
1.  Introduction
Space weather occurs due to solar disturbances such as solar flares and coronal mass ejections that activates 
magnetohydrodynamic and electromagnetic disturbances that propagate throughout the magnetosphere-ionosphere 
(M-I) system down to the surface of Earth. One ground manifestation of severe space weather events is geomag-
netically induced currents (GICs), perhaps the most critical space weather concern. Flowing through man-made 
conductors on Earth like railways, pipelines and power grids, GICs can be large enough to cause damage to 
transformers resulting in major power outages and costly equipment damage (Pulkkinen et al., 2017). GICs are 
the result of a horizontal surface electric field E induced in Earth's surface that is driven by large changes of the 
surface magnetic field, dB/dt, via Faraday's law of induction. Thus, the dB/dt is often used as a proxy to study 
GIC.

Abstract  We present an automated method to identify high-frequency geomagnetic disturbances in ground 
magnetometer data and classify the events by the source of the perturbations. We developed an algorithm 
to search for and identify changes in the surface magnetic field, dB/dt, with user-specified amplitude and 
timescale. We used this algorithm to identify transient-large-amplitude (TLA) dB/dt events that have timescale 
less than 60 s and amplitude >6 nT/s. Because these magnetic variations have similar amplitude and time 
characteristics to instrumental or man-made noise, the algorithm identified a large number of noise-type 
signatures as well as geophysical signatures. We manually classified these events by their sources (noise-
type or geophysical) and statistically characterized each type of event; the insights gained were used to more 
specifically define a TLA geophysical event and greatly reduce the number of noise-type dB/dt identified. 
Next, we implemented a support vector machine classification algorithm to classify the remaining events in 
order to further reduce the number of noise-type dB/dt in the final data set. We examine the performance of 
our complete dB/dt search algorithm in widely used magnetometer databases and the effect of a common data 
processing technique on the results. The automated algorithm is a new technique to identify geomagnetic 
disturbances and instrumental or man-made noise, enabling systematic identification and analysis of space 
weather related dB/dt events and automated detection of magnetometer noise intervals in magnetic field 
databases.

Plain Language Summary  High-frequency (second-timescale) components of the surface 
geomagnetic field are not often included in studies on geomagnetically induced currents (GICs) because they 
do not pose a direct threat to technological infrastructure. However, high-frequency intervals occur prior to and 
within some larger space weather events that can lead to GICs. Because these perturbations are very similar 
to signals that arise due to noise-interference, we have developed an automated procedure to identify such 
high-frequency intervals and predict the source of the signal as geophysical or noise-type. It was found that 
common data processing techniques can reduce or remove high-frequency geophysical disturbances, but do 
not remove all noise-type intervals. Thus, the automated process provides an event list of 1-hr event windows 
that contain high-frequency disturbances and the classification of the signals within. This list can be used to 
identify hour windows of data that are undesirable for space weather research as well as events that contain 
high-frequency geophysical disturbances that may provide insight to the small-scale features of space weather 
events.
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While large GICs often occur during global space weather events like sudden 
commencements (SCs) and geomagnetic storms that cause major changes 
in the global large-scale M-I currents, it has been known for some time that 
smaller-scale phenomena are capable of causing GICs as well. An exam-
ple of such phenomena are nighttime magnetic perturbation events (MPEs), 
also known as nighttime geomagnetic disturbances (GMDs), that are often 
associated with substorm activity and may be a result of other magneto-
tail phenomena that commonly occurs during substorms (Engebretson 
et al., 2019a). MPEs have 5–10 min timescales, relatively small spatial scales 
(∼275 km) compared to global events and are related to localized ionospheric 
instabilities.

It was shown by Viljanen (1997) that smaller-scale ionospheric currents play 
a key role in producing very large dB/dt at the surface. Several recent stud-
ies also suggest that beyond the largest space weather disturbances, there 
are more rapid, localized and small-scale processes involved in generating 
some extreme GICs (Engebretson et al., 2021; Ngwira et al., 2015; Pulkkinen 
et  al.,  2015). Dimmock et  al. (2020) found that the localized horizontal 
magnetic field derivative can vary by a factor of three times the spatial aver-
age and thus these regional extremes are not accurately represented in global 
geomagnetic activity indices. Further, Dimmock et  al. (2020) found that 
enhancements in regional dB/dt are linked to increased energy deposition in 
the magnetosphere mapping to local ionospheric structures and thus play a 
key role in modeling GIC during strong storms.

Less is understood about rapid and regional dB/dt enhancements because 
magnetic field data with 1-min temporal resolution has long been the accepted 
standard in space weather research. This is because higher-frequency, 
second-timescale variations are effectively low-pass filtered when comput-
ing the geoelectric field (Pulkkinen et  al.,  2006,  2013). However, these 
second-scale magnetic field changes may be especially important in under-
standing small-scale dynamics of space weather events. While magnetic 
disturbances in this Pi 1–2 frequency range do not cause GICs directly, they 
have been found to occur prior to and/or during some GIC-capable space 
weather events, nighttime MPEs in particular (McCuen et al., 2021).

We refer to rapid dB/dt enhancements as transient-large-amplitude (TLA) 
events: instances of high-frequency, short-timescale magnetic field varia-

tions (<60 s) that have large dB/dt values over 6 nT/s and occur within a 1-hr window. McCuen et al. (2021) 
found that TLA dB/dt intervals identified in 2015 often occurred in the pre-midnight sector (magnetic local 
time), 30 min after a substorm onset and in association to many of the most extreme nighttime MPEs. Of 175 
MPEs at four Magnetometer Array for Cusp and Cleft Studies (MACCS) stations in 2015 (IGL, RBY, PGG, and 
CDR), nearly half of the 52 largest events (maximum dB/dt values greater than 10 nT/s) had associated TLA dB/
dt intervals. Figure 1 shows an example of TLA events that was published as Figure 1b of McCuen et al. (2021). 
The TLA events in Figure 1 occurred at five stations of the MACCS that occurred on 11 November 2015. These 
TLA signatures occurred within nighttime MPEs that were included in the study of Engebretson et al. (2019a) 
(all but the GJO stations were included in the study).

Engebretson et al. (2019a) used a superposed epoch spherical elementary current systems analysis on 21 strong 
events at the CDR station to conclude that they were associated with westward overhead currents that coincided 
with a region of shear between upward and downward field-aligned currents (FAC). The TLA event in Figure 1 
is one of these strongest MPEs identified at CDR in the study of Engebretson et al. (2019a); the example shows 
many TLA intervals within the MPEs and appears to exhibit a westward moving disturbance as the minimum of 
the negative bays in the Bx component appear successively in each station from east to west (see map of MACCS 
stations in Section 3). A westward current in the ionosphere can generate a magnetic field with field lines that 
point northward above the current region and southward below, resulting in large negative depressions in the 

Figure 1.  Example of transient-large-amplitude events that occurred on 
11 November 2015 at five Magnetometer Array for Cusp and Cleft Studies 
stations. Hollow circles mark the start of a dB/dt signature and solid dots mark 
the end. The axes have been adjusted by subtracting the mean B value from the 
interval.
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Bx component of the ground magnetometers. While there is some evidence for the processes responsible for 
generating MPEs, their exact physical mechanisms and the current systems involved are still under investigation. 
Analyzing these higher-frequency perturbations within the MPEs and observing the ionospheric behavior during 
such events allows for more detailed understanding of regional dB/dt enhancements, small-scale ionospheric 
currents, the dynamics of shear regions between upward and downward FAC and the potential connection to other 
magnetotail phenomena.

While substorms and MPEs have minutes to 10s of minute timescales, there is clear evidence of higher-frequency 
(<60 s) behavior within many of these events. Because many of the MPEs that exhibited TLA signatures were 
amongst the most intense events but were not related to the most extreme space weather events (i.e., SCs and/or 
global geomagnetic storms), this suggests that more localized, small-scale ionospheric currents are involved in 
generating these large disturbances. Further, because the MPEs that exhibited TLA intervals prior to or within 
the overall disturbance were some of the largest MPEs of the data set suggests that TLA signatures may be good 
indicators of the strongest small-scale events that have the capability to cause GICs.

Analysis of the second-timescale behavior of the surface magnetic field is a pathway to understanding the 
small-scale dynamics of M-I current systems that can give rise to GIC. Studying these high-frequency signa-
tures will improve the understanding of rapid and localized magnetic field behavior and associated ionospheric 
currents. This more detailed knowledge of the fine-scale nature of the geomagnetic field can aid in improving 
modeling and forecasting of space weather events.

While it is necessary to analyze high-frequency TLA variations in ground magnetic field data in order to advance 
our understanding of small-scale M-I dynamics, the challenge in this task is retaining these high-frequency signa-
tures in global magnetic field databases. Advancements in technological capabilities (Love & Finn, 2017) and 
the need for improved accuracy in measuring dB/dt (Tõth et al., 2014) have motivated the shift toward using 
higher temporal resolution magnetic field measurements for space weather applications. However, common data 
processing methods often reduce or remove TLA signatures via their data cleaning or noise removal proce-
dures because the signatures are similar in amplitude and timescale to that of magnetometer noise. The term 
magnetometer noise refers to two main sources of error in magnetometer readings: instrumental defect and/
or magnetic deviation caused by interference of ferromagnetic materials in the vicinity of the magnetometer 
(Nguyen et al., 2020). Either of these sources can cause rapidly varying and irregular data measurements that 
have similar amplitude and timescale characteristics to TLA signatures.

Because of the similarity of noise-type data to TLA signatures, the geophysical TLA dB/dt are often reduced or 
removed with the noise signatures in common data processing procedures. Intermagnet, a worldwide magneto-
meter database commonly used for M-I and GIC research, uses a frequency band pass filter of 0.008–0.2 Hz 
(5–125 s) on 1-s data to remove error artifacts (Turbitt, 2014). SuperMAG is a widely used, global magnetic 
field data collaboration that provides uniformly processed data from over 300 ground based magnetometers 
(Gjerloev, 2012). SuperMAG offers 1-s (averaged if raw data has higher resolution) resolution magnetic field 
data that has undergone an automated data cleaning procedure. Both of these procedures can alter or remove 
higher-frequency variations of the field. Beyond data processing procedures by commonly used databases, many 
magnetic field data are averaged over 1-min or more in practice for GIC and space weather studies. Even though 
many magnetic field arrays offer 1-s magnetic field data, the data averaging and processing techniques used often 
remove or modify TLA variations.

The problem remains, TLA variations that are important to retain for space weather studies can be removed or 
reduced in common data cleaning and processing, but are difficult to distinguish from noise in raw data. Numer-
ous methods have been used to characterize and statistically analyze noise in magnetometer data (Khomutov 
et al., 2017; Nguyen et al., 2020) but challenges in anomaly detection have motivated the use of more modern 
machine learning techniques to identify and remove outliers from magnetometer data (Xu et al., 2020). The data 
cleaning process for large magnetic field databases usually requires an experienced magnetologist to determine 
whether some signals are natural or noisy. In the case of TLA signatures that are similar in frequency and ampli-
tude to error artifacts, machine learning algorithms can be especially useful for making these types of determina-
tions without the need for human supervision.

In this paper, we present the full methodology for a GMD classifier that identifies occurrences of high-frequency 
(0.017–1  Hz) signals in magnetic field data and classifies whether they are a result of noise interference or 
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geophysical sources. This process utilizes statistical characteristics of both 
noise-type and geophysical dB/dt signatures to define a high frequency GMD 
event and implements a machine learning classification algorithm to classify 
the dB/dt signatures by their sources.

This paper is organized as follows. Section 3 describes the magnetometer data 
used in this study and Section 4 outlines the dB/dt search algorithm. Section 5 
discusses and illustrates the noise-shapes identified in data from MACCS, 
and Section 6 describes the statistical characteristics of the noise-type and 
TLA dB/dt intervals and events. The filters implemented into the search algo-
rithm based on the analysis of Sections 5 and 6 are explained in Section 7. In 
Section 8, the machine learning approach used to fully automate the search 
algorithm is described and the results discussed (the cross-validation process 
is detailed in Supporting Information S1). Section 9 examines the effect of a 
common data processing procedure on the high frequency signatures being 
studied and discusses the data products provided by the procedure devel-
oped. Finally, Section 10 discusses our results and the implications for space 
weather studies followed by our conclusions.

2.  Data Sets
This study uses magnetic field data from three geomagnetic and space physics magnetometer databases, as well 
as data processed through the SuperMAG data service that includes all three databases. The MACCS data are 
used for the initial identification of TLA dB/dt signatures and the noise classification for algorithm improvement. 
Then, we use data from a magnetometer site within the Athabasca University THEMIS UCLA Magnetometer 
Network eXtension (AUTUMNX; Connors et al., 2016) as well as data from the CANadian Magnetic Obser-
vatory System (CANMOS; Nikitina et  al., 2016) to compare how well the dB/dt search process performs on 
magnetic field data from different systems.

The geographic and geomagnetic coordinates of the magnetic observatories used in this study are listed in Table 1 
and shown on the map in Figure 2 with lines of corrected geomagnetic (CGM) latitude and longitude for 2015. 

Table 1 
Location Coordinates of Stations Used in This Study

Station
Geographic 

latitude
Geographic 
longitude

Corrected 
geomagnetic 

latitude

Corrected 
geomagnetic 

longitude

IGL 69.3 278.2 77.6 355

GJO 68.6 264.2 76.8 329.8

RBY 66.5 273.8 75.2 347.2

PGG 66.1 294.2 73.2 19.9

CDR 64.2 283.4 72.6 3.0

IQA 63.8 291.5 71.4 15.2

INUK 58.8 281.9 67.6 0.02

NAN 56.4 298.3 63.1 22.5

Figure 2.  Station locations shown on a map of Nunavut, North-East Canada. Circles represent locations of Magnetometer 
Array for Cusp and Cleft Studies stations, the square is the location of the CANadian Magnetic Observatory System Iqaluit 
station and the triangle signifies the Athabasca University THEMIS UCLA Magnetometer Network eXtension Inukjuak 
station. Lines of latitude and longitude are in corrected geomagnetic coordinates.
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The CGM coordinates were calculated using the AACGM-v2 Calculator (available at http://sdnet.thayer.dart-
mouth.edu/aacgm/aacgm_calc.php#AACGM) for epoch 2015.

The ground-based stations used in this study are all in the near vicinity of Inuit communities in arctic Nunavut, 
Canada. Many of the MACCS stations are located at the local airport, configured such that the computing instru-
mentation is kept inside the airport or nearby facility and the sensor is located away from the building inside a 
small, enclosed box on the ground. The IGL magnetometer sensor is located right within the local town of Iglo-
olik near the Igloolik Research Centre where the rest of the station equipment is held. The PGG magnetometer is 
located ∼1 km outside of town near the Pangnirtung water reservoir. In all cases of the MACCS magnetometer 
stations, their locations make them susceptible to man-made noise interference from multiple sources (cars, 
snowmobiles, nearby facilities, etc.). The CANMOS station and AUTUMNX station are also susceptible to local 
interference from human activity, however these observatories are dedicated solely to magnetic field data acqui-
sition and do not rely on local facilities like an airport to house instrumentation. This allows the CANMOS and 
AUTUMNX observatories to be located further from town centers and aids in prevention of noise contamination.

The magnetometers used in this study at the MACCS and the IQA station of CANMOS are Narod ringcore 
fluxgate magnetometers designed and supplied by Dr. Barry Narod of Narod Geophysics, Ltd., Vancouver, BC, 
Canada (Hughes & Engebretson, 1997). The AUTUMNX instruments are THEMIS-class fluxgate magnetome-
ters provided by UCLA (Russell et al., 2008) and based on the design for the earlier Sino Magnetic Array at Low 
Latitudes terrestrial vector fluxgate magnetometers (Gao et al., 2000).

The Narod magnetometers collect eight samples per second in three axes, then average and record the data at 
two samples per second for MACCS data and one sample per second for the CANMOS data. The AUTUMNX 
magnetometers record the magnetic field at 2 Hz. The data used from AUTUMNX and CANMOS observatories 
have resolution of 0.01 nT, the MACCS data have a 0.025 nT data resolution, and all three have timing accuracy 
of at least 1 ms. The high-resolution, sampling rate and timing accuracy are sufficient to detect short-timescale 
Pi 1–2 pulsations. The magnetometer data used from MACCS and AUTUMNX are in geomagnetic coordi-
nates: H (geomagnetic north-south), D (geomagnetic east-west), and Z (vertical). The data from CANMOS is in 
geographic coordinates: X (geographic north-south), Y (geographic east-west), and Z (vertical).

3.  dB/dt Search Algorithm
We developed an initial algorithm to identify changes of the magnetic field with user-specified magnitude and 
duration. The initial algorithm works in the following main steps: (a) calculate the change in magnetic field 
strength (ΔB) divided by the timestep (Δt): dB/dt (or slope) between each pair of successive data points and 
label the sign of the slope (labeled as a −1 for negative slope, +1 for positive slope and zero for zero slope), (b) 
mark the points when the sign of the slope changes for at least two measurement cycles (i.e., local minima and 
maxima), and (c) recalculate the new dB/dt between the local minima and maxima and return the information if 
the signature also meets the user-specified criteria for timescale, minimum and maximum ΔB and dB/dt.

Because the search criteria are such that the slope must have the same sign for two measurement cycles (step 
2), the algorithm relies on the sampling frequency of the data and should be used for magnetic field data with 
1-s or higher temporal resolution for high-frequency studies. However, the same dB/dt search procedure can be 
performed on data averaged over a longer time period to identify dB/dt signatures with varying timescales (i.e., 
performing the dB/dt search algorithm on 1-min averaged data will identify dB/dt signatures that last at least 
2 min).

There is also an intermediate step after Step 1 that deals with the instances of zero slope that last only one meas-
urement cycle: if a zero slope occurs only once in between two like-sign slope values, the sign of the slope is 
changed to match those slope values. This measure is taken so that a change in slope will only be marked in cases 
of zero slope if it persists for at least two measurement cycles and is consistent with the minimum dB/dt search to 
be intervals that last twice the sampling frequency. The final product returned from the algorithm is a nine column 
matrix; each row represents an individual dB/dt interval and provides the start and end time of the interval, start 
and end B value, the time elapsed: dt, the change in magnetic field amplitude: ΔB, and the total perturbation: dB/
dt. The final two columns indicate the component that the interval was identified in and the station at which the 
interval took place.

http://sdnet.thayer.dartmouth.edu/aacgm/aacgm_calc.php#AACGM
http://sdnet.thayer.dartmouth.edu/aacgm/aacgm_calc.php#AACGM
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The algorithm was developed to identify high-frequency (0.017–1 Hz) TLA events in the magnetometer data. 
We define an event as any number of geomagnetic signatures with <60 s timescale and dB/dt > 6 nT/s within a 
1-hr event window. The hour windows are defined by the UT clock and determined by measurement frequency 
(i.e., number of data points in 1 hr) and are divided consecutively. For example, for a measurement frequency of 
2 Hz, the first 7,200 data points define the first hour window, and the next hour window is the following 7,200 
data points. The minimum dB/dt threshold was chosen as it is comparable to magnetic field measurements during 
the March 1989 geomagnetic storm that caused the HydroQuebec power grid failure (Kappenman, 2006). This 
was the most severe geomagnetic storm of the twentieth century and maximum magnetic field changes during 
that storm were on the order of 8 nT/s (but lasting much longer than just seconds), so dB/dt of this magnitude are 
considered large-amplitude.

Unfortunately, these specifications also describe the signals that can occur as a result of instrumentation error 
or interference by ferromagnetic material, that is, “noise.” The term noise is relative to the specific goal of the 
measurement or problem to be solved. For this study, we use the term noise to refer to two main sources of error 
in magnetometer readings: instrumental defect and/or magnetic deviation caused by interference of ferromagnetic 
materials in the vicinity of the magnetometer (Nguyen et al., 2020).

4.  Noise Shapes Identified in MACCS Data
In order to capture all such magnetic signals of interest with this timescale, we set the initial criteria for the dB/
dt search to signatures with 1–60 s timescale, ΔB 6–10,000 nT and dB/dt from 6 to 1,000 nT/s. The similarity 
of TLA events to noisy signals resulted in the algorithm identifying a majority of signals that were due to noise 
rather than natural geophysical processes. Because the size and timescale of these signatures fall into the same 
ranges, and common data cleaning techniques can alter or remove TLA signatures, determining whether a given 
signal is of geophysical nature or a result of noise was done by examining the shape of the signal, the behavior of 
the magnetic field prior to and after the signal, and the amplitude characteristics of the interval. Thus, we manu-
ally separated the noise signals from the natural geophysical perturbations by comparing with the magnetic noise 
characterization of Khomutov et al. (2017).

The noise shapes described in Khomutov et al. (2017) are compiled from Intermagnet data from observatories 
located in the mid-latitude, eastern hemisphere. The observatories have various types of fluxgate magnetometers 
with measurement frequency from 0.2 to 2 Hz (5–0.5 s). The main sources of noisy signals in magnetometer 
data are both external and internal. Externally, there are large-scale noise sources like DC railways that can 
impact magnetic field data at large distances, and there are more local sources of ferromagnetic and/or conductive 
material within the nearby vicinity of the magnetometer sensor (e.g., cars, technological devices, other instru-
mentation). Internally, noisy signals can arise from instrumentation error. While the exact source of a specific 
noisy signal can vary, the main sources are consistent across observatories and databases. For these main sources 
of interference with fluxgate magnetometer systems, the characteristic shapes and sizes of the resulting noisy 
signals in the data are common (Khomutov et al., 2017; Neska et al., 2013; Santarelli et al., 2014). The four most 
common shapes of noise and their characteristics reported by Khomutov et al. (2017) are defined and illustrated 
as follows.

Spikes in magnetometer data are large-amplitude (∼10s of nT), relatively short signals (generally lasting less than 
a few seconds) with well-defined leading and back edges that have similar amplitudes. Isolated spikes, spikes 
with large amplitude (many 10s of nT), and spikes that last only one measurement cycle have a low probability 
of being caused by geophysical sources. An example of a spike is shown in Figure 3: 1-min of MACCS magneto-
meter data taken at the PGG station on 2 July 2015. The hollow red circles represent the start of a dB/dt interval 
that is >6 nT/s and the solid red dots represent the end of the signature. The mean B value of each component 
in the interval shown is subtracted from the data, but this does not change the ΔB and dB/dt amplitudes or the 
timescales of the intervals from the original data. The entire spike signature lasts about 20 s with each interval 
of large dB/dt lasting 3.5–10.5 s. The maximum amplitude of the spike is about 318 nT (dBx/dt beginning at 
21:16:17.75 and decreasing for 8.5 s). We further define spikes in this noise classification to be instances of three 
or less large  dB/ dt signatures (with <60 s timescale and magnitude >6 nT/s) occurring within a 1-min interval.

Figure 4 shows an example of a jump shape in the MACCS data. Jumps are much like spikes but with a contin-
uous interval between the leading and back edges. The timescales of these jumps vary; in this study, we specify 
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jumps to have a minimum 1-min interval sustained between the leading and trailing edges in which the magnetic 
field does not increase/decrease beyond the starting value of the leading edge (i.e., the very first hollow circle in 
all three panels of Figure 4 at approx. 15:18 UT). Jumps often occur due to changes of the magnetic field distri-
bution via ferromagnetic material.

Random-like noise is usually caused by man-made disturbances which add randomized variations to the back-
ground magnetic field. These look like patches of highly frequent dB/dt intervals with randomized shape and 
amplitude. An example of random-like noise is shown in Figure 5. This patch of random noise lasted about 

Figure 3.  A spike in the magnetometer data that occurred on 2 July 2015 at the PGG station. The hollow circles mark the 
start of each dB/dt signature and the solid dots mark the end. Note that the consecutive solid red dots in the Bz plot (bottom) 
signify that the negative peak of this spike is both the end of the interval prior and the start of the interval following.
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7-min; the algorithm identified 93 dB/dt signatures from the three components combined. Figure 4b is a zoomed 
view of a section of this event from 10:16:10–10:17:10 UT showing how some of these variations are presented 
on a 1-min timescale. Figure 4b shows that, on a 1-min timescale, these magnetic field variations have dissim-
ilar shapes to classic spikes as defined above although they may appear to be a group of frequent spikes when 
observed on a slightly longer timescale. While the shape of these magnetic field changes cannot be defined 
as spikes or a jump, we determine that they are noise variations because of (a) the highly frequent nature and 

Figure 4.  A noise jump that occurred at the CDR station on 27 August 2015. Hollow circles mark the start of a dB/dt 
signature and solid dots mark the end. The mean B value of each component in the interval shown is subtracted from the data.
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the randomized shapes of the dB/dt intervals, (b) the jagged behavior of these variations on a second-scale 
(Figure 4b), and (c) the shape of the noise group on a minute-scale (Figure 5a) that appears to positively deviate 
from the background magnetic field in each axis.

The last noise shape found in the MACCS magnetometers throughout 2015 is bay-like noise. An example of 
bay-like noise is shown in Figure 6b: a disturbance that occurred within 1-min at the PGG station on 20 June 
2015. The full high-frequency disturbance event (Figure 6a) consists of a bay-like disturbance as well as three 
separate spikes later in the hour window (note that just 25 min of this event are shown to emphasize the shape of 
the high-frequency intervals within this hour window). The bay-like disturbance is shown with a zoomed view 
in Figure 6b. The magnetic field changes in Figure 6b are near 50 nT in the x- and y-components but nearly 
150 nT in the z-component. This is a common manifestation of noise in magnetometer data, usually caused by 
magnetic field changes near the instrument due to a moving ferromagnetic object (i.e., a vehicle or other instru-
mentation). It is shaped like a positive/negative magnetic bay that persists for the duration of the passing object 
(usually seconds). Bay-like noise often has sharp leading and trailing edges like spikes or jumps, but the behavior 
between these edges is more random and variable. These impulses can be difficult to distinguish from natural 
signals because negative and positive bays can also occur due to M-I sources. While bay-like noise events have 
similar shapes to TLA events, the distinction between them is that TLA events often occur within a bay that lasts 
5–15 min (McCuen et al., 2021) while noise-type bays generally have a duration of just seconds. Further, this 
example is decided to be noise because of the jagged magnetic field shapes on a second-timescale, as well as the 

Figure 5.  (a) Random-like noise that occurred at the IGL station on 3 January 2015. Hollow circles mark the start of a dB/dt signature and solid dots mark the end. (b) A 
zoomed-in view of 1-min of the random-like noise-type event shown in panel (a). The mean B value of each component in the interval shown is subtracted from the data.
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very similar and smooth behavior of the magnetic field prior to and after the disturbance bay: a common charac-
teristic of noise-type events in magnetic field data.

Figure 7 shows an example of a TLA event that occurred on 10 November 2015. The figure shows dB/dt signa-
tures that occurred at the PGG station but there were also TLA dB/dt observed at two other MACCS stations 
during this hour. These signatures at the PGG station occur prior to (in the Bx component) and within a large 
nighttime MPE that began at 00:36 UT. There are 12 total dB/dt signatures in the full event shown in Figure 7a 
with average ΔB of about 274 nT, mean Δt of 33.8 s and mean dB/dt of just under 8 nT/s. Figure 7b shows 1-min 
of zoomed-in data from this event from 00:41:30 to 00:42:30 with one TLA-type dB/dt signature in the x- and 
z-component each. The signature in the z-component of Figure 7b has the largest dB/dt amplitude of the event of 
10.37 nT/s. Figure 7b shows that on a 1-min timescale, these are smooth changes of the magnetic field rather than 
jagged edges of noisy data. This is a distinct characteristic of TLA events with geophysical sources: the magnetic 
field is smoothly varying on a second-timescale rather than rapidly changing with sharp edges as observed in 
noise-type events.

The common feature of these noise shapes in magnetometer data is that they are composed of some combination 
of second-timescale magnetic field changes with dB/dt > 6 nT/s. These are characteristics equal to that of the 
geophysical TLA dB/dt that are meaningful in the context of small-scale M-I currents. However, the examples 
of TLA events in Figures 1 and 7 both show dB/dt intervals occurring prior to or within nighttime MPEs that are 
associated to small-scale ionospheric currents and these TLA dB/dt intervals show smooth variations on a 1-min 
timescale.

Figure 6.  (a) A noise-type hour-event that occurred on 20 June 2015 at the PGG station consisting of a bay-like disturbance and three spikes. (b) Bay-like noise in 
Magnetometer Array for Cusp and Cleft Studies magnetic field data. Hollow circles mark the start of a dB/dt signature and solid dots mark the end. The mean B value 
of each component in the interval shown is subtracted from the data.
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There are some distinct differences between the dB/dt signatures that arise from noise sources and TLA dB/dt 
caused by M-I sources. Noise-type dB/dt events can often be identified by the shape of the event, the behavior 
of the magnetic field prior to and after the event (the highly similar and often steady nature of the magnetic field 
on either sides of the noise-type perturbation) and the smoothness of the magnetic field on a second-timescale 
(noise-type events often show sharp magnetic field changes on a second-timescale whereas TLA dB/dt events are 
always smoothly varying on such fine timescales). These criteria were used to manually separate noise-type and 
TLA events. This manual classification method based on the descriptions in the study by Khomutov et al. (2017) 
was expert-verified by one of the co-authors of this study. From the manual separation of events, the numerical 
characteristics of the dB/dt signatures of each event type were then used to create filters to automatically classify 
noise-type and TLA dB/dt signatures, discussed in greater detail in the following section.

5.  Statistical Characteristics of Noise-Type and TLA Events
While some shapes of noise signals are more likely to result from either man-made sources or internal instrumen-
tation issues, all four of the noise types described in Section 5 can arise from both hardware and external sources. 
Determining the exact source of noise in magnetic field data can be a challenge, but separating geophysical 
magnetic signatures from data contaminated with noise from outside interference is a more tangible task. After 
collecting all dB/dt signatures that satisfy the conditions for a high-frequency event (dB/dt > 6 nT/s, dt from 
1 to 60 s), we manually classified the geophysical events, as well as each type of noise shape identified. Then 
we analyzed the statistical characteristics of these types of dB/dt events to improve the selection criteria for the 
search algorithm. The statistical characteristics that set geophysical TLA events apart from noise-type events are 
described and compared below.

Figure 7.  (a) A transient-large-amplitude (TLA) geomagnetic event that occurred on 10 November 2015 at the PGG station. Hollow circles mark the start of a dB/dt 
signature and solid dots mark the end. (b) A zoomed-in view of 1-min of the TLA event shown in panel (a). The mean B value of each component in the interval shown 
is subtracted from the data.
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Noise-type events, whether from instrumentation error or external interfer-
ence, contribute significantly more dB/dt events than geophysical events. 
From the six MACCS stations throughout 2015, we identified 215 TLA 
dB/dt (making up 59 separate events) and 845,572 noise-type dB/dt signa-
tures (making up nearly 5,500 separate events). Figure 8 shows histograms 
of the number of noise-type dB/dt (orange) and the number of TLA dB/dt 
(blue) based on their timescale (dt), amplitude (ΔB), and magnitude (dB/
dt). All three histograms show the number of events on a logarithmic scale. 
Figures 8b and 8c both include a zoomed-in view of the bottom left corner of 
the full distribution showing the portion containing the geophysical events. It 
can be seen from all three plots that the number of noise-type dB/dt identified 
is orders of magnitude larger than that of TLA dB/dt.

Figure 8a shows that noise-type dB/dt signatures were far more likely to last 
less than 10 s whereas TLA dB/dt had a relatively even spread of timescales 
from 3.5 to 60 s. Noise-type events at the six MACCS stations throughout 
2015 had 99.8% of dB/dt intervals that lasted less than 10 s compared to just 
under 10% of the total TLA dB/dt. Further, all of the TLA dB/dt intervals that 
had dt < 10 s occurred within hour event windows that had longer dB/dt from 
10 to 60 s, whereas most of the noise-type hour events consisted solely of dB/
dt intervals lasting less than 10 s. The uniform distribution of Δt of the TLA 
intervals shows that there are a relatively consistent number of meaningful 
geophysical signatures over the second-timescale range.

Figure 8b shows that noise-type dB/dt signatures were far more likely to be 
less than 60 nT in amplitude (94.9% of noise-type dB/dt had ΔB < 60 nT/s 
compared to just 5.5% of TLA dB/dt signatures), however the noise also 
contributed to outliers thousands of nT higher than any of the TLA dB/dt which 
had a maximum ΔB = 580.75 nT. A similar trend is seen in the histogram 
of dB/dt magnitudes (Figure 8c) where the TLA dB/dt occupy a small slice 
under the distribution of the noise-type dB/dt. The zoomed view of Figure 8c 
shows that the largest TLA dB/dt magnitude was ∼33 nT/s compared to many 
noise-type dB/dt magnitudes exceeding 200 nT/s. Reasonable magnitudes for 
the most extreme second-timescale magnetic field changes are from 40 to 
110 nT/s (Kataoka & Ngwira, 2016).

Noise-type dB/dt signatures occurred more often than TLA dB/dt overall 
and they also occurred in higher concentration per 1-hr event window. The 
random-type noise signature was the most frequently occurring. As is shown 
in Figure 5, random-noise events usually sustained longer intervals of highly 
variable magnetic field that contributed hundreds, sometimes thousands, of 
characteristic dB/dt signatures while geophysical TLA events often had just 
a few TLA dB/dt within a longer ∼10–20 min perturbation. We found that a 
noise event (within a 1-hr window) at an individual station had 154.6 dB/dt 
intervals on average while geophysical TLA events had an average of 3.2 dB/
dt (maximums of 25 and 2,370 dB/dt per 1-hr event window respectively). 
As previously mentioned, the hour windows are defined by the measurement 
frequency (i.e., number of data points in 1 hr) and are divided consecutively.

The number of 1-hr windows containing TLA and/or noise-type dB/dt per station is shown in Table 2, as well 
as the number of individual dB/dt signatures identified at each station. In order to numerically describe the 
distinction between the concentration of dB/dt per hour window for noise-type and TLA events, we calculated 
the ratio of number of noise-type or TLA dB/dt per event to the total number of dB/dt (with any timescale and 
any amplitude) within the event hour. Table 2 contains the minimum and maximum of these ratios. While TLA 
and noise-type dB/dt events had similar minimum ratios (i.e., both event types exhibited events with very few or 
even singular high-frequency dB/dt intervals), the maximum ratios between TLA and noise-type dB/dt are very 

Figure 8.  Histograms showing number of dB/dt signatures (separated by 
transient-large-amplitude [TLA] and noise-type) from all six Magnetometer 
Array for Cusp and Cleft Studies (MACCS) stations throughout 2015. (a) 
Distribution based on dt values, (b) distributions based on ΔB values, and (c) 
distribution based on dB/dt values.
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different from one another. TLA dB/dt never populated more than 4% of the total dB/dt within the respective hour 
event window, while noise-type events more often exhibited hour windows where the dB/dt composed of more 
than 10% and up to nearly 67% of all the magnetic field changes within the hour.

It is worth noting that the maximum ratio of noise-type or TLA type is not directly proportional to the total 
number of noise-type or TLA event windows. For instance, the GJO station had the least amount of noise-type 
event windows, but the highest maximum ratio of noise-type to all dB/dt out of all the stations. This is to say that 
because the ratio is calculated based on the specific hour, it is dependent on the type of noise and how much there 
is and independent of the overall noise present in the station data.

To summarize the statistical characterization of geophysical TLA and noise-type events in this paper, there are 
three main distinctions between geophysical TLA dB/dt events and noise-type dB/dt events:

1.	 �TLA events have at least one dB/dt signature >6 nT/s that lasts 10 or more seconds within the 1-hr event 
window.

2.	 �Large, second-timescale dB/dt are more likely to be of geophysical nature if they last from 10 to 60 s and have 
amplitude 60–1,000 nT.

3.	 �Large, second-timescale dB/dt are more likely to be noise if they occur in large concentration per 1-hr window 
(occupying more than 5% of the total magnetic field changes within the hour window). TLA-type events often 
have less than 20 dB/dt within an approximately 15–20 min perturbation.

6.  dB/dt Search Algorithm Filters
Following from the main characteristics described in the previous section, two main filters were applied to 
improve the dB/dt search algorithm and reduce the number of noise-type dB/dt identified by the routine. First: 
the dB/dt search is performed on consecutive 1-hr partitions of data and the requirements to determine a potential 
TLA event are specified as a 1-hr event window that contains at least one dB/dt that has magnitude 6–100 nT/s, 
ΔB from 60 to 1,000 nT and timescale 10–60 s. Not only are the maximum values for ΔB and dB/dt decreased to 
the range observed for all TLA-type events, but the requirement that there be at least one signature lasting more 
than 10 s (and effectually having ΔB > 60 nT) is implemented. If there are no signatures that meet this criteria 
in the hour window, the search procedure moves on to the next hour window. If there are any dB/dt that do fall 
within these values, the algorithm continues to the next stage.

In the second stage of the dB/dt search, dB/dt intervals with 6–100 nT/s, timescale 1–60 s and ΔB 6–1,000 nT are 
identified (i.e., all of the high-frequency dB/dt signatures that could be TLA or noise-type), as well as the total 
number of dB/dt intervals with any amplitude and timescale within the hour. If the number of high-frequency 
signatures is more than 5% of the total number of the dB/dt within the hour, then the algorithm rejects all signa-
tures identified. If this ratio is less than 5%, then the algorithm removes any intervals that last less than 2-s (as the 
minimum dt for all TLA events identified from the MACCS stations in 2015 was 3.5 s) and returns the remaining 
dB/dt intervals as the final data product. In this case where all TLA criteria are satisfied, the dB/dt search is also 
performed for 1-min prior to the start time of the hour and 1-min after the start time of the hour (as well as for 
the 2 min framing the end time of the hour) so that no dB/dt intervals are lost by being split by the hour partition.

Table 2 
Table Showing Number of 1-hr Event Windows That Contain Noise-Type or Transient-Large-Amplitude (TLA) dB/dt, As 
Well As the Minimum and Maximum Ratios of TLA and Noise-Type to All dB/dt, Respectively

Station Total dB/dt
# Noise 
windows

# TLA 
windows

Min ratio 
TLA:All

Max ratio 
TLA:All

Min ratio 
Noise:All

Max ratio 
Noise:All

IGL 33,413 2,159 4 0.0011 0.0069 0.0001 0.4377

GJO 1,369 241 6 0.0019 0.0227 0.0004 0.6667

RBY 65,800 991 7 0.0009 0.0085 0.0002 0.2117

PGG 1,790 607 20 0.0006 0.0258 0.0002 0.0140

CDR 2,353 695 15 0.0005 0.0355 0.0002 0.1998

NAN 741,062 759 7 0.0008 0.0033 0.0002 0.5923



Journal of Geophysical Research: Space Physics

MCCUEN ET AL.

10.1029/2022JA030842

14 of 22

The ratio method allows for the 5% threshold to depend on the individ-
ual station data and 1-hr environment which can be highly variable across 
magnetometer arrays, dates and times. In other words, if a station's data are 
overall highly variable (higher number of total dB/dt on average per 1-hr) 
then the 5% threshold allows for a larger number of dB/dt—comparative to 
the instrumentation and/or the surrounding magnetic environment—to be 
identified before rejecting the hour-window as containing only noise-type 
dB/dt. This ratio method is a general metric to reduce noise in magnetometer 
data based on the concentration of short-lived (<60 s) and large-amplitude 
(>6 nT/s) dB/dt intervals per 1-hr event window at an individual station.

To summarize the algorithm filters, the filtered dB/dt search returns magnetic 
field intervals with dt from 2 to 60 s, ΔB from 6 to 1,000 nT and dB/dt from 
6 to 100 nT only if: at least one of these signatures within the 1-hr event 
window lasts 10 s or more, and if these high-frequency intervals (along with 
those that last less than 2 s) do not populate more than 5% of the total dB/
dt within the hour window. Implementation of the above conditions into the 
dB/dt search process returned all of the same 215 TLA dB/dt and reduced the 

number of noise-type dB/dt returned by 99.6% (from 845,680 to 2,970 noise-type dB/dt). The numbers of both 
TLA and noise-type dB/dt prior to and after the filters are listed in Table 3. The filters removed all noise-type dB/
dt from the RBY and NAN station, the latter of which had the most noise-type dB/dt in the unfiltered search. The 
IGL station had the most noise-type dB/dt remaining after the filtered search with 2,669 dB/dt.

In order to better evaluate the performance of the dB/dt search algorithm and the performance filters, the dB/dt 
search routine was tested with and without the filters on 1 year of data from both a CANMOS observatory and an 
AUTUMNX ground magnetometer station. The IQA (Iqaluit) station from CANMOS and the INUK (Inukjuak) 
station from AUTUMNX were used for comparison because they are both in the same region of NE Nunavut as 
the other stations used in the original dB/dt study. We used all available data from 2015 (note that AUTUMNX 
magnetometers (IQA) record magnetic field variation data with a 1-s rather than half-second cadence). The 
unfiltered dB/dt search results were manually classified as noise-type or TLA events via the criteria described in 
Sections 5 and 6 in order to test the accuracy of the filters.

The results of these search algorithms with and without the filters are presented in Table 3. In the MACCS 
stations, all TLA intervals were retained and a vast majority of noise-type signatures were successfully removed. 
The filters removed all of the noise-type dB/dt from the IQA station and all but 2 noise-type signatures from the 
INUK station. It is important to note that at the IQA and INUK stations, the filtered dB/dt search removed two 
events at each station that were classified as geophysical rather than noise-type, but did not meet the TLA selec-
tion criteria of having a dB/dt with timescale of 10–60 s and a ΔB of at least 60 nT. These were the only events 
that were removed via the filters that were not classified as noise-type events nor TLA events; these four events 
make up six signatures total comprising just 1% of the total geophysical signatures (i.e., total of the “# TLA dB/
dt unfiltered filtered” in Table 3) from all eight stations in 2015.

The filtered dB/dt set contains all of the same TLA-type dB/dt signatures as prior to the filters, however there 
are significantly less noise-type intervals after being filtered. The ΔB, Δt, and dB/dt values of the intervals in the 
filtered data set are much more similar between TLA and noise-type, however the noise-type events still exhibit 
many more signatures in general, and many more with the smallest Δt and ΔB values from 2 to 10 s and 6–100 nT 
(2,134 noise-type intervals compared to 20 TLA intervals). The distribution of dB/dt values after the filters has 
many noise-type signatures with large dB/dt values that only few TLA signatures have (over 500 noise-type inter-
vals have dB/dt value from 20 to 100 nT/s compared to 2 TLA intervals), although it is still very possible for TLA 
signatures to have dB/dt intervals in this range from 20 to 100 nT/s.

The filtered dB/dt signatures have greatly narrowed dB, dt, and dB/dt characteristics. The number of dB/dt signa-
tures per noise-type and TLA event is also much more similar in the post-filtered data set. Prior to the filters, the 
average number of dB/dt signatures per noise-type hour event window (for the six MACCS station used for the 
noise characterization in Section 5) was over 150 dB/dt, and after the filters, this average for the same six stations 
is just over 10 dB/dt intervals. Overall, the filters greatly reduced the total number of noise-type dB/dt but also 

Table 3 
Table With Number of dB/dt Intervals From 2015 of Both Transient-Large-
Amplitude (TLA) and Noise-Type, Before and After the Filters Described in 
This Section

Station
Total 

pre-filter
# TLA 
dB/dt

# Noise-type 
pre-filter

Total 
post-filter

# Noise-type 
post-filter

IGL 33,413 20 33,393 2,689 2,669

GJO 1,369 14 1,355 50 36

RBY 65,800 32 65,768 32 0

PGG 2,353 61 1,729 151 90

CDR 1,790 69 2,284 242 173

NAN 741,062 19 741,043 19 0

IQA 92 71 19 71 0

INUK 392 301 87 303 2
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narrowed the noise-type dB/dt to just those that are most similar to TLA events. However, it can be seen from 
Table 3 that there is still a large number of noise-type dB/dt in the filtered dB/dt set.

What remains after the filters are noise-type and TLA signatures that are most similar in their amplitude and 
timescale characteristics, as well as the total number of dB/dt intervals within an hour event window. The data in 
Table 3 shows that the specific selection criteria imposed on the TLA dB/dt search algorithm greatly improved the 
efficiency of the results, removing over 99% of the noise-type dB/dt while retaining all TLA intervals that meet 
the formal definition of TLA events described in this section and excluding only four geophysical events that did 
not meet the criteria for a TLA event.

7.  Support Vector Machine Classification of Noise-Type and TLA dB/dt
While the filters described in Section 7 improved the accuracy of the dB/dt search algorithm, there were still 
thousands of noise-type dB/dt (mostly found in the more commonly noisy stations IGL and CDR) which required 
further separation from the TLA dB/dt. Because the noise-type and TLA dB/dt intervals have very similar statis-
tical characteristics after being filtered, they cannot be further separated with a linear approach and a more 
complex method of distinguishing the intervals is needed. As a final measure of separation, we implemented 
a machine learning classification technique to classify the dB/dt intervals returned from the filtered algorithm 
as TLA or noise-type. The primary goal with a machine learning classifier was to identify and remove as many 
noise-type dB/dt as possible while retaining as many TLA-type dB/dt as possible.

The classifier used to identify TLA and noise-type dB/dt from the data set is called a support vector machine 
(SVM). In recent works, the SVM has been utilized for various space weather applications (e.g., prediction of 
solar flares using magnetic field data (Bobra & Couvidat,  2015) and prediction of high-latitude ionospheric 
scintillation with multiple types of solar wind and geomagnetic field data (McGranaghan et al., 2018)). This 
classifier was tuned and trained using all of the post-filter dB/dt signatures from 2015 and all eight stations (i.e., 
all of the dB/dt in the post-filter column of Table 3). The features used to tune and train the model are the dB, dt, 
and dB/dt (values scaled to between 0 and 1), the geomagnetic latitude of the station represented as a fraction of 
90°, the time represented as a day fraction, and the day of year represented as a year fraction of 365 days (while 
also accounting for leap years). Thus, all of these features are scaled so that all values are between zero and one.

An SVM is a supervised machine learning technique often used for binary classification (Cortes & Vapnik, 1995). 
The objective of an SVM is to classify samples by determining the optimal hyperplane- or decision boundary-to 
separate the samples within the feature space (Suthaharan, 2016). The feature space for a training data set is the 
N-dimensional vector space that contains all of the feature values of the training set. The optimal hyperplane is 
determined by maximizing the space from the decision boundary to the nearest data points- or support vectors-in 
the feature space. If a data set is not linearly separable within the feature space (as in the case of the 2015 dB/
dt set), the features are transformed into a higher-dimensional feature space where a linear hyperplane can be 
derived as decision boundary between classes. This transformation of the features to a higher dimensional space 
is performed using a kernel function.

The SVM used to classify dB/dt intervals in this study is from the scikit-learn library and uses the radial basis 
function (RBF) kernel (Pedregosa et al., 2011). The hyper-parameter C is used in the SVM model that introduces 
a penalty for incorrectly classified samples, the severity of the penalty determined by how large the scalar C is. 
A large value for C means a higher consequence for misclassified samples, this results in a decision boundary 
with smaller margins and can lead to overfitting of the training data. A C value that is too low results in very 
large margins and, in turn, more misclassified samples. The RBF kernel function also uses the hyper-parameter 
gamma, γ, that defines how much influence a single training example has. A large value of γ means that the simi-
larity radius of each training point is larger and thus more points can be grouped together in the feature space, 
whereas a small value of γ means that the data points have to be much closer to one another in the feature space 
in order to be grouped together in the classification.

In the tuning and testing process, we used three main metrics to evaluate the performance of the SVM model: 
accuracy score, Probability Of Detection (POD) score, and Heidke skill score (HSS). The accuracy score repre-
sents the number of correct classifications (both TLA and noise-type) divided by the total number of predictions. 
Often the accuracy score does not best represent the performance of the model, so more complex metrics are 
utilized.
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The latter two metrics are based on the model evaluation guidelines of Liemohn et al. (2018) and they use the 
outcomes of the predictions made by the model in the tuning and testing process: H (hits i.e., correct clas-
sifications of TLA events), M (misses i.e., TLA events incorrectly classified as noise-type), F (false alarms 
i.e., noise-type events incorrectly classified as TLA events), and N (correct negatives i.e., noise-type events 
correctly classified as noise-type events). These metrics make up the contingency table for the model and are also 
commonly referred to as true positives, false negatives, false positives, and true negatives, respectively. The POD 
score gives a more specific evaluation of how well the model performs at classifying TLA events, it is given by 
Equation 9 of Liemohn et al. (2018):

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐻𝐻

𝐻𝐻 +𝑀𝑀
� (1)

The POD score is a useful metric here because our purpose is to retain as many TLA events as possible. It ranges 
between 0 and 1 with higher values being better scores. The Heidke skill score (Heidke, 1926) represents all of 
the values in the contingency table and gives an evaluation of how well the model performs while excluding the 
classifications made by random chance (Equation 8 of Liemohn et al. (2018)):

𝐻𝐻𝐻𝐻𝐻𝐻 =
2[(𝐻𝐻 ⋅𝑁𝑁) − (𝑀𝑀 ⋅ 𝐹𝐹 )]

[(𝐻𝐻 +𝑀𝑀)(𝑀𝑀 +𝑁𝑁) + (𝐻𝐻 + 𝐹𝐹 )(𝐹𝐹 +𝑁𝑁)]
� (2)

The HSS is highest at a value of 1 if the model perfectly classifies all of the hits and correct negatives and can 
result in a negative value if the model has no ability to classify TLA events.

In order to determine the optimal values for γ and C, the SVM model was cross-validated by first splitting the 
2015 dB/dt data set into 10 separate sets—or “stratified cross-folds”—with equal proportion of each type of 
sample (TLA and noise-type, of these sets may contain overlapping samples). Then each of these 10 folds is split 
into training (80%) and testing (20%) sets and 49 SVMs are trained and tested for each of these 10 data folds. Each 
of the 49 SVMs have a different combination of seven γ values (from 0.0001 to 100 in multiples of 10) and seven 
C values (from 0.001 to 1,000 in multiples of 10). Thus, 49 combinations of γ and C were used to train SVMs on 
each of 10 separate folds of data for a total of 490 fits to the model. The SVM that has the highest accuracy and 
POD score averaged across all 10 test folds is chosen to have the optimal hyper-parameters.

The results of the cross-validation process are shown in Figure 9: two grids showing the average accuracy and 
average POD of the 10 folds for each C and γ value. In both cases, the hyper-parameters in the SVM that scored 

Figure 9.  (a) Cross-validation grid showing the average accuracy score as the color of each square for each C and γ value for all 49 folds in the tuning process. (b) 
Same cross-validation grid as in panel (a), but for the average Probability Of Detection score for all 49 folds. Note that color bars are different for panels (a) and (b).
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the highest average accuracy (0.989) and POD (0.944) scores across the 10 folds of training data are γ = 1 and 
C = 10.

After the optimal values for γ and C were determined, these hyper-parameters were used to train the final SVM 
using all of the 2015 dB/dt data. In order to test the model performance, the initial, unfiltered dB/dt search 
as well as the filtered dB/dt search were performed on all of the same eight stations but for the year of 2016. 
All dB/dt identified from 2016 were manually classified as noise-type or TLA based on the criteria described 
in Sections  5 and  6 (i.e., comparison of shapes and amplitudes of the perturbations with those described in 
Khomutov et al. (2017) and statistical characteristics of events at MACCS stations in 2015) in order to assess the 
accuracy of the model predictions. The filtered dB/dt search was successful in removing a majority of noise-type 
dB/dt intervals while retaining all of the TLA signatures. Then the SVM classification was performed on the 
filtered dB/dt intervals.

The SVM model was chosen because it exhibited the best classification accuracy and POD scores out of four 
supervised machine learning classification algorithms. The details of the other three algorithms and their scores 
are provided in Text S1 and Table S1 in Supporting Information S1. Table 4 lists the number of TLA and noise-
type dB/dt returned from the unfiltered and filtered dB/dt search for the year of 2016 as well as the results from 
the SVM classification. Because the classification is performed on individual dB/dt intervals and many events 
consist of multiple dB/dt grouped within a 1-hr window, the dB/dt label predictions are grouped if they occur 
within a 1-hr event window of one another and the final SVM classification of all the dB/dt intervals in the event 
window is the majority vote of the predictions. If there are an equal number of dB/dt classified as noise-type and 
TLA within an event window, all dB/dt are labeled as geophysical TLA in order to reduce the number of TLA 
events removed by the SVM classification.

Table 4 shows that there were a total of 543,597 high-frequency dB/dt intervals identified in the 2016 data. 
These events were manually separated via the criteria described in Section 5 to obtain a total of 543,159 noise-
type dB/dt and 438 TLA dB/dt. After imposing the filters described in Section 7, just 6,349 intervals remain 
including 5,911 noise-type and the same 438 TLA type (the manual classification found no geophysical events 
that did not meet the criteria for a TLA event). The filtered dB/dt intervals are those that go on to be classified 
with the SVM.

From the filtered dB/dt search, there are 5,911 noise-type dB/dt signatures making up 327 event hours and 438 
TLA dB/dt signatures making up 137 event hours. At the bottom of Table 4 are the number of dB/dt for each 
prediction type of the SVM classification. Out of 6,349 total dB/dt signatures from the filtered dB/dt search for 
these eight stations throughout 2016, there are a total of 6,299 correct predictions (i.e., H, “hits”) resulting in an 
accuracy score for individual dB/dt signatures of 0.9923. Further, for the individual dB/dt interval SVM classifi-
cations, the POD score is 0.9361 and the HSS is 0.9383.

Table 4 
Table With Number of dB/dt Signatures of Both Transient-Large-Amplitude (TLA) and Noise-Type Returned From the Unfiltered and Filtered dB/dt Search Algorithm 
and After the Support Vector Machine (SVM) Classification

Station # Noise-type unfiltered dB/dt # Noise-type filtered dB/dt # TLA dB/dt unfiltered and filtered # Noise-type post-SVM dB/dt # TLA post-SVM dB/dt

IGL 131,526 5,126 13 7 12

GJO 3,078 1 10 0 5

RBY 192,525 249 37 0 32

PGG 3,695 351 23 5 23

CDR 410 61 53 8 53

NAN 211,736 0 2 0 2

INUK 7 2 194 2 194

IQA 182 121 106 0 89

Total unfiltered Total SVM-classified # Correct noise-type # Incorrect noise-type # Incorrect TLA # Correct TLA

dB/dt 543,597 6,349 5,889 22 28 410

Hour events 3,010 464 319 8 8 129
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The dB/dt set returned from the full automated process of filtered dB/dt search 
with SVM majority-vote classification consists of 410 TLA dB/dt signatures 
making up 130 TLA hour-events and 22 noise-type dB/dt signatures making 
up 8 hr-events. In addition to the individual dB/dt predictions, Table 4 also 
includes the SVM prediction results of the hour-event windows. Out of the 
initial 464 event hours, 448 were classified correctly as having either TLA 
or noise-type dB/dt within, for an SVM classification accuracy score of full-
hour event windows of 0.9655, POD score of 0.9416 and HSS of 0.9171.

There are 22 incorrectly classified noise-type dB/dt signatures (making up 8 
separate hour-event windows) that remain in the final data set and 28 incor-
rectly classified TLA-type dB/dt signatures (making up 8 event-windows) 
that are removed from the final data set after the SVM classification. All of 
the noise-type events mislabeled as TLA events consist of 1, 2, or 3 dB/dt in 
each component of the field that are part of a spike lasting less than 5 min; 
the average Δt and ΔB of the incorrectly classified noise-type intervals is 

longer and larger than that of the correctly classified noise-type intervals. The TLA events mislabeled as noise 
also have few dB/dt signatures (6 of 8 have less than 5 dB/dt signatures total) and all occur within a negative bay 
that lasts 20 min or more. The average Δt and dB/dt of the missed TLA events are similar to that of the correctly 
classified, however the average ΔB for the missed TLA intervals is about 40 nT smaller than that of the correctly 
classified TLA events. These details suggest that the most difficult events to distinguish are those with very few 
dB/dt intervals within the  hour window: often spikes with longer than average timescale and amplitude, or TLA 
events with smaller than average amplitude. Because there are still 8 hr events with noise-type dB/dt in the final 
dB/dt set, the final step of this complete dB/dt search process requires that the signatures are still plotted and the 
TLA-type events manually confirmed. However, the results of the full process in Table 4 show that the final dB/
dt set is significantly narrowed to a majority of TLA-type events and only a few noise-type events.

The test scores of the SVM classifier on the filtered dB/dt intervals have all been presented above and show that 
the majority-vote SVM classification performs very well at identifying high-frequency disturbance events and 
classifying them as noise-type or geophysical.

In addition to providing the characteristics of the individual dB/dt signatures that meet the TLA event filter 
criteria and the SVM classification, the complete automated process provides a complete high-frequency distur-
bance event list for a magnetic field data set. The high-frequency event flagging process identifies all hour event 
windows that have any high-frequency dB/dt (defined as a dB/dt interval with 1–60 s timescale, dB/dt > 6 nT/s 
and subsequent minimum ΔB of 6 nT) and initially classifies the hour as a noise-type event. Then, if the require-
ments are met for these dB/dt to be a potential geophysical TLA event (i.e., the filter criteria: at least one dB/dt 
interval lasting more than 10 s and ratio of high-frequency dB/dt to all dB/dt within the hour being less than 0.05), 
the SVM majority-vote classification is performed. If the SVM classifies a majority of the high-frequency dB/dt 
as geophysical, then the classification of the hour window is changed to geophysical event rather than noise-type 
event. The resulting list is compiled of all of the hour event windows within a data set that contain high-frequency 
perturbations and includes the SVM majority-vote classification of the hour event as a zero if the dB/dt signatures 
are determined to be noise-type and a one if they are determined to be of geophysical nature. Thus, the complete 
high-frequency GMD classifier can be used to retrieve information on the individual TLA dB/dt signatures as 
well as to identify hour event windows in the data that contain high-frequency signals and determine the geophys-
ical or noise-type nature of those signals with high accuracy.

To concisely illustrate the performance of the fully automated GMD classifier (initial dB/dt search, filters, and 
SVM classification), the contingency matrix for the 2016 test data is shown in Figure  10. This contingency 
matrix shows the four types of classification (H, F, M, and N) for the entire set of high-frequency dB/dt intervals 
identified in the 2016 test data. The statistics in this Figure 10 are compiled from Table 4 and show more clearly 
how well the complete process performs at identifying all second-timescale, high-frequency dB/dt intervals and 
classifying them as noise-type or geophysical TLA events. The test results for the full data set are listed below the 
contingency matrix. The accuracy score is quite high, but represents some possibility of correct classifications by 
random chance because there is such a larger proportion of noise-type dB/dt and event hours compared to TLA. 

Figure 10.  Contingency matrix and test scores for fully automated 
geomagnetic disturbance classifier performing on the 2016 test data.
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The POD and HSS scores are more indicative of the actual performance of the automated process. The POD and 
HSS scores are all near 0.94 an show that the fully automated GMD classifier performs quite well.

This automated high-frequency GMD classifier can be implemented on large-scale magnetic field databases. As a 
usable research artifact, we have provided the high-frequency event lists for the six MACCS stations used in this 
study for the year of 2017 to our data repository (https://doi.org/10.7302/78zf-yw59). From these lists, we can 
identify that at the CDR station, 30 of the 104 MPEs that occurred during 2017 (of Engebretson et al. (2019a)) 
had TLA high-frequency variations associated to them and these are among the largest MPEs that occurred that 
year (>10 nT/s). With these event lists, we can cross-reference these events with those from the other stations 
to identify what other stations to compare the spatial scales and relative strengths of these perturbations in this 
region which can help identify the M-I phenomena involved. Further, these event lists enable to us to avoid the 
hours of data that are highly likely to be contaminated with noise-type dB/dt events.

8.  Effect of Data Processing on High-Frequency Geomagnetic Signatures
We have identified both noise-type and geophysical TLA signals in raw data from MACCS, AUTUMNX and 
CANMOS magnetic field data as well as processed data from SuperMAG. While further data processing meas-
ures like averaging the data over 1-min- or even 1-s- or using a band-pass filter may remove these signatures 
altogether, these techniques could also remove TLA signatures that are necessary for the study of small-scale 
M-I currents.

To briefly examine the effect of a common data processing and resampling procedure on high-frequency 
signals, we compared dB/dt signatures identified from raw, unprocessed MACCS data with those identified from 
processed data from the SuperMAG data service for two separate events that occurred at the PGG station in 2015. 
SuperMAG collects data from contributors (MACCS, AUTUMNX, and CANMOS included) and processes it 
uniformly with the procedure described in Gjerloev (2012). SuperMAG offers 1-s averaged magnetic field data 
that has undergone the data cleaning (automated and manual) and baseline removal process: separation of the 
background magnetic field from sources in the M-I system by determining both the yearly trend and diurnal vari-
ations of the magnetic field (Gjerloev, 2012), as well as resampling the 2 Hz data to 1 Hz.

The MACCS, AUTUMNX and CANMOS magnetometer stations are all part of the SuperMAG network, so it 
is convenient to compare raw data from MACCS with processed data from SuperMAG for the same events. The 
filtered dB/dt search was conducted on both the raw MACCS data and the processed data from SuperMAG for 
two events at PGG during 2015. One of these events is the bay-like noise-type event that occurred on 20 June 
2015, this event is shown in the unprocessed MACCS data in Figure 6 and in the processed SuperMAG data in 
Figure 11. The other event is a TLA event on 10 November 2015, shown in Figure 7.

With the unprocessed MACCS data, the noise-type event on 20 June exhibited 17 high-frequency dB/dt signa-
tures among the four disturbances within the hour. These dB/dt signatures have an average ΔB of 69.8 nT, aver-
age Δt of 6.2 s, and average dB/dt of 13.1 nT/s. With the processed SuperMAG data (1-s averaged, cleaned and 
baseline removed) there are just 10 dB/dt signatures that have average ΔB, Δt, and dB/dt of 68.7 nT, 6.9 s and 
11.1 nT/s, respectively. Figure 11a shows that all four of the noise shapes are still present in the processed data, 
however there are less dB/dt signatures that meet the criteria for a high-frequency disturbance (second-timescale, 
dB/dt > 6 nT/s and ΔB > 60 nT). Further, the zoomed view of the bay-like disturbance in Figure 11 shows that the 
processed data removes some of the high-frequency behavior between the leading and trailing edges of the bay in 
all three components, but some of the high-frequency dB/dt signatures are still present.

The TLA event on 10 November 2015 at the PGG station exhibited 12  dB/dt signatures in the unprocessed 
MACCS data (shown in Figure 7) and 9 dB/dt signatures in the processed SuperMAG data. This event, like 
the noise-type event on 20 June 2015, had slightly lower average ΔB (273 nT) and dB/dt (7.6 nT/s) but slightly 
longer average dt (34.7 s) in the cleaned and processed SuperMAG data. In both noise-type and TLA events, the 
processed data from SuperMAG exhibits fewer high-frequency dB/dt signatures overall, however in both cases 
some of these intervals are still present.

This comparative analysis shows that the SuperMAG data processing technique can reduce the amplitude of and 
even remove some high-frequency dB/dt signatures, but it does not remove the high-frequency noise-type events 
altogether. The same effect is observed for TLA events. Therefore, it is necessary to implement the automated 

https://doi.org/10.7302/78zf-yw59
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high-frequency GMD classifier on unprocessed data to identify intervals where high-frequency disturbances are 
present and classify them as noise-type or geophysical.

9.  Conclusions
In this paper, we have outlined a basic dB/dt search algorithm and detailed the characteristics of the TLA and 
noise-type dB/dt identified by performing the search algorithm on data from six stations of the MACCS array 
during 2015. Then, we discussed the filters that were implemented to improve the dB/dt search process based 
on the characterization of the manually identified noise-type and TLA events and the SVM majority-vote 
classification of noise-type and TLA dB/dt signatures. Finally, we present an automated high-frequency GMD 
classifier for magnetic field data.

The high-frequency GMD classifier is a new technique that identifies intervals of unprocessed magnetic field 
data with 1-s or higher temporal resolution that contain high-frequency signals and determines if they are a result 
of noise or geophysical sources. The full dB/dt search process can identify these event windows and determine 
the correct source (noise-type or geophysical) with over 96% accuracy.

Figure 11.  Bay-like noise in Magnetometer Array for Cusp and Cleft Studies magnetic field data that has been processed with the SuperMAG data processing 
technique. The event occurred on 20 June 2015 at the PGG station. Hollow circles mark the start of a dB/dt signature and solid dots mark the end. The mean B value of 
each component in the interval shown is subtracted from the data. (Note that this mean B value is different than that subtracted from the raw data in Figure 6 because all 
of the values are altered in the SuperMAG data processing).
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Because we found that both noise-type and geophysical high-frequency events are present in processed 1-s 
SuperMAG data, it is recommended that the SuperMAG data processing method incorporate this automated 
high-frequency event classifier on the raw, unprocessed magnetic field data and include this list of hour events 
containing high-frequency intervals and their classifications in the database. This list indicates windows of data 
that are likely contaminated with noise and undesirable for use in official space weather research, and identifies 
windows of data that contain high-frequency signals that are likely due to geophysical sources. The detailed 
information on these dB/dt intervals allows for analysis on the high-frequency behavior of space weather events 
and small-scale M-I currents.

Data Availability Statement
The data used for this analysis as well as the fully automated geomagnetic disturbance classifier are available on 
the University of Michigan's Deep Blue data repository (https://doi.org/10.7302/78zf-yw59).
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