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Abstract

One solution to the problem of distributing the control action among redundant actu-
ators with uncertain dynamics is employing an adaptive control allocator. This paper
proposes a sliding mode controller which exploits a time-varying sliding surface to
complement adaptive control allocation in the presence of actuator saturation. The
proposed approach does not require error augmentation for tracking desired refer-
ences, which diminishes the computational burden. Aerodata Model in Research
Environment (ADMIRE), which is an over-actuated aircraft model, is adopted to
demonstrate the efficacy of the proposed controller in simulation studies.

KEYWORDS:
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1 INTRODUCTION

Redundancy in actuators is beneficial for improving functionality and fault tolerance of engineered systems. Such systems require
an algorithm to distribute control signals among redundant actuators, which is referred to as control allocation. Systems where
control allocation is employed include aircraft/spacecraft,1,2,3,4,5,6,7,8,9,10 marine vessels,11,12,13,14,15,16 automobiles,17,18,19,20

robots,21 and power systems.22,23

Control allocation methods can be categorized into the following categories: Pseudo-inverse-based methods, optimization-
based methods, and dynamic control allocation. Pseudo-inverse-based control allocation methods24,25,26,27 rely on manipulating
the null space of the control input matrix, and have the lowest computational complexity. Optimization-based control alloca-
tion methods28,29,30,31,32,33 solve an optimization problem at each time instant and can be computationally intense. In dynamic
control allocation methods,34,35,36,37,38,39,40 the control signals are distributed among actuators using a set of rules dictated by
differential equations. A survey of control allocation methods can be found in Johansen et al.41 In the presence of actuator uncer-
tainty, the pseudo-inverse and optimization-based control allocation methods require fault detection and identification as well
as persistency of excitation assumption for the input signals. Adaptive control allocation methods35,36,37,40 on the other hand,
can handle actuator uncertainties without the need for fault identification or persistency of excitation assumption.

Actuator limits can induce nonlinear behavior and lead to performance degradation, limit cycles, multiple equilibria, and even
instability.42,32,6,10 Several control allocation methods have been proposed in the literature that can handle actuator saturation.
These include direct control allocation,24 daisy chaining,43 pseudo-inverse-based control allocation,44 and iterative approaches
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that use the null space of the control input matrix.27 Optimization-based control allocation is another commonly used method
of accounting for actuator magnitude and rate constraints.28,29,31,13,1,6,45,46 Furthermore, a control allocation approach by Naderi
et al,47 employs model predictive control to handle actuator magnitude constraints. In order to allocate control signals in the
presence of uncertainty as well as actuator constraints, an adaptive control allocator for constrained systems has been developed
by Tohidi et al.38,40 An adaptive control allocator which exploits a modified projection algorithm to handle magnitude and rate
constraints in over-actuated systems is proposed by Tohidi et al.48

Although control allocation methods enable modularity for the overall control system design, as they separate the generation
of the control signal and its distribution, control allocation errors can be significant in transients and degrade the performance.
In vehicle and flight applications, the goal of the control allocation is to match the commanded (𝑣) and the actual (𝐵𝑢) con-
trol moments∕forces, where 𝑢 designates a vector of actuator positions. However, the equality 𝐵𝑢 = 𝑣 may not be satisfied
in the case of dynamic methods in transients or in the case of optimization-based methods if time to compute the solution
online is insufficient. This transient control allocation error may not be negligible especially in the presence of actuator lim-
its. Therefore, the controller must be designed to be robust to the control allocation error, as well as external disturbances.
The robustness characteristics of the sliding mode control has motivated its use in combination with many control allocation
implementations.26,49,50

An approach that employs a sliding mode controller together with a model predictive controller (MPC) has been considered
to handle actuator constraints.51,52,53,54 However, this combination leads to high computational complexity due to the need to
solve an optimization problem online. Various other sliding mode control approaches have also been proposed which handle
the constraints without using MPC.55,56,57,58 However, these methods are developed for single input systems, unlike the one
proposed in our paper for over-actuated systems.

Inspired by the work of Corradini et al.59 this paper proposes a sliding mode controller with a time-varying sliding surface
which guarantees stability and tracking, and which is robust not only to bounded disturbances but also to the adaptive control
allocation error. Different from the work of Corradini et al,59 the proposed controller solves the tracking problem in over-actuated
constrained systems, in the presence of adaptive control allocation transients and disturbances, and in a simpler way by requiring
only one design parameter. To the best of the authors knowledge, controllers that are robust to both the adaptive control allocator
error and to external disturbances have not been proposed in the prior literature.

The initial results of this study were published in a conference paper by Tohidi et. al.60 Differently from the conference
version, this paper contains i) lemma and theorem proofs, ii) corollaries, detailed discussions and guidance regarding the initial
condition selections, iii) simulation studies demonstrating the robustness of the controller even when sufficient conditions do
not hold, and iv) discussions about the projection algorithm and the control allocation convergence set.

This paper is organized as follows. Section 2 describes the problem of controlling an over-actuated uncertain system in the
presence of an adaptive control allocator. Section 3 presents the sliding mode controller design. The ADMIRE model is used in
Section 4 to demonstrate the effectiveness of the proposed approach in the simulation environment. Finally, a summary is given
in Section 5.

2 PROBLEM STATEMENT AND PRELIMINARIES

We consider the adaptive control allocation setting in Figure 1 and the following Plant dynamics,40

�̇� = 𝐴𝑥 + 𝐵𝑢(Λ𝑢 + 𝑑𝑢), (1)

where 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 = [𝑢1, ..., 𝑢𝑚]𝑇 ∈ ℝ𝑚 is the actuator input vector whose elements are constrained as
𝑢𝑖 ∈ [−𝑢max𝑖 , 𝑢max𝑖], 𝐴 ∈ ℝ𝑛×𝑛 is a known state matrix, 𝐵𝑢 ∈ ℝ𝑛×𝑚 is a known input matrix and 𝑑𝑢 ∈ ℝ𝑚 is an unknown bounded
disturbance input. The matrix Λ ∈ ℝ𝑚×𝑚 is assumed to be diagonal with positive elements representing actuator effectiveness
uncertainty. It is assumed that the pair (𝐴,𝐵𝑢Λ) is controllable. Due to actuator redundancy, the input matrix is rank deficient,
that is Rank(𝐵𝑢) = 𝓁 < 𝑚. Consequently, 𝐵𝑢 can be written as 𝐵𝑢 = 𝐵𝑣𝐵, where 𝐵𝑣 ∈ ℝ𝑛×𝓁 is a full column rank matrix,
i.e. Rank(𝐵𝑣) = 𝓁, and 𝐵 ∈ ℝ𝓁×𝑚. The decomposition of 𝐵𝑢 helps exploit the actuator redundancy using control allocation.
Employing this decomposition, (1) can be rewritten as

�̇� = 𝐴𝑥 + 𝐵𝑣(𝐵Λ𝑢 + 𝑑), (2)
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Actuators with

 saturation limits

FIGURE 1 Block diagram of the closed loop system.

where 𝑑(𝑡) = 𝐵𝑑𝑢(𝑡) with an upper bound ||𝑑(𝑡)|| ≤ 𝐷, for all 𝑡 ≥ 0. Throughout this paper, ||.|| refers to the Euclidean norm
for vectors and induced 2-norm for matrices. The control allocation task is to achieve

𝐵Λ𝑢 + 𝑑 = 𝑣𝑠, (3)

where 𝑣𝑠 ∈ ℝ𝓁 is the output of the saturation block, which is receiving the control signal 𝑣 as the input. (See Figure 1).
Considering the following dynamics,

�̇� = 𝐴𝑚𝑦 + 𝐵Λ𝑢 + 𝑑 − 𝑣𝑠, (4)
where 𝐴𝑚 ∈ ℝ𝓁×𝓁 is a stable matrix, a reference model is constructed as

�̇�𝑚 = 𝐴𝑚𝑦𝑚. (5)

Defining the actuator input as a mapping from 𝑣𝑠 to 𝑢,

𝑢 = 𝜃𝑇𝑣 𝑣𝑠, (6)

where 𝜃𝑣 ∈ ℝ𝓁×𝑚 represents the adaptive parameter matrix to be determined, and substituting (6) into (4), we obtain

�̇� = 𝐴𝑚𝑦 + (𝐵Λ𝜃𝑇𝑣 − 𝐼𝓁)𝑣𝑠 + 𝑑, (7)

where 𝐼𝓁 is an identity matrix of dimension 𝓁 × 𝓁. It is assumed that there exists an ideal matrix 𝜃∗𝑣 such that

𝐵Λ𝜃∗𝑣
𝑇 = 𝐼𝓁 . (8)

Defining 𝑒 = 𝑦 − 𝑦𝑚 and subtracting (5) from (7), it follows that

�̇� = 𝐴𝑚𝑒 + 𝐵Λ𝜃𝑇𝑣 𝑣𝑠 + 𝑑, (9)

where 𝜃𝑣 = 𝜃𝑣 − 𝜃∗𝑣 .

Theorem 1. Consider (4) and (5). Suppose that the adaptive parameter matrix is updated using the adaptive law,

�̇�𝑣(𝑡) = Γ𝜃Proj
(

𝜃𝑣(𝑡),−𝑣𝑠(𝑡)𝑒𝑇 (𝑡)𝑃𝐵, 𝑓
)

, (10)

where the symmetric positive definite matrix 𝑃 satisfies 𝐴𝑇
𝑚𝑃 +𝑃𝐴𝑚 = −𝑄, 𝑄 is a symmetric positive definite matrix, “Proj" is

the projection operator61,48 with a convex function 𝑓 ∈ 𝐶1, and Γ𝜃 = 𝛾𝜃𝐼𝓁 , where 𝛾𝜃 is a positive scalar. Then, given any initial
condition 𝑒(0) ∈ ℝ𝓁 , 𝑒(𝑡) and 𝜃𝑣(𝑡) remain uniformly bounded for all 𝑡 ≥ 0 and their trajectories converge exponentially to the set

𝐸1 = {(𝑒, 𝜃𝑣) ∶ ||𝑒||2 ≤

(

𝑠𝜃2max

𝛾𝜃𝜆min(𝑄)
+

2𝜒4𝐷2
||𝑄||

2

𝜎2𝜆min(𝑄)2

)

4𝑠𝜒2
||𝑄||

𝜎𝜆min(𝑄)
, ||𝜃𝑣|| ≤ 𝜃𝑚𝑎𝑥}, (11)

where 𝑠 = −min𝑖(𝜆𝑖(𝐴𝑚 + 𝐴𝑇
𝑚)∕2), 𝜎 = −max𝑖(Real(𝜆𝑖(𝐴𝑚))), 𝜒 = 3

2
(1 + 4 𝑎

𝜎
)(𝓁−1), 𝑎 = ||𝐴𝑚|| and ||𝜃𝑣(𝑡)||𝐹 ≤ 𝜃𝑚𝑎𝑥 ≡

√
∑

𝑖,𝑗
(𝜃𝑚𝑎𝑥𝑖,𝑗 − 𝜃𝑚𝑖𝑛𝑖,𝑗 − 𝜁𝑖,𝑗)2. In addition, if 𝑑(𝑡) = 0 for 𝑡 ≥ 𝑡′ for some 𝑡′ ≥ 0, and 𝑣𝑠(𝑡) is uniformly continuous as a function

of 𝑡 ∈ [𝑡′,+∞), then lim𝑡→∞ 𝐵Λ𝑢(𝑡) = 𝑣𝑠(𝑡), i.e., (3) is achieved asymptotically.

Proof. See Tohidi et al.40
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The projection algorithm61,48 employed in Theorem 1 exploits a continuous function Proj(𝜃𝑣𝑖,𝑗 , 𝑌𝑖,𝑗 , 𝑓 ) ∶ ℝ × ℝ ×  → ℝ
defined as

Proj(𝜃𝑣𝑖,𝑗 , 𝑌𝑖,𝑗 , 𝑓 ) ≡

{

𝑌𝑖,𝑗 − 𝑌𝑖,𝑗𝑓 (𝜃𝑣𝑖,𝑗 ) if 𝑓 (𝜃𝑣𝑖,𝑗 ) > 0 & 𝑌𝑖,𝑗(
𝑑𝑓

𝑑𝜃𝑣𝑖,𝑗
) > 0

𝑌𝑖,𝑗 otherwise,
(12)

where 𝑌𝑖,𝑗 is equal to �̇�𝑣𝑖,𝑗 before being projected and 𝑓 (.) ∈  (ℝ → ℝ) is a convex and continuously differentiable (𝐶1) function
given as

𝑓 (𝜃𝑣𝑖,𝑗 ) =
(𝜃𝑣𝑖,𝑗 − 𝜃𝑚𝑖𝑛𝑖,𝑗 − 𝜁𝑖,𝑗)(𝜃𝑣𝑖,𝑗 − 𝜃𝑚𝑎𝑥𝑖,𝑗 + 𝜁𝑖,𝑗)

(𝜃𝑚𝑎𝑥𝑖,𝑗 − 𝜃𝑚𝑖𝑛𝑖,𝑗 − 𝜁𝑖,𝑗)𝜁𝑖,𝑗
, (13)

and where 𝜁𝑖,𝑗 is the projection tolerance of the (𝑖, 𝑗)th element of 𝜃𝑣, which satisfies 0 < 𝜁𝑖,𝑗 < 0.5(𝜃𝑚𝑎𝑥𝑖,𝑗 − 𝜃𝑚𝑖𝑛𝑖,𝑗 ). 𝜃𝑚𝑎𝑥𝑖,𝑗 and
𝜃𝑚𝑖𝑛𝑖,𝑗 are the upper and lower bound of the (𝑖, 𝑗)th element of 𝜃𝑣. A step by step method for the determination of the projection
bounds is given at Tohidi et al.40

By substituting (6) and (8) into (2), it follows that

�̇� = 𝐴𝑥 + 𝐵𝑣(𝐵Λ𝑢 + 𝑑)
= 𝐴𝑥 + 𝐵𝑣(𝐵Λ𝜃𝑇𝑣 𝑣𝑠 + 𝑑)
= 𝐴𝑥 + 𝐵𝑣(𝐼 + 𝐵Λ𝜃𝑇𝑣 )𝑣𝑠 + 𝐵𝑣𝑑. (14)

Defining Δ𝐵(𝑡) ≡ 𝐵Λ𝜃𝑇𝑣 (𝑡), and substituting in (14), it follows that
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑣𝑠(𝑡) + 𝑑(𝑡)), (15)

where 𝑑(𝑡) = Δ𝐵(𝑡)𝑣𝑠(𝑡) + 𝑑(𝑡) ∈ ℝ𝓁 is the sum of the disturbance and the control allocation error. Therefore, the controller to
be designed should be robust to both the disturbances and the control allocation errors. It is noted that since Δ𝐵(𝑡), 𝑣𝑠(𝑡) and
𝑑(𝑡) are bounded, 𝑑(𝑡) is also bounded.

Thus far, we introduced the plant dynamics with constrained uncertain actuators, the adaptive control allocation algorithm,
and the resulting system dynamics (15) after the inclusion of the control allocator. What remains to be done is the design of
a controller that generates the signal 𝑣 (see Figure 1). The controller needs to be robust to the control allocation error and the
disturbances, in the presence of a software saturation. Note that software saturation is needed for the adaptive control allocator to
provide a stable performance. In the proceeding sections, a sliding mode controller that satisfies these requirements is presented.

3 CONTROLLER DESIGN

In this section, a design procedure for the controller that generates the virtual control signal 𝑣 is proposed (see Figure 1).
The following two assumptions are made:

Assumption 1. The dynamics in (15) can be written as
[

�̇�(1)

�̇�(2)

]

=
[

𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

] [

𝑥(1)

𝑥(2)

]

+ 𝐵𝑣(𝑣𝑠 + 𝑑), (16)

where 𝐴1,1 ∈ ℝ(𝑛−𝓁)×(𝑛−𝓁) is a Hurwitz matrix, 𝐴1,2 ∈ ℝ(𝑛−𝓁)×𝓁 , 𝐴2,1 ∈ ℝ𝓁×(𝑛−𝓁) and 𝐴2,2 ∈ ℝ𝓁×𝓁 are parts of the state matrix,
and 𝑥(1) ∈ ℝ(𝑛−𝓁) and 𝑥(2) ∈ ℝ𝓁 constitute the state vector. It is noted that the elements of the state matrix, 𝐴𝑖,𝑗 , 𝑖 = 1, 2, 𝑗 = 1, 2,
are known. We are interested in the vector 𝑥(2) as the system output 𝑦. Therefore,

𝑦 = 𝐶
[

𝑥(1)

𝑥(2)

]

, (17)

where 𝐶 = [0𝓁×(𝑛−𝓁) 𝐼𝓁].

Assumption 2. The matrix 𝐵𝑣 ∈ ℝ𝑛×𝓁 is in the form [0𝓁×(𝑛−𝓁) 𝐼𝓁]𝑇 .

Remark 1. Although the proposed controller can be applied to other dynamical systems satisfying Assumptions 1 and 2, the
above assumptions are justified for typical aircraft models,2,62 which are the main focus of this paper. In the simulation section,
these assumptions are validated for the AeroData Model in Research Environment (ADMIRE).29,1
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Remark 2. For systems where Assumption 2 does not hold, given that 𝐵𝑣 has full column rank, it is possible to find a trans-
formation matrix, 𝑇𝐵 , such that �̂�𝑣 = 𝑇𝐵𝐵𝑣 = [0𝓁×(𝑛−𝓁) 𝐼𝓁]𝑇 .59,63 However, employing this transformation may lead to a state
space realization which violates Assumption 1.

Remark 3. Since 𝐴1,1 is assumed to be Hurwitz, showing that the states 𝑥(2) are bounded will be sufficient to demonstrate the
boundness of 𝑥(1).

3.1 Time Varying Sliding Surface
The sliding surface, inspired by59, is given as

𝑠(𝑥(2)(𝑡), 𝑥(2)(𝑡0), 𝑡) = 𝑥(2)(𝑡) − 𝑥(2)(𝑡0)𝑒−�̄�(𝑡−𝑡0) −
2
𝜋
𝑟(𝑡)tan−1(�̄�(𝑡 − 𝑡0)

)

= 0, (18)

where �̄� > 0 is a scalar parameter, 𝑥(2) ∈ ℝ𝓁 is defined in (16), and 𝑟(𝑡) ∈ ℝ𝓁 is the twice continuously differentiable (𝐶2)
reference to be tracked.

The response of a system controlled by a sliding mode controller includes two phases.64 The first phase is called the reaching
phase. During this phase, the controller drives the system towards the sliding surface. In the second phase, which is called the slid-
ing phase, the trajectories evolve on the sliding manifold. For the sliding surface (18), no reaching phase exists since the sliding
surface is a function of the initial condition and the trajectories are on the sliding surface at 𝑡 = 𝑡0, i.e. 𝑠(𝑥(2)(𝑡), 𝑥(2)(𝑡0), 𝑡0) = 0.
These types of sliding surfaces belong to the family of integral sliding surfaces.65 Below, we analyze the behavior of the system
trajectories on the sliding surface and show that the trajectories remain on the sliding surface for all 𝑡 ≥ 𝑡0.

3.2 Motion on the sliding surface
Using (18), the trajectories of 𝑥(2) on the sliding surface satisfy

𝑥(2)(𝑡) = 𝑥(2)(𝑡0)𝑒−�̄�(𝑡−𝑡0) +
2
𝜋
𝑟(𝑡)tan−1(�̄�(𝑡 − 𝑡0)

)

. (19)

Substituting (19) into (16), it follows that

�̇�(1) = 𝐴1,1𝑥
(1) + 𝐴1,2

(

𝑥(2)(𝑡0)𝑒−�̄�(𝑡−𝑡0) +
2
𝜋
𝑟(𝑡)tan−1 (�̄�(𝑡 − 𝑡0)

)

)

. (20)

By defining 𝐺1 ≡ 𝐴1,2𝑥(2)(𝑡0), and 𝐺2(𝑡) ≡
2
𝜋
𝐴1,2𝑟(𝑡) tan−1(�̄�(𝑡 − 𝑡0)), (20) can be rewritten as

�̇�(1) = 𝐴1,1𝑥
(1) + 𝐺1𝑒

−�̄�(𝑡−𝑡0) + 𝐺2(𝑡) = 𝐴1,1𝑥
(1) + 𝑔(𝑡), (21)

where 𝑔(𝑡) ≡ 𝐺1𝑒−�̄�(𝑡−𝑡0) + 𝐺2(𝑡).

Lemma 1. When 𝑥(2)(𝑡) is on the sliding surface (18), ||𝑥(1)(𝑡)|| ≤ 𝑘�̄�(1)(𝑡0) + 𝐾2�̄�(2)(𝑡0) + 𝐾2�̄�, where 𝐾2 = 𝑘
𝜉
||𝐴1,2||, 𝑘

and 𝜉 are positive constants, and �̄�(1)(𝑡0), �̄�(2)(𝑡0) and �̄� are the upper bounds of ||𝑥(1)(𝑡0)||, ||𝑥(2)(𝑡0)|| and ||𝑟(𝑡)||, respectively.
Furthermore, lim𝑡→∞ 𝑦(𝑡) = 𝑟(𝑡).

Proof. Per Assumption 1, 𝐴1,1 is Hurwitz, hence the homogeneous system �̇�(1)ℎ (𝑡) = 𝐴1,1𝑥
(1)
ℎ (𝑡) is globally exponentially stable

at the origin. The solution of this system is given as 𝑥(1)ℎ (𝑡) = Φ(𝑡, 𝑡0)𝑥
(1)
ℎ (𝑡0), where Φ(𝑡, 𝑡0) is the state transition matrix and

there exist constants 𝑘 > 0 and 𝜉 > 0 such that

||Φ(𝑡, 𝑡0)|| ≤ 𝑘𝑒−𝜉(𝑡−𝑡0), ∀𝑡 ≥ 𝑡0, (22)

where 𝜉 = 1
2||𝑋||

, 𝑘 =
√

||𝑋−1
||||𝑋|| and the positive definite matrix 𝑋 ∈ ℝ(𝑛−𝓁)×(𝑛−𝓁) satisfies the Lyapunov equation

𝐴𝑇
1,1𝑋 +𝑋𝐴1,1 = −𝐼𝑛−𝓁 .66

Since the state transition matrices of the dynamics �̇�(1)ℎ (𝑡) = 𝐴1,1𝑥
(1)
ℎ (𝑡) and �̇�(1)(𝑡) = 𝐴1,1𝑥(1)(𝑡) + 𝑔(𝑡) are the same, we use

the state transition matrix Φ(𝑡, 𝑡0) used in (22) to provide the solution of (21) as

𝑥(1)(𝑡) = Φ(𝑡, 𝑡0)𝑥(1)(𝑡0) +

𝑡

∫
𝑡0

Φ(𝑡, 𝜂)𝑔(𝜂)𝑑𝜂. (23)
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Taking the norm of both sides of (23) and using the triangle inequality, we obtain that

||𝑥(1)(𝑡)|| ≤ ||Φ(𝑡, 𝑡0)𝑥(1)(𝑡0)|| +

𝑡

∫
𝑡0

||Φ(𝑡, 𝜂)||||𝑔(𝑡)||𝑑𝜂. (24)

Using the definition of 𝑔(𝑡), given after (21), it follows that ||𝑔(𝑡)|| = ||𝐺1𝑒−�̄�𝑡 + 𝐺2(𝑡)|| ≤ ||𝐺1|| + sup𝑡≥𝑡0 ||𝐺2(𝑡)||. Note that,
since 𝐺2(𝑡) is a function of the reference input 𝑟(𝑡), sup𝑡≥𝑡0 ||𝐺2(𝑡)|| exists (see the definition of 𝐺2 given after (20)). Therefore,
||𝑔(𝑡)|| ≤ ||𝐴1,2||�̄�(2)(𝑡0) + ||𝐴1,2||�̄�. Defining 𝐾1 = ||𝐴1,2||�̄�(2)(𝑡0) + ||𝐴1,2||�̄�, and using (22), (24) can be rewritten as,

||𝑥(1)(𝑡)|| ≤ 𝑘�̄�(1)(𝑡0)𝑒−𝜉(𝑡−𝑡0) + 𝑘𝐾1

𝑡

∫
𝑡0

𝑒−𝜉(𝑡−𝜂)𝑑𝜂

≤ 𝑘�̄�(1)(𝑡0)𝑒−𝜉(𝑡−𝑡0) + 𝑘𝐾1
1
𝜉
(

1 − 𝑒−𝜉(𝑡−𝑡0)
)

≤ 𝑘�̄�(1)(𝑡0) + 𝑘𝐾1
1
𝜉

= 𝑘�̄�(1)(𝑡0) + 𝑘
(

||𝐴1,2||�̄�
(2)(𝑡0) + ||𝐴1,2||�̄�

) 1
𝜉

≤ 𝑘�̄�(1)(𝑡0) +𝐾2�̄�
(2)(𝑡0) +𝐾2�̄�, (25)

where 𝐾2 =
𝑘
𝜉
||𝐴1,2||, and �̄�(1)(𝑡0) and �̄�(2)(𝑡0) represent the upper bounds on ||𝑥(1)(𝑡0)|| and ||𝑥(2)(𝑡0)||, respectively. Since the

reference signal 𝑟(𝑡), 𝑥(1)(𝑡0) and 𝑥(2)(𝑡0) are bounded, (25) shows that 𝑥(1)(𝑡) is bounded. Since 𝑥(𝑡0) and 𝑟(𝑡) are bounded, it can
be shown, using (19), that 𝑥(2)(𝑡) is bounded and converges to 𝑟(𝑡). Since 𝑦 = 𝑥(2), this completes the proof.

3.3 Control Law
Figure 1 shows that once the control signal 𝑣 is generated by the controller, it is passed through a software saturation block,
whose output is represented by 𝑣𝑠. In this subsection, it is assumed that 𝑣𝑠 = 𝑣 to demonstrate that with the proposed control
law, trajectories stay on (18) and hence properties of Lemma 1 hold. This requires that 𝑣 always stays within saturation bounds.
A condition for this assumption to hold will be presented in the next subsection.

Definition 1. signv(𝑎), where 𝑎 is a column vector, is a diagonal matrix whose elements are the signs of the elements of the
vector 𝑎. For example, signv([𝑎1 𝑎2]𝑇 ) = diag(sign(𝑎1), sign(𝑎2)), where 𝑎1 and 𝑎2 are scalars.

Definition 2. |𝑎|v ≡ signv(𝑎)𝑎 and |𝑎𝑇 |v ≡ 𝑎𝑇 signv(𝑎), where 𝑎 is a column vector and sign𝑣(.) is defined in Definition 1. For
example, |[𝑎1 𝑎2]|v = [𝑎1 𝑎2]signv([𝑎1 𝑎2]𝑇 ) = [|𝑎1| |𝑎2|], where 𝑎1 and 𝑎2 are scalars.

Theorem 2. Consider the dynamics in (16) with the control law,

𝑣(𝑡) = −𝐴2,1𝑥
(1)(𝑡) − 𝐴2,2𝑥

(2)(𝑡) − �̄�𝑥(2)(0)𝑒−�̄�𝑡 + 2
𝜋
�̇�(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟(𝑡) �̄�

1 + �̄�2𝑡2
− signv

(

𝑠(𝑥(2)(𝑡), 𝑥(2)(0), 𝑡)
)

𝜌, (26)

where 𝜌 ∈ 𝑅𝑟 contains the absolute upper bounds of the elements of the disturbance vector 𝑑, and 𝑠(𝑥(2)(𝑡), 𝑥(2)(0), 𝑡) is the
sliding surface (18). Assume 𝑣𝑠(𝑡) = 𝑣(𝑡) for all 𝑡. Then, the trajectories of 𝑥(2) stay on the sliding surface (18).

Proof. Consider a Lyapunov function candidate 𝑉2(𝑠) = 1
2
𝑠𝑇 𝑠, where the arguments of 𝑠(𝑥(2)(𝑡), 𝑥(2)(𝑡0), 𝑡) are dropped for

clarity. By taking the time-derivative of 𝑉2 along the system trajectories, and using (18) with 𝑡0 = 0, we obtain

�̇�2 = 𝑠𝑇 �̇� = 𝑠𝑇
(

�̇�(2)(𝑡) + �̄�𝑥(2)(0)𝑒−�̄�𝑡 − 2
𝜋
�̇�(𝑡)tan−1(�̄�𝑡) − 2

𝜋
𝑟(𝑡) �̄�

1 + �̄�2𝑡2

)

. (27)

Using (16) and Assumption 2, we have �̇�(2)(𝑡) = 𝐴2,1𝑥(1)(𝑡) + 𝐴2,2𝑥(2)(𝑡) + 𝑣 + 𝑑. Therefore, (27) can be rewritten as

�̇�2 = 𝑠𝑇
(

𝐴2,1𝑥
(1)(𝑡) + 𝐴2,2𝑥

(2)(𝑡) + 𝑣 + 𝑑 + �̄�𝑥(2)(0)𝑒−�̄�𝑡 − 2
𝜋
�̇�(𝑡)tan−1(�̄�𝑡) − 2

𝜋
𝑟(𝑡) �̄�

1 + �̄�2𝑡2

)

. (28)

By substituting the control law (26) into (28), and using Definitions 1 and 2, it follows that

�̇�2 = 𝑠𝑇 [𝑑 − signv(𝑠)𝜌] = 𝑠𝑇 𝑑 − |𝑠𝑇 |v𝜌 ≤ |𝑠𝑇 |v(|𝑑|v − 𝜌). (29)
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Since the elements of |𝑑|v − 𝜌 are non-positive, �̇�2 ≤ 0. Therefore, 𝑥(2) trajectories, which are on the sliding surface at 𝑡 = 𝑡0,
will remain there for all 𝑡 > 0.

3.4 Bounding the control signals
In this section, we provide a method, inspired by the work of Corradini et al,59 to make sure that |𝑣𝑖| ≤ 𝑀𝑖, where 𝑣𝑖 refers
to the 𝑖th element of the control signal 𝑣, and 𝑀𝑖 is a positive scalar, 𝑖 = 1, 2, ...,𝓁, which is a predefined soft saturation limit.
This ensures that 𝑣𝑠 = 𝑣, which is an assumption used in the previous section. Note that the values of 𝑀𝑖 are calculated using
the information about actuator constraints and the control matrix. The actuator constraints are 𝑢(𝑡) ∈ Ω𝑢 = {[𝑢1, ..., 𝑢𝑚]𝑇 ∶
𝑢𝑚𝑖𝑛𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥𝑖 , 𝑖 = 1, ..., 𝑚}. Using Ω𝑢, the set Ω𝑣, defining all realizable values of the control input 𝑣, can be obtained as
Ω𝑣 = {𝑣 ∶ 𝑣 = 𝐵𝑢, 𝑢 ∈ Ω𝑢, 𝐵†𝑣 ∈ Ω𝑢}, where (.)† refers to the pseudo inverse of a non-square matrix. Furthermore, there exist
𝑀𝑖, 𝑖 = 1, ..., 𝑟, such that Ω̂𝑣 ≡ {𝑣 ∶ 𝑣𝑖 ∈ [−𝑀𝑖,𝑀𝑖], 𝑖 = 1, ..., 𝑟} ⊂ Ω𝑣. The set Ω̂𝑣 can be used to define the constraints which
are enforced using a soft saturation function.40

We have observed in our simulation studies that the controller is robust for a range of cases where the assumption in Section
3.3 is violated. However, to have formal stability guarantees, we present sufficient conditions in this section that can be used to
ensure that 𝑣𝑠 = 𝑣. Later in the simulations section, we show that these conditions are indeed sufficient, not necessary, and even
when they are violated good closed-loop performance is maintained.

Lemma 2. The control signals 𝑣𝑖, 𝑖 = 1, 2, ...,𝓁, are bounded by 𝑀𝑖, 𝑖 = 1, 2, ...,𝓁, i.e. |𝑣𝑖(𝑡)| ≤ 𝑀𝑖 for all 𝑡 if the inequality

|

|

|

|

|

−
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1
𝑎2𝑖,𝜔𝜙𝜔,𝑗(𝑡)𝑥

(1)
𝑗 (0) −

𝑡

∫
0

(𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1
𝑎2𝑖,𝜔𝜙𝜔,𝑗(𝑡 − 𝜂)

[ 𝑛
∑

𝑘=𝑛−𝓁+1
𝑎1𝑗,𝑘

(

𝑥(2)𝑘−𝑛+𝓁(0)𝑒
−�̄�𝜂 + 𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)
)

])

𝑑𝜂

−
𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗

(

𝑥(2)𝑗−𝑛+𝓁(0)𝑒
−�̄�𝑡 + 2

𝜋
𝑟𝑗−𝑛+𝓁(𝑡)tan−1(�̄�𝑡)

)

− �̄�𝑥𝑛−𝓁+𝑖(0)𝑒−�̄�𝑡 +
2
𝜋
�̇�𝑖(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟𝑖(𝑡)

�̄�
1 + �̄�2𝑡2

|

|

|

|

|

≤ 𝑀𝑖 − 𝜌𝑖, (30)

where 𝑖 = 1, ...,𝓁, is satisfied for all 𝑡 ≥ 0, where 𝜌 is defined in Theorem 2, and 𝜙𝑖,𝑗(𝑡) is the (𝑖, 𝑗)th element of the state transition
matrix Φ(𝑡, 𝑡0) in (22), with 𝑡0 = 0.

Proof. See Appendix A.

Remark 4. For (30) to be mathematically meaningful, its right hand side, 𝑀𝑖−𝜌𝑖, must be positive. It is shown in Tohidi et al.40

that this is indeed the case.

The adjustable parameters in (30) are the initial values of the states 𝑥(0) = [𝑥(1)𝑇 (0), 𝑥(2)𝑇 (0)]𝑇 and the scalar design parameter
�̄�. Assuming that the reference, 𝑟(𝑡), input vector and its rate of change are bounded, all of the terms in (30) are either bounded
or converge to zero. Since 𝐴1,1 is stable, the elements of state transition matrix, 𝜙𝑖,𝑗(𝑡), converge to zero exponentially fast
(see (22)). Specifically for the investigated flight control problem, the state transition matrix of 𝑥(1) dynamics (see (1)), where
𝑥(1) = [𝛼, 𝛽]𝑇 and 𝛼 and 𝛽 are the angle of attack and the sideslip angle, respectively, consists of sums of decaying exponentials
due to distinct eigenvalues. In this case, calculating the feasible values of the adjustable parameters becomes easier since the
inequality (30) takes a simpler form, which is explained in the following corollary.

Corollary 1. If the elements of the state transition matrix are formed as sums of exponential functions (which is the case in
several flight control problems), that is, 𝜙𝑖,𝑗(𝑡) =

∑�̄�
𝜅=1 𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 𝑡 with ℎ𝑖,𝑗𝜅 > 0 and �̄� a positive integer, then the control signals
𝑣𝑖, 𝑖 = 1, ...,𝓁 are bounded by 𝑀𝑖, 𝑖 = 1, ...,𝓁, i.e. |𝑣𝑖| ≤ 𝑀𝑖 if the inequality

𝑊𝑖 ≡
|

|

|

|

|

−
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1
𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑒

−ℎ𝜔,𝑗𝜅 𝑡𝑥(1)𝑗 (0) −
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

𝑛
∑

𝑘=𝑛−𝓁+1
𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘𝑥

(2)
𝑘−𝑛+𝓁(0)𝑞𝜔,𝑗𝜅 (𝑡)

−
𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗

(

𝑥(2)𝑖 (0)𝑒−�̄�𝑡 + 2
𝜋
𝑟𝑖(𝑡)tan−1(�̄�𝑡)

)

− �̄�𝑥𝑛−𝓁+𝑖(0)𝑒−�̄�𝑡 +
2
𝜋
�̇�𝑖(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟𝑖(𝑡)

�̄�
1 + �̄�2𝑡2

+

𝑡

∫
0

𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

𝑛
∑

𝑘=𝑛−𝓁+1
−𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑒

−ℎ𝜔,𝑗𝜅 (𝑡−𝜂)𝑎1𝑗,𝑘𝑟𝑘−𝑛+𝓁(𝜂)
2
𝜋

tan−1(�̄�𝜂)𝑑𝜂
|

|

|

|

|

≤ 𝑀𝑖 − 𝜌𝑖, 𝑖 = 1, ...,𝓁, (31)
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FIGURE 2 Validation of the inequality (31).

where

𝑞𝜔,𝑗𝜅 (𝑡) ≡
⎧

⎪

⎨

⎪

⎩

𝑡𝑒−ℎ𝜔,𝑗𝜅 𝑡, �̄� = ℎ𝜔,𝑗𝜅 ,
𝑒−�̄�𝑡−𝑒−ℎ𝜔,𝑗𝜅 𝑡

ℎ𝜔,𝑗𝜅−�̄�
, �̄� ≠ ℎ𝜔,𝑗𝜅 ,

(32)

is satisfied for all 𝑡 ≥ 0.

Proof. See Appendix B.

Remark 5. Given the upper and lower bounds of the reference signals and their derivatives, such that 𝑟𝑖(𝑡) ∈ [𝑟−𝑖 , 𝑟
+
𝑖 ] and

�̇�𝑖(𝑡) ∈ [�̇�−𝑖 , �̇�
+
𝑖 ], 𝑟

−
𝑖 = −𝑟+𝑖 , �̇�−𝑖 = −�̇�+𝑖 , one way to check the inequality (31) is by using the triangle inequality and find-

ing an upper bound for 𝑊𝑖 as
∑𝑛−𝓁

𝜔=1
∑𝑛−𝓁

𝑗=1
∑�̄�

𝜅=1 |𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑥
(1)
𝑗 (0)| +

∑𝑛−𝓁
𝜔=1

∑𝑛−𝓁
𝑗=1

∑�̄�
𝜅=1

∑𝑛
𝑘=𝑛−𝓁+1 |𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘𝑥

(2)
𝑘−𝑛+𝓁(0)𝑞𝜔,𝑗𝜅 | +

∑𝑛
𝑗=𝑛−𝓁+1 |𝑎2𝑖,𝑗 (𝑥

(2)
𝑖 (0))|+

∑𝑛
𝑗=𝑛−𝓁+1 |𝑎2𝑖,𝑗 𝑟

+
𝑖 |+ |�̄�𝑥𝑛−𝓁+𝑖(0)|+ |�̇�+𝑖 |+ |

2
𝜋
𝑟+𝑖 �̄�|+

∑𝑛−𝓁
𝜔=1

∑𝑛−𝓁
𝑗=1

∑�̄�
𝜅=1

∑𝑛
𝑘=𝑛−𝓁+1 |𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘

𝑟+𝑘−𝑛+𝓁
ℎ𝜔,𝑗𝜅

| ≤

𝑀𝑖 − 𝜌𝑖, where 𝑞𝜔,𝑗𝜅 = max{𝑒−1ℎ−1
𝜔,𝑗𝜅

, 2
|ℎ𝜔,𝑗𝜅−�̄�|

}. This inequality can be simplified as 𝑊𝑖,1 + �̄�𝑊𝑖,2 ≤ 0, where 𝑊𝑖,1 =
∑𝑛−𝓁

𝜔=1
∑𝑛−𝓁

𝑗=1
∑�̄�

𝜅=1 |𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑥
(1)
𝑗 (0)| +

∑𝑛−𝓁
𝜔=1

∑𝑛−𝓁
𝑗=1

∑�̄�
𝜅=1

∑𝑛
𝑘=𝑛−𝓁+1 |𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘𝑥

(2)
𝑘−𝑛+𝓁(0)𝑞𝜔,𝑗𝜅 (𝑡)| +

∑𝑛
𝑗=𝑛−𝓁+1 |𝑎2𝑖,𝑗 (𝑥

(2)
𝑖 (0))| +

∑𝑛
𝑗=𝑛−𝓁+1 |𝑎2𝑖,𝑗 𝑟

+
𝑖 |+ |�̇�+𝑖 |+

∑𝑛−𝓁
𝜔=1

∑𝑛−𝓁
𝑗=1

∑�̄�
𝜅=1

∑𝑛
𝑘=𝑛−𝓁+1 |𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘

𝑟+𝑘−𝑛+𝓁
ℎ𝜔,𝑗𝜅

|−𝑀𝑖 + 𝜌𝑖 and 𝑊𝑖,2 = |𝑥𝑛−𝓁+𝑖(0)|+ |

2
𝜋
𝑟+𝑖 |. Note that

𝑊𝑖,1 and 𝑊𝑖,2 are functions of 𝑥(1)(0), 𝑥(2)(0) and 𝑟+𝑖 , and remain constant along the closed-loop trajectory. Since 𝑊𝑖,2 is posi-
tive, a value of �̄� > 0 satisfying 𝑊𝑖,1 + �̄�𝑊𝑖,2 ≤ 0 can always be found if 𝑊𝑖,1 < 0, which can be realized by putting suitable
bounds on the elements of 𝑥(1)(0), 𝑥(2)(0) and 𝑟. This procedure is conservative due to the nature of the triangular inequality. On
the other hand, if the reference signal trajectories are known, one can check the inequality (31) numerically. We demonstrate the
application of the latter approach in the simulation results sections.

For a constant reference input vector 𝑟, the inequality (31) can be simplified further. This is described in the following corollary.

Corollary 2. If, in addition to the conditions given in Corollary 1, the reference signals are constant, that is, 𝑟𝑖(𝑡) = 𝑅𝑖, 𝑖 =
1, ...,𝓁, then the control signals 𝑣𝑖, 𝑖 = 1, ...,𝓁 are bounded by 𝑀𝑖, 𝑖 = 1, ...,𝓁, i.e. |𝑣𝑖| ≤ 𝑀𝑖, if the inequality

�̂�𝑖 ≡
|

|

|

|

|

−
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1
𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑒

−ℎ𝜔,𝑗𝜅 𝑡𝑥(1)𝑗 (0) −
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

𝑛
∑

𝑘=𝑛−𝓁+1
𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘𝑥

(2)
𝑘−𝑛+𝓁(0)𝑞𝜔,𝑗𝜅 (𝑡)

−
𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗

(

𝑥(2)𝑖 (0)𝑒−�̄�𝑡 + 2
𝜋
𝑅𝑖tan−1(�̄�𝑡)

)

− �̄�𝑥𝑛−𝓁+𝑖(0)𝑒−�̄�𝑡 +
2
𝜋
𝑅𝑖

�̄�
1 + �̄�2𝑡2

|

|

|

|

|

+
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

|

|

|

|

|

𝑛
∑

𝑘=𝑛−𝓁+1
−𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑎1𝑗,𝑘𝑅𝑘−𝑛+𝓁

|

|

|

|

|

1 − 𝑒−ℎ𝜔,𝑗𝜅 𝑡

ℎ𝜔,𝑗𝜅
≤ 𝑀𝑖 − 𝜌𝑖, 𝑖 = 1, ...,𝓁, (33)

where 𝑞𝜔,𝑗𝜅 (𝑡) is defined in (32), is satisfied for all 𝑡 ≥ 0.
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FIGURE 3 Time evolution of the aircraft states and the references, in the presence of actuator uncertainty. At 𝑡 = 7s, 𝑡 = 18s
and 𝑡 = 27s, 15%, 30% and 35%-70% losses of effectiveness are introduced, respectively.

Proof. The proof is similar to that of Corollary 1.

Remark 6. The left hand side of the inequality (33) can be written as |𝑘1𝑒−�̄�𝑡 +𝑘2𝑒
−ℎ𝜔,𝑗𝜅 𝑡 +𝑘3

�̄�
1+�̄�2𝑡2

+𝑘4
2
𝜋

tan−1(�̄�𝑡) +𝑘5|, where
𝑘𝑖, 𝑖 = 1, 2, ..., 5 are the appropriate constant coefficients. Since all of the terms are monotonic functions, it’s enough to check
(33) at 𝑡 = 0, 𝑡 = ∞ and at the extremum points in between, if any. Extremum points can be found by taking the derivative and
equating it to zero and finding the roots numerically.

4 SIMULATION RESULTS

The Aerodata Model in Research Environment (ADMIRE), which represents the dynamics of an over-actuated aircraft model,
is used to demonstrate the effectiveness of the proposed controller. The linearized ADMIRE model29 is given as

�̇� = 𝐴𝑥 + 𝐵𝑢𝑢 = 𝐴𝑥 + 𝐵𝑣𝑣𝑠,
𝑣𝑠 = 𝐵𝑢, 𝐵𝑢 = 𝐵𝑣𝐵, 𝐵𝑣 = [03×2 𝐼3×3]𝑇 , (34)

where 𝑥 = [𝛼 𝛽 𝑝 𝑞 𝑟]𝑇 with 𝛼, 𝛽, 𝑝, 𝑞 and 𝑟 denote the angle of attack, sideslip angle, roll rate, pitch rate and yaw rate, respectively.
The vector 𝑢 = [𝑢𝑐 𝑢𝑟𝑒 𝑢𝑙𝑒 𝑢𝑟]𝑇 represents the control surface deflections of canard wings, right and left elevons and the rudder.
The position limits of the control surfaces are given as 𝑢𝑐 ∈ [−55, 25]× 𝜋

180
𝑟𝑎𝑑, 𝑢𝑟𝑒, 𝑢𝑙𝑒, 𝑢𝑟 ∈ [−30, 30]× 𝜋

180
𝑟𝑎𝑑. The actuators

have first-order dynamics with a time constant of 0.05 s. The state and control matrices are provided by Härkegård et al.29 To
represent actuator loss of effectiveness and disturbance, a diagonal matrix Λ and a vector 𝑑𝑢, respectively, are introduced in the
model (34) as

�̇� = 𝐴𝑥 + 𝐵𝑢Λ𝑢 + 𝐵𝑢𝑑𝑢 = 𝐴𝑥 + 𝐵𝑣𝑣𝑠 + 𝐵𝑣𝑑, (35)
𝑣𝑠 = 𝐵Λ𝑢 + 𝑑, 𝑑 = 𝐵𝑑𝑢, 𝐵𝑢 = 𝐵𝑣𝐵, 𝐵𝑣 = [03×2 𝐼3×3]𝑇 .

A sinusoidal function with amplitude of 0.1 and frequency of 1 rad/s is considered as the disturbance 𝑑 in the simulation.
Saturation limits are calculated as 𝑀1 = 1.4, 𝑀2 = 1.4 and 𝑀3 = 0.3. Furthermore, the maximum and minimum range
of the elements of 𝜃𝑣 for the projection algorithm are taken as 𝜃𝑣1,1 ∈ [−0.0129, 0.0129], 𝜃𝑣1,2 ∈ [0.0307, 0.5225], 𝜃𝑣1,3 ∈
[−0.1357, 0.1371], 𝜃𝑣1,4 ∈ [−0.212, 0], 𝜃𝑣2,1 ∈ [−0.3149,−0.1113], 𝜃𝑣2,2 ∈ [−0.217,−0.1416], 𝜃𝑣2,3 ∈ [−0.0241, 0.2363], 𝜃𝑣2,4 ∈
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FIGURE 4 Time evolution of the control surfaces.
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FIGURE 5 Control allocation performance.

[−0.4162,−0.01], 𝜃𝑣3,1 ∈ [0.1587, 0.1977], 𝜃𝑣3,2 ∈ [0.0673, 0.0675], 𝜃𝑣3,3 ∈ [−0.001, 0.001], and 𝜃𝑣3,4 ∈ [−1.2755,−0.7641]
(see Tohidi et al.40 for how these values can be calculated). The proposed sliding mode controller is implemented using �̄� = 3
(see (26)). To avoid chattering, the boundary layer approach64 is used. The actuator loss of effectiveness is modeled as

Λ(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑖𝑎𝑔(1, 1, 1, 1) 𝑓𝑜𝑟 𝑡 ≤ 7,
𝑑𝑖𝑎𝑔(0.85, 0.85, 0.85, 0.85) 𝑓𝑜𝑟 7 < 𝑡 ≤ 18,
𝑑𝑖𝑎𝑔(0.7, 0.7, 0.7, 0.7) 𝑓𝑜𝑟 18 < 𝑡 ≤ 27,
𝑑𝑖𝑎𝑔(0.65, 0.6, 0.65, 0.3) 𝑓𝑜𝑟 27 < 𝑡.

Since 𝐴1,1 in the ADMIRE model has distinct real eigenvalues, we can use Corollary 1, which requires (31) to be satisfied. The
reference signals are chosen as

𝑟𝑖(𝑡) = 𝛾𝑖

(

1
1 + 𝑒−4(𝑡−3)

− 1
1 + 𝑒−4(𝑡−10)

+ 1
1 + 𝑒−4(𝑡−15)

− 1
1 + 𝑒−4(𝑡−20)

)

+�̂�𝑖

(

1
1 + 𝑒−4(𝑡−25)

− 1
1 + 𝑒−4(𝑡−30)

)

, 𝑖 = 1, 2, 3,

(36)
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FIGURE 6 The evolution of the sliding surfaces.
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FIGURE 7 The case when the inequality (31) is not satisfied.

where 𝛾1 = 0.37, 𝛾2 = 0.26, 𝛾3 = 0.08, �̂�1 = 0.14, �̂�2 = 0.12 and �̂�3 = 0.06. It is seen in Figure 2 that the inequality (31) is
satisfied for 𝑖 = 1, 2, 3.

Figure 3 illustrates the time evolution of the states when 15% actuator loss of effectiveness occurs at 𝑡 = 7𝑠, 30% at 𝑡 = 18𝑠
and 35%-70% at 𝑡 = 27𝑠. The states remain bounded and 𝑝, 𝑞 and 𝑟 follow the reference signals. Figure 4 demonstrates the
control surface deflections together with the saturation limits. The actuators stay within their limits. The performance of the
control allocation is depicted in Figure 5. It shows that the control allocation determines the actuator input vector 𝑢 in such a
way that 𝐵Λ𝑢 + 𝑑 follows the control signal 𝑣𝑠. Figure 6 shows the sliding surface trajectories, which tend to grow at the times
of uncertainty injections but converge to a neighborhood of zero afterwards, without any chattering effect.

In order to show the robustness of the proposed method, we examine the case where the inequality (31) is violated. The
violation is realized by setting the parameters 𝛾𝑖s and �̂�𝑖s in (36) to 𝛾1 = 0.4, 𝛾2 = 0.35, 𝛾3 = 0.09, �̂�1 = 0.14, �̂�2 = 0.12 and
�̂�3 = 0.06. It is seen in Figure 7 that the inequality (31) is violated by 𝑊2. Figures 8–11 illustrate that even though (31) is not
satisfied, the system remains stable, while tracking its references. Thus the controller is able to provide reasonable performance
even when the inequality (31), which is a sufficient condition, is violated; the investigation of additional sufficient conditions,
motivated by our simulation-based observations of the method’s robustness, is left as a topic for continuing research.
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FIGURE 8 Time evolution of the states when (31) is violated.

FIGURE 9 Time evolution of the control surfaces when (31) is violated.

5 SUMMARY

In this paper, a sliding mode controller with a time-varying sliding surface is proposed to complement an adaptive control
allocator for uncertain over-actuated systems with actuator saturation. Stability of the overall closed-loop system is shown using
Lyapunov arguments. Simulation results with the ADMIRE model show the effectiveness of the proposed method.
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FIGURE 10 Control allocation performance when (31) is violated. Control allocation signal 𝑣𝑠 does not saturate, and therefore
𝑣𝑠 = 𝑣 (see Figure 1).

0 5 10 15 20 25 30 35

Time(s)

-0.04

-0.02

0

0.02

0.04

0.06

FIGURE 11 The evolution of the sliding surfaces when (31) is violated.
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APPENDIX

A PROOF OF LEMMA 2

Rewriting (26) using the matrices in (16), we have

⎡

⎢

⎢

⎣

𝑣1(𝑡)
⋮

𝑣𝓁(𝑡)

⎤

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

𝑎21,1 ⋯ 𝑎21,(𝑛−𝓁)
⋮ ⋱ ⋮

𝑎2𝓁,1 ⋯ 𝑎2𝓁,(𝑛−𝓁)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥(1)1 (𝑡)
⋮

𝑥(1)𝑛−𝓁(𝑡)

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

𝑎21,(𝑛−𝓁+1) ⋯ 𝑎21,𝑛
⋮ ⋱ ⋮

𝑎2𝓁,(𝑛−𝓁+1) ⋯ 𝑎2𝓁,𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥(2)1 (𝑡)
⋮

𝑥(2)𝓁 (𝑡)

⎤

⎥

⎥

⎦

− �̄�𝑒−�̄�𝑡
⎡

⎢

⎢

⎣

𝑥(2)1 (0)
⋮

𝑥(2)𝓁 (0)

⎤

⎥

⎥

⎦

+ 2
𝜋

tan−1(�̄�𝑡)
⎡

⎢

⎢

⎣

�̇�1(𝑡)
⋮

�̇�𝓁(𝑡)

⎤

⎥

⎥

⎦

+ 2
𝜋

�̄�
1 + �̄�2𝑡2

⎡

⎢

⎢

⎣

𝑟1(𝑡)
⋮

𝑟𝓁(𝑡)

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̄�1(𝑡) 0 0 ⋯ 0
0 �̄�2(𝑡) 0 ⋯ 0
⋮ ⋮ ⋱ ⋯ ⋮
0 ⋯ 0 �̄�𝓁−1(𝑡) 0
0 ⋯ 0 0 �̄�𝓁(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜌1
⋮
𝜌𝓁

⎤

⎥

⎥

⎦

, (A1)

where 𝑎2𝑖,𝑗 , 𝑖 = 1, ...,𝓁, 𝑗 = 1, ..., 𝑛 − 𝓁 are the elements of 𝐴2,1, and 𝑎2𝑖,𝑗 , 𝑖 = 1, ...,𝓁, 𝑗 = 𝑛 − 𝓁 + 1, ..., 𝑛 are the elements of
𝐴2,2. Also, 𝑥(2)𝑖 , 𝑟𝑖, �̇�𝑖 and 𝜌𝑖, 𝑖 = 1, ...,𝓁 are the elements of the vectors 𝑥(2), 𝑟, �̇� and 𝜌, respectively, and �̄�𝑖 are the 𝑖th diagonal
element of signv

(

𝑠(𝑥(2)(𝑡), 𝑥(2)(0), 𝑡)
)

. Thus,

𝑣𝑖(𝑡) = −
𝑛−𝓁
∑

𝑗=1
𝑎2𝑖,𝑗𝑥

(1)
𝑗 (𝑡) −

𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗𝑥

(2)
𝑗−𝑛+𝓁(𝑡) − �̄�𝑥(2)𝑖 (0)𝑒−�̄�𝑡 + 2

𝜋
�̇�𝑖(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟𝑖(𝑡)

�̄�
1 + �̄�2𝑡2

− �̄�𝑖(𝑡)𝜌𝑖. (A2)

To ensure that |𝑣𝑖| ≤ 𝑀𝑖 for 𝑖 = 1, ...,𝓁, the inequality
|

|

|

|

|

|

−
𝑛−𝓁
∑

𝑗=1
𝑎2𝑖,𝑗𝑥

(1)
𝑗 (𝑡) −

𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗𝑥

(2)
𝑗−𝑛+𝓁(𝑡) − �̄�𝑥(2)𝑖 (0)𝑒−�̄�𝑡 + 2

𝜋
�̇�𝑖(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟𝑖(𝑡)

�̄�
1 + �̄�2𝑡2

− �̄�𝑖(𝑡)𝜌𝑖
|

|

|

|

|

|

≤ 𝑀𝑖 (A3)

should be satisfied for all 𝑖 = 1, ...,𝓁.
By considering the elements of Φ(𝑡, 𝑡0) as 𝜙𝑖,𝑗(𝑡), 𝑖 = 1, ..., 𝑛 − 𝓁, 𝑗 = 1, ..., 𝑛 − 𝓁, with 𝑡0 = 0, and substituting these in (23),

we have
⎡

⎢

⎢

⎣

𝑥(1)1 (𝑡)
⋮

𝑥(1)𝑛−𝓁(𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜙1,1(𝑡) ⋯ 𝜙1,(𝑛−𝓁)(𝑡)
⋮ ⋯ ⋮

𝜙(𝑛−𝓁),1(𝑡) ⋯ 𝜙(𝑛−𝓁),(𝑛−𝓁)(𝑡)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥(1)1 (0)
⋮

𝑥(1)𝑛−𝓁(0)

⎤

⎥

⎥

⎦

+

𝑡

∫
0

⎡

⎢

⎢

⎣

𝜙1,1(𝑡 − 𝜂) ⋯ 𝜙1,(𝑛−𝓁)(𝑡 − 𝜂)
⋮ ⋯ ⋮

𝜙(𝑛−𝓁),1(𝑡 − 𝜂) ⋯ 𝜙(𝑛−𝓁),(𝑛−𝓁)(𝑡 − 𝜂)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑔1(𝜂)
⋮

𝑔𝑛−𝓁(𝜂)

⎤

⎥

⎥

⎦

𝑑𝜂. (A4)

Remembering that 𝑔(𝑡) ≡ 𝐺1𝑒−�̄�(𝑡−𝑡0) +𝐺2(𝑡), with 𝐺1 ≡ 𝐴1,2𝑥(2)(𝑡0), and 𝐺2(𝑡) ≡
2
𝜋
𝐴1,2𝑟(𝑡)tan−1(�̄�(𝑡 − 𝑡0)), the elements of the

vector 𝑔(𝑡) can be written as

⎡

⎢

⎢

⎣

𝑔1(𝑡)
⋮

𝑔𝑛−𝓁(𝑡)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑎11,(𝑛−𝓁+1) ⋯ 𝑎11,𝑛
⋮ ⋱ ⋮

𝑎1(𝑛−𝓁),(𝑛−𝓁+1) ⋯ 𝑎1(𝑛−𝓁),𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥(2)1 (0)
⋮

𝑥(2)𝓁 (0)

⎤

⎥

⎥

⎦

𝑒−�̄�𝑡 + 2
𝜋

tan−1(�̄�𝑡)
⎡

⎢

⎢

⎢

⎣

𝑎11,(𝑛−𝓁+1) ⋯ 𝑎11,𝑛
⋮ ⋱ ⋮

𝑎1(𝑛−𝓁),(𝑛−𝓁+1) ⋯ 𝑎1(𝑛−𝓁),𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑟1(𝑡)
⋮

𝑟𝓁(𝑡)

⎤

⎥

⎥

⎦

. (A5)

Substituting (A5) into (A4), the 𝑖th element of the vector 𝑥(1)(𝑡) can be written as

𝑥(1)𝑖 (𝑡) =
𝑛−𝓁
∑

𝑗=1
𝜙𝑖,𝑗(𝑡)𝑥

(1)
𝑗 (0) +

𝑡

∫
0

(𝑛−𝓁
∑

𝑗=1
𝜙𝑖,𝑗(𝑡 − 𝜂)

[ 𝑛
∑

𝑘=𝑛−𝓁+1
𝑎1𝑗,𝑘

(

𝑥(2)𝑘−𝑛+𝓁(0)𝑒
−�̄�𝜂 + 𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)
)

])

𝑑𝜂, 𝑖 = 1, ..., 𝑛 − 𝓁,

(A6)

where 𝑎1𝑗,𝑘 refer to the elements of 𝐴1. Substituting (A6) and the elements of 𝑥(2) (see (19)) in (A3), we have

|𝑣𝑖(𝑡)| =
|

|

|

|

|

−
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1
𝑎2𝑖,𝜔𝜙𝜔,𝑗(𝑡)𝑥

(1)
𝑗 (0) −

𝑡

∫
0

(𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1
𝑎2𝑖,𝜔𝜙𝜔,𝑗(𝑡 − 𝜂)

[ 𝑛
∑

𝑘=𝑛−𝓁+1
𝑎1𝑗,𝑘

(

𝑥(2)𝑘−𝑛+𝓁(0)𝑒
−�̄�𝜂 + 𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)
)

])

𝑑𝜂

−
𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗

(

𝑥(2)𝑗−𝑛+𝓁(0)𝑒
−�̄�𝑡 + 2

𝜋
𝑟𝑗−𝑛+𝓁(𝑡)tan−1(�̄�𝑡)

)

− �̄�𝑥𝑛−𝓁+𝑖(0)𝑒−�̄�𝑡 +
2
𝜋
�̇�𝑖(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟𝑖(𝑡)

�̄�
1 + �̄�2𝑡2

− �̄�𝑖(𝑥(𝑡))𝜌𝑖
|

|

|

|

|

≤ 𝑀𝑖,

(A7)
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for 𝑖 = 1, ...,𝓁. Using the triangle inequality, (30) is obtained.

B PROOF OF COROLLARY 1

The proof follows the same steps of the proof of Lemma 2 until (A6).
Substituting 𝜙𝑖,𝑗(𝑡) =

∑�̄�
𝜅=1 𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 𝑡 into (A6), we obtain that

𝑥(1)𝑖 (𝑡) =
𝑛−𝓁
∑

𝑗=1

( �̄�
∑

𝜅=1
𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 𝑡

)

𝑥(1)𝑗 (0)

+

𝑡

∫
0

(𝑛−𝓁
∑

𝑗=1

( �̄�
∑

𝜅=1
𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 (𝑡−𝜂)

)[ 𝑛
∑

𝑘=𝑛−𝓁+1
𝑎1𝑗,𝑘

(

𝑥(2)𝑘−𝑛+𝓁(0)𝑒
−�̄�𝜂 + 𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)
)

])

𝑑𝜂

=
𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1
𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 𝑡𝑥(1)𝑗 (0) +

𝑡

∫
0

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

𝑛
∑

𝑘=𝑛−𝓁+1
𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 (𝑡−𝜂)𝑎1𝑗,𝑘
(

𝑥(2)𝑘−𝑛+𝓁(0)𝑒
−�̄�𝜂 + 𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)
)

𝑑𝜂

=
𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1
𝑐𝑖,𝑗𝜅𝑒

−ℎ𝑖,𝑗𝜅 𝑡𝑥(1)𝑗 (0) +
𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

𝑛
∑

𝑘=𝑛−𝓁+1

( 𝑡

∫
0

𝑐𝑖,𝑗𝜅𝑒
−ℎ𝑖,𝑗𝜅 (𝑡−𝜂)𝑎1𝑗,𝑘𝑥

(2)
𝑘−𝑛+𝓁(0)𝑒

−�̄�𝜂𝑑𝜂

+

𝑡

∫
0

𝑐𝑖,𝑗𝜅𝑒
−ℎ𝑖,𝑗𝜅 (𝑡−𝜂)𝑎1𝑗,𝑘𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)𝑑𝜂

)

, 𝑖 = 1, ..., 𝑛 − 𝓁. (B8)

Substituting (19) with 𝑡0 = 0 and (B8) in (A3), we get

|𝑣𝑖(𝑡)| =
|

|

|

|

|

−
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1
𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑒

−ℎ𝜔,𝑗𝜅 𝑡𝑥(1)𝑗 (0) −
𝑛−𝓁
∑

𝜔=1

𝑛−𝓁
∑

𝑗=1

�̄�
∑

𝜅=1

𝑛
∑

𝑘=𝑛−𝓁+1

( 𝑡

∫
0

𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑒
−ℎ𝜔,𝑗𝜅 (𝑡−𝜂)𝑎1𝑗,𝑘𝑥

(2)
𝑘−𝑛+𝓁(0)𝑒

−�̄�𝜂𝑑𝜂

+

𝑡

∫
0

𝑎2𝑖,𝜔𝑐𝜔,𝑗𝜅𝑒
−ℎ𝜔,𝑗𝜅 (𝑡−𝜂)𝑎1𝑗,𝑘𝑟𝑘−𝑛+𝓁(𝜂)

2
𝜋

tan−1(�̄�𝜂)𝑑𝜂

)

−
𝑛
∑

𝑗=𝑛−𝓁+1
𝑎2𝑖,𝑗

(

𝑥(2)𝑖 (0)𝑒−�̄�𝑡 + 2
𝜋
𝑟𝑖(𝑡)tan−1(�̄�𝑡)

)

− �̄�𝑥𝑛−𝓁+𝑖(0)𝑒−�̄�𝑡 +
2
𝜋
�̇�𝑖(𝑡)tan−1(�̄�𝑡) + 2

𝜋
𝑟𝑖(𝑡)

�̄�
1 + �̄�2𝑡2

− �̄�𝑖(𝑥(𝑡))𝜌𝑖
|

|

|

|

|

≤ 𝑀𝑖, 𝑖 = 1, ...,𝓁. (B9)

Defining 𝑞𝜔,𝑗𝜅 (𝑡) as

𝑞𝜔,𝑗𝜅 (𝑡) =

𝑡

∫
0

𝑒−ℎ𝜔,𝑗𝜅 (𝑡−𝜂)𝑒−�̄�𝜂𝑑𝜂 =

⎧

⎪

⎨

⎪

⎩

𝑡𝑒−ℎ𝜔,𝑗𝜅 𝑡, �̄� = ℎ𝜔,𝑗𝜅 ,
𝑒−�̄�𝑡−𝑒−ℎ𝜔,𝑗𝜅 𝑡

ℎ𝜔,𝑗𝜅−�̄�
, �̄� ≠ ℎ𝜔,𝑗𝜅 ,

(B10)

remembering that �̄�𝑖 is either 1 or -1, and using the triangle inequality, we can rewrite (B9) as (31).
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Explain why the paper is relevant to the journal as described in the aims and scope? 

This paper proposes a sliding mode controller with a time-varying sliding surface to complement adaptive 

control allocation for uncertain over-actuated systems. Sliding mode controllers are categorized as robust 

and nonlinear controllers, which are relevant to the aims of this journal for the development of analysis 

and design techniques for uncertain systems.  

 

Explain why the theoretical contributions in the paper are novel? 

In this paper, a novel robust controller is proposed which can handle the adaptive control allocation error, 

actuator saturation and external disturbances for systems with redundant actuators. No similar controller 

exists in the literature that has the ability to handle actuator saturation and disturbances in the presence of 

an adaptive control allocator. The cooperation of the proposed sliding mode controller and adaptive 

control allocation guarantees stability and reference tracking for over-actuated systems in the presence of 

uncertainty.  

Provide a list of keywords that must correspond with the topics covered by the journal and dealt 

with in the paper. 

sliding mode control, adaptive control allocation 
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Associate Editor's Report: 

 

“The main point is to clarify the contribution with respect to the conference paper mentioned 

by reviewer 1.” 

 

Reviewer 1 suggested using different simulation scenarios to avoid replica of the 

simulation results of the conference version. Therefore, we have changed the 

simulation scenarios in the revised version. Specifically, we have changed the 

simulation time, reference signals (36) and the actuator loss of effectiveness. With 

these modifications, the new figures are now substantively different from the ones in 

the conference paper. 

 

 

 

 

Reviewer 1 

 

“Despite the efforts done by the authors to clarify the contribution, it is not clear to me if the 

simulations are different. I checked again the conference paper, and in the latter Figures 3,4,5 

and 6 looks exactly the same. I believe that, if differences are present, they should be 

highlighted, otherwise I think that a different simulation scenario and conditions should be 

considered to avoid a replica of the simulation results of the conference paper. For the rest I 

do not have other comments.” 

In the revised manuscript, we have changed the simulation scenarios. Specifically, we 

have changed the simulation time, reference signals (36) and the actuator loss of 

effectiveness. With these modifications, the new figures are now substantively 

different from the ones in the conference paper.  

 

 

 

 

Reviewer: 2 

 

“I only have some minors comments: 

 

1. The authors are encouraged to double-check the manuscript. There are still some 

misprints.” 

We have double-checked the document, as the reviewer suggested, and corrected a 

few misprints that we have found. 

 

 

“2. There is a typo in line 50 on page 11 in the current version.” 

We have checked the specified page but could not find a typo.  We have, however, 

corrected a few misprints that we have found elsewhere. 
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“3. Regarding my previous comment 3, I still consider that it is not beneficial for the main 

contribution to show the second example in the simulation results. In Figs. 3 and 8, if we 

analyzed them, it is possible to notice the behaviour of the states is practically the same, 

then, the fulfilment of the inequality (31) is not necessary to obtain a good closed-loop 

performance.” 

We agree with the reviewer that (31) is not a necessary condition. The point of the 

second example is exactly that. Equation (31) is a sufficient condition and the 

controller can still provide reasonable performance even in the case when (31) is not 

satisfied. The example is important for potential users of our method since it shows 

that the controller is still able to provide reasonable performance even if the sufficient 

condition that we derived does not hold. In the revised version, we have modified the 

simulation results to make them different from the conference version. However, the 

conclusion that the controller is able to provide reasonable performance even if our 

sufficient condition does not hold is still valid for this simulation. Following the 

description of the example we have also added a comment that the investigation of 

additional sufficient conditions, motivated by our simulation-based observations of 

our method’s robustness, is left as a topic for continuing research.  
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FIGURE 1: Block diagram of the closed loop system. 
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FIGURE 2: Validation of the inequality (31). 
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FIGURE 11: The evolution of the sliding surfaces when (31) is violated. 
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FIGURE 3: Time evolution of the aircraft states and the references, in the presence of actuator uncertainty. 
At �� = 7s, �� = 18s and �� = 27s, 15%, 30% and 35%-70% losses of effectiveness are introduced, 

respectively. 

203x160mm (300 x 300 DPI) 

Page 26 of 33

http://mc.manuscriptcentral.com/rnc-wiley

International Journal of Robust and Nonlinear Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

FIGURE 4: Time evolution of the control surfaces. 

203x144mm (300 x 300 DPI) 

Page 27 of 33

http://mc.manuscriptcentral.com/rnc-wiley

International Journal of Robust and Nonlinear Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

FIGURE 5: Control allocation performance. 
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FIGURE 6: The evolution of the sliding surfaces. 
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FIGURE 7: The case when the inequality (31) is not satisfied. 
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FIGURE 8: Time evolution of the states when (31) is violated. 

203x162mm (300 x 300 DPI) 

Page 31 of 33

http://mc.manuscriptcentral.com/rnc-wiley

International Journal of Robust and Nonlinear Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

FIGURE 9: Time evolution of the control surfaces when (31) is violated. 
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FIGURE 10: Control allocation performance when (31) is violated. Control allocation signal ���� does not 
saturate, and therefore ���� = �� (see Figure 1). 
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