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Abstract
One solution to the problem of distributing the control action among redundant
actuators with uncertain dynamics is employing an adaptive control allocator.
This paper proposes a sliding mode controller which exploits a time-varying slid-
ing surface to complement adaptive control allocation in the presence of actuator
saturation. The proposed approach does not require error augmentation for
tracking desired references, which diminishes the computational burden. Aero-
data Model in Research Environment, which is an over-actuated aircraft model,
is adopted to demonstrate the efficacy of the proposed controller in simulation
studies.
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1 INTRODUCTION

Redundancy in actuators is beneficial for improving functionality and fault tolerance of engineered systems. Such systems
require an algorithm to distribute control signals among redundant actuators, which is referred to as control alloca-
tion. Systems where control allocation is employed include aircraft/spacecraft,1-10 marine vessels,11-16 automobiles,17-20

robots,21 and power systems.22,23

Control allocation methods can be categorized into the following categories: Pseudo-inverse-based methods,
optimization-based methods, and dynamic control allocation. Pseudo-inverse-based control allocation methods24-27

rely on manipulating the null space of the control input matrix, and have the lowest computational complexity.
Optimization-based control allocation methods28-33 solve an optimization problem at each time instant and can be com-
putationally intense. In dynamic control allocation methods,34-40 the control signals are distributed among actuators using
a set of rules dictated by differential equations. A survey of control allocation methods can be found in Johansen et al.41

In the presence of actuator uncertainty, the pseudo-inverse and optimization-based control allocation methods require
fault detection and identification as well as persistency of excitation assumption for the input signals. Adaptive control
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allocation methods35-37,40 on the other hand, can handle actuator uncertainties without the need for fault identification
or persistency of excitation assumption.

Actuator limits can induce nonlinear behavior and lead to performance degradation, limit cycles, multiple equilib-
ria, and even instability.6,10,32,42 Several control allocation methods have been proposed in the literature that can handle
actuator saturation. These include direct control allocation,24 daisy chaining,43 pseudo-inverse-based control allocation,44

and iterative approaches that use the null space of the control input matrix.27 Optimization-based control allocation is
another commonly used method of accounting for actuator magnitude and rate constraints.1,6,13,28,29,31,45,46 Furthermore,
a control allocation approach by Naderi et al.,47 employs model predictive control to handle actuator magnitude con-
straints. In order to allocate control signals in the presence of uncertainty as well as actuator constraints, an adaptive
control allocator for constrained systems has been developed by Tohidi et al.38,40 An adaptive control allocator which
exploits a modified projection algorithm to handle magnitude and rate constraints in over-actuated systems is proposed by
Tohidi et al.48

Although control allocation methods enable modularity for the overall control system design, as they sepa-
rate the generation of the control signal and its distribution, control allocation errors can be significant in tran-
sients and degrade the performance. In vehicle and flight applications, the goal of the control allocation is to
match the commanded (v) and the actual (Bu) control moments ∕ forces, where u designates a vector of actua-
tor positions. However, the equality Bu = v may not be satisfied in the case of dynamic methods in transients or
in the case of optimization-based methods if time to compute the solution online is insufficient. This transient
control allocation error may not be negligible especially in the presence of actuator limits. Therefore, the con-
troller must be designed to be robust to the control allocation error, as well as external disturbances. The robust-
ness characteristics of the sliding mode control has motivated its use in combination with many control allocation
implementations.26,49,50

An approach that employs a sliding mode controller together with a model predictive controller (MPC) has been
considered to handle actuator constraints.51-54 However, this combination leads to high computational complexity due to
the need to solve an optimization problem online. Various other sliding mode control approaches have also been proposed
which handle the constraints without using MPC.55-58 However, these methods are developed for single input systems,
unlike the one proposed in our paper for over-actuated systems.

Inspired by the work of Corradini et al.,59 this paper proposes a sliding mode controller with a time-varying sliding
surface which guarantees stability and tracking, and which is robust not only to bounded disturbances but also to the
adaptive control allocation error. Different from the work of Corradini et al.,59 the proposed controller solves the tracking
problem in over-actuated constrained systems, in the presence of adaptive control allocation transients and disturbances,
and in a simpler way by requiring only one design parameter. To the best of the authors knowledge, controllers that
are robust to both the adaptive control allocator error and to external disturbances have not been proposed in the prior
literature.

The initial results of this study were published in a conference paper by Tohidi et al.60 Different from the con-
ference version, this paper contains (i) lemma and theorem proofs, (ii) corollaries, detailed discussions and guidance
regarding the initial condition selections, (iii) simulation studies demonstrating the robustness of the controller even
when sufficient conditions do not hold, and (iv) discussions about the projection algorithm and the control allocation
convergence set.

This paper is organized as follows. Section 2 describes the problem of controlling an over-actuated uncertain system in
the presence of an adaptive control allocator. Section 3 presents the sliding mode controller design. The ADMIRE model
is used in Section 4 to demonstrate the effectiveness of the proposed approach in the simulation environment. Finally, a
summary is given in Section 5.

2 PROBLEM STATEMENT AND PRELIMINARIES

We consider the adaptive control allocation setting in Figure 1 and the following Plant dynamics,40

ẋ = Ax + Bu(Λu + du), (1)

where x ∈ Rn is the state vector, u = [u1, … ,um]T ∈ Rm is the actuator input vector whose elements are constrained as
ui ∈ [−umaxi ,umaxi], A ∈ Rn×n is a known state matrix, Bu ∈ Rn×m is a known input matrix and du ∈ Rm is an unknown
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F I G U R E 1 Block diagram of the closed loop system

bounded disturbance input. The matrixΛ ∈ Rm×m is assumed to be diagonal with positive elements representing actuator
effectiveness uncertainty. It is assumed that the pair (A,BuΛ) is controllable. Due to actuator redundancy, the input matrix
is rank deficient, that is Rank(Bu) = 𝓁 < m. Consequently, Bu can be written as Bu = BvB, where Bv ∈ Rn×𝓁 is a full column
rank matrix, that is, Rank(Bv) = 𝓁, and B ∈ R𝓁×m. The decomposition of Bu helps exploit the actuator redundancy using
control allocation. Employing this decomposition, (1) can be rewritten as

ẋ = Ax + Bv(BΛu + d), (2)

where d(t) = Bdu(t) with an upper bound ||d(t)|| ≤ D, for all t ≥ 0. Throughout this paper, ||.|| refers to the Euclidean
norm for vectors and induced 2-norm for matrices. The control allocation task is to achieve

BΛu + d = vs, (3)

where vs ∈ R𝓁 is the output of the saturation block, which is receiving the control signal v as the input (See
Figure 1).

Considering the following dynamics,

ẏ = Amy + BΛu + d − vs, (4)

where Am ∈ R𝓁×𝓁 is a stable matrix, a reference model is constructed as

ẏm = Amym. (5)

Defining the actuator input as a mapping from vs to u,

u = 𝜃T
v vs, (6)

where 𝜃v ∈ R𝓁×m represents the adaptive parameter matrix to be determined, and substituting (6) into (4), we obtain

ẏ = Amy + (BΛ𝜃T
v − I𝓁)vs + d, (7)

where I𝓁 is an identity matrix of dimension 𝓁 × 𝓁. It is assumed that there exists an ideal matrix 𝜃∗v such that

BΛ𝜃∗v T = I𝓁 . (8)

Defining e = y − ym and subtracting (5) from (7), it follows that

ė = Ame + BΛ ̃𝜃T
v vs + d, (9)

where ̃𝜃v = 𝜃v − 𝜃∗v .

Theorem 1. Consider (4) and (5). Suppose that the adaptive parameter matrix is updated using the adaptive law,

̇

𝜃v(t) = Γ𝜃Proj(𝜃v(t),−vs(t)eT(t)PB, f ), (10)
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where the symmetric positive definite matrix P satisfies AT
mP + PAm = −Q, Q is a symmetric positive definite matrix, “Proj" is

the projection operator48,61 with a convex function f ∈ C1, and Γ
𝜃

= 𝛾
𝜃

I𝓁 , where 𝛾
𝜃

is a positive scalar. Then, given any initial
condition e(0) ∈ R𝓁 , e(t) and ̃

𝜃v(t) remain uniformly bounded for all t ≥ 0 and their trajectories converge exponentially to
the set

E1 =
{

(e, ̃𝜃v) ∶ ||e||2 ≤

(
s ̃𝜃2

max

𝛾

𝜃

𝜆min(Q)
+

2𝜒4D2||Q||2

𝜎

2
𝜆min(Q)2

)
4s𝜒2||Q||
𝜎𝜆min(Q)

, || ̃𝜃v|| ≤ ̃

𝜃max

}

, (11)

where s = −mini
(
𝜆i
(

Am + AT
m
)
∕2
)
, 𝜎 = −maxi

(
Real(𝜆i(Am))

)
, 𝜒 = 3

2
(1 + 4 a

𝜎

)(𝓁−1), a = ||Am|| and || ̃𝜃v(t)||F ≤ ̃

𝜃max ≡
√∑

i,j (𝜃maxi,j − 𝜃mini,j − 𝜁i,j)2. In addition, if d(t) = 0 for t ≥ t′ for some t′ ≥ 0, and vs(t) is uniformly continuous as a function
of t ∈ [t′,+∞), then limt→∞ BΛu(t) = vs(t), that is, (3) is achieved asymptotically.

Proof. See Tohidi et al.40 ▪

The projection algorithm48,61 employed in Theorem 1 exploits a continuous function Proj(𝜃vi,j ,Yi,j, f ) ∶ R ×R ×  → R

defined as

Proj(𝜃vi,j ,Yi,j, f ) ≡
⎧
⎪
⎨
⎪
⎩

Yi,j − Yi,jf
(
𝜃vi,j

)
if f

(
𝜃vi,j

)
> 0 & Yi,j

( df
d𝜃vi,j

)
> 0

Yi,j otherwise,
(12)

where Yi,j is equal to ̇

𝜃vi,j before being projected and f (.) ∈  (R → R) is a convex and continuously differentiable (C1)
function given as

f
(
𝜃vi,j

)
=

(
𝜃vi,j − 𝜃min

i,j
− 𝜁i,j

)(
𝜃vi,j − 𝜃max

i,j
+ 𝜁i,j

)

(
𝜃max

i,j
− 𝜃min

i,j
− 𝜁i,j

)
𝜁i,j

, (13)

and where 𝜁i,j is the projection tolerance of the (i, j)th element of 𝜃v, which satisfies 0 < 𝜁i,j < 0.5(𝜃maxi,j − 𝜃mini,j). 𝜃maxi,j

and 𝜃mini,j are the upper and lower bound of the (i, j)th element of 𝜃v. A step by step method for the determination of the
projection bounds is given at Tohidi et al.40

By substituting (6) and (8) into (2), it follows that

ẋ = Ax + Bv
(

BΛu + d
)

= Ax + Bv
(

BΛ𝜃T
v vs + d

)

= Ax + Bv
(

I + BΛ ̃𝜃T
v
)

vs + Bvd. (14)

Defining ΔB(t) ≡ BΛ ̃𝜃T
v (t), and substituting in (14), it follows that

ẋ(t) = Ax(t) + Bv(vs(t) + d(t)), (15)

where d(t) = ΔB(t)vs(t) + d(t) ∈ R𝓁 is the sum of the disturbance and the control allocation error. Therefore, the controller
to be designed should be robust to both the disturbances and the control allocation errors. It is noted that since ΔB(t),
vs(t), and d(t) are bounded, d(t) is also bounded.

Thus far, we introduced the plant dynamics with constrained uncertain actuators, the adaptive control allocation
algorithm, and the resulting system dynamics (15) after the inclusion of the control allocator. What remains to be done
is the design of a controller that generates the signal v (see Figure 1). The controller needs to be robust to the control
allocation error and the disturbances, in the presence of a software saturation. Note that software saturation is needed for
the adaptive control allocator to provide a stable performance. In the proceeding sections, a sliding mode controller that
satisfies these requirements is presented.
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3 CONTROLLER DESIGN

In this section, a design procedure for the controller that generates the virtual control signal v is proposed (see Figure 1).
The following two assumptions are made:

Assumption 1. The dynamics in (15) can be written as
[

ẋ(1)

ẋ(2)

]

=

[
A1,1 A1,2

A2,1 A2,2

][
x(1)

x(2)

]

+ Bv(vs + d), (16)

where A1,1 ∈ R(n−𝓁)×(n−𝓁) is a Hurwitz matrix, A1,2 ∈ R(n−𝓁)×𝓁 , A2,1 ∈ R𝓁×(n−𝓁) and A2,2 ∈ R𝓁×𝓁 are parts of the state matrix,
and x(1) ∈ R(n−𝓁) and x(2) ∈ R𝓁 constitute the state vector. It is noted that the elements of the state matrix, Ai,j, i = 1, 2,
j = 1, 2, are known. We are interested in the vector x(2) as the system output y. Therefore,

y = C

[
x(1)

x(2)

]

, (17)

where C = [0𝓁×(n−𝓁) I𝓁].

Assumption 2. The matrix Bv ∈ Rn×𝓁 is in the form [0𝓁×(n−𝓁) I𝓁]T .

Remark 1. Although the proposed controller can be applied to other dynamical systems satisfying Assumptions 1 and 2,
the above assumptions are justified for typical aircraft models,2,62 which are the main focus of this paper. In the simulation
section, these assumptions are validated for the AeroData Model in Research Environment (ADMIRE).1,29

Remark 2. For systems where Assumption 2 does not hold, given that Bv has full column rank, it is possible to find a
transformation matrix, TB, such that ̂Bv = TBBv = [0𝓁×(n−𝓁) I𝓁]T .59,63 However, employing this transformation may lead to
a state space realization which violates Assumption 1.

Remark 3. Since A1,1 is assumed to be Hurwitz, showing that the states x(2) are bounded will be sufficient to demonstrate
the boundedness of x(1).

3.1 Time-varying sliding surface

The sliding surface, inspired by Reference 59, is given as

s(x(2)(t), x(2)(t0), t) = x(2)(t) − x(2)(t0)e−𝜆(t−t0) − 2
𝜋

r(t)tan−1(𝜆(t − t0)) = 0, (18)

where 𝜆 > 0 is a scalar parameter, x(2) ∈ R𝓁 is defined in (16), and r(t) ∈ R𝓁 is the twice continuously differentiable (C2)
reference to be tracked.

The response of a system controlled by a sliding mode controller includes two phases.64 The first phase is called the
reaching phase. During this phase, the controller drives the system towards the sliding surface. In the second phase,
which is called the sliding phase, the trajectories evolve on the sliding manifold. For the sliding surface (18), no reaching
phase exists since the sliding surface is a function of the initial condition and the trajectories are on the sliding surface
at t = t0, that is, s(x(2)(t), x(2)(t0), t0) = 0. These types of sliding surfaces belong to the family of integral sliding surfaces.65

Below, we analyze the behavior of the system trajectories on the sliding surface and show that the trajectories remain on
the sliding surface for all t ≥ t0.

3.2 Motion on the sliding surface

Using (18), the trajectories of x(2) on the sliding surface satisfy

x(2)(t) = x(2)(t0)e−𝜆(t−t0) + 2
𝜋

r(t)tan−1
(

𝜆(t − t0)
)

. (19)
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Substituting (19) into (16), it follows that

ẋ(1) = A1,1x(1) + A1,2

(

x(2)(t0)e−𝜆(t−t0) + 2
𝜋

r(t)tan−1
(

𝜆(t − t0)
))

. (20)

By defining G1 ≡ A1,2x(2)(t0), and G2(t) ≡ 2
𝜋

A1,2r(t) tan−1(𝜆(t − t0)), (20) can be rewritten as

ẋ(1) = A1,1x(1) + G1e−𝜆(t−t0) + G2(t) = A1,1x(1) + g(t), (21)

where g(t) ≡ G1e−𝜆(t−t0) + G2(t).

Lemma 1. When x(2)(t) is on the sliding surface (18), ||x(1)(t)|| ≤ kx(1)(t0) + K2x(2)(t0) + K2r, where K2 = k
𝜉

||A1,2||, k and

𝜉 are positive constants, and x(1)(t0), x(2)(t0) and r are the upper bounds of ||x(1)(t0)||, ||x(2)(t0)|| and ||r(t)||, respectively.
Furthermore, limt→∞ y(t) = r(t).

Proof. Per Assumption 1, A1,1 is Hurwitz, hence the homogeneous system ẋ(1)h (t) = A1,1x(1)h (t) is globally exponentially
stable at the origin. The solution of this system is given as x(1)h (t) = Φ(t, t0)x(1)h (t0), where Φ(t, t0) is the state transition
matrix and there exist constants k > 0 and 𝜉 > 0 such that

||Φ(t, t0)|| ≤ ke−𝜉(t−t0)
, ∀t ≥ t0, (22)

where 𝜉 = 1
2||X||

, k =
√
||X−1||||X|| and the positive definite matrix X ∈ R(n−𝓁)×(n−𝓁) satisfies the Lyapunov equation

AT
1,1X + XA1,1 = −In−𝓁 .66

Since the state transition matrices of the dynamics ẋ(1)h (t) = A1,1x(1)h (t) and ẋ(1)(t) = A1,1x(1)(t) + g(t) are the same, we
use the state transition matrix Φ(t, t0) used in (22) to provide the solution of (21) as

x(1)(t) = Φ(t, t0)x(1)(t0) +
∫

t

t0

Φ(t, 𝜂)g(𝜂)d𝜂. (23)

Taking the norm of both sides of (23) and using the triangle inequality, we obtain that

||x(1)(t)|| ≤ ||Φ(t, t0)x(1)(t0)|| +
∫

t

t0

||Φ(t, 𝜂)||||g(t)||d𝜂. (24)

Using the definition of g(t), given after (21), it follows that ||g(t)|| = ||G1e−𝜆t + G2(t)|| ≤ ||G1|| + supt≥t0
||G2(t)||. Note that,

since G2(t) is a function of the reference input r(t), supt≥t0
||G2(t)|| exists (see the definition of G2 given after (20)). There-

fore, ||g(t)|| ≤ ||A1,2||x
(2)(t0) + ||A1,2||r. Defining K1 = ||A1,2||x

(2)(t0) + ||A1,2||r, and using (22), (24) can be rewritten as,

||x(1)(t)|| ≤ kx(1)(t0)e−𝜉(t−t0) + kK1
∫

t

t0

e−𝜉(t−𝜂)d𝜂

≤ kx(1)(t0)e−𝜉(t−t0) + kK1
1
𝜉

(
1 − e−𝜉(t−t0)

)

≤ kx(1)(t0) + kK1
1
𝜉

= kx(1)(t0) + k
(

||A1,2||x
(2)(t0) + ||A1,2||r

) 1
𝜉

≤ kx(1)(t0) + K2x(2)(t0) + K2r, (25)

where K2 = k
𝜉

||A1,2||, and x(1)(t0) and x(2)(t0) represent the upper bounds on ||x(1)(t0)|| and ||x(2)(t0)||, respectively.
Since the reference signal r(t), x(1)(t0), and x(2)(t0) are bounded, (25) shows that x(1)(t) is bounded. Since x(t0) and r(t)
are bounded, it can be shown, using (19), that x(2)(t) is bounded and converges to r(t). Since y = x(2), this completes
the proof. ▪
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3.3 Control law

Figure 1 shows that once the control signal v is generated by the controller, it is passed through a software saturation
block, whose output is represented by vs. In this subsection, it is assumed that vs = v to demonstrate that with the proposed
control law, trajectories stay on (18) and hence properties of Lemma 1 hold. This requires that v always stays within
saturation bounds. A condition for this assumption to hold will be presented in the next subsection.

Definition 1. signv(a), where a is a column vector, is a diagonal matrix whose elements are the signs of the elements of
the vector a. For example, signv([a1 a2]T) = diag(sign(a1), sign(a2)), where a1 and a2 are scalars.

Definition 2. |a|v ≡ signv(a)a and |aT|v ≡ aTsignv(a), where a is a column vector and signv(.) is defined in Definition 1.
For example, |[a1 a2]|v = [a1 a2]signv([a1 a2]T) = [|a1| |a2|], where a1 and a2 are scalars.

Theorem 2. Consider the dynamics in (16) with the control law,

v(t) = −A2,1x(1)(t) − A2,2x(2)(t) − 𝜆x(2)(0)e−𝜆t + 2
𝜋

ṙ(t)tan−1(𝜆t) + 2
𝜋

r(t) 𝜆

1 + 𝜆
2
t2
− signv

(
s(x(2)(t), x(2)(0), t)

)
𝜌, (26)

where 𝜌 ∈ Rr contains the absolute upper bounds of the elements of the disturbance vector d, and s(x(2)(t), x(2)(0), t) is the
sliding surface (18). Assume vs(t) = v(t) for all t. Then, the trajectories of x(2) stay on the sliding surface (18).

Proof. Consider a Lyapunov function candidate V2(s) = 1
2

sTs, where the arguments of s(x(2)(t), x(2)(t0), t) are dropped for
clarity. By taking the time-derivative of V2 along the system trajectories, and using (18) with t0 = 0, we obtain

̇V 2 = sTṡ = sT

(

ẋ(2)(t) + 𝜆x(2)(0)e−𝜆t − 2
𝜋

ṙ(t)tan−1(𝜆t) − 2
𝜋

r(t) 𝜆

1 + 𝜆
2
t2

)

. (27)

Using (16) and Assumption 2, we have ẋ(2)(t) = A2,1x(1)(t) + A2,2x(2)(t) + v + d. Therefore, (27) can be rewritten as

̇V 2 = sT

(

A2,1x(1)(t) + A2,2x(2)(t) + v + d + 𝜆x(2)(0)e−𝜆t − 2
𝜋

ṙ(t)tan−1(𝜆t) − 2
𝜋

r(t) 𝜆

1 + 𝜆
2
t2

)

. (28)

By substituting the control law (26) into (28), and using Definitions 1 and 2, it follows that

̇V 2 = sT[d − signv(s)𝜌] = sTd − |sT|v𝜌 ≤ |sT|v(|d|v − 𝜌). (29)

Since the elements of |d|v − 𝜌 are nonpositive, ̇V 2 ≤ 0. Therefore, x(2) trajectories, which are on the sliding surface at
t = t0, will remain there for all t > 0. ▪

3.4 Bounding the control signals

In this section, we provide a method, inspired by the work of Corradini et al,59 to make sure that |vi| ≤ Mi, where vi
refers to the ith element of the control signal v, and Mi is a positive scalar, i = 1, 2, … ,𝓁, which is a predefined soft
saturation limit. This ensures that vs = v, which is an assumption used in the previous section. Note that the values of
Mi are calculated using the information about actuator constraints and the control matrix. The actuator constraints are
u(t) ∈ Ωu = {[u1, ...,um]T ∶ umini ≤ ui ≤ umaxi , i = 1, ...,m}. Using Ωu, the set Ωv, defining all realizable values of the con-
trol input v, can be obtained asΩv = {v ∶ v = Bu,u ∈ Ωu,B†v ∈ Ωu}, where (.)† refers to the pseudo inverse of a nonsquare
matrix. Furthermore, there exist Mi, i = 1, ..., r, such that ̂Ωv ≡ {v ∶ vi ∈ [−Mi,Mi], i = 1, ..., r} ⊂ Ωv. The set ̂Ωv can be
used to define the constraints which are enforced using a soft saturation function.40

We have observed in our simulation studies that the controller is robust for a range of cases where the assumption in
Section 3.3 is violated. However, to have formal stability guarantees, we present sufficient conditions in this section that
can be used to ensure that vs = v. Later in the simulations section, we show that these conditions are indeed sufficient,
not necessary, and even when they are violated good closed-loop performance is maintained.
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Lemma 2. The control signals vi, i = 1, 2, ...,𝓁, are bounded by Mi, i = 1, 2, ...,𝓁, that is, |vi(t)| ≤ Mi for all t if the inequality

|
|
|
|
|
|

−
n−𝓁∑

𝜔=1

n−𝓁∑

j=1
a2i,𝜔𝜙𝜔,j(t)x

(1)
j (0) − ∫

t

0

(n−𝓁∑

𝜔=1

n−𝓁∑

j=1
a2i,𝜔𝜙𝜔,j(t − 𝜂)

[ n∑

k=n−𝓁+1
a1j,k

(

x(2)k−n+𝓁(0)e
−𝜆𝜂 + rk−n+𝓁(𝜂)

2
𝜋

tan−1(𝜆𝜂)
)
])

d𝜂

−
n∑

j=n−𝓁+1
a2i,j

(

x(2)j−n+𝓁(0)e
−𝜆t + 2

𝜋

rj−n+𝓁(t)tan−1(𝜆t)
)

− 𝜆xn−𝓁+i(0)e−𝜆t + 2
𝜋

ṙi(t)tan−1(𝜆t) + 2
𝜋

ri(t)
𝜆

1 + 𝜆
2
t2

|
|
|
|
|
|

≤ Mi − 𝜌i, (30)

where i = 1, ...,𝓁, is satisfied for all t ≥ 0, where 𝜌 is defined in Theorem 2, and𝜙i,j(t) is the (i,j)th element of the state transition
matrix Φ(t, t0) in (22), with t0 = 0.

Proof. See Appendix A. ▪

Remark 4. For (30) to be mathematically meaningful, its right-hand side, Mi − 𝜌i, must be positive. It is shown in Tohidi
et al.40 that this is indeed the case.

The adjustable parameters in (30) are the initial values of the states x(0) = [x(1)T(0), x(2)T(0)]T and the scalar design
parameter 𝜆. Assuming that the reference, r(t), input vector and its rate of change are bounded, all of the terms in (30)
are either bounded or converge to zero. Since A1,1 is stable, the elements of state transition matrix, 𝜙i,j(t), converge to
zero exponentially fast (see (22)). Specifically for the investigated flight control problem, the state transition matrix of x(1)
dynamics (see (1)), where x(1) = [𝛼, 𝛽]T and 𝛼 and 𝛽 are the angle of attack and the sideslip angle, respectively, consists
of sums of decaying exponentials due to distinct eigenvalues. In this case, calculating the feasible values of the adjustable
parameters becomes easier since the inequality (30) takes a simpler form, which is explained in the following corollary.

Corollary 1. If the elements of the state transition matrix are formed as sums of exponential functions (which is the case in
several flight control problems), that is, 𝜙i,j(t) =

∑n
𝜅=1ci,j

𝜅

e−hi,j
𝜅

t with hi,j
𝜅

> 0 and n a positive integer, then the control signals
vi, i = 1, ...,𝓁 are bounded by Mi, i = 1, … ,𝓁, i.e. |vi| ≤ Mi if the inequality

Wi ≡

|
|
|
|
|
|

−
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1
a2i,𝜔c

𝜔,j
𝜅

e−h
𝜔,j
𝜅

tx(1)j (0) −
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1

n∑

k=n−𝓁+1
a2i,𝜔c

𝜔,j
𝜅

a1j,k x(2)k−n+𝓁(0)q𝜔,j𝜅 (t)

−
n∑

j=n−𝓁+1
a2i,j

(

x(2)i (0)e
−𝜆t + 2

𝜋

ri(t)tan−1(𝜆t)
)

− 𝜆xn−𝓁+i(0)e−𝜆t + 2
𝜋

ṙi(t)tan−1(𝜆t) + 2
𝜋

ri(t)
𝜆

1 + 𝜆
2
t2

+
∫

t

0

n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1

n∑

k=n−𝓁+1
− a2i,𝜔c

𝜔,j
𝜅

e−h
𝜔,j
𝜅

(t−𝜂)a1j,k rk−n+𝓁(𝜂)
2
𝜋

tan−1(𝜆𝜂)d𝜂
|
|
|
|
|
|

≤ Mi − 𝜌i, i = 1, ...,𝓁, (31)

where

q
𝜔,j

𝜅

(t) ≡
⎧
⎪
⎨
⎪
⎩

te−h
𝜔,j
𝜅

t
, 𝜆 = h

𝜔,j
𝜅

,

e−𝜆t−e−h
𝜔,j
𝜅

t

h
𝜔,j
𝜅

−𝜆
, 𝜆 ≠ h

𝜔,j
𝜅

,

(32)

is satisfied for all t ≥ 0.

Proof. See Appendix A.1. ▪

Remark 5. Given the upper and lower bounds of the reference signals and their derivatives, such that ri(t) ∈ [r−i , r
+
i ]

and ṙi(t) ∈ [ṙ−i , ṙ
+
i ], r−i = −r+i , ṙ−i = −ṙ+i , one way to check the inequality (31) is by using the triangle inequality and find-

ing an upper bound for Wi as
∑n−𝓁
𝜔=1

∑n−𝓁
j=1

∑n
𝜅=1|a2i,𝜔c

𝜔,j
𝜅

x(1)j (0)| +
∑n−𝓁
𝜔=1

∑n−𝓁
j=1

∑n
𝜅=1

∑n
k=n−𝓁+1|a2i,𝜔c

𝜔,j
𝜅

a1j,k x(2)k−n+𝓁(0)q𝜔,j𝜅 | +
∑n

j=n−𝓁+1|a2i,j(x
(2)
i (0))| +

∑n
j=n−𝓁+1|a2i,j r

+
i | + |𝜆xn−𝓁+i(0)| + |ṙ+i | + |

2
𝜋

r+i 𝜆| +
∑n−𝓁
𝜔=1

∑n−𝓁
j=1

∑n
𝜅=1

∑n
k=n−𝓁+1|a2i,𝜔c

𝜔,j
𝜅

a1j,k

r+k−n+𝓁

h
𝜔,j
𝜅

| ≤

Mi − 𝜌i, where q
𝜔,j

𝜅

= max{e−1h−1
𝜔,j

𝜅

,

2
|h
𝜔,j
𝜅

−𝜆|
}. This inequality can be simplified as Wi,1 + 𝜆Wi,2 ≤ 0, where

Wi,1 =
∑n−𝓁
𝜔=1

∑n−𝓁
j=1

∑n
𝜅=1|a2i,𝜔c

𝜔,j
𝜅

x(1)j (0)| +
∑n−𝓁
𝜔=1

∑n−𝓁
j=1

∑n
𝜅=1

∑n
k=n−𝓁+1|a2i,𝜔c

𝜔,j
𝜅

a1j,k x(2)k−n+𝓁(0)q𝜔,j𝜅 (t)| +
∑n

j=n−𝓁+1|a2i,j(x
(2)
i (0))|
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+
∑n

j=n−𝓁+1|a2i,j r
+
i | + |ṙ+i | +

∑n−𝓁
𝜔=1

∑n−𝓁
j=1

∑n
𝜅=1

∑n
k=n−𝓁+1|a2i,𝜔c

𝜔,j
𝜅

a1j,k

r+k−n+𝓁

h
𝜔,j
𝜅

| −Mi + 𝜌i and Wi,2 = |xn−𝓁+i(0)| + |
2
𝜋

r+i |. Note

that Wi,1 and Wi,2 are functions of x(1)(0), x(2)(0) and r+i , and remain constant along the closed-loop trajectory. Since
Wi,2 is positive, a value of 𝜆 > 0 satisfying Wi,1 + 𝜆Wi,2 ≤ 0 can always be found if Wi,1 < 0, which can be realized by
putting suitable bounds on the elements of x(1)(0), x(2)(0), and r. This procedure is conservative due to the nature of the
triangular inequality. On the other hand, if the reference signal trajectories are known, one can check the inequality (31)
numerically. We demonstrate the application of the latter approach in the simulation results sections.

For a constant reference input vector r, the inequality (31) can be simplified further. This is described in the following
corollary.

Corollary 2. If, in addition to the conditions given in Corollary 1, the reference signals are constant, that is, ri(t) = Ri, i =
1, ...,𝓁, then the control signals vi, i = 1, ...,𝓁 are bounded by Mi, i = 1, ...,𝓁, i.e. |vi| ≤ Mi, if the inequality

̂Wi ≡

|
|
|
|
|
|

−
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1
a2i,𝜔c

𝜔,j
𝜅

e−h
𝜔,j
𝜅

tx(1)j (0) −
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1

n∑

k=n−𝓁+1
a2i,𝜔c

𝜔,j
𝜅

a1j,k x(2)k−n+𝓁(0)q𝜔,j𝜅 (t)

−
n∑

j=n−𝓁+1
a2i,j

(

x(2)i (0)e
−𝜆t + 2

𝜋

Ritan−1(𝜆t)
)

− 𝜆xn−𝓁+i(0)e−𝜆t + 2
𝜋

Ri
𝜆

1 + 𝜆
2
t2

|
|
|
|
|
|

+
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1

|
|
|
|
|

n∑

k=n−𝓁+1
− a2i,𝜔c

𝜔,j
𝜅

a1j,k Rk−n+𝓁

|
|
|
|
|

1 − e−h
𝜔,j
𝜅

t

h
𝜔,j

𝜅

≤ Mi − 𝜌i, i = 1, ...,𝓁, (33)

where q
𝜔,j

𝜅

(t) is defined in (32), is satisfied for all t ≥ 0.

Proof. The proof is similar to that of Corollary 1. ▪

Remark 6. The left-hand side of the inequality (33) can be written as |k1e−𝜆t + k2e−h
𝜔,j
𝜅

t + k3
𝜆

1+𝜆
2
t2
+ k4

2
𝜋

tan−1(𝜆t) + k5|,
where ki, i = 1, 2, ..., 5 are the appropriate constant coefficients. Since all of the terms are monotonic functions, it is
enough to check (33) at t = 0, t = ∞ and at the extremum points in between, if any. Extremum points can be found by
taking the derivative and equating it to zero and finding the roots numerically.

4 SIMULATION RESULTS

The ADMIRE, which represents the dynamics of an over-actuated aircraft model, is used to demonstrate the effectiveness
of the proposed controller. The linearized ADMIRE model29 is given as

ẋ = Ax + Buu = Ax + Bvvs,

vs = Bu, Bu = BvB, Bv = [03×2 I3×3]T , (34)

where x = [𝛼 𝛽 p q r]T with 𝛼, 𝛽, p, q, and r denote the angle of attack, sideslip angle, roll rate, pitch rate, and yaw rate,
respectively. The vector u = [uc ure ule ur]T represents the control surface deflections of canard wings, right and left
elevons and the rudder. The position limits of the control surfaces are given as uc ∈ [−55, 25] × 𝜋

180
rad, ure,ule,ur ∈

[−30, 30] × 𝜋

180
rad. The actuators have first-order dynamics with a time constant of 0.05 s. The state and control matrices

are provided by Härkegård et al.29 To represent actuator loss of effectiveness and disturbance, a diagonal matrix Λ and a
vector du, respectively, are introduced in the model (34) as

ẋ = Ax + BuΛu + Budu = Ax + Bvvs + Bvd, (35)

vs = BΛu + d, d = Bdu, Bu = BvB, Bv = [03×2 I3×3]T .

A sinusoidal function with amplitude of 0.1 and frequency of 1 rad/s is considered as the disturbance d in the simula-
tion. Saturation limits are calculated as M1 = 1.4, M2 = 1.4 and M3 = 0.3. Furthermore, the maximum and minimum
range of the elements of 𝜃v for the projection algorithm are taken as 𝜃v1,1 ∈ [−0.0129, 0.0129], 𝜃v1,2 ∈ [0.0307, 0.5225],
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F I G U R E 2 Validation of the inequality (31)
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F I G U R E 3 Time evolution of the aircraft states and the references, in the presence of actuator uncertainty. At t = 7 s, t = 18 s and
t = 27 s, 15%, 30%, and 35%–70% losses of effectiveness are introduced, respectively.

𝜃v1,3 ∈ [−0.1357, 0.1371], 𝜃v1,4 ∈ [−0.212, 0], 𝜃v2,1 ∈ [−0.3149,−0.1113], 𝜃v2,2 ∈ [−0.217,−0.1416], 𝜃v2,3 ∈ [−0.0241, 0.2363],
𝜃v2,4 ∈ [−0.4162,−0.01], 𝜃v3,1 ∈ [0.1587, 0.1977], 𝜃v3,2 ∈ [0.0673, 0.0675], 𝜃v3,3 ∈ [−0.001, 0.001], and 𝜃v3,4 ∈
[−1.2755,−0.7641] (see Tohidi et al.40 for how these values can be calculated). The proposed sliding mode controller
is implemented using 𝜆 = 3 (see (26)). To avoid chattering, the boundary layer approach64 is used. The actuator loss of
effectiveness is modeled as

Λ(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

diag(1, 1, 1, 1) for t ≤ 7,
diag(0.85, 0.85, 0.85, 0.85) for 7 < t ≤ 18,
diag(0.7, 0.7, 0.7, 0.7) for 18 < t ≤ 27,
diag(0.65, 0.6, 0.65, 0.3) for 27 < t.

Since A1,1 in the ADMIRE model has distinct real eigenvalues, we can use Corollary 1, which requires (31) to be satisfied.
The reference signals are chosen as

ri(t) = 𝛾i

(
1

1 + e−4(t−3) −
1

1 + e−4(t−10) +
1

1 + e−4(t−15) −
1

1 + e−4(t−20)

)

+ �̂� i

(
1

1 + e−4(t−25) −
1

1 + e−4(t−30)

)

, i = 1, 2, 3,

(36)
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F I G U R E 4 Time evolution of the control surfaces
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F I G U R E 5 Control allocation performance

F I G U R E 6 The evolution of the sliding surfaces
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F I G U R E 7 The case when the inequality (31) is not satisfied
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F I G U R E 8 Time evolution of the states when (31) is violated

where 𝛾1 = 0.37, 𝛾2 = 0.26, 𝛾3 = 0.08, �̂�1 = 0.14, �̂�2 = 0.12 and �̂�3 = 0.06. It is seen in Figure 2 that the inequality (31) is
satisfied for i = 1, 2, 3.

Figure 3 illustrates the time evolution of the states when 15% actuator loss of effectiveness occurs at t = 7 s, 30%
at t = 18 s and 35%–70% at t = 27 s. The states remain bounded and p, q, and r follow the reference signals. Figure 4
demonstrates the control surface deflections together with the saturation limits. The actuators stay within their limits. The
performance of the control allocation is depicted in Figure 5. It shows that the control allocation determines the actuator
input vector u in such a way that BΛu + d follows the control signal vs. Figure 6 shows the sliding surface trajectories,
which tend to grow at the times of uncertainty injections but converge to a neighborhood of zero afterwards, without any
chattering effect.

In order to show the robustness of the proposed method, we examine the case where the inequality (31) is violated.
The violation is realized by setting the parameters 𝛾is and �̂� is in (36) to 𝛾1 = 0.4, 𝛾2 = 0.35, 𝛾3 = 0.09, �̂�1 = 0.14, �̂�2 = 0.12
and �̂�3 = 0.06. It is seen in Figure 7 that the inequality (31) is violated by W2. Figures 8–11 illustrate that even though (31)
is not satisfied, the system remains stable, while tracking its references. Thus the controller is able to provide reasonable
performance even when the inequality (31), which is a sufficient condition, is violated; the investigation of additional
sufficient conditions, motivated by our simulation-based observations of the method’s robustness, is left as a topic for
continuing research.
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F I G U R E 9 Time evolution of the control surfaces when (31) is violated
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F I G U R E 10 Control allocation performance when (31) is violated. Control allocation signal vs does not saturate, and therefore vs = v
(see Figure 1).

F I G U R E 11 The evolution of the sliding surfaces when (31) is violated
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5 SUMMARY

In this paper, a sliding mode controller with a time-varying sliding surface is proposed to complement an adaptive control
allocator for uncertain over-actuated systems with actuator saturation. Stability of the overall closed-loop system is shown
using Lyapunov arguments. Simulation results with the ADMIRE model show the effectiveness of the proposed method.
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APPENDIX . PROOF OF LEMMA 2

Rewriting (26) using the matrices in (16), we have

⎡
⎢
⎢
⎢
⎣

v1(t)
⋮

v𝓁(t)

⎤
⎥
⎥
⎥
⎦

= −
⎡
⎢
⎢
⎢
⎣

a21,1 · · · a21,(n−𝓁)

⋮ ⋱ ⋮

a2𝓁,1 · · · a2𝓁,(n−𝓁)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x(1)1 (t)
⋮

x(1)n−𝓁(t)

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

a21,(n−𝓁+1) · · · a21,n

⋮ ⋱ ⋮

a2𝓁,(n−𝓁+1) · · · a2𝓁,n

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x(2)1 (t)
⋮

x(2)𝓁 (t)

⎤
⎥
⎥
⎥
⎦

− 𝜆e−𝜆t

⎡
⎢
⎢
⎢
⎣

x(2)1 (0)
⋮

x(2)𝓁 (0)

⎤
⎥
⎥
⎥
⎦

+ 2
𝜋

tan−1(𝜆t)
⎡
⎢
⎢
⎢
⎣

ṙ1(t)
⋮

ṙ𝓁(t)

⎤
⎥
⎥
⎥
⎦

+ 2
𝜋

𝜆

1 + 𝜆
2
t2

⎡
⎢
⎢
⎢
⎣

r1(t)
⋮

r𝓁(t)

⎤
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1(t) 0 0 · · · 0
0 s2(t) 0 · · · 0
⋮ ⋮ ⋱ · · · ⋮

0 · · · 0 s𝓁−1(t) 0
0 · · · 0 0 s𝓁(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜌1

⋮

𝜌𝓁

⎤
⎥
⎥
⎥
⎦

, (A1)

where a2i,j , i = 1, … ,𝓁, j = 1, … ,n − 𝓁 are the elements of A2,1, and a2i,j , i = 1, ...,𝓁, j = n − 𝓁 + 1, ...,n are the elements
of A2,2. Also, x(2)i , ri, ṙi and 𝜌i, i = 1, ...,𝓁 are the elements of the vectors x(2), r, ṙ, and 𝜌, respectively, and si are the ith
diagonal element of signv

(
s(x(2)(t), x(2)(0), t)

)
. Thus,

vi(t) = −
n−𝓁∑

j=1
a2i,j x

(1)
j (t) −

n∑

j=n−𝓁+1
a2i,j x

(2)
j−n+𝓁(t) − 𝜆x(2)i (0)e

−𝜆t + 2
𝜋

ṙi(t)tan−1(𝜆t) + 2
𝜋

ri(t)
𝜆

1 + 𝜆
2
t2
− si(t)𝜌i. (A2)

To ensure that |vi| ≤ Mi for i = 1, … ,𝓁, the inequality

|
|
|
|
|
|

−
n−𝓁∑

j=1
a2i,j x

(1)
j (t) −

n∑

j=n−𝓁+1
a2i,j x

(2)
j−n+𝓁(t) − 𝜆x(2)i (0)e

−𝜆t + 2
𝜋

ṙi(t)tan−1(𝜆t) + 2
𝜋

ri(t)
𝜆

1 + 𝜆
2
t2
− si(t)𝜌i

|
|
|
|
|
|

≤ Mi, (A3)

should be satisfied for all i = 1, ...,𝓁.
By considering the elements of Φ(t, t0) as 𝜙i,j(t), i = 1, ...,n − 𝓁, j = 1, ...,n − 𝓁, with t0 = 0, and substituting these in

(23), we have

⎡
⎢
⎢
⎢
⎣

x(1)1 (t)
⋮

x(1)n−𝓁(t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜙1,1(t) · · · 𝜙1,(n−𝓁)(t)
⋮ · · · ⋮

𝜙(n−𝓁),1(t) · · · 𝜙(n−𝓁),(n−𝓁)(t)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x(1)1 (0)
⋮

x(1)n−𝓁(0)

⎤
⎥
⎥
⎥
⎦

+
∫

t

0

⎡
⎢
⎢
⎢
⎣

𝜙1,1(t − 𝜂) · · · 𝜙1,(n−𝓁)(t − 𝜂)
⋮ · · · ⋮

𝜙(n−𝓁),1(t − 𝜂) · · · 𝜙(n−𝓁),(n−𝓁)(t − 𝜂)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

g1(𝜂)
⋮

gn−𝓁(𝜂)

⎤
⎥
⎥
⎥
⎦

d𝜂. (A4)
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Remembering that g(t) ≡ G1e−𝜆(t−t0) + G2(t), with G1 ≡ A1,2x(2)(t0), and G2(t) ≡ 2
𝜋

A1,2r(t)tan−1(𝜆(t − t0)), the elements of
the vector g(t) can be written as

⎡
⎢
⎢
⎢
⎣

g1(t)
⋮

gn−𝓁(t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a11,(n−𝓁+1) · · · a11,n

⋮ ⋱ ⋮

a1(n−𝓁),(n−𝓁+1) · · · a1(n−𝓁),n

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x(2)1 (0)
⋮

x(2)𝓁 (0)

⎤
⎥
⎥
⎥
⎦

e−𝜆t + 2
𝜋

tan−1(𝜆t)
⎡
⎢
⎢
⎢
⎣

a11,(n−𝓁+1) · · · a11,n

⋮ ⋱ ⋮

a1(n−𝓁),(n−𝓁+1) · · · a1(n−𝓁),n

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

r1(t)
⋮

r𝓁(t)

⎤
⎥
⎥
⎥
⎦

. (A5)

Substituting (A5) into (A4), the ith element of the vector x(1)(t) can be written as

x(1)i (t) =
n−𝓁∑

j=1
𝜙i,j(t)x(1)j (0) + ∫

t

0

(n−𝓁∑

j=1
𝜙i,j(t − 𝜂)

[ n∑

k=n−𝓁+1
a1j,k

(

x(2)k−n+𝓁(0)e
−𝜆𝜂 + rk−n+𝓁(𝜂)

2
𝜋

tan−1(𝜆𝜂)
)
])

d𝜂, i = 1, ...,n − 𝓁,

(A6)

where a1j,k refer to the elements of A1. Substituting (A6) and the elements of x(2) (see (19)) in (A3), we have

|vi(t)| =
|
|
|
|
|
|

−
n−𝓁∑

𝜔=1

n−𝓁∑

j=1
a2i,𝜔𝜙𝜔,j(t)x

(1)
j (0)

−
∫

t

0

(n−𝓁∑

𝜔=1

n−𝓁∑

j=1
a2i,𝜔𝜙𝜔,j(t − 𝜂)

[ n∑

k=n−𝓁+1
a1j,k

(

x(2)k−n+𝓁(0)e
−𝜆𝜂 + rk−n+𝓁(𝜂)

2
𝜋

tan−1(𝜆𝜂)
)
])

d𝜂

−
n∑

j=n−𝓁+1
a2i,j

(

x(2)j−n+𝓁(0)e
−𝜆t + 2

𝜋

rj−n+𝓁(t)tan−1(𝜆t)
)

− 𝜆xn−𝓁+i(0)e−𝜆t + 2
𝜋

ṙi(t)tan−1(𝜆t) + 2
𝜋

ri(t)
𝜆

1 + 𝜆
2
t2
− si(x(t))𝜌i

|
|
|
|
|

≤ Mi, (A7)

for i = 1, ...,𝓁. Using the triangle inequality, (30) is obtained.

A.1 Proof of Corollary 1
The proof follows the same steps of the proof of Lemma 2 until (A6).

Substituting 𝜙i,j(t) =
∑n
𝜅=1ci,j

𝜅

e−hi,j
𝜅

t into (A6), we obtain that

x(1)i (t) =
n−𝓁∑

j=1

( n∑

𝜅=1
ci,j

𝜅

e−hi,j
𝜅

t

)

x(1)j (0)

+
∫

t

0

(n−𝓁∑

j=1

( n∑

𝜅=1
ci,j

𝜅

e−hi,j
𝜅

(t−𝜂)

)[ n∑

k=n−𝓁+1
a1j,k

(

x(2)k−n+𝓁(0)e
−𝜆𝜂 + rk−n+𝓁(𝜂)

2
𝜋

tan−1(𝜆𝜂)
)
])

d𝜂

=
n−𝓁∑

j=1

n∑

𝜅=1
ci,j

𝜅

e−hi,j
𝜅

tx(1)j (0) + ∫

t

0

n−𝓁∑

j=1

n∑

𝜅=1

n∑

k=n−𝓁+1
ci,j

𝜅

e−hi,j
𝜅

(t−𝜂)a1j,k

(

x(2)k−n+𝓁(0)e
−𝜆𝜂 + rk−n+𝓁(𝜂)

2
𝜋

tan−1(𝜆𝜂)
)

d𝜂

=
n−𝓁∑

j=1

n∑

𝜅=1
ci,j

𝜅

e−hi,j
𝜅

tx(1)j (0) +
n−𝓁∑

j=1

n∑

𝜅=1

n∑

k=n−𝓁+1

(

∫

t

0
ci,j

𝜅

e−hi,j
𝜅

(t−𝜂)a1j,k x(2)k−n+𝓁(0)e
−𝜆𝜂d𝜂

+
∫

t

0
ci,j

𝜅

e−hi,j
𝜅

(t−𝜂)a1j,k rk−n+𝓁(𝜂)
2
𝜋

tan−1(𝜆𝜂)d𝜂
)

, i = 1, ...,n − 𝓁. (A8)
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Substituting (19) with t0 = 0 and (A8) in (A3), we get

|vi(t)| =
|
|
|
|
|
|

−
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1
a2i,𝜔c

𝜔,j
𝜅

e−h
𝜔,j
𝜅

tx(1)j (0) −
n−𝓁∑

𝜔=1

n−𝓁∑

j=1

n∑

𝜅=1

n∑

k=n−𝓁+1

(

∫

t

0
a2i,𝜔c

𝜔,j
𝜅

e−h
𝜔,j
𝜅

(t−𝜂)a1j,k x(2)k−n+𝓁(0)e
−𝜆𝜂d𝜂

+
∫

t

0
a2i,𝜔c

𝜔,j
𝜅

e−h
𝜔,j
𝜅

(t−𝜂)a1j,k rk−n+𝓁(𝜂)
2
𝜋

tan−1(𝜆𝜂)d𝜂
)

−
n∑

j=n−𝓁+1
a2i,j

(

x(2)i (0)e
−𝜆t + 2

𝜋

ri(t)tan−1(𝜆t)
)

− 𝜆xn−𝓁+i(0)e−𝜆t + 2
𝜋

ṙi(t)tan−1(𝜆t) + 2
𝜋

ri(t)
𝜆

1 + 𝜆
2
t2
− si(x(t))𝜌i

|
|
|
|
|

≤ Mi, i = 1, ...,𝓁. (A9)

Defining q
𝜔,j

𝜅

(t) as

q
𝜔,j

𝜅

(t) =
∫

t

0
e−h

𝜔,j
𝜅

(t−𝜂)e−𝜆𝜂d𝜂 =
⎧
⎪
⎨
⎪
⎩

te−h
𝜔,j
𝜅

t
, 𝜆 = h

𝜔,j
𝜅

,

e−𝜆t−e−h
𝜔,j
𝜅

t

h
𝜔,j
𝜅

−𝜆
, 𝜆 ≠ h

𝜔,j
𝜅

,

(A10)

remembering that si is either 1 or −1, and using the triangle inequality, we can rewrite (A9) as (31).
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