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Abstract

Computational progressive failure analysis (PFA) is vital for the analysis of

carbon fiber reinforced polymer (CFRP) composites. The damage initiation

criterion is one of the essential components of a PFA code to determine the

transition of a material's state from pristine or microscopically damaged to

macroscopically damaged. In this paper, data-driven models are developed to

determine the matrix damage initiation with the objective to save computation

time. For 2D plane stress states, the computational cost for determining dam-

age initiation can be dramatically reduced by implementing a binary search

(BS) algorithm and predictive machine learning models. Machine learning

models are evaluated against a regression problem of predicting damage crack

angle as well as against a classification problem for predicting damage initia-

tion outright. It is found that regression models perform much better for plane

stress and 3D stress states when generating failure envelopes. In both cases, a

neural network is able to produce a failure envelope that is over 99% accurate

while reducing computational cost by over 90%.
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1 | INTRODUCTION

Carbon fiber reinforced polymer composite (CFRP)
materials have been widely used in the Aerospace indus-
try. CFRP materials are superior in terms of strength/
stiffness-to-weight ratios, fatigue resistance, and corro-
sion resistance. CFRP materials are composed of carbon
fiber, and a polymer (resin or matrix). Due to their micro-
scale architecture, the damage morphology of CFRP lam-
inates is complex, usually consisting of fiber breaking,
matrix cracking, and delamination. The complexity of the
damage of CFRP materials makes experimental charac-
terization and computational modeling challenging.

Numerous progressive failure analysis (PFA) codes for
CFRP materials have been developed for decades to simu-
late and predict the damage of composites under external
tensile/compressive/flexural/impact/fatigue loading. Typi-
cally, a PFA model is composed of three major parts to
capture the three most important features of the damage
of composites, including pre-peak nonlinearity, damage
initiation, and post-peak degradation. The pre-peak nonli-
nearity is driven by microscale cracking in the matrix
between fibers.[1] The nonlinearity has been modeled by
semi-empirical expressions in.[2–4] A rigorous thermody-
namically based theory was established to characterize the
relationship between the nonlinearity and microscale
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damage dissipation by Schapery.[5] This model has later
been enhanced by the capability to model post-peak degra-
dation as the enhanced Schapery theory (EST).[6] Damage
initiation criteria determine the initiation of damage
modes, including fiber tensile/compressive damage, matrix
tensile/compressive/shear damage, and inter-laminar
delamination. The most popular damage initiation criteria
include the Hashin criteria,[7] Puck's criteria,[8] LaRC cri-
teria,[4] and more recently the Christensen criteria.[9,10]

The post-peak degradation laws control the softening of
material properties due to cracking. Most of the degrada-
tion laws are established upon the crack band model[11]

and the smeared crack model.[12] Mixed-mode post-peak
degradation laws have been proposed to ensure simulta-
neous and progressive vanishing of stress components to
improve numerical stability of PFA codes.[13–16]

Damage initiation criteria are of essential importance
in determining the location, time, and types of composite
damage initiation. The Hashin criteria are the most popu-
lar ones thanks to their simplicity and accuracy, especially
in terms of fiber and matrix tensile damage. EST is estab-
lished upon the Hashin criteria. However, the fracture
planes in the Hashin criteria are prescribed, which might
not be true for some stress states. For example, as demon-
strated in Reference 4, a unidirectional composite laminate
under transverse compression had a slanted matrix failure
plane, which does not agree with the prescribed fracture
planes of the Hashin criteria. A physically sound model
was developed by Puck and Schürmann[8] by adapting the
Mohr–Coulomb criteria to composite materials. In Puck's
criteria, at a certain possible matrix crack plane, if matrix
is under compressive normal stress, the matrix failure is
essentially a shear fracture. Therefore, the matrix crack
plane angle with the maximum damage potential needs to
be searched for iteratively. Puck's criteria were later par-
tially adopted by the LaRC criteria where the iterative
matrix crack angle determination process was kept.[4]

Cuntze developed damage initiation criteria based on
stress invariants and the matrix crack angle searching was
not required.[17] Several studies have compared the accu-
racy and efficiency of various damage initiation criteria. It
was found that the criteria involving matrix crack angle
determination are less efficient than that with prescribed
fracture planes,[18,19] due to the complexity of the crack
angle search process. The maturity of failure criteria were
evaluated extensively and in detail in Reference 20. In the
study, both the LaRC criteria (sometimes also referred to
as the Pinho model) and Puck's criteria were ranked as the
better theories. However, as described in Reference 18,19,
these two models are less efficient due to the iterative
search of the crack angle.

The use of machine learning to improve computa-
tional efficiency has been shown to be successful in the

prediction of material properties. Hou et al. utilized
machine learning techniques to predict the temperature
difference and degree of cure difference during the curing
process of composites.[21] Additionally, Özkan et al. used
neural networks to accurately predict the mechanical
properties of nanocomposite films.[22] The authors' previ-
ous work discusses the application of binary search (BS),
Linear Regression, and Neural Networks to improve the
computational efficiency of predicting damage initia-
tion.[23] This previous work, however, considered only
two possible models, analyzed only a numeric prediction,
and used an inherently limited training data set. This
paper will show that accuracy can be significantly
increased by improving the training data set to better rep-
resent the physical reality, analyzing a combination of
numeric and discrete predictions, and better formulating
the problem statement to reflect the true objective of the
damage initiation criteria.

The major objective of this paper is to improve the
computational efficiency of PFA tools by accelerating the
crack angle searching process of the damage initiation cri-
teria based on the Mohr–Coulomb model. The crack angle
searching and damage initiation determination process is
referred to as the competing algorithm in this paper,
explained in Section 2. The acceleration is achieved by
using the BS algorithm and data-driven methods including
linear regression (LR), light gradient boosting machine
(LGBM), and deep neural network (DNN), which will be
described in Section 2. Predicted results will be validated
by experimental results from the “World-wide Failure
Exercise” (WWFE)[24] in Section 3. Discussions, conclu-
sions, and future directions will be provided in Section 4.

2 | METHODOLOGY

In this section, the methodology of the conventional
matrix crack angle searching algorithm (the competing
algorithm) will be outlined first. Then, the BS algorithm
applicable to 2D plane stress states will be introduced.
Data-driven approaches including the LR, DNN, and
LGBM methods will be illustrated. The BS algorithm, LR
model, DNN model, and LGBM model have been imple-
mented to accelerate the determination of matrix crack
angle.

2.1 | Matrix damage initiation criteria

This paper is mostly concerned with the damage initia-
tion of matrix. Details about fiber damage initiation cri-
teria can be found in 14. Matrix cracking of a [0/90/0/
909]s laminate under center impact loading can be
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visualized from a μCT slice cutting across the plate center
as shown in Figure 1. The central bright lines indicate
matrix cracking in the middle 18 plies of 90� laminae.[25]

Figure 1 demonstrates the slanted matrix cracking. In
order to capture these slanted cracks, physically sound
matrix damage initiation criteria need to be applied.

Physically sound matrix damage initiation criteria, as
that implemented in References 4,8, are mostly based on
the modified Mohr–Coulomb model. Consider an unidi-
rectional composite laminae with a 3D stress state, as
illustrated in Figure 2A. Under this stress state, both ten-
sile and compressive matrix damage may occur on a
crack surface with an angle of θ. In order to determine
the matrix damage initiation status, there are two key
factors to be considered, which are the crack angle θ and
normal stress components σNN . As shown in Figure 2B,
σNN , τNL, and τNT are the stress components on the local
crack surface coordinate system N�L�T. Therefore, fol-
lowing coordinate transformation, the stresses on the
local coordinate system N�L�T are computed follow-
ing Equations 1–8.

σLL ¼ σ11 ð1Þ

τNL ¼ τ13 sin θð Þþ τ12 cos θð Þ ð2Þ

FIGURE 1 Edge-on μCT slice of an impacted [0/90/0/909]s
laminate

FIGURE 2 Illustration of the

matrix cracking under a 3D stress state:

(A) the stress state, and (B) matrix

tensile and compressive crack surfaces

FIGURE 3 Pseudo code of the competing algorithm

FIGURE 4 Failure envelopes for E-Glass/LY556 using solely

second-order power law versus competing algorithm
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τLT ¼ τ13 cos θð Þ� τ12 sin θð Þ ð3Þ

σNN ¼ σ22cos
2 θð Þþσ33sin

2 θð Þþ2τ23 sin θð Þcos θð Þ ð4Þ

τNT ¼ σ33�σ22ð Þsin θð Þcos θð Þþ τ23 cos2 θð Þ� sin2 θð Þ� �
ð5Þ

σTT ¼ σ33cos
2 θð Þþσ22sin

2 θð Þ�2τ23 sin θð Þcos θð Þ ð6Þ

As seen in Figure 2B, if the normal stress σNN is ten-
sile (positive), the matrix damage is tensile damage; oth-
erwise, the matrix damage is compressive. Second-order
damage initiation criterion in Equation (7) is applied for
the tensile case.

σNN
S22

� �2

þ τNL
S12

� �2

þ τNT
S23

� �2

≥ 1 σNN ≥ 0 ð7Þ

where S22, S12, S23 are the matrix transverse tensile, in-
plane shear, and out-of-plane shear strengths. The
second-order criterion in Equation (7) is usually referred
to as the Hashin criteria.[15,26]

When the normal stress component is compressive
(negative), the Mohr–Coulomb criterion is used
to determine the matrix damage initiation, as in
Equation (8).

τNL
S12�μLσNN

� �2

þ τNT
S23�μTσNN

� �2

≥ 1 σNN <0 ð8Þ

where μL and μT are the internal coefficients of friction
along the local L and T directions. Measurement and cal-
culation of μL and μT can be found in.[4] The Mohr–
Coulomb criteria in Equation (8) was first adopted by
Puck and Schürmann in Reference 8 and frequently
referred to as the Puck's criterion. However, in this paper,
it is still referred to as the Mohr–Coulomb damage initia-
tion criterion.

Stress components in Equations (7) and (8) are depen-
dent on the crack angle θ, which is not known before the
damage initiation criteria is satisfied. Therefore, the crack
angle needs to be searched for to achieve the maximum
value of Equation (7) or (8) until matrix damage initiates.
The conventional crack angle searching process will be
illustrated in Section 2.2.

(A) (B)

FIGURE 5 Examples of MC criterion distribution over θ in degrees for (A) plane stress and (B) 3D stress

TABLE 1 Descriptions of data-driven models

Model type Models Input Target

Classification 1. LR
2. NN
3. LGBM

Stress components and material strengths Damage initiation status

Regression 1. LR
2. NN
3. LGBM

Stress components and material strengths Crack angle with the maximum damage potential
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2.2 | The competing algorithm

The matrix crack angle searching process is implemented
within the competing algorithm. Similar algorithms were
adopted in References 2,4. The word “competing” means
that the algorithm keeps evaluating the potentials of ten-
sile and compressive matrix cracking, namely the values
of Equations (7) and (8). Once Equation (7) or (8) gets
satisfied, tensile or compressive matrix cracking initiates.
The competing algorithm is illustrated in Figure 3. As
shown in Figure 3, the matrix crack angle is scanned
from 0 ∘ to 180 ∘ with an interval of 1 ∘ . At each itera-
tion, with the tentative crack angle θ, Equations (7) and

(8) are evaluated. The looping process in Figure 3 is
stopped immediately and the damage initiation status as
well as the crack angle are returned after the satisfaction
of Equation (7) or (8).

From the description, the competing algorithm is a
brute-force algorithm whose complexity is O nð Þ with
respect to candidate failure angles, which means that if
there are n iterations to be performed, it would take at
most kn computations to find a crack angle where k is
some constant.

The advantage of applying the competing algorithm
to the damage initiation prediction is validated by
Figure 4. Figure 4 presents experimental data from

ALGORITHM 1 Training Data Generation

s = n Desired size of data set
i = 0 Number of rows generated
while i < n do

Stensile22 ¼ random 20, 150ð Þ
Scompressive
22 ¼ random 70, 450ð Þ

S12 = random(30, 180)
σ22 = random(-600, 200)
σ33 = random(-600, 200)
τ12 = random(-250, 250)
τ13 = random(-250, 250)
τ23 = random(-250, 250)
θ, MC = computeFailureCriterionAndAngle()
if MC < 1.3 then 1.3 Threshold on MC Criterion values

Append [yT, yC, sL, σ22, σ33, τ12, τ13, τ23, MC, θ]
i += 1

end if
end while

F IGURE 6 Examples of MC criterion distribution over θ (A) without 1.3 MC filter and (B) after applying the 1.3 filter
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Reference 24 and failure envelopes predicted by using the
competing algorithm and that using only second-order
power law. It is clearly observed that when σ22 is com-
pressive, the failure envelope obtained by the competing
algorithm agrees much better with the test results.

2.3 | The BS algorithm

The BS algorithm is a common algorithm designed
to search for objects within a sorted array of values.
The algorithm works by iteratively splitting a given
array in half until an objective value is found. The BS
algorithm runs in O log2 nð Þð Þ time, which is substantially
faster than the Competing Algorithm. Considering the
use case of finding the angle with the maximum damage
potential, the problem space must be transformed into
a sorted array to be able to take advantage of the BS
algorithm.

Figure 5 shows the distribution of the MC criterion
over possible θ vales. The x-axis shows the range of possi-
ble failure angles and the y-axis shows the computed MC
criterion value (f MC) for that angle. The maximum f MC in
this distribution represents the angle at which the

damage potential is the greatest and, subsequently, if that
value is greater than one the material will fail at that
angle. For all two dimensional plane stress states, it can
be assumed that this distribution will be bi-modal and
symmetric—more importantly, every local maximum

TABLE 2 Evaluation metrics for each trained model for plane stress crack angle prediction with respect to the competing

algorithm baseline

Model CAR2 CA MAE CA/FE R2 CA/FE MAE FP Acc FP LL FP/FE R2 FP/FE MAE

BS 0.9878 0.0188 1.0000 2.5 e � 15 N/A N/A N/A N/A

LR 0.7504 0.1330 0.9802 2.7486 0.8345 5.7151 �1.6956 37.8283

NN 0.9890 0.01187 0.9999 0.0062 0.9765 0.0554 0.9442 2.8855

LGBM �0.7268 0.4550 �0.5631 16.9618 0.9127 0.2696 �4.0093 55.3705

Abbreviations: Acc, accuracy; CA, crack angle; FE, failure envelope; FE/CA, failure envelope using crack angle predictions; FP, failure predictions; FP/FE
failure envelope using failure predictions; LL, Log Loss; MAE, mean absolute error; R2, coefficient of determination.

FIGURE 7 Failure envelope for E-Glass/LY556 produced from

plane stress classification models

FIGURE 8 Failure envelope for E-Glass/LY556 produced from

plane stress crack angle regression models

FIGURE 9 Crack angle predictions compared to the

competing algorithm baseline
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value is equal to the global maximum value. This distri-
bution is shown in Figure 5A. This property allows the
BS algorithm to search for an element in the distribution
for which the values on either side are smaller. The ele-
ments can also be lazily evaluated to save compute time,
at each iteration only the angle in question and angle on
each side need to be computed. The distribution of dam-
age potential over θ for a 3D stress state is shown in
Figure 5B. It is seen that the bi-modal and symmetric
assumptions are no longer applicable. Therefore, the BS
algorithm is not suitable for 3D stress states.

2.4 | Data-driven models

Data-driven models provide an opportunity to utilize
machine learning techniques to reduce the computa-
tional complexity of the MC criterion computation.
These machine learning techniques are particularly
attractive because, while in general they vary among
themselves in terms of runtime complexity, they will
all run in O 1ð Þ time with respect to the granularity of
candidate failure angles.

Data-driven models can be broadly categorized into
classification and regression models. In this paper, for each
plane stress and 3D stress classification models are consid-
ered for predicting damage initiation outright, while
regression models are considered for predicting the crack
angle. The description of models can be found in Table 1.

For the regression models, the predicted crack angle is
input back into Equations (1) to (8) to evaluate if the dam-
age initiation criteria are satisfied, and the resulting failure
envelopes. Each predictive model discussed in this paper
was trained using a 40/30/30 split of the training data
meaning that 40% of the available data was used for train-
ing, 30% for validation, and another 30% for testing. All
metrics reported are with respect to the hold out test set.

2.4.1 | Metrics

A few different metrics are used to evaluate the perfor-
mance of predictive models. For classification models,
Accuracy and binary cross-entropy/log loss (LL) are used.
Accuracy is simply the percentage of predictions, which
were correct on the hold out test set. The equation for LL
is shown in Equation (9). Accuracy is used because of its
straightforwardness. LL provides some benefits over
accuracy in that it provides a more continuous metric
that penalizes prediction probabilities that are less certain
of outcome.

Loss¼�1
n

Xn
i¼1

yi � log byiþ 1� yið Þ � log 1�byið Þ ð9Þ

where yi is the observed value; y is the mean of the
observed data; by is the predicted value.

FIGURE 10 Performance

comparison between different

model types for plane stress

state
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For regression models, the metrics reported are R2

and mean absolute error (MAE). R2, also known as
the coefficient of determination, can be described as the
amount of variance in the test data captured by the
model and is expressed as a percentage. The formula for
R2 is shown in Equation (10).

R2 ¼ 1�

P
i

yi�byið Þ2
P
i

yi� yð Þ2 ð10Þ

MAE is defined by Equation (11).

MAE¼
Pn
i¼1

jyi�byij
n

ð11Þ

2.4.2 | Training data generation

Training data generation is the most important part of
the data driven process. The data must be accurate and
large enough to provide sufficient data for the models to

find patterns. Multiple iterations were performed to find
the best set of training data. The available variables in
training data generation are the raw stress values and
material strength values used within the algorithm
defined in Algorithm 1. Randomized data was used for
each stress variable and material parameter to ensure suf-
ficient distribution for each variable across the sample
space. The damage initiation potential value was com-
puted using the methodology described in Section 2.2.

During training data generation, it was found that the
majority of randomly generated stress states resulted in
high damage initiation potential values that would be
impossible to achieve in practice. As a stress is applied to
a material, the damage initiation potential value should
increase progressively until it arrives at 1, at which point
the material will have damage initiation. Strictly speaking,
all stress states that result in a damage initiation potential
value of greater than 1 could be discarded because stress
cannot be applied instantaneously and a material would
fail prior to reaching such a stress state. However, a
threshold of 1.3 was applied to filter out unrealistic stress
states to account for a margin of error. Applying this filter
resulted in the discarding of approximately 86% of

FIGURE 11 Failure envelope generated by the competing algorithm for E-Glass/LY556 across various τ13 values
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generated stress states and produced a noticeable change
in the distribution of damage initiation potential values,
illustrated in Figure 6. The reason for such a high percent-
age of discarded stress states is that the ranges of stresses
used to generate training data was intentionally set suffi-
ciently wide, as shown in Algorithm 1.

For 2D plane stress states, the BS algorithm can be
used to produce the required data for training data driven
models. For 3D stress states, however, the assumption
that the local maximum always equals the global maxi-
mum no longer holds, as illustrated by the counter exam-
ple in Figure 5B. Since the BS algorithm can no longer be

used, the competing algorithm was used to generate the
training data for the data-driven models of the 3D stress
states.

2.4.3 | The LR model

LR is a common model used for regression analyses. The
model assumes a linear relationship between the dependent
variable, y, and the set of regressors, X . The model is
shown in Equation (12). There are many ways to deter-
mine the value of the coefficients but in this paper the

FIGURE 12 Failure envelope generated by the competing algorithm for E-Glass/LY556 across various τ23 values

TABLE 3 Evaluation metrics for each trained model for 3D stress crack angle prediction with respect to the competing algorithm

baseline

Model CA R2 CA MAE CA/FE R2 CA/FE MAE FP Acc FP LL FP/FE R2 FP/FE MAE

LR 0.3034 0.6319 0.7482 7.0876 0.8009 6.8768 �0.1893 18.6581

NN 0.9271 0.0502 0.9922 0.7924 0.2936 0.0148 0.1421 15.2047

LGBM 0.7369 0.2996 0.7482 7.0876 0.2415 0.2606 0.7923 8.5473

Abbreviations: Acc, accuracy; CA, crack angle; FE, failure envelope; FE/CA, failure envelope using crack angle predictions; FP, failure predictions; FP/FE
failure envelope using failure predictions; LL, Log Loss; MAE, mean absolute error; R2, coefficient of determination.
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coefficients βi are fitted using Stochastic Gradient
Descent.[27]

y¼ β0þβ1X1þβ2X2þ…þβn�1Xn�1þβnXn ð12Þ

Logistic regression is another form of regression that
can be used for classification. While linear regression
attempts to find the best fit line, logistic regression
attempts to find the best separating boundary that clas-
sifies each class correctly. The Logistic Regression equa-
tion is shown in equation 13.

f xð Þ¼ L
1þ e�k x�x0ð Þ ð13Þ

where x0, the x value of the Sigmoid's midpoint. L, the
curve's maximum value. k, the logistic growth rate or
steepness of the curve.

LR can have difficulty finding non-linear relation-
ships between variables. By adding quadratic and inter-
action terms to the training data this can be somewhat
mitigated, however, there are still models which may be

better suited to this problem. Regardless, LR is perhaps
the simplest predictive model available and serves as an
important baseline by which to compare more complex
models.

2.4.4 | The LGBM model

LGBM stands for Light Gradient Boosting Machine and
is one of the most well known and best performing tree-
based models. The technical details of implementation
are discussed in.[28] Gradient boosted trees work by train-
ing models sequentially with each subsequent tree learn-
ing from the errors in the previous trees. One of the key
differences between LGBM and other tree based gradient
boosters is that LGBM grows trees vertically as opposed
to horizontally. Additionally, LGBM has been shown to
provide more accurate results in shorter time than other
gradient boosters. LGBM is a highly configurable model
and in this paper the configurations used in training are
objective, boosting_type, max_bins, num_leaves, learnin-
g_rate, and num_boost_rounds.

FIGURE 13 Failure envelope generated by the LR classification model for E-Glass/LY556 over τ13 values
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objective denotes the type of prediction that should be
produced. For regression problems, the objective is set to
“regression,” and for binary classification problems, the
objective used is “binary.” boosting_type indicates the type
of boosting to use, for all models in this paper the boos-
ting_type is Gradient Boosting Decision Tree, meaning tra-
ditional gradient boosting will be used.[28,29] max_bins
indicates how many bins to use when discretizing continu-
ous variables, this is an important configuration because it
has a major impact on runtime. num_leaves configures the
maximum number of leaves to allow in each iteration of
tree building. learning_rate is the gradient descent learn-
ing rate.[29] Finally, num_boost_rounds is number of itera-
tions to run boosting, this is comparable to epochs in
neural networks. The loss metrics considered during train-
ing are consistent with reported loss metrics for all models
in this paper, MAE is used for crack angle predictions and
Binary Cross-Entropy is used for classification of failure.

The runtime complexity of LGBM models are O
(#machine * #feature * #bin), meaning runtime is deter-
mined solely by the number of available machines, the
number of features, and the number of bins.

2.4.5 | The DNN model

NN provides a superior method of capturing non-linear
relationships compared to LR despite being conceptually
similar. A NN is able to capture non-linear behavior
because it typically consists of a multilayer perceptron
with a non-linear activation function like Sigmoid
(Equation 14) or rectified linear unit (ReLU; Equation 15).

S xð Þ¼ 1
1þ e�x

ð14Þ

R xð Þ¼ max 0, xð Þ ð15Þ

Neural networks in this paper vary in architecture
and activation functions but activation functions for all
classification networks are Sigmoid and for the regression
networks are ReLU. This is because the LL metric
requires the Sigmoid function to work properly. NN has a
prediction run time that scales with the number of nodes,
which means that it does not depend on the granularity
of candidate crack angles.

FIGURE 14 Failure envelope generated by the LR classification model for E-Glass/LY556 over τ23 values
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3 | RESULTS

For both plane stress and 3D stress, three different pre-
dictive models were trained and evaluated: LR, LGBM,
and Neural Networks. As stated above, each of these
models were trained on both a classification problem to
predict failure outright and on a regression problem to
predict the crack angle. Additionally, for 2D stress, a BS
algorithm is evaluated for the crack angle prediction.

3.1 | Matrix damage initiation with 2D
plane stress states

3.1.1 | Prediction evaluation

The models evaluated for plane stress are the same
models discussed in Section 2: BS (as a replacement for
the competing algorithm), LR, LGBM, and NN. BS was
able to produce exact results for both the crack angle and
the failure envelope. The R2 and MAE values for the BS
algorithm are not 100% because in some cases the BS
actually produces more accurate results than the

competing algorithm. This is because the competing algo-
rithm breaks out of its loop the first time it finds an angle
that satisfies the failure criterion while BS is sure to find
the angle with the maximum damage potential. In
extreme compressive stress those two values are not nec-
essarily the same, though those stress states are likely
impossible to achieve without the material first failing at
a lower stress state. The BS should be viewed as a bench-
mark by which machine learning methods should be
evaluated. This is because the BS algorithm produces
exact results—if machine learning methods sacrifice any
accuracy, they should at least provide an increase in effi-
ciency over the best exact method.

The LR model was built from the Scikit-Learn
python library[30] using the SGDRegressor and
SGDClassifier classes, which uses stochastic gradient
descent[27] to optimize the regression coefficients. The
LGBM model was built using the LGBM python pack-
age[28] with traditional gradient boosting decision
trees. Additional parameters for LGBM were set for
max bins to be 500, the learning rate was set to 0.001,
and the number of boosting rounds was set to 2000.
Finally the NN was trained with two hidden layers of

FIGURE 15 Failure envelope generated by the LGBM classification model for E-Glass/LY556 over τ13 values
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16 nodes each. Each layer used a ReLU activation func-
tion. The NN model converged within just 30 epochs.
The models were each evaluated on their performance
on the hold out test set as well as on the failure enve-
lope created by the predicted crack angles. Prediction
results for the crack angle are displayed in Table 2. The
results are plotted in Figures 7, 8, and 9.

Figure 7 shows the failure envelope predicted by the
competing algorithm, the BS algorithm, and the classifi-
cation models. The dots are from experimental data
reported in Reference 24. The failure envelope obtained
by the competing algorithm and the BS algorithm can be
regarded as benchmark analytical results. Data-driven
models were trained using data generated by the BS algo-
rithm. From Figure 7, it seems that the LR and LGBM
classification models cannot effectively capture the fail-
ure envelope, while the NN model has significantly
improved accuracy. The black curve and green curve,
corresponding to the competing algorithm result and BS
algorithm results, are identical, hence only the green
curve can be seen in Figure 7.

Figure 8 contains results obtained by the data-driven
regression models. It should be reiterated here that the

regression models output the crack angle with the maxi-
mum damage initiation potential. Then, the crack angle
is substituted into Equations (1)–(8) to evaluate the dam-
age initiation status. According to Figure 8, all the regres-
sion models except for the LGBM model are accurate, in
fact the similarity of predictions between models makes
it hard to differentiate the plotted results. The red, green,
and black curves are on top of each other. The NN model
has the highest accuracy that the predicted failure enve-
lope is on top of the competing algorithm and BS algo-
rithm results.

More details of the crack angle prediction is inves-
tigated and presented in Figure 9. For each data point
on the predicted failure envelopes in Figure 8, there is
a corresponding crack angle. The predicted crack
angles varying σ22 are plotted in Figure 9. It is noticed
that the crack angle prediction by the NN model agrees
very well with the BS algorithm. However, the LR and
LGBM models are not able to obtain correct crack angles,
with the LGBM model performing the worst.

The results provided show that clearly for plane
stress it is better to approach the problem as a regres-
sion problem and to predict the crack angle. It is

FIGURE 16 Failure envelope generated by the LGBM classification model for E-Glass/LY556 over τ23 values
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difficult for each of these models to accurately predict
damage initiation as a classification problem for plane
stress. This is likely due to the fact that there are fewer
explanatory variables available. In the training data for
plane stress there only exist eight explanatory variables
making it difficult to make discrete predictions. Even
moderately accurate models on the crack angle trans-
late very well to the prediction of the failure envelope.
For example, LR had only 75% accuracy when predict-
ing the crack angle, however those same predicted
crack angles produced a failure envelope that was
over 98% accurate. In contrast, the LR model has far
worse accuracy for the predicted failure envelope with
damage initiation predictions despite a higher model
accuracy at 83.5%.

The LGBM model performs reasonably well with respect
to the test data but from the plot in Figure 8 it is clear that it
is not the right tool for plane stress damage initiation predic-
tions. The nature of tree-based methods leads to discrete pre-
dictions and, in turn, the jagged failure envelope prediction.
For more complex models with additional explanatory vari-
ables this becomes less noticeable, but it does not seem to
perform well enough to be used for plane stress.

Figure 9 shows that the LR model greatly over-
simplifies the crack angle predictions while the NN fits
nearly perfectly the shape of the crack angles. Despite
this difference, the failure envelope prediction by each
model are 98% and 99.99%, respectively. The sensitivity
of the damage initiation to the crack angle is depen-
dent upon the stress state and material strengths.
Results as shown in Figure 9 may indicate that the
damage initiation state is not closely related to the
damage angle prediction in the current combination of
material strengths and stresses. However, this is not
universally true and requires more systematic exami-
nation in the future.

Revisiting Figure 8, another interesting observation
is that all the algorithms produce results relatively sim-
ilar with σ22 ≥ �67MPa. With a lower stress value
(higher compressive stress), the LGBM deviates from the
other results. Referring to the damage angle–stress curves
in Figure 9, it is shown that the ground-truth damage
angle predicted by the BS algorithm starts to grow rapidly
to large values after σ22 decreases less than �60MPa.
Therefore, the reason for the LGBM result deviating from
other results in Figure 8 may be that LGBM lacks the

FIGURE 17 Failure envelope generated by the NN classification model for E-Glass/LY556 over τ13 values
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capability to capture complex damage initiation scenarios
with a large crack angle.

3.1.2 | Performance evaluation

LGBM, NN, and LR all run in O 1ð Þ time with respect to
the number of candidate failure angles, but they do vary
in runtime depending on the complexity of the models
themselves, so it is still important to evaluate perfor-
mance in terms of actual run time. This evaluation was
performed on a MacBook Pro with a 2.6 GHz 6-Core Intel
Core i7 processor and all computations were done
sequentially. Performance evaluation was performed by
generating 10,000 random samples with randomized
input data within the ranges used for training and having
each model produce a result for each sample. The time
reported is the average total time it took to score the full
set of 10,000 samples over 20 iterations. The error bars
represent the 95% confidence interval. The performance
results are displayed in Figure 10. As shown in the figure,
the BS algorithm immediately provides a significant
improvement over the run time of the competing

algorithm. This serves as an important benchmark
because it shows the improvement that can be gained
without using any machine learning techniques. LGBM
clearly does not perform efficiently enough to be consid-
ered as an alternative over the BS, however, the NN and
LR models certainly could provide a significant efficiency
improvement. Additionally, LR and NN both performed
very well when predicting failure envelopes using crack
angle predictions, meaning that the increase in efficiency
does not necessarily indicate a decrease in accuracy.

It is always important to maximize the accuracy of
predictive models, but for predicting damage initiation
criteria, it is equally important to make the models as
efficient as possible. The NN trained for plane stress was
extremely simple with only two hidden layers of 16 nodes
each. This allows the NN runtime to be comparable to
the LR runtime. Had the NN architecture been more
complex, the accuracy could have been marginally better
but runtime would have decreased quickly. By using
the smaller architecture, failure envelope accuracy still
achieved 99.99% while retaining efficient performance.

These results show that machine learning can be used
to very accurately predict crack angle and failure envelopes

FIGURE 18 Failure envelope generated by the NN classification model for E-Glass/LY556 over τ23 values
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FIGURE 19 Failure envelope generated by the LR regression model for E-Glass/LY556 over τ13 values

FIGURE 20 Failure envelope generated by the LR regression model for E-Glass/LY556 over τ23 values
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for plane stress use cases. Specifically, predicting the crack
angle and subsequently using that prediction in the dam-
age initiation criteria formulas is the best approach for pre-
dicting failure envelopes for composite materials in plane
stress. BS is an option that can compute the crack angle
and failure envelopes with exact precision in a fraction of
the time of the competing algorithm without requiring
machine learning. However, neural networks can provide
even faster execution time while sacrificing less that 0.01%
in accuracy with respect to the failure envelope.

3.2 | Matrix damage initiation with 3D
stress states

As mentioned in Section 2.3, the added complexity of the
3D stress state means that BS could no longer be used to
generate a baseline. Additionally, it is more complicated to
generate metrics on failure envelopes due to the higher
dimensionality of the data. LR, NN, and LGBMmodels were
trained as regression models predicting crack angle and clas-
sification models predicting failure, similarly to the plane
stress use case. R2 and MAE values for regression models

were evaluated on a hold out test set as were the Accuracy
and LL values for the classification models. In the interest of
simplicity, R2 and MAE values on the resulting failure enve-
lopes for all models were computed using the predicted τ12
values. This was done because this is how those same
metrics were reported for the plane stress use case.

The NN model for 3D stress states required a much
larger architecture than for plane stress to achieve good
accuracy. The NN model was the same architecture for
crack angle and failure predictions with five hidden
layers of 128 nodes each. For crack angle predictions,
each layer had a ReLU activation function and the loss
metric was MAE. For failure classification, each layer
had a Sigmoid activation function and the loss metric
was Log Loss. The LR model remained an SGDRegressor
for crack angle predictions and SGDClassifier for failure
classifications.[30] Finally the LGBM max bins were set to
be 500 and the number of boosting rounds were set to
2000, identical to the plane stress model, however, the
learning rate was adjusted for 3D stress. The learning rate
for crack angle predictions was set to 0.01 and for failure
classification it was set to 0.005. These adjustments were
made to help the model converge faster on the more

FIGURE 21 Failure envelope generated by the LGBM regression model for E-Glass/LY556 over τ13 values
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FIGURE 22 Failure envelope generated by the LGBM regression model for E-Glass/LY556 over τ23 values

FIGURE 23 Failure envelope generated by the NN regression model for E-Glass/LY556 over τ13 values
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complex use case at the possible expense of accuracy,
however it was observed that smaller learning rates
would require a large number of iterations and would
not provide substantial efficiency improvement to com-
puting the damage initiation potential value.

3.2.1 | Prediction evaluation

Similarly to plane stress, regression models were trained to
predict the crack angle as well as classification models to
predict damage initiation. The baseline failure envelopes
obtained by the competing algorithm can be visualized in
Figures 11 and 12. In these figures, the x-axis shows σ22, the
y-axis shows σ33, and the color represents the τ12 values.
Each individual plot shows those values for a given value
of τ13 or τ23 in Figures 11 and 12, respectively. In some
cases, the predicted failure envelopes contain areas for
which there is no failure predicted. In these cases, the plots
appear to have blank spaces that are not filled in with τ12
values. This indicates that for the provided range of τ12
values, there did not exist a value where failure occurred.
The evaluation results are shown in Table 3. The failure

envelopes with 3D stress states predicted by the data-
driven classification and regression models are presented
in Figures 13–24.

3.2.2 | Failure envelopes predicted by the
classification models

Failure envelopes predicted by the LR classification
model are shown in Figures 13 and 14. Comparing to the
baseline solution in Figures 11 and 12, it is seen that
the LR classification model fails to capture the failure
envelope even remotely.

The LGBM classification model results are shown
in Figures 15 and 16. The predicted failure envelopes
seem quite similar to that in Figures 11 and 12.
According to Table 3, the model performs quite poorly
on the hold out test set with just 24% Accuracy value
but does reasonably well overall on the failure enve-
lope with an R2 of 0.79.

The NN classification model results are shown in Fig-
ures 17 and 18. According to the figures, the NN classifica-
tion model manages to visually capture the shape of the

FIGURE 24 Failure envelope generated by the NN regression model for E-Glass/LY556 over τ23 values
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failure envelope but struggles to capture the appropriate
magnitude of τ12 values. This is also evidenced by the
evaluation metrics with only a 0.14 R2 value for the fail-
ure envelope prediction, as shown in Table 3.

3.2.3 | Failure envelopes predicted by the
regression models

The LR regression model predicting crack angle only has
a 0.30 R2 but a 0.74 R2 for the corresponding failure

envelope. While 74% is moderately accurate for a failure
envelope prediction, the LR model fails to capture the
shape of the data in some important cases, particularly
when there is high curvature to the failure envelope, as
shown in Figures 19 and 20.

The LGBM model behaves slightly differently, with
an R2 value of 0.73 on the crack angle and a compara-
ble R2 of 0.74 on the resulting failure envelopes as
shown in Figures 21 and 22. While the R2 value is rea-
sonably high, the model clearly does not perform well
in all cases. Figure 22 shows that for τ23 values with
high curvature the model does not remotely match the
baseline.

Finally, the NN model performs well on crack angle
prediction with a 0.92 R2 but performs much better on
the resulting failure envelope generation with an R2 of
0.99, explaining over 99% of the variance in the failure
envelope. Figures 23 and 24 show the fit is very good
with only minor deviations from the competing algo-
rithm baseline. This is consistent with the plane stress
models in that the crack angle prediction needs only to
be moderately accurate in order to produce near perfect
failure envelopes.

A 3D visualization of a failure envelopes pre-
dicted with the competing algorithm and the NN
model are shown in Figure 25. As seen, the NN pre-
dicts the damage initiation very accurately, with the
capability to capture highly curved parts of the failure
envelope.

FIGURE 26 Performance

comparison between different

model types for 3D stress state

FIGURE 25 3D visualization of failure envelopes predicted

by the competing algorithm and the NN model
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3.2.4 | Performance evaluation

Performance evaluation was performed in the same
manner as for the plane stress models. They were run
on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7
processor and the time measure is the time required to
determine whether or not damage would occur in
10,000 randomly sampled stress states. The results can
be visualized in Figure 26 The results are similar to the
plane stress results with all predictive models outper-
forming the competing algorithm in terms of efficiency.
LGBM is the slowest of the predictive models for both
regression and classification. This is likely because
LGBM was optimized to improve training speed but not
necessarily inference speed.[28] LR is the fastest model
for both regression and classification, which is expected
because it is the simplest model considered. Neural net-
works performed comparably to the LR model for crack
angle predictions but performed much slower for classi-
fication. This is because of the use of the Sigmoid
activation function. Computing the Sigmoid activation
function is significantly slower than computing the
ReLU activation function.

4 | DISCUSSIONS AND
CONCLUSIONS

This paper has discussed the use of predictive models to
determine damage initiation criteria in composite mate-
rials for the purpose of reducing computational cost. For
plane stress scenarios, greater efficiency can be achieved
most simply through utilizing a BS algorithm to search for
crack angles with the greatest damage initiation potential.
This is desirable because using a BS algorithm provides
exact results using the same mathematical models as the
competing algorithm. However, using machine learning
the computational cost can be reduced even further.

Machine learning models require large, representative
training data to produce useful results. Training data is
easy to generate using existing simulation methods but
must be carefully constructed to contain realistic samples.
Randomizing input data is important to achieve sufficient
distribution of input features, however, is prone to gener-
ating unrealistic samples. Without filtering of randomly
generated samples to ensure realistic stress states, the
training data generation described in this paper would
produce a dataset with over 85% unrealistic stress states—
that is, stress states which could never be achieved in prac-
tice. If machine learning models are trained on these data,
they will not be optimized for real world problems.

Additionally, the problem use case should be well
defined and models should be evaluated on that desired

use case. For example, in this paper accuracy was defined
as the ability to predict the failure envelope of a test com-
posite material. Machine learning models were trained to
predict that failure envelope directly though a classification
task, however those models were not the best suited to pre-
dict the failure envelope most accurately. It was far more
effective to utilize a hybrid approach of predicting the fail-
ure angle and feeding that prediction back into the mathe-
matical models to produce the failure criterion. In fact, it
was found that models that were even moderately effective
in predicting failure angle could produce highly accurate
failure envelopes through this method. The LR model for
plane stress had only a 0.75 R2 score on crack angle but
predicted the failure envelope with 98% accuracy. Simi-
larly for 3D stress, the most accurate model was the NN
which predicted the failure envelope with 99% accuracy
yet predicted crack angle with just 91% accuracy.

With respect to the computational cost savings, LR
and neural networks provide over 5 times speed up from
BS and 11 times improvement over the competing algo-
rithm for plane stress while sacrificing little to no accu-
racy in failure envelope predictions. For 3D stress, the
NN was able to provide approximately a 12 times speed
improvement over the competing algorithm while retain-
ing 99% accuracy in failure envelope prediction. It is
worth noting that these performance measurements were
taken by measuring the time to make 10,000 predictions.
In a finite element model, there could be millions of pre-
dictions required, and because predictive models run in
O 1ð Þ compared to O nð Þ for the competing algorithm, the
speed difference between the methods would become
more exaggerated as the number of iterations increase.

In conclusion, machine learning models provide an
opportunity to greatly decrease the computational cost for
damage initiation criteria computations while sacrificing
little in terms of accuracy. In the future, the NN model
will be trained using a combination of computational data
and experimental data with variable fidelity.[31,32] In addi-
tion, the trained NN model will be implemented into the
EST model for better computation efficiency.
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