
1.  Introduction
Neutral winds play a crucial role in the thermosphere-ionosphere system. They are monitored with both ground- 
and satellite-based instruments. Typical ground-based instruments (meteor radar, medium-frequency radar, inco-
herent scatter radar, lidar, Fabry-Perot Interferometer (FPI), etc.) provide observations of neutral winds with a 
variety of temporal resolutions and coverages. These instruments are sparsely distributed across fixed geophysi-
cal positions and provide nearly continuous data at a fixed latitude and longitude over a specific period. Satellites, 
on the other hand, orbit around the Earth, and over the course of a day, can provide global or near-global observa-
tions of the wind, allowing for studies of large-scale dynamics, depending on several assumptions. For example, 
the FPI (Hays et al., 1981) onboard the NASA Dynamics Explorer spacecraft mission measured the meridional 
winds primarily using the OI 630.0  nm emission that peaks at ∼240  km. It also measured wind profiles at 
100–140 km with the 557.7 nm emission (Killeen et al., 1992). On the same spacecraft, the Wind and Temper-
ature Spectrometer (WATS) (Spencer et al., 1981) measured the in-situ zonal winds with the angle of arrival of 
the gas stream at altitudes from ∼300–700 km. The Upper Atmosphere Research Satellite (UARS) carried two 
instruments for neutral wind observations: the High Resolution Doppler Imager (HRDI) (Hays et al., 1993) and 
the Wind Imaging Interferometer (WINDII) (Shepherd et al., 1993). Both instruments measured Doppler shifts of 
the emission lines of photochemical species though using different techniques. HRDI provided measurements of 
horizontal winds at about 50–115 km during daytime and around 95 km during nighttime (Burrage et al., 1994); 
while WINDII measurements extended from 80 to 300 km. These earlier observations in the middle atmosphere 
deepened our understanding of the large-scale mesosphere and lower thermosphere (MLT) dynamics, especially 
revealing more details about migrating tides, nonmigrating tides, and planetary waves (e.g., Forbes et al., 2003; 
Hays et al., 1994; Killeen & Roble, 1988; Morton et al., 1993; Spencer et al., 1982; D. L. Wu et al., 1994, and 
therein).

The Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite was launched into a 
circular orbit at a nominal altitude of 625  km with an inclination of ∼74° in December 2001, with an aim 
to investigate and understand the energetics of the MLT region. The TIMED Doppler Interferometer (TIDI) 
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on the spacecraft provides neutral wind measurements from 80 to 300 km altitude. It covers a wide latitude 
range that can extend to the northern or the southern pole depending on solar beta angle and season (Killeen 
et al., 1999, 2006; Niciejewski et al., 2006; Skinner et al., 2003). Extensive studies have utilized the vector winds 
to investigate the characteristics of the migrating and nonmigrating tides, including the global distribution, prop-
agation, long-term (monthly, seasonal, yearly, etc.) variations, and coupling with the ionosphere (e.g., Oberheide 
et al., 2006, 2009, 2011; Singh et al., 2018; Q. Wu et al., 2008a, 2008b; Xu et al., 2009). Also, due to the wide 
coverage of latitudes, more details of the planetary waves and gravity waves have been revealed (e.g., Chang 
et al., 2014; Gu et al., 2013, 2021; Liu et al., 2009; Ortland & Alexander, 2006). These waves dominating the 
MLT neutral winds are important for understanding the coupling between the upper and the lower atmospheres.

Comprising two decades of data collection in the MLT region, TIDI measurements are a valuable resource for the 
community to study the dynamics of the thermosphere-ionosphere system, especially the long-term variations. 
However, few thorough data validation studies have been conducted. This is partially due to the lack of proper 
data sets in the hard-to-measure MLT region. In October 2019, the Ionospheric Connection Explorer (ICON) was 
launched. The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) onboard 
ICON provides a new wind data set at low- and mid-latitudes from 90 to 300 km (Englert et al., 2017; Harding 
et al., 2017, 2021; Immel et al., 2018; Makela et al., 2021). Since the spacecraft's precession rate is more rapid 
than that of TIMED, measurement coincidences between TIDI and MIGHTI in time and space take place rela-
tively frequently, providing a good opportunity to compare these two data sets. Dhadly et al. (2021) compared the 
vector winds of ICON-MIGHTI level 2.2 data and TIDI level 3 data which have an overlap between ∼90–120 km. 
Based on individual day comparisons, they found that the vector winds over the conjunctions of the two datasets 
are in agreement but the TIDI coldside measurements in forward flight show a systematic bias. The zonal and 
meridional winds from both products are calculated with the inverted altitude profiles of the line of sight (LOS) 
winds. Although the retrieving algorithms are different for TIDI and MIGHTI (Harding et al., 2017; Niciejewski 
et al., 2006), both include fittings and assumptions that possibly introduce “smoothing effects.”

In this study, LOS measurements from each of the four TIDI telescopes are investigated for details of the perfor-
mance. For comparison purposes, the coincidences of measurements from TIDI and MIGHTI are investigated 
under different satellite configurations, that is, forward/backward flight, ascending/descending phase, and differ-
ent solar zenith angles (SZAs). Performance figures of merit for individual telescopes are generated to quantify 
the quality of TIDI LOS winds in comparison to the MIGHTI winds.

2.  Data and Methodology
TIDI uses four orthogonal telescopes to observe the neutral temperature and winds simultaneously. The four tele-
scopes are identical with 0.05° × 2.5° field of view scanning in directions ±45° and ±135° from the spacecraft 
velocity vector. Two of the telescopes are on the sunward side (warmside) and the other two are on the shadow 
side (coldside). Each side (each pair of telescopes) provides measurements from two local solar time (LST) 
sectors, one on each of the ascending and descending orbits. Thus measurements in four LSTs can be obtained 
every day. With a precession of 3°/day (or 𝐴𝐴

1

5
 of an hour of LST), it takes about 60 days for TIDI to cover all 24 

LSTs if the ascending and descending orbits are combined. Figure 1 illustrates the geometry of the instrument 
and measurements on 1 Jan 2020, as an example. Telescope 1 (Tel1) and Telescope 2 (Tel2) are always on the 
coldside, while Telescope 3 (Tel3) and Telescope 4 (tel4) are always on the warmside. To keep the warmside 
and coldside telescopes always facing sunward and anti-sunward, respectively, TIMED makes a yaw maneuver 
changing from a forward flight configuration to a backward flight configuration or vice versa approximately 
every ∼60 days. The orbit was designed to make sure that the Earth-viewing geometry repeats every year, which 
means that TIDI monitors the same latitude at the same LST on the same day of the year (Killeen et al., 2006; 
Niciejewski et al., 2006).

TIDI data products are provided at three levels (Killeen et al., 2006; Niciejewski et al., 2006): (a) Level 1 data 
product contains the raw spectra after the removal of instrumental and satellite-induced artifacts. The LOS bright-
ness, background, and wind are derived with time and position annotated. (b) Level 2 product contains the 
inverted altitude profiles of winds on a uniform altitude grid. The inverted background and volume emission rate 
are also included. (c) Level 3 product provides zonal and meridional winds calculated with inverted LOS winds 
from level 2 data. In this study, the LOS winds from TIDI level 1 data product (Version 11) are investigated. There 
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are two main processes to convert the TIDI data to level 1, as described by Niciejewski et al. (2006), which is 
simply summarized as follows:

1.	 �The raw spectra are checked for cosmic ray strikes, background corrected, and normalized with a white light 
calibration to remove all instrumental and satellite-induced artifacts in the data.

2.	 �For each telescope, the processed spectra are fitted by a set of linear functions which are derived from the 
convolution of an instrument function and a normalized Gaussian line source function for each Doppler broad-
ened line. Thus the LOS velocity, signal brightness, and continuum background are obtained. The LOS veloc-
ity at a given tangent altitude is a weighted average along the LOS direction of the velocity at each altitude. 
The “true” LOS wind is then calculated by shifting the “zero” wind position due to instrument temperature 
fluctuations, long-term instrument drift, the component of the spacecraft velocity along the LOS, and the 
component of Earth rotation along the LOS.

The emission lines that are utilized to derive the level 1 LOS winds in the MLT region include O2 (0-0) P15 
(765.07 nm), P9 (763.78 nm), broadband (764.00 nm), and OI 557.7 nm green lines. The measurements have an 
altitude coverage of ∼70–120 km (∼70–120 km on the dayside and ∼80–105 km on the nightside) with an inter-
val of ∼2.5 km in the MLT region. Details of the data can be found in the work by Niciejewski et al. (2006) and 
Killeen et al. (2006) and from the TIDI website (http://tidi.engin.umich.edu/html/go?main.html&menu_home.
html).

MIGHTI is one of the four instruments on ICON, which was launched into a 27° inclination by ∼575 km altitude 
orbit in October 2019. MIGHTI provides temperature and neutral winds measurements at low-/mid-latitudes 
from 90 to 300  km using two orthogonal Doppler Asymmetric Spatial Heterodyne interferometers (Englert 
et al., 2017; Immel et al., 2018). For each sensor, the inverted LOS winds are derived based on the interferogram 
and recorded in the level 2.1 data product. Combining the inverted LOS winds in the two directions, the vector 
winds can be obtained, which are provided by level 2.2 data. For the green line (557.7 nm) emission measure-
ments utilized in this study, the altitude range is ∼90–190 km during daytime and ∼90–109 km during nighttime 
with an altitude interval of ∼3 km. Due to the precession of the satellite, MIGHTI covers all 24 MLT hours at a 
given latitude in ∼27 days (Harding et al., 2017, 2021; Makela et al., 2021).

Figure 1.  Illustration of the geometry and measurements of TIMED Doppler Interferometer based on an example on 1 Jan 2020.

http://tidi.engin.umich.edu/html/go?main.html%26menu_home.html
http://tidi.engin.umich.edu/html/go?main.html%26menu_home.html
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In this study, comparison of TIDI LOS winds with MIGHTI is based on coincidences of measurements from 
each TIDI telescope in 2020. The TIDI level 1 data and the MIGHTI level 2.2 data are used. Only the measure-
ments with magnitudes larger than their uncertainty (i.e., signal-to-noise ratio (SNR) > 1) were included for both 
instruments. Then the TIDI LOS winds were selected with (“data_ok” = “True”) and (“p_status” = 0). These 
are quality flags that are produced by daily processing routines. “data_ok” is “True” meaning that the data is 
not contaminated; “p_status” represents the processing status and no errors occur in deriving the LOS winds 
from raw spectra data if it is zero. Also, the measurements were limited with SZA less than 80° during daytime, 
SZA larger than 100° during nighttime, and solar scattering angle larger than 15° at the tangent point for opti-
mum observations (Niciejewski et al., 2006). For MIGHTI level 2.2 data, “ICON_L22_Wind_Quality” labels the 
quality of wind measurements. We selected data with “ICON_L22_Wind_Quality” equal to 1 which indicates 
the highest data quality. To find the coincidences, the LOS winds of TIDI were first binned with an interval of 
2.5 km for each altitude profile. Figure 2a shows the measurements at 95 km from Tel1 on 1 Jan 2020, as an 

Figure 2.  (a) Global map of locations of TIMED Doppler Interferometer (TIDI) Tel1 LOS wind measurements (cyan filled 
circles for ascending and cyan empty circles for descending) and Michelson Interferometer for Global High-resolution 
Thermospheric Imaging (MIGHTI) vector wind measurements (gray triangles) on 1 Jan 2020 at the altitude of ∼95 km. The 
red triangles represent the MIGHTI measurements falling within ±4° latitude, ±4° longitude, ±1.5 km altitude, and ±15 min 
of the TIDI measurements (blue filled and empty circles). The distributions of the LSTs (b) and the latitudes (c) at the tangent 
point of the coincident events for individual TIDI telescopes in 2020.
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example. The MIGHTI observations were overplotted at similar altitudes. If one or more MIGHTI measurements 
existed in a spatial and temporal range of ±4° latitude, ±4° longitude, ±1.5 km altitude, and ±15 min around 
one TIDI data point, the MIGHTI observations were averaged and a coincident event was noted. To compare the 
LOS observations, the vector winds from MIGHTI were projected in the LOS direction of each TIDI telescope, 
which are termed “MIGHTI LOS” winds hereafter. Figures 2b and 2c show the distributions of the LST and the 
latitude at the tangent point for the coincident events for different TIDI telescopes in 2020. More coincidences 
took place on the dayside, especially for Tel3 and Tel4. For Tel1 and Tel2, there are a large number of events 
around midnight. Few events are found around the terminator due to the data selection criteria. Tangent point 
latitudes range from −20° to 50° with most events in the bins of −10° to 0° and 30°–40°, due to ICON's orbit 
and viewing geometry. TIDI level 1 data provides MLT winds up to the altitude of ∼105 km on the nightside 
and ∼120 km on the dayside. However, the measurement uncertainty increases significantly above 100 km and 
lots of measurements need to be discarded. In this study, measurements from 90 to 100 km are investigated and 
similar statistical results can be obtained with measurements larger than the uncertainty (i.e., SNR > 1) from 
100 to 120 km being included. Thus, the conclusions in this study can be applied to the measurements with SNR 
greater than 1 from 100 to 120 km.

3.  Results
3.1.  TIDI/MIGHTI LOS Comparisons

Figure 3 shows the distributions of TIDI and MIGHTI LOS winds in the 90–100 km altitude range during forward 
and backward flights for each telescope. Comparisons with the horizontal wind model (HWM) (Drob et al., 2015) 
are included. “HWM LOS” values were produced by projecting the zonal and meridional HWM winds at the 
TIDI measurement locations onto the LOS directions of individual telescopes. The distribution of HWM LOS 
winds looks very different from those of TIDI and MIGHTI LOS winds. The standard deviation (SD) of HWM 
(HSD) LOS is from ∼19 to ∼24 m/s, which is less than half of those of TIDI (TSD) and MIGHTI (MSD) LOS 
winds. Measurements from TIDI and MIGHTI are more consistent with each other than with HWM, with the 
exception of forward flight data which demonstrates longer distribution tails for TIDI Tel1 than MIGHTI. TIDI 
SD (approximately 50–60 m/s) is larger than that of MIGHTI by ∼10 m/s for Tel1/Backward, Tel2, and Tel3. 
Larger discrepancies are observed for Tel4 and Tel1/Forward (exceeding 70 and 90 m/s, respectively). Dhadly 
et al. (2021) cross-compared the MIGHTI and TIDI vector winds and found that the TIDI coldside measurements 
(i.e., from Tel1 and Tel2) in forward flight show a systematic bias. The distribution results indicate that this bias 
in the coldside vector winds is likely due to the Tel1 LOS winds with systematic errors, while the other coldside 
telescope, Tel2, does not show obvious average differences. Linear least squares regressions were performed 
between the two datasets and the results are shown in the second and the fourth rows in Figure 3. Also, the TIDI 
LOS winds were binned with an interval of 5 m/s and the MIGHTI means were calculated in each TIDI velocity 
bin accordingly to show the comparisons of averages. Overall, Tel2 measurements are correlated best with the 
ICON LOS winds, while Tel4 observations show the worst correlation with the coefficients <0.3; Tel1 shows 
better results during backward flight than Tel3, whereas the slope of the Tel1 fitted line is smaller than that of 
Tel3 during forward flight configuration.

While the TIDI/MIGHTI comparisons have been described as coincident, it should be noted that these are grid-
ded data, which can be anywhere in a volume of 8° longitude, 8° latitude, 3 km altitude, and 30 min. Harding 
et al. (2019) noted that meridional winds between two FPI stations that are horizontally separated by ∼800 km 
could have cross correlations as low as ∼0.4. Larsen (2002) noted that strong shears exist in the MLT region, 
which could significantly reduce correlations if there is any offset in altitude. Further, the comparisons that are 
performed here are between raw LOS winds from TIDI and inverted vertical wind profiles from MIGHTI. It is 
expected that the raw LOS winds from TIDI are noisier than the inverted winds from MIGHTI. If there were no 
instrument noise at all, one may expect that the inverted winds would be closer to the truth winds, so would have 
more shear and would be “noisier,” and the raw wind measurements would be a brightness convolution of the true 
winds (i.e., a weighted summing), so would be more smooth than the inverted winds, but the instrument noise 
far outweighs the smoothing convolution, so the raw measurements (TIDI) are significantly more noisy than 
the  inverted winds (MIGHTI). Comparing the TIDI raw LOS data and the MIGHTI raw LOS data would be hard 
because the LOS measurements are not in the same direction. Comparing the TIDI inverted level 2 wind profiles 
with MIGHTI wind profiles makes sense, but adds another layer of possible injection of uncertainty into the TIDI 
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data - if the inversion process is flawed in a systematic way, it would be difficult to know whether this was due to 
the data processing or the raw data. Therefore, the significantly noisier TIDI raw LOS data was compared to the 
much smoother MIGHTI inverted winds.

Practically, this means that the TIDI winds have more noise, which impacts the cross correlation and the root 
mean square difference (RMSD) in the comparison to MIGHTI winds. In combination with the geophysical 
offsets in location (reducing the correlation coefficient naturally), it is difficult to judge absolute point-to-point 
comparisons without a detailed investigation of every pass. Instead, the focus is on relative comparisons, where 
the statistical comparisons were conducted for different telescopes in different configurations (SZA and flight 
direction), and the statistical differences were explored and are reported here. Additionally, in terms of the linear 
least squares regressions, because of random noise in both the MIGHTI and TIDI measurements, a slope of one is 
not expected, even if the two instruments are in good agreement. And when one data set (TIDI) has more extreme 
values, it would tend to pull the line toward those values, since least squares fits are biased toward larger values. 
That is to say, if the x (TIDI) and y (MIGHTI) axis are flipped, the slope of the fitted line is not equal to 1/k. 
Therefore, a slope less than one should not be interpreted as a multiplicative bias between the datasets.

Another way to think about the observations with TIDI is in a frame in which the four view directions (A–D) 
are fixed to the satellite velocity vector (through different LSTs) and the different telescopes contribute to the 

Figure 3.  Comparisons of the TIMED Doppler Interferometer (TIDI) and Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) line 
of sight (LOS) winds from 90 to 100 km in 2020. The first and third rows are distributions of LOS winds for backward and forward flights, respectively; the standard 
deviation for HWM (HSD), TIDI (TSD), and MIGHTI (MSD) LOS winds are labeled. The second and fourth rows are point-to-point comparisons for backward and 
forward flights, respectively. The red dashed lines represent the linear least squares regression fittings; the slope (k) and intercept (b) of the fitted line, as well as the 
correlation coefficient (r), are labeled in each subplot. The gray dashed lines represent y = x. The blue triangles denote the comparisons between TIDI velocity means 
and the corresponding MIGHTI averages. r_m are the correlation coefficients between the means.
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different look directions depending on whether TIMED is in forward or backward flight. Figure 4 shows the LOS 
winds measured at the latitude of 26°–34° from 92 to 98 km in directions A and B as a function of the day of 
the year in 2020 during the ascending phase. Each of the directions is monitored by a warmside telescope and 
a coldside telescope alternatively due to the yaw maneuver every ∼60 days. In 2020, the yaw maneuvers are 
made on days 56 (yaw 1), 119 (yaw 2), 175 (yaw 3), 239 (yaw 4), 301 (yaw 5), and 357 (yaw 6), as indicated. 
The satellite is in backward flight on days 1–56, 119–175, 239–301, and 357–366, while it is in a forward flight 
on days 56–119, 175–239, and 301–357. The daily means of the LOS winds were calculated and overplotted. 
The LST, SZA, and solar scattering angles (SSA) at the tangent point for each measurement were also plotted. 
The two telescopes on the same side, that is, Tel1 (blue) and Tel2 (cyan) on the coldside or Tel3 (red) and Tel4 
(magenta) on the warmside, have nearly the same LST and SZA (i.e., measuring the same location), but different 
solar scattering angles (i.e., looking in different directions). As a comparison, the daily means of HWM LOS 
winds were overplotted. Note that only TIDI LOS winds were investigated since there are not enough coincident 
measurements from MIGHTI to make this plot. Similar results for directions C and D are shown in Figure 5. The 
measurements in direction B (Figure 4b) are most consistent with the HWM means. In this direction, Tel2 (cyan) 

Figure 4.  Line of sight (LOS) winds in directions A (a) and B (b) that are denoted in Figure 1, the LST (c), SZA (d), and SSA (e) as a function of the day of year at 
the latitude of 26°–34° and the altitude of 92–98 km in the ascending phase. The blue, cyan, red, and magenta dots represent Tel1 (coldside), Tel2 (coldside), Tel3 
(warmside), and Tel4 (warmside), respectively. The black crosses and triangles represent the daily means of LOS winds from the warmside and coldside telescopes, 
respectively. Daily means of the HWM LOS winds are over-plotted as orange lines. The satellite is in backward flight on days 1–56, 119–175, 239–301, and 357–366, 
while it is in forward flight on days 56–119, 175–239, and 301–357.
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is in backward flight and Tel4 (magenta) is in forward flight. The daily means from these two telescopes are also 
consistent with each other. Unlike direction B, the TIDI LOS wind means deviate from the HWM means with 
differences of more than 100 m/s in direction C (Figure 5a). Systematic errors occur before and after the yaw 
maneuvers for Tel1/forward flight. In directions A (Figure 4a) and D (Figure 5b), the daily means are consist-
ent each other and with HWM in general except for Tel2 measurements after yaw 5. Similar analysis was also 
conducted for the descending phase, as shown in Figures 6 and 7. From the perspective of individual telescopes, 
the following conclusions are obtained:

1.	 �Tel1 has larger systematic errors (relative to HWM) during forward flight in both ascending and descending 
phases. The Tel1 means agree best with the HWM means during the descending/backward flight.

2.	 �Tel2 only shows a slight systematic error in forward flight around November during the ascending phase. The 
measurements agree with the HWM means during most of the time but deviate by less than 50 m/s during the 
descending/forward flight.

3.	 �Measurements from Tel3 and Tel4 are very scattered, especially on the nightside. The daily means for Tel3 
generally agree with HWM means except for those during the ascending/backward flight. Tel4 daily means 
are consistent with HWM means in the ascending phase but have larger deviations in the descending phase.

To further investigate the performance of the telescopes, the TIDI/MIGHTI coincidences were organized 
from 0° to 180° SZA with an interval of 45° in different satellite configurations: ascending/backward flight 

Figure 5.  Similar to Figure 4, but for the measurements on the other side of the satellite, that is, directions C and D in Figure 1.



Journal of Geophysical Research: Space Physics

WU AND RIDLEY

10.1029/2022JA030910

9 of 19

(Asc/Backward), ascending/forward flight (Asc/Forward), descending/backward flight (Desc/Backward), and 
descending/forward flight (Desc/Forward). In each SZA bin, the linear least squares regression fitting was 
performed between the TIDI and MIGHTI LOS winds. Figures 8 and 9 are the results for Tel2 and Tel4 which 
show the best and the worst correlation with MIGHTI, respectively. The TIDI LOS winds were binned with an 
interval of 5 m/s and the MIGHTI means were calculated in each velocity bin accordingly to show the compari-
sons of averages. Tel2 and MIGHTI have a correlation coefficient larger than ∼0.5 for most of the SZA bins with 
better correlation on the dayside than on the nightside. The correlation coefficients between Tel4 and MIGHTI 
are less than ∼0.4 in most SZA bins. The small magnitudes of slopes of the fitted lines also indicate inconsistency 
between the two datasets, especially on the nightside.

3.2.  Performance Figures of Merit

The TIDI/MIGHTI comparisons indicate that the four telescopes perform differently and the performance 
depends on satellite configuration (Asc/Backward, Desc/Backward, Asc/Forward, and Desc/Forward) and SZA 
(LST). To quantify the quality of the measurements from individual telescopes, figures of merit are generated.

The coincidences of TIDI and MIGHTI LOS winds were re-organized by the SZA bins for each satellite config-
uration and the analysis of the correlations between the two datasets was conducted for each SZA bin, which is 

Figure 6.  Similar to Figure 4, but for the descending phase.
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similar to Figures 8 and 9 but the SZA bin range is 11.25° instead of 45°. Figure 10 shows an example during 
Asc/Backward flight for Tel1. Ideally, the slope (k), intercept (b), and correlation coefficient (r) should be equal 
to 1, 0, and 1, respectively. The closer the parameters are to the ideal values, the higher the consistency between 
datasets. Thus a score ranging from 0 to 10 was calculated for each parameter: 0 for completely inconsistent, 10 
for completely consistent, with a linearly scaled score in between. Table 1 shows the cutoffs used to define the 
lowest and highest scores for each parameter. The total score in each SZA bin was then the mean of the three 
scores. To evaluate the dayside measurements, a weighted average of the scores was calculated from 0° to 90° 
SZA with the weights determined by the total numbers of events in different SZA bins. The nightside score was 
calculated similarly but for 90°–180° SZA.

Figure 11 shows the performance figures of merit for the four telescopes in each of the satellite configurations. 
The measurements by Tel2 show the best results in general, especially on the dayside during the descending 
phase, while Tel4 performs the worst overall with all scores less than 4. Tel3 is comparable with Tel2 on the 
dayside during the ascending phase, whereas it deteriorates during the descending phase and on the nightside. 
The low scores for Tel1 in forward flight are due to the systematic errors as discussed above. During backward 
flight, Tel1 performs better than the warmside telescopes and is comparable to Tel2 except for the nighside in the 
ascending node. This is consistent with the results above. Additionally, the RMSD was calculated for each satel-
lite configuration and telescope. Basically, with a score <5, the RMSD between the two data sets is ∼60–110 m/s; 

Figure 7.  Similar to Figure 5, but for the descending phase.
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for a score ≥5; the RMSD between the two datasets is ∼50–60 m/s. Thus, the RMSDs and the figures of merit 
are consistent.

It should be noted that the figure of merits that are presented here are not meant to substitute for a quantitative 
uncertainty analysis for any specific measurement point. They are indications of general quality of the data and 
should be treated as a quality flag. For example, if the figure of merit is three or less in a telescope/flight config-
uration, the general quality can be thought of as “poor,” while if the figure of merit is five or higher, the general 
data quality can be thought of as “good.” With further analysis, it is hoped that this quality flag can be refined to 
a quantified uncertainty in the data.

4.  Discussion and Summary
The TIDI LOS winds provided by the level 1 product (Version 11) are compared to the MIGHTI observations 
from 90 to 100 km altitude during 2020. The zonal and meridional winds from the ICON-MIGHTI level 2.2 data 
are projected in the LOS direction of each TIDI telescope, which is termed “MIGHTI LOS” winds in this study. 
The coincidences of TIDI and MIGHTI LOS winds are mainly distributed from ∼−20° to ∼50° latitude bins with 
more events on the dayside than on the nightside.

The performance of individual telescopes is different and varies depending on satellite configuration and SZA/
LST, with the coldside telescopes generally performing better than the warmside ones. TIDI Tel2 measurements 
correlate best with the MIGHTI LOS winds; Tel1 performance is comparable to that of Tel2 during backward 
flight except for Asc/Night, but has systematic errors during forward flight. Both of the warmside telescopes 
have more scattered LOS winds, especially on the nightside for Tel4. Tel4 shows the worst comparisons to the 
MIGHTI LOS winds, although no obvious systematic errors are found. Tel3 performs as well as the coldside 
telescopes on the dayside during the ascending phase but deteriorates during the descending phase and on the 

Figure 8.  Point-to-point comparisons between TIDI Tel2 and MIGHTI LOS winds from 90 to 100 km in different SZA bins during Asc/Backward (first column), 
Desc/Backward (second column), Asc/Forward (third column), and Desc/Forward (fourth column) flights. The black dashed lines represent the linear least squares 
regression fittings; the slope (k) and intercept (b) of the fitted line, as well as the correlation coefficient (r), are labeled in each subplot. The cyan crosses denote the 
comparisons between TIDI velocity means and the corresponding MIGHTI averages. The gray dashed lines represent y = x.
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nightside. In terms of systematic errors in the measurements, only Tel1 LOS winds demonstrate significant 
systematic errors larger than the average wind speeds during forward flight. Results in this study agree with work 
by Dhadly et al. (2021) reporting a systematic bias in the coldside vector winds from TIDI during forward flight 
and further indicate that the reported coldside bias is very likely from Tel1. Similar plots to Figures 4–7 were 
made for measurements in previous years (not shown). The systematic errors in Tel1 during forward flight began 
to occur in 2015.

To quantify the quality of the data, the performance figures of merit for individual telescopes are generated based 
on the correlations and the linear regression fittings between TIDI and MIGHTI LOS winds. Figure 11 shows 
that Tel2 and Tel4 are correlated the best and the worst with MIGHTI, respectively. Tel1 is slightly better than 
Tel3 during backward flight. During forward flight, Tel1 has a score of ∼2 on the dayside suggesting the worst 
comparison, while the Tel1 nightside score indicates better performance than that of Tel3.

As mentioned in the section of data and methodology, the LOS winds, brightness, and their variances are deter-
mined from the calibrated spectra by fitting a set of linear functions which are derived from the convolution of an 
instrument function and a normalized Gaussian line source function for each Doppler broadened line. The uncer-
tainty of the horizontal winds along the LOS depends on the signal brightness and the suitability of the Gaussian 
fitting function (Niciejewski et al., 2006). Therefore, to better understand the possible causes of the poor perfor-
mance in Tel1, the brightness, the brightness SD, and the ratio of the brightness to the brightness SD from Tel1 
during ∼30 days before or after each yaw maneuver in forward flight in 2020 were investigated. The brightness 
SD is the square root of the brightness variance which is the uncertainty in the brightness estimation. The system-
atic errors occur around yaws 2, 3, 4, 5, and 6 during the ascending phase (Figure 5a) and yaws 1, 2, 3, 5, and 6 
during the descending phase (Figure 7a). Among these 10 periods, there are 5 periods where Tel1 measurements 
have two different velocity distributions depending on brightness ratio. An example for days 89–119 (before yaw 
2) during the ascending phase is shown in Figures 12d–12f. For observations with the ratio <=30 (cyan), the 
LOS velocities are distributed from −150 to 100 m/s peaking around zero, while the velocity distribution with 
ratio >30 (pink) ranges from −250 to 0 m/s peaking around −100 m/s. The latter group is associated with the 

Figure 9.  Similar to Figure 8, but for Tel4.
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systematic error identified in Figure 5. In contrast, for measurements with good quality, the velocities of the two 
ratio groups are similarly distributed and peak around zero. An example for days 209–239 (after yaw 4) during 
the ascending phase is shown in Figures 12a–12c. Consequently, in order to reduce the systematic errors, the 
Tel1/Forward measurements on the dayside (i.e., Figures 12d–12f) with ratio >30 could be discarded. However, 
it should be noted that this is a rough investigation to see if the Tel1/Forward systematic errors can be restricted 
by the signal brightness. There are other scenarios where the measurements with systematic errors cannot be 
discarded with the ratio restriction discussed above. For example, Figures 12g–12i show the distributions of the 
nightside measurement on days 175–205 from Tel1. Both the measurements with the ratio >30 and <=30 are 
negatively biased. Therefore, although the brightness that is related to the derivation of LOS winds can be applied 
to exclude part of the “bad” measurements, it cannot be used to locate all for the Tel1/Forward winds. And we do 
not know the cause of the double-peaked distribution of brightness ratio at this time, but it is an avenue we are 
pursuing to get to the bottom of the data quality issues.

There are two known anomalies of TIDI after the launch of the satellite, 
which has been discussed by Killeen et al. (2006) and Skinner et al. (2003): 
(a) the high and variable background of the instrument signal during 
daytime observation that was caused by a light leak of the profiler, and (b) 
the broadening of the spectral distribution and the increase of cross-talk 
between different telescope fields that was caused by ice formation on the 
detector housing window or optical surfaces. The TIMED satellite made 
two roll maneuvers in early 2003 to increase the detector housing temper-
ature and thus most of the ice was removed. Also, measurements of the 
O2 (0-0) P branch broadband emission were favored to increase the signal 

Figure 10.  Point-to-point comparisons between TIDI Tel1 and MIGHTI LOS winds from 90 to 100 km in different SZA bins during Asc/Backward flight. The red 
dashed lines represent linear least squares regression fittings; the slope (k) and intercept (b) of the fitted line, as well as the correlation coefficient (r), are labeled for 
each SZA bin. The gray dashed lines represent y = x.

Table 1 
Score Cutoffs for Slope (k), Intercept (b), and Correlation Coefficients (r)

Score a Slope Intercept (m/s) Corr

0 k < 0.1 |b| > 50 r < 0.2

10 |k − 1| < 0.1 |b| = 0 r > 0.9

 aScores are linearly scaled between the cutoffs.



Journal of Geophysical Research: Space Physics

WU AND RIDLEY

10.1029/2022JA030910

14 of 19

level, since the background contamination was not as strong in this band, so the effective SNR was increased. 
Although these effects have been accounted for in the data processing, they are still possible sources of meas-
urement noise and differences between TIDI and MIGHTI. Further, the TIDI instrument was designed to map 
the five fields (four telescope and one calibration) on the detector in the order of: calibration, Tel1, Tel2, Tel3, 
and Tel4 away from the center. The background intensity increases away from the vertex, indicating a lower 
signal-to-noise level in the outer field where the warmside telescope fields are imaged. This may contribute 
to the poor performance of warmside telescopes which have a larger scatter in their LOS winds. In addition, 
the estimation of a “zero wind” is a major source of uncertainty in neutral wind measurements for all orbiting 
FPI instruments, which may also contribute to the differences. For TIDI data processing, the “zero wind” 
corrections include (a) instrument temperature fluctuations, (b) long-term instrument drift, (c) the component 
of the spacecraft velocity along the LOS, (d) the component of Earth rotation along the LOS (Niciejewski 
et al., 2006). The main issue may be long-term instrument drift (which is time-dependent) or/and instrument 
temperature fluctuations (which is dependent on orbit and telescope, since it is dependent on TIMED's orien-
tation toward the Sun). Taking all the possible sources into consideration, in-depth investigations to locate the 
sources of the differences and calibrate the data are complicated, which is beyond the scope of the paper and 
will be done in future work.

Besides, the results indicate that TIDI level 1 LOS winds have a larger range of magnitudes than those from 
MIGHTI in general. When TIDI measurement magnitudes exceed 100 m/s, more coincident ICON measure-
ments are almost always below 100 m/s. This discrepancy may be due to the “smoothing effects” that are intro-
duced during the inversion of LOS winds. Additionally, TIDI having larger instrument noise would cause more 
outlier data points above 100 m/s. The purpose of the inversion is to “unsmooth” or “disentangle” the contribu-
tions from each altitude in theory. However, in practice, there are a lot of fittings and assumptions applied in the 
inversion algorithm. For example, for the TIDI level 2 product, the apparent velocity measurements accumu-
lated in a limb scan are inverted by fitting a “scan” of data. Each “scan” of measurements is obtained by moving 
a single telescope either up or down to view different altitudes during a short time interval. Thus, individual 
TIDI level 2 LOS profiles are smoother than those of level 1 (Or level 1 data have larger noise than level 2 data). 
Harding et al. (2017) pointed out that the MIGHTI wind measurements retrieved based on inversion should be 
interpreted as horizontal and vertical averages and the dominant factor leading to loss of accuracy is horizontal 
variation of the wind and airglow emission rate, which are smoothed by the long path length of MIGHTI's line 
of sight through the atmosphere. For TIDI data products, Figure 13 shows an example of TIDI “raw” (level 1) 
versus inverted (level 2) LOS winds on 1 January 2020. The coincident measurements of level 1 and level 2 
were determined by a window of 2° latitude and 3° longitude. If we discard the measurements with magnitudes 
>60 m/s, the slopes of the linear regressions will increase to >0.9 (very close to the line of y = x). Also, the 

Figure 11.  Performance figures of merit for each telescope on the dayside (0°–90° SZA) and the nightside (90°–180° SZA) 
during the ascending (left) and descending phases (right). The blue and red background colors represent the backward and 
forward flights, respectively. In each configuration, the score is represented by the size of the circle and labeled; the color of 
the circle represents the number of events.
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means (blue triangles) in each velocity bin agree well with the line of y = x when the level 1 LOS winds are 
below ∼60 m/s. This indicates that the two datasets are very consistent with each other for smaller winds; as 
TIDI level 1 winds become larger (>∼60 m/s), the corresponding level 2 measurements are smaller than those 
of level 1, but the two datasets are still correlated well with each other in general. Consequently, the inversion 
algorithm “smooths” the measurements to some degree at least for the TIDI product in practice, though we 
don't know whether the larger shears in the “raw” LOS winds are real or whether they are instrument noise. 
Larsen (2002) noted that strong shears exist in the MLT region and the wind maximum between 100 and 110 km 
exceeds 100 m/s in more than 60% of measurements. This is an area of debate, which needs more investigation 
in the future.

Nevertheless, one can restrict the LOS wind magnitudes to a range of less than 100 m/s to match the two 
datasets better. Similar plots of TIDI/MIGHTI comparisons were made and figures of merit were calcu-
lated for the coincidences with TIDI LOS wind magnitudes <100 m/s. As an example, Figure 14 shows the 
point-to-point comparison of the coincident measurements between Tel1 and MIGHTI for Desc/Backward. 

Figure 12.  Line of sight wind distributions (left), brightness percentage distributions (mid), and brightness ratio percentage distributions (right). From the top to 
the bottom are three examples of Tel1 measurements matching well with MIGHTI (a–c, on the dayside during Asc/Backward flight), with systematic errors and two 
different velocity distributions (e–f, on the dayside during Asc/Forward flight), and with systematic errors and two similar velocity distributions (on the nightside 
during Asc/Forward flight), respectively. Measurements with brightness ratios <=30 and >30 are colored with cyan and pink, respectively.
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When TIDI measurements with magnitudes >100 m/s are discarded, the regression fittings (blue dashed lines) 
are improved in some SZA bins, especially from 11.25° to 33.75° on the dayside. Figure 15 shows the figures 
of merit with this restriction being applied. The correlation between the two datasets is improved for Tel1/
Desc/Day, Tel2/Asc/Day&Night, and Tel3/Asc/Backward/Day with scores increased by 1. For these meas-
urements, the TIDI LOS winds have relatively high correlations (score ≥5) with MIGHTI LOS winds, and 
the data with magnitudes larger than 100 m/s may play as outliers or systematic errors (for Tel1). Tel4 scores 
increase to four in the Desc/Backward/Day and Desc/Forward/Night configurations, but the restricted data are 
still inferior to MIGHTI LOS winds. This is because Tel4 measurements are weakly correlated to MIGHTI 
observations regardless of magnitudes.

Overall, the figure of merit is provided as a quality flag for TIDI measurements for each satellite configuration 
and telescope based on the comparisons with MIGHTI observations. For a score ≥5, the TIDI and MIGHTI 
measurements are consistent. Under this condition in each SZA bin, the correlation coefficient is usually larger 
than 0.5; the slope tends to be larger than 0.5; and the RMSD between the two datasets is ∼50–60 m/s. (b) For 
a score <=3, the measurements are very scattered or with systematic errors, showing the weakest correlation. 
(c) For a score = 4, one should be cautious about the data. Specifically, TIDI data is consistent with MIGHTI 
wind measurements in the MLT region when certain conditions are met: (a) For Tel1, measurements are 
consistent with MIGHTI during backward flight (excluding Asc/Backward/Night), and some of those with the 
ratio of the brightness to standard deviation brightness less than 30 during forward flight; (b) For Tel2, the 
measurements are generally consistent with MIGHTI across all conditions; (c) For Tel3, consistent measure-
ments are from the Asc/Day configuration; (d) Tel4 data are very scattered showing the weakest correlation 
with MIGHTI measurements in general; and (e) to match MIGHTI level 2.2 data better, the measurements 
meeting the requirements above (good data) can be further restricted with the magnitudes less than 100 m/s 
to exclude outliers. Future work will provide more information on the possible causes of the issues and will 
attempt to solve them.

Figure 13.  Point-to-point comparison between TIDI level 1 and level 2 measurements on 1 January 2020, from ∼80–120 km 
for Tel1 (top) and Tel4 (bottom). The red lines represent linear regression fittings to the two datasets and the gray dashed 
lines are y = x. The blue triangles represent the means of LOS winds in each bin of 5 m/s.
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Figure 14.  Similar to Figure 10, but for Desc/Backward flight. The blue dashed lines represent the regression fittings to the coincidences with TIDI LOS wind 
magnitudes <100 m/s and the coefficients are labeled in blue color.

Figure 15.  Similar to Figure 11, but the figures of merit are calculated for the coincidences with TIDI LOS wind magnitudes 
<100 m/s.



Journal of Geophysical Research: Space Physics

WU AND RIDLEY

10.1029/2022JA030910

18 of 19

Data Availability Statement
TIDI level 1 data can be obtained from http://tidi.engin.umich.edu/. ICON-MIGHTI level 2.2 data are available 
at https://icon.ssl.berkeley.edu/Data.
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