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Abstract 
 
Introduction:  Covid-19 virus has undergone mutations and the introduction of vaccines and 

effective treatments have changed its clinical severity.  We hypothesized that models that evolve 

may better predict invasive mechanical ventilation or death than do static models.  

 

Methods:  This retrospective study of adult patients with Covid-19 from six Michigan hospitals 

analyzed 20 demographic, comorbid, vital sign, and laboratory factors, 1 derived factor, and 9 

factors representing changes in vital signs or laboratory values with time for their ability to 

predict death or invasive mechanical ventilation within the next 4, 8, or 24 hr.  Static logistic 

regression was constructed on the initial 300 patients and tested on the remaining 6741 patients. 

Rolling logistic regression was similarly constructed on the initial 300 patients, but then new 

patients were added and older patients removed.  Each new construction model was subsequently 

tested on the next patient.  Static and rolling models were compared with receiver operator 

characteristic and precision-recall curves. 

 

Results:  Of the 7041 patients, 534 (7.6%) required invasive mechanical ventilation or died 

within 14 days of arrival.  Rolling models improved discrimination (0.865±0.010, 0.856±0.007, 

and 0.843±0.005 for the 4, 8, and 24 hour models, respectively; all P<0.001 compared to the 

static logistic regressions with 0.827±0.011, 0.794±0.012, and 0.735±0.012, respectively). 

Similarly, the areas under the precision-recall curves improved from 0.006, 0.010, and 0.021 
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with the static models to 0.030, 0.045, and 0.076 for the 4, 8, and 24 hour rolling models, 

respectively, all P<0.001. 

 

Conclusion:  Rolling models with contemporaneous data maintained better metrics of 

performance than static models, which used older data.   
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Introduction 
 

Severe Coronavirus disease 2019 (COVID-19) can lead to progressive respiratory failure 

requiring invasive mechanical ventilation (IMV), which ultimately may progress to death.  Since 

its description in Wuhan, China, where treatment was mostly supportive, therapeutic and 

preventive measures have evolved, including vaccination, corticosteroids (dexamethasone and 

hydrocortisone), remdesivir and other anti-viral agents, and monoclonal antibodies targeting viral 

proteins.1-3 After initial concerns that high flow nasal oxygen and non-invasive ventilation might 

cause aerosolization of viruses and COVID infections in health care workers proved unfounded, 

their use has become frequent and may have decreased the need for IMV, but, as some studies 

suggest, may have increased mortality.4  Additionally, the virus has undergone frequent 

mutations affecting the severity of the infection and the ability of anti-COVID therapies to 

prevent severe disease.5  Case fatality rates and the need for IMV have varied greatly over time 

and between different strains.6-9   

Predicting invasive mechanical ventilation or mortality can allow improved resource 

utilization, such as transferring patients to a more intensive level of care, patient and family 

discussions regarding goals of care, and identifying potential subjects for prospective 

studies.  However, model usefulness, among other factors, depends on predictive ability.  While 

models may have been externally validated, they may still lose predictive ability as the disease 

presentation or severity changes or new therapies mitigate its severity.  If the predictive ability of 

the model changes with time, the models may need to be recalibrated or redeveloped to maintain 
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predictive utility.  A variety of models have attempted to predict which patients are at risk for 

clinical decompensation,10,11 however, these techniques may be limited by rapid evolution in the 

clinical course of COVID-19.  Models and analytical techniques equipped to dynamically change 

with the course of COVID-19 are currently lacking.     

The primary purpose of this study is to determine if the predictive ability of a statistical 

model can be improved through using rolling logistic regression rather than a static logistic 

regression model and secondarily to determine if the strength of individual predictors changes 

over time. 
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Methods 

This study was approved by the Institutional Review Board approval (University of 

Michigan HUM00181493), which waived informed consent. All items from the Strengthening 

the Reporting of Observational studies in Epidemiology (STROBE) checklist were followed. 

Patients were included if they were admitted to any of the five Henry Ford Medical Centers 

(Main, Macomb, West Bloomfield, Wyandotte, and Allegiance) between March 2nd, 2020 and 

May 18th, 2021 or University of Michigan Medical Center between March 4th, 2020 and July 

17th, 2021 and were at least 18 years old on admission.  Patients were excluded if they were 

intubated or died within 4 hours of arrival hospital.  Both centers serve as primary hospitals for 

their local populations and as tertiary referral centers.  Data from the Henry Ford system were 

extracted from the electronic health records by a programmer.  The individual hospital of each 

Henry Ford patient was not identified.  University of Michigan data were extracted using 

DataDirect (Ann Arbor, MI).  All data were then combined into one dataset for all analyses. We 

obtained demographics (age, sex, race), vital signs (heart rate, blood pressure, respiratory rate, 

temperature, and pulse oximetry) on admission and throughout their hospital stay, laboratory 

values (white cell count, triglyceride, LDH, d-dimer, C-reactive protein, ferritin, high sensitivity 

troponin, urea nitrogen), Elixhauser comorbidities (diabetes mellitus, COPD, hypertension, and 

heart failure), oxygen use and amount, and the outcomes of IMV and mortality.   

As previously published,11 if the FiO2 was provided, we included those values in our 

analysis.  If the O2 flow rate was provided, we converted it to FiO2 by adding 0.038 for each 
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L/min of supplemental oxygen. Venturi masks and high-flow nasal cannula were recorded in the 

chart as FiO2.  Non-rebreather masks were considered to supply FiO2=0.70.  Even though the 

actual FiO2 for face masks and nasal cannula will vary from person-to-person depending on 

factors such as tidal volume and respiratory rate, we used these conversion factors to be 

consistent across all patients.11,12  We created one calculated variable, S/F = SpO2/FiO2.12
  

Data were analyzed at 4 hr intervals, starting 4 hr after arrival [19].  All variables were entered in 

the models along with the change in the vital sign, oxygenation, and laboratory variables across 

the 4 hr interval.  If no new laboratory or vital signs were recorded in the 4 hr interval, the 

previous values were carried forward and the 4 hr change in those variables was set equal to 

zero.  If a laboratory value had not been obtained prior to that interval, the value was imputed as 

the midpoint of the reference range (triglyceride 100 md/dL, LDH 210 U/L, d-dimer 0.25 

mcg/mL, C-reactive protein 9 mg/dL, ferritin 180 ug/L, high sensitivity troponin T 10 ng/L, and 

urea nitrogen 10 mg/dL).  In 3 separate models, the data at each 4 hour point were used to predict 

IMV or death within 1) the next 4 hours, 2) the next 8 hours, and 3) the next 24 hours. 

 

Statistics   

Variables are presented as mean ± standard deviation, median and interquartile range or 

frequency and percentage, discrimination as c-statistic ± standard error.  We first constructed and 

tested the ability of a model created on an initial cohort of patients with COVID (Construction 

population) to remain accurate by using logistic regression with forward selection to generate a 
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model on the first 300 patients with COVID, then tested that logistic regression model on the 

subsequent patients (Static logistic regression model).  We assessed the discrimination of the 

model as the area under the receiver operator characteristic curve (c-statistic).  As we expected 

the patient population to be imbalanced (few patients died or received invasive mechanical 

ventilation compared to the many who did not), we further assessed the models using precision-

recall curves as these are more informative when the population is imbalanced.13  Comparison of 

c-statistics was assessed with the method of Hanley and McNeil, 95% confidence intervals of the 

area under the precision recall curves were calculated with the method of Boyd et al and the 

statistical significance determined by bootstrapping. P<0.05 denoted statistical significance.14,15 

 Next, we created a rolling model by using a sliding window of patients to create a logistic 

regression model, then testing that model on the next patient.16  The window then slid 1 patient 

over to the right (newer patient) and a variable number on the left to keep the number of patients 

with adverse outcomes constant, equal to the number of adverse outcomes in the initial 300  

patients.(Appendix)  This sliding process was repeated until all patients had been tested.  This 

allowed the model to continuously evolve as factors associated with IMV or death may have 

changed.  Similar to above, the models were assessed using area under the receiver operator 

characteristic and precision-recall curves. Receiver operator characteristic curves plot the true 

positive rate (sensitivity) v the true negative rate (1-specifity).  Precision-recall curves plot 

positive predictive value v. sensitivity.  They differ from receiver operator characteristic curves 

by excluding the true negative outcomes, which are frequently the most common outcome.  All 
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logistic regressions were done using forward stepwise selection with likelihood ratio to reduce 

the model. P=0.05 for entry and P=0.10 for removal.  All statistics were done in SPSS 27 (IBM, 

Chicago, IL) with P-values <0.05 and 95% confidence intervals that excluded 1 denoting 

significance.  No adjustments were made for multiple comparisons. 

No formal power calculation was done as it would vary based on the number of patients 

in the window, but a logistic regression of 300 patients with a 20% adverse outcome rate would 

expect to support 6 factors for 4 hour prediction.17  
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Results 

There were 9352 patients admitted with Covid-19 infection – 7484 from the Henry Ford 

Health System and 1868 from University of Michigan Medical Center.  After excluding 2312 

patients who received IMV or died on or within 4 hr of arrival (many of the patients who 

received IMV on arrival had been intubated at other hospitals before transfer), the remaining 

7041 patients were 51% White, 38% Black, and 50% male.  They were 62 ± 17 years old.  

Hypertension was the most common comorbidity.  The FiO2 values were 0.27 ± 0.15. (Table 1) 

Of the 7041 patients, 534 (7.6%) received IMV or died within 14 days of arrival.  The rate in the 

initial 300 patients was 20%, then using rolling 300 patient samples the rate decreased to 3%, 

before a spike to 11% and then a return to a low rate. (Figure 1) The spike occurred just after the 

peak of the second statewide surge.  However, there was no spike with the third statewide surge. 

(Figure 2)  The models on the initial 300 patients had good discrimination (0.832 ± 0.025 for the 

4 hour prediction, 0.806 ± 0.020 for the 8 hour, and 0.749 ±  0.013 for the 24 hour model) and 

fair precision-recall (0.027, 0.045, and 0.073, respectively).  However, when these 3 models 

(Table 2) were tested on the subsequent 6741 patients, both the discrimination and the area under 

the precision-recall curve fell. (Table 3)  

Using the rolling logistic regressions to continuously update the models, we found 

improved discrimination: 0.865 ± 0.010, 0.856 ± 0.007, and 0.843 ± 0.005 for the 4, 8, and 24 

hour models, respectively; all P<0.001 compared to the static logistic regressions. (Table 3 )  

Similarly, the areas under the precision-recall curves improved from 0.006, 0.010, and 0.021 
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with the static models to 0.030, 0.046, and 0.076 for the 4, 8, and 24 hour rolling models, 

respectively, all P<0.001. (Figure 3) 

 

FiO2, present in 94% of the rolling regression models, and respiratory rate (88%) were the 

most common factors in the rolling regressions associated with mechanical ventilation or death 

within 4 hours and within 8 hours (FiO2 92% and respiratory rate 83%).  For the 24 hour model, 

while FiO2 remained the most common factor (76%), the frequency of respiratory rate in the 

models had fallen to 24% and temperature (57%) became the second most common factor. 

(Table 4)  C-reactive protein and D-dimer were the most common laboratory values  in the 

models.  Changes in vital signs or in laboratory values were infrequent factors in the rolling 

models. (Table 4)  Comorbidities were factors in a moderate number of models, while age and 

sex were rare, and race present only in the Construction model, not in any of the subsequent 

rolling models.  The presence of even common factors was not consistent but varied with time.  

Figure 4 shows how the 3 most common factors varied with time.  In particular, FiO2 was not in 

the 4 hour model when the spike in mechanical ventilation or death occurred, but was otherwise 

present. 
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Discussion 

We found that use of the rolling regression models by continuously updating the data 

included in the models (excluding older and adding the most recent patient) improved the models 

during a time when the disease, treatment, and outcome were rapidly changing.  Unlike the static 

regression models, the rolling logistic regression models maintained their discrimination and 

precision-recall values close to the values in the Construction population.  Our finding that after 

a period of improved outcomes, the rate of IMV and death spiked up before decreasing again is 

similar to a study from the United Kingdom that showed a similar decrease followed by an 

increase in mortality, which the authors attributed to the impact of the B117 variant.18  As we 

don’t have genetic sequencing data, we are limited in not knowing if our sudden spike in adverse 

outcomes is related to a Covid variant or to other reasons.  

Logistic regression models are frequently judged by their ability to discriminate between 

the two outcomes.  However, the c-statistic (area under the receiver operator characteristic curve) 

may not be a good metric when one of the two outcomes is uncommon.  Precision-recall curves, 

which exclude true-negatives from the calculation, may be a better metric of the models’ 

utility.13  Precision-recall curves also make it easy to calculate the number needed to identify. 

(Figure 3)  Identifying patients at high risk for IMV or death may improve outcomes by earlier 

and more intensive treatment.  It also identifies a group of patients for enrollment in prospective 

studies by, given their higher likelihood of IMV or death, improving power and decreasing the 

number of patients needed for the study. 
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We found that most factors were at least occasionally associated with IMV and death.  

However, a few factors were frequently included in the models.  In particular, FiO2 appeared in 

most models.  Study is needed to determine why FiO2 lost its predictive utility during the spike 

to 11% rate of IMV or death, whether it relates to changes in disease phenotype, treatment, or is 

merely a result of random fluctuation. FiO2 was initially replaced by D-dimer in the models, 

coincident to the December 2020 surge with its higher rate of IMV or death.   

SpO2, a measure of oxygenation, and S/F, appeared infrequently in the models, which 

differs from previous studies that found S/F to be highly associated with the need for IMV or 

death, however, these studies did not separately analyze FiO2.11,19-21  A rising FiO2 should be 

taken as one of the warning signs for impending death or need for IMV.  Vital signs, particularly, 

respiratory rate and temperature, were also commonly present in the models.  Abnormal vital 

signs are components of Systemic Inflammatory Response Syndrome, Modified Early Warning, 

and quick Sequential Organ-Failure Assessment screens for impending deterioration.22-25  The 24 

hour models had temperature as a frequent predictor, but in the 8 and 4 hour models, it had 

become less common and respiratory rate had become much more common.  This suggests that 

temperature may be an earlier warning sign (occurring at 24 hr) while respiratory rate becomes a 

predictor of more imminent deterioration (8 hr).   

While some previous studies have found age, sex, and race to be factors associated with 

worse outcomes in COVID infection,26-28 we found these factors to be rarely associated with 

IMV and death. Our study differs from these by the inclusion of different factors.  Ho et al. in a 
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population based study found older age to be markedly associated with increased mortality.26  

Our study differs by only including hospital patients.  Many older persons with comorbidities 

infected with COVID were not hospitalized but instead died in nursing homes and extended care 

facilities.29  Notably, Nguyen et al, who found an excess of males receiving IMV or dying in the 

Vizient database of >300,000 patients at >650 academic medical centers, included only 

administrative data and not vital signs and laboratory data.27  Males and females may present 

with different vital signs and laboratory values, which may be more closely associated with 

outcomes.  Our study found that after adjusting for confounders, age and sex had little effect on 

IMV or death, perhaps related to studying only hospitalized patients and by including vital signs 

and laboratory values, which may have acted as mediators between age and sex and the adverse 

outcomes.  While initial population-based studies found higher death rates among Black than 

White American, CDC data had suggested that by October 2020, the rates had reversed, with 

White Americans now having a higher rate.28 Our study is similar to this in finding an initially 

higher adjusted mortality in Black than White patients, which then quickly disappeared.  

However, we did not find a higher mortality in White patients.   

  Rolling regressions can easily be integrated with the electronic health record to 

continuously update and provide clinicians with the best, most current prediction models.  As 

vulnerable populations, disease characteristics, and treatments all change, the models will evolve 

to stay concurrent, however, further study is needed in different populations including ones 

where the disease is relatively invariant. 
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There are several limitations to this study.  First, this is only a six-hospital study from the 

same geographic area (southeastern Michigan).  Studies from other geographic areas or with 

different health care systems may not only find different factors associated with IMV or death 

but find different discrimination and precision-recall values of their models.  We were also 

limited in being provided only a few comorbidity and laboratory values for analysis.  Inclusion 

of more comorbidities and more laboratory values might have improved the models.  Despite 

this, our limited data collection produced good discrimination and fair precision-recall values.  

Third, patients had missing laboratory values and vital signs – laboratory tests were not ordered 

and vital signs may not have been obtained every 4 hours.  Tests and vital signs tend to be 

ordered and obtained based on clinical course and need.  Rather than imputing missing values, 

we carried forward the most recent value or if a laboratory test had not been obtained, we 

assigned it a normal value, similarly to APACHE III.30  The utility of models developed by 

institutions is partially dependent on how frequently vital signs and laboratory tests are obtained, 

but how often data need to be collected to maximize utility of rolling logistic regression models 

remains to be understood.  We did not include the patient’s hospital in the analyses. This might 

bias the analysis in unknown ways.  Finally, we are limited by not knowing vaccination status 

and treatments. Use of steroids, monoclonal antibodies, antiviral agents, and varying modalities 

of respiratory therapy, such as prone position, heated high-flow nasal cannula, and non-invasive 

mechanical ventilation, were not available to us.  Including these potential therapies in the 
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models would allow us to assess their efficacy and inclusion with interaction terms would allow 

us to determine if their efficacy was related to other conditions, such as with FiO2.    

One of the strengths of this study is the use of precision-recall curves to display utility.  

While receiver operator characteristic curves and discrimination are frequently used, by 

“fattening up” on easy to identify true-negative patients, despite the high c-statistic value, they 

may not be useful when the adverse event rate is low.13  Precision-recall curves better 

characterize the utility of the model and allow for easy determination of the number needed to 

identify to find one patient who will develop the adverse outcome. (Figure 3) 

In conclusion, we found that rolling logistic regressions to maintain a more 

contemporaneous model performed better than did the static logistic regression using older data 

when tested on subsequent patients.  We also found that increasing FiO2 and abnormal vital signs 

were the factors most commonly associated with IMV and mortality. 
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Appendix 

{N1, N2, N3, … N299, N300}, N301, N302, … where N1=0, N2=1, N3=0, … 

where 1 indicates received mechanical ventilation or died in the next time interval and 0 

indicates the opposite for each patient Ni. 

The logistic regression is first constructed on patients N1 – N300 and tested on N301.  The window 

then slides 1 patient to the right (N301) and patients N1 and N2 are dropped to keep the number of 

patients with the outcome of mechanical ventilation or death fixed at a constant number (n=60). 

A new logistic regression model is then constructed using patients N3 – N301 and tested on N302.  

The process is repeated until Nlast is tested.  The total numbers of correct and incorrect 

predictions are counted and used to calculate discrimination and the area under precision-recall 

curves.  
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Figure Legends 

Figure 1.  Rolling trends.  Shows the rate of invasive mechanical ventilation or death within 14 

days of admission using a rolling rate of 300 consecutive patients.  The longest streak without 

any invasive mechanical ventilation or death was 127 consecutive patients.  The longest streak of 

consecutive patients receiving invasive mechanical ventilation or death was 4.  

 

Figure 2.  Frequencies of COVID rates and outcomes.  Blue line is the number (left axis) of daily 

COVID-19 cases in Michigan on a rolling 7 day average as the state did not collect complete 

data every day.  Purple line is the number of COVID-19 patients in Michigan present in hospital 

that day (left axis).  Red line is the daily number of deaths from Covid in Michigan (right axis).  

Green line is the number of patients receiving invasive mechanical ventilation in Michigan on 

that day (right axis). Gold line is the percentage of COVID-19 patients at the study sites who 

died or received invasive mechanical ventilation within 14 days of admission.  Percentages are 

calculated over the prior 30 days.  Michigan hospitalization and mechanical ventilation numbers 

are available only from April 9, 2020 – March 7, 2021. 

 

Figure 3.  Precision-recall curves for the rolling (Roll) and static (Trad) logistic regression 

models.  The number needed to identify is calculated as 1/precision at any recall value.  E.g., the 

number needed to identify one patient who will receive mechanical ventilation or die at recall = 

0.2 is 5.6, 7.9, and 15 for the rolling 24, 8, and 4 hour models, and 27, 56, and 83 for the static 
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24, 8, and 4 hour models, respectively.  At a recall = 0.8, the numbers needed to identify are 29, 

57, and 100 for the rolling 24, 8, and 4 hour models and 100, 250, and 333 for the static 24, 8, 

and 4 hour models, respectively. 

 

Figure 4.  Plot showing the percent of times FiO2, heart rate, and d-dimer are statistically 

significant factors in 300 consecutive rolling regressions associated with invasive mechanical 

ventilation or death within the next 4 hours.  Plot shows that FiO2 was in all the models until 

model #4515.  Close to simultaneously, D-dimer percentage in the models has increased to 100% 

but falls before FiO2 starts to increase back to 100%.  It’s place in the models is taken by several 

other less frequently statistically significant factors (not shown for clarity). 

  

This article is protected by copyright. All rights reserved.



 

This article is protected by copyright. All rights reserved.




