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1. Introduction

With the unique merit of exhibiting variable spectral gaps at
different stable configurations, multistable mechanical metama-
terials have facilitated extensive functions and applications,

including phononic bandgap tuning[1,2]

and broadband vibration control.[3,4]

Among these practices, the multistable
metamaterials, which are fundamentally
nonlinear in their constitutive profiles,
are mainly operating in linear regimes
within small deformations around differ-
ent stable equilibria between configuration
transitions. On the other hand, other
prospects, such as nonreciprocal wave
transmission,[5–7] impact energy
trapping,[8–10] shock isolation,[11,12] and
transition signal propagation,[13–15] have
leveraged the nonlinear feature of global
multistability, particularly the snap-through
transitions among different stable configu-
rations. Recently, there is a growing interest
in harnessing multistability for mechanical
logic gates[16–18] and mechanical memory
devices[19,20] by correlating the mechanical
configurations with their digital counter-
parts. Upon external inputs, the logic oper-
ation is determined by the sequence of
configuration transitions. While these
outcomes are intriguing, the current state-
of-the-art technology mainly exploited
transitions in an ad hoc manner, and the

underlying mechanics of a transition sequence and the corre-
sponding triggering methods are often not well understood. In
other words, systematic and comprehensive investigations into
the global transition sequences have not been pursued, which
is a major bottleneck that severely limits the robust realization
of the many rich functions of multistability.

As a design motif, origami, the ancient art of transforming flat
sheets into a sophisticated sculpture through folding, provides
potentials in building multistable mechanical metamaterials
owing to its large design space and intrinsic geometric
nonlinearity.[21] In addition, the scale-independence of the
mechanical properties of origami allows it to work at multiple
scales, including macroscopic and microscopic scales. The exist-
ing precision machining techniques[22] provide us with the
possibility to fabricate miniature folding devices. Foreseeable
applications include mechanical memory devices,[20,23]

mechanologic,[18,24,25] and robotics.[26–29] Recently, by incorporat-
ing multiple stacked Miura-ori units via a novel stacking
strategy,[30,31] a new “stacked Miura-ori-variant (SMOV)” struc-
ture is created. With unique multistability in inclined and curved
directions and multiple configurations, the SMOV becomes a
strong candidate for developing smart mechanical metamaterials
with directional, configurational, and functional adaptability.
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Transitions of multistability in materials are exploited for various functions and
applications, such as spectral gap tuning, impact energy trapping, and wave
steering. However, a fundamental and comprehensive understanding of the
transitions, either quasistatic or dynamic transitions, has not yet been acquired,
especially in terms of the sequence predictability and tailoring mechanisms. This
research, utilizing the stacked Miura-ori-variant (SMOV) structure that has
multistable shape reconfigurability as a platform, uncovers the deep knowledge
of quasistatic and dynamic transitions and proposes the corresponding versatile
formation and tuning of mechanical logic gates. Through theoretical, numerical,
and experimental means, discriminative and deterministic quasistatic transition
sequences, including reversible and irreversible ones, are uncovered, where they
constitute a transition map that is editable upon adjusting the design parameters.
Via applying dynamic excitations and tailoring the excitation conditions,
reversible transitions between all stable configurations become attainable,
generating a fully connected transition map. Benefiting from the nonlinearity of
the quasistatic and dynamic transitions, basic and compound mechanical logic
gates are achieved. The versatility of the scheme is demonstrated using a single
SMOV to realize different complex logic operations without increasing structural
complexity, showing its unique computing power and inspiring the avenue for
efficient physical intelligence.
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Moreover, with 4–8 different stable configurations in a single
SMOV cell, rich transition sequences are expectable, which
brings fresh vitality to the creation of new functions, such as
mechanologic with versatile formation and tuning.

With the abovementioned critical needs in advancing the
knowledge of transitions in mechanical multistable metamateri-
als and the attractive features of SMOV, in this research, our goal
is to utilize the SMOV structure as a podium for studying the rich
multistability transition behaviors, understanding the underlying
physics, and manipulating and harnessing the transition
sequences. While this is an exciting opportunity, the complexity
of the sequence also brings about major research challenges for
us to address, so we can better exploit and leverage the
underlying mechanisms of the transitions. Particularly, when
transiting the SMOV from one stable configuration to another
under rigid folding, the kinematic bifurcation point[32] (namely,
the kinematic singular state) will always be encountered
due to the synchronous folding of the constituent cells as a
single-degree-of-freedom mechanism. At this point, the SMOV
has multiple transition paths via changing the folding direction,
which exacerbates the difficulty in elucidating the transition
sequence. As a consequence, the subsequent folding of the
SMOV becomes indeterminant and unpredictable, which pre-
vents the realization of various SMOV functionalities.

To achieve our research goal, we advance the state of the art by
addressing the abovementioned challenges and conducting an
investigation of the quasistatic and dynamic transitions among
the SMOV multistable configurations. First, we introduce flexi-
bility into the connection between adjacent constituent units,
which relaxes the strict rigid-folding kinematic constraints
and allows each unit to deform asynchronously, thus making
the transition sequence predictable by avoiding the kinematic
bifurcation point. In addition, through systematic analysis of
the quasistatic configuration switches, transition maps com-
posed of reversible and irreversible transition sequences are
revealed. Such transition maps can be further edited by engi-
neering the design parameters of the SMOV structure.
Configuration switches can also be triggered by dynamic excita-
tions, in the form of steady-state oscillations around different
stable states. Different from the quasistatic scenario, dynamic
transitions between any of the two stable equilibria are always
reversible, generating a bidirectional full-connected transition
map.

Building on this foundation, we discover that the SMOV dis-
criminative transition sequences, including quasistatic and
dynamic maps, provide a novel platform for versatile logic
operations. Rather than the conventional mechanologic that a
specific structure can only act as a single type of logic
gate,[16,33,34] the proposed multistable SMOV structure, as a
novel element for logic operation, can serve as multiple types
of logic gates. Moreover, instead of integrating multiple cells
in conventional mechanologic approaches, our scheme by
incorporating a reservoir process can perform compound logic
operations based on a single multistable SMOV cell, without
increasing structural complexity. These findings, therefore, will
inspire the avenue for mechanical intelligence to be harnessed
in many systems, for example, smart materials, microelectrome-
chanical systems (MEMS), and robotics.

2. Results

2.1. The Multistable Miura-Variant Metamaterial

The Miura-variant metamaterial utilized in this study is
constructed by stacking two different Miura-ori sheets, α and
β (Figure 1a), as presented in Figure 1b, which includes a large
number of tubular cells (Figure 1c). Considering the periodicity,
a basic constituent cell of the metamaterial, that is, a stacked
Miura-variant cell, is made up of three units, denoted by A, B,
C, and is highlighted in Figure 1c; their folding motions can
be uniquely described by the folding angles θAα, θBα, and θCα.
Among them, units A and C are conventionally stacked
Miura-ori (SMO) units, which possess two different types of con-
figurations, namely, the convex configuration (θAα < 0 and
θCα < 0) and the concave configuration (θAα > 0 and θCα > 0);
the newly generated unit, located between units A and C, can
also achieve two different types of configurations, the
inclined-up (θBα > 0) and the inclined-down (θBα < 0) configura-
tions (Figure 1d). Therefore, a single Miura-variant cell can
exhibit eight different types of configurations by reconfiguring
the constituent units (Figure 1e). In what follows, for clarity,
binary codes “1” and “0” are used to represent the convex and
concave configuration of units A and C, respectively; “a” and
“b” are adopted to denote the inclined-down and inclined-up con-
figuration of unit B, respectively. Detailed kinematics of a single
cell are presented in Section S1, Supporting Information.

The stability characteristics of a Miura-variant cell are
determined by three design parameters: the stiffness ratio,
defined as the ratio of the crease torsional spring stiffness
per unit length of sheet α (kα) to that of sheet β (kβ), the
stress-free configuration of the cell when there is no internal
force, and the corresponding stress-free folding angle (denoted
as θ0Aα, θ

0
Bα, θ

0
Cα). By tailoring these design parameters, the poten-

tial profile of a Miura-variant cell could exhibit different num-
bers of local minimum, corresponding to different numbers
of stable configurations (see detailed derivations of the potential
energy in Section S2, Supporting Information). For example, by
setting the stress-free configuration at “0-b-0” and allowing the
stiffness ratio and the stress-free angle θ0Aα to vary, the constitu-
ent cell could achieve 1, 4, 6, 7, or 8 stable configurations
(Figure 1f ). For each point on the parameter plane, considering
the binary configurations of units B and C, four potential energy
curves can be plotted with respect to the folding angle of unit A
(i.e., θAα). For instance, at point P1, all the four curves show
prominent double-well characteristics, giving rise to eight stable
configurations (Figure 1g top). By reducing the stiffness
ratio, the potential wells with relatively shallow depths would
disappear, thus reducing the number of stable configurations.
Particularly, at point P2, all the four energy curves become
monostable, producing four stable configurations (Figure 1h
top); at the line with zero stress-free angles (i.e.,
θ0Aα ¼ θ0Bα ¼ θ0Cα ¼ 0), regardless of the stiffness ratio, the four
curves completely coincide and share one potential well, which
corresponds to the unique stress-free stable configuration.
Examples of energy curves with 7, 6, and 1 stable configuration
are given in Figure S2c–e, Supporting Information, and evolu-
tion of the folding angles at the stable configurations with
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respect to the stiffness ratio and the stress-free angle is
described in Figure S2a, and S2b, Supporting Information,
respectively.

Moreover, it is worth noting that even with the same number
of stable states, the specific shapes of the stable configurations
are still tunable by adjusting the stress-free configuration. For
instance, with the same stiffness ratio and stress-free angle
but different stress-free configurations (“0-b-0” at point P2
and “0-a-0” at point Q2), although the number of stable states
remains four, the specific shapes of the stables configuration
are not identical, changing from “1-b-0,” “0-b-1,” “0-a-0,” “0-b-0”
(Figure 1h, top) to “1-a-0,” “0-a-1,” “0-b-0,” and “0-a-0” (Figure 1h,
bottom). Similarly, by switching the stress-free configuration
from ‘0-b-0’ (point P1) to ‘0-a-0’ (point Q1), the Miura-variant cell
remains octa-stable, but the potential energy levels correspond-
ing to the eight stable configurations are changed. Actually, for
the Miura-variant cell, the number of stable states can be
uniquely determined by the stiffness ratio and the stress-free
angles, while the specific shapes of the stable configurations
and the related potential energy levels also depend on the
stress-free configuration. We will show later that in addition

to modifying the overall potential profile of theMiura-variant cell,
the three design parameters play a key role in governing the
sequences of configuration transitions.

2.2. Quasistatic Transition Sequences

Under the rigid-folding scenario, the kinematic constraint
θAα ¼ �θBα ¼ �θCα has to be precisely satisfied, which forces
the three units of the SMOV cell to deform synchronously.
Hence, a kinematic bifurcation point with θAα ¼ θBα ¼ θCα¼ 0
will always be encountered when transforming the cell among
its stable configurations. When passing through this bifurcation
point, the sign of the folding angle of each unit cannot be
uniquely determined, which makes the transition sequences
unpredictable. However, in practice, rigid foldability cannot be
perfectly satisfied due to the inevitable flexibility of the facets
and creases, which relaxes the rigid-folding kinematic con-
straints by allowing each unit to deform asynchronously.
Nevertheless, the folding of the adjacent units is not fully inde-
pendent either; the connecting facets or creases will still impose
certain constraints to restrict the folding differences between

0

40

80

120

0-b-01-b-0

0-a-0
0-b-1

0

40

80

120

-1.5 0.0 1.5

0-a-1

0-b-0

0-a-01-a-0

A
Folding angle (rad)

0 5 10 15 20 25 300 5 10 15 20 25 30
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-

-

-

Stiffness ratio(-)

An SMOV cell B

C

Sheet 

Unit B

Segmented sheet

Stacking

Units A, C

Folding

(a)

ssert
S

-
)

dar (
el

g
na

e erf

P2

P3
P4 P1Q2

Q1

(c)

A B C

A

(d)

(e)

(f) (g)

P
o
te

n
ti

al
 e

n
er

g
y

P
o
te

n
ti

al
 e

n
er

g
y

1-a-00-a-1 0-b-0 0-b-1 1-b-01-b-11-a-10-a-0

0

40

80

120

-1.5 0.0 1.5
1-a-0 0-a-0

0-b-0

0-a-1

0-b-1

1-b-1

1-a-1
1-b-0

1-a-0 0-a-0

0-b-0

0-a-1

0-b-1

1-b-1

1-a-1
1-b-0

0-b-11-a-0

0-b-0

0-a-0

0-a-1

1-b-0

1-b-1

1-a-1

0

40

80

120

Folding angle (rad)A

(h)

P1

Q1

P2

Q2

0 A

(N
m

m
)

(N
m

m
)

Sheet 

Sheet 

Segmented 
sheet 

(b)

‘1’ ‘0’ ‘a’ ‘b’

Number of stable configurations

4678 1

Number of stable configurations

4678 1
A B C

A B CA B C

A B CA B C

Figure 1. a) Two Miura-ori sheets α and β for constructing the multistable metamaterial. b) Illustration of the stacking method. c) A single layer of the
SMOVmetamaterial, in which a constituent cell, that is, a SMOV cell, is highlighted. The SMOV cell is made up of three units, A, B, and C; their kinematics
are governed by folding angles θAα, θBα, and θCα, respectively. d) Different configurations of the units. e) Eight different configurations of the SMOV cell.
f ) Correlation between the number of stable configurations of a SMOV cell and the design parameters (stiffness ratio and stress-free angle). g,h) Potential
energy landscapes of the SMOV cell corresponding to points P1, Q1, P2, and Q2 in (f ).
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adjacent units. Specifically, to quantify such imperfect con-
straints between adjacent units A and B, as well as units B
and C in the SMOV cell, two equivalent stiffness k∗1 and k∗2
are introduced; they are applied to the dihedral-angle differences
between adjacent units. The quantity of them can be rationally
designed by the flexibility of the facets and creases, that is, more
rigid facets and hinge-like creases lead to a larger equivalent
stiffness. The newly introduced equivalent stiffness brings
about additional potential energy (see detailed derivations in
Section S3, Supporting Information), which could fundamentally
alter the overall potential energy landscape of the SMOV cell.
Hence, starting from an initial configuration of the SMOV cell
under displacement control, the path corresponding to the
minimum energy can be searched via an optimization process.
It is shown that with imperfect constraints, the kinematic bifur-
cation point is no longer encountered when transiting among the
stable configurations, thus making the transition sequence
deterministic and predictable. Actually, the transition sequence
can be uniquely determined by locating the local minima on the
energy landscape.

In the simulation, the equivalent stiffnesses are set as
k∗1 ¼ 500kα, k∗1 ¼ 700kα, and the design parameters, that is,
the stiffness ratio, the stress-free angle, and the stress-free
configuration, are adopted as kβ¼ 20kα, θ0Aα ¼ π=3, and
θ0Aα ¼ θ0Bα ¼ θ0Cα, respectively (kα ¼ 0.01½Nrad�1�). This set of
parameters corresponds to point P1 in Figure 1f, where the
SMOV cell possesses the largest number of stable configurations
(eight stable configurations).

It is worth pointing out that the minimum-energy path search,
which is fundamentally an optimization process, closely relates
to the loading direction as well as the initial configurations. As a
result, to acquire a thorough understanding of the possible tran-
sition sequences, displacement controls (including extensions
and compressions) starting from different stable configurations
are applied to the SMOV cell. For example, with ‘0-a-0’ as the
initial configuration and by decreasing the overall height of
the SMOV cell (Figure 2a), that is, compression, the potential
energy and the restoring force will increase sharply
(Figure 2b), while the cell will be folded to a flat state
(jθiαj ! π=2 (i ¼ A,B,C)) without any phase transition. On the
contrary, by increasing the height of the SMOV cell from ‘0-a-0’,
that is, extension, three configuration transitions to ‘0-b-0’,
‘0-b-1’, and ‘1-b-1’ are identified via the optimization process, giv-
ing rise to a potential energy curve with four wells. Particularly,
during the transitions from ‘0-a-0’ to ‘0-b-0’ and ‘0-b-1’ to ‘1-b-1’,
the potential energy and the corresponding restoring force
experience a discontinuous jump, manifested as a snap-through
transition (see the jumps occurred on the folding angles of the
constituent units, Figure 2b, top). With the final configuration
‘1-b-1’ as the starting point and by reversing the loading direc-
tion, that is, compressing, a similar four-well potential curve
and snap-through transitions are witnessed, while the stable
configurations are no longer identical to those in the extension
process. The SMOV cell will travel through a new stable configu-
ration ‘1-b-0’, which indicates that the transitions from ‘0-b-1’ to
‘1-b-1’ and from ‘1-b-0’ to ‘0-b-0’ are unidirectional and irrevers-
ible. The unidirectional transitions originate from the different
deformation paths in the potential energy landscape of the

SMOV cell when reversing the loading. With extension or com-
pression, the structure will be deformed toward configurations
with larger or smaller overall height. However, for configurations
with identical overall height, the structure is always deformed to
the one with the lowest potential energy level. Therefore, for the
configurations with higher potential energy levels, the deforma-
tion path could become irresistible when reversing the loading,
giving rise to unidirectional transitions. For example, the transi-
tion from ‘0-b-1’ to ‘1-b-1’ is unique with extension since ‘1-b-1’ is
the only configuration with a larger overall height than ‘0-b-1’.
However, by reversing the loading direction, that is, with
compression, there are three configurations, ‘1-b-0’, ‘1-a-1’,
and ‘0-b-1’, that share the same overall height. Among them,
configuration ‘1-b-0’ has the lowest potential energy level and is
eventually transformed. Therefore, the transition from ‘0-b-1’ to
‘1-b-1’ becomes unidirectional.

The transition map of the SMOV cell (Figure 2d) can be
obtained through the following steps: 1) identifying all the eight
stable configurations via deriving the minimum potential energy;
2) specifying one of the eight stable configurations as the initial
state; 3) applying the extension or compression load to the SMOV
cell at points P1 and P2 along the height direction (H) until the
potential energy exceeds a threshold value; 4) recording the initial
and the experienced states as well as the applied loading direction
to get the corresponding transition sequence; 5) repeating the
above steps by prescribing each stable configuration as the initial
state; and 6) integrating all the transition sequences into a com-
plete transition map.

The optimization results corresponding to different initial
configurations are presented in Figure S3, Supporting
Information. Note that the map is not fully connected; instead,
it is made up of unidirectional and bidirectional transitions. By
tailoring the design parameters, the reversibility and irreversibil-
ity of the transition branches can be changed accordingly,
giving rise to qualitatively different transition maps (Figure S4,
Supporting Information).

Recall that the stiffness ratio and the stress-free angle play a
key role in determining the number of stable configurations. To
understand how they affect the transition behavior of the SMOV
cell, the transition maps corresponding to point P1 (with eight
stable configurations) and point P2 (with four stable configura-
tions) in Figure 1f are illustrated in Figure 2d,e, respectively. It
reveals that in the transition map corresponding to point P2,
configurations ‘1-a-0,’ ‘1-a-1,’ ‘1-b-1,’ and ‘0-a-1’ are unstable
(denoted by blank shapes with dashed edges), while the
transition paths in the two maps are still identical. This can
be interpreted in terms of the potential energy level, which fun-
damentally determines the transition behaviors. Specifically,
although some configurations are no longer stable (Figure 2e),
the relative potential energy levels of the SMOV configurations
are unchanged (Figure 1h). However, the stress-free configura-
tion, which has been shown to be nonessential to the number of
stable configurations, shows its capability to alter the transition
sequences of the SMOV cell. For example, by switching the
stress-free configuration from ‘0-b-0’ to ‘1-a-0’, the overall tran-
sition map is qualitatively changed (Figure 2f ): some reversible
transitions become irreversible (e.g., between ‘0-b-0’ and ‘0-a-0’),
while some irreversible paths become reversible (e.g., between
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‘0-a-0’ and ‘1-a-0’); moreover, some new transition paths emerge
in the new map (e.g., from ‘1-b-0’ to ‘1-a-0’).

Note that configurations ‘0-b-0’ and ‘1-a-0’ correspond to an
almost identical height of the SMOV cell, so are configurations
‘0-b-1’ and ‘1-a-1’. By exchanging the position of ‘0-b-0’ with
‘1-a-0’, and the position of ‘0-b-1’ with ‘1-a-1’ on the map
(Figure 2g), the transition paths could remain unchanged, as
those in Figure 2d. A similar phenomenon is also observed in
the case where configuration ‘0-a-1’ serves as the stress-free con-
figuration (Figure S4c, Supporting Information). This can be
interpreted from the fact that the transition paths are mainly

determined by the overall height and the potential energy level
of the SMOV cell. We further examine all the cases with the eight
configurations serving as the stress-free states (Figure S4,
Supporting Information), and a generic conclusion can be
drawn. If the stress-free configurations are of different heights,
the relative potential energy relationship among the nodes of the
map is changed, and the generated transition maps are funda-
mentally different, while if the stress-free configurations are
of almost identical height (e.g., Figure S4a–c,d–f, Supporting
Information), by exchanging the designated configurations with
similar height on the map, the relative height and energy
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relationship among the nodes of the map are retained, thus pre-
serving the transition paths. However, since the designated con-
figurations have been exchanged, the transitions between the two
specific configurations are different. Therefore, this generic con-
clusion on the transition map could also be utilized for tailoring
the unidirectional/bidirectional transitions by designating differ-
ent stress-free configurations.

Note that the optimization process to develop the transition
map requires prior knowledge of all the stable configurations.
Theoretically, we can determine all the stable configurations
of a given multistable metamaterial by deriving the local minima
of the potential energy profile. Then extension and compression
are respectively applied to each stable configuration to derive the
transition sequence in the prescribed loading direction (typically
the direction where the structure exhibits evident multistability).
The complete transition sequence map is developed by combin-
ing all possible sequences. Note that this process may become
computationally expensive for an extremely complex multistable
mechanical metamaterial. However, some mechanical metama-
terials are made up of basic bistable unit cells via periodical
connections in series or in parallel, for example, the multistable
metamaterial based on bistable buckled beams,[5] Stacked Miura
origami,[35] and Kresling origami.[25] For these examples, the
number of stable configurations can be easily derived, that is
2N , where N is the number of the constituent unit cells.
Our SMOVmetamaterial falls into this category, which therefore
simplifies the analysis.

The transition map, consisting of reversible and irreversible
transition paths, is also obtained via experiments on a SMOV
prototype (Figure 3). The detailed fabrication process is pre-
sented in Section 4. With ‘1-b-0’ as the stress-free configuration
and ‘1-b-1’ as the initial configuration, by applying compressing
displacement control, a series of configuration switches are
observed, shown in the time-lapse photo (Figure 4a), and the
corresponding force–displacement curve (Figure 4b top, in blue
color), also in video S1 in Supporting Information. Note that the
points on the curve with zero restoring force correspond to the
stable configurations, ‘1-b-1’, ‘0-b-1’, ‘0-b-0’, and ‘0-a-0’, which
constitute a chain of transition sequences. With the other stable
configurations as the initial states and by applying extension/
compression displacement control, different transition sequen-
ces can be achieved (Figure 4b and Video S2–S6, Supporting

Information). Integrating these sequences together, the complete
transition map can be generated (Figure 4d).

As a comparison, the simulation parameters are adopted as
kα ¼ 0.0181½N rad�1�, kβ¼ 38:53kα, θ0Aα ¼ �0.6784, k∗1 ¼ 214.24kα,
and k∗2 ¼ 146.74kα, with stress-free configuration ‘1-b-0’ (the
identification process to obtain these parameters is presented
in S5 in Supporting Information). Accordingly, based on the
model with imperfect constraints and the optimization scheme,
the transitions can also be obtained via numerical analysis
(Figure 4c), which agrees well with the experimental results
(Figure 4b) in terms of the number of stable configurations
and the overall trend of the force–displacement curves.
Quantitatively, the numerical and experimental results are also
in good agreement. For example, both numerical simulations
and experiments suggest that a small compression force is
enough to trigger a snap-through transition from ‘1-b-1’ to
‘0-b-1’ (the blue dashed curve in Figure 4b,c, top), while the
required extension force for the reverse transition from ‘0-b-1’
to ‘1-b-1’ is much larger (the red dashed or green curves in
Figure 4b,c, bottom). Furthermore, comparing the transition
maps obtained from experiments (Figure 4d) and simulations
(Figure 4e), we see that except for one transition, the two maps,
consisting of unidirectional and bidirectional transition paths,
exhibit convincing agreement with each other. This again man-
ifests the effectiveness of the modeling and path-searching
approaches. Note that the quantitative comparison of the two
force–displacement profiles is not so good due to the error of
manufacture; identification should be made in order to find accu-
rate parameters.

2.3. Dynamic Transition

In addition to quasistatic control, configuration transitions can
be further enriched when the SMOV cell is subject to dynamic
excitations. To analyze the dynamics, the kinetic energy of SMOV
is examined by summing the kinetic energy of all facets together,
where the kinematic energy of a single facet is calculated by area
integral. Using the Lagrange equation, the dynamic governing
equation of the SMOV cell is derived, shown in Section S6,
Supporting Information. When performing the dynamic simu-
lation, the initial state is set at one of the stable configurations
with zero velocity, the material density of the facets is set as

Pre-bent spring-steel strips

1-b-0

Screw rods

Rectangular 
steel plates

3D-printed 
connectors

Pre-bent spring-

steel strips

(b)

Stress-free configuration

Sheet

Sheet

Adhesive-back 
plastic films

Water-jet cut 
stainless-steel facets

Sheet

 

(a)

Figure 3. Prototype of the origami cell. a) Illustration of the prototyping method. b) Experimental setup.
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ρ ¼ 7.85g cm�3, which is the density of steel; the damping coef-
ficient is adopted as c¼ 50kgm s�1, and the excitation amplitude
and frequency are swept. The Runge–Kutta method with variable
steps is applied to solve the governing equation. The steady-state
response types, in terms of the equilibrium that the system oscil-
lates around, are recorded and shown in a dynamic transition
map (Figure 5a), in which the configuration ‘0-b-1’ is set as
the initial state. Note that the transitions of the steady-state
responses are closely related to the excitations. With relatively
small-excitation amplitude, the SMOV cell keeps oscillating
around the ‘0-b-1’ configuration without change, while with
larger-excitation amplitudes or higher-excitation frequency
(i.e., sufficiently high input energy), interwell oscillations around
multiple equilibria will be triggered. In the intermediate region,
rich transitions of the steady-state responses are observed, with

the surrounding stable equilibrium changing from ‘0-b-1’ to the
other seven stable configurations. Similar trends are also wit-
nessed when the other seven stable configurations are set as
the initial states (Figure S8, Supporting Information). Being dif-
ferent from the quasi-static scenario in that certain stable config-
urations cannot be reversibly transformed, here, steady-state
oscillations around any of the two stable configurations can be
reversibly switched by applying proper dynamic excitations, gen-
erating a fully connected dynamic transition map. Compared
with the quasistatic transition, inertial force and damping force
are incorporated into the dynamic process. With different
inserted energies, the inertial force and damping force will
greatly change the transitions among the stable states. By apply-
ing excitations with very low frequency, the inertial force, damp-
ing force, as well as kinetic energy are very small, which could
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degenerate the dynamic model into a quasistatic one. In this
scenario, the SMOV structure will still follow the quasistatic tran-
sition map.

The dynamic transition map can be further interpreted from
the perspective of resonance. To this end, the dynamic system is
linearized around its stable equilibria such that the natural fre-
quencies can be derived (see Table S2, Supporting Information).
In the eight cases shown in Figure 5a and S6, Supporting
Information, the first three natural frequencies are denoted by
red dashed lines. It reveals that around the natural frequencies,
the required excitation amplitudes for transitions are obviously
lower than those in other frequency ranges. This is because the
response amplitude will be amplified significantly due to the res-
onance effect, which would thus overcome the energy barrier
between adjacent stable equilibria and induce a snap-through
motion.

To quantify the required energy level for triggering dynamic
transitions, the critical curve on each map is extracted, and they
are depicted in Figure 5b. Starting from a certain initial state, if
the excitation condition locates below the corresponding critical
curve, the SMOV cell will keep its intrawell oscillation around the
initial stable state. Above the critical curve but below those cor-
responding to the other initial stable configurations, the stable
equilibrium that the steady-state oscillation surrounds is avail-
able to change. When the excitation condition locates above all
critical curves, large-amplitude interwell oscillation will take
place.

Since the SMOV is highly nonlinear in its constitutive model,
the dynamic response is sensitive to the excitations and the initial
conditions. Basins of attraction for some stable configurations
are presented in Figure S10 of the Supporting Information. It
can be concluded that the same transition is always encountered
within a certain perturbation range around the initial stable con-
figuration of SMOV under some excitations, while for configu-
ration and excitations with a fractal basin of attraction, it becomes

difficult to identify the transitions corresponding to a given initial
condition. However, as a potential strategy, the dynamic excita-
tions, if properly harnessed, could greatly enrich the transition
sequences.

2.4. Transition Sequences for Mechanologic

As discussed, under quasistatic loading or dynamic excitations,
the SMOV cell could exhibit rich transition behaviors. The tran-
sition maps with reversible/irreversible paths are promising in
many applications, such as reconfigurable robots and reprogram-
mable metamaterials. In this research, we especially showcase a
novel and unique potential of the SMOV in achieving mechano-
logic, the essence of which is the use of mechanical mechanisms
as a means of processing information, aiming at endowing com-
puting ability in the mechanical domain.

First of all, the SMOV cell is capable of realizing the function-
ality of the basic logic gates, that is, AND, OR, and XOR gates
(Figure 6a). Note that digital inputs ‘0’ or ‘1’ are the objects that
these logical operation functions will process. Hence, the SMOV
cell’s stable configurations are encoded. Specifically, for units A
and C of the SMOV cell, as the previously used denotation, the
‘bulged-out’ and the ‘nested-in’ stable configurations are respec-
tively converted into digits ‘1’ and ‘0’; for unit B, the ‘inclined-up’
and the ‘inclined-down’ stable configurations are respectively put
into ‘1’ and ‘0’. With such encoding, the configurations of the
SMOV cell can be represented by three digits (e.g., the initial con-
figuration is assigned to be ‘0-0-0’). Without loss of generality, the
digits of units A and B are specified as the input of the logic gate.
The logic operation is achieved by state transitions under a pre-
scribed control, which can be a quasistatic displacement loading
or a dynamic excitation. Here, a quasistatic extension process
(with only one control step) applied at points P1 and P2 along
the height direction (the same load condition as in the simulation
and experiment) is employed to exemplify the logic operation.
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Note that for any given stable configuration with extension or
compression, the corresponding transition sequence has been
experimentally obtained in Figure 4d, that is, all the transition
sequences we used for conducting mechanologic have been veri-
fied in the quasistatic experiment. Therefore, the experiments are
no longer repeated in realizing and interpreting the logic gates.
By recording the digits of the transited stable configurations in
the form of 3-column blocks, an augmented matrix X is con-
structed (Figure 6a). With one transition, the matrix X consists
of two blocks corresponding to the initial and the transformed
configurations. In addition to the inputs represented in the first
two columns of the matrix X, more columns obtained by state
transitions are included. Note that the following blocks corre-
sponding to the next stable configuration rely on the prior stable
configuration and the augmented matrix is fundamentally the
spatial–temporal pattern of a physical reservoir, which provides
rich possibilities for complex logic operation. The output of the
logic operation is achieved by a linear readout layer with weights
Wout, that is, the output Ŷ ¼ sigmoidðX ⋅WoutÞ. By optimizing
the linear weights with glmfit function in MATLAB, the three

logic gates (AND, OR, and XOR) can be successfully realized
based on the same SMOV cell (Figure 6a, bottom).

Note that the complete process of the proposed SMOV-based
mechanologic includes encoding, information processing, and
readout. In this section, we in detail discuss information process-
ing via the above quasistatic and dynamic transitions of the
SMOV, while the encoding and readout processes are simply
realized by manual manipulation and by combining the experi-
mental results with the recorded videos, respectively. As a proof
of concept, this demonstrates the feasibility of using SMOV for
mechanologic. However, more efforts, such as the integration of
actuators and flexible sensors, should be made in the future for
more efficient “writing” and “reading.”

To understand the importance of state transitions in achieving
the logic operations, a direct readout framework without state
transitions is illustrated as a comparison (Figure 6b, top). It
shows that direct readout from the initial configurations of
the SMOV cell could successfully realize the AND and OR gates
but however, fail in the XOR operation (Figure 6b, bottom). This
is because, for the AND and OR gates, the mapping from the
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input onto the output is essentially linear, which, as a result,
could be distinguished via a direct linear readout classifier.
However, the input–output mapping for the XOR gate is nonlin-
ear, and a linear classifier would be inapplicable. On the contrary,
by introducing state transitions (i.e., the physical reservoir,
achieved by quasistatic extension) into he operation process
(Figure 6a), the initial configurations (i.e., the inputs) can be
transited to other stable states, which, fundamentally, is a non-
linear transformation in terms of the digits. As a result, different
logic gates, including the ones with nonlinear input–output map-
ping, can be realized.

More complex logic gates, such as a compound logic shown in
Figure S11a, Supporting Information, can also be achieved based
on the SMOV cell by adding another input unit and incorporat-
ing more control steps (detailed demonstration is presented in
Video S7, Supporting Information). Specifically, the fuzzy com-
puting in a compound logic gate, manifesting as connections of
multiple AND gates, is equivalently achieved by conducting two
transition steps following the transition map and a subsequent
linear readout procedure with weights Wout. Unlike the conven-
tional mechanologic approach that multiple basic logic gates have
to be integrated to realize compound logic, our scheme can
achieve complex logic operations based on a single SMOV cell,
without increasing the structural complexity. This merit originates
from the transition behaviors of the multistable SMOV cell, which
is a reflection of the nonlinearity of the physical reservoir. As a
further example, we demonstrate that a full adder, which is central
to most digital circuits that perform addition or subtraction, can
also be developed based on a single SMOV cell, see Figure S11b
and Video S8, Supporting Information. The three inputs of a full
adder are the operands A, B, and the input carry Cin; the output of
a full adder is the final sum output S and the final carry output
Cout. With three inputs and two outputs, two transition steps
are needed, and an additional set of readout weights (W�

out) is
incorporated. Note that the versatility of the SMOV cell for differ-
ent logic operations is closely associated with the readout. The
weights of the readout layer are trainable by analyzing the spatial–
temporal patterns of the reservoir so that a single SMOV cell is
capable of achieving different logic operations. Despite its great
flexibility, extra efforts, such as control with additional actuators,
are necessary for resetting the SMOV after each logic operation.

Dynamic transitions of the SMOV cell’s configurations, which
have been shown to be richer than the quasistatic transitions, can
also serve as the physical reservoir for logic operations. The differ-
ence lies in that a sinusoidal excitation, instead of quasistatic dis-
placement control, is applied to generate the transition sequences
(Figure S11c, Supporting Information). With dynamic transition
sequences and the associated readout, the SMOV cell can also per-
form the basic logical operations (i.e., AND, OR, and XOR). For
detailed descriptions, see Section S7 in Supporting Information.

Note that for a compound logic gate with three inputs and one
output (see a conceptual example in Figure 6c, top), 28 different
input–output mappings are possible, which correspond to 28

logic gates. They can be equivalently achieved via the transitions
of the SMOV cell and the trained readout (Figure 6c, bottom). For
example, utilizing the experimental transition map (Figure 4d)
and with two transition steps in the proposed scheme, the opti-
mal outputs are obtained with the trained readout weights.

Comparing them with the theoretical outputs corresponding
to the 28 different logic gates, the prediction accuracy is derived.
Note that if the accuracy is lower than 100%, the corresponding
logic gate cannot be realized. Figure 6d (top) illustrates the pre-
diction accuracy of the 28 logic gates with the experimental tran-
sition map. Note that not all the 28 logic gates can be accurately
achieved. With different transition maps (e.g., the maps shown
in Figure 2d,f ) obtained by adjusting the design parameters of
the SMOV cell, the prediction accuracy would be modified. Some
of the logic gates that cannot be realized via the experimental
transition map are now achievable via another transition map
(Figure 6d, bottom). Actually, with different designs of the
SMOV cell and different control rules, distinct transition behav-
iors (i.e., the reservoir) can be obtained, which could be tailored
for different mechanologic. Particularly, if dynamic excitations
are used as the control strategy, the fully connected dynamic tran-
sition map could further improve the SMOV logic operations.

3. Conclusion and Discussion

A Miura-variant metamaterial with multistable reconfigurable
features has been leveraged and investigated as a platform to
uncover the deep knowledge and understanding of harnessing
multistability transition sequences in both the quasistatic and
dynamic realms. By introducing controllable flexibility into the
SMOV cell and via a combination of theoretical, numerical,
and experimental efforts, rich transition sequences that are pre-
dictable and discriminative, including reversible and irreversible
paths, are revealed. In addition, the underlying mechanism for
editing the transition maps via tailoring the design parameters is
uncovered. Dynamic excitations can also trigger transitions,
manifested as steady-state oscillations around different stable
states. Different from the quasistatic scenario, bidirectional
dynamic transitions are accessible between any of the two stable
configurations, which constitute a fully connected transition
map. Insights into triggering the transitions are obtained in
terms of the resonant frequency and the injected energy.

The SMOV cell, as a representative multistable structure, pro-
vides a new path for developing mechanologic. Based on a single
SMOV cell and by harnessing the quasistatic/dynamic transi-
tions as a physical reservoir, basic and complex logical operations
are achieved. The proposed framework endows the SMOV cell
with the versatility of using one structural element to conduct
different logic operations, which greatly reduces the complexity
for developing various compound logic gates. Such merit origi-
nates from the nonlinearity of the multistable transition.
Benefiting from this and by constructing a multicell SMOV
metamaterial, it is promising in achieving complex computing.

It should be pointed out that anything has a dual character, the
SMOV-based mechanologic is no exception. Compared with the
conventional mechanologic, the structural complexity is greatly
reduced, however, at the cost of introducing additional actuation
and sensing devices for encoding and resetting. With dynamic
excitations, theoretically speaking, one actuator could realize
all the encoding and computing processes; however, this
requires more effort on an accurate and robust control.
Currently, we only demonstrate the computing capability of
SMOV with quasistatic and dynamic transitions. In the future,

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2200146 2200146 (10 of 11) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


we expect that flexible sensors and active materials could be
embedded in the SMOV metamaterial, such that the metamate-
rial could be more intelligent with integrated sensing, comput-
ing, and actuation.

4. Experimental Section
The fabrication process of the prototype is explained as follows: the

facets were water jet cut individually from 0.25mm-thick stainless steel
sheets. Then they were connected to a 0.13mm-thick adhesive-back plastic
film (ultrahigh-molecular-weight [UHMW] polyethylene] to form the pre-
scribed two different Miura-ori sheets, as shown in Figure 3a. After that,
we folded the sheets in the way presented in Figure 3a and pasted
0.01mm-thick pre-bent spring-steel stripes at the corresponding creases
to provide torsional stiffness. In this way, the stiffness ratio was greatly
increased, which generated more stable configurations. The stress-free
angle corresponding to a stress-free configuration was about �π=3.
Then, the sheets were connected along the connecting creases by adhesive
films to form a complete single-cell prototype. Therefore, the stress-free
configuration was “1-b-0.” In the experiment, we designed a 3D-printed
connector, which could be screwed onto the prototype with rectangular
steel plates. A screw rod was then utilized to connect the 3D-printed
connector with the Instron machine (Figure 3b).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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