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Precis (Condensed Abstract) for use in the Table of Contents: Multi-institutional validation of the 

prognostic value of CCNE1 high-level amplification and overexpression in 3029 tubo-ovarian high-grade 

serous carcinomas cases supporting its value as prognostic biomarker in this disease.  
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Abstract  

 

Background: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian 

high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 

amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific 

validation has been performed. We hypothesized that high-level amplification of CCNE1 and CCNE1 

overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. 

Methods: Within the Ovarian Tumor Tissue Analysis (OTTA) consortium, we investigated amplification 

status and protein level in 3029 HGSC cases, and mRNA expression in 2419 samples.  

Results: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of 

HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by 

immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both 

were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with 

hazard stratification by study (HR=1.26, 95% CI 1.08-1.47, p=0.034, and HR= 1.18, 95% CI 1.05-1.32, 

p=0.015, respectively). This was also true for cases with combined high-level amplification/ 

overexpression (HR=1.26, 95% CI 1.09-1.47, p=0.033). CCNE1 mRNA expression was not associated with 

overall survival (HR=1.00 per one standard deviation increase, 95% CI 0.94-1.06, p=0.58). We confirmed 

that CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 

pathogenic variants and shows an inverse association to RB1 loss.  

Conclusion: Our study provides large-scale validation that CCNE1 high-level amplification is associated 

with a shorter survival, supporting its utility as a prognostic biomarker in HGSC. 

Keywords: Ovarian cancer, high-grade serous carcinoma, CCNE1 amplification, prognosis, Cyclin E1 

expression  
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Introduction  

Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade 

serous carcinoma (HGSC) 1, 2. CCNE1 has three main functions in cell cycle progression 3. First, it is 

involved in the formation of pre-replication minichromosome maintenance (MCM) protein complexes, 

which bind origins of DNA replications as cells re-enter G1- from G0-phase of the cell cycle. Second, by 

forming a complex it activates the cyclin-dependent kinase CDK2 to phosphorylate several targets 

including RB1, which subsequently abandons its inhibition of E2F transcription factors and initiates the 

transition from G1- to S-phase 3. CDK2 inhibition by cyclin-dependent kinase inhibitors 1 (CDKN1a/p21) 

is dependent on normal TP53 function. Third, the CDK2/CCNE1 complex promotes centrosome 

duplication3, 4. Normal CCNE1 protein levels are tightly regulated peaking in late G1 and decreasing as 

cells progress through S-phase 5. In neoplasia, CCNE1 protein overexpression is  uncoupled from the cell 

cycle 6. Constitutive overexpression of CCNE1, but not of CCND1 or CCNA, induces chromosomal 

instability and a modest degree of polyploidy 6. The mechanisms by which CCNE1 causes chromosomal 

instability are not entirely understood but it has been suggested that cells with deregulated CCNE1 

prematurely enter S phase with inadequate nucleotide pools causing replication stress with faulty 

replication forks engendering DNA double strand breaks 7, 8. 

 

In ovarian carcinoma, CCNE1 amplification has been associated with resistance to platinum-based 

chemotherapy and shorter overall survival 9, 10. However, the cut-off for amplification varies between 

studies and larger studies such as The Cancer Genome Atlas (TCGA) project reported only a suggestive 

trend towards shorter overall survival (p=0.0718) and another study of 179 HGSC showed evidence for a 

significant association only with progression-free survival 11, 12. Amplification of the chromosomal region 

19q12 containing the CCNE1 gene is common (~20%) in HGSC, which across all tumor sites ranks third in 
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frequency after endometrial carcinosarcoma and urothelial carcinoma 13. CCNE1 amplification is 

inversely associated with germline pathogenic BRCA1/2 variants, which becomes mutually exclusive for 

high-level amplifications (defined by > 8 copies) 14, 15. CCNE1 high-level amplified HGSC require proficient 

homologous recombination (HR), including BRCA1/2 function to maintain cell viability 14, 15. CCNE1 high-

level amplification is the lead alteration for both the copy number signature 6 and the fold back 

inversion mutation signature, which characterize to HR-proficient HGSC 16, 17. HGSC patients with HR-

proficient tumors do not respond well to chemotherapy or poly (ADP-ribose) polymerase (PARP) 

inhibitors. For example, PARP maintenance therapy for patients with HR-proficient HGSC with partial 

chemotherapy response resulted in a median progression-free survival of 8.3 months compared with 

21.9 months for patients with HR-deficient HGSC 18. 

 

While no association of CCNE1 mRNA expression with survival in HGSC has been observed 15, 19, CCNE1 

protein overexpression has been associated with unfavorable outcomes in ovarian carcinomas, but only 

in studies conducted before the era of histotype-specific analysis 20-22.  Two recent studies suggested 

that combining CCNE1 amplifications and CCNE1 overexpression is associated with shorter survival 15, 23. 

We recently validated a CCNE1 chromogenic in situ hybridization (CISH) assay orthogonally against other 

copy number assays to be applicable on tissue microarrays and refined the cut-off for 

immunohistochemistry to detect CCNE1 high-level gene amplifications15.  

 

Here our objectives were to validate previously reported associations of CCNE1 alterations with overall 

survival, assess correlations between CCNE1 high-level gene amplifications, CCNE1 mRNA, and CCNE1 

protein expression, and explore associations with selected biomarkers in a large cohort of HGSC samples 

from the international Ovarian Tumor Tissue Analysis (OTTA) consortium. 
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Methods 

 

Study cohort 

Twenty studies from the Ovarian Tumor Tissue Analysis (OTTA) consortium participated in the current 

study 24. Each study enrolling patients received local ethics review board approval (Table S1). Tissue 

microarrays were constructed from formalin-fixed paraffin-embedded (FFPE) tumor specimens obtained 

from debulking surgery representing each tumor with 1-3 cores. 0.6 to 1.mm in size. For both CISH and 

immunohistochemistry (IHC), data were successfully obtained in 3029 individual HGSC patient samples. 

Clinical covariates, time to follow up, and status were centrally standardized. Cases were collected 

during the pre-PARP inhibitor era. Platinum-based chemotherapy was given in the majority as adjuvant 

after primary debulking surgery (PDS) or as neoadjuvant chemotherapy (NACT). Information on specific 

drugs was not collected. Previously generated IHC data within the OTTA consortium for TP53, CDKN2A 

and RB1 were used 25-27.  

 

CCNE1 DNA CISH 

A previously published in-house CISH protocol using a commercial Digoxigenin (DIG)-labeled CCNE1 DNA 

probe (Empire Genomics, Buffalo, NY, USA) was utilized 15. De-paraffinized 4 μm tissue microarray 

sections were pretreated with proteinase K (3 min) and citrate-based antigen retrieval buffer at 80°C (1 

hr) followed by pepsin (45 sec), then dehydrated and air-dried. Hybridization with the DIG-labelled 

CCNE1 probe was carried out at 37°C for 16-18 hours in HybEZ™ II (Advanced Cell Diagnostics, 

Minneapolis, MN, USA). A levamisole solution was used (15 min) to remove endogenous alkaline 

phosphatase activity, followed by a blocking solution (30 min) of 10% normal sheep serum, 2% bovine 
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serum albumin, and 0.05% Tween-20. An Alkaline phosphatase (AP)-conjugated sheep anti-DIG antibody 

(dilution 1:800; Roche, Basel, Switzerland) was incubated for 2 hours. AP substrate was applied, and the 

reaction was stopped with 50mM Tris, 150 mM NaCl, 10 mM KCl buffer when slides reached the desired 

intensity of staining. Counterstaining was performed with hematoxylin.  

 

CCNE1 immunohistochemistry 

Four μm sections from tissue microarrays were de-paraffinized, rehydrated, and subjected to heat-

induced epitope retrieval on the DAKO Omnis platform (Agilent Technologies, Santa Clara, CA, USA), 

followed by incubation with the CCNE1 antibody (1:600, clone EP126, Cell Marque, Rocklin, CA, USA, 30-

10R-30) at room temperature and in the EnVision FLEX (Agilent Technologies). The reaction was 

visualized using 3,3-diaminobenzidine tetrahydrochloride (DAB) for 10 minutes and counterstained with 

hematoxylin.  

 

CCNE1 CISH and IHC scoring 

The CCNE1 CISH assay was previously orthogonally validated to detect CCNE1 high-level amplifications 

(presence of clusters > 8 copies) against digital PCR and nCounter Cancer CN Assay 15. CCNE1 protein 

expression showed a wide and relatively even distribution from 5-90% of positive tumor cells, but 

previous receiver operating characteristic curve (ROC) analysis established an optimal cut-off for IHC to 

detect high-level amplification at > 60% overall staining cells with at least 5% showing strong intensity 15. 

The interpretation of tissue microarrays was performed by three pathologists. Training was provided on 

a set of 90 HGSC cases guided by illustrated examples. Subsequently, interobserver reproducibility was 

tested on 415 cases. The interobserver observer reproducibility for paired observers achieved a Cohen’s 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

kappa of 0.48, 0.55, and 0.77 for CISH and 0.65, 0.75, and 0.85 for IHC using a binary categorization. 

Subsequently, examples of discordant cases were discussed at a multiheaded microscope to further 

align interpretational thresholds and equivocal categories were allowed both for CISH and IHC 15. Each 

observer subsequently scored approximately one-third of the cases by using the following criteria for 

CISH: score 0  – no clusters = negative for high-level amplification (CCNE1nonamp), score 1 – equivocal 

favor negative, score 2 - equivocal favor high, score 3  –  nuclear clusters of CISH signal = high-level 

amplification (CCNE1amp), and for IHC: score 0   – < 60% positive tumor cells (CCNE1lo),   score 1 – 

equivocal favor low , score 2 – equivocal favor high, score 3  –  ≥ 60% positive tumor cells with at least 

5% strongly staining cells (CCNE1hi). 

 

CCNE1 mRNA expression by NanoString 

FFPE tumor specimens (n=2419) with partial overlap to above (1612/3029) were obtained from 

additional cores or sections 28. RNA extraction methods, assay run parameters, data processing, and 

control/reference samples were previously described 29. CCNE1 mRNA expression was assessed using 

the NanoString nCounter technology; the CCNE1 target sequence was 

CCTCCAGACACCAGTGCGTGCTCCCGATGCTGCTATGGAAGGTGCTACTTGACCTAAGGGACTCCCACAACAACAA

AAGCTTGAAGCTGTGGAGGGCCAC, and CCNE1 mRNA data were normalized against housekeeping genes 

29. Quality assurance of the assay was previously performed with high duplicate sample correlation 19, 30.  

 

Statistical analyses 

Correlations between CCNE1 mRNA, gene amplification (ISH), and protein (IHC) overexpression were 

measured using Pearson correlation coefficients. Chi-square proportions testing was undertaken to 
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evaluate clinical and molecular variables across CCNE1 combinations. Univariate and multivariate 

survival analyses of CCNE1 profiles were performed. Overall survival (death from any cause) was the 

primary endpoint. Potential survival bias introduced by the time between diagnosis and study enrolment 

was moderated by left-truncation. Deaths potentially unrelated to HGSC were right-censored at 10 years 

from diagnosis. The Kaplan-Meier method, alongside log-rank testing, was used to assess overall survival 

by CCNE1 profile. Multivariate Cox proportional hazards regression modelling, stratified by OTTA study, 

complemented this analysis through estimation of hazard ratios (HRs) with 95% confidence intervals 

(CIs). The covariates, age, stage, completeness of surgical cytoreduction (residual disease vs. no residual 

disease (sensitivity analysis), and CCNE1 profiles were adjusted for, and different baseline hazards of 

OTTA studies were stratified, in multivariate models.  Scaled Schoenfeld residuals assessed the 

assumption of proportional hazards. All statistical analyses were carried out using RStudio v1.1.463 or 

GraphPad Prism v7.02. Statistical significance was defined by p<0.05.  
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Results 

Prevalence of CCNE1 high-level amplification and association with overall survival 

CCNE1 CISH showed high-level amplification (score 3) in 259/3029 (8.6%) cases and 2426/3029 (80.2%) 

demonstrated no evidence of amplification (score 0). The remainder were equivocal with 67/3029 

(2.2%) favored high-level amplification (score 2), and 277/3029 (9.1%) not favored (score 1). Kaplan-

Meier survival analysis showed a significantly different overall survival between the groups (log-rank 

p=0.00016, Figure 1A). In multivariate analysis adjusted for age and stage and stratified for OTTA study, 

CCNE1 high-level amplified HGSC showed a hazard ratio of 1.26 (95% CI 1.08-1.47) compared with the 

reference group with no evidence of amplification (Table 1). Data on the completeness of surgical 

cytoreduction was available for a subset of cases (66.9%) and within this group, a sensitivity analysis 

adjusted for age, stage, completeness of surgical cytoreduction, and stratified for OTTA study, resulted 

in the same hazard ratio of 1.27 (95% CI 1.06-1.52, Table S2).  

 

Prevalence of CCNE1 protein overexpression and association with overall survival 

CCNE1 IHC showed overexpression (score 3) in 678/3029 (22.4%) cases and 1824/3029 (60.2%) had low 

CCNE1 protein levels (score 0) (Table 1). The remainder were equivocal, with 233/3029 (7.7%) favored 

to express high protein levels (score 2) and 301/3029 (9.9%) favored to express low levels (score 1). 

Kaplan-Meier survival analysis showed a significantly different survival between the groups (log-rank 

p=0.021, Figure 1B). In multivariate analysis adjusted for age and stage, and stratified for OTTA study, 

CCNE1 high protein level HGSC showed a hazard ratio of 1.18 (95% CI 1.05-1.32) compared with the 

group with low CCNE1 protein levels (Table 1). In a sensitivity multivariate analysis adjusted for age, 

stage, completeness of surgical cytoreduction, and stratified for OTTA study, a similar hazard ratio of 

1.20 (95% CI 1.05-1.37) was obtained (Table S2). 
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Associations of combined CCNE1 high-level amplification and protein level with overall survival 

After binarization of CISH and IHC scores into scores 0/1 versus scores 2/3, 265/326 (81.3%) of high-level 

amplified cases showed high CCNE1 protein levels, and conversely, 2064/2703 (76.4%) of non-high-level 

amplified cases showed low CCNE1 protein levels. We then combined CCNE1 CISH and IHC into four 

groups (Figure 2, Table S3): first, negative for CCNE1 high‐level amplification with low CCNE1 protein 

expression (CCNE1nonamp_lo) comprising 68.1% (2064/3029) of the cases; second, negative for CCNE1 high‐

level amplification but with CCNE1 protein overexpression (CCNE1nonamp_hi)  comprising 21.1% 

(639/3029); third, CCNE1 high-level amplification but low CCNE1 protein expression (CCNE1amp_lo ) 

comprising 2.0% (61/3029); and fourth, CCNE1 high-level amplification with CCNE1 protein 

overexpression (CCNE1amp_hi) comprising 8.8% (265/3029) of cases (Table 1). Kaplan-Meier survival 

analysis showed a significantly different overall survival between the groups (log-rank p<0.0001, Figure 

2). Patients in the CCNE1amp_hi group had a 5-year survival rate of 28.3% compared with 41.9% in the 

CCNE1nonamp_lo group (Table 1). This difference remained significant in multivariate modeling, following 

adjustment for age and stage and stratified for OTTA study. The CCNE1amp_high group had a higher risk of 

death (hazard ratio 1.26, 95% CI 1.09-1.47) compared with the reference CCNE1nonamp_lo group (Table 1). 

In a sensitivity analysis adjusted for age, stage, completeness of surgical cytoreduction, and stratified for 

OTTA study, the hazard ratio for the CCNE1amp_high group compared with the reference CCNE1nonamp_lo 

group was 1.20 (95% CI 1.00-1.43; Table S2).  

 

Associations of combined CCNE1 high-level amplification and protein expression with clinical parameters 

and biomarkers in HGSC 
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The univariate associations of the combined groups with clinicopathological parameters are shown in 

Table 2. Patients diagnosed with CCNE1 high-level amplified HGSC were older, with a trend towards a 

higher likelihood of residual disease after debulking surgery. No associations were observed for stage 

(FIGO I, II (local/regional) compared with FIGO III/IV (distant)) or the timing of the primary 

chemotherapy regimen (adjuvant versus neoadjuvant, Table S4). For subsets with available data, the 

four groups showed significant associations with TP53 IHC (available data for 65.9% of cases), BRCA1/2 

germline variant (available data for 31.5% of cases), CDKN2A IHC (available data for 64.2 of cases), and 

RB1 IHC status (available data for 71.1% of cases, Table 3). Normal TP53 IHC was most prevalent in the 

CCNE1nonamp_lo group. However, the abnormal TP53 IHC patterns, which are surrogates for the functional 

groups of TP53 mutation 31, were not different. Germline BRCA1/2 mutations were rarely present in 

CCNE1 high-level amplified HGSC. Only two HGSC cases had protein-truncating deleterious BRCA2 

variants and both cases had a CCNE1 CISH score of 2 (equivocal favor high). The CCNE1amp_high group had 

the highest frequency of CDKN2A block expression, a surrogate for RB pathway activation, but there 

were no cases with complete absence of CDKN2A expression, a surrogate for a deleterious deletion of 

CDKN2A. CCNE1 high-level amplification was inversely associated with loss of RB1.  

 

 

CCNE1 mRNA expression by NanoString in HGSC 

For 1612/3029 overlapping cases with CCNE1 mRNA expression, there was moderate correlation 

between CCNE1 mRNA expression and CISH scores (r=0.476) and CCNE1 IHC scores (r=0.545, Figure 3). 

CCNE1 mRNA expression was also different across the four combined groups, with the highest level 

observed in CCNE1amp_high, followed by CCNE1amp_lo and CCNE1nonamp_hi (Figure 3). Lastly, we evaluated the 

associations of CCNE1 mRNA expression with overall survival in 2419 HGSC cases.  The 

clinicopathological characteristics of these cases are shown in Table S5. When considering one standard 
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deviation increase in CCNE1 mRNA expression score, there was no association with overall survival 

(HR=1.00, 95% CI 0.94 - 1.06, p=0.96, Table S6). This also was the case when using a cut-off at the top 

10% versus the remainder ((HR=1.06, 95% CI 0.88 - 1.27, p=0.53,Table S6).   
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Discussion 

 

In this study, we validate the association of combined CCNE1 high-level gene amplification and CCNE1 

protein overexpression with overall survival in a large cohort of patients with HGSC from the OTTA 

consortium. Our results demonstrate that assessing CCNE1 at a DNA copy number level and protein level 

is a more robust determinant of prognosis than mRNA expression. We also confirm that CCNE1 high-

level amplification is essentially mutually exclusive with pathogenic BRCA1/2 germline alterations and 

associated with biomarker changes in the RB1 pathway.   

 

For the association of CCNE1 protein expression with survival, the genomic context seems to matter. 

The fairly large group of CCNE1nonamp_hi shows a similar survival compared with the CCNE1nonamp_lo 

reference but longer survival relative to the CCNE1amp_hi group. Both the CCNE1nonamp_hi  and CCNE1amp_hi 

group express similarly high protein levels but CCNE1amp_hi express higher mRNA levels than 

CCNE1nonamp_hi suggesting that amplification-driven CCNE1 overexpression is due to higher 

transcriptional activity, while CCNE1 overexpression in CCNE1nonamp_hi cases may be more dependent on 

protein stabilization/lack of degradation 32.  We, however, demonstrate that differences in CCNE1 mRNA 

expression were not associated with overall survival in HGSC. We obtained consistent hazard ratios close 

to 1.0 by studying 2419 samples in the current study, confirming the results from a previous OTTA study 

19. Despite the strong correlation of mRNA with amplification status and protein levels, the lack of 

survival association may be caused by dilution of the mRNA signal in tumor bulk analysis with varying 

tumor cellularity compared to the spatially controlled CISH and IHC assays. The survival differences of 

the two groups with high CCNE1 protein levels still creates a conceptual dilemma since it is the protein 

that is exerting the function, and the mechanism of protein accumulation should not matter, unless 

there is a difference in the timing of expression in relation to the cell cycle or the functional quality of 
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CCNE1 protein. In high CCNE1-expressing breast cancer, CCNE1 can be proteolytically cleaved into low-

molecular weight derivatives 33. An alternative explanation might be that in the CCNE1amp_hi group other 

oncogenes co-amplified with CCNE1 on 19q12, such as URI contribute to survival 34.  

While we confirm that the group of CCNE1amp_hi is associated with the shortest overall survival, we also 

show that this association is mainly driven by DNA copy number status, achieving a better stratification 

than protein level. However, protein level seems to provide additional information by singling out the 

small group of CCNE1amp_lo, which in the main analysis had a similar HR compared with the reference 

CCNE1nonamp_lo.  In a sensitivity analysis including residual tumor, the HR was more similar to the high-risk 

group CCNE1amp_hi. Albeit, this was not statistically significant with small case numbers in the 

CCNE1nonamp_lo subgroup and this sensitivity analysis may have introduced bias for the small subgroups 

that are not comparable to the overall cohort. This raises a question about the importance of the level 

of CCNE1 protein expression in the context of CCNE1 high-level amplification. Both CCNE1amp_hi and 

CCNE1amp_lo groups are similar regarding clinical parameters (i.e., age, residual disease) and rarely 

harbored BRCA1/2 germline alterations and loss of RB1 was uncommon. While this suggests no 

difference and assessment of the DNA copy number status would be sufficient, both groups differed in 

regard to the abnormal block CDKN2A expression status, which was highest in CCNE1amp_hi, indicating a 

higher RB1 pathway dependent on the CCNE1 protein level. Based on out observed differences in 

survival and CCNE1 mRNA expression, together with previous study findings 15, 23, we interpret that 

CCNE1amp_hi is different from CCNE1amp_lo. By focusing on the CCNE1amp_hi group, IHC can be used to 

screen HGSC samples for CCNE1 overexpression followed by copy number assessment for clinical trial 

inclusion, which would pragmatically circumvent the limited sensitivity of CCNE1 IHC. However, the 

clinical significance of this relatively small group remains uncertain. We cannot entirely exclude a 

misclassification based on the CISH or the IHC assay. Future studies should use full section IHC to 

exclude potential intratumoral heterogeneity of the protein expression and alternative copy number 
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assay for the small group of CCNE1amp_lo tumors. But some CCNE1 high-level amplified tumors may not 

express high protein levels. TCGA reported that low CDKN2A mRNA expression is mutually exclusive with 

CCNE1 amplification 11. We observed a small number of cases with loss of CDKN2A protein (a surrogate 

for CDKN2A deep deletions) in the CCNE1amp_lo but not in the CCNE1amp_hi, suggesting that another 

concurrent RB1 pathway alteration could prevent CCNE1 protein overexpression in the context of CCNE1 

high-level DNA amplifications. 

 

Our results confirm that CCNE1 high-level DNA amplifications are essentially mutually exclusive with 

pathogenic BRCA1/2 germline alterations. The two exceptional cases with pathogenic BRCA2 germline 

variants that were grouped as CCNE1amp_hi were scored as equivocal favor high by CISH. These rare cases 

of “double classifiers” may require additional assays such as validated HRD assays or copy number 

signatures to assign as HR-deficient or HR-proficient. From a treatment perspective, the CCNE1amp_hi 

group had a shorter survival likely in part due to lower response to platinum-based chemotherapy, 

which correlates with insensitivity to PARP inhibitors. Therefore, the CCNE1amp_hi group may not respond 

to PARP inhibitors, making CCNE1amp_hi a candidate biomarker that could be used as a negative 

predictive test for PARP inhibitors. This hypothesis could be tested in secondary analyses of clinical trials 

that include unselected HGSC patients treated with PARP inhibitors 18.  

 

Novel treatment approaches are required for women diagnosed with CCNE1amp_hi HGSC 35. Bowtell and 

colleagues observed decreased tumorigenesis in CDK2-knockout HGSC cell lines with CCNE1 

amplifications. However, the CDK2 inhibitor, dinaciclib, did not suppress tumorigenesis, probably 

because it is not entirely specific for CDK2 36. Perhaps, a more specific CDK2 inhibitor could be tested on 

HGSC patients with CCNE1amp_hi HGSC. It remains to be seen whether redundancies in the CDK2/CCNE1 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

pathway (CDK1 for CDK2, CCNE2 for CCNE1) observed in normal cells pose another challenge of 

targeting this pathway in cancers 3,37. In post-hoc analysis of a clinical trial investigating the Wee1 

inhibitor adavosertib in combination with gemcitabine, CCNE1 amplified tumors were more likely to 

respond 38. Through phosphorylation of the CDK1/CCNB complex, Wee1 kinase is an inhibitor of the 

G2/M transition, which is more critical for HGSC with deficient G1/S transition. Notably, in a recent 

phase II trial adavosertib has also shown promising response rates in CCNE1 overexpressing recurrent 

HGSC irrespective of amplification status 39. Alternatively, using a CRISPR–Cas9-screen PKMYT1, a 

protein kinase also involved in G2/M transition, was identified as synthetic lethal target for CCNE1 high 

expressing cells, which were sensitive to inhibition by a selective PKMYT1 inhibitor 40. This suggests that 

perhaps both CCNE1 expression and amplification status should be assessed when testing CCNE1 as 

predictive marker for new molecular therapy.    

 

While the main CCNE1 function is in cell cycle progression, it is important to note that the main 

oncogenic effect may be independent from proliferation. High proliferating HGSC are associated with 

longer survival, likely due to better response to standard chemotherapy 27, 28, whereas CCNE1 alterations 

are associated with shorter survival and poor response to chemotherapy. CCNE1 protein expression is 

only weakly correlated with proliferation markers (Ki67, MCM3)28. While uncontrolled cell cycle entry 

remains the main known function of CCNE1, overall, these data suggest that much of CCNE1’s oncogenic 

function is related to a premature S-phase entry resulting in chromosomal instability rather than 

increased proliferation 7, 8.  

 

The main limitation of our study was the assay resolution. We did not count the DNA copy number ratio 

by using a CEP19 control probe but focused on the presence of CCNE1 clusters as a surrogate for high-
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level amplification defined by > 8 copy numbers, which was previously orthogonally validated using the 

NanoString CNV assay and digital PCR 15. Not using ratios prevented us from assessing low level gains. 

The prevalence of CCNE1 high-level amplifications is about half compared to previous studies reporting 

CCNE1 amplification (frequency of ~20%) which is due to the higher cut-off we used 11, 12. Our present 

study utilized CISH analysis, which a well-established and clinically adopted technique to interrogate 

genetic amplification such as evaluation of ERBB2 amplification in breast and gastric cancer. However, 

Next Generation Sequencing (NGS)-based assays such as whole genome/exome sequencing or targeted 

panel sequencing are being increasingly utilized in the clinical setting to provide more comprehensive 

molecular characterization of tumor, including copy number alterations.  In contrast to CISH (or FISH) 

assays that provide spatially focused analysis that evaluates signals only from carcinoma cells, the NGS-

based assays typically use bulk tumor samples in which tumor content can vary and it may have lower 

sensitivity compared to spatially controlled assays such as ISH, particularly from samples with low tumor 

content in the settings of core needle biopsies or post-treatment (neoadjuvant chemotherapy) samples. 

Another consideration is that CISH analysis generally requires less amount of tumor tissue than NGS-

based analysis, which may be relevant in cases where a limited amount of diagnostic tissue is available. 

Future studies are required to determine the clinical utility and limitations of NGS-based assay for 

CCNE1 copy number evaluation. There were limited data annotations for some analyses due to missing 

data for residual disease and germline BRCA1/2 status.  

In conclusion, our large-scale validation with survival data supports the notion that CCNE1 is the most 

promising biomarker to define the largest subgroup of HR-proficient HGSC. CCNE1 high-level 

amplifications should be studied as negative predictive markers for current standard therapies 

(chemotherapy, PARP inhibitors) and should be evaluated in clinical trials assessing novel treatment 

approaches. We propose to focus initially on the CCNE1amp_hi group; CCNE1 IHC could be used as a 

screening tool, followed by an assessment of DNA copy number status.  
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Figure legends   

Figure 1. Kaplan Meier overall survival analysis for (A) CISH score levels and (B) IHC score levels.  

Figure 2.  A. CCNE1 DNA CISH and IHC combinations resulting in 4 groups: CCNE1nonamp_lo  CISH showing 

no high-level amplification and IHC < 60% positive tumor cell nuclei, CCNE1nonammp_hi CISH showing no 

high-level amplification and IHC > 60% positive and >5% strongly staining tumor cell nuclei, CCNE1amp_lo 

CISH showing high-level amplification and IHC < 60% positive tumor cell nuclei, CCNE1amp_hi CISH showing 

high-level amplification and IHC > 60% positive and >5% strongly staining tumor cell nuclei. B. Kaplan 

Meier overall survival analysis for four combined CISH/IHC groups. C. Risk table indicating the number of 

patients within the cohort that are at risk of death, observed at a yearly. 

Figure 3. A. Correlation of CCNE1 DNA CISH score with normalized mRNA expression, B. Correlation of 

CCNE1 protein IHC score with normalized RNA expression. C. Association of four combined CISH/IHC 

groups with normalized RNA expression. Pearson’s correlation analysis given by r. *p<0.05 

Supplemental material 

Table S1 OTTA study cohorts 

Table S2 Sensitivity analyses: Multivariable association between the expression and amplification of 

CCNE1 and HGSC OS (n=2026) – sensitivity analysis including residual tumor 

Table S3 Binarized CCNE1 amplification and protein level combination 

Table S4 Univariate associations of the combined CCNE groups with type of chemotherapy regimen  

Table S5 Clinicopathological parameters of mRNA expression/NanoString 2 cohort (n=2419 

Table S6 Multivariable survival analysis of CCNE1 mRNA expression  
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Table 1 Multivariate association between the expression and amplification of CCNE1 and overall 

survival in high-grade serous ovarian carcinoma (n=3029) 

CCNE1 profile n 𝑎 
5-yr survival (% 

± SE) 

Hazard ratio (95% 

CI)  𝑏 
p-value 

CCNE1 CISH score 0 2426 41.9 ± 1.1 ref 0.034* 

CCNE1 CISH score 1 277 40.2 ± 3.1 0.98 (0.84-1.14)  

CCNE1 CISH score 2 67 32.1 ± 6.2 0.97 (0.72-1.31)  

CCNE1 CISH score 3 259 29.5 ± 3.0 1.26 (1.08-1.47)*  

CCNE1 IHC score 0 1824 41.6 ± 1.2 ref 0.015* 

CCNE1 IHC score 1 301 43.0 ± 3.0 0.99 (0.85-1.16)  

CCNE1 IHC score 2 233 42.8 ± 3.4 0.92 (0.78-1.10)  

CCNE1 IHC score 3 678 35.4 ± 2.0 1.18 (1.05-1.32)*  

CCNE1nonamp_lo 2064 41.9 ± 1.2 ref 0.033* 

CCNE1nonamp_hi 639 41.0 ± 2.1 1.04 (0.93-1.16)  

CCNE1amp_lo 61 37.8 ± 6.6 0.97 (0.71-1.34)  

CCNE1amp_high 265 28.3 ± 3.0 1.26 (1.09-1.47)*  

 𝑎 The same cohort was assessed in univariate survival analysis  

 𝑏 Hazard ratio adjusted for patient age and stage, with stratification by OTTA study; Cox proportional 

regression modelling was used to calculate p-values and define significance. Statistically significant 

values shown in bold; * p<0.05 

 

Cyclin E1 (CCNE1); High-grade serous ovarian carcinoma (HGSC); Overall survival (OS); 

Standard error (SE); Hazard ratio (HR); Confidence interval (CI); Chromogenic in situ 

hybridization (CISH); Immunohistochemistry (IHC); Negative for CCNE1 high-level 

amplification (CCNE1nonamp); CCNE1 high-level amplification (CCNE1amp); Negative for CCNE1 

protein overexpression by immunohistochemistry (CCNE1lo); CCNE1 protein overexpression by 

immunohistochemistry (CCNE1hi) 
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Table 2 Clinicopathological parameters by combined CCNE1 protein and amplification status 

(n=3029) 

Clinicopathological 

variable 
CCNE1 profile 

p-value 𝑎 Total 
CCNE1nonamp_lo CCNE1nonamp_hi CCNE1amp_lo CCNE1amp_hi 

Number of cases,  

n (%) 𝒃 2064 (68.1) 639 (21.1) 61 (2.0) 265 (8.8) 
 

3029 

(100.0) 

Age at diagnosis, years 

  Mean ± SD 60.9 ± 11.4 61.7 ± 10.9 65.0 ± 9.11 65.0 ± 9.8 
 61.5 ± 

11.2 

  Median 61 62 66 65  62 

  Range 21-93 30-92 40-84 38-91  21-93 

Stage, n (%) 𝒄 0.3848 

  FIGO I, II       

(local/regional) 
350 (17.0) 124 (19.4) 9 (14.8) 41 (15.5) 

 525 

(17.3) 

  FIGO III, IV                

(distant) 
1714 (83.0) 515 (80.6) 52 (85.2) 224 (84.5) 

 2527 

(82.7) 

Completeness of 

survival 

cytoreduction 

    0.0563 𝑑 

 

No residual disease, 

n (%) 𝑐 
555 (40.7) 200 (44.5) 10 (34.5) 61 (33.2)  

826 

(40.8) 

Residual disease 

present, n (%) 𝑐 
809 (59.3) 249 (55.5) 19 (65.5) 123 (66.9)  

1200 

(59.2) 

Unknown, n  𝑐 700 190 32 81  1003 

 𝑎 Chi-squared testing was used to calculate p-values. Statistically significant values shown in bold; *p<0.05.  

 𝑏 The proportion of cases in each score stratum is given as a percentage of the total patients examined 

 𝑐  The proportion of cases is given as a percentage of the total cases within each score stratum 

 𝑑 Chi-squared testing to compare the proportions of cases with absent vs present residual disease status. This 

does not include cases where residual disease status was unknown. 

 

Cyclin E1 (CCNE1); Standard error (SE); Negative for CCNE1 high-level amplification (CCNE1nonamp); 

CCNE1 high-level amplification (CCNE1amp); Negative for CCNE1 protein overexpression by 

immunohistochemistry (CCNE1lo); CCNE1 protein overexpression by immunohistochemistry 

(CCNE1hi); Standard deviation (SD); International Federation of Gynecology and Obstetrics (FIGO) 
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Table 3 Univariable associations with selected biomarkers by combined CCNE1 protein and amplification status  (n=3029) 

 CCNE1 profile 𝑎   

Molecular 

marker 𝒃 
Status 

CCNE1nonamp

_lo 
CCNE1nonamp

_hi 
CCNE1amp_lo CCNE1amp_hi 

Total 
 𝑐 

p-

value 𝑑 

TP53 

Abnormal 1202 (89.9) 413 (94.3) 42 (100.0) 172 (95.6) 
1829 

(91.6) 
0.0008 Normal 135 (10.1) 25 (5.7) 0 (0.0) 8 (4.4) 168 (8.4) 

Unknown 727 201 19 85 1032 

Abnormal 

TP53 IHC 

patterns 𝑒 

Abnormal OE 830 (69.1) 296 (71.7) 31 (73.8) 120 (69.8) 
1277 

(69.8) 
0.8706 Abnormal CA 311 (25.9) 98 (23.7) 10 (23.8) 46 (26.7) 465 (25.4) 

Abnormal CY  61 (5.1) 19 (4.6) 1 (2.4) 6 (3.5) 87 (4.8) 

BRCA1/2 

germline 

pathogeni

c variant 

 

Present 111 (16.9) 33 (16.5) 0 (0.0) 2 (2.9) 146 (15.3) 

0.0020 Absent 546 (83.1) 167 (83.5) 28 (100.0) 67 (97.1) 808 (84.7) 

Unknown 1407 439 33 196 2075 

CDKN2A 

 

Normal 630 (48.2) 125 (29.7) 12 (30.8) 33 (18.6) 800 (41.2) 

<0.0001 

 

Abnormal block 

positive 
591 (45.2) 288 (68.4) 24 (61.5) 144 (81.4) 

1047 

(53.9) 

Abnormal complete 

absence 
86 (6.6) 8 (1.9) 3 (7.7) 0 (0.0) 97 (5.0) 

Unknown 757 218 22 88 1085 

RB1 

 

Normal (retained) 1153 (81.1) 402 (83.6) 44 (97.8) 187 (91.2) 
1786 

(83.0) 0.0001 

 Abnormal (loss) 269 (18.9) 79 (16.4) 1 (2.2) 18 (8.8) 367 (17.0) 

Unknown 642 158 16 60 876 

Total 𝑐  2064 (68.1) 639 (21.1) 61 (2.0) 265 (8.8) 
3029 

(100.0) 

 

 

 𝑎 CCNE1 profile amplification is defined by chromogenic in situ hybridization and, and protein expression is defined by 

immunohistochemistry. 

 𝑏 The proportion of cases with a particular molecular marker status is given as a percentage of the total patients examined in 

each CCNE1 profile. This does not include cases where mutational status was unknown. 

 𝑐 The proportion of cases in each CCNE1 profile is given as a percentage of the total patients examined. This does not 

include cases where mutational status was unknown. 

 𝑑 Chi-squared testing was used to calculate p-values. Statistically significant values, where p<0.05, have been shown in bold. 

This does not include cases where mutational status was unknown. 

 𝑒  TP53 type of abnormal mutation-type immunohistochemical pattern: OE – overexpression, CA - complete absence, CY -

cytoplasmic. 

 

Cyclin E1 (CCNE1); Negative for CCNE1 high-level amplification (CCNE1nonamp); CCNE1 high-level amplification 

(CCNE1amp); Negative for CCNE1 protein overexpression by immunohistochemistry (CCNE1lo); CCNE1 protein 

overexpression by immunohistochemistry (CCNE1hi); Immunohistochemistry (IHC); Overexpression (OE); Complete 

absence (CA); Cytoplasmic (CY) 
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p=.0002

p=.018

2426

1824 1636 1335 1034 812 656

2179 1790 1396 1079 869 671 518 397 290 223

67 63

233 210 177 139

259

671 594 476 358

234 170
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