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Abstract17

We present an automated method to identify high-frequency geomagnetic disturbances18

in ground magnetometer data and classify the events by the source of the perturbations.19

We developed an algorithm to search for and identify changes in the surface magnetic20

field, dB/dt, with user-specified amplitude and timescale. We used this algorithm to iden-21

tify transient-large-amplitude dB/dt events that have timescale less than 60 seconds and22

amplitude > 6 nT/s. Because these magnetic variations have similar amplitude and time23

characteristics to instrumental or man-made noise, the algorithm identified a large num-24

ber of noise-type signatures as well as geophysical signatures. We manually classified these25

events by their sources (noise-type or geophysical) and statistically characterized each26

type of event; the insights gained were used to more specifically define a transient-large-27

amplitude geophysical event and greatly reduce the number of noise-type dB/dt iden-28

tified. Next, we implemented a support vector machine classification algorithm to clas-29

sify the remaining events in order to further reduce the number of noise-type dB/dt in30

the final data set. We examine the performance of our complete dB/dt search algorithm31

in widely-used magnetometer databases and the effect of a common data processing tech-32

nique on the results. The automated algorithm is a new technique to identify geomag-33

netic disturbances and instrumental or man-made noise, enabling systematic identifica-34

tion and analysis of space weather related dB/dt events and automated detection of mag-35

netometer noise intervals in magnetic field databases.36

1 Plain Language Summary37

High-frequency (second-timescale) components of the surface geomagnetic field are38

not often included in studies on geomagnetically induced currents (GIC) because they39

do not pose a direct threat to technological infrastructure. However, high-frequency in-40

tervals occur prior to and within some larger space weather events that can lead to GICs.41

Because these perturbations are very similar to signals that arise due to noise-interference,42

we have developed an automated procedure to identify such high-frequency intervals and43

predict the source of the signal as geophysical or noise-type. It was found that common44

data processing techniques can reduce or remove high-frequency geophysical disturbances,45

but do not remove all noise-type intervals. Thus, the automated process provides an event46

list of one-hour event windows that contain high-frequency disturbances and the clas-47

sification of the signals within. This list can be used to identify hour windows of data48

that are undesirable for space weather research as well as events that contain high-frequency49

geophysical disturbances that may provide insight to the small-scale features of space50

weather events.51

2 Introduction52

Space weather occurs due to solar disturbances such as solar flares and coronal mass53

ejections that activates magnetohydrodynamic and electromagnetic disturbances that54

propagate throughout the magnetosphere-ionosphere (M-I) system down to the surface55

of Earth. One ground manifestation of severe space weather events is geomagnetically56

induced currents (GIC), perhaps the most critical space weather concern. Flowing through57

man-made conductors on Earth like railways, pipelines and power grids, GICs can be58

large enough to cause damage to transformers resulting in major power outages and costly59

equipment damage (Pulkkinen et al., 2017). GICs are the result of a horizontal surface60

electric field E induced in Earth’s surface that is driven by large changes of the surface61

magnetic field, dB/dt, via Faraday’s law of induction. Thus, the dB/dt is often used as62

a proxy to study GIC.63

While large GICs often occur during global space weather events like sudden com-64

mencements (SC) and geomagnetic storms that cause major changes in the global large-65

scale M-I currents, it has been known for some time that smaller-scale phenomena are66
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capable of causing GICs as well. An example of such phenomena are nighttime magnetic67

perturbation events (MPE), also known as nighttime geomagnetic disturbances (GMD),68

that are often associated with substorm activity and may be a result of other magne-69

totail phenomena that commonly occurs during substorms (Engebretson et al., 2019a).70

MPEs have 5-10 minute timescales, relatively small spatial scales (∼275 km) compared71

to global events and are related to localized ionospheric instabilities.72

It was shown by Viljanen (1997) that smaller-scale ionospheric currents play a key73

role in producing very large dB/dt at the surface. Several recent studies also suggest that74

beyond the largest space weather disturbances, there are more rapid, localized and small-75

scale processes involved in generating some extreme GICs (Engebretson et al., 2021; Ng-76

wira et al., 2015; Pulkkinen et al., 2015). Dimmock et al. (2020) found that the local-77

ized horizontal magnetic field derivative can vary by a factor of three times the spatial78

average and thus these regional extremes are not accurately represented in global geo-79

magnetic activity indices. Further, Dimmock et al. (2020) found that enhancements in80

regional dB/dt are linked to increased energy deposition in the magnetosphere mapping81

to local ionospheric structures and thus play a key role in modeling GIC during strong82

storms.83

Less is understood about rapid and regional dB/dt enhancements because mag-84

netic field data with 1-minute temporal resolution has long been the accepted standard85

in space weather research. This is because higher-frequency, second-timescale variations86

are effectively low-pass filtered when computing the geoelectric field (Pulkkinen et al.,87

2006, 2013). However, these second-scale magnetic field changes may be especially im-88

portant in understanding small-scale dynamics of space weather events. While magnetic89

disturbances in this Pi 1-2 frequency range do not cause GICs directly, they have been90

found to occur prior to and/or during some GIC-capable space weather events, night-91

time MPEs in particular (McCuen et al., 2021).92

We refer to rapid dB/dt enhancements as transient-large-amplitude (TLA) events:93

instances of high-frequency, short-timescale magnetic field variations (< 60 s) that have94

large dB/dt values over 6 nT/s and occur within a 1-hour window. McCuen et al. (2021)95

found that TLA dB/dt intervals identified in 2015 often occurred in the pre-midnight96

sector (magnetic local time, MLT), 30 minutes after a substorm onset and in associa-97

tion to many of the most extreme nighttime MPEs. Of 175 MPEs at four MACCS sta-98

tions in 2015 (IGL, RBY, PGG, CDR), nearly half of the 52 largest events (maximum99

dB/dt values greater than 10 nT/s) had associated TLA dB/dt intervals. Figure 1 shows100

an example of TLA events that was published as Figure 1b of McCuen et al. (2021). The101

TLA events in Figure 1 occurred at five stations of the Magnetometer Array for Cusp102

and Cleft Studies (MACCS) that occurred on 11 November 2015. These TLA signatures103

occurred within nighttime MPEs that were included in the study of Engebretson et al.104

(2019a) (all but the GJO stations were included in the study).105

Engebretson et al.(2019a) used a superposed epoch spherical elementary current106

systems (SECS) analysis on 21 strong events at the CDR station to conclude that they107

were associated with westward overhead currents that coincided with a region of shear108

between upward and downward field-aligned currents (FAC). The TLA event in Figure109

1 is one of these strongest MPEs identified at CDR in the study of Engebretson et al.110

(2019a); the example shows many TLA intervals within the MPEs and appears to ex-111

hibit a westward moving disturbance as the minimum of the negative bays in the Bx com-112

ponent appear successively in each station from east to west (see map of MACCS sta-113

tions in Section 3). A westward current in the ionosphere can generate a magnetic field114

with field lines that point northward above the current region and southward below, re-115

sulting in large negative depressions in the Bx component of the ground magnetometers.116

While there is some evidence for the processes responsible for generating MPEs, their117

exact physical mechanisms and the current systems involved are still under investiga-118

tion. Analyzing these higher-frequency perturbations within the MPEs and observing119
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Figure 1. Station locations shown on a map of Nunavut, North-East Canada. Circles rep-

resent locations of MACCS stations, the square is the location of the CANMOS IQA station

and the triangle signifies the AUTUMNX INUK station. Lines of latitude and longitude are in

corrected geomagnetic coordinates for 2015.

the ionospheric behavior during such events allows for more detailed understanding of120

regional dB/dt enhancements, small-scale ionospheric currents, the dynamics of shear121

regions between upward and downward FAC and the potential connection to other mag-122

netotail phenomena.123

While substorms and MPEs have minutes to tens of minute timescales, there is clear124

evidence of higher-frequency (<60 s) behavior within many of these events. Because many125

of the MPEs that exhibited TLA signatures were amongst the most intense events but126

were not related to the most extreme space weather events (i.e. SCs and/or global ge-127

omagnetic storms), this suggests that more localized, small-scale ionospheric currents are128

involved in generating these large disturbances. Further, because the MPEs that exhib-129

ited TLA intervals prior to or within the overall disturbance were some of the largest MPEs130

of the dataset suggests that TLA signatures may be good indicators of the strongest small-131

scale events that have the capability to cause GICs.132

Analysis of the second-timescale behavior of the surface magnetic field is a path-133

way to understanding the small-scale dynamics of M-I current systems that can give rise134

to GIC. Studying these high-frequency signatures will improve the understanding of rapid135

and localized magnetic field behavior and associated ionospheric currents. This more de-136

tailed knowledge of the fine-scale nature of the geomagnetic field can aid in improving137

modeling and forecasting of space weather events.138

While it is necessary to analyze high-frequency TLA variations in ground magnetic139

field data in order to advance our understanding of small-scale M-I dynamics, the chal-140

lenge in this task is retaining these high-frequency signatures in global magnetic field databases.141
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Advancements in technological capabilities (Love & Finn, 2017) and the need for improved142

accuracy in measuring dB/dt (Tõth et al., 2014) have motivated the shift toward using143

higher temporal resolution magnetic field measurements for space weather applications.144

However, common data processing methods often reduce or remove transient-large-amplitude145

signatures via their data cleaning or noise removal procedures because the signatures are146

similar in amplitude and timescale to that of magnetometer noise. The term magnetome-147

ter noise refers to two main sources of error in magnetometer readings: instrumental de-148

fect and/or magnetic deviation caused by interference of ferromagnetic materials in the149

vicinity of the magnetometer (Nguyen et al., 2020). Either of these sources can cause150

rapidly varying and irregular data measurements that have similar amplitude and timescale151

characteristics to TLA signatures.152

Because of the similarity of noise-type data to TLA signatures, the geophysical TLA153

dB/dt are often reduced or removed with the noise signatures in common data process-154

ing procedures. Intermagnet, a worldwide magnetometer database commonly used for155

M-I and GIC research, uses a frequency band pass filter of 0.008-0.2 Hz (5-125 seconds)156

on 1-second data to remove error artifacts (St-louis et al., 2014). SuperMAG is a widely-157

used, global magnetic field data collaboration that provides uniformly processed data158

from over 300 ground based magnetometers (Gjerloev, 2012). SuperMAG offers 1-second159

(averaged if raw data has higher resolution) resolution magnetic field data that has un-160

dergone an automated data cleaning procedure. Both of these procedures can alter or161

remove higher-frequency variations of the field. Beyond data processing procedures by162

commonly used databases, many magnetic field data are averaged over 1-minute or more163

in practice for GIC and space weather studies. Even though many magnetic field arrays164

offer 1-second magnetic field data, the data averaging and processing techniques used165

often remove or modify TLA variations.166

The problem remains, TLA variations that are important to retain for space weather167

studies can be removed or reduced in common data cleaning and processing, but are dif-168

ficult to distinguish from noise in raw data. Numerous methods have been used to char-169

acterize and statistically analyze noise in magnetometer data (Khomutov et al., 2017;170

Nguyen et al., 2020) but challenges in anomaly detection have motivated the use of more171

modern machine learning techniques to identify and remove outliers from magnetome-172

ter data (Mitra et al., 2020; Xu et al., 2020). The data cleaning process for large mag-173

netic field databases usually requires an experienced magnetologist to determine whether174

some signals are natural or noisy. In the case of TLA signatures that are similar in fre-175

quency and amplitude to error artifacts, machine learning algorithms can be especially176

useful for making these types of determinations without the need for human supervision.177

In this paper, we present the full methodology for a geomagnetic disturbance clas-178

sifier that identifies occurrences of high-frequency (0.017-1 Hz) signals in magnetic field179

data and classifies whether they are a result of noise interference or geophysical sources.180

This process utilizes statistical characteristics of both noise-type and geophysical dB/dt181

signatures to define a high frequency geomagnetic disturbance event and implements a182

machine learning classification algorithm to classify the dB/dt signatures by their sources.183

This paper is organized as follows. Section 3 describes the magnetometer data used184

in this study and section 4 outlines the dB/dt search algorithm. Section 5 discusses and185

illustrates the noise-shapes identified in data from MACCS, and section 6 describes the186

statistical characteristics of the noise-type and TLA dB/dt intervals and events. The fil-187

ters implemented into the search algorithm based on the analysis of sections 5 and 6 are188

explained in section 7. In section 8, the machine learning approach used to fully auto-189

mate the search algorithm is described and the results discussed (the cross-validation pro-190

cess is detailed in Supporting Information). Section 9 examines the effect of a common191

data processing procedure on the high frequency signatures being studied and discusses192

the data products provided by the procedure developed. Finally, section 10 discusses our193

results and the implications for space weather studies followed by our conclusions.194
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3 Data Sets195

This study uses magnetic field data from three geomagnetic and space physics mag-196

netometer databases, as well as data processed through the SuperMAG data service that197

includes all three databases. The MACCS data are used for the initial identification of198

TLA dB/dt signatures and the noise classification for algorithm improvement. Then, we199

use data from a magnetometer site within the Athabasca University THEMIS UCLA Mag-200

netometer Network eXtension (AUTUMNX) (Connors et al., 2016) as well as data from201

the CANadian Magnetic Observatory System (CANMOS) (Nikitina et al., 2016) to com-202

pare how well the dB/dt search process performs on magnetic field data from different203

systems.204

The geographic and geomagnetic coordinates of the magnetic observatories used205

in this study are listed in Table 1 and shown on the map in Figure 2 with lines of cor-206

rected geomagnetic (CGM) latitude and longitude for 2015. The CGM coordinates were207

calculated using the AACGM-v2 Calculator (available at http://sdnet.thayer.dartmouth.edu/208

aacgm/aacgm calc.php#AACGM) for epoch 2015.209

Station Geographic Geographic Corrected Corrected
Latitude Longitude Geomagnetic Latitude Geomagnetic Longitude

IGL 69.3 278.2 77.6 355
GJO 68.6 264.2 76.8 329.8
RBY 66.5 273.8 75.2 347.2
PGG 66.1 294.2 73.2 19.9
CDR 64.2 283.4 72.6 3.0
IQA 63.8 291.5 71.4 15.2

INUK 58.8 281.9 67.6 0.02
NAN 56.4 298.3 63.1 22.5

Table 1. Location coordinates of stations used in this study.

The ground-based stations used in this study are all in the near vicinity of Inuit210

communities in arctic Nunavut, Canada. Many of the MACCS stations are located at211

the local airport, configured such that the computing instrumentation is kept inside the212

airport or nearby facility and the sensor is located away from the building inside a small,213

enclosed box on the ground. The IGL magnetometer sensor is located right within the214

local town of Igloolik near the Igloolik Research Centre where the rest of the station equip-215

ment is held. The PGG magnetometer is located ∼1 km outside of town near the Pang-216

nirtung water reservoir. In all cases of the MACCS magnetometer stations, their loca-217

tions make them susceptible to man-made noise interference from multiple sources (cars,218

snowmobiles, nearby facilities, etc.). The CANMOS station and AUTUMNX station are219

also susceptible to local interference from human activity, however these observatories220

are dedicated solely to magnetic field data acquisition and do not rely on local facilities221

like an airport to house instrumentation. This allows the CANMOS and AUTUMNX222

observatories to be located further from town centers and aids in prevention of noise con-223

tamination.224

The magnetometers used in this study at the MACCS and the IQA station of CAN-225

MOS are Narod ringcore fluxgate magnetometers designed and supplied by Dr. Barry226

Narod of Narod Geophysics, Ltd., Vancouver, B.C., Canada (Hughes & Engebretson, 1997).227

The AUTUMNX instruments are THEMIS-class fluxgate magnetometers provided by228

UCLA (Russell et al., 2008) and based on the design for the earlier Sino Magnetic Ar-229
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Figure 2. Station locations shown on a map of Nunavut, North-East Canada. Circles rep-

resent locations of MACCS stations, the square is the location of the CANMOS IQA station

and the triangle signifies the AUTUMNX INUK station. Lines of latitude and longitude are in

corrected geomagnetic coordinates.

ray at Low Latitudes (SMALL) terrestrial vector fluxgate magnetometers (Gao et al.,230

2000).231

The Narod magnetometers collect 8 samples per second in three axes, then aver-232

age and record the data at two samples per second for MACCS data and one sample per233

second for the CANMOS data. The AUTUMNX magnetometers record the magnetic234

field at 2 Hz. The data used from AUTUMNX and CANMOS observatories have res-235

olution of 0.01 nT, the MACCS data have a 0.025 nT data resolution, and all three have236

timing accuracy of at least 1 ms. The high-resolution, sampling rate and timing accu-237

racy are sufficient to detect short-timescale Pi 1-2 pulsations. The magnetometer data238

used from MACCS and AUTUMNX are in geomagnetic coordinates: H (geomagnetic239

north-south), D (geomagnetic east-west) and Z (vertical). The data from CANMOS is240

in geographic coordinates: X (geographic north-south), Y (geographic east-west) and241

Z (vertical).242

4 dB/dt search algorithm243

We developed an initial algorithm to identify changes of the magnetic field with244

user-specified magnitude and duration. The initial algorithm works in the following main245

steps: 1) calculate the change in magnetic field strength (∆B) divided by the timestep246

(∆t): dB/dt (or slope) between each pair of successive data points and label the sign of247

the slope (labeled as a -1 for negative slope, +1 for positive slope and zero for zero slope),248

2) mark the points when the sign of the slope changes for at least two measurement cy-249

cles (i.e. local minima and maxima) and 3) recalculate the new dB/dt between the lo-250

cal minima and maxima and return the information if the signature also meets the user-251

specified criteria for timescale, minimum and maximum ∆B and dB/dt.252

Because the search criteria are such that the slope must have the same sign for two253

measurement cycles (step 2), the algorithm relies on the sampling frequency of the data254

and should be used for magnetic field data with 1-second or higher temporal resolution255
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for high-frequency studies. However, the same dB/dt search procedure can be performed256

on data averaged over a longer time period to identify dB/dt signatures with varying timescales257

(i.e. performing the dB/dt search algorithm on 1-minute averaged data will identify dB/dt258

signatures that last at least 2 minutes).259

There is also an intermediate step after Step 1 that deals with the instances of zero260

slope that last only one measurement cycle: if a zero slope occurs only once in between261

two like-sign slope values, the sign of the slope is changed to match those slope values.262

This measure is taken so that a change in slope will only be marked in cases of zero slope263

if it persists for at least two measurement cycles and is consistent with the minimum dB/dt264

search to be intervals that last twice the sampling frequency. The final product returned265

from the algorithm is a nine column matrix; each row represents an individual dB/dt266

interval and provides the start and end time of the interval, start and end B value, the267

time elapsed: dt, the change in magnetic field amplitude: ∆B, and the total perturba-268

tion: dB/dt. The final two columns indicate the component that the interval was iden-269

tified in and the station at which the interval took place.270

The algorithm was developed to identify high-frequency (0.017-1 Hz) transient-large-271

amplitude (TLA) events in the magnetometer data. We define an event as any number272

of geomagnetic signatures with < 60 seconds timescale and dB/dt > 6 nT/s within a 1-273

hour event window. The hour windows are defined by the UT clock and determined by274

measurement frequency (i.e. number of data points in one hour) and are divided con-275

secutively. For example, for a measurement frequency of 2 Hz, the first 7200 data points276

define the first hour window, and the next hour window is the following 7200 data points.277

The minimum dB/dt threshold was chosen as it is comparable to magnetic field mea-278

surements during the March 1989 geomagnetic storm that caused the HydroQuebec power279

grid failure (Kappenman, 2006). This was the most severe geomagnetic storm of the twen-280

tieth century and maximum magnetic field changes during that storm were on the or-281

der of 8 nT/s (but lasting much longer than just seconds), so dB/dt of this magnitude282

are considered large-amplitude.283

Unfortunately, these specifications also describe the signals that can occur as a re-284

sult of instrumentation error or interference by ferromagnetic material, i.e. ”noise”. The285

term noise is relative to the specific goal of the measurement or problem to be solved.286

For this study, we use the term noise to refer to two main sources of error in magnetome-287

ter readings: instrumental defect and/or magnetic deviation caused by interference of288

ferromagnetic materials in the vicinity of the magnetometer (Nguyen et al., 2020).289

5 Noise Shapes Identified in MACCS Data290

In order to capture all such magnetic signals of interest with this timescale, we set291

the initial criteria for the dB/dt search to signatures with 1-60 second timescale, ∆B 6-292

10,000 nT and dB/dt from 6-1000 nT/s. The similarity of TLA events to noisy signals293

resulted in the algorithm identifying a majority of signals that were due to noise rather294

than natural geophysical processes. Because the size and timescale of these signatures295

fall into the same ranges, and common data cleaning techniques can alter or remove TLA296

signatures, determining whether a given signal is of geophysical nature or a result of noise297

was done by examining the shape of the signal, the behavior of the magnetic field prior298

to and after the signal, and the amplitude characteristics of the interval. Thus, we man-299

ually separated the noise signals from the natural geophysical perturbations by compar-300

ing with the magnetic noise characterization of Khomutov et al. (2017).301

The noise shapes described in Khomutov et al. (2017) are compiled from Intermag-302

net data from observatories located in the mid-latitude, eastern hemisphere. The obser-303

vatories have various types of fluxgate magnetometers with measurement frequency from304

0.2-2 Hz (5-0.5 seconds). The main sources of noisy signals in magnetometer data are305
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both external and internal. Externally, there are large-scale noise sources like DC rail-306

ways that can impact magnetic field data at large distances, and there are more local307

sources of ferromagnetic and/or conductive material within the nearby vicinity of the308

magnetometer sensor (e.g. cars, technological devices, other instrumentation). Internally,309

noisy signals can arise from instrumentation error. While the exact source of a specific310

noisy signal can vary, the main sources are consistent across observatories and databases.311

For these main sources of interference with fluxgate magnetometer systems, the char-312

acteristic shapes and sizes of the resulting noisy signals in the data are common (Neska313

et al., 2013; Santarelli et al., 2014; Khomutov et al., 2017). The four most common shapes314

of noise and their characteristics reported by Khomutov et al. (2017) are defined and315

illustrated as follows.316

Figure 3. A spike in the magnetometer data that occurred on 2 July 2015 at the PGG sta-

tion. The hollow circles mark the start of each dB/dt signature and the solid dots mark the end.

Note that the consecutive solid red dots in the Bz plot (bottom) signify that the negative peak of

this spike is both the end of the interval prior and the start of the interval following.

Spikes in magnetometer data are large-amplitude (∼ tens of nT), relatively short317

signals (generally lasting less than a few seconds) with well-defined leading and back edges318

that have similar amplitudes. Isolated spikes, spikes with large amplitude (many tens319

of nT), and spikes that last only one measurement cycle have a low probability of be-320

ing caused by geophysical sources. An example of a spike is shown in Figure 3: 1-minute321

of MACCS magnetometer data taken at the PGG station on 2 July, 2015. The hollow322

red circles represent the start of a dB/dt interval that is > 6 nT/s and the solid red dots323

represent the end of the signature. The mean B value of each component in the inter-324

val shown is subtracted from the data, but this does not change the ∆B and dB/dt am-325

plitudes or the timescales of the intervals from the original data. The entire spike sig-326

nature lasts about 20 seconds with each interval of large dB/dt lasting 3.5-10.5 seconds.327

The maximum amplitude of the spike is about 318 nT (dBx/dt beginning at 21:16:17.75328
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and decreasing for 8.5 seconds). We further define spikes in this noise classification to329

be instances of three or less large dB/dt signatures (with < 60 s timescale and magni-330

tude > 6 nT/s) occurring within a 1-minute interval.331

Figure 4. A noise jump that occurred at the CDR station on 27 August 2015. Hollow circles

mark the start of a dB/dt signature and solid dots mark the end. The mean B value of each

component in the interval shown is subtracted from the data.

Figure 4 shows an example of a jump shape in the MACCS data. Jumps are much332

like spikes but with a continuous interval between the leading and back edges. The timescales333

of these jumps vary; in this study, we specify jumps to have a minimum 1-minute inter-334

val sustained between the leading and trailing edges in which the magnetic field does not335

increase/decrease beyond the starting value of the leading edge (i.e. the very first hol-336

low circle in all three panels of Figure 4 at approx. 15:18 UT). Jumps often occur due337

to changes of the magnetic field distribution via ferromagnetic material.338

Random-like noise is usually caused by man-made disturbances which add random-339

ized variations to the background magnetic field. These look like patches of highly fre-340

quent dB/dt intervals with randomized shape and amplitude. An example of random-341

like noise is shown in Figure 5. This patch of random noise lasted about 7-minutes; the342

algorithm identified 93 dB/dt signatures from the three components combined. Figure343

4b is a zoomed view of a section of this event from 10:16:10-10:17:10 UT showing how344

some of these variations are presented on a 1-minute timescale. Figure 4b shows that,345

on a 1-minute timescale, these magnetic field variations have dissimilar shapes to clas-346

sic spikes as defined above although they may appear to be a group of frequent spikes347

when observed on a slightly longer timescale. While the shape of these magnetic field348

changes cannot be defined as spikes or a jump, we determine that they are noise vari-349

ations because of 1) the highly frequent nature and the randomized shapes of the dB/dt350
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intervals, 2) the jagged behavior of these variations on a second-scale (Figure 4b) and351

3) the shape of the noise group on a minute-scale (Figure 5a) that appears to positively352

deviate from the background magnetic field in each axis.353

Figure 5. (a): Random-like noise that occurred at the IGL station on 3 January 2015. Hol-

low circles mark the start of a dB/dt signature and solid dots mark the end. (b): A zoomed-in

view of 1-minute of the random-like noise-type event shown in (a). The mean B value of each

component in the interval shown is subtracted from the data.

The last noise shape found in the MACCS magnetometers throughout 2015 is bay-354

like noise. An example of bay-like noise is shown in Figure 6b: a disturbance that oc-355

curred within 1-minute at the PGG station on 20 June 2015. The full high-frequency356

disturbance event (Figure 6a) consists of a bay-like disturbance as well as three separate357

spikes later in the hour window (note that just 25 minutes of this event are shown to em-358

phasize the shape of the high-frequency intervals within this hour window). The bay-359

like disturbance is shown with a zoomed view in Figure 6b. The magnetic field changes360

in Figure 6b are near 50 nT in the x- and y- components but nearly 150 nT in the z-component.361

This is a common manifestation of noise in magnetometer data, usually caused by mag-362

netic field changes near the instrument due to a moving ferromagnetic object (i.e. a ve-363

hicle or other instrumentation). It is shaped like a positive/negative magnetic bay that364

persists for the duration of the passing object (usually seconds). Bay-like noise often has365

sharp leading and trailing edges like spikes or jumps, but the behavior between these edges366

is more random and variable. These impulses can be difficult to distinguish from nat-367

ural signals because negative and positive bays can also occur due to M-I sources. While368

bay-like noise events have similar shapes to TLA events, the distinction between them369

is that TLA events often occur within a bay that lasts 5-15 minutes (McCuen et al., 2021)370

while noise-type bays generally have a duration of just seconds. Further, this example371
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is decided to be noise because of the jagged magnetic field shapes on a second-timescale,372

as well as the very similar and smooth behavior of the magnetic field prior to and after373

the disturbance bay: a common characteristic of noise-type events in magnetic field data.374

Figure 6. (a): A noise-type hour-event that occurred on 20, June 2015 at the PGG station

consisting of a bay-like disturbance and three spikes. (b): Bay-like noise in MACCS magnetic

field data. Hollow circles mark the start of a dB/dt signature and solid dots mark the end. The

mean B value of each component in the interval shown is subtracted from the data.

Figure 7 shows an example of a TLA event that occurred on 10 November 2015.375

The figure shows dB/dt signatures that occurred at the PGG station but there were also376

TLA dB/dt observed at two other MACCS stations during this hour. These signatures377

at the PGG station occur prior to (in the Bx component) and within a large nighttime378

MPE that began at 00:36 UT. There are twelve total dB/dt signatures in the full event379

shown in Figure 7a with average ∆B of about 274 nT, mean ∆t of 33.8 seconds and mean380

dB/dt of just under 8 nT/s. Figure 7b shows one-minute of zoomed-in data from this381

event from 00:41:30 to 00:42:30 with one TLA-type dB/dt signature in the x- and z- com-382

ponent each. The signature in the z-component of Figure 7b has the largest dB/dt am-383

plitude of the event of 10.37 nT/s. Figure 7b shows that on a 1-minute timescale, these384

are smooth changes of the magnetic field rather than jagged edges of noisy data. This385

is a distinct characteristic of TLA events with geophysical sources: the magnetic field386

is smoothly varying on a second-timescale rather than rapidly changing with sharp edges387

as observed in noise-type events.388

The common feature of these noise shapes in magnetometer data is that they are389

composed of some combination of second-timescale magnetic field changes with dB/dt390

> 6 nT/s. These are characteristics equal to that of the geophysical TLA dB/dt that391

are meaningful in the context of small-scale M-I currents. However, the examples of TLA392

events in Figures 1 and 7 both show dB/dt intervals occurring prior to or within night-393
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Figure 7. (a): A transient-large-amplitude (TLA) geomagnetic event that occurred on 10

November 2015 at the PGG station. Hollow circles mark the start of a dB/dt signature and solid

dots mark the end. (b): A zoomed-in view of 1-minute of the TLA event shown in (a). The mean

B value of each component in the interval shown is subtracted from the data.

time MPEs that are associated to small-scale ionospheric currents and these TLA dB/dt394

intervals show smooth variations on a 1-minute timescale.395

There are some distinct differences between the dB/dt signatures that arise from396

noise sources and TLA dB/dt caused by M-I sources. Noise-type dB/dt events can of-397

ten be identified by the shape of the event, the behavior of the magnetic field prior to398

and after the event (the highly similar and often steady nature of the magnetic field on399

either sides of the noise-type perturbation) and the smoothness of the magnetic field on400

a second-timescale (noise-type events often show sharp magnetic field changes on a second-401

timescale whereas TLA dB/dt events are always smoothly varying on such fine timescales).402

These criteria were used to manually separate noise-type and TLA events. This man-403

ual classification method based on the descriptions in the study by Khomutov et al. (2017)404

was expert-verified by one of the co-authors of this study. From the manual separation405

of events, the numerical characteristics of the dB/dt signatures of each event type were406

then used to create filters to automatically classify noise-type and TLA dB/dt signatures,407

discussed in greater detail in the following section.408

6 Statistical characteristics of noise-type and TLA events409

While some shapes of noise signals are more likely to result from either man-made410

sources or internal instrumentation issues, all four of the noise types described in sec-411

tion 5 can arise from both hardware and external sources. Determining the exact source412

of noise in magnetic field data can be a challenge, but separating geophysical magnetic413
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signatures from data contaminated with noise from outside interference is a more tan-414

gible task. After collecting all dB/dt signatures that satisfy the conditions for a high-415

frequency event (dB/dt > 6 nT/s, dt from 1-60 s), we manually classified the geophys-416

ical events, as well as each type of noise shape identified. Then we analyzed the statis-417

tical characteristics of these types of dB/dt events to improve the selection criteria for418

the search algorithm. The statistical characteristics that set geophysical TLA events apart419

from noise-type events are described and compared below.420

Noise-type events, whether from instrumentation error or external interference, con-421

tribute significantly more dB/dt events than geophysical events. From the six MACCS422

stations throughout 2015, we identified 215 TLA dB/dt (making up 59 separate events)423

and 845,572 noise-type dB/dt signatures (making up nearly 5500 separate events). Fig-424

ure 8 shows histograms of the number of noise-type dB/dt (orange) and the number of425

TLA dB/dt (blue) based on their timescale (dt), amplitude (∆B) and magnitude (dB/dt).426

All three histograms show the number of events on a logarithmic scale. Figures 8b and427

8c both include a zoomed-in view of the bottom left corner of the full distribution show-428

ing the portion containing the geophysical events. It can be seen from all three plots that429

the number of noise-type dB/dt identified is orders of magnitude larger than that of TLA430

dB/dt.431

Figure 8a shows that noise-type dB/dt signatures were far more likely to last less432

than 10 seconds whereas TLA dB/dt had a relatively even spread of timescales from 3.5-433

60 seconds. Noise-type events at the six MACCS stations throughout 2015 had 99.8%434

of dB/dt intervals that lasted less than 10 seconds compared to just under 10% of the435

total TLA dB/dt. Further, all of the TLA dB/dt intervals that had dt < 10 seconds oc-436

curred within hour event windows that had longer dB/dt from 10-60 seconds, whereas437

most of the noise-type hour events consisted solely of dB/dt intervals lasting less than438

10 seconds. The uniform distribution of ∆t of the TLA intervals shows that there are439

a relatively consistent number of meaningful geophysical signatures over the second-timescale440

range.441

Figure 8b shows that noise-type dB/dt signatures were far more likely to be less442

than 60 nT in amplitude (94.9% of noise-type dB/dt had ∆B < 60 nT/s compared to443

just 5.5% of TLA dB/dt signatures), however the noise also contributed to outliers thou-444

sands of nT higher than any of the TLA dB/dt which had a maximum ∆B = 580.75 nT.445

A similar trend is seen in the histogram of dB/dt magnitudes (Figure 8c) where the TLA446

dB/dt occupy a small slice under the distribution of the noise-type dB/dt. The zoomed447

view of Figure 8c shows that the largest TLA dB/dt magnitude was ∼33 nT/s compared448

to many noise-type dB/dt magnitudes exceeding 200 nT/s. Reasonable magnitudes for449

the most extreme second-timescale magnetic field changes are from 40-110 nT/s (Kataoka450

& Ngwira, 2016).451

Noise-type dB/dt signatures occurred more often than TLA dB/dt overall and they452

also occurred in higher concentration per 1-hour event window. The random-type noise453

signature was the most frequently occurring. As is shown in Figure 5, random-noise events454

usually sustained longer intervals of highly variable magnetic field that contributed hun-455

dreds, sometimes thousands, of characteristic dB/dt signatures while geophysical TLA456

events often had just a few TLA dB/dt within a longer ∼10-20 minute perturbation. We457

found that a noise event (within a 1-hour window) at an individual station had 154.6 dB/dt458

intervals on average while geophysical TLA events had an average of 3.2 dB/dt (max-459

imums of 25 and 2370 dB/dt per 1-hour event window respectively). As previously men-460

tioned, the hour windows are defined by the measurement frequency (i.e. number of data461

points in one hour) and are divided consecutively.462

The number of 1-hour windows containing TLA and/or noise-type dB/dt per sta-463

tion is shown in Table 2, as well as the number of individual dB/dt signatures identi-464

fied at each station. In order to numerically describe the distinction between the con-465
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Figure 8. Histograms showing number of dB/dt signatures (separated by TLA and noise-

type) from all six MACCS stations throughout 2015. (a): Distribution based on dt values, (b):

distributions based on ∆B values and (c): distribution based on dB/dt values.

centration of dB/dt per hour window for noise-type and TLA events, we calculated the466

ratio of number of noise-type or TLA dB/dt per event to the total number of dB/dt (with467

any timescale and any amplitude) within the event hour. Table 2 contains the minimum468

and maximum of these ratios. While TLA and noise-type dB/dt events had similar min-469

imum ratios (i.e. both event types exhibited events with very few or even singular high-470

frequency dB/dt intervals), the maximum ratios between TLA and noise-type dB/dt are471

very different from one another. TLA dB/dt never populated more than 4% of the to-472

tal dB/dt within the respective hour event window, while noise-type events more often473

exhibited hour windows where the dB/dt composed of more than 10% and up to nearly474

67% of all the magnetic field changes within the hour.475

It is worth noting that the maximum ratio of noise-type or TLA type is not directly476

proportional to the total number of noise-type or TLA event windows. For instance, the477

GJO station had the least amount of noise-type event windows, but the highest max-478
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Station Total dB/dt # Noise # TLA Min ratio Max ratio Min ratio Max ratio
windows windows TLA:All TLA:All Noise:All Noise:All

IGL 33413 2159 4 0.0011 0.0069 0.0001 0.4377
GJO 1369 241 6 0.0019 0.0227 0.0004 0.6667
RBY 65800 991 7 0.0009 0.0085 0.0002 0.2117
PGG 1790 607 20 0.0006 0.0258 0.0002 0.0140
CDR 2353 695 15 0.0005 0.0355 0.0002 0.1998
NAN 741062 759 7 0.0008 0.0033 0.0002 0.5923

Table 2. Table showing number of 1-hour event windows that contain noise-type or TLA

dB/dt, as well as the minimum and maximum ratios of TLA and noise-type to all dB/dt respec-

tively.

imum ratio of noise-type to all dB/dt out of all the stations. This is to say that because479

the ratio is calculated based on the specific hour, it is dependent on the type of noise and480

how much there is and independent of the overall noise present in the station data.481

To summarize the statistical characterization of geophysical TLA and noise-type482

events in this paper, there are three main distinctions between geophysical TLA dB/dt483

events and noise-type dB/dt events:484

1. TLA events have at least one dB/dt signature > 6 nT/s that lasts 10 or more sec-485

onds within the 1-hour event window.486

2. Large, second-timescale dB/dt are more likely to be of geophysical nature if they487

last from 10-60 seconds and have amplitude 60-1000 nT.488

3. Large, second-timescale dB/dt are more likely to be noise if they occur in large489

concentration per 1-hour window (occupying more than 5% of the total magnetic490

field changes within the hour window). TLA-type events often have less than 20491

dB/dt within an approximately 15-20 minute perturbation.492

7 dB/dt Search Algorithm Filters493

Following from the main characteristics described in the previous section, two main494

filters were applied to improve the dB/dt search algorithm and reduce the number of noise-495

type dB/dt identified by the routine. First: the dB/dt search is performed on consec-496

utive 1-hour partitions of data and the requirements to determine a potential TLA event497

are specified as a 1-hour event window that contains at least one dB/dt that has mag-498

nitude 6-100 nT/s, ∆B from 60-1000 nT and timescale 10-60 seconds. Not only are the499

maximum values for ∆B and dB/dt decreased to the range observed for all TLA-type500

events, but the requirement that there be at least one signature lasting more than 10 sec-501

onds (and effectually having ∆B > 60 nT) is implemented. If there are no signatures502

that meet this criteria in the hour window, the search procedure moves on to the next503

hour window. If there are any dB/dt that do fall within these values, the algorithm con-504

tinues to the next stage.505

In the second stage of the dB/dt search, dB/dt intervals with 6-100 nT/s, timescale506

1-60 seconds and ∆B 6-1000 nT are identified (i.e. all of the high-frequency dB/dt sig-507

natures that could be TLA or noise-type), as well as the total number of dB/dt inter-508

vals with any amplitude and timescale within the hour. If the number of high-frequency509

signatures is more than 5% of the total number of the dB/dt within the hour, then the510

algorithm rejects all signatures identified. If this ratio is less than 5%, then the algorithm511
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removes any intervals that last less than 2-seconds (as the minimum dt for all TLA events512

identified from the MACCS stations in 2015 was 3.5 seconds) and returns the remain-513

ing dB/dt intervals as the final data product. In this case where all TLA criteria are sat-514

isfied, the dB/dt search is also performed for 1-minute prior to the start time of the hour515

and 1-minute after the start time of the hour (as well as for the two minutes framing the516

end time of the hour) so that no dB/dt intervals are lost by being split by the hour par-517

tition.518

The ratio method allows for the 5% threshold to depend on the individual station519

data and 1-hour environment which can be highly variable across magnetometer arrays,520

dates and times. In other words, if a stations data are overall highly variable (higher num-521

ber of total dB/dt on average per 1-hour) then the 5% threshold allows for a larger num-522

ber of dB/dt comparative to the instrumentation and/or the surrounding magnetic en-523

vironment to be identified before rejecting the hour-window as containing only noise-type524

dB/dt. This ratio method is a general metric to reduce noise in magnetometer data based525

on the concentration of short-lived (< 60 s) and large-amplitude (> 6 nT/s) dB/dt in-526

tervals per 1-hour event window at an individual station.527

To summarize the algorithm filters, the filtered dB/dt search returns magnetic field528

intervals with dt from 2-60 seconds, ∆B from 6-1000 nT and dB/dt from 6-100 nT only529

if: at least one of these signatures within the 1-hour event window lasts 10 seconds or530

more, and if these high-frequency intervals (along with those that last less than 2 sec-531

onds) do not populate more than 5% of the total dB/dt within the hour window. Im-532

plementation of the above conditions into the dB/dt search process returned all of the533

same 215 TLA dB/dt and reduced the number of noise-type dB/dt returned by 99.6%534

(from 845680 to 2970 noise-type dB/dt). The numbers of both TLA and noise-type dB/dt535

prior to and after the filters are listed in Table 3. The filters removed all noise-type dB/dt536

from the RBY and NAN station, the latter of which had the most noise-type dB/dt in537

the unfiltered search. The IGL station had the most noise-type dB/dt remaining after538

the filtered search with 2,669 dB/dt.539

Station Total # TLA # Noise-type Total # Noise-type
pre-filter dB/dt pre-filter post-filter post-filter

IGL 33413 20 33393 2689 2669
GJO 1369 14 1355 50 36
RBY 65800 32 65768 32 0
PGG 2353 61 1729 151 90
CDR 1790 69 2284 242 173
NAN 741062 19 741043 19 0
IQA 92 71 19 71 0

INUK 392 301 87 303 2

Table 3. Table with number of dB/dt intervals from 2015 of both TLA and noise-type, before

and after the filters described in this section

In order to better evaluate the performance of the dB/dt search algorithm and the540

performance filters, the dB/dt search routine was tested with and without the filters on541

one year of data from both a CANMOS observatory and an AUTUMNX ground mag-542

netometer station. The IQA (Iqaluit) station from CANMOS and the INUK (Inukjuak)543

station from AUTUMNX were used for comparison because they are both in the same544

region of NE Nunavut as the other stations used in the original dB/dt study. We used545

all available data from 2015 (note that AUTUMNX magnetometers (IQA) record mag-546
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netic field variation data with a 1-second rather than half-second cadence). The unfil-547

tered dB/dt search results were manually classified as noise-type or TLA events via the548

criteria described in Sections 5 and 6 in order to test the accuracy of the filters.549

The results of these search algorithms with and without the filters are presented550

in Table 3. In the MACCS stations, all TLA intervals were retained and a vast major-551

ity of noise-type signatures were successfully removed. The filters removed all of the noise-552

type dB/dt from the IQA station and all but 2 noise-type signatures from the INUK sta-553

tion. It is important to note that at the IQA and INUK stations, the filtered dB/dt search554

removed two events at each station that were classified as geophysical rather than noise-555

type, but did not meet the TLA selection criteria of having a dB/dt with timescale of556

10-60 seconds and a ∆B of at least 60 nT. These were the only events that were removed557

via the filters that were not classified as noise-type events nor TLA events; these four558

events make up six signatures total comprising just 1% of the total geophysical signa-559

tures (i.e. total of the ”# TLA dB/dt unfiltered filtered” in Table 3) from all eight sta-560

tions in 2015.561

The filtered dB/dt set contains all of the same TLA-type dB/dt signatures as prior562

to the filters, however there are significantly less noise-type intervals after being filtered.563

The ∆B, ∆t and dB/dt values of the intervals in the filtered data set are much more sim-564

ilar between TLA and noise-type, however the noise-type events still exhibit many more565

signatures in general, and many more with the smallest ∆t and ∆B values from 2-10 s566

and 6-100 nT (2134 noise-type intervals compared to 20 TLA intervals). The distribu-567

tion of dB/dt values after the filters has many noise-type signatures with large dB/dt568

values that only few TLA signatures have (over 500 noise-type intervals have dB/dt value569

from 20-100 nT/s compared to 2 TLA intervals), although it is still very possible for TLA570

signatures to have dB/dt intervals in this range from 20-100 nT/s.571

The filtered dB/dt signatures have greatly narrowed dB, dt and dB/dt character-572

istics. The number of dB/dt signatures per noise-type and TLA event is also much more573

similar in the post-filtered data set. Prior to the filters, the average number of dB/dt574

signatures per noise-type hour event window (for the six MACCS station used for the575

noise characterization in section 5) was over 150 dB/dt, and after the filters, this aver-576

age for the same six stations is just over 10 dB/dt intervals. Overall, the filters greatly577

reduced the total number of noise-type dB/dt but also narrowed the noise-type dB/dt578

to just those that are most similar to TLA events. However, it can be seen from Table579

3 that there is still a large number of noise-type dB/dt in the filtered dB/dt set.580

What remains after the filters are noise-type and TLA signatures that are most sim-581

ilar in their amplitude and timescale characteristics, as well as the total number of dB/dt582

intervals within an hour event window. The data in Table 3 shows that the specific se-583

lection criteria imposed on the TLA dB/dt search algorithm greatly improved the effi-584

ciency of the results, removing over 99% of the noise-type dB/dt while retaining all TLA585

intervals that meet the formal definition of TLA events described in this section and ex-586

cluding only four geophysical events that did not meet the criteria for a TLA event.587

8 Support vector machine classification of noise-type and TLA dB/dt588

While the filters described in section 7 improved the accuracy of the dB/dt search589

algorithm, there were still thousands of noise-type dB/dt (mostly found in the more com-590

monly noisy stations IGL and CDR) which required further separation from the TLA591

dB/dt. Because the noise-type and TLA dB/dt intervals have very similar statistical char-592

acteristics after being filtered, they cannot be further separated with a linear approach593

and a more complex method of distinguishing the intervals is needed. As a final mea-594

sure of separation, we implemented a machine learning classification technique to clas-595

sify the dB/dt intervals returned from the filtered algorithm as TLA or noise-type. The596
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primary goal with a machine learning classifier was to identify and remove as many noise-597

type dB/dt as possible while retaining as many TLA-type dB/dt as possible.598

The classifier used to identify TLA and noise-type dB/dt from the data set is called599

a support vector machine (SVM). In recent works, the SVM has been utilized for var-600

ious space weather applications (e.g., prediction of solar flares using magnetic field data601

(Bobra & Couvidat, 2015) and prediction of high-latitude ionospheric scintillation with602

multiple types of solar wind and geomagnetic field data (McGranaghan et al., 2018)).603

This classifier was tuned and trained using all of the post-filter dB/dt signatures from604

2015 and all eight stations (i.e. all of the dB/dt in the post-filter column of Table 3). The605

features used to tune and train the model are the dB, dt and dB/dt (values scaled to606

between 0-1), the geomagnetic latitude of the station represented as a fraction of 90 de-607

grees, the time represented as a day fraction, and the day of year represented as a year608

fraction of 365 days (while also accounting for leap years). Thus, all of these features are609

scaled so that all values are between zero and one.610

An SVM is a supervised machine learning technique often used for binary classi-611

fication (Cortes & Vapnik, 1995). The objective of an SVM is to classify samples by de-612

termining the optimal hyperplane- or decision boundary- to separate the samples within613

the feature space (Suthaharan, 2016). The feature space for a training data set is the614

N-dimensional vector space that contains all of the feature values of the training set. The615

optimal hyperplane is determined by maximizing the space from the decision boundary616

to the nearest data points- or support vectors- in the feature space. If a data set is not617

linearly separable within the feature space (as in the case of the 2015 dB/dt set), the fea-618

tures are transformed into a higher-dimensional feature space where a linear hyperplane619

can be derived as decision boundary between classes. This transformation of the features620

to a higher dimensional space is performed using a kernel function.621

The SVM used to classify dB/dt intervals in this study is from the scikit-learn li-622

brary and uses the radial basis function (RBF) kernel (Pedregosa et al., 2011). The hyper-623

parameter C is used in the SVM model that introduces a penalty for incorrectly clas-624

sified samples, the severity of the penalty determined by how large the scalar C is. A large625

value for C means a higher consequence for misclassified samples, this results in a de-626

cision boundary with smaller margins and can lead to overfitting of the training data.627

A C value that is too low results in very large margins and, in turn, more misclassified628

samples. The RBF kernel function also uses the hyper-parameter gamma, γ, that de-629

fines how much influence a single training example has. A large value of γ means that630

the similarity radius of each training point is larger and thus more points can be grouped631

together in the feature space, whereas a small value of γ means that the data points have632

to be much closer to one another in the feature space in order to be grouped together633

in the classification.634

In the tuning and testing process, we used three main metrics to evaluate the per-635

formance of the SVM model: accuracy score, Probability Of Detection (POD) score, and636

Heidke skill score (HSS). The accuracy score represents the number of correct classifi-637

cations (both TLA and noise-type) divided by the total number of predictions. Often638

the accuracy score does not best represent the performance of the model, so more com-639

plex metrics are utilized.640

The latter two metrics are based on the model evalution guidelines of Liemohn et641

al. (2018) and they use the outcomes of the predictions made by the model in the tun-642

ing and testing process: H (hits i.e. correct classifications of TLA events), M (misses i.e.643

TLA events incorrectly classified as noise-type), F (false alarms i.e. noise-type events in-644

correctly classified as TLA events) and N (correct negatives i.e. noise-type events cor-645

rectly classified as noise-type events). These metrics make up the contingency table for646

the model and are also commonly referred to as true positives, false negatives, false pos-647

itives, and true negatives, respectively. The POD score gives a more specific evaluation648
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of how well the model performs at classifying TLA events, it is given by Eq. (9) of Liemohn649

et al. (2018):650

POD =
H

H +M
(1)

The POD score is a useful metric here because our purpose is to retain as many651

TLA events as possible. It ranges between 0 and 1 with higher values being better scores.652

The Heidke skill score (Heidke, 1926) represents all of the values in the contingency ta-653

ble and gives an evaluation of how well the model performs while excluding the classi-654

fications made by random chance (Eq (8) of Liemohn et al. (2018)):655

HSS =
2[(H ·N) − (M · F )]

[(H +M)(M +N) + (H + F )(F +N)]
(2)

The HSS is highest at a value of 1 if the model perfectly classifies all of the hits656

and correct negatives and can result in a negative value if the model has no ability to657

classify TLA events.658

In order to determine the optimal values for γ and C, the SVM model was cross-659

validated by first splitting the 2015 dB/dt data set into ten separate sets- or ”stratified660

cross-folds”- with equal proportion of each type of sample (TLA and noise-type, of these661

sets may contain overlapping samples). Then each of these ten folds is split into train-662

ing (80%) and testing (20%) sets and 49 SVMs are trained and tested for each of these663

ten data folds. Each of the 49 SVMs have a different combination of seven γ values (from664

0.0001-100 in multiples of ten) and seven C values (from 0.001-1000 in multiples of ten).665

Thus, 49 combinations of γ and C were used to train SVMs on each of 10 separate folds666

of data for a total of 490 fits to the model. The SVM that has the highest accuracy and667

POD score averaged across all ten test folds is chosen to have the optimal hyper-parameters.668

The results of the cross-validation process are shown in Figure 9: two grids show-669

ing the average accuracy and average POD of the ten folds for each C and γ value. In670

both cases, the hyper-parameters in the SVM that scored the highest average accuracy671

(0.989) and POD (0.944) scores across the ten folds of training data are γ = 1 and C =672

10.673

After the optimal values for γ and C were determined, these hyper-parameters were674

used to train the final SVM using all of the 2015 dB/dt data. In order to test the model675

performance, the initial, unfiltered dB/dt search as well as the filtered dB/dt search were676

performed on all of the same eight stations but for the year of 2016. All dB/dt identi-677

fied from 2016 were manually classified as noise-type or TLA based on the criteria de-678

scribed in Sections 5 and 6 (i.e. comparison of shapes and amplitudes of the perturba-679

tions with those described in Khomutov et al. (2017) and statistical characteristics of680

events at MACCS stations in 2015) in order to assess the accuracy of the model predic-681

tions. The filtered dB/dt search was successful in removing a majority of noise-type dB/dt682

intervals while retaining all of the TLA signatures. Then the SVM classification was per-683

formed on the filtered dB/dt intervals.684

The SVM model was chosen because it exhibited the best classification accuracy685

and POD scores out of four supervised machine learning classification algorithms. The686

details of the other three algorithms and their scores are provided in Supporting Infor-687

mation Text S1 and Table S1. Table 4 lists the number of TLA and noise-type dB/dt688

returned from the unfiltered and filtered dB/dt search for the year of 2016 as well as the689

results from the SVM classification. Because the classification is performed on individ-690

ual dB/dt intervals and many events consist of multiple dB/dt grouped within a 1-hour691

window, the dB/dt label predictions are grouped if they occur within a 1-hour event win-692

dow of one another and the final SVM classification of all the dB/dt intervals in the event693
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Figure 9. (a): Cross-validation grid showing the average accuracy score as the color of each

square for each C and γ value for all 49 folds in the tuning process. (b): Same cross-validation

grid as in (a) but for the average POD score for all 49 folds. Note that color bars are different for

(a) and (b).

window is the majority vote of the predictions. If there are an equal number of dB/dt694

classified as noise-type and TLA within an event window, all dB/dt are labeled as geo-695

physical TLA in order to reduce the number of TLA events removed by the SVM clas-696

sification.697

Table 4 shows that there were a total of 543,597 high-frequency dB/dt intervals iden-698

tified in the 2016 data. These events were manually separated via the criteria described699

in section 5 to obtain a total of 543,159 noise-type dB/dt and 438 TLA dB/dt. After700

imposing the filters described in section 7, just 6349 intervals remain including 5911 noise-701

type and the same 438 TLA type (the manual classification found no geophysical events702

that did not meet the criteria for a TLA event). The filtered dB/dt intervals are those703

that go on to be classified with the SVM.704

From the filtered dB/dt search, there are 5911 noise-type dB/dt signatures mak-705

ing up 327 event hours and 438 TLA dB/dt signatures making up 137 event hours. At706

the bottom of Table 4 are the number of dB/dt for each prediction type of the SVM clas-707

sification. Out of 6349 total dB/dt signatures from the filtered dB/dt search for these708

eight stations throughout 2016, there are a total of 6299 correct predictions (i.e. H, ”hits”)709

resulting in an accuracy score for individual dB/dt signatures of 0.9923. Further, for the710

individual dB/dt interval SVM classifications, the POD score is 0.9361 and the HSS is711

0.9383.712

The dB/dt set returned from the full automated process of filtered dB/dt search713

with SVM majority-vote classification consists of 410 TLA dB/dt signatures making up714

130 TLA hour-events and 22 noise-type dB/dt signatures making up 8 hour-events. In715

addition to the individual dB/dt predictions, Table 4 also includes the SVM prediction716

results of the hour-event windows. Out of the initial 464 event hours, 448 were classi-717

fied correctly as having either TLA or noise-type dB/dt within, for an SVM classifica-718

tion accuracy score of full-hour event windows of 0.9655, POD score of 0.9416 and HSS719

of 0.9171.720
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Station # Noise-type # Noise-type # TLA # Noise-type # TLA
unfiltered filtered dB/dt post-SVM post-SVM

dB/dt dB/dt unfiltered dB/dt dB/dt
& filtered

IGL 131526 5126 13 7 12
GJO 3078 1 10 0 5
RBY 192525 249 37 0 32
PGG 3695 351 23 5 23
CDR 410 61 53 8 53
NAN 211736 0 2 0 2
INUK 7 2 194 2 194
IQA 182 121 106 0 89

Total Total # Correct # Incorrect # Incorrect # Correct
unfiltered SVM-classified noise-type noise-type TLA TLA

dB/dt: 543597 6349 5889 22 28 410
Hour events: 3010 464 319 8 8 129

Table 4. Table with number of dB/dt signatures of both TLA and noise-type returned from

the unfiltered and filtered dB/dt search algorithm and after the SVM classification

There are 22 incorrectly classified noise-type dB/dt signatures (making up 8 sep-721

arate hour-event windows) that remain in the final data set and 28 incorrectly classified722

TLA-type dB/dt signatures (making up 8 event-windows) that are removed from the fi-723

nal data set after the SVM classification. All of the noise-type events mislabeled as TLA724

events consist of 1, 2 or 3 dB/dt in each component of the field that are part of a spike725

lasting less than 5 minutes; the average ∆t and ∆B of the incorrectly classified noise-726

type intervals is longer and larger than that of the correctly classified noise-type inter-727

vals. The TLA events mislabeled as noise also have few dB/dt signatures (6 of 8 have728

less than 5 dB/dt signatures total) and all occur within a negative bay that lasts 20 min-729

utes or more. The average ∆t and dB/dt of the missed TLA events are similar to that730

of the correctly classified, however the average ∆B for the missed TLA intervals is about731

40 nT smaller than that of the correctly classified TLA events. These details suggest that732

the most difficult events to distinguish are those with very few dB/dt intervals within733

the hour window: often spikes with longer than average timescale and amplitude, or TLA734

events with smaller than average amplitude. Because there are still eight hour events with735

noise-type dB/dt in the final dB/dt set, the final step of this complete dB/dt search pro-736

cess requires that the signatures are still plotted and the TLA-type events manually con-737

firmed. However, the results of the full process in Table 4 show that the final dB/dt set738

is significantly narrowed to a majority of TLA-type events and only a few noise-type events.739

The test scores of the SVM classifier on the filtered dB/dt intervals have all been740

presented above and show that the majority-vote SVM classification performs very well741

at identifying high-frequency disturbance events and classifying them as noise-type or742

geophysical.743

In addition to providing the characteristics of the individual dB/dt signatures that744

meet the TLA event filter criteria and the SVM classification, the complete automated745

process provides a complete high-frequency disturbance event list for a magnetic field746

data set. The high-frequency event flagging process identifies all hour event windows that747

have any high-frequency dB/dt (defined as a dB/dt interval with 1-60 second timescale,748

dB/dt > 6 nT/s and subsequent minimum ∆B of 6 nT) and initially classifies the hour749
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as a noise-type event. Then, if the requirements are met for these dB/dt to be a poten-750

tial geophysical TLA event (i.e. the filter criteria: at least one dB/dt interval lasting more751

than 10 seconds and ratio of high-frequency dB/dt to all dB/dt within the hour being752

less than 0.05), the SVM majority-vote classification is performed. If the SVM classi-753

fies a majority of the high-frequency dB/dt as geophysical, then the classification of the754

hour window is changed to geophysical event rather than noise-type event. The result-755

ing list is compiled of all of the hour event windows within a data set that contain high-756

frequency perturbations and includes the SVM majority-vote classification of the hour757

event as a zero if the dB/dt signatures are determined to be noise-type and a one if they758

are determined to be of geophysical nature. Thus, the complete high-frequency geomag-759

netic disturbance classifier can be used to retrieve information on the individual TLA760

dB/dt signatures as well as to identify hour event windows in the data that contain high-761

frequency signals and determine the geophysical or noise-type nature of those signals with762

high accuracy.763

To concisely illustrate the performance of the fully automated geomagnetic distur-764

bance classifier (initial dB/dt search, filters, and SVM classification), the contingency765

matrix for the 2016 test data is shown in Figure 10. This contingency matrix shows the766

four types of classification (H, F, M, N) for the entire set of high-frequency dB/dt in-767

tervals identified in the 2016 test data. The statistics in this Figure 10 are compiled from768

the Table 4 and show more clearly how well the complete process performs at identify-769

ing all second-timescale, high-frequency dB/dt intervals and classifying them as noise-770

type or geophysical TLA events. The test results for the full data set are listed below771

the contingency matrix. The accuracy score is quite high, but represents some possibil-772

ity of correct classifications by random chance because there is such a larger proportion773

of noise-type dB/dt and event hours compared to TLA. The POD and HSS scores are774

more indicative of the actual performance of the automated process. The POD and HSS775

scores are all near 0.94 an show that the fully automated geomagnetic disturbance clas-776

sifier performs quite well.777

Figure 10. Contingency matrix and test scores for fully automated geomagnetic disturbance

classifier performing on the 2016 test data.

This automated high-frequency geomagnetic disturbance classifier can be imple-778

mented on large-scale magnetic field databases. As a usable research artifact, we have779

provided the high-frequency event lists for the six MACCS stations used in this study780

for the year of 2017 to our data repository (doi.org/10.7302/78zf-yw59). From these lists,781
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we can identify that at the CDR station, 30 of the 104 MPEs that occurred during 2017782

(of Engebretson et al. (2019a)) had TLA high-frequency variations associated to them783

and these are among the largest MPEs that occurred that year (> 10 nT/s). With these784

event lists, we can cross-reference these events with those from the other stations to iden-785

tify what other stations to compare the spatial scales and relative strengths of these per-786

turbations in this region which can help identify the M-I phenomena involved. Further,787

these event lists enable to us to avoid the hours of data that are highly likely to be con-788

taminated with noise-type dB/dt events.789

9 Effect of data processing on high-frequency geomagnetic signatures790

We have identified both noise-type and geophysical TLA signals in raw data from791

MACCS, AUTUMNX and CANMOS magnetic field data as well as processed data from792

SuperMAG. While further data processing measures like averaging the data over 1-minute-793

or even 1-second- or using a band-pass filter may remove these signatures altogether, these794

techniques could also remove TLA signatures that are necessary for the study of small-795

scale M-I currents.796

To briefly examine the effect of a common data processing and resampling proce-797

dure on high-frequency signals, we compared dB/dt signatures identified from raw, un-798

processed MACCS data with those identified from processed data from the SuperMAG799

data service for two separate events that occurred at the PGG station in 2015. Super-800

MAG collects data from contributors (MACCS, AUTUMNX and CANMOS included)801

and processes it uniformly with the procedure described in Gjerloev (2012). SuperMAG802

offers 1-second averaged magnetic field data that has undergone the data cleaning (au-803

tomated and manual) and baseline removal process: separation of the background mag-804

netic field from sources in the M-I system by determining both the yearly trend and di-805

urnal variations of the magnetic field (Gjerloev, 2012), as well as resampling the 2 Hz806

data to 1 Hz.807

The MACCS, AUTUMNX and CANMOS magnetometer stations are all part of808

the SuperMAG network, so it is convenient to compare raw data from MACCS with pro-809

cessed data from SuperMAG for the same events. The filtered dB/dt search was con-810

ducted on both the raw MACCS data and the processed data from SuperMAG for two811

events at PGG during 2015. One of these events is the bay-like noise-type event that oc-812

curred on 20 June 2015, this event is shown in the unprocessed MACCS data in Figure813

6 and in the processed SuperMAG data in Figure 11. The other event is a TLA event814

on 10 November 2015, shown in Figure 7.815

With the unprocessed MACCS data, the noise-type event on 20 June exhibited 17816

high-frequency dB/dt signatures among the four disturbances within the hour. These817

dB/dt signatures have an average ∆B of 69.8 nT, average ∆t of 6.2 seconds, and aver-818

age dB/dt of 13.1 nT/s. With the processed SuperMAG data (1-second averaged, cleaned819

and baseline removed) there are just 10 dB/dt signatures that have average ∆B, ∆t and820

dB/dt of 68.7 nT, 6.9 seconds and 11.1 nT/s, respectively. Figure 11a shows that all four821

of the noise shapes are still present in the processed data, however there are less dB/dt822

signatures that meet the criteria for a high-frequency disturbance (second-timescale, dB/dt823

>6 nT/s and ∆B > 60 nT). Further, the zoomed view of the bay-like disturbance in Fig-824

ure 11 shows that the processed data removes some of the high-frequency behavior be-825

tween the leading and trailing edges of the bay in all three components, but some of the826

high-frequency dB/dt signatures are still present.827

The TLA event on 10 November 2015 at the PGG station exhibited 12 dB/dt sig-828

natures in the unprocessed MACCS data (shown in Figure 7) and 9 dB/dt signatures829

in the processed SuperMAG data. This event, like the noise-type event on 20 June 2015,830

had slightly lower average ∆B (273 nT) and dB/dt (7.6 nT/s) but slightly longer aver-831
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Figure 11. Bay-like noise in MACCS magnetic field data that has been processed with the

SuperMAG data processing technique. The event occurred on 20, June 2015 at the PGG station.

Hollow circles mark the start of a dB/dt signature and solid dots mark the end. The mean B

value of each component in the interval shown is subtracted from the data (Note that this mean

B value is different than that subtracted from the raw data in Figure 6 because all of the values

are altered in the SuperMAG data processing.

age dt (34.7 s) in the cleaned and processed SuperMAG data. In both noise-type and832

TLA events, the processed data from SuperMAG exhibits fewer high-frequency dB/dt833

signatures overall, however in both cases some of these intervals are still present.834

This comparative analysis shows that the SuperMAG data processing technique835

can reduce the amplitude of and even remove some high-frequency dB/dt signatures, but836

it does not remove the high-frequency noise-type events altogether. The same effect is837

observed for TLA events. Therefore, it is necessary to implement the automated high-838

frequency geomagnetic disturbance classifier on unprocessed data to identify intervals839

where high-frequency disturbances are present and classify them as noise-type or geo-840

physical.841

10 Conclusions842

In this paper, we have outlined a basic dB/dt search algorithm and detailed the843

characteristics of the TLA and noise-type dB/dt identified by performing the search al-844

gorithm on data from six stations of the MACCS array during 2015. Then, we discussed845

the filters that were implemented to improve the dB/dt search process based on the char-846

acterization of the manually identified noise-type and TLA events and the SVM majority-847

vote classification of noise-type and TLA dB/dt signatures. Finally, we present an au-848

tomated high-frequency geomagnetic disturbance classifier for magnetic field data.849
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The high-frequency geomagnetic disturbance classifier is a new technique that iden-850

tifies intervals of unprocessed magnetic field data with 1-second or higher temporal res-851

olution that contain high-frequency signals and determines if they are a result of noise852

or geophysical sources. The full dB/dt search process can identify these event windows853

and determine the correct source (noise-type or geophysical) with over 96% accuracy.854

Because we found that both noise-type and geophysical high-frequency events are855

present in processed 1-second SuperMAG data, it is recommended that the SuperMAG856

data processing method incorporate this automated high-frequency event classifier on857

the raw, unprocessed magnetic field data and include this list of hour events containing858

high-frequency intervals and their classifications in the database. This list indicates win-859

dows of data that are likely contaminated with noise and undesirable for use in official860

space weather research, and identifies windows of data that contain high-frequency sig-861

nals that are likely due to geophysical sources. The detailed information on these dB/dt862

intervals allows for analysis on the high-frequency behavior of space weather events and863

small-scale M-I currents.864

11 Open Research865

The data used for this analysis as well as the fully automated geomagnetic distur-866

bance classifier are available on the University of Michigan’s Deep Blue data repository867

(doi.org/10.7302/78zf-yw59).868
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