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Report of AAPM Task Group 273 

 

The purpose of this report is to provide recommendations on best practices and standards for 

the development and performance assessment of computer-aided decision support systems at 

the time when machine learning techniques continue to evolve, and CAD applications expand 

to new stages of the patient care process. The various steps of development are covered, 

including (1) data collection, (2) establishing reference standards, (3) model development, (4) 

performance assessment, and (5) translation to clinical practice.  The goal of the report is to 

emphasize the proper training and validation methods for machine learning algorithms that 

may improve their generalizability and reliability and accelerate the adoption of CAD-AI 

systems for clinical decision support.   

 

 

Abstract 

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep 

learning (DL) techniques, have enabled broad application of these methods in health care.  

The promise of the DL approach has spurred further interest in computer-aided diagnosis 

(CAD) development and applications using both „traditional‟ machine learning methods and 

newer DL-based methods.  We use the term CAD-AI to refer to this expanded clinical 

decision support environment that uses traditional and DL-based AI methods. 

Numerous studies have been published to date on the development of machine learning 

tools for computer-aided, or AI-assisted, clinical tasks. However, most of these machine 

learning models are not ready for clinical deployment. It is of paramount importance to 

ensure that a clinical decision support tool undergoes proper training and rigorous validation 

of its generalizability and robustness before adoption for patient care in the clinic. 

To address these important issues, the American Association of Physicists in Medicine 

(AAPM) Computer-Aided Image Analysis Subcommittee (CADSC) is charged, in part, to 

develop recommendations on practices and standards for the development and performance 

assessment of computer-aided decision support systems.  The committee has previously 

published two opinion papers on the evaluation of CAD systems and issues associated with 

user training and quality assurance of these systems in the clinic.  With machine learning 

techniques continuing to evolve and CAD applications expanding to new stages of the patient 

care process, the current task group report considers the broader issues common to the 

development of most, if not all, CAD-AI applications and their translation from the bench to 

the clinic.  The goal is to bring attention to the proper training and validation of machine 
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learning algorithms that may improve their generalizability and reliability and accelerate the 

adoption of CAD-AI systems for clinical decision support. 

 

 

1 Introduction 

 

We are witnessing extensive development and an explosion of applications based on deep 

learning (DL) or “artificial intelligence (AI)” technology across various fields in recent years. 

Many applications in robotics, transportation, surveillance, Internet, and popular games have 

achieved high degrees of success and raised unprecedented enthusiasm for AI.  Rapid 

advances in machine learning, and specifically in DL techniques, have enabled broad 

application of these methods in health care.  In medical imaging, computer-aided diagnosis 

(CAD) using traditional machine learning techniques was introduced into the clinic over two 

decades ago; however, traditional approaches that use manually designed image features (i.e., 

mathematical descriptors) and classifiers with small numbers of parameters may yield limited 

performance for some complex tasks.  DL is a representation learning technique in which a 

multi-layer neural network with millions of interconnecting weights automatically learns 

relevant features and information from the input data and models the expected outcome 

guided by a large set of training samples.  The increasing accessibility to low-cost 

computational power and data storage further enables the development of DL models.  The 

promise of the DL approach has spurred a new era of development of CAD-AI applications 

for clinical decision support in various stages of the patient care process; we use the term 

CAD-AI to refer to this expanded clinical decision support environment that uses traditional 

and DL-based AI methods (Figure 1). 

   

 

Numerous studies have been published to date on the development of machine learning 

tools for computer-aided, or AI-assisted, clinical tasks.  In a recent review of publications 

related to machine learning-based detection and prognosis of COVID-19 using chest 

radiographs and CT scans, Roberts et al. [1] concluded that none of the models were of 

potential clinical use due to methodological flaws and/or underlying biases. In another review 

of the design, reporting standards, and claims of studies that compared the performance of the 

DL algorithms applied to medical images with that of expert clinicians, Nagendran et al. [2] 

concluded that only a few prospective DL studies and randomized trials had been performed 

and that the rest of the studies were at high risk for bias. In a systematic review on the 

diagnostic accuracy of DL algorithms, Aggarwal at al. [3] found high heterogeneity and 

extensive variation in methodology, terminology, and outcome measures among the studies, 

all of which could lead to an overestimation of the diagnostic accuracy of DL algorithms 

applied to medical images.  In a review of over 500 studies that evaluated the performance of 

AI algorithms for diagnostic analysis of medical images, Kim et al. [4] reported that nearly 

all were designed as proof-of-concept technical feasibility studies and did not incorporate 

design features that are recommended for robust validation of the real-world clinical 

performance of AI algorithms. These reviews reveal that the majority of machine learning 

models developed to date seem to be far from ready for clinical deployment despite the 

reported levels of performance.  

Regardless of the underlying machine learning methods used for development of CAD 

tools, it is of paramount importance to ensure that a clinical decision support tool has 

undergone proper training and rigorous validation of its generalizability and robustness 

before the adoption of such tools for patient care in the clinic.  To address these important 
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issues, the American Association of Physicists in Medicine (AAPM) Computer-Aided Image 

Analysis Subcommittee (CADSC) is charged, in part, to develop recommendations on 

practices and standards for the development and performance assessment of computer-aided 

decision support systems.  The CADSC has previously published two papers to convey the 

opinions of CADSC members on proper practices for the training, evaluation, and quality 

assurance of CAD systems [5, 6].  With machine learning techniques continuing to evolve 

and CAD applications expanding to new stages of the patient care process (Figure 1), this 

task group report addresses the broad issues common to the development of most, if not all, 

CAD-AI applications and their translation from the bench to the clinic.  The various steps of 

development will be covered, including data collection, establishing reference standards, 

model development, performance assessment, and translation to clinical practice, as 

summarized in Figure 2.  The goal is to bring attention to proper training and validation 

methods for machine learning algorithms that may improve their generalizability and 

reliability and accelerate the adoption of CAD-AI systems for clinical decision support. 

 

 

 

2 Data 

 

The most fundamental step for the development of a CAD-AI tool is to define the use 

case and the population to which the CAD-AI tool is to be applied. As a guiding principle, 

data collected for the training, validation, and testing of a CAD-AI tool should reflect the 

intended use case and population while at the same time allowing for the replication of results 

in a real-world clinical setting. It cannot be overemphasized that improper data collection 

practices may likely introduce bias and create a misleading perception of model performance, 

especially in subpopulations that may not be appropriately represented in the study dataset. In 

study reports, the data collection process must be described in detail to demonstrate scientific 

rigor and should include inclusion and exclusion criteria as well as the target patient 

demographics.  

This section covers the topics of data collection (including case sampling, public 

databases, ethics, and quality considerations), data augmentation, and data harmonization. 

The topic of labels that might accompany collected data will be covered in the Reference 

Standards section (section 3). 

 

2.1 Data Collection  
   

2.1.1 Data collection and case sampling 

System development with consecutively sampled cases from multiple sites over a defined 

period of image acquisition dates [7] is the best way to achieve replication of performance in 

a real-world clinical setting. In some machine learning applications for which the proportion 

of different case groups is highly imbalanced in the population, however, consecutive data 

collection is impractical, and the training dataset must be collected with methods such as 

stratified sampling to enrich some of the groups. For example, in the case of screening 

mammography, stratifying samples across the positive and negative groups is needed because 

the yield of malignancy is only 0.5%. Stratified sampling [8] splits the population into non-

overlapping groups (or strata) and then samples within each strata to achieve the desired 

balance among different strata; if applied accurately, stratified sampling can enhance the 

generalizability of a model relative to training without stratification. In practice, many 

development studies are performed using a convenience sample approach [9], where cases 

that are conveniently available to the developers are the ones collected for the study. 
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Especially in new research areas, the availability of only a convenience sample should not 

prevent a study from going forward; however, claims about CAD-AI system performance in 

such studies should be made with utmost care to reflect the reality that the results are likely 

not generalizable. 

Several recent studies have indicated that systems developed and tested with data from 

one collection site failed to achieve similar test results when applied to data from a different 

site [10-13]. For this reason, especially for validation studies, it is essential to have multi-site 

data collection [14, 15] and to assure that the data collection is diverse in terms of subject 

population, disease severity, vendor/imaging system, and image acquisition protocol. 

Development studies that use single-site data collection are essential for new advancements 

in a time-efficient manner, but strong limitations about the assessed performance should be 

acknowledged. 

   

2.1.2 Public databases 

In CAD-AI development, each research group typically uses its resources to collect its 

own database, which is likely to be smaller in number than desirable and lacking the real-

world diversity of patient demographics and image acquisition parameters that exist across 

institutions.  Furthermore, this isolation of databases prohibits the direct comparison of the 

performance of systems reported in the literature [16, 17]. 

Publicly available image databases overcome these shortcomings by providing a free, 

accessible resource for the international medical imaging research community. The creation 

of a public database is not as simple as depositing one or more existing local databases on a 

web site or crowd-sourcing the uploading of images and associated information.  The nature 

of the public database should be prospectively determined in terms of the clinical task(s) it 

may be expected to address, the range of disease presentations to be represented by those 

cases, the associated metadata it will include, and the reference standard it will incorporate.  

The need for a quality assurance (QA) process for data in a public database cannot be 

overemphasized [18, 19]: adherence to the case inclusion/exclusion criteria, proper de-

identification of protected health information (PHI), image quality, and reference standard 

integrity must all be verified before the database can be released for public access. In 

addition, the FAIR (Findable, Accessible, Interoperable and Reusable) principles must be 

followed to the extent possible in designing public datasets to assist both human users and 

their computational agents in the discovery of, access to, and integration and analysis of the 

data [20]. 

Public databases are resources of growing importance for the advancement of machine 

learning algorithms in medical imaging and clinical decision support in general.  These 

databases play important roles in algorithm development, training/testing, validation, and 

performance assessment; in short, they expedite the ability of research groups to contribute to 

the field.  Investigators who use these databases have an obligation to understand the 

limitations of the databases and to use them in a manner consistent with the capabilities they 

offer. 

 

2.1.3 Ethics considerations of data collection 

The rapid advancement of machine learning in medicine has prompted new questions 

about the legal framework and ethics of data collection. The legal framework varies by 

country. In the United States, the Health and Human Services (HHS) Privacy Rule standards 

[21] address the use and disclosure of individuals‟ PHI, which includes information in a 

medical record that can be linked to a specific individual. For research, the Privacy Rule 

stipulates that covered entities are permitted to use and disclose PHI (1) with individual 

authorization or (2) without individual authorization under “limited circumstances” that must 
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be approved by Institutional Review Board (IRB). In the European Union, the General Data 

Protection Regulation (GDPR) provides the framework for data protection and includes 

considerations for the use of healthcare data for a purpose different from the one for which it 

was originally collected (secondary use) with and without explicit patient consent. Many 

other countries have also established guidelines or regulations on ethics considerations for the 

use of human subject data [22]. For example, China released Personal Information Security 

Specification in 2018 to promote privacy rules established in their 2017 Cyber Security Law 

as a national standard [23, 24]. Brazil established the Brazilian General Data Protection Law 

(LGPD) in 2020; while it is broadly aligned with the EU GDPR, some notable differences 

exist [25]. Independent of legal considerations, several authors have recently argued for an 

ethical framework in which the secondary use of clinical data without explicit patient consent 

is ethically justifiable, as long as mechanisms are in place to ensure that ethical standards are 

strictly followed [26]. Additional issues related to ethics of data collection for machine 

learning systems in medical imaging include: (1) de-identification of PHI in medical images 

and other supporting data, and (2) impact of data collection on algorithm fairness [27]. 

 

 

 

2.1.3.1 De-identification 
De-identification refers to removal or encoding of identifiers from patient health 

information collected for research purposes. In radiological imaging, many of these 

identifiers are present in the DICOM header contained within each image file when the image 

is generated for patient care purposes, and several toolkits offer a number of different 

strategies for de-identification of DICOM headers. For example, the Radiologic Society of 

North America‟s Clinical Trials Processor is a tool that is recommended for de-identifying 

DICOM headers when optimal security is required, due to its high level of customization 

[28].  De-identification of DICOM headers, however, may be insufficient for some 

radiological datasets, because there may exist potential sources of PHI other than those within 

the DICOM header [29]:  actual pixels within the image (“burned-in” data) might contain 

PHI, especially in ultrasound images and radiographs; objects worn by a patient that contain 

personal information (such as a bracelet) may appear in medical images; and data in head-

and-neck CT images may allow facial reconstruction that could identify the patient. For these 

reasons, it is advisable to visually inspect images and use additional tools for optimal 

security, especially if the images are to be publicly shared. 

 

2.1.3.2 Diversity and Inclusion 
A potentially significant, yet subtle, consequence of improper data collection might be an 

algorithm that performs poorly for certain subgroups or subpopulations with the targeted 

disease or condition as a result of under-representation of those subgroups in the training set 

[30, 31]. In radiology applications, it is important to be vigilant so that training/validation 

dataset selection incorporates safeguards to minimize underlying distortions for under-

represented and/or vulnerable populations and so that already-existing health-care inequities 

are not perpetuated or exacerbated [27, 32-34]. 

 

2.1.4 Quality considerations 

Image quality may have a strong impact on the reported performance of CAD-AI 

systems. Fortunately, many imaging centers have an image QA program already in place, and 

imaging exams are typically repeated if the image quality is substandard. Nevertheless, it is 

still good practice to ensure that a QA program is being followed at image collection sites and 



 

This article is protected by copyright. All rights reserved. 

10 

to visually inspect key images to ensure image quality is acceptable before entering a case 

into a database for CAD-AI training, if feasible.  

An additional consideration is whether the images were acquired with equipment that is 

still technically relevant and in accordance with appropriate image acquisition protocols. This 

ensures that a CAD-AI system trained or tested with the dataset is capable of answering 

clinically relevant questions. With rapid advances in image acquisition hardware and 

software, a collected dataset can quickly become obsolete. To create an enduring image 

dataset, data collection and management should be considered a continuous process rather 

than a one-shot effort. 

Consideration of data curation is essential to the integrity of an image dataset. The dataset 

should be inspected (either visually or by automated analysis) to ensure that it contains only 

images from the relevant anatomic site and image modality. It is important to be aware of the 

differences in image acquisition parameters, imaging time points, selected series from CT 

scans, contrast enhancement status, and contrast administration timing. A more subtle point 

for data curation involves awareness of the potential bias that may be introduced if “positive” 

cases, for example, come from one site or scanner while all “negative” cases come from a 

different site or scanner, a situation that should be avoided. If developing a multi-institutional 

dataset, curation should be performed at the institutional level, where local clinical 

information is more easily accessible and verifiable, before depositing to the dataset, if 

possible. 

 

2.2 Data Augmentation 

Data augmentation is a collection of task-dependent techniques used to create alterations 

of the training data or to create synthetic data to increase the training set size aiming to 

improve the generalization that may be achieved by a trained CAD-AI algorithm [35]. Data 

augmentation has become an essential part of the training process for CAD-AI algorithms 

due to the recent use of deep neural networks that have millions of parameters and thus 

require a large number of training iterations for adequate training.  To create variations of 

existing images contained within the training set, early successful deep learning applications 

for image classification used parameterized transformations that included affine 

transformations such as image rotation, flipping, scaling, and jittering [36]. Non-rigid 

transformations such as deformable transformations were later used for data augmentation. 

Data augmentation based on the recently developed technique of generative adversarial 

networks [37] has attracted strong interest. Generative adversarial neural networks have the 

ability to learn the underlying data distribution and to generate synthetic images mimicking 

the actual ones that may fill the gaps in feature distributions [38]. Other approaches to data 

augmentation include obtaining images from physical phantoms or generating synthetic data 

from physics modeling [39]. Physical and virtual phantoms have been used in medical 

imaging for development of new imaging techniques, improvement of existing imaging 

modalities, and the conduct of virtual clinical trials; images generated from these approaches 

represent a natural extension for data augmentation. 

Data augmentation techniques that create alterations of the training data should not 

modify the image appearance in a manner that makes the underlying biological or tissue 

properties implausible. In addition, it should be recognized that these techniques can only 

generate slight variations to the structural properties of existing samples in the training set; 

they cannot create new patterns or independent information that do not exist in the original 

training set. Although data augmentation may help the machine learning algorithm better 

interpolate among existing samples, it cannot fundamentally compensate for the inadequacies 

of a small clinical training set. The use of synthetic data (in silico and phantom) may prove 

useful for creating large training sets if the real-world variabilities of the clinical task, and the 
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human subjects, and the imaging system can be realistically modeled.  It remains to be shown 

that these synthetic data can sufficiently simulate the physiological or biological properties of 

real patients required for developing decision support tools for many clinical tasks.  

  

2.3 Data Harmonization 

Data may include images obtained at different sites, acquired with different equipment 

and image-acquisition parameters, and reconstructed and/or post-processed using different 

algorithms. These differences may result in systematic variations across images. Data 

harmonization aims to reduce these variations retrospectively after acquisition while 

preserving the biological variability captured in the images [40]. Technically, DL-based 

methods are capable of handling variations in image appearance provided the training dataset 

includes example cases capturing all those variations and each in sufficient number to 

provide adequate learning; however, the demands of such inclusion on dataset collection and 

subsequent training could become prohibitively resource intensive. Moreover, deep learning 

methods can learn which site an image came from (for multi-institutional datasets) or which 

vendor‟s equipment was used for image acquisition, so utmost care should be taken to 

minimize bias in the training data [11]. For example, if all mammograms with breast cancer 

were acquired on a mammography unit from vendor A and all mammograms with benign 

lesions were acquired on a mammography unit from vendor B, a deep learning method is apt 

to learn to distinguish images from vendor A from those from vendor B rather than to 

distinguish the salient imaging features between breast cancers and benign lesions.  

In practice, data harmonization has become the key to enhancing accuracy and robustness 

of CAD-AI systems [36, 41]. Researchers should be aware of the heterogeneity of image 

appearance and quality (and record, for example, differences in image acquisition 

parameters) during the data collection stage and incorporate data harmonization methods, 

when appropriate, to aid models in accommodating data heterogeneity [42, 43]. 

Harmonization methods can be applied in the image domain or feature-space domain [44]. 

Image-domain harmonization methods include post-processing of image data [45] and style 

transfer [46], and feature-domain harmonization methods include basic statistical 

normalization techniques [47] and advanced statistical techniques such as ComBat [48, 49]. 

The Quantitative Imaging Biomarkers Alliance (QIBA) and the Quantitative Imaging 

Network (QIN) have also devoted efforts to the harmonization of medical imaging data and 

tools [50, 51]. It is important to recognize that although data harmonization aims to reduce 

the systematic variations due to image acquisition, reconstruction, and post-processing or due 

to different protocols among data collection sites, it does not address the issue of systematic 

variations among patient sub-populations (see sections 2.1.3.2 and 4.2.2.3). 

 

2.4 Take Home Message on Data  
In summary, proper data collection methods are of critical importance to successful 

training, validation, and implementation of CAD-AI algorithms.  Improper collection and 

manipulation of data (such as improper data augmentation) can lead to an overestimation of 

performance or lack of generalizability.  
 

3 Reference Standards 
 

The development of machine learning-based decision support tools requires truth or 

labeling of the cases for training, validation, and independent testing. The resulting reference 

standard needed for the evaluation of an algorithm‟s (or human‟s) performance depends on 

the task at hand.  It is important to note that the notion of “truth” (or “ground truth” or “gold 
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standard”) has been replaced by the concept of “reference standard,” as very few, if any, 

real-world tests yield the absoluteness implied by “truth” or “gold standard.” In many 

respects, the clinical utility of an algorithm greatly depends on the quality of the reference 

standard used in its training and evaluation. It is challenging but crucial for investigators to 

(1) select the most appropriate approach to obtain a task-specific reference standard, (2) 

gather complete and reliable data for that reference standard, and (3) assess any biases that 

may be introduced when training their algorithm with a reference standard that contains 

inherent variability.  

This section covers considerations for generation of reference standards including 

objective vs. subjective reference standards, annotation granularity, methods for acquiring 

annotations, definition of true positives. The use of the reference standard in training and 

model development (section 4) and in performance evaluation (section 5) of a CAD-AI 

algorithm are closely related. 

 

3.1 Objective vs. Subjective Reference Standards 

The most straightforward reference standard uses the collected image data itself, with one 

or more domain experts providing diagnostic assessments or annotations at the image or 

patient level. Reference standards based on physicians’ opinion, however, are subjective, 

and several studies have shown that CAD-AI system performance may vary substantially 

when assessed against different reference standards provided by radiologists [52-57]. 

Subjective reference standards are considered more reliable if they are based on consensus of 

multiple experts; however, it is difficult to estimate the number of experts needed. Ideally 

more than two experts should participate in order to identify outliers. It can be expected that 

the preferred number of experts depends on the task for which the reference standards will be 

used, the difficulty of that task, and the expected variability of the generated reference 

standard. In practice, obtaining a reference standard from experts is a very resource-intensive 

task, and usually only limited expert readings are possible, especially for large datasets. 

Further reliability for reference standards may be achieved with information from other 

independent sources [58, 59], which also may be consensus based, such as radiologist‟s 

review of images from another modality [60] or imaging follow-up for 2 years or longer [61]. 

Despite the prevalence of subjective approaches that use expert opinion, more objective 

reference standards are frequently desirable.  For example, for lesion detection and 

pathologic classification, more definitive diagnostic tests and pathologic assessment of 

biopsied or excised lesions [62], although imperfect, should be used. For clinical decision 

support, such as treatment response assessment or patient prognosis, a more objective 

reference standard is patient survival. While the date of patient death is definitive, procuring 

this information as a reference standard becomes complicated by the need to track patients 

over potentially extended periods of time, during which they might become lost to follow-up; 

patient death could also result from circumstances other than the disease being evaluated. 

Shorter-term reference standards such as time-to-progression also may be used as an 

alternative in many studies. 

 

3.2 Annotation Granularity 

The level of required annotation granularity, or detail, depends on the task. For 

example, a more object-specific annotation such as manual expert delineation may be needed 

for lesion/organ detection or segmentation. For diagnosis of systemic disease or patient 

prognosis, patient-level assessment or patient survival may be appropriate. Image-based 



 

This article is protected by copyright. All rights reserved. 

13 

reference standards of varying levels of granularity are the most commonly used ones for 

current medical imaging-based machine learning tasks. 

 

3.2.1 Entire image 

The coarsest level of granularity is annotation of the entire image, through which a 

class label is assigned to each image. As an example, the DREAM Challenge [63] for digital 

mammography diagnosis only had available breast-level labeling regarding the presence of 

breast cancer; however, training with such global labels that do not locate the actual lesions is 

sub-optimal in guiding deep networks to learn the relevant features of those lesions that are 

responsible for the patient-level diagnosis1. The top-scoring teams in the DREAM Challenge 

all used additional datasets with lesion location labeling to supplement the training of their 

systems. Another study showed that without specific lesion locations, the system could learn 

non-medical features that were included in the images (such as metal labels and markers), 

thus impeding the generalizability of the algorithm [11]. A more recent study [64] showed 

that the performance of an AI system for screening mammography on unseen cases varied 

from modest to outstanding depending on the dataset and reference standards used for 

evaluation. 

 

 

 

3.2.2 Region-based 

A finer level of granularity is annotation of specific lesions or organs through expert 

manual marking of a bounding box or a region center point. If the purpose is to detect 

cancers, for example, the CAD-AI system has to characterize the level of suspicion of a 

potential target structure and mark it as a cancer if it satisfies a certain threshold suspicion 

level. The scoring of system performance, then, requires not only the location of the lesion as 

reference standard but also the established malignancy status. 

 

3.2.3 Pixel-based 

An even finer level of granularity is pixel-based annotation in which the reference 

standard is an expert manual delineation, or outline, of the lesion or organ of interest and each 

image pixel can be labeled as either belonging to the region of interest or not. These detailed 

annotations are important for evaluating performance when the task is organ or lesion 

segmentation, and they can also be important for applications such as lesion characterization 

or treatment response assessment, in which the lesion extent and radiomic features are 

extracted from the segmented lesion. Pixel-based reference standards are more detailed than 

region-based ones but come at the cost of a more time-consuming annotation process and 

larger inter-reader variability [65].  

 

3.3 Methods for Acquiring Annotations 

 

3.3.1 Expert labels 

When clinical or pathologic information is not available, it is common (for certain CAD-

AI tasks such as lesion detection or segmentation) to create a subjective reference standard 

from human domain experts, who label the images or mark individual pixels, depending on 

the level of annotation granularity required. Outlining the boundaries of lesions or organs has 

the disadvantage of requiring potentially extensive time and effort, especially for manual 

segmentations in 3D. The judgment of lesion boundaries or the presence of a lesion contains 

                                                           
1
 Recent “weak learning” and “attention” mechanisms may provide solutions for this (see Section 4.2) 
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intra- and inter-observer variability, even for experienced radiologists [65, 66], so that 

multiple experts may be required to produce a reliable reference standard. 

 

3.3.2 Electronic health record 

For patient-level assessments, the electronic health records (EHR) of subjects can be 

parsed by humans or natural language processing algorithms for reference standards 

involving, for example, the presence or absence of disease. Reference standards obtained 

from EHR data may contain annotations made during clinical practice, such as bounding 

boxes or Response Evaluation Criteria in Solid Tumors (RECIST) measurements [67]. If 

performed manually, a reference standard obtained from the EHR is time consuming and may 

not be practical for collecting large datasets; if performed automatically, the labels may 

contain a lot of noise and be prone to error, especially for complicated cases [68]. Natural 

language processing for parsing EHR data is an area of active research.  It should be noted, 

however, that clinical radiology reports are not recommended as a reference standard for 

CAD-AI development, because “clinical reports often have nuanced conclusions and are 

generated for patient care and not for research purposes” [69]. 

 

3.3.3 Crowd sourcing 

The key concept of crowd sourcing is to switch the time commitment and required effort 

for a given task from domain experts to many, potentially less-experienced, users. Crowd 

sourcing is a form of subjective consensus reference standard that has been applied to image 

annotation, image segmentation, and object delineation tasks [70]. It has been shown, in 

certain settings, that the quality of annotations from experts and those from novices becomes 

equivalent with an increased number of novices [71, 72]. Nevertheless, the use of crowd 

sourcing as a reference standard for machine-learning applications in medical imaging must 

be further investigated before it can be recommended for general use. 

 

3.3.4 Phantoms 

In medical imaging, phantoms are man-made objects with known structure and 

composition. Images acquired of these phantoms support a priori image annotations across a 

range of granularity levels. However, the number of physical phantoms usually is limited, 

and, therefore, only a few annotated images can be obtained from this method. Recently, 

digital phantoms that mimic properties of physical objects in silico have become available 

[73] and have been used in virtual clinical trials [73, 74] as well as for training ML models 

[39]. An advantage of using in silico models is that the lesion location and properties are 

known by design so that human annotation is not required; however, image data obtained 

from phantoms (physical or digital) likely do not reflect the actual biological or pathological 

characteristics that may be captured on patient images. Phantom images may be useful for 

data augmentation during training, for identifying and correcting biases regarding differences 

in imaging systems and protocols, and for test-retest evaluations. Whether an algorithm 

trained with phantoms is applicable to real-world images requires rigorous validation [39]. 

Similar caution must be applied to the use of synthetic images generated by digital methods 

such as full in silico modeling of the imaging chain or use of generative adversarial networks. 
 

3.3.5 Weak/noisy labels 

Weak or noisy labels can be defined as incomplete or imperfect reference standard 

annotations. Compared with a small dataset with “strong” or “clean” labels, a large dataset 

with “weak” or “noisy” labels used for algorithm training may achieve comparable 

performance [72]. The generalizability of the trained algorithm, however, will deteriorate as 

the proportion of noisy labels in the training set increases [75]. Others have demonstrated the 
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potential of using weak or noisy labels [76] but additional research is needed. Strong labels 

specifically for the independent test set are essential to reliably assess the performance of the 

trained decision support tool. Under certain circumstances, the STAPLE algorithm 

(“Simultaneous Determination of a Reference Standard and Performance Level Estimation”) 

delivers not only the optimal reference standard estimation but also a quality ranking of the 

competing observers/algorithms [77].  

 

3.4 Definition of True Positives 

Reference standards are designed for use in evaluating the output of a CAD-AI system. 

The definition of a true positive relative to the reference standard is very important. 

Different methods for determining a true positive will result in different performance of the 

same CAD-AI system. Which method is appropriate or feasible depends on the task and the 

available reference standard. Using detection tasks as a specific example, a number of 

methods have been used to determine whether the lesion is correctly detected, including the 

distance between the centroids of the detected object and the reference, the overlap 

percentage between the two (which is further affected by the level of detail in marking the 

reference, e.g. bounding box vs. outline) [78], and whether the centroid of the detected object 

falls within the reference lesion region; detected objects that are not determined to be true 

positives through the selected metric are counted as false positives. It has been shown that 

scoring is strongly affected by the detection criterion [79]. More detail on performance 

evaluation can be found in section 5.  

 

3.5 Take Home Message on Reference Standards 

The required type and granularity of the reference standard depends on the task at hand. An 

objective reference standard is preferred; however, when a subjective reference standard 

cannot be avoided, independent assessments of multiple domain experts should be obtained 

and their variabilities should be evaluated. 

 

4 Model Development 
 

In addition to the availability of properly collected data and labels, the selection of data 

sampling and machine learning strategies will affect the robustness of the developed model.  

This section covers the topics of data sampling methods, levels of learning supervision, and 

new training strategies, including transfer learning, multi-task learning, domain adaptation, 

federated learning, and continuous-learning. A recent review on some of these technologies 

and their applications can be found in the literature [80]. 

 

4.1 Data Sampling Strategies 

Data sampling is important for efficient use of data and for reducing the risk of overfitting 

in model development. The most established resampling techniques for the training and 

testing of models will be discussed. The dataset ideally should be split into three non-

overlapping partitions: training, validation, and test sets. One of the partitions should be 

used for training of the model. To guide the optimization (or tuning) of model parameters 

during training of a model, it is desirable to obtain a meaningful estimate of the performance 

of the model being trained on a partition of the dataset that is often referred to as a “validation 

set;” the use of the validation set is thus a part of the training process.  This is not to be 

confused with the use of the term “validation” as the process of evaluating the 

generalizability of a developed model on unseen data after training is completed and the 
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model is “frozen,” which should be established by testing on a completely independent 

dataset from the ones used during the training or optimization of the model. To avoid 

overfitting the model, performance testing ideally should be conducted only once on any 

given test set; the performance on that test set should then not be used to inform model 

improvements or modifications for subsequent testing on the same test set [5, 14, 81]. Due to 

potential confusion surrounding the term “validation” for reporting the performance of a 

trained model, developers need to clearly define whether the test set used for the evaluation 

has been kept independent from the training process. There are several established resampling 

techniques for organizing the training and evaluation of a model, especially with limited 

datasets. It should be noted that such techniques are generally based on the assumption that 

the available data are representative of the underlying target population and similarly 

distributed within the training, validation, and test datasets. 

A holdout method is the most basic evaluation/training paradigm. In this approach, a 

model is trained and optimized by use of training and validation datasets, after which it is 

evaluated once with an independent test dataset that is sequestered during training. When the 

available datasets are small, a k-fold cross-validation method, which maximizes the use of 

the available data, can provide a more reliable evaluation of model performance than the 

holdout methods under this condition [82, 83] if the test partition in each fold is held-out as 

an independent test set and is not used repeatedly for guiding model optimization. For such 

techniques, stratified sampling of cases (Section 2.1) can better accommodate imbalanced 

datasets than random sampling. Bootstrapping is another popular and well-established 

resampling method that can be used to construct sampling distributions for model training 

and evaluation purposes [84-86].  

Although the actual generalization performance of the final model should be evaluated 

only once by external testing with a previously unseen independent test set, in practice, it is 

psychologically difficult for researchers not to go back and improve their model if the 

observed test performance is poor. Such multiple testing and reuse of the same test data are 

likely to introduce overfitting problems regardless of the evaluation/learning paradigm [81, 

87]. 

 

4.2 Machine Learning Strategies   

A machine learning paradigm refers to a strategy based on which a model is trained. 

There are numerous learning paradigms in CAD-AI, many of which overlap [88-90]. One 

approach for categorizing learning paradigms focuses on the level of interaction required by 

the user, such as supervised, semi-supervised or unsupervised learning. A different approach 

considers the learning paradigm from the perspective of model development, such as transfer 

learning, multi-task learning and federated learning. 

 

4.2.1 Levels of learning supervision  

Supervised learning (with different levels of supervision) is the most common approach 

to learning, where a model is trained to map input data to output data based on examples of 

the input-output pairs. To reduce the cost and barriers related to data collection and 

annotation, however, several studies are actively exploring training algorithms that can 

leverage unlabeled or weakly labeled data during training (see also Section 3.3.5). Such 

paradigms may provide a more cost-effective and scalable approach to CAD-AI 

development.  

 

4.2.1.1 Supervised learning 
In supervised learning, a model is trained to map input data to output data based on 

explicit examples of the desired input-output pairs, as provided by the user. However, the 
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collection of such annotations tends to be costly and time-consuming, and the annotation 

effort may need to be repeated as the imaging technology evolves and new datasets are 

introduced. Moreover, as noted in previous sections, annotations can be subjective, the 

annotation process may be prone to error, and, for some tasks, there is no single correct 

annotation.  

 

4.2.1.2 Semi-supervised learning 
Semi-supervised learning algorithms exploit a combination of labeled and unlabeled 

data. In this case, the model is given some guidance about the desired outcome, but the 

annotations do not need to be as detailed or extensive as those used with supervised learning.  

For instance, feature extraction can be initialized through an unsupervised or self-supervised 

technique and then fine-tuned to the final task using a small set of labeled data. Using some 

form of semi-supervised learning may reduce the costs of labeling relative to supervised 

learning.  

 

4.2.1.3 Self-supervised learning 

Self-supervised learning can exploit large unlabeled datasets for feature representation and 

has a regularizing effect on the learned features. Autoencoder models are a common approach 

to self-supervised learning [37] and are used for feature extraction; however, there is no 

guarantee that the features learned in a self-supervised fashion have diagnostic value. It 

should be noted that autoencoder models, such as U-Net, can also be used in a supervised 

mode for image segmentation tasks. Other popular approaches to self-supervised learning 

include contrastive learning [91-93] and pretext [91] or surrogate supervision [94]. In these 

techniques, when a large unlabeled dataset in the same domain as a small labeled dataset is 

available for a given task, the unlabeled data can be assigned artificial labels and then used to 

pre-train a deep learning model; transfer learning for the target task is then performed with 

the small labeled dataset. It has been shown that deep models pre-trained with self-supervised 

learning techniques can outperform the same models trained with random initialization [95] 

or transfer learning from an unrelated domain [94, 96]. These findings demonstrate the 

potential of large datasets to improve model development in medical imaging tasks even if a 

large portion of the cases is unlabeled. 

 

4.2.1.4 Unsupervised learning 
Unsupervised learning refers to a class of algorithms that can autonomously learn from 

data without reference to any labels or any instruction from the user. Common approaches to 

unsupervised learning are the clustering methods. Unsupervised learning has shown promise 

in medical imaging applications but depends on the adequacy of the resulting automatic 

clustering. In addition, unsupervised learning requires a much larger training set for the 

algorithm to achieve similar performance compared with training with reference standard 

[97], and data collection in medical imaging is costly.  

 It should be noted that CAD-AI algorithms can include both supervised and unsupervised 

elements.  

 

4.2.1.5 Multiple-instance learning 
The multiple-instance learning approach is an effective paradigm when labels are not 

available at the desired granularity [98]. The machine learning model receives a set of labeled 

“bags,” each containing many (unlabeled and some labeled) instances. In the simplest case of 

binary classification, a bag is labeled positive if it contains at least one positive instance. 
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4.2.2 Transfer learning, multi-task learning, and domain adaptation 

The ability to discover by representation learning a wide range of object characteristics 

is a distinctive advantage of deep learning over traditional machine learning models that rely 

on hand-engineered features [99]. In deep convolutional neural networks (DCNNs), feature 

extraction is obtained through a series of cascaded convolutional layers, forming a hierarchy 

in which shallow layers extract generic features and deeper layers extract increasingly object-

specific features [100]. Large-scale datasets, however, are needed to learn high-quality 

features, thus making deep learning an effective, but data and computation hungry, paradigm. 

Such data requirements can be lessened by transferring or sharing features across different 

tasks and domains. 

 

4.2.2.1 Transfer learning 
Transfer learning in DCNNs is commonly implemented by training a network on one 

task and then “transferring” the parameters (or weights) from the trained model to initialize 

the network for a new task, rather than randomly initializing it (also known as “training from 

scratch”). Transfer learning was the early enabler for the use of deep networks in the medical 

imaging domain. Networks pre-trained on ImageNet, which comprises millions of non-

medical images effectively labeled by crowd sourcing, are commonly used to initialize 

DCNNs for medical image classification, showing improved classification performance and 

faster convergence compared with random initialization [98, 101-105]. Transfer learning, 

however, imposes limitations on the DCNN, since ImageNet is composed of low-resolution 

2D RGB color images, whereas many medical imaging modalities are higher-resolution 3D, 

4D, or multi-parametric. One of the most common techniques for bridging the two domains 

involves a 2.5D approach [106], in which a 3D (or higher-dimensional) image around a voxel 

is subsampled into multiple 2D images, which are then fed into the input channels of a 2D 

DCNN [102] or an ensemble of 2D DCNNs [107]. 

For some tasks, such as segmentation, 3D convolutional filters may offer substantial 

advantages over 2D CNNs; in such cases, training from scratch or transfer learning from 

another medical imaging modality may be performed. Researchers have begun to explore 

medical imaging-based pre-training of DCNNs, and results indicate that an additional stage 

of pre-training with data from a similar domain can increase performance and robustness of a 

network [108, 109].  The transfer of prior knowledge can occur between modalities (e.g., CT 

to MRI), between organs/pathologies (e.g., liver to kidney), between tasks (e.g. classification 

to segmentation), or some combination thereof [110].  

 

4.2.2.2 Multi-task learning 
 Multi-task learning is a special type of transfer learning in which a DCNN is trained to 

jointly learn interrelated tasks, as opposed to addressing each task sequentially [111]. This 

technique has demonstrated enhanced performance compared with single-task learning [110, 

112].  

 

4.2.2.3 Domain adaptation 

Most algorithm training methods assume that the test data is drawn from the same 

distribution as the training data; however, this assumption is often not fulfilled in practice due 

to data scarcity and data mismatch, and thus a trained model may fail to generalize to real-

world clinical data [113, 114]. The most important sources of data shift (i.e., deviations 

between the distributions of the test set data and the training set data) in medical imaging are 

acquisition shift and population shift (Table 1) [11]. 
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Data shift can be addressed, at least partially, through data harmonization and 

standardization, as discussed in Section 2.3.  Recently, researchers in the medical imaging 

space have begun to explore domain adaptation techniques to make deep learning models 

more tolerant of domain shift [115]. The most common approaches to domain adaptation are 

feature based and attempt to modify the feature distributions to align the target (i.e., test set) 

and source (i.e., training set) domains. Other approaches seek to learn domain-invariant 

representations [116] or use generative models to synthesize realistic samples in target 

domains where labeled data are scarce [117-120] [38]. 

 

4.2.3 Federated learning 

Federated learning is a distributed machine learning approach that enables collaborative 

training on decentralized datasets [121-124]. Each site trains the model locally with its own 

dataset and then only the trained model parameters are shared, thus producing a global model 

benefiting from access to a large corpus of data without requiring data sharing and without 

posing risks to patient privacy. There are, however, several open-ended questions with regard 

to federated learning that are relevant to medical imaging [125, 126].  In particular, there is 

no formalized training protocol yet to guarantee that the performance of a model trained with 

federated learning is comparable to that of a centralized trained model with access to all the 

data [127]. Also unknown is (1) the extent to which local model overfitting negatively 

impacts the global model, and (2) the tradeoff between access to more data through a 

federated process versus traditional learning with a fully controlled dataset.  

 

4.2.4 “Continuous learning” systems 

Continuous or “life-long” learning emulates the human ability to continuously learn 

and adapt as new data are presented [128, 129]. Theoretically, continuously learning AI 

systems can accelerate model optimization and continuously improve their performance by 

taking advantage of new data presented during clinical use. In practice, adaptive training of 

shallow and deep neural networks using incrementally available data generally results in 

rapid overriding of their weights, a phenomenon known as “interference” or “catastrophic 

forgetting” [130, 131]. It is not generally clear under what conditions and for what metrics 

adaptive AI produces a continuously improving (or at least stable) algorithm and avoids 

major pitfalls. Many questions related to post-marketing management of adaptive AI devices 

remain open, such as frequency of adaptation (e.g., continuously or in regular intervals, batch 

mode), how to monitor performance changes after adaptation, and when and how to intervene 

if performance decline is suspected.   

 

4.3 Take Home Message on Model Development 

Training approaches, especially for deep learning algorithms, are continuously improving 

with the goal of achieving robust, effective, and privacy-preserving CAD-AI models. An 

independent test set representative of the intended use that was not employed to guide model 

optimization in any learning paradigm is of critical importance. Robust training methods, 

although important for all CAD-AI systems, are especially important for systems that may 

operate in clinical practice with minimal or no human supervision.  

 

 

5 Performance Assessment 
 

Proper performance assessment is important in various stages of CAD-AI model 

development. Performance assessment involves (1) factors such as intended use, performance 

metrics, statistical significance, sample size, and reproducibility and (2) purposes such as 
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standalone or clinical reader performance assessment.  Rigorous performance assessment can 

provide a reliable estimate of model performance at a particular stage of development to 

guide further improvement or to inform the user of realistic performance that can be expected 

from the model. This section discusses methods and considerations for conducting 

performance assessments. 

 

5.1 Performance Assessment Metrics 

In CAD-AI applications, the most widely accepted performance assessment 

methodologies include receiver operating characteristic (ROC) analysis [132], its various 

derivatives such as free-response ROC (FROC) analysis [133], and precision-recall analysis. 

In detection and classification tasks, the most common metrics include area under the ROC 

curve, sensitivity (or recall), specificity, balanced accuracy (mean of the sensitivity and 

specificity), Youden index, and the prevalence-dependent factors positive predictive value (or 

precision), negative predictive value, and F1 score [5, 134, 135]. Various other 

methodologies and metrics have been established for specific applications, such as the Dice 

coefficient, Jaccard index, and Hausdorff distance for image segmentation; mean squared 

error and coefficient of determination for regression; concordance index [136, 137] for 

evaluating prediction performance; the log-rank test [138] for comparing Kaplan-Meier 

survival curves in survival analysis; and categorical agreement of response classification by, 

for example, the RECIST guidelines [139, 140]. The use of multiple performance approaches 

is generally appropriate to provide a more complete assessment. 

It is crucial to include error estimates, such as standard deviations or 95% confidence 

intervals, when reporting results. Error estimates describe the uncertainty/variability of the 

reported values for the performance metrics and help provide insight into the sufficiency of 

the training sample size, the soundness of the training/testing approach, and generalizability. 

 

5.2 Statistical Significance 

Statistical significance is used to quantify the likelihood that an observed result is 

explainable due to chance alone [141]. Statistical power is a closely related topic that 

quantifies how likely a study is to distinguish an actual effect from one of chance. Whereas 

statistical significance of results is assessed after study completion, statistical power 

calculations are an important part of study design and performed beforehand to estimate the 

required sample size based on the expected size of the effect, variability in the response 

variable, and disease prevalence [142]. Failure to achieve a statistically significant result 

cannot be interpreted as a true lack of difference especially when the study is statistically 

underpowered. It is important to note that statistical significance does not necessarily imply 

that the result is clinically meaningful [143, 144] unless the study is specifically powered to 

address this issue. Moreover, when multiple statistical hypotheses are tested using the same 

dataset, the chance of observing a rare event increases, thereby increasing the likelihood of 

incorrectly concluding that a real effect has been observed when the observation, in fact, was 

due to chance alone; methods for adjusting for the effect of multiple hypothesis testing have 

been developed [145]. Statistical tests generally make a set of assumptions about the 

distribution of the data to which they are applied (e.g., normality or linearity), and it is 

important to verify these assumptions are met before using any specific statistical test. 

 

5.3 Intended Use 

The intended use for which a CAD-AI system is designed must match the clinical 

environment in which it is deployed. The intended use is determined by the patient 

population, the image acquisition device, the stage of diagnostic intervention, and the 

diagnostic category. First, the patient population represented by the data used to develop the 
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algorithm should match the intended population. Second, a range of image acquisition 

devices are in clinical use, and CAD-AI must be developed and tested on data from multiple 

vendors. Third, the intended use depends on the patient care stage that requires the diagnostic 

intervention. Finally, the diagnostic category of the data should match the clinical task, for 

example, screening, detection, staging, treatment assessment, or follow-up.  

CAD-AI systems for aiding in clinical decision making generally may be implemented 

according to four different paradigms: second read, concurrent read, triage, and rule-out. 

CAD-AI applications such as detection and diagnosis as well as staging, treatment response 

assessment, prognosis, or recurrence prediction (Figure 1) should be matched with the most 

appropriate paradigm. The selected performance assessment method should be reflective of 

the use paradigm (Table 2). Frequently, the setting may affect the operating point of the 

CAD-AI tool, e.g., the relative importance of sensitivity vs. specificity. In addition, CAD-AI 

systems designed for different intended uses may have different performance requirements; 

for example, CAD-AI systems designed for disease detection in a concurrent-read paradigm 

generally should have higher sensitivity and specificity than those used in a second-read 

paradigm due to potentially increased reader reliance on the computer output in the former 

setting. CAD-AI devices that operate at performance levels that rival those of human experts 

[146-148] could potentially be the basis for future autonomous AI devices that bypass human 

interpretation in selected cases or for selected tasks. An example of such applications is rule-

out devices, a class of devices designed to identify and remove negative cases without 

clinician review. Although some authors have considered rule-out as a subset of the triage 

paradigm, the clinical implementation of each requires a unique set of strategies and 

performance assessment considerations due to different levels of risk associated with each 

approach.  

 

5.4 Standalone Performance Assessment 

The evaluation of a CAD-AI algorithm includes both benchmarking algorithm 

performance and assessing the added value to the end user provided by the algorithm in 

improving clinical decision making [5]. Standalone performance assessments are employed 

during development to allow for modifications to be quickly compared to previous models.  

For benchmarking, overall performance is based on an independent dataset representative of 

the clinical population acquired using the expected range of image acquisition technologies 

and protocols for the intended use.   

 

 

5.5 Clinical Reader Performance Assessment 

A clinical reader performance assessment is used to estimate the clinical impact of a 

CAD-AI algorithm [153, 154].  A common approach for assessing clinical performance is 

through a controlled reader study (either retrospective or prospective), directly comparing the 

performance of a human reader without and with output from the CAD-AI system [155, 156].  

A disadvantage of this approach is that the estimated performances are unlikely to match 

those in the true clinical setting because of differences in the cases, physicians, and reading 

process.  It is important to realize that both the population of patients undergoing the 

examination (cases) and the population of physicians interpreting the data (readers) are 

sources of substantial variability in clinical reader studies [157].  Specialized statistical and 

methodological tools are needed for these analyses [158]. Well-designed clinical reader 

studies can be used to gain Food and Drug Administration approval (or approval by a similar 

organization outside of the United States) for clinical use of a CAD-AI system and are often a 

precursor to direct assessment of diagnostic performance in clinical practice (Section 6.4.3). 
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5.6 Sample Size 

Assessing performance dependency on the training sample size in medical imaging is 

important to achieve a viable clinical translation. As previously discussed (Section 4.1), small 

training sample sizes may lead to overfitting, or overtraining, of CAD-AI algorithms. In 

general, the performance of CAD-AI systems depends on the training sample size, disease 

prevalence, the number of features and their statistical distribution, the choice of the CAD-AI 

model, and the scoring metric [82, 85, 159, 160].  For the deep learning techniques, the 

training sample size is even more critically important since millions of parameters need to be 

determined. Even when deep learning models are trained with transfer learning (Section 4), 

the training sample size is still a major factor that affects performance and generalizability. 

The variability in the algorithm performance from repeated experiments at different sample 

sizes can be used to assess overfitting and generalization error [75, 108]. 

 

5.7 Reproducibility 

It is important to clearly specify the conditions under which the results of a CAD-AI 

system are reproducible. Recent studies have distinguished among different types of 

reproducibility [161-163]. Three types of reproducibility have been defined, the first two of 

which are relevant for model validation and successful clinical deployment of CAD-AI 

systems.   

Technical reproducibility refers to the ability to precisely replicate reported results 

(usually in a publication) based on a complete description of the method and release of the 

corresponding code and dataset.  

Statistical reproducibility refers to a result being valid (within a specified standard 

deviation or confidence interval) when different variations of the training conditions are 

applied. Variations in training conditions will result, for example, from different random 

seeds, from different partitions of the training set, or from different strategies to divide the 

dataset into training and test subsets. Statistical reproducibility in model performance will 

also depend on the test set. If different test sets are sampled from the same population, the 

DCNN output will be different for the different test sets due to statistical variation of the test 

sets. If the test is repeated multiple times, and each time a different test set is randomly drawn 

from the population or by bootstrapping, the test performances can be considered samples 

from the same statistical distribution, from which the mean performance and standard 

deviation can be estimated. 

Inferential reproducibility refers to the ability to reach qualitatively similar conclusions 

from an independent replication of a study under conditions that match the conceptual 

description of the original study. 

 

5.8 Take Home Message on Performance Evaluation 
The most appropriate performance metric(s) will depend on the task and the reference 

standard. Often multiple performance metrics are appropriate, and use of multiple metrics is 

frequently desirable. Power calculations should be an integral part of study design, and 

performance analysis should include error estimates, assessment of statistical significance, 

and preferably assessment of reproducibility.  

 

 

6 Translation to Clinic 
 

The ultimate goal of developing CAD-AI system is to assist physicians in the health care 

process.  For clinical acceptance of a CAD-AI tool, many practical factors must be 

considered, such as generalizability to the clinical environment, efficiency of use in a clinical 
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workflow, explainability of the output, and assurance of performance consistency over time. 

This section will discuss topics related to the translation of CAD-AI tools to the clinic, 

including human-machine interface, user training, acceptance testing, and prospective 

surveillance.    

 

6.1 Human-Machine Interface   

One of the most important issues of introducing CAD-AI to clinical use is the 

presentation of its output to the physician.  The human-machine interface is a critical 

component that can impact the usefulness and the acceptability of a CAD-AI tool for clinical 

use. The interface design will depend on the intended use (e.g., disease detection, triaging, 

treatment response assessment); the amount, type, and complexity of information to be 

displayed (e.g. markers, parametric maps, likelihood scores); the reader paradigm; and the 

level of interactivity (e.g., when and how the physician can enable, disable, or query the CAD 

output).  Regardless of the task, some common requirements may include user friendliness, 

workflow efficiency, and the interpretability of the CAD-AI output or recommendations. 

The black-box nature of current CAD-AI tools is one of the roadblocks to translation of 

CAD-AI into clinical use. Providing uncertainty estimates of the output could allow a better 

understanding of the black box model and improve the safety of deep learning systems [164-

168]. For physicians to have confidence in a recommendation by a CAD-AI tool, it is helpful 

for them to understand the reasons behind the prediction or decision. The explanation has to 

be consistent with medical knowledge or supported by clinical evidence. Explainable AI 

(XAI) is an emerging machine learning area [169] that seeks to design interpretable AI 

models or, more commonly, provide post-hoc explanations for trained AI models; the most 

common approaches at present include generating visual heatmaps, providing examples of 

similar lesions or cases, and providing semantic textual explanations or cues [170].  A visual 

saliency map or a color heatmap of the image [171], which captures the relative contribution 

to the DCNN output score from various image locations, can be generated using a gradient-

based, perturbation-based, or class activation map-based (CAM) method [172-176]. The local 

interpretable model-agnostic explanations method (LIME) [177] similarly identifies the 

extent to which regions or pixels influence the particular prediction. The visualization 

provides some evidence of the correlation of the deep features and the output score to the 

input data; however, visualization maps (which are generally difficult for humans to 

interpret) are far from a complete explanation of why and how the features are connected and 

weighted to identify the target lesion [169, 176]. Saliency map techniques often cannot meet 

key requirements for utility and robustness, emphasizing the need for additional validation 

before clinical use [176]. For clinical tasks more complicated than lesion detection, the CAD-

AI tool may need to provide explanations or references that correlate the recommendation 

with the patient‟s medical conditions or other clinical data. Much more research and 

development are needed to determine physicians‟ preferences regarding user interface design 

for each type of application so that CAD-AI models can truly become intelligent decision 

support tools.  

 

6.2 User Training  

In translating technology to the clinic, an important step is to set expectations. Key to a 

user’s proper use of a CAD-AI tool is an understanding of the intended use, including the 

purpose and when and how it should be used in the radiology workflow [178]. For example, 

if a CAD-AI tool is developed for lesion detection, the user should be informed about 

whether the tool is designed and validated for use in a concurrent-read or second-read 

paradigm. CAD-AI tools designed for different intended uses may have different 

performance requirements; for example, CAD-AI systems designed for disease detection in a 
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concurrent-read paradigm generally should have higher sensitivity and specificity than those 

used in a second-read paradigm due to potentially increased reader reliance on the computer 

output in the former setting. 

A second key issue is to acquaint the user with both the capabilities and limitations of 

a specific decision-support tool.  Users should have a comfortable level of trust in the CAD-

AI tool but should always be aware of the performance limitations of the tool. The 

performance of a CAD-AI tool can be affected by patient demographics, imaging equipment, 

and image-acquisition protocols.  Even if a CAD-AI tool has been trained by the vendor with 

multi-institutional data and approved for clinical use, its performance in the local population 

may not be the same as that specified by the vendor.  An initial user-training and adjustment 

phase is recommended as an integral part of the deployment. During this phase, physicians 

should evaluate the performance of the CAD-AI tool on their patient cases by comparing with 

clinical outcomes to understand the characteristics of the cases for which the CAD-AI 

provides correct and incorrect recommendations, but they should refrain from being 

influenced by the CAD-AI output in their clinical decisions.  This adjustment phase will 

provide the user with a deeper understanding of the CAD-AI performance in the local setting, 

and also impart to the user an appropriate level of confidence in the recommendations 

generated by the decision-support system, which may reduce unrealistic expectations and 

improper use of a CAD-AI tool. For example, misusing a tool intended to be a second 

opinion as a concurrent reader may lead to disappointing outcomes, user dissatisfaction, and, 

most importantly, potential harm to patients [179]. The length of this training period may 

depend on the type of CAD-AI application, the level of risk, and the observed performance 

and consistency of the CAD-AI tool. The resulting insights may also provide useful feedback 

for the CAD-AI vendor [6]. 

 

6.3 Acceptance Testing  

CAD-AI software to be implemented for clinical use is considered a medical device; its 

performance, therefore, must meet certain standards.  Acceptance testing is an important 

step prior to clinical use of any CAD-AI tool [6, 178].  Manufacturers must provide 

instructions for use with detailed guidance on system installation, acceptance testing, 

acceptance criteria at installation and subsequent upgrades, and periodic QA.  The 

instructions for use must also include a description of the expected performance levels of the 

CAD-AI system along with tolerance limits and a graphic presentation of CAD-AI output 

layout and proper user interface configuration. 

A basic level of acceptance testing may use pre-collected data provided by the 

manufacturer or phantoms for testing the operation and consistency of certain CAD-AI 

functions after installation and compared with the expected outcomes.  Another level of 

acceptance testing should include a set of clinically representative cases collected by the 

individual clinical site.   The deviation of the resulting performance level from the 

performance level claimed by the CAD-AI manufacturer must be within specified tolerance 

limits.  For clinical sites that may not have a large set of cases readily available for 

acceptance testing, the clinical performance assessment may be conducted during the user 

training phase, which may be less quantitative but has the advantage of being most consistent 

with the clinical operations at that site. 

 

6.4 Prospective Surveillance  

 

6.4.1 Periodic quality assurance 

The goal of periodic QA is twofold: to establish a schedule of routine QA and to assure 

the consistency of clinical performance over time.  Routine QA should be implemented 
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(preferably by medical physicists in conjunction with routine QA testing of related medical 

imaging systems) to assess how variations in the imaging or data collection chain may affect 

the performance of the CAD-AI system [6, 178]. QA should also be performed whenever a 

CAD-AI software update occurs, which should always be announced by the software 

development company. The use of phantoms for this testing is recommended if the CAD-AI 

system is designed to be applicable to specific phantoms and its performance has been shown 

to be sensitive to the quality of images acquired from these phantoms.  To evaluate 

performance consistency in routine clinical cases, clinical sites and CAD-AI manufacturers 

should develop tools to track performance levels of certain indices and monitor deviations 

(e.g., a tool to track the number of markers per image for detection tasks [6]). 

The tolerance limits and corrective actions for any observed deviations should be 

established based on the CAD-AI application. The risk associated with any deviation will 

vary significantly for different diseases and tasks performed by the CAD-AI system. For 

example, if the system is an autonomous CAD-AI detection or decision tool for triaging or 

rule-out, immediate corrective actions are recommended, while tools designed only to 

provide second opinion or supplementary information may be less urgent.  Regardless of the 

risk level, awareness of these deviations by the physicians is critical as they may need to 

adjust their level of trust on the CAD-AI recommendation when performing clinical tasks.   

 

6.4.2 Performance monitoring for “continuous learning” systems  

For continuous learning CAD-AI systems implemented in the clinic, an additional risk 

results from learning from non-stationary data that may lead to catastrophic forgetting and 

degraded performance unbeknownst to the physicians in their daily use of the system [129]; 

furthermore, system performance may be frequently changing, which impacts its safety 

profile.  The manufacturer or the in-house development team must have well-defined QA 

procedures to validate the quality of data, including collateral information (e.g., clinical 

outcomes), and assess model performance after each update.  Before continuous learning 

CAD-AI systems can be translated into the clinic, extensive work is required to develop 

practical and reliable QA methods that enable performance monitoring to ensure safe use. 

 

6.4.3 Prospective evaluation of CAD-AI  

Large-scale prospective performance assessment of CAD-AI systems will evaluate the 

impact of CAD-AI on workflow efficiency, physician performance, cost-effectiveness, and 

patient outcomes in the clinical setting. Prospective evaluation of CAD-AI typically falls into 

two categories: randomized controlled trials (RCTs) and observational studies.  

RCTs are designed to control for sources of bias through randomization, blinding, and 

allocation concealment. RCTs are logistically difficult to organize and generally require a 

large patient population. A common design is the sequential study, in which the physician 

interprets each case first without the assistance of CAD-AI and then, after formally recording 

his or her findings, interprets the case again while reviewing the CAD-AI recommendation 

[180-186].  This sequential design, however, cannot be applied with concurrent-read or triage 

paradigms, as discussed in Section 5.3 (Table 2).  

Well-designed observational studies can be highly informative and much easier to 

conduct than RCTs [187]. The most common design is the historical-control study, in which 

the performance of groups of radiologists over different periods of time is compared; the 

patient cohorts and radiologists involved may not be identical for the two time periods. 

Observational studies are commonly used when a new predictive or diagnostic CAD-AI 

system has been available in clinical practice for some time after regulatory approval [188-

191]; however, care must be taken to account for differences such as the characteristics of the 

patient population and physicians‟ experience between the two time periods, since such 
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differences may bias the observed outcomes. Relevant statistical procedures such as 

stratification and multivariate regression modeling can be used to account for confounding 

factors. 

The reporting of a clinical trial evaluating a CAD-AI system in the literature should allow 

readers to identify potential sources of bias and, ideally, reproduce the results. Factors that 

may bias or impact the results include the study population, data acquisition, characteristics 

of the CAD-AI device, human-AI interaction, user training, study end-point, reference 

standard, and statistical methods, all of which should be clearly identified and reported. 

Additionally, the SPIRIT-AI [192] and CONSORT-AI [193] extensions provide general 

guidelines when drafting clinical trial protocols or reports that target or include CAD-AI 

systems of any kind. It should be noted that the CONSORT-AI statement does not yet cover 

advanced learning paradigms such as continuously evolving or adaptive systems, the 

performance of which may change over time, and underscore the importance of a robust post-

deployment surveillance plan. 

 

6.5 Take Home Message on Translation to Clinic 

Translation of a CAD-AI system to the clinic requires an efficient user interface, 

acceptance testing to validate smooth integration into the workflow and expected 

performance, adequate user training to ensure proper use and sufficient understanding of 

CAD-AI performance in the local clinical environment, and robust post-deployment QA 

procedures to monitor the consistency of performance over time. More advanced validation 

will involve prospective clinical assessments of the impact of CAD-AI on clinical outcomes 

using well-designed clinical trial protocols. 

 

7 Discussion 

The development of generalizable, robust, and reliable CAD-AI decision support systems 

is of critical importance for both laboratory proof-of-concept applications and for real-world 

applications in clinical practice. 

To address these important issues, the American Association of Physicists in Medicine 

(AAPM) assigned a task to the Computer-Aided Image Analysis Subcommittee (CADSC), in 

part, to develop recommendations on “best practices” for the development, performance 

assessment, and clinical translation of CAD-AI systems, which are discussed in this task 

group report. Although we focus on CAD-AI systems for medical imaging, the principles of 

the processes discussed herein are general and applicable to a broad range of AI applications 

in the medical field.  

A summary of the recommendations (“take home messages”), for best practices for (1) 

data collection, (2) establishing reference standards, (3) model development, (4) performance 

assessment, and (5) the translation to clinical practice is presented in Table 3.  

 

Conclusions 

The rigor and reproducibility of CAD-AI systems will provide the foundation for the 

success of such systems when translated into clinical practice.  As a community, we are 

obligated to ensure that the scientific integrity of systems we develop in the laboratory can 

endure the variabilities and the required reliability in clinical practice to benefit patient care.  

The topics discussed in this report are all essential elements of CAD-AI systems that, when 
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diligently considered during system development and validation, should provide the greatest 

opportunity for successful clinical translation. 
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Figure Legends 

 
Figure 1.  Overview of computer-aided diagnosis applications 
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Figure 2. Overview of development of computer-aided decision support systems 

 

 

 

 

Table 1. Type of data shift. 

Data Shift Definition 

Prevalence shift training and test datasets have different disease prevalence (class 

imbalance) 

Acquisition or 

domain shift 

different imaging equipment or imaging protocols are used between 

training and test datasets 

Population shift intrinsic characteristics (e.g., demographics or disease presentation) of 

the populations under study differ between training and test datasets 

Annotation or label 

shift  

class definition changes between training and test datasets, e.g., due to 

inter-rater variability or lack of standardization in the class definitions 
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Table 2. Different paradigms of CAD-AI systems. 

Paradigm Intended Use Evaluation approach 

Second read Improving decision making by 

providing a second opinion to 

the physician after initial 

interpretation 

Assessment of physician performance 

without and with the aid in a sequential 

reader study design; first interpret each 

case without, then with, CAD-AI system 

[5, 134, 149-151]; or independent or 

crossover study design similar to that of 

concurrent read. 

Concurrent 

read 

Improving decision making by 

showing system output to the 

physician at the same time as 

initial interpretation 

Assessment of physician performance 

without and with the aid in an 

independent or crossover reader study 

design; cases are interpreted in batches 

either with or without the aid after a 

sufficient washout time and in counter-

balanced manner to reduce the potential 

memorization effects [5, 134, 152] 

Triage Improving workflow by 

prioritization: All cases are 

interpreted but order prioritized 

by CAD-AI system [153, 154] 

Assessment of process improvement by 

local clinical operations 

Rule-out Improving workflow by 

removal of normal or negative 

cases from workflow: The 

removed cases are not 

interpreted by physician. 

Comparison of performance with and 

without rule-out in clinical practice 

 [146-148] 

  

 

Table 3. Summary of recommendations on the best practices and standards for the 

development and performance assessment of computer-aided decision support systems.  

Section Take Home Message 

Data In summary, proper data collection methods are of critical 

importance to successful training, validation, and implementation 

of CAD-AI algorithms.  Improper collection and manipulation of 

data (such as improper data augmentation) can lead to an 

overestimation of performance or lack of generalizability. 

Reference Standards The required type and granularity of the reference standard 

depends on the task at hand. An objective reference standard is 

preferred; however, when a subjective reference standard cannot 

be avoided, independent assessments of multiple domain experts 
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should be obtained and their variabilities should be evaluated. 

Model Development Training approaches, especially for deep learning algorithms, are 

continuously improving with the goal of achieving robust, 

effective, and privacy-preserving CAD-AI models. An 

independent test set representative of the intended use that was 

not employed to guide model optimization in any learning 

paradigm is of critical importance. Robust training methods, 

although important for all CAD-AI systems, are especially 

important for systems that may operate in clinical practice with 

minimal or no human supervision. 

Performance Assessment The most appropriate performance metric(s) will depend on the 

task and the reference standard. Often multiple performance 

metrics are appropriate and use of multiple metrics is frequently 

desirable. Power calculations should be an integral part of study 

design, and performance analysis should include error estimates, 

assessment of statistical significance, and preferably assessment 

of reproducibility. 

Translation to Clinic Translation of a CAD-AI system to the clinic requires an 

efficient user interface, acceptance testing to validate smooth 

integration into the workflow and expected performance, 

adequate user training to ensure proper use and sufficient 

understanding of CAD-AI performance in the local clinical 

environment, and robust post-deployment QA procedures to 

monitor the consistency of performance over time. More 

advanced validation will involve prospective clinical assessments 

of the impact of CAD-AI on clinical outcomes using well-

designed clinical trial protocols. 

 

 


