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Abstract 

Introduction/Aims: Body mass index (BMI) is linked to amyotrophic lateral sclerosis (ALS) risk and 

prognosis, but additional research is needed. The aim of this study was to identify if and when historical 

changes in BMI occurred in ALS participants, how these longer term trajectories associated with 

survival, and whether metabolomic profiles provided insight into potential mechanisms. 

Methods: ALS and control participants self-reported body height and weight 10 (reference) and 

5 years prior, and at study entry (diagnosis for ALS participants). Generalized estimating 

equations evaluated differences in BMI trajectories between cases and controls. ALS survival 

was evaluated by BMI trajectory group using accelerated failure time models. BMI trajectories 

and survival associations were explored using published metabolomic profiling and correlation 

networks. 

Results: 10-year BMI trends differed in ALS versus controls, with BMI loss in the 5 years prior 

to diagnosis despite BMI gains 10 to 5 years prior in both groups. An overall 10-year drop in 

BMI associated with a 27.1% decrease in ALS survival (p=0.010). Metabolomic networks in ALS 

participants showed dysregulation in sphingomyelin, bile acid, and plasmalogen sub-pathways. 

Discussion: ALS participants lost weight in the 5-year period before enrollment. BMI 

trajectories had 3 distinct groups and the group with significant weight loss in the past 10 years 

had the worst survival. Participants with a high BMI and increase in weight in the 10 years prior 

to symptom onset also had shorter survival. Certain metabolomics profiles were associated with 

the BMI trajectories. Replicating these findings in prospective cohorts is warranted.  

Key words: amyotrophic lateral sclerosis, body mass index, metabolism, prognosis, survival 
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Main Text 
 
Introduction 

Amyotrophic lateral sclerosis (ALS) diagnosis is preceded by a pre-symptomatic phase, 

characterized by initiation of the disease process but lacking pronounced clinical symptoms. 1-3 

ALS patients frequently experience a rapid decrease in body mass index (BMI) and the rate of 

loss early in the disease course is a strong prognostic factor.4 Therefore, BMI loss may reflect 

an early and pre-symptomatic manifestation of disease. Indeed, individuals with ALS develop 

BMI loss many years before symptom onset.5 Additionally, lower BMI earlier in life may both 

increase ALS risk5-9 and decrease ALS survival.5, 10  

BMI decreases in ALS patients are linked to lower energy intake from dysphagia and higher 

energy expenditure,11, 12 including hypermetabolism, altered glucose and lipid metabolism, and 

mitochondrial dysfunction.13 Perturbations in metabolism in ALS are supported by correlations in 

basic lipid profiles with risk and outcomes. Increased low-density lipoprotein cholesterol (LDL-C) 

and apolipoprotein B levels years prior to ALS diagnosis are associated with a higher future risk 

of ALS onset;14 higher levels of both at diagnosis also associated  with a lower risk of death.15 

However, basic lipid profiles do not capture the full spectrum of metabolic changes that occur in 

disease. Rather, the metabolome and lipidome, the cumulative profile of all metabolites and 

lipids, may more comprehensively reflect the metabolic state. Indeed, metabolomics profiles 

correlate with BMI16-18 and disease phenotypes, such as cardiometabolic risk.16, 17 Metabolomics 

signatures may one day be useful in combination with BMI as predictors of disease outcomes.16 

However, the correlation of BMI with metabolomics profile and disease outcomes has not been 

investigated in ALS. Thus, our goal in this current study was to leverage our case/control study 

to examine trends in BMI trajectory in ALS versus control participants correlated to survival and 

metabolomics profile. 
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Methods 

Participants and Samples 

Recruitment and data collection procedures are published.19-22 Briefly, all patients seen at the 

Pranger ALS Clinic at University of Michigan with an ALS diagnosis, age greater than18 years, 

and ability to consent in English were asked to participate. Neurologically healthy controls, 

recruited through population outreach, completed the same procedures. All participants 

provided oral and written informed consent and the study was approved by the Institutional 

Review Board. Demographic characteristics and available prior heights and weights from the 

medical records of the participants were obtained, as were ALS disease characteristics such as 

Revised El Escorial criteria (rEEC).23 Participants were asked to self-report height in feet and 

inches and weight in pounds 10 years ago, 5 years ago, and at the present time. For ALS 

participants, present weight was typically equivalent to weight at diagnosis since enrollment 

occurred shortly after diagnosis. BMI was calculated from height and weight as follows: weight 

(kg) / [height (m)]2.24 ALS participants with an interval of more than 5 years from symptom onset 

to a diagnosis were not included in the analysis as the goal was to investigate pre-symptomatic 

differences in BMI. A subset of participants provided plasma for metabolomics analysis, as 

published.25, 26  

 

Descriptive Analysis 

Descriptive statistics were calculated for demographic characteristics including age, sex, ALS 

disease onset segment frequencies, and disease duration (time from symptom onset to 

diagnosis). Study population differences were compared between BMI groups by analysis of 

variance tests and chi-square tests. Lin’s concordance correlation coefficient quantified 

agreement between available self-reported and measured BMIs. 
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BMI Progression Analysis and Group Assignment 

Generalized estimating equations (GEE) with unstructured correlation structure assessed 

differences in BMI changes for ALS and control participants, while accounting for within-

participant correlation between self-reported BMI measurements.27 The GEE outcome was self-

reported BMI and the covariates were interaction terms between ALS/control status and the 

three time points adjusted for age and sex at study entry. Differences in average BMI rate of 

change between ALS and controls were assessed with the Wald test and performed with the R 

geepack package.28  

After subtracting self-reported BMI 10 years prior to consent from all timepoints, k-means 

clustering for longitudinal data (kml R package29) grouped ALS cases based on their self-

reported changes in BMI, for use in ALS survival models. This subtraction step ensured that the 

k-means procedure clustered exclusively on BMI changes over time, rather than differences in 

baseline BMI. After considering 2-6 clusters, the selected number of clusters maximized the 

Calinski and Harabasz criterion30 a measure of between cluster variation relative to within-

cluster variation for longitudinal data.31 The distance metric used for clustering was Euclidean 

distance with Gower adjustment.31 

 

Survival Analysis 

Kaplan Meier plots of survival from diagnosis by cluster were produced. Cox proportional 

hazards models determined associations between cluster groups and ALS survival, defined as 

the time from diagnosis to death. Associations were adjusted for sex, age, baseline BMI (i.e., 10 

years prior), onset segment, diagnosis rEEC, and time from symptom onset to diagnosis. 

Proportional hazards assumptions were checked using global and individual Schoenfeld tests 
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with graphical assessment of the rescaled Schoenfeld residuals over time. Due to proportional 

hazards violations in some models, accelerated failure time (AFT) models were constructed. 

 

Sensitivity Analyses 

Sensitivity analyses for incomplete BMI data (inverse probability weighted models) and non-

linear effects of BMI were performed (Supplemental Methods). 

 

For above analyses, a p-value < 0.05 reflected statistical significance. 

 

Metabolomics Data Analysis 

Plasma samples from ALS participants were analyzed by Metabolon (Morrisville, NC) and 

previously published as case-control analyses.25, 26 Plasma samples were non-fasting as this 

was deemed not ethical for a large number of ALS participants. Metabolomics analysis included 

dataset normalization, computing correlations between BMI and metabolites, and selecting 

metabolites associated with BMI trajectory via least absolute shrinkage and selection operator 

(lasso) regression (Supplemental Methods). In order to identify highly interconnected 

metabolic modules further analysis included construction of a partial correlation network using 

previously published Sparse Partial Correlation algorithm.32,33, 34 , followed by consensus 

clustering35. Finally, group-penalized lasso regression (group lasso) models were created to 

identify metabolic modules associated with BMI clusters (Supplemental Methods). Group 

lasso36 is a generalization of lasso regression, which has the advantage of incorporating prior 

information on the grouping structure of the covariates, i.e., the metabolic modules in this 

instance. Analyses were performed with R version 4.0.2. 
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Results 

Participants 

For those with observed BMI at all three timepoints, ALS participants represented a typical 

patient population, according to onset age, distribution of segment onset, among other 

variables. Controls (n=266) were slightly younger than cases (n=381) (Table 1). Two ALS 

participants with an uncertain onset segment and one control with a BMI greater than 100 kg/m2 

labeled as an outlier were removed from subsequent analysis. 

 

BMI Trends in Cases Versus Controls 

Lin’s concordance correlation coefficient showed consistency between self-reported and 

measured BMI values (Supplemental Results). ALS and control participants reported BMI 

increases in the 10- to 5-year period prior to study entry (Supplemental Figure 1). Unlike 

controls, however, ALS cases had an overall BMI decrease in the 5-year prior to study entry 

time window. The age- and sex-adjusted GEE model showed average ALS BMI change from -5 

to 0 years was 1.75 kg/m2 (95%CI: 1.35 kg/m2 to 2.16 kg/m2; p<1x10-17), but was only 0.02 

kg/m2 for controls (95%CI: -0.35 kg/m2 to 0.40 kg/m2; p=0.9). Thus, ALS participants report BMI 

loss occurring 5 years before diagnosis/study entry, while control participants had no significant 

BMI change during the same timeframe. The kml algorithm applied to the ALS participant BMI 

trajectories identified three clusters, defined as decrease, mild decrease, and increase BMI 

groups (Supplemental Results, Supplemental Figure 2, Supplemental Table 1). 
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Survival Analysis 

Unadjusted Kaplan-Meier survival analysis showed decreased absolute median survival times 

for the decrease BMI cluster (Supplemental Figure 3). Some Cox models violated proportional 

hazards by Schoenfeld residuals, so AFT models were constructed. After adjusting for age, sex, 

baseline BMI (i.e., 10 years prior), onset segment, rEEC, and time from symptom onset to 

diagnosis, participants in the decrease BMI cluster had a 27.1% shorter survival (95%CI: -

42.6% to -7.3%; p=0.010) versus the mild decrease group (Table 2, Figure 1). Results were 

similar in missing BMI data sensitivity analyses and when using base BMI as a categorical 

variable (see Supplemental Results, Supplemental Figures 4-5, Supplemental Tables 2-5). 

Interestingly, in sensitivity analyses for interaction effects between baseline BMI and change in 

BMI over time, ALS participants with an obese baseline BMI and increase BMI trajectory had 

shorter survival, similar to participants in the decrease BMI trajectory group (Supplemental 

Table 5). 

 

Metabolites Associated with BMI Trajectory 

Metabolomic differences by BMI cluster (decrease, mild decrease, increase) were investigated 

for the 207 participants with available previously published untargeted metabolomics.25, 26 The 

final curated dataset included 607 metabolites from plasma collected near the time of diagnosis. 

Associations of individual metabolites with BMI trajectory groups are described in the 

Supplemental Results and Supplemental Tables 6-7. 

The partial correlation network was constructed using recently published data from 349 ALS 

participants,26 of whom 207 were also in this analysis. Including additional samples generated a 

more informative network since partial correlation methods are sensitive to sample size. The 

resulting partial correlation network contained 600 metabolites connected by 887 edges (FDR-
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adjusted p<0.1), of which 31 a negative partial correlation coefficient. Seven metabolites did not 

have any significant correlations and were not included in the network. Consensus clustering 

identified 26 metabolic modules spanning 555 highly connected metabolites. The remaining 45 

metabolites did not cluster due to poor connectivity. Metabolic module size ranged from 5 to 66 

metabolites (Figure 2).  

Group lasso selected eight modules containing 152 metabolites, which associated with the 

decrease and increase BMI clusters (Figure 2, Table 3, Supplementary Table 8), with odds 

ratios (OR) ranging from 0.92 to 1.1 (Supplemental Table 9). The largest module 1 (47 

metabolites) included ceramides and sphingomyelins, of which 36 had OR>1, indicating 

associations with the increase BMI cluster. The second largest module 2 (30 metabolites) 

included primary and secondary bile acid metabolites, taurine and its derivatives, AMP, ADP, 

and sterols. Primary bile acids associated with the increase BMI cluster (OR>1), while most 

secondary bile acids and taurine metabolites associated with the decrease BMI cluster (OR<1). 

Module 3 (22 metabolites) primarily contained amino acid and nucleotide metabolites, half of 

which associated with the decrease BMI cluster. Module 4 (15 metabolites) was composed of 

plasmalogens, lyso-plasmalogens, and phosphatidylcholines, 11 of which associated with the 

decrease BMI cluster. Module 5 (13 metabolites) had mostly acyl carnitines, acyl amino acids, 

and some other amino acid metabolites, which mostly associated with the decrease BMI cluster. 

The remaining smaller module 6 (13 metabolites; sugar and nucleotide metabolites, xenobiotics, 

amino-sugar), module 7 and module 8 (6 metabolites each; xenobiotics, cofactors, vitamins, 

modified amino acids) contained various metabolites.   

Overall, these results suggest that unique metabolomic profiles correlate with BMI trends in 

participants with ALS, especially metabolism centered on ceramides, sphingomyelins, and 

primary and secondary bile acids. 
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Discussion 

This study adds to the growing body of evidence that pre-symptomatic BMI loss is linked to ALS risk 

and survival. We show that ALS participants are characterized by significant BMI loss five years, but 

not 10 years, prior to study entry versus control participants. A decrease in BMI trajectory was 

associated with shorter survival in ALS, which also correlated with a distinct metabolomic profile. Our 

study also suggests that BMI loss may occur during the pre-symptomatic phase of ALS leading up to 

diagnosis. Several other studies have similarly shown BMI decrease preceding ALS diagnosis, out to 

10 years prior to onset5 and even within the decades preceding ALS.6, 9 Although we found BMI 

trajectories differed over the 10-year window, we found that absolute BMI did not vary between ALS 

and control participants 10 years before study entry when participants would have had a mean age of 

54.9 (ALS) and 51.3 (controls) years. In contrast, other studies report that lower mid-to-late life BMI 

increases ALS risk,8, 9, 37 although one study reported ALS survival depends on BMI change, not on BMI 

before or at diagnosis.4 Another recent study suggests that BMI in ALS patients diverges from controls 

10 years prior to disease onset.38 

Next, we found that that ALS participants with a 10-year decrease BMI trend had shorter survival. Our 

results are consistent with several studies demonstrating that a drop in BMI prior to ALS diagnosis 

correlates with poorer survival.4, 5, 9, 39 In particular, analysis of the Piemonte and Valle d’Aosta Register 

for ALS found that BMI loss at diagnosis was more prognostic of survival than BMI either before or at 

diagnosis.4 However, since there is literature that BMI is an ALS risk factor,8, 9, 37 we conducted 

sensitivity analyses to assess the interaction of baseline BMI with BMI trajectory. We found that normal 

baseline BMI lengthened survival in the decrease BMI trajectory group, whereas obese baseline BMI 

shortened survival in the increase BMI trajectory group. Baseline BMI only marginally influenced 

survival in the mild decrease BMI trajectory group. Interestingly, the European Prospective Investigation 

into Cancer and Nutrition study also showed that obese females had shorter survival that did not reach 

significance,10 whereas the Piemonte and Valle d’Aosta Register found no impact of BMI on survival.4  
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The reasons for survival differences by BMI or BMI change in ALS are not known. However, the 

prevailing theories are related to impaired energy homeostasis,11 with lowered energy intake fighting 

against higher energy expenditure. Dysphagia is a frequent cause of reduced energy intake, however in 

ALS BMI loss also occurs independent of dysphagia,4, 39 indicating the presence of significantly 

elevated energy expenditure. Indeed, hypermetabolism is more frequent in ALS versus control 

participants and correlates inversely with survival.12 Resting energy expenditure may additionally 

interact with BMI and fat mass to influence survival in ALS.40, 41  

In the current study, we employed data driven network analysis to identify highly interconnected 

metabolic modules and assessed their correlation with BMI trajectory groups. The largest of 

these, module 1, contained ceramides (13 species) and sphingomyelins (33 species). The latter 

were primarily associated with the increase BMI group. We and others previously found that 

sphingomyelins also differ in analyses of ALS versus control participant plasma.25, 26, 42-45 

Further, one recent study reported that higher sphingomyelin levels may correlate with faster 

disease progression.45 Sphingomyelins are a large class of lipids that have structural roles in 

cell membranes and lipid rafts, and, through hydrolysis to ceramides, with signaling activity, 

e.g., pro-apoptotic, excitotoxic, neurotoxic.46, 47 Impaired sphingomyelin metabolism may be an 

integral factor in ALS as supported by investigations of genetic models.48 Of the 47 metabolites 

in module 1, only 13 significantly correlated with BMI at diagnosis, suggesting associations of 

the remaining 34 metabolites with BMI trajectory may be related to the ALS disease process.. 

The second largest module 2 mostly contained primary and secondary bile acids, which 

generally associated with the increase BMI trajectory, in addition to metabolites of methionine, 

cysteine, S-adenosyl methionine, and taurine metabolism and oxidative phosphorylation. Nearly 

half of the metabolites in this module also significantly correlated with diagnosis BMI (13 

species). Bile acids play important roles in nutrient absorption, regulation of cholesterol 

metabolism, and systemic energy expenditure,49 so the correlation with BMI trajectory herein is 
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unsurprising. Interestingly, although not present in the module, two bile acids ursodeoxycholic 

and its taurine derivative tauroursodeoxycholic acid (taurursodiol) have shown some efficacy in 

ALS clinical trials.50-53  

Module 3 contained modified amino acids and nucleotide derivatives spanning 22 species evenly split 

between the decrease and increase BMI groups, of which 9 significantly correlated with diagnosis BMI. 

Module 4 contained several bioactive lipids, plasmalogens (10 species), lyso-plasmalogens (3 species), 

and phosphatidylcholines (2 species), which mostly associated with the decrease BMI group, i.e., 

poorer survival. Only two species were significantly linked to diagnosis BMI. We26 and others42, 45, 54, 55 

have previously shown phosphatidylcholines differentiate ALS from control participants, in particular, 

phosphatidylcholine 36:4.45, 54  

Modules 5 and 6 comprised candidates related to energy metabolism. Module 5 contained four 

short-chain acyl-carnitines, intermediates of, which all save one correlated with the decrease 

BMI group. We previously reported acyl-carnitines, along with free fatty acids, contributed to the 

discrimination between ALS versus control participants,25, 26 which we attributed to either 

dysfunctional or at capacity β-oxidation.56 Modules 6, 7 and 8 contained few metabolites equally 

divided in their correlation with either the decrease or increase BMI trajectory group, suggesting 

ALS status may be a stronger determinant of these metabolites than BMI trajectory.  

Overall, across some modules, e.g., module 5, there were more metabolites from various 

biochemical pathways relating to energy utilization (e.g. fatty acid β-oxidation) that are more 

discerning of ALS versus control participants than of BMI trajectories. These findings suggest 

that ALS status is an important determinant of energy metabolism. One possibility is that 

metabolites correlate with fat mass loss in ALS patients,57 an idea supported by studies where 

ALS polygenic risk associates with body fat percentage in addition to BMI.58, 59 Interestingly, 

neither creatine nor creatinine were among the metabolites correlating with BMI change or 

diagnosis BMI, indicating weight changes may be more pronounced for fat mass than muscle 
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mass. However, lacking body composition measures, we could not evaluate this possibility in 

this study. 

This study has limitations. Participants self-reported weight, potentially incurring recall bias; 

however, Lin’s concordance correlation coefficient was high for participants with available 

weight, indicating good recall. Our study did not query weight at frequent intervals, so we cannot 

determine if BMI loss in ALS participants was linear in the 5 years prior to study entry or more 

pronounced closer to diagnosis. It is also possible we failed to detect an onset in BMI changes 

between the 10-to-5-year window before diagnosis due to the lack of granular BMI information. 

Next, we only asked participants to report current height, and use this for BMI calculations at all 

timepoints. However, such changes in height over the life course are not anticipated to cause 

bias in statistical models.60 We also did not collect a dietary or physical activity survey for this 

analysis. Additionally, our metabolomics analysis was untargeted, and thus did not measure all 

metabolites in every relevant biochemical pathway. While BMI analysis was longitudinal, 

metabolomics analysis was cross-sectional. Plasma samples for untargeted metabolomics were 

non-fasted for ethical reasons, as noted in our prior publications.25, 26  

In summary, we found that ALS participants have distinct BMI trajectories versus controls, with 

the most significant BMI drop occurring within 5 years before diagnosis. ALS participants with 

normal baseline BMI and decrease BMI trajectory, or baseline obese BMI and increase BMI 

trajectory have shorter survival. BMI trajectories correlate with metabolic changes, especially 

with sphingomyelins and bile acids. 
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Abbreviations 

 

AFT: Accelerated failure time 

ALS: Amyotrophic lateral sclerosis 

BMI: Bbody mass index 

FDR: False discovery rate 

GEE: Generalized estimating equations 

LDL-C: Low-density lipoprotein cholesterol 

OR: odds ratio 

rEEC: Revised El Escorial criteria 

SOD1: Superoxide dismutase 1 
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Tables 
 
Table 1. Participant Demographics 
 
 

Covariate Overall 
(n=647) 

ALS cases 
(n=381) 

Controls 
(n=266) P-Value 

Age at survey consent 
(years) 63.3 (56.5-69.9) 64.9 (57.6-71.4) 61.3 (55.2-68.2) <0.001 

Sex    0.143 
   Female 317 (49.0) 177 (46.5) 140 (52.6)  
   Male 330 (51.0) 204 (53.5) 126 (47.4)  
Last contact event    NA 
   Death  251 (64.9) NA  
   Censored  130 (34.1) NA  
Original and/or 
Revised El Escorial 
criteria 

   NA 

   Possible/Suspected  53 (13.9) NA  
   Probable, LS  104 (27.3) NA  
   Probable  123 (32.3) NA  
   Definite  101 (26.5) NA  
Onset segment    NA 
   Bulbar  113 (29.7) NA  
   Cervical  126 (33.1) NA  
   Lumbar  142 (37.3) NA  
Time between 
symptom onset and 
diagnosis (years) 

 1.01 (0.64-1.66) NA NA 

For continuous variables, median (25th – 75th percentile); for categorical variables, N (%). P-
values for continuous and categorical variables correspond to analysis of variance tests and chi-
squared tests, respectively.  
ALS, amyotrophic lateral sclerosis; LS, laboratory supported; NA, not applicable. 
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Table 2. Accelerated Failure Time Model 
 

 Percent Change in Survival LCL UCL P-Value 

Age at entry (years) -1.0 -1.9 -0.2 0.016 
Symptom onset to diagnosis (log years) 17.3 3.3 33.2 0.014 
Baseline BMI -1.0 -2.7 0.8 0.278 
Decrease BMI trajectory -27.1 -42.6 -7.3 0.010 
Increase BMI trajectory -7.1 -25.2 15.5 0.509 
Male 0.1 -16.1 19.4 0.994 
Cervical onset 41.0 13.0 76.0 0.002 
Lumbar onset 21.3 -1.4 49.3 0.068 
rEEC Possible/Suspected 88.3 41.9 149.7 0.000 
rEEC Probable 23.4 -0.7 53.3 0.058 
rEEC Probable, laboratory supported 61.6 28.5 103.1 0.000 

BMI, body mass index; LCL, lower confidence limit; rEEC, revised El Escorial criteria; UCL, 
upper confidence limit 
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Table 3. Metabolomics Modules from Group Lasso Associate with BMI Trajectory Groups  
 
Metabolic 
module 

Number of 
nodes 

(metabolites) 
Number 
of edges 

Average 
degree1 Metabolic pathways 

1 47 88 3.76 Ceramides, Sphingomyelins 

2 30 41 1.367 Bile Acid metabolism, Amino Acid and 
Purine metabolism  

3 22 23 2.09 Amino Acid, Nucleotide metabolism 

4 15 21 2.8 Plasmalogens, Lyso-plasmalogens, 
Phosphatidylcholines 

5 13 18 2.77 Fatty Acid metabolism (Acyl 
carnitines, Acyl Amino Acids) 

6 13 12 1.85 Carbohydrate, Amino Acid, 
Nucleotide metabolism 

7 6 6 2 Vitamin A metabolism, Amino Acid 
metabolism 

8 6 6 2 Benzoate metabolism, Amino acid 
metabolism 

1Average degree represents the average number of connections each node (metabolite) makes 
within the module and indicates the network/module density. 
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Figure Legends 
 
Figure 1. Accelerated Failure Time Model Plots 
Covariate adjusted survival curves corresponding to the unweighted accelerated failure time 
model with BMI cluster groups. The estimated median survival time is 1.7 years for the 
decrease BMI group, 2.33 years for the mild decrease BMI group, and 2.16 years for the 
increase BMI group. 
Dec, decrease; Mild dec, mild decrease; Inc, increase. 
 
Figure 2. Metabolic Modules Associated with BMI Trajectory. 
Eight metabolic modules containing 152 total metabolites associated with BMI trajectory in 
group lasso regression models. Node color indicates odds ratio (OR) from group lasso; OR>1 
indicates association with the increase BMI cluster (red node), OR<1 indicates association with 
the decrease BMI cluster (blue node). Nodes with a bold border significantly correlate with 
current BMI (FDR < 0.05). Node shape indicates the sub-pathway a metabolite belongs to. Solid 
edge between metabolites indicates positive partial correlation coefficient, dashed edge 
indicates negative partial correlation coefficient.  
 
 
 
 
  



 28 

 



0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Time Since Diagnosis (Years)

S
ur

vi
va

l p
ro

ba
bi

lit
y

BMI Groups Dec Mild Dec Inc



Module 1 Module 2

Module 3

Module 4

Module 5

Module 6

Module 7Module 8Lipid

Cofactors and Vitamins

Sugar

Nucleotide

Partially Characterized Molecules

Amino Acid Metabolism

Xenobiotics

Partial correlation (edge)
Positive
Negative

Node color

Node shape

0.994 1.014


	Acknowledgements
	Abstract
	Main Text
	Introduction
	Methods
	Participants and Samples
	Descriptive Analysis
	BMI Progression Analysis and Group Assignment
	Survival Analysis
	Sensitivity Analyses
	Metabolomics Data Analysis

	Results
	Participants
	BMI Trends in Cases Versus Controls
	Survival Analysis
	Metabolites Associated with BMI Trajectory

	Discussion
	Abbreviations
	References

	Tables
	Table 1. Participant Demographics
	Table 2. Accelerated Failure Time Model
	Table 3. Metabolomics Modules from Group Lasso Associate with BMI Trajectory Groups

	Figure Legends
	Figure 1. Accelerated Failure Time Model Plots
	Figure 2. Metabolic Modules Associated with BMI Trajectory.

	Slide Number 22



