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Key Points: 

• Aircraft observations of atmospheric carbon dioxide concentrations are used to infer the 

northern extratropical growing season net flux.  

• The observations suggest a larger net flux and shorter growing season than simulated in 

Earth system models. 

• An emergent constraint approach is used to estimate productivity and respiration fluxes.  A
ut

ho
r 

M
an

us
cr

ip
t  

 

 

 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1029/2022GB007520.

This article is protected by copyright. All rights reserved.

https://doi.org/10.1029/2022GB007520
https://doi.org/10.1029/2022GB007520
https://doi.org/10.1029/2022GB007520


A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Abstract 

Understanding terrestrial ecosystems and their response to anthropogenic climate change 

requires quantification of land-atmosphere carbon exchange. However, top-down and bottom-up 

estimates of large-scale land-atmosphere fluxes, including the northern extratropical growing 

season net flux (GSNF), show significant discrepancies. We develop a data-driven metric for the 

GSNF using atmospheric carbon dioxide concentration observations collected during the High-

Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-

Pole Observations (HIPPO) and Atmospheric Tomography Mission (ATom) flight campaigns. 

This aircraft-derived metric is bias-corrected using three independent atmospheric inversion 

systems. We estimate the northern extratropical GSNF to be 5.7 ± 0.3 Pg C and use it to evaluate 

net biosphere productivity from the Coupled Model Intercomparison Project phase 5 and 6 

(CMIP5 and CMIP6) models. While the model-to-model spread in the GSNF has decreased in 

CMIP6 models relative to that of the CMIP5 models, there is still disagreement on the magnitude 

and timing of seasonal carbon uptake with most models underestimating the GSNF and 

overestimating the length of the growing season relative to the observations. We also use an 

emergent constraint approach to estimate annual northern extratropical gross primary 

productivity to be 56 ± 17 Pg C, heterotrophic respiration to be 25 ± 13 Pg C, and net primary 

productivity to be 28 ± 12 Pg C. The flux inferred from these aircraft observations provides an 

additional constraint on large-scale, gross fluxes in prognostic Earth system models that may 

ultimately improve our ability to accurately predict carbon-climate feedbacks. 

 

Plain Language Summary 

The exchange of carbon between the land and atmosphere is an important part of the Earth’s 

climate, and this exchange might change due to human-caused climate change. However, 

estimates of land-atmosphere carbon fluxes made using different techniques do not agree with 

each other. We use atmospheric carbon dioxide observations collected during two flight 

campaigns to show that 5.7 Pg C are exchanged between the atmosphere and the land in the 

northern hemisphere during the summer growing season. This estimate is used to evaluate the 

performance of two generations of climate prediction models. The newer generation of models 

show less spread than the older generation, but there is still significant disagreement on the 
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magnitude and timing of land-atmosphere carbon exchange among models. Most models 

underestimate the growing season net flux and overestimate the length of the growing season. 

We also use our observational estimate to reduce the spread on component fluxes of carbon 

exchange, namely uptake by photosynthesis and release by respiration. 

1 Introduction 

Approximately half of the carbon dioxide (CO2) released annually by the combustion of 

fossil fuels stays in the atmosphere (Keeling et al., 1976; Schimel et al., 2001; Friedlingstein et 

al., 2021). The remaining CO2 is taken up by the terrestrial biosphere and ocean in roughly equal 

proportion (Khatiwala et al., 2009, Keeling et al., 2014; Sabine et al., 2004). The efficiency of 

the ocean and land sinks varies with both climate and atmospheric CO2, representing an 

important feedback in the climate system (e.g. Ballantyne et al. 2012; Fung et al., 2005; 

Fernandez-Martinez et al., 2019). The strength of the land sink may be related to the amplitude 

of the seasonal cycle of atmospheric CO2 (e.g. Keeling et al., 1996; Randerson et al., 1997) via 

annual and seasonal imbalances between photosynthesis  and respiration. However, the 

magnitude, and spatial and temporal distributions of gross primary productivity (GPP) and net 

primary productivity (NPP) vary noticeably among Earth system models (ESMs) (e.g. Hu et al., 

2022). Furthermore, models typically underestimate the change in amplitude of seasonal CO2 

exchange in northern land ecosystems over time (e.g. Graven et al., 2013) or underestimate CO2 

uptake in the Northern Hemisphere mid-high latitudes. (e.g. Canadell et al., 2021, fig 5.24).   

Multi-model ensembles of coupled carbon-climate models show large differences in their 

land sink projections, especially for terrestrial carbon uptake (e.g. Arora et al., 2020; Cadule et 

al., 2010).  For example, Friedlinstein et al. (2014) showed that the Coupled Model 

Intercomparison Project phase 5 (CMIP5) models range between -173 and 758 Pg C in 

simulations of cumulative land carbon uptake for 1850 to 2100 when forced by RCP8.5. This 

uncertainty exists in historical simulations where models both overestimate and underestimate 

the historical atmospheric CO2 increase by over 20%. These differences are mainly due to 

uncertainties in the land carbon cycle response, with differences in their cumulative land flux 

estimates of 214 Pg C for 1850-2005, more than double the differences in their cumulative ocean 

flux estimates (Friedlingstein et al., 2014). 
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Quantifying the exchange of carbon between the atmosphere and the land surface at 

hemispheric and global scales is challenging because the heterogeneity of Earth’s surface makes 

it difficult to upscale local flux measurements (e.g. Friend et al., 2007; Kumar et al., 2016). 

Atmospheric inversion, wherein carbon fluxes are estimated from atmospheric CO2 observations 

using atmospheric tracer transport models, provides a method to infer large-scale carbon fluxes 

(e.g. Tans et al., 1990; Ciais et al., 2010; Thompson et al., 2016); however, this method has been 

shown to be sensitive to uncertainty due to the simulation of vertical transport (Schuh et al., 

2019; Stephens et al., 2007; Verma et al., 2017). Atmospheric inversions that rely only on 

surface observations must accurately represent vertical mixing to estimate CO2 concentrations 

aloft. Uncertainty in atmospheric inversion flux estimates can be characterized through the use of 

observations of the vertical profile of atmospheric CO2 (e.g. Peiro et al., 2022; Stephens et al., 

2007). 

Global-scale aircraft observations, such as those made during the High-Performance 

Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole 

Observations project (HIPPO, 2009-11) and the Atmospheric Tomography Mission (ATom, 

2016-18), are representative of large regions and capture the vertical profile of atmospheric CO2 

(Wofsy et al., 2011; Thompson et al, 2021). These campaigns measured the vertical structure of 

CO2 in the atmosphere across a range of latitudes and over the full seasonal cycle, and allow for 

analysis of seasonal changes in hemispheric-scale atmospheric CO2 (e.g. Jin et al., 2021), which 

are dominated by land exchange.  We use the seasonal cycle of atmospheric CO2 concentrations 

measured during the HIPPO and ATom flight campaigns to develop a metric for evaluating the 

simulation of terrestrial CO2 exchange in prognostic ESMs. 

We derive estimates of the northern hemisphere net land flux integrated over the growing 

season, or growing season net flux (GSNF), as a benchmark for model evaluation (e.g. Collier et 

al., 2018). The creation of flux benchmarks allows for a direct comparison of observations and 

model simulations at the flux level rather than at the concentration level (e.g. Keppel-Aleks et 

al., 2013), which requires either using an atmospheric transport model or emulator (Liptak et al., 

2017) to translate fluxes into atmospheric mole fraction variations. This research explores an 

alternative approach to formal inverse modeling to constrain net land-atmosphere carbon fluxes 

at hemispheric scale.  We use CO2 measurements from the HIPPO and ATom flight campaigns 

to infer the GSNF with only minimal reliance on atmospheric transport models. Thus, our 
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estimated flux is less sensitive to errors in transport simulation and gives more robust insight into 

prognostic model inconsistencies. 

We describe the data sets and methods used to derive GSNF in Section 2.  We discuss the 

GSNF and compare to ESM estimates of net biosphere productivity (NBP), GPP, heterotrophic 

respiration (RH), and net primary productivity (NPP), using output from the Coupled Model 

Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) in Section 3. This is followed by a 

discussion of those results in Section 4 and conclusions in Section 5. 
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2 Data and Methods 

2.1 Aircraft Observations 

We used dry air mole fractions of CO2 measured in the free troposphere during 

the HIPPO and ATom aircraft campaigns. HIPPO (Wofsy, 2011; Wofsy et al. 2017) used 

the NSF/NCAR HIAPER Gulfstream V aircraft to make measurements primarily over the 

remote Pacific from 87° N to 67° S (Fig. 1a) during five campaigns that spanned all four 

seasons between 2009 and 2011 (Table 1). The aircraft flew vertical profiles from near 

the surface to an altitude of 14 km; typically, a full profile was completed over ~2.2° of 

latitude (Fig. 1b). During these flights, measurements were made of greenhouse gasses 

and related tracers. CO2 mole fractions were measured using three different in situ 

instruments and two whole air samplers: the Harvard Quantum Cascade Laser System 

(QCLS, Santoni et al., 2014), the Harvard Observations of the Middle Stratosphere 

(OMS, Daube et al., 2002) instrument, the National Center for Atmospheric Research 

(NCAR) Airborne Oxygen Instrument (AO2, Stephens et al., 2021), the National Oceanic 

and Atmospheric Administration (NOAA) Portable Flask Packages (PFP, Sweeney et al., 

2015), and the NCAR/Scripps Medusa Whole Air Sampler (Stephens et al., 2021). For 

our analysis, we used the recommended CO2.X variable, which is derived primarily from 

QCLS measurements with calibration periods gap-filled using OMS measurements, 

reported as part per million dry air mole fraction (Wofsy et al., 2017). We used the 10-

second merge data product and all CO2 measurements are reported to be within 0.2 ppm 

with respect to the WMO X2007 scale (Santoni et al., 2014). The mean bias between 

QCLS and NOAA flask measurements across all five HIPPO campaigns is 0.11 ppm 

(Santoni et al., 2014). We used comparisons to the other 4 systems as a measure of 

analytical uncertainty. We also used observations of N2O made by QCLS to identify 

stratospheric samples. 
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Figure 1 Flight paths for (a) HIPPO-2, which flew over the remote Pacific in November 

2009, and (c) ATom-1, which flew over the Pacific and Atlantic in August 2016. All other 

campaigns followed similar flight paths. Flight path with continuous vertical profiling for 

flight 3, which flew from Anchorage, AK to Kona, HI for (b) HIPPO-2 and (d) AToM-1. All 

other flights flew a similar path.  

ATom (Wofsy et al., 2021; Thompson et al., 2022) is a more recent series of 

flight campaigns that used the NASA DC-8 aircraft to measure atmospheric trace gas 

concentrations by traveling south over the Pacific and north over the Atlantic (Fig. 1c) 

and which included a much larger scientific payload. As with HIPPO, a full annual cycle 

was measured, with flights that occurred in each of the four seasons over a three-year 

period from 2016 to 2018 (Table 1). Flights spanned 83°N to 86°S and sampled vertical 

profiles from 0.2 to 12 km in altitude (Fig. 1d). ATom measured CO2 using the QCLS, 

AO2, Medusa, and PFPs similarly to HIPPO but also included a NOAA Picarro 

instrument. For our analysis, we used the CO2.X variable, which consists of NOAA 

Picarro measurements gap-filled using QCLS measurements. However during the first 

two flights of ATom-1, the NOAA Picarro measurements were not reported due to an 

inlet problem. Similar to HIPPO, we used the 10-second merge data product (Wofsy et 

al., 2021). To identify and remove stratospheric samples, we used observations of N2O 

from QCLS and the NOAA PAN and Trace Hydrohalocarbon ExpeRiment (PANTHER, 
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ATom-1 only). While the WMO CO2 scale has been recently updated, both the HIPPO 

and ATom observations used here have been calibrated with respect to the previous, 

WMO X2007, scale. 

Table 1 Aircraft data used in this study 

Deployment Northern Hemisphere (Southbound) Dates 

and Ocean Basin 

Northern Hemisphere (Northbound) Dates 

and Ocean Basin 

HIPPO-1 1/8/09-1/16/09, Pacific 1/28/09-1/30/09, Pacific 

HIPPO-2 10/31/09-11/7/09, Pacific 11/16/09-11/22/09, Pacific 

HIPPO-3 3/24/10-3/31/10, Pacific 4/10/10-4/16/10, Pacific 

HIPPO-4 6/14/11-6/22/11, Pacific 7/4/11-7/11/11, Pacific 

HIPPO-5 8/9/11-8/24/11, Pacific 9/3/11-9/8/11, Pacific 

ATom-1 7/29/16-8/6/16, Pacific 8/17/16-8/23/16, Atlantic 

ATom-2 1/26/17-2/3/17, Pacific 2/15/16-2/21/17, Atlantic 

ATom-3 9/28/17-10/6/17, Pacific 10/19/17-10/28/17, Atlantic 

ATom-4 4/24/18-5/1/18, Pacific 5/14/18-5/21/18, Atlantic 

 

2.2 Curtain Averages from Atmospheric Concentrations 

The CO2 observations from all flight campaigns are combined to estimate the 

average northern extratropical tropospheric CO2 seasonal cycle (Bent, 2014). We then 

use a set of transport models to convert the time derivative of this cycle into estimates of 

northern extratropical terrestrial CO2 flux. We refer to this process as “bias correction.”   

To isolate tropospheric CO2 signals, we define an upper cutoff of 300 hPa and 

remove any remaining observations with detectable stratospheric influence using the 
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measured concentration of nitrous oxide (N2O) and a cutoff value of 319 parts per billion 

(ppb) after detrending the data to 2009; samples whose N2O concentration falls below 

this threshold are removed from the observations (Bent, 2014). We also manually remove 

outlying samples primarily obtained during takeoffs and landings, to avoid strong local 

influences from biospheric exchange or fossil emissions. The flights and times filtered 

are identified in Data Sets S1 and S2. We filter output at the same locations and times for 

the transport model CO2 mole fractions simulated along the flight tracks, discussed in 

section 2.3. This stratospheric and local influence filtering removes 2.8% of the 

observations within the defined domain from the HIPPO and ATom datasets. We do not 

use observations from the northbound leg of HIPPO-1 because it only extended to 40°N, 

and both QCLS and OMS have been filtered for altitude-dependent biases on these 

flights.  

We then detrend the filtered data by removing the long-term trend in the NOAA 

Mauna Loa in situ CO2 mole fraction record (Thoning et al., 2022), found by Seasonal-

Trend decomposition using locally estimated scatterplot smoothing (STL, Cleveland et 

al., 1990) with a 2-year smoothing window. By detrending, the overall annual mean level 

of flux is removed, leaving only the (relative) seasonal cycle. 

We calculate the extratropical mean drawdown by first aggregating the detrended 

data in latitude and pressure bins. We discretize the atmosphere into bins of 5° in latitude 

and 50 hPa in pressure, for the latitude range 20°N to 90°N  and the pressure range 300 

hPa to 1000 hPa. Observations at latitudes south of 20°N are excluded because of the 

differences in the phasing of the tropical seasonal cycle to that north of 20°N, and 

observations at pressures below 300 hPa were excluded because measurements were 

sparse and frequently in the stratosphere. Within each bin, we average all data collected 

for a given day of the year and then fit a second-order harmonic  as a function of day of 

the year with an offset due to the difference in the annual mean relative to Mauna Loa 

(Fig. S1).  We then generate seasonal time series at daily resolution from the harmonic 

fits and take the pressure-weighted average of these values for each latitude bin. These 

partial columns are then integrated over latitude from 20°N to 90°N (Eq. 1), using 

cosine(lat) weighting to reflect the influence on the zonal volume below 300 hPa at 
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latitudes where observations were made. We call the result of this integration the “curtain 

average” concentration of atmospheric CO2 (Bent, 2014).  

𝐶𝑢𝑟𝑡𝑎𝑖𝑛𝐴𝑣𝑔 =  
∫ ∫ 𝑎𝑣𝑒𝐶𝑂2(𝜑,𝑃) 𝑑𝑝 cos 𝜑𝑑𝜑

1000 ℎ𝑃𝑎
300 ℎ𝑃𝑎

90°𝑁
20°𝑁

∫ ∫ 𝑑𝑝 cos 𝜑𝑑𝜑
1000 ℎ𝑃𝑎

300 ℎ𝑃𝑎
90°𝑁

20°𝑁

      (1) 

The curtain average is shown in black in Figure 2, and is compared to northbound 

and southbound legs of each HIPPO and ATom mission where each point is found by 

filtering, detrending, interpolating and extrapolating to get a full altitude and latitude 

slice, then taking a pressure and cosine of latitude weighted average (Akima, 1978). 
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Figure 2 Two-harmonic fit to detrended average carbon dioxide concentration in 

ppm as a function of day of year for HIPPO and ATom flight campaigns in the atmospheric 

curtain between 20°N and 90°N in latitude and between 1000 hPa and 300 hPa in pressure. 

The points are found by filtering, detrending, interpolating and extrapolating to get a full 

altitude and latitude slice, then taking a pressure and cosine of latitude weighted average. 

The black line is the average of all fits to individual latitude-pressure bins with the annual 

mean removed. The direction of flight (southbound or northbound) is shown with filled and 

unfilled symbols because southbound flights occurred 2-3 weeks earlier than northbound 

flights. 

The derivative, found as a finite-difference, of the curtain average concentration 

fit line with respect to time, then gives the rate of change of CO2 of this atmospheric 

volume as a function of the day of the year. 

We convert from a rate of change in dry air mole fractionto a rate of change in 

mass balance (MB) by multiplying the mole fraction by the mass of dry air north of 20°N 

and between the surface and 300 hPa in pressure. This mass is found using the ERA5 

reanalysis fields used by Tracer Model 5 (TM5) within CarbonTracker 2019 (Krol et al., 

2005; Jacobson et al., 2020). We use the time mean mass of 1.21087452 × 1018 kg 

within the domain across the HIPPO and ATom time periods, neglecting annual and 

seasonal variations, which are less than 0.2%. 

2.3 Flux Estimates Using Atomspheric Transport Models 

Although the HIPPO and ATom observations over the remote ocean provide 

representative estimates of background values, the sampling and discretization method, 

zonal gradients, and mixing out of the domain result in differences between our MB time 

derivatives and zonal fluxes. Also, fossil fuel emissions and air-sea gas exchange make 

small contributions to the observed cycles. We use atmospheric transport models to 

account for the cumulative effect of: 1) atmospheric mixing across the southern boundary 

and above the pressure boundary; 2) spatial sampling biases associated with specific 

flight tracks; 3) zonal sampling bias; 4) temporal sampling biases associated with 
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synoptic variability, subseasonal sample distribution, and interannual variability; and 5) 

contributions from fossil-fuel emissions and ocean uptake.  

Atmospheric inversions provide optimal estimates of surface-atmosphere CO2 

exchange derived from both atmospheric CO2 mole fraction data and initial estimates for 

land-atmosphere and ocean-atmosphere exchange in the context of an atmospheric 

transport model. We use posterior concentrations from three different inversions (Table 

2) to reduce the uncertainty that may arise due to biases present in the choice of transport 

model as differences in transport have previously been shown to lead to large differences 

in optimized fluxes (Gurney et al., 2002; Schuh et al., 2019; Stephens et al., 2007). 

CarbonTracker is a data assimilation system consisting of the TM5 atmospheric 

transport model coupled to an ensemble Kalman filter (Jacobson et al., 2020; Peters et al., 

2007). TM5 is a global two-way nested transport model driven by 3-h meteorological 

forcing from the ERA5 operational forecast model (Krol et al., 2005). We used output 

from the most recent Carbon Tracker release (CT2019B, Jacobson et al., 2020), which 

includes optimized carbon fluxes through the HIPPO and ATom time period, and CO2 

mole fractions simulated along the flight paths for the HIPPO and ATom campaigns, 

which match the dates, times, and locations for the HIPPO and ATom data included in 

the GLOBALVIEWplus v5.0 ObsPack product (Cooperative Global Atmospheric Data 

Integration Project, 2019). CT2019B assimilated 460 time series datasets including data 

from the HIPPO and ATom campaigns. The datasets assimilated in CT2019B were 

mostly surface in situ, surface flask, and tower in situ observations from sites around the 

world. 

The Model for Interdisciplinary Research on Climate version 4 atmospheric 

general circulation model based chemistry transport model (MIROC4-ACTM) provides 

posterior 4-D CO2 fields and optimized surface fluxes through the HIPPO and ATom 

period (Chandra et al., 2022). Atmospheric CO2 transport in MIROC4-ACTM is 

simulated by the Japan Agency for Marine-Earth Science and Technology’s ACTM, a 

transport model driven by meteorological parameters from the Japanese 55-year 

Reanalysis (JRA55, Patra et al., 2018). We used the 2020 version of MIROC4-ACTM 
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output and MIROC CO2 mole fractions simulated along the flight paths for the HIPPO 

and ATom campaigns matching the dates, times, and locations for the HIPPO and ATom 

data included in the GLOBALVIEWplus v5.0 ObsPack product. MIROC4-ACTM 

assimilated surface flask data from 50 sites around the world (Chandra et al. 2022). 

We used a third set of inverse modeling output from the Copernicus Atmosphere 

Monitoring Service (CAMS; Chevallier et al., 2005). Within CAMS, transport of 

atmospheric CO2 is simulated by the global climate model of the Laboratoire de 

Météorologie Dynamique, zoom capacity (LMDZ) driven by meteorological parameters 

from ECMWF (Chevallier et al., 2005). We used CO2 mole fractions simulated along the 

HIPPO and ATom flight paths matching the dates, times, and locations for the HIPPO 

and ATom data included in the  GLOBALVIEWplus v5.0 ObsPack product, and 

posterior carbon fluxes from CAMS v20r1, which contains output through the HIPPO 
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and ATom period. CAMS v20r1 assimilated surface air-sample data from 159 sites 

around the world. 

Table 2 Inverse models used in this study. 

  CT2019B MIROC4-ACTM CAMS 

Years Available 2000-2018 1996-2018 1979-2020 

Years Used 2009-2018 2009-2018 2009-2018 

Transport TM5 ACTM LMDZ 

Meteorology ERA5 JRA55 ERA5 

Resolution (lat x lon 

in degrees) 

Glb2x3, N 

America 1x1 

Glb2.8x2.8 Glb1.9x3.75 

Fossil Fuels Miller and 

ODIAC 

EDGARv432 GCP-

GridFEDv2021.2 

Reference (Jacobson et 

al., 2020) 

(Chandra et al., 

2022) 

(Chevallier et al., 

2005) 

 

For each model, we calculate the annual cycle of the northern extratropical net 

land flux by removing the long-term annual mean of the posterior land flux, which 

excludes fossil fuel emissions and ocean fluxes, from 2000 - 2018 at each grid cell and 

then taking an area-weighted average north of 20°N.  We linearly interpolate between 
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monthly means to get an annual cycle at daily resolution to allow for direct comparison to 

the aircraft-observation-derived MB.  

To correct for bias, we match the model ObsPack output date, time, and location 

to the 10-second merge files for HIPPO and ATom, then repeat the analysis described in 

Section 2.2 using posterior CO2 mole fractions simulated along the HIPPO and ATom 

flight tracks to calculate the curtain average and MB for each atmospheric inversion 

system. The averaged posterior land flux  is then subtracted from the MB to derive a 

seasonal correction. The MB found using posterior CO2 mole fractions simulated along 

the HIPPO and ATom flight tracks is the MB that would be observed if transport  and 

fluxes in our world perfectly matched transport and fluxes in the model, with a time delay 

between the two curves due to the time takes the signal of land fluxes to reach the 

location where measurements are made. Thus, in each model, we assume the difference 

between the MB for each model (solid lines in Fig. 3a) and northern extratropical average 

posterior land flux (dashed lines in Fig. 3a) is due primarily to mixing outside the 

domain, model fluxes, and time delay, with additional influences listed above. We 

determine the correction for each model and subtract it from the observationally derived 

MB (dotted black line in Fig. 3b) resulting in transport-model specific flux estimates 

(solid color lines in Fig. 3b). The average difference across the three models (dashed 

black line in Fig. 3b) is subtracted from the observationally derived MB to estimate the 

seasonal cycle of the average net flux, hereafter referred to as the “flux cycle”, into the 

atmosphere (solid black line in Fig. 3b).  

We find that the contribution of atmospheric transport uncertainty for the large 

spatial scale over which we average is small. In particular, noted variations in 

representations of vertical mixing (Stephens et al., 2007; Schuh et al. 2019) may change 

the distribution of CO2 within our domain but not the domain average. 

2.4 Growing Season Net Flux from Seasonal Flux Cycles 

We then calculate the net atmospheric carbon exchange during the growing 

season, or GSNF, as the integral of the flux cycle during the growing season, defined to 

be when the bias corrected flux cycle is negative, which is nominally equivalent to the 
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Figure 3 (a) Time derivative of concentrations from observations and inverse models, along 

with model fluxes. The dashed lines the area weighted average of posterior land fluxes from 

each inversion system in the domain 20°N-90°N. The solid lines are found by using the 

carbon dioxide mole-fractions along the flight track for each model to calculate the MB as 

described in Section 2.2. The solid black line is the time derivative of concentrations using 

the HIPPO and ATom observations. The estimated flux for the observations is bias 

corrected by finding the difference between the dotted and solid lines for a given model and 

applying that difference to the time derivative of the concentration. (b) Estimated flux after 

bias correction. The colored lines are found by calibrating using only the model indicated 

and the solid black line is found using the average correction. The dotted black line is the 

time derivative of concentration before the correction. 

period when detrended atmospheric CO2 is declining, primarily due to additional uptake 

by the biosphere as GPP outpaces respiration.  

By detrending the observations, this estimate excludes the annual mean flux of 

CO2, which itself includes fossil fuel emissions and terrestrial and oceanic sinks. Thus, 

our estimate of GSNF reflects the seasonal-only component of terrestrial exchange; the 

actual net uptake by the terrestrial biosphere during the growing season is larger when the 

annual component (long-term sink) is included. This approach is consistent with prior use 

of GSNF (e.g. Fung et al., 1983; Yang et al., 2007). Seasonal variations in fossil-fuel 

emissions and air-sea exchange contribute to seasonal variations in atmospheric CO2, but 

these influences are small at about 3% and 5% of land exchange respectively on average 

for the three inversion systems, and have been removed by our use of the land flux in our 

model-based bias correction. 

2.5 Earth System Models (CMIP5 and CMIP6) 
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The Coupled Model Intercomparison Project (CMIP) is an international, multi-

model research intercomparison project whose purpose is to compare a coordinated set of 

simulations from ESMs in order to gain a better understanding of our ability to model 

climate change and associated feedbacks (Friedlingstein et al., 2006). The ESMs that 

participate in the CMIP simulate relevant physical, chemical, and biological processes 

within the coupled Earth system (Eyring et al., 2016) using models developed by 

individual modeling centers worldwide, with the goal of including the most important 

processes that feed back into the climate system. 

Here, we analyzed the historical simulations for CMIP5 and CMIP6 (Table 3) that 

span the period from 1850 to 2005 for CMIP5 and to 2014 for CMIP6. We analyzed the 

CO2-concentration driven historical simulations in which environmental forcing, such as 

greenhouse gas concentrations and solar forcing, are prescribed. Land and ocean fluxes 

are allowed to evolve prognostically in response to greenhouse gasses and other forcings 

(Eyring et al., 2016). 
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Table 3 Earth system models used in this study. Models in bold are included in the subset used to analyze GPP, RH, 

and NPP. 

Model Generation 
Land 

Component 
Ocean 

Component 
Institution ID Reference 

ACCESS-ESM1-5 CMIP6 CABLE2.4 
ACCESS-OM2 

(MOM5) 
CSIRO 

Ziehn et al., 
2019 

CanESM5 CMIP6 
CLASS3.6/CT

EM1.2 
NEMO3.4.1 CCCma 

Swart et al., 
2019 

CESM2 CMIP6 CLM5 POP2 NCAR 
Danabasoglu et 

al., 2019 

CESM2-FV2 CMIP6 CLM5 POP2 NCAR 
Danabasoglu et 

al., 2019 

CESM2-WACCM CMIP6 CLM5 POP2 NCAR 
Danabasoglu et 

al., 2019 

CESM2-WACCM-FV2 CMIP6 CLM5 POP2 NCAR 
Danabasoglu et 

al., 2019 
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CMCC-CM2-SR5 CMIP6 CLM4.5 NEMO3.6 CMCC 
Lovato et al., 

2020 

CMCC-ESM2 CMIP6 CLM4.5 NEMO3.6 CMCC 
Lovato et al., 

2021 

GISS-E2-1-G CMIP6 GISS LSM GISS NASA-GISS 
NASA/GISS 

2018 

GISS-E2-1-H CMIP6 GISS LSM HYCOM NASA-GISS 
NASA/GISS 

2019 

IPSL-CM6A-LR CMIP6 ORCHIDEE NEMO-OPA IPSL 
Boucher et al., 

2018 

MPI-ESM-1-2-HAM CMIP6 JSBACH3.2 MPIOM1.63 
HAMMOZ-
Consortium 

Neubauer et 
al., 2019 

MPI-ESM1-2-LR CMIP6 JSBACH3.2 MPIOM1.63 MPI-M 
Wieners et al., 

2019 

NorCPM1 CMIP6 CLM4 MICOM1.1 NCC 
Bethke et al., 

2019 
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NorESM2-LM CMIP6 CLM MICOM NCC 
Seland et al., 

2019 

NorESM2-MM CMIP6 CLM MICOM NCC 
Bentsen et al., 

2019 

TaiESM1 CMIP6 CLM4 POP2 AS-RCEC Lee et al., 2020 

CanESM2 CMIP5 
CLASS2.7 

and CTEM1 
CanOM4 and 

CMOC1.2 
CCCma 

Chylek et al., 
2011 

CCSM4 CMIP5 CLM4 POP2 NCAR 
Gent et al., 

2011 

CESM1-BGC CMIP5 CLM BEC 
NSF-DOE-

NCAR 
Long et al., 

2013 

GFDL-ESM2G CMIP5 LM3 TOPAZ NOAA GFDL 
Dunne et al., 

2013 

HadGEM2-CC CMIP5 
MOSES2 and 

TRIFFID 
HadGOM2 MOHC 

Collins et al., 
2011 

HadGEM2-ES CMIP5 
MOSES2 and 

TRIFFID 
HadGOM2 MOHC 

Collins et al., 
2011 
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INM-CM4.0 CMIP5 - - INM 
Volodin et al., 

2010 

IPSL-CM5A-LR CMIP5 ORCHIDEE ORCA2 IPSL 
Dufresne et al., 

2013 

IPSL-CM5A-MR CMIP5 ORCHIDEE ORCA2 IPSL 
Dufresne et al., 

2013 

MIROC-ESM CMIP5 MATSIRO COCO MIROC 
Watanabe et 

al., 2011 

MIROC-ESM-CHEM CMIP5 MATSIRO COCO MIROC 
Watanabe et 

al., 2011 

NorESM1-M CMIP5 CLM MICOM NCC 
Tjiputra et al., 

2013 
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The northern extratropical seasonal land flux for CMIP5 and CMIP6 models is 

calculated by removing the long-term annual mean and taking the area-weighted average 

of each model's NBP output north of 20°N, linearly interpolating between monthly mean 

values, similar to the method used on the inversion posterior fluxes (Section 2.3). In 

addition, we fit a second-order harmonic to the NBP seasonal cycle to find seasonal 

timing within the models.  We define the growing season in each model as the period for 

which the model simulates net terrestrial uptake, which allows us to evaluate each 

model’s growing season start and end dates against those inferred from the aircraft 

observations. In ESMs, NBP reflects the balance of gross photosynthetic uptake, 

ecosystem respiration, and disturbance and harvest fluxes, and corresponds to the land-

atmosphere carbon exchange, making it comparable with our observationally derived 

flux. We note that ESMs generally do not represent lateral carbon fluxes in rivers, but we 

expect these to have a relatively minor contribution to our observed seasonal variations. 

We average multiple years of NBP output from the CMIP models to derive a 

climatology; for CMIP6, we average over 2009 - 2014, and for CMIP5, we average over 

2000-2005 because the output is not available through the HIPPO and ATom timeframe. 

We evaluate the ensembles as a whole by taking the median of each ensemble of models. 

We also evaluate area-weighted averages of three major component fluxes: GPP, RH, and 

NPP. Instead of analyzing the fluxes integrated over the growing season, we analyze the 

fluxes integrated over the entire year for GPP, RH, and NPP, which still correlate with 

the GSNF and are more useful than the seasonal fluxes when analyzing the carbon budget 

(e.g. Ballantyne et al., 2015; Tans et al., 1990). For the flux analysis, we use a subset of 

the models (9 of 12 CMIP5 models and 13 of 17 CMIP6 models, Table 3) for which 

historical NBP, GPP, RH, and NPP are available. 

3 Results 

Observations of atmospheric carbon dioxide from the HIPPO and ATom aircraft 

campaigns are used to estimate a GSNF of 5.7 ± 0.3 Pg C out of the atmosphere north of 20°N 

averaged over the period 2009-2018 (Fig. 5). This value is equivalent to the net CO2 exchange 

between the land and atmosphere during the growing season after removing the annual mean. 

The growing season is defined as the period when seasonal fluxes are negative (net uptake by 
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land greater than the annual mean) and occurs between day 117 in late April and day 248 in early 

September. This corresponds to the day when the curtain average is maximum to the day when 

the curtain average is minimum (Fig. 2). The flux cycle shows maximum uptake on day 196 

(Fig. 3b).  

We conducted sensitivity tests to ensure that our choices for the latitudinal boundary of 

the domain, vertical boundary of the domain ,and bin size did not have a large influence on the 

calculated GSNF. Expanding the region north (south) of 20°N  by 5°N resulted in a decrease 

(increase) in the strength of the GSNF of just under 1%. The GSNF was also generally robust to 

the choice of pressure ceiling for the aircraft observations, increasing by just over 1% when we 

instead used 350 hPa as a ceiling. The relative standard deviation for all boundary combinations 

tested (all possible combinations of pressure cutoffs of 300 hPa, 325 hPa, 350 hPa, 375 hPa, and 

400 hPa with latitude cutoffs of 20°N and 25°N) was 2%. Similarly, we saw just over a 1% 

increase in GSNF magnitude for a doubling of latitude or pressure bin size. The relative standard 

deviation for all bin sizes tested (all possible combinations of pressure bin sizes of 25 hPa, 50 

hPa, and 100 hPa with latitude bin sizes of 5 ° and 10 °) was 1%. 

Given the small differences that the choice of boundary and bin size make on the 

magnitude of the calculated GSNF, most of the uncertainty in GSNF results from the transport 

model bias correction process. We see a spread of 0.2 Pg C or 4% when using CT2019B alone to 

bias correct vs. using CAMS alone to bias correct. Additionally, the interannual variability, 

calculated as the standard deviation of the GSNF estimated from the average of the three 

inversion fluxes for each year over the period 2009-2018, is less than 0.2 Pg C or just over 3%. 

When adding the uncertainty from bin size, boundary choice, bias correction, and interannual 
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variability in quadrature, assuming uncorrelated errors, the 1-sigma error on GSNF is 0.3 Pg C 

and on the start and end of the growing season is 2 days.  

Considering the extensive altitude-latitude coverage of the aircraft observations, the 

inferred flux represents a unique and robust hemispheric estimate of terrestrial biosphere 

exchange and its seasonal phasing.  We used the observationally inferred GSNF metric to 

evaluate NBP and its seasonal phasing from the CMIP5 and CMIP6 ensembles (Fig. 5). CMIP6 

models (mean GSNF:  5.3 ± 1.6 Pg C, range: 1.5 - 6.9 Pg C) on the whole have less spread than 

CMIP5 models (mean GSNF: 5.7 ± 2.4 Pg C, range: 2.5 - 10.0 Pg C) (Fig 5). Three of the 13 

CMIP6 ensemble members evaluated, CESM2, CESM2-WACCM, and MPI-ESM1-2-LR, were 

within 0.3 Pg C of the observed value, and most of the models with a large bias underestimated 

the GSNF.  



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 

Figure 4 Corrected flux estimated from the HIPPO and ATom campaigns in comparison to 

area-weighted average NBP in the same domain from the (a) CMIP5 and (b) CMIP6 

models.  The bias corrected observation error is the standard deviation between correction 

using the three different inverse models. While the spread in magnitude and timing of the 
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flux in CMIP6 models is smaller than that of CMIP5 models, there is still disagreement 

between models. 
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Figure 5 GSNF plotted against the (a) start of the season, defined to be the first day when 

the seasonal component of atmospheric CO2 is decreasing (seasonal component of flux 

changes from positive to negative), (b) end of the season, defined to be the last day when the 

seasonal component of atmospheric CO2 is decreasing (seasonal component of flux changes 

from negative to positive), (c) length of the season, and (d) max of season, defined to be the 

day when flux is most negative. The black point is the number inferred from the 

observations with the gray lines showing uncertainty. CMIP5 models are shown in blue 

and CMIP6 models are shown in orange. The blue and orange points are the multi-model 

mean for the CMIP5 and CMIP6 ensembles respectively. The surrounding ellipses show 

the covariance to one standard deviation. Only models where GPP, RH, and NPP output 

was available are included. 
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We note that some modeling centers showed substantial improvement in capturing GSNF 

between CMIP5 and CMIP6 (Fig. 6) by decreasing the absolute value of their z-score, which 

indicates how many standard deviations away from the observed value a model falls. For 

example, the two versions of the IPSL model overestimate GSNF by more than 4 Pg C in 

CMIP5, which improved substantially in CMIP6 to underestimate the GSNF by less than 1 Pg C. 

In both CMIP5 and CMIP6, the majority of ensemble members underestimate the seasonal flux, 

falling below the horizontal gray bar in Fig. 5. 

 

Figure 6 CMIP5 and CMIP6 model absolute value of z-score calculated for all models. The 

color gray and the label none has been used when one generation of a model is not used or 

not existent. 

A decrease in GSNF model spread in the newer generation has not necessarily led to an 

improved agreement between models and observations on the phasing of the seasonal cycle. For 
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example, The CMIP5 ensemble median start day (Julian day 119 ± 17) is closer to the observed 

start day (Julian day 117 ± 2) than the CMIP6 ensemble mean start day (Julian day 98 ± 14) (Fig. 

5a). None of the 13 CMIP6 models evaluated fell within 2 days of the observed start day while 

three of the 9 CMIP5 models evaluated fell within the 2-day uncertainty range (Fig. 5a). The 

observations suggest that the growing season onset has become more biased in CMIP6. 

However, the CMIP6 ensemble did show a smaller bias than CMIP5 for the model-median end 

day, which was Julian day 241 ± 16 for CMIP6 and 258 ± 18 for CMIP5, in contrast to day 248 

± 2 in the observations (Fig. 5b). At 143 ± 9 days, the CMIP6 ensemble median growing season 

length is 12 days longer than the observed length of 131 ± 2. In comparison, the CMIP5 

ensemble median growing season length is 11 days longer at 140 ± 12 days (Fig. 5c).  While the 

CMIP6 ensemble median end day compares more favorably with the observed end day than does 

the CMIP5 ensemble median end day, in both cases, the simulated growing season is longer than 

what is observed (Fig. 5c). 

Seasonal phasing in general does not appear to be correlated with GSNF in the model 

ensembles, suggesting that phasing is not a dominant driver of GSNF spread among models.  No 

correlation was seen (r2 < 0.2, p > 0.05) between GSNF magnitude and the start day, end day, 

length, or max day across models (Fig. 5). This suggests that factors other than the phasing of the 

growing season may explain inter-model differences. 

We analyzed GPP, RH, and NPP for the subset of CMIP5 and CMIP6 ensemble members 

which include these outputs to see if these component fluxes might explain model disagreement 

on GSNF (Fig. 7). We found that in both the CMIP5 and CMIP6 ensembles, GSNF was 

correlated (r2 = 0.68, p < 0.05) with GPP, where models with larger GPP generally had larger 

GSNF. Models with large GPP also tend toward higher respiration values with an r2 value of 0.77 

between GPP and RH, as GPP provides the inputs to support RH. RH showed a weaker 

correlation with GSNF than did GPP, however, the correlation is still moderately strong  (r2 = 

0.52, p < 0.05). As expected, models with higher GPP values also tend toward higher NPP 
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values, and the correlation between NPP and GSNF is moderately strong with an r2 value of 0.66 

and a p-value less than 0.05.  

We see a large range for GPP, RH, and NPP across the CMIP5 and CMIP6 ensembles. 

The range in GPP is smaller for the CMIP6 ensemble (median = 51 ± 9 Pg C, spread = 37 Pg C) 

than for the CMIP5 ensemble (median = 60 ± 17 Pg C, spread = 47 Pg C) where the error on the 

median is one standard deviation. However, this decrease in the model range between ensemble 

generations is not seen for RH or NPP. The spreads for RH were 23 Pg C (median = 27 + 8 Pg 

C) for CMIP5 and 27 Pg C (median = 21 ± 7 Pg C) for CMIP6. NPP from CMIP5 and CMIP6 

had median values of 32 ± 9 Pg C and 24 ± 7 Pg C respectively and a spread of 28 Pg C for both 

CMIP5 and CMIP6. We note that two models in the CMIP6 ensemble have GSNF values 

consistent with the observational constraint, MPI-ESM1-2-LR and IPSL-CM6A-LR, but the GPP 

values spanned by these models are over 10 Pg C, the RH values spanned by these models are 10 

Pg C, and the NPP spanned by these models are 9 Pg C. 

The strong correlations and large ensemble spread enabled us to indirectly constrain 

northern extratropical GPP, RH, and NPP through an “emergent constraint” (EC) approach (e.g. 

Eyring et al., 2019, Williamson et al., 2021; Simpson et al., 2021). ECs are correlations between 

some observable element X  that varies across the ESM ensemble and some important variable Y 

assuming a physically meaningful relationship exists between X and Y. Here, we assumed GSNF 

to be X and assumed a physically meaningful relationship between the net flux and its 

component fluxes GPP, RH, and NPP (Fig. 7). The CMIP5 and CMIP6 ensembles can be 

analyzed separately to estimate GPP, RH, and NPP. The CMIP5 ensemble EC estimate for GPP 

is 58 ± 23 Pg C, for RH is 28 ± 13 Pg C, and for NPP is 31 ± 12 Pg C where the error is the 95% 

prediction interval from a hypothetical sample generated using a Monte Carlo simulation of n = 

10000 and assuming a Gaussian distribution (Williamson and Sansom 2019). Similarly, the 

CMIP6 ensemble EC estimate for GPP is 54 ± 13 Pg C, for RH is 24 ± 13 Pg C, and for NPP is 

26 ± 10 Pg C. However, we can also combine the two ensembles to create a larger sample size as 

the estimates agree within error and the modeled relationship does not change substantially 

between the two generations. The combined EC estimate for GPP is 56 ± 17 Pg C, for RH is 25 ± 

13 Pg C, and for NPP is 28 ± 11 Pg C. Although we did not constrain autotrophic respiration 

(RA) explicitly, the constraint on GPP and NPP imply RA is 28 ± 20 Pg C where the error has 
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been propagated by summing the errors in quadrature. Applying an emergent constraint to RA 

explicitly would likely give smaller errors. 

 

Figure 7 GSNF plotted as a function of (a) integrated GPP and (b) integrated RH, and (c) 

integrated NPP for the CMIP5 and CMIP6 models. The estimated GSNF from the HIPPO 

and ATom observations is shown in gray, CMIP5 models are shown in blue, and CMIP6 

models are shown in orange. Only models where GPP, RH, and NPP data was available are 

included. 
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4 Discussion 

Here we derive an observational constraint on northern extratropical GSNF from two 

novel aircraft campaigns that measured the atmospheric CO2 curtain over remote oceans. Our 

estimated GSNF of 5.7 ± 0.3 Pg C is significantly smaller in magnitude than the GSNF of 7.9 Pg 

C yr-1 out of the atmosphere estimated north of 30°N by Yang et al. (2007) based on total column 

observations and spatially sparse aircraft profiles in North America. These differences are most 

likely due to differences in methodology, as Yang et al. used a combination of total column and 

aircraft measurements at 8 locations between 30°N and 70°N to scale fluxes from a terrestrial 

ecosystem model (TEM), while we used aircraft data that sampled nearly continuously between 

our cutoff of 20°N and roughly 87°N to estimate GSNF without using a specific TEM. When our 

cutoff is changed from  20°N to  30°N, our estimate increases to 5.8 Pg C. Fung et al. (1983) 

quantified GSNF in the Northern Hemisphere using a three-dimensional tracer transport model. 

When our cutoff is changed to the Equator, our estimate increases to 6.1 Pg C, which falls within 

the 3.4 - 10.7 Pg C range given by Fung et al. (1983). However, the range given by Fung et al. 

(1983) is large. The uncertainty on northern hemisphere GSNF could likely be reduced with 

application of multiple transport models to existing records. 

We may expect to see an increase in GSNF over time due to the observed increase in the 

CO2 seasonal cycle amplitude (SCA). Graven et al. (2013) saw an increase of 32-59 % in the NH 

seasonal cycle amplitude in the 50-year period from 1958-1963 to 2009-2011. This equates to an 

increase of 0.56 - 0.93 % yr-1. If this trend continued through the HIPPO and ATom time period, 

we would expect to see a 4.0 - 6.7% increase across the 7 years between these two missions. 

Applying the methodology to HIPPO alone, which covers 2009-2011, gives a value of 11.2 ppm 

for the SCA of the curtain average versus 10.7 ppm when using ATom alone, which covers 

2016-2018. This corresponds to a more than 1% decrease, contrary to the increase expected from 

Graven. However, this may not be accurate as there may not be enough data in either mission 

alone to fully constrain the seasonal cycle (Fig. S3) and account for interannual variability in 

CO2 fluxes, which were shown by Jin et al. (2021) to be  non-negligible.  

Despite any interannual variability, the expected increase in GSNF is not apparent when 

comparing the flight-based estimates to previous estimates. Yang et al. (2007) estimate a larger 
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GSNF despite covering an earlier time period. The large range given by Fung et al. (1983) means 

that the increase in GSNF may be seen if the true GSNF in 1982 fell within the range of 4.6 - 5.2 

Pg C. Looking at surface records, Keeling and Graven (2021) saw an increase in the amplitudes 

at Mauna Loa and Barrow between 2010 and 2017 equating to 10.9% at Mauna Loa and 1.1% at 

Barrow using 5-year running means, suggesting possibly a shift to less SCA growth at high 

latitudes. These results should be interpreted with caution as large interannual variability may 

dominate when looking at the short time period of 2010-2017.  

The HIPPO and ATom observations reflect the atmospheric mass of carbon integrated 

over a large latitudinal and altitudinal extent, thus, our estimate is less sensitive to specific 

representations of atmospheric transport than are other estimates. For example, the GSNF 

estimated over our domain, bias corrected with the three inverse models individually, only varied 

by just 0.2 Pg C or less than 4% (Fig. 3b), even while previous research has reported the relative 

spread of 10 simulations for the posterior annual mean northern extratropical land flux to be 

13 % (Gaubert et al., 2019). Additionally, inverse models seem to be converging on the land flux 

as the GSNF estimated from the posterior inversion land fluxes averaged 5.8 Pg C, slightly larger 

than the observationally based estimate of 5.7 Pg C, and varied by just 0.2 Pg C. The small 

differences among the inverse models at the hemispheric scale mean that, even though it 

represented the largest source of uncertainty, the bias correction process imparted minimal 

uncertainty on our ultimate GSNF value.  

Use of the transformed coordinate, Mθe, introduced by Jin et al. (2021) may further 

reduce uncertainty. Mθe is defined as the dry air mass under a given equivalent potential 

temperature surface within a hemisphere and its relationship with latitude and altitude is nearly 

fixed over the seasonal cycle. When integrating to find the curtain average, Jin et al. (2021) show 

that using the transformed coordinate as an alternative to latitude reduces error in the curtain 

average due to  sparse sampling and synoptic variability.  

The low uncertainty on the hemispheric integral makes GSNF and its phasing robust 

targets for evaluating TEMs and the land components of ESMs. Although direct comparison with 

atmospheric CO2 mole fraction has been used to evaluate ESMs previously, these comparisons 

rely on simulation of the three-dimensional atmospheric CO2 mole fraction within the ESM (e.g., 
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Keppel-Aleks et al., 2013) or require estimating CO2 using an offline transport model or operator 

(e.g., Liptak et al, 2017).  In contrast, our GSNF constraint can be used to evaluate ESMs at the 

flux level rather than relying on comparisons at the concentration level. Compared to our metric, 

the CMIP6 ensemble has shown some improvements relative to the CMIP5 ensemble, namely a 

reduction in the spread between models (5.5 Pg C vs. 7.3 Pg C) and a more favorable simulation 

of the timing of the end of the growing season (7 days early vs. 10 days late) when considering 

the ensemble median values (Fig. 5 b, c). However, there are still large disagreements, and in 

some ways, CMIP5 models perform better in relation to the observationally inferred flux than do 

CMIP6 models. For example, CMIP5 models outperform CMIP6 models in simulating the start 

of the growing season (2 days late vs. 19 days early) and the GSNF magnitude (5.7 ± 2.4 Pg C vs 

5.3 ± 1.6 Pg C compared to observational value of 5.7 ± 0.3 Pg C) when considering the 

ensemble median values (Fig. 5). The models tend to underestimate the magnitude of GSNF on 

the whole with 3 of the 9 CMIP5 models and 8 of the 13 CMIP6 models underestimating the flux 

(falling below the horizontal gray lines in Figure 5),  only 2 CMIP5 and 3 CMIP6 models falling 

within the uncertainty range, and 4 CMIP5 models and 2 CMIP6 models overestimating the net 

flux. This is consistent with previous results from Keppel-Aleks et al. (2013) suggesting that the 

Community Land Model version 4 (CLM4), a version of which is used as the land model for 

over one-third of the ESMs evaluated, underestimated GSNF. Three of the models with the 

largest underestimate of GSNF (NorCPM1, NorESM1-M, and TaiESM1) utilize CLM4 as their 

land model; however, we note that two of the best performing models (CESM2 and CESM2-

WACCM) both utilize the Community Land Model version 5 (CLM5) as their land component, 

reflecting major improvement in CLM5 compared to CLM4 in simulating CO2 seasonality 

(Lawrence et al., 2019). Correlations between GSNF and seasonal phasing were weak or 

nonexistent, meaning that the improvements in CLM5 are more likely due to improvements in 

simulations of the overall magnitude of photosynthesis and respiration than to improvements in 

simulations of the timing of the growing season. 

The methods chosen to define the growing season have some effect on model-observation 

comparisons. We could have chosen to prescribe the growing season dates for calculating model 

metrics from the observations rather than allowing the dates to vary from model to model. The 

primary difference in the results using this approach is a slight reduction in the magnitude of the 

GSNF for most of the CMIP5 and CMIP6 models, a less strong correlation between GSNF and 
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GPP, RH, and NPP, and a slight increase in the inferred values of northern GPP, RH, and NPP 

(Fig S2).  

Although the aircraft CO2 data provide a constraint on GSNF, this benchmark is also 

useful for constraining component fluxes that are difficult to infer observationally at large spatial 

scales. We examine the GPP, RH, and NPP of the ESM ensembles in relation to GSNF.  GPP, 

RH, and NPP are components of the net flux, and we see moderate correlations between 

simulated GSNF and simulated productivity (both GPP and NPP) and RH. It is noteworthy that 

correlations between GSNF and the various annual fluxes are stronger than those between GSNF 

and seasonal timing, which may indicate that the magnitudes of photosynthesis and respiration 

are more dominant drivers of GSNF than seasonal phasing is (e.g., Valentini et al., 2000, 

Baldocchi et al., 2017). Cadule et al. (2010) analyzed three CMIP models and concluded that 

models generally underestimate the seasonal amplitude due to shortcomings in vegetation 

phenology and heterotrophic respiration response to climate. Our results generally support this 

role for discrepancies in component fluxes as driving a discrepancy in the resulting GSNF.  

These correlations between GSNF and its component fluxes provide an opportunity to 

constrain GPP, RH, and NPP using an emergent constraint approach. Previous estimates of 

northern extratropical GPP are highly uncertain, with large disagreements between estimates. For 

example, Mao et al., (2012) used the Moderate Resolution Imaging Spectroradiometer (MODIS) 

GPP product to estimate Northern Hemisphere GPP averaged over 2000-2009 as 64.75 ± 0.97 Pg 

C yr-1. In contrast, the FLUXCOM product, based on upscaled observations from FLUXNET 

sites using various machine learning approaches (Jung et al., 2019), estimated GPP north of 

20°N averaged over 2009-2014 to be 48 Pg C yr-1. Our GSNF-constrained value of 56 ± 15 Pg C 

for GPP is consistent with both of these estimates, given the larger error bars on the emergent 

constraint approach, and indicates that GPP falls between these two estimates. The large value 

for GPP relative to FLUXCOM is interesting in light of the uncertainty in global GPP. The range 

in global mean GPP magnitudes for 2008–2010 from FLUXCOM members is 106 - 130 Pg C yr-

1 (Jung et al., 2020). This range covers the observation-based estimate of global mean GPP of 

123 ± 8 Pg C yr-1) found using eddy covariance flux data and various diagnostic models (Beer et 

al., 2010) but is smaller than the GPP magnitudes of 150–175 Pg C yr-1 derived from an isotope-

based study (Welp et al., 2011). Our results may indicate a higher global mean GPP than the flux 
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tower upscaling yields; however, we are constraining extratropical GPP which may be affected 

by different factors than tropical GPP. These results therefore need to be interpreted with 

caution. 

5 Conclusions 

Earth system models disagree in their simulation of large-scale carbon fluxes, making it 

crucial to evaluate models to contextualize their climate predictions. We have presented an 

approach to constrain the seasonal land flux using aircraft data from the HIPPO and ATom flight 

campaigns. The northern extratropical GSNF of 5.7 ± 0.3 Pg C derived from these observations 

can be used to evaluate prognostic model fluxes for net flux, directly, and for component fluxes 

via an emergent constraint approach. We note that this constraint is tied to atmospheric transport 

models because the flux is bias corrected by comparing posterior mole fractions from inverse 

models with their fluxes. We found, however, that at the hemispheric scale, the constraint is 

robust to the choice of atmospheric transport model since common transport errors tend to cancel 

out at this scale. 

When compared to CMIP5 and CMIP6 models, the inferred GSNF suggests a larger net 

flux and shorter growing season than simulated in both model ensembles. This gives modelers an 

additional observation to target during model development and could be added to a 

benchmarking system such as the International Land Model Benchmarking (ILAMB) System 

(Collier et al., 2018). While there is decreased model spread between CMIP6 models, this 

benchmark also highlights some of the ways in which CMIP6 models have not improved from 

CMIP5, such as in simulating the start of the growing season.   

Correlations within the CMIP5 and CMIP6 ensembles allowed us to apply an emergent 

constraint approach to estimate northern hemisphere GPP, RH, and NPP. We found that the 

GSNF-constrained value for GPP is at the higher end of a range of estimates from FLUXCOM, a 

commonly used ensemble of data products  of upscaled biosphere-atmosphere fluxes.  

Overall, the HIPPO and ATom inferred GSNF provides a robust metric that allows for 

the evaluation of large-scale fluxes in flux space and sheds light on component fluxes, filling a 

need highlighted by Collier et al. (2018) for land model benchmarking. More regular global scale 
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airborne tomography could resolve GSNF at higher time resolution and leverage carbon cycle 

interannual variability for improved tests of ESM process representations. 
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