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Abstract
Increasing soil organic carbon (SOC) stocks is increasingly targeted as a key strategy 
in climate change mitigation and improved ecosystem resiliency. Agricultural land, a 
dominant global land use, provides substantial challenges and opportunities for global 
carbon sequestration. Despite this, global estimates of soil carbon sequestration 
potential often exclude agricultural land and estimates are coarse for regions in the 
Global South. To address these discrepancies and improve estimates, we develop a 
hybrid, data- augmented database approach to better estimate the magnitude of SOC 
sequestration potential of agricultural soils. With high- resolution (30 m) soil maps of 
Africa developed by the International Soils Database (iSDA) and Malawi as a case 
study, we create a national adjustment using site- specific soil data retrieved from 
1160 agricultural fields. We use a benchmark approach to estimate the amount of 
SOC Malawian agricultural soils can sequester, accounting for edaphic and climatic 
conditions, and calculate the resulting carbon gap. Field measurements of SOC stocks 
and sequestration potentials were consistently larger than iSDA predictions, with an 
average carbon gap of 4.42 ± 0.23 Mg C ha−1 to a depth of 20 cm, with some areas ex-
ceeding 10 Mg C ha−1. Augmenting iSDA predictions with field data also improved sen-
sitivity to identify areas with high SOC sequestration potential by 6%— areas that may 
benefit from improved management practices. Overall, we estimate that 6.8 million ha 
of surface soil suitable for agriculture in Malawi has the potential to store 274 ± 14 Tg 
SOC. Our approach illustrates how ground truthing efforts remain essential to reduce 
errors in continent- wide soil carbon predictions for local and regional use. This work 
begins efforts needed across regions to develop soil carbon benchmarks that inform 
policies and identify high- impact areas in the effort to increase SOC globally.
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1  |  INTRODUC TION

Carbon is among the most consequential and contentious sub-
stances on earth. Responsible for much of human wellbeing through 
powering economic activity, it is also the greatest threat to global 
biodiversity and ecosystem function by driving global climate change 
(IPCC, 2022). Carbon sequestration in agriculture offers a means to 
address this threat while also supporting food security. While some 
agricultural practices such as soil cultivation and residue removal 
contribute to soil carbon depletion (Martínez et al., 2008; Paustian, 
Collier, et al., 2019), agricultural soils also may have more potential 
than natural lands to sequester carbon with changes in management 
(Six et al., 2002). Agricultural soils with higher soil organic carbon 
(SOC) tend to be more productive and better able to withstand cli-
mate change- enhanced shocks than those with lower SOC (Droste 
et al., 2020; Oldfield et al., 2019; Williams et al., 2016). However, 
human activity has caused an estimated loss of 133 Pg C since the 
beginning of agriculture (Sanderman et al., 2017), around 10% of re-
maining global stocks (Scharlemann et al., 2014; Walker et al., 2022). 
In a win– win scenario, sequestering carbon to increase SOC stocks 
in agricultural soil mitigates climate change and enhances the adap-
tation capacity of agriculture.

Unfortunately, a soil's potential to sequester carbon is highly 
variable and difficult to predict. The potential for sequestering car-
bon has two components. The first is the rate at which carbon can 
accumulate in a soil. Global estimates of rates vary widely within 
agricultural lands, for example, between 0.9 and 4.8 Pg C year−1 
(Griscom et al., 2017; Zomer et al., 2017); at the field scale, published 
C sequestration rates in surface soils range from +0.4% to +17.6% 
per year, depending on region, climate, management, and baseline 
(Corbeels et al., 2019). The second component, the quantity that a 
soil might accumulate, is the difference between the current stock 
and the potential stock— the carbon gap. The potential stock is lim-
ited by climate, edaphic, and critically, management factors that can 
be altered to increase potential stocks. In general, cropped soils have 
lower potential carbon stocks than uncropped soils of the same se-
ries (Matus, 2021; Minasny et al., 2017). Although the sequestration 
potential of agricultural soils is limited per unit area, agriculture is the 
dominant land use globally, so quantifying and locating agricultural 
carbon gaps is essential for climate change mitigation. Those loca-
tions with large carbon gaps are likely to have higher potential stor-
age rates than those with smaller gaps and are more likely to benefit 
agronomically from increases in carbon stocks (Corbeels et al., 2019; 
Six et al., 2002). As a result, large- gap sites are high priority for car-
bon sequestration interventions.

Yet, predicting carbon gaps on agricultural lands remains so 
difficult that agricultural soils continue to be excluded from high- 
profile estimates of the global potential to sequester carbon (Walker 
et al., 2022). Identifying large- gap soils requires accurate, high- 
resolution soil maps to estimate current stocks and a robust method 
to estimate potential stocks. This is especially true in the Global 
South, where widespread, small- scale management amplifies vari-
ation in existing carbon stocks of old, management- sensitive soils 

(Snapp, 2022). Maps estimating soil carbon stocks have improved 
over the past decade to predict stocks at field- scale (30 m) resolu-
tion (Hengl et al., 2015, 2021). However, prediction models still are 
generated at the continental scale; as a result, these maps may not 
be accurate or precise at policy- relevant scales of fields to nations 
(Ewing et al., 2021). Investment in field- scale soil carbon data to bet-
ter understand and manage sequestration on cultivated lands may 
overcome this (Beillouin et al., 2022). The other major challenge is 
setting a standard or goal. One approach is based on texture, which 
is used to estimate the total organic carbon that could associate with 
fine silt and clay particles (Hassink, 1997), although this value is still 
sensitive to management (Fujisaki et al., 2018) and also excludes 
large, management- sensitive pools such as particulate organic mat-
ter. Alternatively, nearby natural lands are used as a primary data 
source for mapping stocks or estimating potentials (Guillaume 
et al., 2022; Kempen et al., 2019). While land use change from agri-
culture to natural lands may allow a field to reach the ecological po-
tential of carbon stocks, such a tradeoff with food production likely 
is unacceptable. Estimating a field's potential carbon stock assuming 
continued agricultural management avoids this tradeoff but lacks an 
obvious standard.

We propose solutions to these dual challenges of map accuracy 
and the estimation of sequestration potential of agricultural soils, 
with Malawi as a case study. For the first, we create a national ad-
justment to the International Soils Database (iSDA) maps of Africa 
using a dataset of 1160 fields, as suggested by Hengl et al. (2021). 
For the second, we borrow a benchmarking approach from the soil 
health literature (Karlen et al., 2019; Nunes et al., 2021) to estimate 
the sequestration potential of Malawian agricultural soils within 
edaphic and climatic contexts. Based on previous experience (Ewing 
et al., 2021), we expected: (a) that SOC stocks would be higher and 
more variable than predicted by iSDA; (b) that soils would show a 
greater potential for carbon sequestration than predicted by iSDA; 
and (c) that adjusting iSDA could mitigate these biases and aid the 
identification of fields with high storage potential. The outcomes are 
high- resolution maps of current and potential SOC stocks and SOC 
gaps at 30 m resolution to support targeted investments in locations 
where carbon sequestration has the most storage potential. We con-
clude by discussing the continued need for sampling to verify carbon 
sequestration and carbon gaps and the utility of this approach for 
(a) setting local to regional policy goals and (b) directing investment 
toward those areas with the greatest potential to sequester carbon.

2  |  METHODS

2.1  |  Study locations, sampling, and data 
acquisition

Data were collected from 1160 smallholder fields as part of the 
Africa RISING project (Tu et al., 2022). Sites were selected by 
stratified random sampling from two villages within each of eight 
extension planning areas in three districts. The villages span the 
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variation in soil conditions across Malawi (Figure 1). Soils were col-
lected in 2016 as previously described (Ewing et al., 2021). Briefly, 
samples were collected to a depth of 20 cm and composited from 
eight locations per field. Samples were air- dried, sieved to 2 mm, 
and stored until analyses. Total carbon and nitrogen concentra-
tions were measured with a Leco Tru- Mac CN Analyzer (Leco 
Corporation). pH was measured in a 1:2 soil:water slurry. Texture 

was measured using the micropipette method (Burt et al., 1993). 
Soils were assumed to be free of carbonates due to generally 
acidic conditions; this was confirmed on a subset (n = 148) of sam-
ples which were assessed for carbonates by change of mass upon 
acidification with 1 M hydrochloric acid (Allison & Moodie, 2016). 
In 2020, 74 of these sites were revisited to measure soil bulk den-
sity. Five centimeter diameter cores were carefully taken per field 

F I G U R E  1  (a) Sample locations against a backdrop of land suitability for agriculture (Li et al., 2017). Lower numbers and darker colors 
indicate higher suitability. Black dots are sample locations and districts containing those points are highlighted in color. Panel (b) shows 
distributions of soil properties at visited fields (black) or across Malawi based on 5000 randomly selected points (gray). All properties 
are estimated from iSDA or the SRTM- 90 digital elevation model. Densities indicate the proportion of points along the x- axis. Map lines 
delineate study areas and do not necessarily depict accepted national boundaries.
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to avoid compaction, three from the row and three from the in-
terrow to account for management- induced differences in these 
locations. The six cores were then composited, oven dried, and 
weighed.

Layers of estimates for soil properties in Malawi were down-
loaded from the Innovative Solutions for Digital Agriculture da-
tabase (iSDA; www.isda- africa.com; Hengl et al., 2021) following 
OpenLandMap instructions (https://gitlab.com/openl andma p/afric 
a- soil- and- agron omy- data- cube) within R 4.0.2 for Malawi and 
transformed to SI units. Soil properties were mass fractions of total 
carbon, organic carbon, sand, silt, clay, plus bulk density, pH, and 
carbon stocks for the 0– 20 cm depth. Agricultural suitability classes 
were acquired from Li et al. (2017). Malawi political boundaries 
were acquired from Database of Global Administrative Areas (www.
gadm.org). Elevation (SRTM 90 m) and MODIS reflectance indices 
were acquired via Google Earth Engine (Didan & Huete, 2015; Jarvis 
et al., 2008).

2.2  |  Estimation of carbon stocks and 
storage potential

All analyses were performed in R 4.1.1 (R Core Team, 2021). Unless 
noted, graphs and maps were made using ggplot2, geospatial analy-
ses were conducted with sf, terra, and stars, and other statistics were 
completed using base functions (Hijmans, 2022; Pebesma, 2018, 
2022; Wickham, 2016). Geospatial analyses were conducted in the 
WGS84(2007) datum, while maps were projected in NAD83 UTM 
Zone 36S. Code for adjusting iSDA layers, deriving benchmarks, 
evaluating prediction error, and predicting potentials is available on 
Zenodo at https://doi.org/10.5281/zenodo.

We used an equivalent- depth approach to estimate and com-
pare carbon stocks at all measured sites (Rovira et al., 2022). We 
first derived a pedotransfer function to predict soil bulk density at 
those sites where bulk density was not measured. Properties were 
selected using stepwise linear regression to minimize Akaike infor-
mation criterion (AIC; Bozdogan, 1987). Potential properties were 
soil texture, total carbon, elevation, slope, and pH. The resulting 
function was:

where SOC is measured in g kg−1 soil and sand in g g−1 soil. This pe-
dotransfer function performed comparably to other published re-
gressions based on root mean squared error calculated with 10- fold 
cross- validation (Table S1) and had a relative prediction error of 6.3%.

We next estimated potential carbon stocks at field sites using 
quantile regression. The approach assumed that soils with simi-
lar properties and with identical long- term management should 
support similar carbon concentrations. First, we identified climate 
and edaphic properties that were associated with total soil carbon 
using LASSO penalized regression in glmnet (Friedman et al., 2010). 
Potential properties included soil texture, elevation, mean annual 

precipitation, and mean land surface temperature; these were cho-
sen due to their low sensitivity to management relative to other pa-
rameters like soil pH and crop canopy reflectance. Only soil texture 
and elevation had important associations with soil carbon.

We then identified the 80th percentile of SOC concentrations 
across these gradients of soil properties using the function rq() from 
quantreg (Koenker, 2022). By this definition, 20% of soils were deter-
mined to have a carbon gap of zero Mg ha−1. The 80th percentile was 
selected as feasible yet ambitious, a classification that is admittedly 
arbitrary. For comparison, Idowu et al. (2009) use a 75th percen-
tile as a minimum “ideal” level of indicators such as organic matter 
where more is generally better. Soil class- based benchmarking in 
France found a threefold increase in national carbon sequestration 
potential when using the 95th percentile versus the 80th percentile 
(Chen et al., 2019).

Finally, we calculated carbon stocks and potential carbon stocks 
at field sites using the pedotransfer function and quantile regres-
sion relationships. Carbon gaps were calculated as the difference 
between potential and current carbon stocks.

We compared these calculated stocks, potential stocks, and gaps 
with those predicted by iSDA. We calculated iSDA carbon stocks 
based on bulk density and soil organic carbon due to the known lack 
of carbonates. The quantile regression relationship to estimate po-
tential carbon concentrations was also re- derived using iSDA predic-
tions of soil properties. We finally assessed iSDA's predictive power 
by comparing it to empirical measurements.

2.3  |  Regional adjustment of iSDA stock estimates

To extrapolate our SOC stock estimates to unmeasured locations we 
derived regional adjustments to iSDA soil properties. We compared 
three methods for this (Figure S1), all of which allowed a second- 
order polynomial relationship between iSDA estimates and field 
measurements of soil properties. The first, a “stationary, top- down” 
approach, simply correlated empirical and iSDA carbon stocks and 
assumed that this relationship was stationary across the study area. 
The second approach relaxed the assumption of stationarity and in-
stead used geographically weighted regression (GWR) to derive local 
relationships between iSDA and empirical carbon stocks— hereafter, 
“GWR, top- down.” This was implemented using the gwr.basic() func-
tion in GWmodel (Lu et al., 2014). Neighborhoods were defined adap-
tively with 138 neighboring points using a Gaussian kernel and the 
bw.gwr() function with great circle distances. Finally, a “stationary, 
bottom- up” approach began by deriving adjustments to iSDA predic-
tions of texture, bulk density, and carbon concentrations, and then 
re- calculating stocks and storage potential from these corrected 
component layers.

For each approach, we used cross validation to adjust iSDA 
values and assess prediction quality. Cross- validation groups were 
geographically defined as each of eight extension planning areas. 
Prediction quality indices included root mean squared prediction 
error (RMSPE), the coefficient of determination (R2), and spatial 

(1)Bulk Density = 1.29 − 0.00722 × SOC + 0.344 × Sand,

http://www.isda-africa.com
https://gitlab.com/openlandmap/africa-soil-and-agronomy-data-cube
https://gitlab.com/openlandmap/africa-soil-and-agronomy-data-cube
http://www.gadm.org
http://www.gadm.org
https://doi.org/10.5281/zenodo
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autocorrelation of error (Moran's I) (Moran, 1950). R2 was calculated 
to test a 1:1 prediction:observation relationship:

where SSerror is the sum of squared prediction errors and SStotal is 
the sum of squared, mean- centered data. Negative values of R2 
are possible under this definition and indicate that predictions are 
less reliable than the average of the empirical data. Moran's I was 
calculated based on inverse distance weighting using Moran.I() of 
ape which also tested significance using permutation (Paradis & 
Schliep, 2019).

We further evaluated adjusted iSDA stocks for their ability to 
identify locations with large gaps— those field sites with the top 25th 
percentile of carbon gaps. Classification of sites as high potential 
sites was assessed by calculating sensitivities, specificities, and ac-
curacies, by calculating receiver– operator characteristics with the 
roc() function of pROC (Robin et al., 2011), and by correlation among 
methods. Here, significance was tested using permutation and er-
rors calculated by bootstrapping (n = 999).

Finally, we used the best- performing iSDA correction to pre-
dict carbon stocks, potential carbon stocks, and carbon gaps across 
Malawi. The best performing model was that with low overall pre-
diction error, low spatial autocorrelation of prediction error, and high 
classification accuracy.

3  |  RESULTS

3.1  |  Estimation of carbon stocks, potential stocks, 
and gaps

To estimate the continued utility of local measurements of carbon 
stocks, we first compared iSDA predictions of carbon stocks to 
those we measured in the field. We found iSDA stocks were con-
sistently larger by 28.1 ± 0.4 Mg C ha−1 (p < .001) due to a substantial 
amount of inorganic carbon in iSDA predictions. In contrast, none 
of the soils we sampled contained inorganic carbon. This, combined 
with the low potential to manage soils to increase inorganic carbon, 
led us to focus on the comparison between measured SOC and 
iSDA- predicted SOC.

Measurements of SOC stocks were consistently larger than 
predictions across all extension planning areas within the study 
region, by 8.7 ± 1.0 Mg C ha−1 on average (Figure 2a). Average 
current stocks ranged from 18.7 ± 1.3 Mg C ha−1 in Nsanama 
(Machinga district) to 48.8 ± 3.7 Mg C ha−1 in Linthipe (Dedza). 
We further wanted to identify how much carbon soils could store 
under optimal, agricultural management. In general, higher eleva-
tion and finer textured soils contained more SOC, in agreement 
with previous studies (Matus, 2021; Figure 3). Using dataset- 
specific quantile regression equations (Table S2), we found that 
potential carbon stocks in agricultural soils also were larger 

(2)R
2
= 1 −

(

SSerror × SStotal
−1
)

,

F I G U R E  2  Field- measured and iSDA- predicted SOC stocks, potential SOC stocks, and the resulting gap in SOC stocks at sampled 
locations across the 0– 20 cm depth. (a) Means and standard errors within each extension planning area; (b) measured and predicted stocks at 
each sample location. R2, coefficient of determination for prediction quality. The dashed lines represent a 1:1 relationship.
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than iSDA predicted and averaged within extension planning 
area were as high as 54.4 ± 4.6 Mg C ha−1 in Linthipe (Dezda). 
Finally, we found a consistently large gap between current and 
potential SOC stocks that was substantially higher than iSDA 
predicted (4.42 ± 0.23 Mg C ha−1) and exceeded 10 Mg C ha−1 in 
Linthipe and Nyambi (Machinga). Investigation at the field level 
revealed an underprediction of current and potential SOC stocks 
and gaps in the iSDA dataset, especially in fields with more than 
20 Mg C ha−1. This was consistent across the sampled region 
(Figure 2b) and consistent with previous, independent ground 
truthing of continental soils databases based on remote sensing 
(Ewing et al., 2021).

3.2  |  Local adjustments to iSDA predictions

While iSDA predicted carbon stocks poorly (R2 = .162; Table 1), pre-
dictions were correlated with measured stocks (Pearson's r = .69). 
Therefore, we tested whether a local adjustment to iSDA values 
derived from local sampling and additional environmental covari-
ates could improve iSDA predictions of stocks, potential stocks, and 
gaps at unmeasured agricultural fields. Prediction errors at unob-
served extension planning areas for top- down adjustment methods, 

including the geographically weighted method, were significantly 
but only slightly correlated across space (Moran's I: 0.09– 0.22, 
p < .001). Closer inspection indicated that the spatial scale of vari-
ation in iSDA prediction errors was at the level of extension plan-
ning area or smaller and this variation is minor compared to overall 
prediction error.

In terms of raw correlation, the top- down, stationary adjust-
ment method was both the simplest and the best means to predict 
SOC gaps: It had the lowest RMSPE (8.23 Mg C ha−1), the highest R2 
(.383), and prediction error had the smallest spatial autocorrela-
tion (I = 0.135). For predicting SOC stocks and potential stocks, 
the top- down, geographically weighted model was slightly more 
parsimonious than the stationary model by all measures. Both top- 
down adjustments reduced prediction errors of stocks and potential 
stocks by 40%– 55% and reduced prediction errors of gaps by 14%. 
The bottom- up adjustment method performed worse than both 
top- down methods, but still was more accurate than the unadjusted 
iSDA predictions for predicting stocks and potential stocks.

This improvement in prediction of the magnitude of carbon 
stocks with an iSDA adjustment translated to better identification 
of sites with large SOC gaps (Table 2). We defined these fields as 
those with gaps in the top 25th percentile and they accounted 
for 50% of the total SOC sequestration potential across sampled 

F I G U R E  3  Measured SOC stocks across gradients of elevation, measured silt, and measured clay content. Black points indicate fields that 
are at carbon storage potential, at or above the 80th percentile using quantile regression. Gray points indicate fields that could sequester 
more carbon. The dashed line approximates this 80th percentile across the indicated gradient.

TA B L E  1  Prediction characteristics of iSDA adjustments

Adjustment method

Current stock Potential stock Current gap

RMSPE R2 Moran's I RMSPE R2 Moran's I RMSPE R2 Moran's I

iSDA 13.23 .167 0.239* 16 −.51 0.28* 9.581 .164 0.19*

Stationary (Top- down) 7.999 .696 0.107* 7.765 .644 0.222* 8.228 .383 0.135*

GWR (Top- down) 7.871 .705 0.089* 7.592 .66 0.217* 8.325 .369 0.159*

Bottom- up 8.083 .689 0.083* 9.418 .477 0.379* 9.741 .136 0.308*

*p < .001.
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locations (Figure S2). iSDA identified high- gap sites with an accu-
racy of 0.81 ± 0.02 and a sensitivity of 0.52 ± 0.06. While better than 
expected if randomly selected (p < .001), the moderate sensitivity 
indicates that half of identified sites did not have large SOC gaps. 
The stationary, top- down adjustment's accuracy was 0.82 ± 0.02 
with a sensitivity of 0.55 ± 0.06, again better than random selection 
(p < .001) and 6% more sensitive than iSDA. The GWR model per-
formed similarly to the stationary model, while the bottom- up model 
performed worse than unadjusted iSDA. Still, all methods gave simi-
lar classifications, with nearly identical AUC and classification agree-
ments for at least 88% of fields (Figure S2).

With field data corrections of iSDA, we generated updated pre-
dictions of carbon stocks, potential carbon storage, and the subse-
quent carbon sequestration potential in agricultural land in Malawi 
(Figure 4) and errors of these estimates (Figure S3). Overall, we 
estimated that the 6.8 million ha of land suitable for agriculture in 
Malawi has the potential to hold 274 ± 14 Tg SOC in the top 20 cm of 
soil, an increase of 33 ± 14 Tg C from current stocks, with changes in 
land management but not land use. These estimates are larger than 
those predicted by iSDA by 53% for potential stocks and 89% for 
SOC gaps (Figure 5; Figure S4). These maps highlight that much of 
the agricultural land in central and southwestern areas of Malawi is 
near our definition of saturated for soil organic carbon, while the 
northwest, southeast, and pockets of the Dedza district have high 
sequestration potential of greater than 15 Mg C ha−1. While carbon 
stocks and gaps are negatively correlated (r = −.43), some carbon- 
poor soils including lakeshore, low altitude areas in southern Malawi 
also have low carbon sequestration potential. These observations 
have implications for directing the investment in practices that build 
soil carbon and setting expectations for potential increases in ag-
ronomic production and stability that accompanies increases in soil 
organic matter.

3.3  |  Recommended approach for regional 
improvements to iSDA carbon stock predictions

Based on these results, we recommend the top- down, stationary 
approach for developing regional adjustments to iSDA SOC stock 
predictions in agricultural lands (Figure S1). First, evaluate the rela-
tionship between iSDA predictions and empirical measurements of 
SOC stocks, where iSDA predictions are based on iSDA predictions 

of both SOC concentrations and bulk density. Next, identify edaphic 
and climatic factors that define soils with similar SOC- limiting 
properties— here, elevation and iSDA- predicted soil texture— 
through variable selection— here, by LASSO regularized regression. 
Use the selected factors to develop a quantile regression relation-
ship between iSDA SOC stocks and the covariates at the threshold 
of choice, which thus represents an expected upper limit or poten-
tial of carbon stocks given soil covariates (here, the 80th percentile). 
With this quantile regression relationship, predict potential carbon 
stocks across the region of interest and then calculate carbon gaps 
as the difference between current and potential stocks, with a floor 
of zero. An Rmarkdown notebook (Xie et al., 2019) demonstrating 
this workflow is included in the supplementary information.

4  |  DISCUSSION

Carbon sequestration happens at the scale of management. In small-
holder agriculture, management occurs in fields often smaller than 
1 ha (Snapp, 2022). Incentivizing carbon sequestration is more ef-
ficient with knowledge of which fields have the potential to store 
carbon and how large those carbon gaps are. However, a recent syn-
thesis of 192 meta- analyses of SOC highlighted the lack of SOC data 
at local scales and limited numbers of studies in the global south 
(Beillouin et al., 2022). Our findings emphasize the persistence of 
this challenge and demonstrate a solution. Overall, we found that 
iSDA underestimated the current carbon stocks in Malawian agri-
cultural fields, the potential carbon stocks of these fields, and the 
amount of carbon that could be sequestered as organic matter in 
these soils. Adjusting iSDA revised the value of filling carbon gaps 
in Malawi upwards by USD 1375 ha−1 on sampled fields, based on a 
carbon price of USD 85 per ton of CO2e, the price in the European 
carbon credit market as of August 3, 2022 (https://carbo ncred its.
com). Scaling this across Malawian land suitable for agriculture, we 
estimate the value of the 33 Tg carbon gap to be USD 10.4 billion. 
Revising these carbon gaps is consequential for organizations in-
vesting in green development strategies because the value of these 
strategies is essential to the socioeconomic viability of carbon- based 
development strategies (Polak & Snowball, 2019).

We begin this discussion by emphasizing the continued, global 
need for sampling to estimate carbon stocks and gaps at local and 
regional scales to inform policy, investment, and management. We 

Adjustment method

Sensitivity Specificity Accuracy

Mean Error Mean Error Mean Error

iSDA 0.517 0.064 0.881 0.021 0.808 0.022

Stationary (Top- down) 0.55 0.064 0.888 0.02 0.821 0.022

GWR (Top- down) 0.54 0.064 0.886 0.02 0.816 0.022

Bottom- up 0.442 0.063 0.867 0.023 0.776 0.024

Note: Bootstrapped standard errors (n = 999). All p < .001.
aSites with the top 25% largest gaps.

TA B L E  2  Ability of iSDA adjustments 
to identify large- gapa sites

https://carboncredits.com
https://carboncredits.com
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then discuss efficient ways to estimate potential stocks and gaps by 
setting context- specific benchmarks. We conclude by developing 
scenarios that highlight the policy implications of updated estimates 
of stocks and gaps in Malawi within the context of national and 
global emissions and potential sequestration rates.

4.1  |  In- field estimates of soil carbon remain 
essential for policy, management, and interventions

We found that iSDA, which as of writing provides the highest resolu-
tion predictions of soil properties in Africa, was able to identify fields 
with high storage potential in its current form— if stocks are recal-
culated using iSDA predictions for bulk density and SOC. However, 
adjusting iSDA slightly improved sensitivity and resolved a system-
atic underestimation of SOC gaps. Armed with such identifications 
of fields, we expect that policies and entrepreneurial activity aimed 
at improving carbon stocks or capturing carbon credits will be more 

effective at targeting farmer– partners. Additionally, local adjust-
ments to regional databases can provide an accurate prediction of 
carbon stocks and gaps within administrative districts.

Still, adjustments to regional databases do not obviate the 
need for on- site sample collection for quantifying carbon seques-
tration potential in agricultural soils at the field scale. Rather, such 
sampling remains an important component of farmer engagement 
toward increasing SOC stocks. One reason for the difficulty in ac-
curately predicting carbon stocks and gaps— even with datasets 
augmented with locally collected data— may be that in this region, 
management varies from plot to plot; as a result, land degrada-
tion can be both extreme and highly asymmetric at the scale of 
tens of meters due to soil's sensitivity to management practices 
(Li et al., 2017; Moebius- Clune et al., 2011; Snapp, 1998; Tittonell 
et al., 2005). Continued sampling therefore serves multiple pur-
poses. The first is scientific, to aid the development of regionally 
specific databases to use in benchmarking to estimate carbon 
gaps. Additionally, local sampling will validate whether fields 

F I G U R E  4  Maps of carbon stocks, potential stocks, and sequestration potential in agricultural soils in Malawi. Gray areas mask water 
or land not suitable for agriculture (category 5 of Li et al., 2017). Map lines delineate study areas and do not necessarily depict accepted 
national boundaries.
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predicted to have large carbon gaps do have large carbon gaps, 
allowing quantification of the monetary value of carbon seques-
tration, improving decision making, and facilitating farmer buy- in 
(Maynard et al., 2022). Repeated sampling will validate successful 
carbon sequestration and identify practices that sequester carbon 
in smallholder settings.

Repeated, standardized, field- scale sampling is increasingly 
feasible in logistically challenging and poorly financed settings. 
Regarding the type and quantity of measurements, bulk density, 
texture, and SOC are required at multiple sites to develop iSDA 
adjustments and carbon storage benchmarks. Texture estimates 
might be estimated using touch by well- trained technicians (Salley 
et al., 2018). Bulk density, while labor intensive, varied by around 
15% in this study. This sampling can be minimized; in this study, 
6.4% of sampled fields were used to adjust iSDA bulk density, 
which was sufficient to improve iSDA's relative prediction error of 
bulk density to 7%. Alternatively, locally valid pedotransfer func-
tions might be used to predict bulk density. Finally, the equivalent- 
mass approach is preferred for tracking changes in SOC stocks 

with management, which obviates recurring bulk density mea-
surements (Mikha et al., 2013; Rovira et al., 2022). Soil carbon, 
meanwhile, is increasingly easily estimated using non- destructive, 
in situ methods. For example, a field- portable and low- cost reflec-
tometer predicted carbon in these same soils with relatively high 
precision (R2 = .57– .69 depending on supplementary data; Ewing 
et al., 2021). These advances dramatically lower the cost of future 
studies quantifying carbon stocks, creating benchmark sequestra-
tion goals, and critically, tracking and verifying progress toward 
meeting those goals.

4.2  |  Benchmarking to predict carbon 
sequestration potential

The quantification of carbon storage potential is a difficult prob-
lem. A combination of edaphic, climatic, biological, and manage-
ment factors combine to lead to different equilibrium amounts 
of carbon. In general, converting land from natural areas to 

F I G U R E  5  Upward adjustment in stocks, potential stocks, and organic carbon gaps from iSDA predictions by the stationary, top- down 
method. Gray areas mask water or land not suitable for agriculture (category 5 of Li et al., 2017). Map lines delineate study areas and do not 
necessarily depict accepted national boundaries.
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agriculture leads to a rapid loss of carbon until a new equilibrium 
is reached (e.g. Moebius- Clune et al., 2011). This depletion of SOC 
with land use change suggests that carbon stocks pre- conversion 
represent the carbon storage potential. While the natural lands 
comparison is common in the scientific literature, it is unrealistic 
using current technology because it implies a massive return of 
agricultural land to unmanaged or pastureland, with dramatic food 
security and farmer welfare implications. Additionally, a return 
to original, unmanaged habitat may not lead to a full restoration 
of carbon stocks due to, for example, crossing soil degradation 
thresholds (Gao et al., 2011). Finally, the “natural” state of land use 
may not maximize soil carbon stocks.

In contrast, we set achievable, data- driven goals for carbon 
sequestration in agricultural lands using benchmarking. Quantile 
regression enabled us to predict potential SOC stocks and carbon 
gaps within an agricultural context and tempered by edaphic and 
climatic factors. In effect, we identified fields that are approaching 
carbon saturation, presumably due to carbon sequestering man-
agement practices, and used these best examples to set goals for 
remaining fields. Similar benchmarking of soil health parameters 
has proven effective for directing management interventions to 
mitigate soil degradation (Chen et al., 2019; Nunes et al., 2021). 
For acting upon benchmarking results, it is acknowledged that 
soil C sequestration in tropical farming systems faces challenges, 
including rapid SOC loss under intensive cultivation with min-
imum organic residue return; a loss exacerbated at high tem-
peratures (Fujisaki et al., 2018; Moebius- Clune et al., 2011). At 
the same time, studies have identified locally effective practices 
that increase SOC (Cheesman et al., 2016; Corbeels et al., 2019; 
Luedeling et al., 2011; Nord et al., 2022). Conservation agriculture 
in Southern Africa involves fine- tuning of practices to fit local con-
ditions, including minimum tillage, crop diversity and management 
practices, and consistently delivers gains in SOC and soil function 
(Cheesman et al., 2016). Assessments conducted through on- farm 
research and monitoring of cultivated lands in Malawi point to res-
idue return, organic manures and compost, and crop diversity as 
positive determinants of SOC (Snapp et al., 2018; Tu et al., 2022). 
West Africa is a particularly challenging environment with sandy 
soils and high temperatures, yet the same suite of practices pro-
mote SOC gain in medium-  to long- term field experiments (Nord 
et al., 2022).Context is important for interpreting benchmarking 
systems as they do not necessarily translate well across regions 
or cropping systems (Roper et al., 2017). While our sites were lim-
ited to maize cropland in south- central Malawi, they captured the 
range of edaphic conditions in the country in which 44% of annual 
agricultural land is devoted to maize (Figure 1; Malawi Ministry 
of Agriculture and Food Security— Planning Department, 2016), 
which bolsters our confidence in iSDA adjustments and bench-
marks. However, a Malawian adjustment may not be valid in 
neighboring countries; indeed, a preliminary analysis suggests 
that Tanzania requires a very different iSDA adjustment (Nord 
et al., unpublished). Explaining this, iSDA was built with different 
training data depending on availability, data which tend to vary 

among countries and was collected using varying methods (Hengl 
et al., 2021). Future studies in other regions of Malawi should val-
idate the iSDA corrections and carbon benchmarks, particularly 
within specific types of cropping systems, with locally collected 
data. Studies external to Malawi might use the method described 
here to develop country- specific adjustments and benchmarks.

4.3  |  Sustainability implications of updated  
estimates of carbon stocks and sequestration  
potentials

We estimate that Malawian agricultural soil can sequester 33.4 Tg C, 
offsetting 122 Mt of CO2e. For context, in 2019, Malawi was re-
sponsible for 19.2 Mt CO2e of emissions. How quickly might these 
carbon gaps be closed and what benefits might it provide? In the 
following scenarios, we provide estimates based on the aspirational, 
four- per- mille (0.4%) per year increase in stocks above current lev-
els in those soils with carbon gaps (Minasny et al., 2017). This rate 
has been achieved in a majority of studies in sub- Saharan Africa for 
agroforestry systems, and in some cases, annual cropping (Corbeels 
et al., 2019). The highest success in studies that combine multiple 
conservation agriculture practices including reduced tillage, resi-
due retention, and rotation diversification (Cheesman et al., 2016). 
Additionally, CO2e offsets are assumed to be worth USD 85 per ton 
as described above.

If all agricultural land with carbon gaps were immediately to begin 
sequestering carbon at 0.4% per year, Malawi can expect an initial 
sequestration rate of 0.51 Tg C year−1, offsetting 9.7% of its total, 
2019 emissions (Climate Watch Historical GHG Emissions, 2022) 
and generating USD 160 million in CO2e offsets. After just 15 years, 
50% of Malawian agricultural land would reach storage potential 
while sequestering approximately 7.1 Tg C, offsetting 26 Mt CO2e 
emissions and generating USD 2.2 billion.

Of course, implementing these conservation practices across 
all of Malawian agricultural land immediately is unrealistic. A 
more strategic approach might focus on the most degraded soils. 
Because these soils tend to have the largest carbon gaps and also 
the lowest productivity potential, restoring carbon has dispropor-
tionately large benefits to both climate mitigation and food secu-
rity (Corbeels et al., 2019). For example, Burke et al. (2020) found 
that soils in Malawi with lower than 9.4 g SOC kg−1 soil were so 
degraded as to likely be unresponsive to fertilizer. This leads to ag-
ronomic productivity challenges and may limit carbon fixation by 
plants, which can reduce carbon sequestration (Schlesinger, 2000). 
After adjusting iSDA predictions of organic carbon concentrations, 
we estimate that 47% of land suitable for agriculture in Malawi 
falls into this non- responsive category. Restoring these soils to 
the 9.4 g SOC kg−1 soil threshold (Burke et al., 2020), for exam-
ple by residue addition and diversification with leguminous crops, 
would sequester 22 Mt CO2e over a median of 42 years. Research 
on smallholder farms in Malawi has shown this could well alleviate 
climate risks to food security and likely improve farmer livelihoods 
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(Burke et al., 2022; Snapp et al., 2018). Because degraded soils 
often sequester carbon proportionally faster with proper manage-
ment than soils near carbon saturation (Castellano et al., 2015), 
these results might be realized in substantially less time.

5  |  CONCLUSIONS

Global interest in tackling food security and climate change has 
never been higher, as evidenced by the continued development of 
carbon offset markets and increasingly generous aid programs to 
support agricultural development in food- insecure regions. Building 
soil carbon is well- known to address both challenges. Accurate pre-
dictions of carbon stocks and storage potential are critical to this. 
Our collective knowledge of where soil stores carbon is more precise 
and accurate than ever thanks to remote measures. Nonetheless, 
this study highlights how ground truthing remains an essential com-
ponent of policy and intervention by reducing errors in continental- 
scale predictions of soil carbon. Relevant soil carbon benchmarks 
are essential to framing policies and locating high- value areas for 
investment and interventions.

Effective benchmarking depends on the development of a re-
gional database of agricultural soils, which this work begins. Such 
a database might follow the model of continental iSDA, which ag-
gregates data from across government, nonprofit, and for- profit 
stakeholder sources (Hengl et al., 2021), but in contrast with iSDA's 
extensive reliance on legacy data, focus specifically on contempo-
rary samples collected recurrently from agricultural soils. Such a mo-
mentous data collection effort could be facilitated by advancements 
in soil testing and data aggregation through smartphone- enabled 
crowdsourcing and low cost, field- portable instrumentation (Ewing 
et al., 2021; Herrick et al., 2013; Kelly et al., 2022). Doing so could 
create a robust and broad set of ground measures from samples 
taken across the region (Paustian, Collins, et al., 2019; Snapp, 2022). 
Beyond sub- Saharan Africa, this information could be incorporated 
into continental and global databases to support work in agriculture 
broadly, and carbon investment specifically.

Understanding the potential for carbon storage is critical not 
only for smallholders in Malawi, but also for global adaptation and 
mitigation of climate change. Higher carbon soils would likely im-
prove smallholder productivity which, when coupled with payments 
for carbon storage, could also increase household economic secu-
rity, enhancing overall wellbeing in a country where over 80% of 
people live in rural areas (Malawi National Statistical Office, 2016).
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