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                                                               ABSTRACT 

Objective Among individuals with systemic sclerosis (SSc) randomized to cyclophosphamide 
(CYC, n=34) or hematopoietic stem cell transplantation (HSCT, n=33), we examined 
longitudinal trends of clinical, pulmonary function and quality of life measures while 
accounting for the influence of early failures on treatment comparisons. 

Methods Assuming data were missing at random, mixed effects regression models were 
used to estimate longitudinal trends for clinical measures when comparing treatment 
groups. Results were compared to observed means and to longitudinal trends estimated 
from shared parameter models, assuming data were missing not at random. Longitudinal 
trends for SSc intrinsic molecular subsets defined by baseline gene expression signatures 
(normal-like, inflammatory and fibroproliferative signatures) were also studied.   

Results Available observed means for pulmonary function tests appeared to improve over 
time in both arms.  However, after accounting for participant loss, forced vital capacity in 
HSCT recipients increased by 0.77 percentage points/year but worsened by -3.70/yr for CYC 
(P=0.004). Similar results were found for DLCO and quality of life indicators. Results for both 
analytic models were consistent. HSCT recipients in the inflammatory (n=20) and 
fibroproliferative (n=20) subsets had superior long-term trends compared to CYC for 
pulmonary and quality of life measures. HSCT was also superior for Rodnan skin scores in 
the fibroproliferative subset. For the normal-like subset (n=22), superiority of HSCT was less 
apparent.  
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Conclusions Longitudinal trends estimated from two statistical models affirm the efficacy of 
HSCT over CYC in severe SSc. Failure to account for early loss of participants may distort 
estimated clinical trends over the long-term.          

   

 

 

 

 

 

 

 

  

SIGNIFICANCE AND INNOVATION 

• Missing data in rheumatology trials can distort results of randomized studies. 
• In the Scleroderma: Cyclophosphamide Or Transplantation (SCOT) trial, early failures 

in the cyclophosphamide arm appeared to bias longitudinal results of pulmonary 
and quality of life measures. 

• Statistical corrections for longitudinal data missing at random (mixed effects 
regression models) and missing not at random (shared parameter models) showed 
that over time, myeloablative autologous hematopoietic stem cell recipients 
improved clinical and molecular markers of disease. 

• For severe scleroderma, stem cell transplant offers an emerging innovation. 
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Systemic Sclerosis (SSc, scleroderma) remains a devastating autoimmune disorder 
with mortality unchanged over the past 40 years.1-3 The Scleroderma: Cyclophosphamide or 
Transplantation (SCOT) clinical trial compared myeloablation followed by CD34+ selected 
autologous hematopoietic stem cell transplant (HSCT) versus 12 monthly infusions of 
cyclophosphamide (CYC).4 Participants were followed for up to 72 months. The primary 
endpoint was a global rank composite score (GRCS) at 54 months comparing each 
participant with every other on the basis of a hierarchy of disease features: death, survival 
without respiratory, renal, or cardiac failure, forced vital capacity (FVC), the Disability Index 
of the Health Assessment Questionnaire-Disability Index(HAQ-DI), and the modified Rodnan 
skin score (mRSS). For the primary endpoint in the intent to treat population, myeloablative 
HSCT led to superior outcome compared to CYC.4 In a companion mechanistic study, 
molecular signatures of SSc were evaluated at month 26 and found to return to normal 
after HSCT but not after CYC.5  

 To evaluate the clinical relevance of the SCOT results and provide a deeper 
understanding of the patterns of change over time, we conducted longitudinal analyses for 
clinical, laboratory and quality of life assessments including FVC, diffusing capacity of the 
lung for carbon monoxide (DLCO), mRSS, HAQ-DI and Short Form-36 (SF-36) physical and 
mental composite scores.  In any trial, misleading longitudinal trends may result from 
missing participant data. If one or more study arms have excess early failures (as was true 
for CYC recipients in SCOT), subsequent serial observations may be biased because only 
surviving (“healthier”) participants are available for long-term comparison.6,7  To address 
this distortion, statistical approaches have been proposed for data considered missing at 
random or missing not at random.8-10  We report here the longitudinal trends for SCOT 
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treatment groups with and without analytic corrections for missing data, and show how 
missing data may bias longitudinal comparisons of measures of scleroderma over time.  

We also explored longitudinal trends for subsets of SCOT participants defined by 
baseline gene expression signatures.11,12  Four molecular ‘intrinsic’ subsets of SSc patients, 
called inflammatory, fibroproliferative, normal-like, and limited, have been identified and 
validated across multiple cohorts using skin samples,13-18 and have subsequently been found 
in other tissues, including in peripheral blood cells. 19-21  SCOT participants fall into 3 of the 4 
intrinsic subsets at baseline: inflammatory, fibroproliferative, and normal-like.12 Franks et al 
have recently reported that SCOT participants with a fibroproliferative molecular signature 
evidenced improved survival after HSCT compared to CYC.21 We hypothesized that other 
longitudinal responses might also correlate with baseline gene signatures.  

  

  

 

 

 

 

                                              PATIENTS AND METHODS 

Study participants 

Adults (18-69 years) with SSc meeting study entry criteria were eligible for 
randomization.4  Participants secured approval from health insurers for study treatments 
(including appeal of coverage denials), provided informed consent for study screening and 
treatment and were enrolled from July 2005 through September 2011. 

 Study Design  

Seventy-five participants were randomized to either myeloablative autologous HSCT 
or 12 monthly infusions of CYC. Details of the study design, mobilization and selection of 
CD34+ cells, preparative conditioning, autologous transplantation, CYC administration and 
post-treatment care have been previously reported.4   

A Data and Safety Monitoring Board provided oversight.  Site Institutional Review 
Boards approved the protocol.  Rho, Inc. (Durham, NC) held and analyzed the data.   
Members of the Steering Committee designed the trial, and attest to the fidelity of the data 
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and analyses. The first author wrote the initial draft. All coauthors reviewed the manuscript 
and agree to publication. 

Evaluations and Endpoints 

Assessments were performed at baseline, weeks 4* and 12*, and months 8, 14, 20* 
26, 32*, 44*, 48, 54, 60*, 66 and 72*, and included: FVC and DLCO (both % of predicted), 
HAQ-DI [range: 0 (no impairment) to 3 (completely impaired)], mRSS [range: 0 (normal) to 
51 (severe)], and physical and mental composite scores from the SF36 [normalized to the US 
population (1998) with mean= 50 and SD=10, lower scores indicating poorer quality of life]. 
The mRSS was not assessed at * visits. Times are in relation to the date of randomization. 
For FVC, DLCO and SF-36 mental and physical composites, lower scores are poorer 
outcomes.  For HAQ-DI and mRSS, lower scorers are better outcomes.  

SSc intrinsic molecular subset assignments (inflammatory, fibroproliferative, and 
normal-like) were derived from gene expression analysis of baseline peripheral blood 
samples using a machine learning classifier, as previously described.11,12,21 

Longitudinal analyses and statistical models 

The study design called for at least 54 months of follow-up, but data collection 
ceased early for individuals who withdrew, experienced organ failure, or died. Because 
organ failure and death contributed to early loss of subjects, which was differentially 
distributed between treatment arms, methods herein account for data that are not “missing 
completely at random.” We considered two possible assumptions about the nature of the 
relationship between unobserved responses and time-on-study.  

First, we assumed unobserved responses were not impacted by time on study. For 
example, if a participant experienced pulmonary failure and stopped attending clinic visits, 
then one plausible assumption is that unobserved future FVC or DLCO responses would 
continue on a trajectory consistent with past observations. This is consistent with the 
“missing at random” assumption, which implies that the observed response data are 
sufficient for estimating the overall expected response trajectory. Under the “missing at 
random” assumption, mixed effects regression models were used for interpolation of 
longitudinal trends.   In all models described below, smoking status (never vs. past/present), 
pre-study use of CYC (yes/no), and sex (male/female) were included as covariates.  For FVC 
and DLCO, mixed effects regression models were fit as splines for data interpolation with 
separate intercepts and slopes for each treatment.22 For HSCT, the spline included pivot 
points at 3 and 14 months post-transplant.  At 3 months, pulmonary function was expected 
to fall after total body irradiation.  At 14 months, recovery was expected to be complete.  
For CYC, post-baseline pulmonary tests were not completed before 8 months; the spline 
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include a single pivot at 14 months (2 months after CYC treatments concluded). Pulmonary 
function testing at SCOT centers was included as a time-varying covariate. Subject level 
effects for intercept, initial slope and post month-14 slope were included as random effects 
assuming separate banded (2)-unstructured covariance structures for each treatment. The 
mixed effects regression models for quality of life outcomes are analogous to the FVC and 
DLCO models with several caveats. Splines for both arms had a single pivot point at month-
14. The pulmonary function test site was not included as a time-varying covariate. For 
mRSS, because the rate of decline decreases over time, a negative exponential decay model 
was used to interpolate longitudinal trends. The nonlinear mixed model included separate 
fixed intercepts and decay constants for each treatment arm. Random subject-level effects 
for intercept and decay constant were included assuming separate unstructured covariance 
structures for each treatment. Mixed effects regression models to explore intrinsic gene 
subsets included separate intercepts and slopes (or decay rates) for each treatment-by-
intrinsic-subset group. 

Second, we considered the possibility that the rate of dropout over time and 
unobserved responses were associated, which implies that data are “missing not at 
random” and that the expected response trajectory cannot be reliably predicted from 
observed response data alone.  One could reasonably envision a scenario where an 
individual’s time-in-study is correlated with baseline values and/or the change in response 
over time (slopes or decay rate). To explore this possibility, we modeled the longitudinal 
response and hazard rates for time-on-study simultaneously using shared parameter 
models. To fit the shared parameter model, the mixed effects regression model described 
above served as the longitudinal component. The time-on-study component was modeled 
as a piece-wise exponential survival model with separate baseline log-failure rates for each 
treatment arm over each of two intervals: 0 to 24 months, and 24 months to end-of-
participation. The random subject-level effects for intercept, initial slope during the 
treatment period, and post-month 14 slope (or decay rate) from the longitudinal 
component function served as fixed covariates in the time-on-study survival model.  

Both mixed and joint longitudinal/survival models were pre-specified secondary 
analyses aimed at evaluating long-term trends under different assumptions about missing 
data. Results from mixed effects regression models are the primary focus for inference, and 
those for the shared parameter models are presented as sensitivity analyses. Missing data 
analyses with mixed effects regression and shared parameter approaches have been 
described.10 

P-values are from model-derived t tests. Key time points were selected for 
comparison: baseline, month 14 (CYC treatment is completed and recovery from transplant 
is expected), and month 54 (indicative of long-term benefit). These secondary analyses 
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explore relationships in order to better understand treatment differences. P-values are not 
adjusted for multiple comparisons, but those ≤0.05 are highlighted as notable findings. 
Analyses used SAS version 9.4. 

 

                                                             RESULTS 
 

 Study participants  

 In order to describe treatment-specific longitudinal trends, the analysis sample was 
limited to 67 of 75 SCOT participants4 (33 of 36 HSCT, 34 of 39 CYC) who actually received a 
transplant or completed ≥ 9 CYC doses.  The three excluded from the HSCT arm include two 
who became ineligible for transplant, and 1 who died prior to initiating the procedure. The 
five excluded from the CYC arm include three who withdrew consent (2 with no doses, 1 
with 2 CYC doses) and two who died prior to completing dosing (1 each with 2 and 5 CYC 
doses).  Baseline characteristics for this analysis sample are comparable to those reported 
for all SCOT participants4 and reflect severe scleroderma: mean baseline mRSS=29, 
DLCO=53 % of predicted, and 99% with pulmonary involvement (Table S1 in the 
supplement).  Both arms had similar characteristics except that the CYC arm included more 
females, never-smokers, and prior use of CYC.   

       Longitudinal trends for clinical disease measures and quality of life outcomes  

     Figure 1 depicts individual trajectories for FVC, which generally differ between arms.  
For HSCT, the decline in FVC at 3 months with recovery by 14 months is expected following 
irradiation. For CYC, observed FVC values display random variation about relatively linear 
trajectories.  Importantly, premature cessation of data collection occurred more often in 
CYC recipients. Eighteen (53%) CYC participants had their last FVC assessment before 54 
months compared to 7 (21%) HSCT recipients. In both arms, the observed means for FVC 
increased over time (Figure 1, dashed lines). However, per the SCOT protocol, follow-up 
pulmonary assessments ceased once a participant experienced respiratory failure, defined 
by DLCO or FVC criteria. Respiratory failure accounts for the majority of early terminations 
(13 CYC, 5 HSCT). As such, due to early loss of those with poor FVCs, the means for 
“survivors” increase over time, giving potentially favorably biased representations of 
expected FVC overall response trajectories, particularly for the CYC population where 
attrition was greater.  

Within each treatment population, we assume individual trajectories vary about an 
expected overall response trajectory for the entire population.  To compare the expected 
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overall response trajectories for HSCT and CYC, we are compelled to make assumptions 
about the unknown nature of missing response data. Assuming individuals lost early would 
have continued on their same trajectories regardless of time-on-study, then observed 
responses for individuals are sufficient for estimating the expected overall response 
trajectory. This is the missing at random assumption.  Although validity of the assumption 
cannot be confirmed, it is consistent with the fact respiratory data are missing by design for 
those who experienced respiratory failure.  If valid, then a mixed effects regression model 
provides unbiased estimates of longitudinal trends. 

With the mixed effects regression approach, the expected overall FVC trajectories 
differ between the treatment arms (Figure 2A, solid lines; Table 1). At time 0, expected 
values are 75.9 for HSCT and 74.6 for CYC (p=0.754). After the initial fall due to irradiation in 
the HSCT arm, FVC recovers by month 14 with an expected value of 77.4 compared to 72.8 
for cyclophosphamide (p= 0.299). After month 14, improvement in FVC for HSCT was 
sustained with an expected increase of 0.77 percentage points/year compared to an 
average fall of     -3.70 percentage points/year for CYC (p=0.004). By month 54, there are 
notable differences between arms (expected values: 79.9 HSCT vs 60.4 CYC; p= 0.005). 
Shared parameter models (dashed lines) are consistent with the mixed effects regression 
models (solid lines). The available observed means at each assessment point (clustered as in 
Figure 1) for both treatments are shown as dotted lines and show how failure to account for 
missing data due to early loss of participants can impact estimated trends.  

Mixed effects regression findings for DLCO are consistent with FVC (Figure 2B, solid 
lines; Table 1).  Expected time 0 values are 54.8 for HSCT and 52.1 for CYC (p=0.212). By 
month 14, expected values are 50.2 for HSCT compared to 49.6 for CYC (p= 0.813). After 
month 14, DLCO improved modestly for HSCT with an expected increase of 0.52 percentage 
points/year compared to an average fall of -2.25 percentage points/year for CYC (p=<0.001). 
As with FVC, the benefit of transplant is apparent by month 54 (expected values: 52.0 HSCT, 
42.1 CYC; p= 0.016). 

In both arms, mRSS declined (improved) exponentially over time (Figure 2C solid 
lines; Table S2). For the exponential mixed effects regression model, time 0 values were 
26.7 for HSCT and 29.6 for CYC (p=0.259). Notable differences favoring HSCT are observed 
at time points starting at month 14: mRSS fell faster for transplant with a decay rate of 0.41 
per year for HSCT compared to 0.26 per year for CYC (p=0.048).  

For both the HAQ-DI and SF36 physical composite scores, the mixed effects 
regression approach shows quality of life improves for HSCT and declines for CYC with 
notable differences by month 54. Expected values at month 54 for HAQ-DI are 0.55 and 1.59 
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for HSCT and CYC, respectively (p<0.001; Figure 2D, Table S3). For the SF36 physical 
composite score, expected values at month 54 are 45.1 HSCT and 32.6 CYC (p<0.001; Figure 
S1 in the supplement, Table S4). In contrast, trends for the SF36 mental composite scores 
do not differ between arms and expected values over all time points are consistent with the 
normalizing population (i.e. 1998 US population, mean 50, SD 10; Figure S1, Table S5).  

If the expected overall response trajectory depends on both the response data and 
time-on-study, then data for individuals lost early are missing not at random.  Results from 
shared parameter models fit under this missing not at random assumption confirm the 
findings from the mixed effects regression analyses for FVC, DCLO, mRSS, HAQ-DI, and the 
SF36 composite scores (Figures 2 and S1, dashed lines; Tables 1 and S2-S5). In some cases, 
shared parameter trajectories point towards worse outcomes. For example, the expected 
overall FVC trajectories from mixed effects regression and shared parameter models track 
closely for HSCT recipients (Figure 2A) suggesting that time-in-study has little impact. In 
contrast, for CYC recipients, the expected overall FVC trajectory derived from the shared 
parameter model is shifted towards lower FVCs relative to the mixed effects regression 
model.  

For the SF36 mental composite score, a convergent shared parameter model could 
not be found. However, the observed means track well with the expected overall response 
trajectories estimated from the mixed effects regression model suggesting missing data has 
little impact on this endpoint (Figure S1, dotted line). 

 
        Baseline intrinsic molecular subsets and longitudinal trends.  
  

       Sixty-two (93%) of the 67 per-protocol study participants were categorized into 
intrinsic subsets: 20 inflammatory (8 HSCT, 12 CYC), 22 normal-like (10 HSCT, 12 CYC), 20 
fibroproliferative (11 HSCT, 9 CYC).  

For FVC and DLCO (Figures 3 and 4; Table 2), trends for HSCT and CYC did not differ 
notably for the normal-like subset (middle panels and columns). For both inflammatory and 
fibroproliferative subsets, trends favored HSCT. At month 14, differences between arms are 
not notable. In the inflammatory and fibroproliferative subsets after month 14, FVC 
worsened for CYC (-4.61 and -5.62 percentage points/year (slope), respectively) and 
improved in the HSCT arm (0.47 and 1.78 percentage points/year, respectively; p=0.054 
inflammatory, 0.012 fibroproliferative).  Similarly, for inflammatory and fibroproliferative, 
DLCO worsened for CYC (-2.56 and -3.10 percentage points/year, respectively) and 
improved for HSCT (1.51 and 0.47 percentage points/year, respectively; p=0.003 
inflammatory, 0.016 fibroproliferative).   
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For mRSS (Figure S2, Table S6), exponential decay rates favoring HSCT differ notably 
between arms for only the fibroproliferative subset (decay rates/year= 0.522 HSCT, 0.238 
CYC, p=0.011).   

For HAQ-DI (Figure S2, Table S7), trends favoring HSCT are similar for all subsets. 
Treatment arms did not differ notably at month 14. After month 14, HAQ-DI worsened for 
CYC (points/year change = 0.191 inflammatory, 0.123 normal-like, and 0.069 
fibroproliferative) and improved for HSCT (points/year change = -0.036 inflammatory, -
0.066 normal-like, and -0.090 fibroproliferative). Expected values differed notably for CYC 
and HSCT at month 54 for all subsets (p=0.016 inflammatory, 0.017 normal-like, 0.017 
fibroproliferative).  

For the SF36 physical composite score (Figure S3, Table S8), estimates favored HSCT 
for all 3 subsets, but are evident earlier in the fibroproliferative subset where differences in 
expected values are detected at month 14 (45.2 HSCT, 26.3 CYC; p<0.001) and retained 
through month 54 (47.7 HSCT, 28.0 CYC; p<0.001).  For the inflammatory subset, differences 
in expected values are notable at month 54 (inflammatory: 44.6 HSCT, 32.8 CYC; p=0.026). 
Trends for the SF36 mental composite score did not differ notably between treatment 
groups for the normal-like or fibroproliferative subsets (Figure S3, Table S9). In the 
inflammatory subset, the trend after month 14 is stable for transplant and worsening for 
cyclophosphamide resulting in differences at month 54 (inflammatory, expected value=54.6 
HSCT, 42.5 CYC; p=0.019). 

 

                                                            DISCUSSION 
 

Failure to account for early loss of participant data may distort estimates of clinical 
trends over time.  To account for this potential distortion, we applied statistical techniques 
to account for missing data under two different assumption: missing at random and missing 
not at random. With both approaches, CYC recipients had clinical measures worsen over 
time compared to HSCT recipients. Longitudinal trends for inflammatory and 
fibroproliferative intrinsic molecular subsets showed similar responses over time after 
accounting for dropouts.  

These results demonstrating the superiority for transplant over cyclophosphamide 
for clinical responses and quality of life over the long-term provide a clinical context that 
strengthens the previously reported results of the GRCS analysis at 54 months and support 
the validity of this measure.4 Results for FVC, HAQ-DI, and mRSS also establish their value as 
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hierarchical components of the GRCS for the study of SSc with organ involvement.  The 
value of the GRCS for other subpopulations of scleroderma requires further investigation. 

Missing data present challenges for trials in rheumatic and other diseases.23-31 
Among randomized treatment studies of rheumatoid arthritis with composite outcomes, 
more than 30% rates of missing data were noted in 9 (17%) of 51 trials reported between 
2008 and 2013.32  Statistical methodologies to approach such bias have been developed.      
6-8,10,33-35  In the ASSIST and ASTIS trials which also compared HSCT to CYC in SSc, 
longitudinal results for FVC and mRSS were based on subsets of individuals with data at 12-
24 months after randomization.36,37 This complete-case approach was not a valid option for 
examining long-term trends in the SCOT trial because loss of participants  prior to 54 
months was at least partially due to disease manifestations. Trends for this “responder” 
subset are not representative of those randomized. 

Our first objective was to estimate and compare anticipated long-term trends while 
adjusting for possibly informative censoring due to premature loss of participants. We 
considered two possible assumptions about the nature of the relationship between 
unobserved responses and time-on-study. The underlying assumption for the mixed effects 
regression models is that unobserved future responses would continue on a trajectory 
consistent with past observations (i.e., missing at random). For the shared parameter 
models, the assumption is the rate of dropout over time and unobserved responses are 
associated (i.e., missing not at random). We found that while estimates from the mixed 
effects regression and shared parameter models differ slightly numerically, findings 
consistently show superiority of transplant for all outcomes investigated except for the SF-
36 mental composite score, where impairment appeared minimal in this study population.  

The second objective was to explore how longitudinal trends might differ depending 
on baseline intrinsic molecular subset assignment. Franks et al found that the event-free 
survival advantage of HSCT over CYC in SCOT was most pronounced for the 
fibroproliferative subset, less definitive for the inflammatory subset, and absent in the 
normal-like subset.21 In the present analyses, HSCT recipients in the fibroproliferative subset 
had superior long-term trends compared to CYC on all clinical and quality of life responses 
except the SF36 mental composite, including the most rapid improvements in mRSS and SF-
36 physical composite. Transplant recipients in the inflammatory subset had superior long-
term trends compared to cyclophosphamide on all clinical and quality of life responses 
except the mRSS. In the normal-like subset, although HSCT recipients often had numerically 
superior trends relative to CYC, findings were only notably different for HAQ-DI.  Overall, 
these findings suggest that transplant could be most effectively applied for individuals with 
fibroproliferative or inflammatory signatures.  The inflammatory and fibroproliferative 
subsets may represent active states of SSc, so improved outcomes with HSCT for these 
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subsets may be attributable to termination of the underlying ongoing immune 
processes.  For the fibroproliferative subset, results from prior studies on immune 
modulators such as MMF15,38 or abatacept18 that have failed to demonstrate robust 
responses are consistent with our findings showing little benefit in the CYC arm across 
multiple endpoints.  The normal-like subset may represent individuals who no longer have 
active immune processes, but still have tissue damage, which may not be amendable to 
therapy with immunologic modulators. In the present study, however, the negative findings 
in the normal-like group are uninformative. Given the small numbers and exploratory 
nature of these analyses, we cannot conclude that transplant has no benefit in the normal-
like group. These possibilities warrant further study.  

Our study has limitations. Because data are unavailable, the missing data 
assumptions cannot be verified and hence should be acknowledged when evaluating model 
results. Further, the interpretation of model estimates in the context of these assumptions 
requires clarification. Typically, model-based point estimates from a linear regression model 
can be interpreted as population estimates, but not in the present situation.  Because 
responses do not exist for individuals who died prior to month 54, the 54-month estimate 
cannot represent a mean for the entire population. Rather, model-based estimates 
presented here are expected response trajectories and expected values at given time points 
for an individual, conditional on survival. 

       In conclusion, failure to account for early loss of participant data may distort estimates 
of clinical trends over time. Using two statistical models for missing data approaches, long-
term clinical measures validate the superiority of HSCT over CYC for treatment of severe 
scleroderma.  Such approaches accounting for longitudinal bias due to missing trial data may 
more accurately guide future care of patients with rheumatic diseases.  
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LEGENDS 
 

Figure 1: Forced Vital Capacity (FVC) trajectories for individuals with reasons for 
termination  

Each line connects FVC values (% predicted) over time for an individual participant. 
Line colors and symbols at the last assessment indicate reasons for termination: completed 
study per protocol (blue triangle), death (black star), early withdrawal (red triangle), early 
last FVC (blue circle), organ failure (gold diamond).  The dashed black line connects means 
(black asterisks) for available data clustered within the following time intervals in months: 
midpoint (range):  0, 8 (5-11), 14 [11-17), 20 [17-23), 26 [23-29), 32 [29-35), 38 [35-41), 44 
[41-47), 48 (47-51), 54 [51-57), 60 [57-63), 66 [63 and above].  Numbers of subjects 
available for each interval are given above the x-axis.  

 

Figure 2: Estimated longitudinal trends for mixed effects regression and shared 
parameter models 

Estimates for the hematopoietic cell transplant and cyclophosphamide arms are 
presented in blue and red, respectively. Solid lines show model-based estimates for mixed 
effects regression models; vertical lines show 95% confidence intervals at select time points. 
Dashed lines show model-based means for shared parameter models. Dotted lines connect 
means for available data clustered as per Figure 1.  

Figure 2A, Forced Vital Capacity (FVC); 2B, Diffusing Capacity of the Lung for Carbon 
Monoxide (DLCO); 2C, modified Rodnan Skin Score (mRSS); 2D, Health Assessment 
Questionnaire-Disability Index (HAQ-DI). 

 

Figure 3. Trends from mixed effects regression models for intrinsic molecular 
subsets: Forced Vital Capacity (FVC)  

Estimates for the transplant and cyclophosphamide arms are presented in blue and 
red, respectively. Solid lines show model-based estimates for mixed effects regression 
models; vertical lines show 95% confidence intervals at select time points.  Mixed effects 
regression models are as described for Figures 2A with the addition of separate intercepts 
and slopes (or decay rates) for each treatment-by-intrinsic-subset group. .  
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Figure 4. Trends from mixed effects regression models for intrinsic molecular 
subsets: Diffusing Capacity of the Lung for Carbon Monoxide (DLCO)  

Estimates for the transplant and cyclophosphamide arms are presented in blue and 
red, respectively. Solid lines show model-based estimates for mixed effects regression 
models; vertical lines show 95% confidence intervals at select time points.  Mixed effects 
regression models are as described for Figures 2B with the addition of separate intercepts 
and slopes (or decay rates) for each treatment-by-intrinsic-subset group.  
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Times are in relation to the date of randomization.  
Abbreviations: DLCO (% predicted), diffusing capacity of the lung for carbon monoxide; FVC (% predicted), forced vital 
capacity; SE, standard error. 

 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE 1: LONGITUDINAL TRENDS FOR FVC AND DLCO: MIXED EFFECTS REGRESSION  
AND SHARED PARAMETER MODELS 

  
FVC   Mixed effects regression  Shared Parameter  

   Expected Value (SE)  Expected Value (SE)  
Time 0 Transplant  75.9 (2.51)  75.9 (2.67)  

 Cyclophosphamide  74.6 (2.98)  72.7 (3.11)  
 p-value  0.754   0.451   
         

Month 14 Transplant  77.4 (3.12)  76.5 (3.54)  
 Cyclophosphamide  72.8 (2.89)  68.8 (3.41)  
 p-value  0.299   0.139   
         

Month 54 Transplant  79.9 (3.21)  78.5 (3.72)  
 Cyclophosphamide  60.4 (5.42)  57.1 (8.64)  
 p-value  0.005   0.025   
         

Slope after Month 
14 (per year) 

Transplant  0.77 (0.39)  0.61 (0.43)  
Cyclophosphamide  -3.70 (1.38)  -3.50 (2.50)  
p-value  0.004   0.109    

DLCO   
 

 
 

 

   
 

 
 

 
Time 0 Transplant  54.8 (1.38)  54.5 (1.36)  

 Cyclophosphamide  52.1 (1.62)  52.8 (1.58)  
 p-value  0.212   0.437   
         

Month 14 Transplant  50.2 (1.56)  48.1 (1.85)  
 Cyclophosphamide  49.6 (2.12)  48.0 (2.78)  
 p-value  0.813   0.964   
         

Month 54 Transplant  52.0 (1.74)  49.6 (2.31)  
 Cyclophosphamide  42.1 (3.42)  39.4 (7.15)  
 p-value  0.016   0.179   
         

Slope after Month 
14 (per year) 

Transplant  0.52 (0.34)  0.45 (0.40)  
Cyclophosphamide  -2.25 (0.64)  -2.57 (1.91)  
p-value  <0.001   0.125   
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TABLE 2: LONGITUDINAL TRENDS FOR FVC AND DLCO BY BASELINE                               
INTRINSIC MOLECULAR SUBSETS 

   Inflammatory  Normal-Like  Fibroproliferative   
FVC   Expected  

Value (SE) 
 Expected  

Value (SE) 
 Expected  

Value (SE) 
 p-

value2 
Time 0 Transplant  77.8 (4.99)  79.2 (4.39)  73.8 (4.36)  0.666 
 Cyclophosphamide  74.5 (5.23)  76.4 (5.15)  70.5 (5.92)  0.750 
 p-value1  0.656   0.679   0.650    
             
Month 14 Transplant  76.5 (6.23)  82.0 (5.50)  78.1 (5.37)  0.784 
 Cyclophosphamide  73.7 (4.98)  74.6 (4.90)  68.8 (5.60)  0.714 
 p-value1  0.729   0.321   0.234    
             
Month 54 Transplant  78.1 (6.27)  81.4 (5.55)  84.0 (5.40)  0.770 
 Cyclophosphamide  58.3 (9.75)  69.5 (9.70)  50.1 (11.14)  0.412 
 p-value1  0.092   0.291   0.007    
             
Slope after 
Month 14 (per 
year) 

Transplant  0.47 (0.78)  -0.19 (0.66)  1.78 (0.61)  0.085 
Cyclophosphamide  -4.61 (2.51)  -1.53 (2.46)  -5.62 (2.86)  0.508 
p-value1  0.054   0.597   0.012    

 
 

DLCO   
 

 
 

 
 

 
 

Time 0 Transplant  55.1 (2.78)  52.8 (2.47)  54.5 (2.43)  0.802 
 Cyclophosphamide  51.4 (2.83  53.5 (2.80)  50.1 (3.23)  0.721 
 p-value1  0.355   0.846   0.286    
             
Month 14 Transplant  50.0 (3.08)  49.2 (2.71)  53.4 (2.63)  0.482 
 Cyclophosphamide  45.7 (3.57)  54.1 (3.56)  50.0 (4.05)  0.254 
 p-value1  0.372   0.276   0.481    
             
Month 54 Transplant  55.0 (3.40)  48.9 (3.04)  55.0 (2.90)  0.268 
 Cyclophosphamide  37.2 (6.01)  49.0 (5.86)  39.7 (6.78)  0.336 
 p-value1  0.011   0.989   0.038    
             
Slope after 
Month 14 (per 
year) 

Transplant  1.51 (0.64)  -0.07 (0.55)  0.47 (0.51)  0.172 
Cyclophosphamide  -2.56 (1.18)  -1.51 (1.06)  -3.10 (1.28)  0.607 
p-value1  0.003   0.226   0.016    

             
 

 

1 This p-value is for a comparison of transplant and cyclophosphamide. 
2 This p-value is for a comparison of the 3 intrinsic subsets within treatment arm.  
Abbreviations: DLCO (% predicted), diffusing capacity of the lung for carbon monoxide; FVC (% predicted), forced vital 
capacity; SE, standard error 
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