are no longer guaranteed to lie

on the boundary of the feasible space, and constraint normals and objective gradients are no

longer constant. We also intend to apply this framework to distributed and decomposed opti-

mization problems in order to identify correlation between subproblem objectives, which can

be useful in building minimal communication architectures which still give convergence of the

decomposition solution algorithm. Finally, we plan to examine more deeply the parametric

sensitivity of objective correlations, which will be important for moving horizon scheduling

and control problems which must be solved repeatedly with different initial conditions over

time.

Notation

Objective Reduction Algorithm

A Coefficient matrix for inequality constraints

ak The kth row of matrix A

b Vector of upper bounds for inequality constraints
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C Matrix of all objective cost vectors

ci Cost vector of ith objective

cNik Component of cost vector ci normal to constraint surface defined by ak

cPik Component of cost vector ci along the plane of the constraint surface defined by ak

ĉNik Component of cost vector ci normal to constraint surface defined by ak, normalized

to length 1

ĉPik Component of cost vector ci along the plane of the constraint surface defined by ak,

normalized to length 1

D Coefficient matrix for equality constraints

dk The kth row of matrix D

e Vector of constants for right hand side of equality constraints

Sijk Strength of correlation between objectives i and j along constraint surface k

SA
ij Total correlation strength between objectives i and j

Wijk Weight of contribution of Sijk for calculating total correlation strength SA
ij

α Hyperparameter for discounting correlating constraints in weighting

β Hyperparameter governing smoothness of weighting logistic curve

Information Loss Metric

Bp Information loss at point p

C Set of all objectives combined into a new grouped objective

Jp Set of Pareto optimal points found when keeping objectives values for objectives

in R constant at point p value.

Kp Matrix of objective values at point p

Kpij Value of objective i at point p in the reduced space Pareto, and point j in the full

space Pareto with constant objectives values in R

K̂pij Objective value Kpij rescaled to be between 0 and 1.
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li Minimum value of objective i in entire full space Pareto frontier.

P Set of points on the reduced space Pareto frontier

R Set of all objectives retained as individual objectives

ui Maximum value of objective i in entire full space Pareto frontier.

UK Energy Mix Case Study

cj Cost of generating energy by technology j

D Total energy demand

Gj Amount of energy generated by technology j

Gmin
j Minimum amount of energy generated by technology j

Gmax
j Maximum amount of energy generated by technology j

ij Worker injuries caused by technology j

J Set of energy technologies

wj Global warming potential of emissions from technology j

Energy Storage Selection Case Study

Dmax
i Maximum discharge duration for technology i

Dmax
j Maximum discharge duration for use case j

Dmin
i Minimum discharge duration for technology i

Dmin
j Minimum discharge duration for use case j

ECij Levelized cost of storage for technology i in use case j

Pmax
i Maximum rated power for technology i

Pmax
j Maximum rated power for use case j

Pmin
i Minimum rated power for technology i

Pmin
j Minimum rated power for use case j

REi ReCiPe-determined environmental impact for technology i

TEi Number of deployments of technology i

zij Binary variable, 1 if technology i is selected in use case j
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