
The Canadian Journal of Statistics 111
Vol. 51, No. 1, 2023, Pages 111–133
La revue canadienne de statistique

Multivariate online regression analysis with
heterogeneous streaming data
Lan LUO1* and Peter X.-K. SONG2

1Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242-1409, USA
2Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA

Key words and phrases: dynamic effects; Kalman filter; online learning; state-space mixed models;
streaming data.

MSC 2020: Primary 62M20.

Abstract: New data collection and storage technologies have given rise to a new field of streaming data
analytics, called real-time statistical methodology for online data analyses. Most existing online learning
methods are based on homogeneity assumptions, which require the samples in a sequence to be independent
and identically distributed. However, inter-data batch correlation and dynamically evolving batch-specific
effects are among the key defining features of real-world streaming data such as electronic health records
and mobile health data. This article is built under a state-space mixed model framework in which the
observed data stream is driven by a latent state process that follows a Markov process. In this setting,
online maximum likelihood estimation is made challenging by high-dimensional integrals and complex
covariance structures. In this article, we develop a real-time Kalman-filter-based regression analysis
method that updates both point estimates and their standard errors for fixed population average effects while
adjusting for dynamic hidden effects. Both theoretical justification and numerical experiments demonstrate
that our proposed online method has statistical properties similar to those of its offline counterpart and
enjoys great computational efficiency. We also apply this method to analyze an electronic health record
dataset. The Canadian Journal of Statistics 51: 111–133; 2023 © 2021 Statistical Society of Canada
Résumé: Les nouvelles technologies de collecte et de stockage des données ont donné naissance à un
nouveau domaine d’analyse de flux de données, y compris les méthodologies statistiques d’analyse en
temps réel de données en ligne. La plupart des méthodes d’apprentissage en ligne existantes reposent sur
des hypothèses d’homogénéité qui supposent que les échantillons d’une séquence sont indépendants et
identiquement distribués. Or la dépendance inter lots et l’évolution dynamique de leurs effets spécifiques
sont des caractéristiques typiques de flux de données réelles, comme c’est le cas pour les dossiers de santé
électroniques et les données de santé mobiles. A cet effet, le présent travail est élaboré dans le cadre d’un
modèle espace-état mixte dans lequel le flux de données observé est guidé par un processus d’état latent qui
suit un processus Markov. Il va sans dire qu’un tel cadre de travail complique l’estimation de la probabilité
maximale en ligne et ce en raison d’intégrales à haute dimension et de structures de covariance complexes.
Les auteurs de cet article développent une méthode d’analyse de régression basée sur le filtre de Kalman
en temps réel. Cette dernière, tout en ajustant les effets cachés dynamiques, elle produit des estimations
ponctuelles et leurs erreurs standard des effets fixes moyens. A la lumière des résultats théoriques et
des expériences numériques présentés, les auteurs affirment que la méthode proposée a des propriétés
statistiques similaires à son homologue hors ligne et bénéficie d’une grande efficacité de calcul. Elle a
également été mise en pratique sur des données de dossiers de santé électroniques. La revue canadienne de
statistique 51: 111–133; 2023 © 2021 Société statistique du Canada
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1. INTRODUCTION

The advent of distributed cluster-computing paradigms such as Apache Spark (Bifet et al.,
2015) has motivated new developments in data analytics for large-scale data processing. Such
innovations enable effective analyses of streaming data assembled through, for example, national
disease registries, mobile health consortia, and infectious disease surveillance programs. One
of the defining features of streaming data is that, typically, observations become available
sequentially over time at a high velocity. Researchers learn from the sequence of data batches
to update answers to questions of scientific interest, including assessing disease biomarkers,
monitoring product safety, and validating drug efficacy and side-effects in phase IV clinical
trials, among others.

This article is primarily motivated by a large-scale electronic health record database managed
by the Scientific Registry of Transplant Recipients (SRTR) since 1984. This database is
constantly updated, with new patients added to the transplant wait list in the United States every
10 min, resulting in a yearly average of over 25,000 transplant entries since the mid-2000s.
Because of the lack of suitable data analytic methods, data collected in real time have been
analyzed in a static fashion, leading to latency in the translation of data into clinical knowledge.
In addition, conventional static data-analytic approaches are often complicated by limitations in
data storage and computational capacity when dealing with high-throughput electronic health
records. These analytic and computational challenges call for reliable and efficient real-time
statistical methodologies that promote the timely processing of data to improve clinical decision
making, in terms of both learning and inference.

The motivating data in this article consist of a sequence of a kidney transplant datasets
updated yearly during the 24-year period from 1994 to 2017. Our analysis uses a total of 158,204
kidney transplant recipients in the United States with complete personal clinical information.
A primary analytic interest is updating learning and inference for important risk factors related
to post-transplant serum creatinine, a key biomarker of renal function used to monitor the
post-transplant graft condition of a transplanted organ. Primarily, we aim to update the estimated
effects of risk factors on a regular basis, namely when new data become available each year.
Traditional static data analysis would start with a very large data file composed of both old
and new data and then analyze this dataset using suitable statistical methods and software.
This traditional approach is not computationally efficient: if we plan to run the same analysis
annually over the next 24 years, we need to repeatedly overcome the same logistic barriers
such as maintaining and renewing a data-use agreement and accessibility to raw data annually
throughout the 24-year period. Additionally, repeating the same data cleaning, preprocessing,
and analysis procedures 24 times with expanded data is clearly laborious, expensive, and time
consuming. Thus, it is appealing to develop a smarter solution to conduct this type of data
analysis, particularly for streaming data that arrive at a fast rate in large volumes, such as mobile
health data.

Most existing methods such as stochastic gradient descent (Robbins & Monro, 1951; Sakrison,
1965; Toulis & Airoldi, 2015) and other online estimation and inference methods (Schifano
et al., 2016; Luo & Song, 2020) are built under the homogeneity assumption: all data batches
are generated from the same underlying mechanism, and observations arriving over time are
independently sampled. Arguably, this widely adopted assumption of independent and identically
distributed (i.i.d.) for streaming data is only for mathematical convenience and may be violated
in many real-world applications. In practice, different data batches are often heterogeneous
and correlated over different sampling points. In the kidney transplant dataset, it is clinically
more so where associations between risk predictors and post-transplant serum creatinine evolve
dynamically rather than remain constant over the 24-year period. For example, constantly
improving organ-matching strategies can alter the effects of risk factors over time. Thus,
improvements in medical care or clinical facilities over time may be modelled as temporal
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confounding variables, while risk factors (e.g., age, sex, and body mass index) of primary
interest may be assessed as population-average fixed effects. In the literature, continuous data
streams are structured as time-series data, for instance, as collected from traffic sensors (Chen
et al., 2005), health sensors (Dias & Paulo Silva Cunha, 2018), transaction logs (Zhang, Jansen
& Spink, 2009), and activity logs (Ciuciu et al., 2008). Incorporating dynamic heterogeneity and
correlation into the analysis of data streams leads to increased complexity in modelling and
statistical inference and is a difficult problem, even in offline settings (L’Heureux et al., 2017;
Sadik, Gruenwald & Leal, 2018). It is of great interest to generalize the renewable estimation and
incremental inference for i.i.d. samples in Luo & Song (2020) to scenarios with both correlation
and dynamic temporal effects.

State-space models, also termed dynamic models, are a very flexible class of models
for analyzing time-series or longitudinal data when the number of repeated observations is
large (Kitagawa, 1987; West & Harrison, 1997; Jørgensen et al., 1999). These models are widely
used in many applied areas such as economics, engineering, and biology. Classical state-space
models refer to a class of hierarchical models where an observation process is driven by a latent
state process that may incorporate trend, seasonal, or time-varying covariate effects.

State-space models appear very flexible in the modelling of certain stochastic behaviours
where a latent state process may account for both inter-data batch correlation and time-varying
heterogeneity in a sequence of observed data batches. This latent process represents temporally
or spatially evolving batch-specific effects. In most cases, learning the latent states via, say,
filtering or smoothing is a primary goal of statistical analyses. However, our analytic needs in
streaming data analysis are based on real-time regression, where we focus primarily on updating
parameter estimation and inference for population-average fixed effects of key clinical risk
factors that are shared across data batches. This type of state-space model, with the addition of
population-average effects, is termed a state-space mixed model by Czado & Song (2008).

In applications with large volumes of streaming data, existing offline approaches to fit
state-space models require large amounts of computing memory and storage, and repeatedly
fitting such models offline may become computationally expensive and even infeasible. For the
case where the sample space of the latent state is finite, such as in hidden Markov models, an
efficient online expectation–maximization (EM) algorithm (Dempster, Laird & Rubin, 1977)
based on sufficient statistics has been developed by Cappé (2011). But this algorithm is greatly
challenged from a computational perspective by state-space models where the sample space of
the latent process is infinite, leading to the introduction of Monte Carlo approximations (Cappé
& Moulines, 2009). It is worth noting that most online methods for fitting state-space models
are built in a Bayesian paradigm where inference on the latent process, rather than on the
fixed effects, is of primary interest. One such example is the streaming variational Bayes
method (Broderick et al., 2013) developed for Gaussian process state-space models (Frigola,
Chen & Rasmussen, 2014). There is a lack of online regression analysis via state-space models
that focus on estimation and inference for population-average fixed effects and adjust for
dynamic covariate effects governed by the latent process. Population-average fixed effects are
of primary interest in many clinical studies examining the relationship between an outcome and
covariates. State-space regression models that contain both deterministic and random predictors
have been widely studied in many static settings, for example, in the analysis of longitudinal
count data (Jørgensen et al., 1999) and binomial responses (Czado & Song, 2008).

In this article, we develop a new Kalman filter along with an online estimation procedure for
linear state-space mixed models. This multivariate online regression analysis (MORA) method
enables real-time estimation of both fixed effects and their standard errors. In an online regression
paradigm based on linear state-space mixed models, we generalize the renewable estimation and
incremental inference methodology proposed in Luo & Song (2020) to estimate fixed effects
with both statistical and computational efficiency. Inter-data batch heterogeneity is modelled
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by a batch-specific latent effect that follows a stationary AR(1) process. A crucial step in the
proposed methodology is obtaining the conditional distribution of state variables given the data
and other model parameters, which we do in a spirit similar to the E-step in the EM algorithm.
Maximum likelihood estimation is challenging because of the lack of closed-form expressions
for likelihood functions, which typically involve high-dimensional integrals. In our setting, the
dimensions of these integrals become infinite when data batches arrive perpetually over time.
Thus, approaches permitting approximations are necessary. This will be discussed in detail in
this article.

Approximation via the Monte Carlo method is less appealing as far as computational
burden is concerned. Instead, we develop an analytic solution through the best linear unbiased
predictor in this article, which has been given as an extension of the classical Kalman filter
recursion (Harvey, 1981; Song, 2007). The seminal Kalman filter is known as a computationally
efficient method that utilizes the first-order Markovian properties of latent states to calculate
conditional moments recursively. The resulting recursive data analytics meet the sequential
processing needs of MORA where historical, subject-level data are not retrievable and thus not
used. The proposed inference procedure resembles the offline Kalman estimating equation (Song,
2007). The Kalman estimating equation is a generalization of the EM algorithm in which the
E-step is based on a recursive best linear unbiased predictor and the M-step solves an augmented
estimating equation. Kalman estimating equations avoid the use of Monte Carlo estimation
in the E-step, and instead adopt analytic recursive estimation using a Kalman filter. Our
proposed MORA method further generalizes the ideals of offline Kalman estimating equations
by accommodating heterogeneity in streaming data. Our generalization consists of two new
technical elements: the first uses our new online Kalman filter in the E-step to recursively update
the conditional means of dynamic latent states, and the second updates population-average fixed
effects using summary statistics from historical data rather than historical, individual-level data,
similar to the renewable estimation procedure proposed by Luo & Song (2020). In the setting
of a linear state-space mixed model, solving a Kalman estimating equation for the fixed effects
has a closed-form solution that is linearly separable by data batches. This separability turns the
generalized offline Kalman estimating equation into an online version applicable to streaming
data, so the resulting online procedure is scalable to larger volumes of heterogeneous streaming
data.

The organization of this article is as follows. Section 2 begins with a brief overview of
model assumptions and recursive formulas relevant to the Kalman filter. Section 3 presents key
analytic derivations and establishes theoretical guarantees for our proposed MORA method.
Section 5 concerns the architecture for the implementation of MORA via the expanded Lambda
architecture in Spark (Luo & Song, 2020). Simulation experiments are given in Section 6 to
evaluate the performance of MORA. We apply MORA to analyze the kidney transplant dataset,
adjusting for some time effects, in Section 7. Finally, we make some concluding remarks in
Section 8. A detailed proof of the large-sample property presented in Section 4 is included in the
Appendix.

2. MODEL

This section consists of three parts: we introduce state-space mixed models, the Kalman filter
estimation procedure, and the mean square error matrix that will be used in online statistical
inference.

2.1. Formulation
At a time point b ≥ 2, a sequence of b data batches, each with a sample size of n𝑗 , for 𝑗 = 1,… , b,
arrives sequentially, with a cumulative sample size Nb =

∑b
𝑗=1 n𝑗 . The 𝑗th data batch is denoted
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FIGURE 1: A comb structure for a hierarchical dynamic system. Data batches {Db, b ≥ 1} are
generated from a state-space mixed model with common effect 𝜶 and batch-specific latent effects

{𝜷b, b ≥ 1} governed by a Markov process.

by D𝑗 =
{

y𝑗 ,X𝑗 ,Z𝑗
}

, where y𝑗 =
(
y𝑗1,… , y𝑗n𝑗

)⊤ ∈ ℝn𝑗×1, X𝑗 =
(
x𝑗1,… , x𝑗n𝑗

)⊤ ∈ ℝn𝑗×p, and

Z𝑗 =
(
z𝑗1,… , z𝑗n𝑗

)⊤ ∈ ℝn𝑗×q, for 𝑗 = 1,… , b are the vector of responses and the associated
covariate matrices for the observed and latent processes, respectively. Here, n𝑗 = |D𝑗|. The

cumulative outcome vector and covariate matrices are denoted by y⃗b =
(
y⊤1 ,… , y⊤b

)⊤ ∈ ℝNb×1,
⃗Xb =

(
X⊤

1 ,… ,X⊤

b

)⊤ ∈ ℝNb×p and ⃗Zb =
(
Z⊤1 ,… ,Z⊤b

)⊤ ∈ ℝNb×q. Let D⋆

b = {D1,… ,Db} be the
cumulative data up to batch b, with Nb = |D⋆

b |. Note that, in a streaming data setting, the batch
size nb is not supposed to diverge to infinity, but the cumulative sample size Nb is. For simplicity,
Db may be taken as a set of indices. In the framework of state-space mixed models, we postulate
a first-order Markov process {𝜷b ∶ b ≥ 1} to account for cross-batch heterogeneity. We assume
that the two series {Db ∶ b ≥ 1} and

{
𝜷b ∶ b ≥ 1

}
follow a hierarchical dynamic system defined

as follows and as shown in Figure 1:

(A1) given 𝜷b, the outcome vector yb is conditionally independent of the other ybs;
(A2) {𝜷b ∶ b ≥ 1} is a first-order Markov process, with the initial 𝜷1 assumed to be a fixed,

unknown parameter;

(A3) yb = Xb𝜶 + Zb𝜷b + 𝝐b with 𝝐b
ind∼ nb

(0, 𝜙I), where 𝜶 is the vector of population-average
fixed effects for the covariates Xb, 𝜷b is the vector of random effects for the covariates Zb,
𝜙 is the dispersion parameter, and I denotes an identity matrix;

(A4) 𝜷b+1 = Bb𝜷b + 𝝃b, where Bb is a q × q transition matrix and 𝝃b
i.i.d.∼ q

(
0, 𝛿Iq

)
is Gaussian

white noise, with 𝝃b and 𝝐b independent.

In particular, for a stationary AR(1) process, Bb = diag(𝜌1,… , 𝜌q) with |𝜌s| < 1 for all
s = 1,… , q, where 𝜌s is the autocorrelation coefficient between the sth components in
𝜷b+1 and 𝜷b. For a random walk process, Bb = Iq, so 𝜷b+1 = 𝜷b + 𝝃b, where 𝛿 = 0 leads
to the homogeneous case 𝜷b+1 = 𝜷b used extensively in current literature on online regression
analysis.

Among many types of state-space models, in this article we focus on a class of lin-
ear state-space models with stationary latent processes, that is, a class of models satisfying
assumptions (A3) and (A4) with Bb having a bounded spectrum norm, i.e., ‖Bb‖2 ≤ 1. Obvi-
ously, this condition is easily satisfied when Bb is a diagonal matrix of stationary AR(1)
processes.

2.2. Kalman Filter
A Kalman filter is used to calculate the conditional mean and variance of the latent state variable
or batch-specific effects {𝜷b ∶ b ≥ 1}. Under (A1)–(A4), given the prediction at data batch b,
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the conditional mean mb−1, and covariance Cb−1, the Kalman filter proceeds recursively as
follows:

(i) Compute two types of predictions

𝜷b ∣ D⋆

b−1 ∼q
(
Bb−1mb−1,Hb

)
and yb ∣ D⋆

b−1 ∼nb

(
𝒇 b,Qb

)
,

where

Hb = var
(
𝜷b ∣ D⋆

b−1

)
= Bb−1Cb−1B⊤

b−1 + 𝛿Iq,

𝒇 b = 𝔼
(
yb ∣ D⋆

b−1

)
= ZbBb−1mb−1 + Xb𝜶

and Qb = var
(
yb ∣ D⋆

b−1

)
= 𝜙Inb

+ ZbHbZ⊤b .

(ii) Let Kb = H⊤

b Z⊤b Q−1
b and update the prediction 𝜷b ∣ D⋆

b ∼p
(
mb,Cb

)
, where

mb = 𝔼
(
𝜷b ∣ D⋆

b

)
= Bb−1mb−1 +H⊤

b Z⊤b Q−1
b

(
yb − 𝒇 b

)

and Cb = var
(
𝜷b ∣ D⋆

b

)
=
(
Iq − KbZb

)
Hb.

Consequently, the two inferential quantities needed in our online regression method can be
updated by the Kalman filter with the form

𝔼
(
𝜷b ∣ D⋆

b , �̃�b−1, �̃�b−1
)
= mb, and var

(
𝜷b ∣ D⋆

b , �̃�b−1, �̃�b−1
)
= Cb, (1)

where 𝜻 = (𝜙, 𝜌, 𝛿)⊤ is a vector of nuisance parameters.

2.3. Mean Square Error Matrix

Let m⃗b =
(
m⊤

1 ,m
⊤

2 ,… ,m⊤

b

)⊤ and 𝜷b =
(
𝜷
⊤

1 , 𝜷
⊤

2 ,… ,𝜷
⊤

b

)⊤
. Assume that

𝜷b ∣ D⋆

b ∼bp
(
m⃗b,𝚺b

)
,

where𝚺b = 𝔼
{(
𝜷b − m⃗b

)(
𝜷b − m⃗b

)⊤} is the mean square error matrix of size bq × bq. The block
diagonal elements of the matrix 𝚺b are 𝚺b(𝑗, 𝑗) = C𝑗 (𝑗 = 1,… , b), and the off-diagonal blocks

are 𝚺b(𝑗, 𝑗 + h) = 𝚺⊤b (𝑗 + h, 𝑗) = 𝔼
{(
𝜷𝑗 −m𝑗

) (
𝜷𝑗+h −m𝑗+h

)⊤
}
. Following similar algebra

given in Jørgensen & Song (2007),

𝚺b(𝑗, 𝑗 + h) =
(

B𝑗C
⊤

𝑗
W−1
𝑗

)(
B𝑗+1C⊤

𝑗+1W−1
𝑗+1

)
· · ·

(
B𝑗+h−1C⊤

𝑗+h−1W−1
𝑗+h−1

)
C𝑗+h,

where W𝑗 = var
(
𝜷𝑗+1 − B𝑗m𝑗

)
= 𝛿Iq + B𝑗C𝑗B

⊤

𝑗
. In particular, 𝚺b(𝑗, 𝑗 + 1) = B𝑗C

⊤

𝑗
W−1
𝑗

C𝑗+1.

3. ONLINE REGRESSION ANALYSIS

In this section, we first describe the online estimation procedure for regression coefficients of
population-average fixed effects, which is our primary interest. Then, we explain how to estimate
the nuisance parameters, including the dispersion and correlation parameters.
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3.1. Estimation of Population-Average Fixed Effects
In this article, we focus on online estimation and inference for the common fixed effect 𝜶, which
will benefit from the accumulation of data batches. For the batch-specific effects {𝜷b ∶ b ≥ 1},
we just report results from a single batch-based analysis.

To proceed with maximum likelihood estimation, we first write out the marginal likelihood
function for the parameters of interest, (𝜶, 𝜻):

L
(
𝜶, 𝜻 ∣ D⋆

b

)
=
∫ℝq(b−1)

P
(
y𝑗 ∣ 𝜷𝑗 ,𝜶, 𝜻

)
P
(
𝜷𝑗 ∣ 𝜷𝑗−1, 𝜻

)
d𝜷2d𝜷3 · · · d𝜷b,

where the integral is q(b − 1)-dimensional, and both P
(
y𝑗 ∣ 𝜷𝑗 ,𝜶, 𝜻

)
and P

(
𝜷𝑗 ∣ 𝜷𝑗−1, 𝜻

)
are

multivariate normal distributions.
Treating 𝜷b as missing data, we obtain the augmented log-likelihood

𝓁
(
𝜶, 𝜻 ∣ D⋆

b ,𝜷b

)
=

b∑

𝑗=1

log P
(
y𝑗 ∣ 𝜷𝑗 ,𝜶, 𝜻

)
+

b−1∑

𝑗=1

log P
(
𝜷𝑗+1 ∣ 𝜷𝑗 , 𝜻

)
.

In order to use the EM algorithm (Dempster, Laird & Rubin, 1977) to perform maximum
likelihood estimation, we maximize the Q-function Q

(
𝜶, 𝜻 ∣ 𝜶′, 𝜻 ′

)
= 𝔼

{
𝓁
(
𝜶, 𝜻 ∣ D⋆

b ,𝜷b
)}
,

where the expectation is taken under the conditional distribution P
(
𝜷b ∣ D⋆

b ,𝜶
′, 𝜻 ′

)
. Here, 𝜶′ and

𝜻
′ are updated parameter values from the previous iteration. This maximization can be carried

out by solving the augmented score equations

U⋆

b,1(𝜶, 𝜻) =
b∑

𝑗=1

X⊤

𝑗

{
y𝑗 − X𝑗𝜶 − Z𝑗𝔼

(
𝜷𝑗 ∣ D⋆

b ,𝜶
′, 𝜻 ′

)}
= 0

and U⋆

b,2(𝜶, 𝜻) =
b−1∑

𝑗=1

{
𝜷𝑗+1 − B𝑗𝔼

(
𝜷𝑗 ∣ D⋆

b ,𝜶
′, 𝜻 ′

)}
= 0.

Instead of using Monte Carlo techniques to compute the conditional mean 𝔼
(
𝜷𝑗 ∣ D⋆

b ,𝜶
′, 𝜻 ′

)
, the

best linear unbiased predictor (BLUP) (Robinson, 1991) can be used to speed up computation. An
obvious advantage of BLUP is that it can be quickly computed via the recursive Kalman formula.
In our proposed online regression analysis method, since historical, subject-level data are not
available, we adopt the Kalman filter 𝔼

(
𝜷b ∣ Db, �̃�b−1, �̃�b−1

)
, which is recursively updated using

only individual-level data in the current data batch Db rather than the historical cumulative data
D⋆

b−1. Upon the arrival of one data batch, following Titterington (1984) and Cappé & Moulines
(2009), we perform a one-step recursive update via the EM algorithm rather than iteratively until
convergence.

To further speed up the algorithm, instead of solving U⋆

b,2 = 0, we propose using method of
moments estimators for 𝜻 . In effect, as the cumulative sample size Nb increases, the choice of
the estimator for 𝜻 becomes less critical.

In summary, the online estimation procedure is conducted as follows:

• Step 1: Choose initial values for the parameters 𝜶 and 𝜻 , denoted by �̃�0 and �̃�0.
• Step 2: For b ≥ 1, given

√
Nb−1-consistent estimates �̃�b−1, �̃�b−1, and 𝛿b−1 from the previous

iteration, we update the fixed effects �̃�b−1 to �̃�b by solving the unbiased aggregated Kalman
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estimating equation (KEE)

Ũb(𝜶) =
Nb∑

i=1

Ui(𝜶) =
b∑

𝑗=1

X⊤

𝑗

(
y𝑗 − X𝑗𝜶 − Z𝑗m𝑗

)
= 0, (2)

where mb = 𝔼
(
𝜷b ∣ Db, �̃�b−1, �̃�b−1

)
is the Kalman filter obtained upon the arrival of Db using

the previous updates �̃�b−1, and �̃�b−1.
• Step 3: Given �̃�b, update the parameter vector �̃�b−1 to �̃�b by the method of moments given in

Section 3.2.

In the Gaussian linear model considered in this article, Equation (2) has the closed-form
solution

�̃�b =

(
b∑

𝑗=1

X⊤

𝑗
X𝑗

)−1 { b∑

𝑗=1

X⊤

𝑗

(
y𝑗 − Z𝑗m𝑗

)
}

, for b ≥ 1.

3.2. Estimation of Dispersion and Correlation Parameters
We invoke the method of moments to estimate both the dispersion and correlation parameters
𝜻 = (𝜙, 𝜌, 𝛿)⊤. First, note that the equation var

(
y𝑗 − X𝑗𝜶 − Z𝑗m𝑗

)
= 𝜙In𝑗 + Z𝑗C𝑗Z

⊤

𝑗
leads to the

moment estimator for the dispersion parameter 𝜙:

�̂�⋆b =
1

Nb

b∑

𝑗=1

(
y𝑗 − X𝑗 �̂�

⋆

b − Z𝑗m𝑗

)⊤(y𝑗 − X𝑗 �̂�
⋆

b − Z𝑗m𝑗

)
− 1

Nb

b∑

𝑗=1

∑

i∈D𝑗

P𝑗(i, i),

where P𝑗 = Z𝑗C𝑗Z
⊤

𝑗
, with P𝑗(i, i) corresponding to the ith diagonal block of P𝑗 . Additionally,

note that

𝛿Iq = var
(
𝜷𝑗+1 − B𝑗𝜷𝑗

)

= var
{
𝜷𝑗+1 −m𝑗+1 − B𝑗

(
𝜷𝑗 −m𝑗

)}
+ var

(
m𝑗+1 − B𝑗m𝑗

)

= C𝑗+1 + B𝑗C𝑗B
⊤

𝑗
− 2𝚺b(𝑗 + 1, 𝑗)B⊤

𝑗
+ var

(
m𝑗+1 − B𝑗m𝑗

)
.

Similarly, let E𝑗 = C𝑗+1 + B𝑗C𝑗B
⊤

𝑗
− 2𝚺b(𝑗 + 1, 𝑗)B⊤

𝑗
, with E𝑗(i, i) denoting the ith diagonal

block of E𝑗 . A moment estimator of 𝛿 is

𝛿⋆b =
1

bq

b∑

𝑗=1

(
m𝑗+1 − B𝑗m𝑗

)⊤ (m𝑗+1 − B𝑗m𝑗

)
+ 1

bq

b∑

𝑗=1

q∑

i=1

E𝑗(i, i).

These
√

Nb-consistent online estimators of 𝜙 and 𝛿, for b ≥ 1, are updated by

�̃�b =
Nb−1

Nb
�̃�b−1 +

nb

Nb
�̂�b and 𝛿b =

b − 2
b − 1

𝛿b−1 +
1

b − 1
𝛿b,

where �̂�b =
1
nb

(
yb − Xb�̃�b − Zbmb

)⊤(yb − Xb�̃�b − Zbmb
)
− 1

nb

∑
i∈Db

Pb(i, i), 𝛿b =
1
q
‖mb−

Bb−1mb−1‖
2 + 1

q

∑q
i=1 Eb(i, i).
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An estimate of B = diag
(
𝜌1,… , 𝜌q

)
is obtained by the moment conditions

cov
(
mb,mb−1

)
= B var

(
mb−1

)
+ C⊤

b−1cov
(
Yb − 𝒇 b,mb−1

)
= BCb−1.

Therefore, the lag-1 autocorrelation of the standardized filter may serve as an estimator of B. We

carry out online updates using the following estimator via the building blocks
(∑b

𝑗=2 m⊤
𝑗

m𝑗

)

and
(∑b

𝑗=1 m⊤
𝑗

m𝑗+1

)
, which are clearly separable across the sequence of Kalman filters

{mb ∶ b ≥ 1}:

B̃b =

(
b∑

𝑗=2

m⊤

𝑗
m𝑗

)−1 ( b∑

𝑗=1

m⊤

𝑗
m𝑗+1

)

, for b ≥ 2, with B̃1 = 0.

4. THEORETICAL GUARANTEES

In this section, we establish large-sample properties of the online estimators of the population-
average fixed effects 𝜶 proposed in Section 3. Let ℕ𝜖(𝜶0) = {𝜶 ∶ ‖𝜶 − 𝜶0‖2 ≤ 𝜖} be a neigh-
bourhood around the true value 𝜶0. Let U(𝜶) be generic notation for the score vector for a
single observation, and let the population sensitivity and variability matrices be denoted by

𝕊(𝜶) = 𝔼
𝜶

{
− 𝜕U(𝜶)

𝜕𝜶⊤

}
and 𝕍 (𝜶) = 𝔼

𝜶

{
U(𝜶)U⊤(𝜶)

}
, respectively. We assume the following

regularity conditions:

(C1) The true parameter value 𝜶0 lies in the interior of parameter space of 𝜶, denoted by Θ, a
compact subset of ℝp;

(C2) 𝔼
𝜶
{U(𝜶)} = 0 if and only if 𝜶 = 𝜶0;

(C3) The score vector U(𝜶) is twice continuously differentiable with respect to 𝜶, and the
sensitivity matrix 𝕊(𝜶) is of full-column rank for 𝜶 ∈ Θ;

(C4) The variability matrix 𝕍 (𝜶) is positive definite for 𝜶 ∈ ℕ𝜖(𝜶0).

Remark 1. The unbiasedness condition (C2) is required for consistency: it implies the

𝜻-insensitivity of the estimating equation (Song, 2007, Ch. 12), namely that 𝔼
{
𝜕U(𝜶)
𝜕𝜻⊤

}
= 0,

where 𝜻 is the nuisance parameter. This property ensures that the efficiency of the nuisance
parameter estimator has little influence on the estimation of 𝜶. Conditions (C3) and (C4) are
required to establish both estimation consistency and asymptotic normality. In linear models, the
regularity conditions (C2)–(C4) hold automatically.

Theorem 1. Under the regularity conditions (C1)–(C4), for fixed 𝜌, 𝜙, and 𝛿, �̃�b is consistent
and asymptotically normal, namely

√
Nb
(
�̃�b − 𝜶0

) d
→p

{
0,𝕁−1(𝜶0)

}
as Nb =

b∑

𝑗=1

n𝑗 → ∞,

where𝕁(𝜶0) = 𝕊⊤(𝜶0)𝕍−1(𝜶0)𝕊(𝜶0) is the Godambe information matrix of the inference function
in Equation (2).

The estimated asymptotic covariance matrix for �̃�b is var(�̃�b) =
(
S̃⊤b Ṽ−1

b S̃b
)−1, where

S̃b and Ṽb are calculated as follows. It is easy to see that the p × p sensitivity matrix

DOI: 10.1002/cjs.11667 The Canadian Journal of Statistics / La revue canadienne de statistique



120 LUO AND SONG Vol. 51, No. 1

S̃b =
∑b
𝑗=1 X⊤

𝑗

{
X𝑗 + Z𝑗L𝑗(�̃�𝑗)

}
, where Lb(�̃�b) = 𝔼

(
𝜕mb∕𝜕𝜶⊤

)
=
(
Iq − KbZb

)
Bb−1Lb−1

(
�̃�b−1

)

− KbXb and L0(�̃�0) = 0.
The variability matrix is updated as

Ṽb ≈
b∑

𝑗=1

X⊤

𝑗

(
�̃�𝑗In𝑗 + Z𝑗C𝑗Z

⊤

𝑗

)
X𝑗 − 2

b−1∑

𝑗=1

X⊤

𝑗
Z𝑗�̃�b(𝑗, 𝑗 + 1)Z⊤

𝑗+1X𝑗+1,

where �̃�b(𝑗, 𝑗 + 1) is the (𝑗, 𝑗 + 1)th off-diagonal block in the estimated mean square error matrix
in Section 2.3 with 𝛿𝑗 and B̃𝑗 , for 𝑗 = 1,… , b. It is worth noting that this is one computational
advantage of our proposed online inference method: it only requires the storage of the (𝑗, 𝑗)th
diagonal blocks for 𝑗 = 1,… , b and the (𝑗, 𝑗 + 1)th off-diagonal blocks for 𝑗 = 1,… , b − 1.
All these blocks are of dimension q × q, so related calculations are scalable with respect to
increasing b.

5. IMPLEMENTATION

Apache Spark is a unified data analytics platform for large-scale data processing. Built on
a distributed computing paradigm, it offers high performance for both batch and streaming
data. Its Lambda architecture is designed to achieve efficient communication and coordination
between batch and speed layers to handle streaming data. To implement our proposed online
regression analysis method, we expand the speed layer in Spark’s existing Lambda architecture
to accommodate inferential statistics such as sensitivity and variability matrices together with
other needed quantities in the recursive Kalman filter calculation. Consequently, the resulting
architecture consists of a speed layer and an inference layer responsible for the iterative
calculation detailed in Section 3. As shown in Figure 2, when a new data batch Db arrives,
the inference layer calculates the matrices involved in both the Kalman filter and inferential
statistics. These quantities are then sent to the speed layer to update the point estimates of

FIGURE 2: Diagram of the expanded Lambda architecture in which the online estimators �̃�b−1
and �̃�b−1 are updated to �̃�b and �̃�b at the speed layer and the online information matrices S̃b−1

and Ṽb−1 are updated to S̃b and Ṽb at the inference layer.
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𝜶 and 𝜻 . Finally, the outputs from both layers are combined to generate online regression
analysis results.

Algorithm 1 gives pseudocode implementing online regression analysis with dynamic het-
erogeneity in the expanded Lambda architecture.

Algorithm 1. Online regression analysis for heterogeneous streaming data via our
expanded Lambda architecture.

1 Input: sequentially arriving datasets D1,… ,Db,… ;
2 Outputs: �̃�b, var(�̃�b), B̃b, �̃�b, 𝛿b, mb and Cb, for b = 1, 2,… ;
3 Initialize: set initial values �̃�0 = 0p×1, R̃0 = 0p×1, G̃0 = S̃0 = Ṽ0 = 0p×p, L0 = 0q×p,

B̃0 = 10−3Iq×q and �̃�0 = 𝛿0 = 10−3 ;
4 for b = 1,… , do
5 Read in the dataset Db;

6 At the inference layer, calculate Hb = B̃b−1Cb−1B̃⊤

b−1 + 𝛿b−1Iq,
Qb = �̃�b−1Inb

+ ZbHbZ⊤b , Kb = H⊤

b Z⊤b Q−1
b , Cb = (Iq − KbZb)Hb,

Lb = (Iq − KbZb)Bb−1Lb−1 − KbXb, S̃b = S̃b−1 + X⊤

b (Xb + ZbLb),
Wb−1 = B̃b−1Cb−1B̃⊤

b−1 + 𝛿b−1Iq, 𝚺(b − 1, b) = B̃b−1CbW−1
b−1Cb−1,

Ṽb = Ṽb−1 + X⊤

b

(
�̃�b−1Inb

+ ZbCbZ⊤b
)
Xb − 2X⊤

b−1Zb−1𝚺(b − 1, b)Z⊤b Xb,

Pb = ZbCbZ⊤b and Eb = Cb + B̃b−1Cb−1B̃⊤

b−1 − 2B̃b−1𝚺(b − 1, b);
7 At the speed layer, calculate
8 𝒇 b = Xb�̃�b−1 + B̃b−1Zbmb−1, mb = B̃b−1mb−1 + Kb(yb − 𝒇 b),

R̃b = R̃b−1 + X⊤

b (yb − Zbmb), G̃b = G̃b−1 + X⊤

b Xb, �̃�b = G̃−1
b R̃b,

B̃b =
(∑b

𝑗=2 m⊤
𝑗

m𝑗

)−1(∑b
𝑗=1 m⊤

𝑗
m𝑗+1

)
,

�̂�b =
1
nb

(
yb − Xb�̃�b − Zbmb

)⊤(yb − Xb�̃�b − Zbmb
)
− 1

nb

∑
i∈Db

Pb(i, i),

𝛿b =
1
q
‖mb − B̃bmb−1‖

2 + 1
q

∑q
i=1 Eb(i, i),

9 and then update �̃�b and 𝛿b.
10 Save

{
�̃�b,mb, R̃b, G̃b, B̃b, �̃�b, 𝛿b

}
and

{
Cb, S̃b, Ṽb

}
at the speed and inference layers,

respectively;
11 Release the dataset Db from memory.

12 end
13 Return �̃�b, var(�̃�b) = S̃⊤b Ṽ−1

b S̃b, B̃b, �̃�b, 𝛿b, mb and Cb, for b = 1, 2,… .

6. SIMULATION STUDIES

This section begins with the setup of our numerical experiments. Then we compare our proposed
MORA method with other methods under two scenarios: (i) a fixed total sample size NB but a
varying data batch size nb, and (ii) a fixed data batch size nb but an increasing number of data
batches B.

6.1. Setup
We conduct simulation studies to assess the performance of our proposed MORA method. We
compare our method with the naive linear regression model (LM) from the R package glmwithout
considering either inter-data batch correlation or heterogeneity, and the offline Kalman estimating
equation (KEE) estimator obtained by processing the entire data once. The evaluation criteria
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for parameter estimation and inference for 𝛼 include (a) average absolute bias (𝛼.ABIAS), (b)
average estimated standard error (𝛼.ASE), (c) empirical standard error (𝛼.ESE), and (d) coverage
probability (𝛼.CP). Computational efficiency is assessed by (e) computation time (C.Time) and
(f) running time (R.Time). C.Time includes time spent on both loading data and running the
algorithm, while R.Time accounts for only the algorithm execution time.

In simulation experiments, we set a terminal point B. Consider the data batch Db =
{yb,Xb} with the outcome yb =

(
yb1,… , ybnb

)⊤, covariates for population-average effects Xb =
(
xb1,… , xbnb

)⊤, and batch-specific covariates Zb =
(
zb1,… , zbnb

)⊤. Outcomes yb ∣ Xb,Zb are

independently sampled from a Gaussian distribution with a mean of 𝝁b =
(
𝜇b1,… , 𝜇bnb

)⊤ and a
variance of𝜙I such that𝜇bi = 𝔼

(
ybi ∣ xbi, zbi

)
= x⊤bi𝜶 + z⊤bi𝜷b and variance var

(
ybi ∣ xbi, zbi

)
= 𝜙.

We consider a two-dimensional stationary vector AR(1) process to characterize batch-specific
heterogeneity with regression coefficients satisfying 𝜷b+1 = Bb𝜷b + 𝝃b, where Bb = diag(𝜌1, 𝜌2)
is the transition matrix with the respective autocorrelation coefficients 𝜌1 and 𝜌2, and 𝝃b

iid∼
2(0, 𝛿I) is noise, for b = 1,… ,B.

We choose the true regression coefficient parameters by generating 𝜶0 ∼5(0, I5), where
I5 is the 5 × 5 identity matrix. We set the initial value for the dynamic coefficients as 𝜷1 = 0.

Covariates are independently sampled from xi
i.i.d∼ 5(0,V5) for i = 1,… ,Nb, where V5 is a

5 × 5 compound symmetry covariance matrix with a correlation parameter 𝜌x = 0.5. The variance
parameters of the two covariance matrices are set as 𝜙 = 1 and 𝛿 = 1. As far as the online proce-
dure is concerned, we only consider the correlation between adjacent data batches. Thus, we exam-
ine performance under different correlation coefficients 𝜌1 = 0.1, 0.5, 0.9, while 𝜌2 is fixed at 0.5.

6.2. Fixed NB and Varying Batch Size nb

We begin with evaluating the effect of data batch size nb on the performance of the MORA
method’s parameter estimation and computational efficiency. There are B data batches, each
with size nb. The total sample size is NB = |D⋆

B | = 10,000. These samples are generated in data
batches from the linear state-space mixed model specified in Section 6.1. Table 1 reports the
evaluation criteria, averaged over 500 replications.

6.2.1. Bias and coverage probability in 𝜶
Between the offline KEE and MORA methods, as shown in Table 1, estimation bias and coverage
probability are very close to each other, and neither changes with varying batch sample size nb.
This confirms the theoretical results given in Theorem 1. In other words, statistical inference by
the MORA method depends only on the cumulative sample size NB. However, in the naive LM
method, where outcomes are treated as independent, 𝜶.ABIAS, 𝜶.ASE, and 𝜶.ESE are all larger
than in either the offline KEE or MORA methods due to the loss of statistical efficiency. The
coverage probability in the LM method is still around 95% because glm in R uses iteratively
weighted least squares, where extra variability is accounted for by an empirical weighting matrix.
Additionally, considering correlation between only adjacent data batches shows very marginal
effects on inference performance on 𝜶: the coverage probabilities are close to the nominal 95%
level under different values of the autocorrelation parameter 𝜌1.

6.2.2. Computation time
Computational efficiency is assessed in Table 1 by C.Time and R.Time, which refer to total algo-
rithm execution times, respectively. As expected, MORA is more efficient than offline KEE and
provides similar statistical performance. Additionally, while maintaining similar bias and cover-
age probabilities, our proposed MORA method is around three-fold faster than the offline KEE
method and is computationally more efficient in processing data with a small data batch size nb.
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TABLE 1: Simulation results under the linear state-space mixed model, summarized over 500 replications
with NB = 10,000, p = 5, and varying batch size nb.

𝜌1 = 0.1, 𝜌2 = 0.5

B × nb 5 × 2000 50 × 200 500 × 20

LM KEE MORA LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 16.49 10.56 10.96 18.84 10.45 10.55 18.66 10.73 10.76

𝜶.ASE× 10−3 20.68 12.92 13.66 23.31 12.97 13.19 23.58 13.58 13.64

𝜶.ESE× 10−3 21.14 13.25 13.81 23.51 12.99 13.19 23.38 13.36 13.38

𝜶.CP 0.946 0.945 0.947 0.953 0.953 0.953 0.950 0.952 0.951

C.Time (s) 0.04 44.91 16.47 0.08 1.97 0.57 0.45 1.87 0.49

R.Time (s) 0.03 44.90 16.46 0.04 1.93 0.54 0.09 1.46 0.31

𝜌1 = 0.5, 𝜌2 = 0.5

B × nb 5 × 2000 50 × 200 500 × 20

LM KEE MORA LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 16.29 10.55 10.95 19.47 10.45 10.54 19.80 10.73 10.76

𝜶.ASE× 10−3 20.50 12.92 13.67 24.24 12.98 13.20 24.66 13.58 13.64

𝜶.ESE× 10−3 20.98 13.25 13.81 24.39 12.99 13.19 24.76 13.36 13.38

𝜶.CP 0.946 0.946 0.947 0.952 0.953 0.953 0.948 0.952 0.951

C.Time (s) 0.06 43.13 17.12 0.10 2.16 0.57 0.51 2.11 0.55

R.Time (s) 0.04 43.12 17.10 0.05 2.10 0.54 0.04 1.64 0.36

𝜌1 = 0.9, 𝜌2 = 0.5

B × nb 5 × 2000 50 × 200 500 × 20

LM KEE MORA LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 16.55 10.55 10.94 24.03 10.45 10.55 28.20 10.74 10.77

𝜶.ASE× 10−3 20.86 12.92 13.67 30.41 12.97 13.20 34.86 13.58 13.66

𝜶.ESE× 10−3 21.38 13.20 13.81 30.61 12.99 13.19 35.31 13.36 13.39

𝜶.CP 0.948 0.946 0.946 0.951 0.953 0.953 0.944 0.952 0.952

C.Time (s) 0.06 43.85 16.39 0.10 2.49 0.64 0.45 1.87 0.50

R.Time (s) 0.04 43.83 16.10 0.04 2.44 0.60 0.04 1.46 0.32

6.3. Fixed Batch Size nb and Increasing B
Now we consider a scenario where a sequence of data batches arrives with high speed.
For convenience, we fix the data batch size as nb = 100 but let B increase from 10 to
1000. Table 2 summarizes the simulation results under the same model as specified in
Section 6.1.

DOI: 10.1002/cjs.11667 The Canadian Journal of Statistics / La revue canadienne de statistique



124 LUO AND SONG Vol. 51, No. 1

TABLE 2: Simulation results under the linear state-space mixed model, summarized over 500 replications,
with nb = 100, p = 5, and B increasing from 10 to 1000.

𝜌1 = 0.1, 𝜌2 = 0.5, nb = 100

B 10 100 1000

LM KEE MORA LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 56.22 34.00 34.59 18.48 10.50 10.55 5.91 3.32 3.32

𝜶.ASE× 10−3 70.13 41.26 43.23 23.46 13.05 13.18 7.46 4.12 4.13

𝜶.ESE× 10−3 70.76 42.70 43.83 23.20 13.06 13.12 7.41 4.16 4.17

𝜶.CP 0.947 0.944 0.949 0.955 0.951 0.952 0.949 0.948 0.948

C.Time (s) 0.01 0.08 0.03 0.07 0.62 0.18 5.89 17.63 2.68

R.Time (s) 0.01 0.07 0.02 0.02 0.57 0.15 0.38 12.12 2.26

𝜌1 = 0.5, 𝜌2 = 0.5, nb = 100

B 10 100 1000

LM KEE MORA LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 56.80 34.00 34.55 19.26 10.50 10.56 6.16 3.32 3.32

𝜶.ASE× 10−3 70.80 41.26 43.26 24.47 13.05 13.19 7.81 4.12 4.13

𝜶.ESE× 10−3 71.77 42.69 43.76 24.16 13.06 13.12 7.74 4.16 4.17

𝜶.CP 0.947 0.944 0.950 0.960 0.951 0.952 0.952 0.948 0.948

C.Time (s) 0.01 0.11 0.04 0.12 1.07 0.29 4.12 16.51 2.66

R.Time (s) 0.01 0.10 0.03 0.04 0.98 0.24 0.39 11.48 2.25

𝜌1 = 0.9, 𝜌2 = 0.5, nb = 100

B 10 100 1000

LM KEE MORA LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 60.08 34.00 34.55 25.31 10.50 10.56 8.73 3.32 3.32

𝜶.ASE× 10−3 74.68 41.26 43.34 32.46 13.05 13.19 11.18 4.12 4.13

𝜶.ESE× 10−3 76.37 42.70 43.73 31.95 13.06 13.12 11.01 4.16 4.17

𝜶.CP 0.949 0.944 0.951 0.960 0.951 0.952 0.949 0.948 0.948

C.Time (s) 0.01 0.13 0.04 0.11 1.02 0.28 5.79 17.78 3.07

R.Time (s) 0.01 0.12 0.03 0.04 0.94 0.24 0.44 12.42 2.59

6.3.1. Bias and coverage probability in 𝜶
Similar to what was observed in Table 1, the MORA method gives a similar level of bias and
coverage probability as the offline KEE method: as the number of data batches B increases
from 10 to 1000, 𝜶.bias decreases at an empirical rate of approximating O

(√
NB
)
, which further

confirms the large-sample property given in Theorem 1. The coverage probability robustly stays

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11667



2023 ONLINE REGRESSION ANALYSIS 125

TABLE 3: Simulation results under the linear state-space mixed model with p = 1000 and p = 2000,
summarized over 200 replications, with NB = 105, B = 25, and nb = 4000.

NB = 10,000 p = 1000, q = 5 p = 2000, q = 10

LM KEE MORA LM KEE MORA

𝜶.ABIAS× 10−3 14.24 3.59 3.64 15.03 3.61 3.88

𝜶.ASE× 10−3 17.87 4.49 4.62 18.84 4.52 5.31

𝜶.ESE× 10−3 18.36 4.49 4.56 19.02 4.52 5.58

𝜶.CP 0.951 0.950 0.952 0.949 0.950 0.953

C.Time (min) 3.05 71.84 16.67 11.54 153.50 36.22

R.Time (min) 2.77 71.55 16.59 10.55 152.50 36.05

around 95%. Similar to Section 6.2, estimation bias and coverage probability in our online
regression method are robust across different 𝜌1, but larger 𝜌1 leads to slightly larger bias in the
LM method due to its ignorance of dependence.

6.3.2. Computation time
As for computational efficiency, with a fixed data batch size nb, both C.Time and R.Time in
MORA increase linearly with B. When B is small, C.Time is lower for naive LM than for our
online regression method, but this relationship reverses once B reaches 1000 because of the
large data loading time. It is worth noting that both C.Time and R.Time in the offline KEE
method are almost 10 times those in our online regression method. This further demonstrates the
strong computational advantage of the MORA method, especially after a large sample size has
accumulated over time.

6.4. Scalability
To elucidate the scalability of MORA in dealing with large-scale online regression analyses,
here we show some numerical evidence regarding the computational efficiency of MORA with
large p. In the simulation studies, we fix the total sample size as NB = 105 and the number of data
batches as B = 25, for a data batch size of nb = 4000. The dimensions of the observed and latent
processes increase up to (i) p = 1000 and q = 5, and (ii) p = 2000 and q = 10, with individual

autocorrelation coefficients 𝜌s
i.i.d.∼ Uniform(0, 1) for s = 1,… , q. As shown by the simulation

results summarized in Table 3, our proposed MORA method is more than four-fold faster than
the offline KEE method with no loss of statistical efficiency. This finding is similar to that in the
low-dimensional simulation experiments.

7. SRTR DATA EXAMPLE

In an analysis of the kidney transplant data collected by the Scientific Registry of Transplant
Recipients, we aim to evaluate the effects of certain key risk factors on serum creatinine levels
1 year post-transplantation. Many studies have found that post-transplant renal function in the
first year is highly related to long-term kidney transplant survival (Sundaram et al., 2002). We
consider the scenario where transplant data batches arrive yearly during the 24-year period
from 1994 to 2017, with B = 24 and NB = 158,204 recipients whose creatinine measurements
are recorded in the first post-transplant year with no missing data and are log-transformed and
included in our analysis.
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We apply the proposed linear mixed state-space model with the following risk factors as
fixed effects: donor and recipient age (standardized), donor–recipient sex (1 for a homosexual
pair and 0 otherwise), donor and recipient BMI (1 for obese and 0 for not obese), donor–recipient
height ratio (1 for greater than 1 and 0 otherwise), donor–recipient weight ratio (1 for greater
than 0.9 and 0 otherwise), donor–recipient race (1 for a homoracial pair and 0 otherwise), and
duration of dialysis (0 for less than 3 years and 1 otherwise). We first perform a preliminary
analysis by fitting a cross-sectional linear regression model to yearly individual data batches
separately (see Figure 3). We plot the corresponding autocorrelation and partial correlation
plots in Figure 4. It is clear that the estimated effects of time (in year) and donor age show

Year
Recipient age
Donor age
Donor–recipient sex

Recipient BMI
Donor BMI
Height ratio
Weight ratio

Donor–recipient race
Donor type
Dialysis

FIGURE 3: Preliminary cross-sectional analysis results showing trends in individual regression
coefficient estimates obtained by fitting a linear regression model to each yearly data batch.

FIGURE 4: Empirical ACF and PACF plots for the regression coefficient estimates in the
preliminary analysis. It is clear that the risk factors year effect and donor age follow a stationary

AR(1) process.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11667



2023 ONLINE REGRESSION ANALYSIS 127

FIGURE 5: Trace plots of the dynamic effects of time and donor age over the 24-year period.

TABLE 4: Results from fitting a linear state-space mixed model with our proposed MORA method at the
end of 2017. The total sample size is NB = 158,204, with p = 9, q = 2, and B = 24.

Estimate Std. Err × 10−3 z value

Recipient age −0.015 0.87 −16.83

Donor–recipient sex 0.069 5.11 13.59

Recipient BMI 0.049 3.69 13.15

Donor BMI 0.021 1.97 10.79

Donor–recipient height ratio −0.120 4.11 −29.17

Donor–recipient weight ratio −0.085 4.74 −17.95

Donor–recipient race −0.041 4.92 −8.31

Donor type 0.058 6.01 9.50

Duration of dialysis 0.025 2.51 9.95

autoregressive trends with an order-one correlation structure. Therefore, we model these two
risk factors as dynamic batch-specific effects that account for underlying heterogeneity over the
sequence of data batches: see the estimated trace plots in Figure 5. Such an analysis can hardly
be done via the offline KEE method because of the intensive computational burden incurred by
both the large data batch size nb and the cumulative sample size NB. Therefore, we apply our
proposed MORA method to sequentially update parameter estimates and standard errors.

Table 4 reports results from fitting a linear state-space mixed model using our proposed
online regression method at the terminal year, 2017. Owing to the large cumulative sample size
in this streaming data setting, all P-values are too small to be useful for making conclusions
(see Figure 6). Thus, we focus on point estimates, standard errors, and z values in Table 4,
which allows us to rank the risk factors. The major findings are as follows: (i) Donor–recipient
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P

N = 158,204
1. Recipient age (838.95)
2. Donor–recipient sex (472.50)
3. Recipient BMI (391.37) 
4. Donor BMI (198.54) 
5. Height ratio (1848.20) 

6. Weight ratio (711.82) 
7. Donor–recipient race (174.82)
8. Donor type (172.73) 
9. Dialysis (232.72)

FIGURE 6: Trajectories of − log10(P) over yearly data batches from 1994 to 2017, each for one
risk factor. Numbers on the left y-axis are the negative logarithm of P-values obtained by z tests,
and labels on the x-axis correspond to the end of each year. The values in the brackets next to the

covariate names denote respective areas under the P-value curves.

height ratio and donor–recipient weight ratio are the top two risk factors. Such an association
between donor–recipient weight mismatch (donor<recipient) and graft failure has also been
found in Miller et al. (2017) and Tillmann et al. (2019). (ii) Recipients with younger ages and
matched-race transplants show better graft function. (iii) Donor death, higher recipient or donor
BMI, homosexual transplantation, and a longer dialysis duration may have negative effects
on post-transplant renal function. This may provide health practitioners some insights on how
to correctly analyze these types of cumulative electronic health records while accounting for
dynamics and dependence. Additionally, the dynamic changes in the time effect and donor age
effects are also shown in Figure 5. It is clear that baseline serum creatinine levels decrease from
1994 to 2003 before stabilizing, and that donor age also shows a slowly decreasing trend. These
trends might be related to the FDA’s approval of immunosuppressive drugs such as CellCept in
1995 and Tacrolimus in 1997 for use in kidney transplantation.

Figure 6 shows the trajectories of− log10(P) values over 24 years: the 10-base log P-values of
the z-test for each regression coefficients are zero. Among all these risk factors, donor–recipient
height ratio turns out to have the largest effect. To characterize the overall significance level
for each covariate over the 24-year period, we calculate a summary statistic as the area under
the P-value curve. Intuitively, a larger area under the curve indicates a stronger association with
the outcome. We use this metric to rank predictors instead of claiming statistical significance
at the traditional cutoff P = 0.05 because most risk factors have P-values smaller than 0.05
due to the large sample size. Ranking gives more important information about and is a more
desirable evaluation of outcome–covariate associations than a binary decision of rejection
or acceptance based on a universal cutoff. For most of these curves, the ranking of overall
significance by these areas is well aligned with the ranking of the P-values obtained at the
terminal year, 2017, except for recipient age and donor–recipient weight ratio, which cross
over at around 2014. This also happens to donor–recipient race and donor type. By looking
into these trajectories rather than only the end-point P-values, we can see that recipient age
has, overall, a more significant association with post-transplant renal function than does the
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weight ratio. This summary statistic provides useful evidence in addition to the terminal
P-values.

8. CONCLUDING REMARKS

As streaming data becomes one of the most pervasive data collection schemes in the field of data
science, there is a surge in the number of applications that requires real-time processing of massive
data arriving with high velocity. Conventional offline techniques suffer from many limitations
when applied to streaming data-analytic tasks. Online learning techniques are promising for
tackling the emerging challenges of data stream mining. The history of sequential processing
may be dated back to the 1950s when Robbins & Monro (1951) proposed a theory of stochastic
approximation. A variety of online learning methods such as the stochastic gradient descent
algorithm were developed thereafter (Sakrison, 1965; Duchi, Hazan & Singer, 2011; Toulis &
Airoldi, 2015). However, there are two major issues that are not fully addressed by methods in
this area of research: (i) Most methods are motivated by applications in the field of engineering
where point estimation or prediction rather than statistical inference is the main focus. (ii) In
biomedical research, however, there are only fixed, common parameters in model specifications,
which prevents the analysis from addressing dynamic heterogeneity over data streams. As
shown in the marginal linear regression analysis, ignoring serial heterogeneity may lead to large
estimation bias and low statistical efficiency.

These technical gaps were partially filled in by Luo & Song (2020) in the setting of
cross-sectional data with homogeneity assumptions on model parameters. To account for
dynamic heterogeneity, we proposed a new framework of linear state-space models in which
dynamically changing regression coefficients are allowed to follow a Markov process (e.g.,
an AR(1) process). The main idea underlying our estimation method is rooted in the EM
algorithm, where the E-step is calculated using the Kalman recursive technique, and, in the
M-step, summary statistics rather than historical subject-level data are used to facilitate the
efficiency of online regression analysis, as in Luo & Song (2020). Both the proposed statistical
methodology and computational algorithms have been investigated for theoretical guarantees
and examined numerically via extensive simulation studies. The proposed MORA method with
data heterogeneity is computationally more efficient with smaller data batch sizes and has no
loss of statistical efficiency in comparison to the offline oracle method.

It is worth noting that our method is robust against different data-splitting schemes that give
rise to certain latent process dynamics over data batches that may be different from the true
dynamics. By an analogy to the notion of working correlation structures in generalized estimating
equations (GEEs) (Liang & Zeger, 1986), we term the resulting specification of the Markov
transitions as the “working dynamics” in our framework. In the presence of a discrepancy
between the working dynamics and the true dynamics, as long as the mean model is properly
specified, our MORA method still enjoys estimation consistency and valid statistical inference
because it is constructed with unbiased estimating functions for the fixed effects of interest.
Similar to misspecified working correlation structures in GEEs (Wang & Carey, 2003), it is not
surprising that there could be a loss of statistical efficiency. We ran some additional simulation
experiments (results are not shown here) that have confirmed these points of view. To examine
mean model misspecification, a goodness-of-fit test such as the generalized method of moments
(GMM) (Hansen, 1982) may be invoked. This requires an extension to the MORA method by
following the line of, for example, quadratic inference functions (QIF) (Qu, Lindsay & Li, 2000),
which will be considered in our future work.

It is also noteworthy that our proposed incremental inference procedure offers only contin-
uously updated standard errors of parameter estimates rather than a valid rejection rule based
on some test statistic. With a fixed number of data batches, alpha spending functions used
in sequential clinical trials provide a promising procedure to properly control type I error in
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sequential testing (Lan & Demets, 1983). A more challenging technical problem to be solved is
how to develop a proper alpha spending function suitable for a number of data batches diverging
to infinity. Another direction worthy of further exploration is the case of nonstationary latent
processes such as random walks. One technical challenge pertains to the fact that inter-data batch
correlation does not decay over the sequence of data batches, a case beyond 𝜙-mixing processes.
In this article, large-sample properties were established in a 𝜙-mixing process framework.
A related problem of interest is in testing the stationarity of the underlying latent process, that is,
H0 ∶ 𝜌 = 1 versus H1 ∶ 0 < 𝜌 < 1, where 𝜌 is the autocorrelation parameter. This is a difficult
problem because the hypothetical value in the null hypothesis is on the boundary of the parameter
space. In this article, we started with the linear state-space model with Gaussian outcomes. This
framework may be relaxed to non-Gaussian responses to analyze other types of streaming data.
For example, in biomedical fields where data streams are captured by wearable devices, data
may be discrete physical activity counts, binary or highly skewed physiological measurements
such as body temperature. Therefore, further extensions to handle non-Gaussian streaming data
represent an important future research area as part of new analytic tools for high-frequency
mobile health data.
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APPENDIX A

In this appendix, we prove the following theorem from Section 4.

Theorem A.1. Under the regularity conditions (C1)–(C4), for fixed 𝜌, 𝜙, and 𝛿, �̃�b is
consistent and asymptotically normal, namely

√
Nb(�̃�b − 𝜶0)

d
→p

{
0,𝕁−1(𝜶0)

}
as Nb =

b∑

𝑗=1

n𝑗 → ∞,

where𝕁(𝜶0) = 𝕊⊤(𝜶0)𝕍−1(𝜶0)𝕊(𝜶0) is the Godambe information matrix of the inference function
in Equation (2).

Proof. We take the first-order Taylor expansion of the aggregated estimating equation Ũb(�̃�b)
around 𝜶0, Ũb(�̃�b) = Ũb(𝜶0) +

𝜕Ũb(𝜶)
𝜕𝜶⊤

(�̃�b − 𝜶0) = 0. It follows that

√
Nb(�̃�b − 𝜶0) =

{

− 1
Nb

𝜕Ũb(𝜶)
𝜕𝜶⊤

}−1 {
1

√
Nb

Ũb(𝜶0)

}

, (A1)

where S̃b(𝜶) = −
𝜕Ũb(𝜶)
𝜕𝜶⊤

=
∑b
𝑗=1 X⊤

𝑗

{
X𝑗 + Z𝑗L𝑗(𝜶)

}
.

The second factor on the right-hand side of Equation (A1) may be written as

1
√

Nb

Ũb(𝜶) =
1

√
Nb

b∑

𝑗=1

X⊤

𝑗

(
y𝑗 − X𝑗𝜶 − Z𝑗m𝑗

)
.

Denote U𝑗 = X⊤

𝑗

(
y𝑗 − X𝑗𝜶 − Z𝑗m𝑗

)
=
∑

i∈D𝑗
u𝑗i =

∑
i∈D𝑗

x𝑗i
(
y𝑗i − x⊤

𝑗i𝜶 − z⊤
𝑗im𝑗

)
. Then,

Ũb =
∑b
𝑗=1 U𝑗 . Let ℱ𝑗 represent the 𝜎-field generated by D⋆

𝑗
. It is easy to show that 𝔼

[
U𝑗 ∣

ℱ𝑗−1
]
= 0. Then

{(
U𝑗 ,ℱ𝑗

)
∶ 𝑗 = 1, 2,…

}
forms a sequence of martingale differences with

means of 0.
To derive the joint distribution of Ũb, we apply the Cramér–Wold theorem (Cramér

& Wold, 1936). For any nonrandom, nonzero vector a = (a1,… , ap)⊤ ∈ ℝp, letting u𝑗i =
(u𝑗i,1,… , u𝑗i,p)⊤, we write

a⊤Ũb =
Nb∑

i=1

p∑

d=1

adui,d =
Nb∑

i=1

u⋆i . (A2)

Since {𝜷b} is a stationary AR(1) process, it is a 𝜙-mixing process (Billingsley, 1968).
Given 𝜷𝑗 , {u𝑗i} in Equation (A2) is conditionally independent of each other with 𝔼[u𝑗i] = 0,
and thus, {u𝑗i} is a centred 𝜙-mixing centred process (Billingsley, 1968). It follows that

{u⋆i }
Nb
i=1 is also a stationary 𝜙-mixing centred stochastic process whose second moments are

given by

𝜎2
Nb
= var

( Nb∑

i=1

u⋆i

)

→ ∞ as Nb →∞.
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Now we check the Lindeberg condition. For any 𝜖 > 0
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,

where 1[⋅] is an indicator function. Since 𝜎Nb
→∞ and max |ad| <∞, we have that

1
[∑p

d=1 |ui,d| >
𝜖𝜎Nb

maxi |ai|

] a.s.
→ 0. Additionally, because 𝔼

[
u2

i,d
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< ∞ and P(ui,d = ∞) = 0, it

follows that
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|
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→ 0 as Nb → ∞,

so the Lindeberg condition holds for
{

u⋆i
}

.
The central limit theorem for the 𝜙-mixing stochastic process

{
u⋆i
}

(Peligrad, 1986)
implies that

∑Nb
i=1 u⋆i
𝜎Nb

d
→ (0, 1),

where 𝜎2
Nb
= a⊤var[Ũb]a. Moreover, applying the Cramér–Wold theorem, we have that

1
√

Nb

Ũb
d
→p

{
0,𝕍 (𝜶0)

}
,

where 𝕍 (𝜶0) = lim
b→∞

1
Nb

⃗X
⊤

b var[Ũb]⃗Xb = lim
b→∞

Ṽb, where ⃗Xb =
(
X⊤

1 ,… ,X⊤

b

)⊤
is a matrix of com-

bined covariates with dimension Nb × p.
Applying the above arguments to Equation (A1), by the central limit theorem and Slutsky’s

theorem, we obtain that

√
Nb
(
𝜶 − 𝜶0

) d
→p

{
0,𝕁−1(𝜶0)

}
as Nb → ∞,

where 𝕁(𝜶0) = 𝕊⊤(𝜶0)𝕍 (𝜶0)−1𝕊(𝜶0). ◼
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