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Abstract 

Computational progressive failure analysis (PFA) is vital for the analysis of carbon fiber reinforced polymer 
(CFRP) composites. The damage initiation criterion is one of the essential components of a PFA code to 
determine the transition of a material’s state from pristine or microscopically damaged to macroscopically 
damaged. In this paper, data-driven models are developed to determine the matrix damage initiation with 
the objective to save computation time. For 2D plane stress states, the computational cost for determining 
damage initiation can be dramatically reduced by implementing a Binary Search (BS) algorithm and 
predictive machine learning models. Machine learning models are evaluated against a regression problem 
of predicting damage crack angle as well as against a classification problem for predicting damage initiation 
outright. It is found that regression models perform much better for plane stress and 3D stress states when 
generating failure envelopes. In both cases, a neural network is able to produce a failure envelope that is 
over 99% accurate while reducing computational cost by over 90%. 
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Introduction 
Carbon fiber reinforced polymer composite (CFRP) materials have been widely used in the 

Aerospace industry. CFRP materials are superior in terms of strength/stiffness-to-weight ratios, 
fatigue resistance, and corrosion resistance. CFRP materials are composed of carbon fiber, and a 
polymer (resin or matrix). Due to their microscale architecture, the damage morphology of CFRP 
laminates is complex, usually consisting of fiber breaking, matrix cracking, and delamination. The 
complexity of the damage of CFRP materials makes experimental characterization and 
computational modeling challenging. 

Numerous progressive failure analysis (PFA) codes for CFRP materials have been 
developed for decades to simulate and predict the damage of composites under external 
tensile/compressive/flexural/impact/fatigue loading. Typically, a PFA model is composed of three 
major parts to capture the three most important features of the damage of composites, including 
pre-peak nonlinearity, damage initiation, and post-peak degradation. The pre-peak nonlinearity is 
driven by microscale cracking in the matrix between fibers [1]. The nonlinearity has been modeled 
by semi-empirical expressions in [2, 3, 4]. A rigorous thermodynamically based theory was 
established to characterize the relationship between the nonlinearity and microscale damage 
dissipation by Schapery [5]. This model has later been enhanced by the capability to model post-
peak degradation as the enhanced Schapery theory (EST)[6]. Damage initiation criteria determine 
the initiation of damage modes, including fiber tensile/compressive damage, matrix 
tensile/compressive/shear damage, and inter-laminar delamination. The most popular damage 
initiation criteria include the Hashin criteria [7], Puck’s criteria [8], LaRC criteria [4], and more 
recently the Christensen criteria [9,10]. The post-peak degradation laws control the softening of 
material properties due to cracking. Most of the degradation laws are established upon the crack 
band model [11] and the smeared crack model [12]. Mixed-mode post-peak degradation laws have 
been proposed to ensure simultaneous and progressive vanishing of stress components to improve 
numerical stability of PFA codes [13, 14, 15, 16]. 

Damage initiation criteria are of essential importance in determining the location, time, and 
types of composite damage initiation. The Hashin criteria are the most popular ones thanks to their 
simplicity and accuracy, especially in terms of fiber and matrix tensile damage. EST is established 
upon the Hashin criteria. However, the fracture planes in the Hashin criteria are prescribed, which 
might not be true for some stress states. For example, as demonstrated in [4], a unidirectional 
composite laminate under transverse compression had a slanted matrix failure plane, which does 
not agree with the prescribed fracture planes of the Hashin criteria. A physically-sound model was 
developed by Puck and Schürmann [8] by adapting the Mohr-Coulomb criteria to composite 
materials. In Puck’s criteria, at a certain possible matrix crack plane, if matrix is under compressive 
normal stress, the matrix failure is essentially a shear fracture. Therefore, the matrix crack plane 
angle with the maximum damage potential needs to be searched for iteratively. Puck’s criteria 
were later partially adopted by the LaRC criteria where the iterative matrix crack angle 
determination process was kept [4]. Cuntze developed damage initiation criteria based on stress 
invariants and the matrix crack angle searching was not required [17]. Several studies have 
compared the accuracy and efficiency of various damage initiation criteria. It was found that the 
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criteria involving matrix crack angle determination are less efficient than that with prescribed 
fracture planes [18, 19], due to the complexity of the crack angle search process. The maturity of 
failure criteria were evaluated extensively and in detail in [20]. In the study, both the LaRC criteria 
(referred to as the Pinho model) and Puck’s criteria were ranked as the better theories. However, 
as described in [18, 19], these two models are less efficient due to the iterative search of the crack 
angle.  

The use of machine learning to improve computational efficiency has been shown to be 
successful in the prediction of material properties.  Hou et al. utilized machine learning techniques 
to predict the temperature difference and degree of cure difference during the curing process of 
composites [32]. Additionally, Özkan et al. used neural networks to accurately predict the 
mechanical properties of nanocomposite films [31].  The authors’ previous work discusses the 
application of Binary Search, Linear Regression, and Neural Networks to improve the 
computational efficiency of predicting damage initiation [33].  This previous work, however, 
considered only two possible models, analyzed only a numeric prediction, and used an inherently 
limited training data set.  This paper will show that accuracy can be significantly increased by 
improving the training data set to better represent the physical reality, analyzing a combination of 
numeric and discrete predictions, and better formulating the problem statement to reflect the true 
objective of the damage initiation criteria. 

The major objective of this paper is to improve the computational efficiency of PFA tools 
by accelerating the crack angle searching process of the damage initiation criteria based on the 
Mohr-Coulomb model. The crack angle searching and damage initiation determination process is 
referred to as the competing algorithm in this paper, explained in Section 2. The acceleration is 
achieved by using the binary search (BS) algorithm and data-driven methods including linear 
regression (LR), light gradient boosting machine (LGBM), and deep neural network (DNN), which 
will be described in Section 2. Predicted results will be validated by experimental results from the 
“World-wide Failure Exercise” (WWFE)[21] in Section 3. Discussions, conclusions, and future 
directions will be provided in Section 4. 

Methodology 
In this section, the methodology of the conventional matrix crack angle searching algorithm 

(the competing algorithm) will be outlined first. Then, the BS algorithm applicable to 2D plane 
stress states will be introduced. Data-driven approaches including the LR, DNN, and LGBM 
methods will be illustrated. The BS algorithm, LR model, DNN model, and LGBM model have 
been implemented to accelerate the determination of matrix crack angle. 

Matrix Damage Initiation Criteria 
This paper is mostly concerned with the damage initiation of matrix. Details about fiber 

damage initiation criteria can be found in . Matrix cracking of a [0/90/0/909]s laminate under center 
impact loading can be visualized from a 𝜇𝜇CT slice cutting across the plate center as shown in 
Figure 1. The central bright lines indicate matrix cracking in the middle 18 plies of 90∘ laminae 
[22]. Figure 1 demonstrates the slanted matrix cracking. In order to capture these slanted cracks, 
physically-sound matrix damage initiation criteria need to be applied. 



 

Figure 1 Edge-on 𝜇𝜇CT slice of an impacted [0/90/0/909]s laminate . 

Physically-sound matrix damage initiation criteria, as that implemented in [4, 8], are mostly 
based on the modified Mohr-Coulomb model. Consider a unidirectional composite laminae with a 
3D stress state, as illustrated in Figure 2 (a). Under this stress state, both tensile and compressive 
matrix damage may occur on a crack surface with an angle of 𝜃𝜃. In order to determine the matrix 
damage initiation status, there are two key factors to be considered, which are the crack angle 𝜃𝜃 
and normal stress components 𝜎𝜎𝑁𝑁𝑁𝑁. As shown in Figure 2 (b), 𝜎𝜎𝑁𝑁𝑁𝑁, 𝜏𝜏𝑁𝑁𝑁𝑁, and 𝜏𝜏𝑁𝑁𝑁𝑁 are the stress 
components on the local crack surface coordinate system 𝑁𝑁 − 𝐿𝐿 − 𝑇𝑇. Therefore, following 
coordinate transformation, the stresses on the local coordinate system 𝑁𝑁 − 𝐿𝐿 − 𝑇𝑇 are computed 
following Equations 1 to 8. 

 

Figure 2 Illustration of the matrix cracking under a 3D stress state: (a) the stress state, and (b) 
matrix tensile and compressive crack surfaces. 

 

 𝜎𝜎𝐿𝐿𝐿𝐿 = 𝜎𝜎11 (1) 

 𝜏𝜏𝑁𝑁𝑁𝑁 = 𝜏𝜏13𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) + 𝜏𝜏12𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) (2) 



 𝜏𝜏𝐿𝐿𝐿𝐿 = 𝜏𝜏13𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) − 𝜏𝜏12𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) (3) 

 𝜎𝜎𝑁𝑁𝑁𝑁 = 𝜎𝜎22𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃) + 𝜎𝜎33𝑠𝑠𝑠𝑠𝑛𝑛2(𝜃𝜃) + 2𝜏𝜏23𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) (4) 

 𝜏𝜏𝑁𝑁𝑁𝑁 = (𝜎𝜎33 − 𝜎𝜎22)𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) + 𝜏𝜏23�𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃) − 𝑠𝑠𝑠𝑠𝑛𝑛2(𝜃𝜃)� (5) 

 𝜎𝜎𝑇𝑇𝑇𝑇 = 𝜎𝜎33𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃) + 𝜎𝜎22𝑠𝑠𝑠𝑠𝑛𝑛2(𝜃𝜃) − 2𝜏𝜏23𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) (6) 
 

As seen in Figure 2 (b), if the normal stress 𝜎𝜎𝑁𝑁𝑁𝑁 is tensile (positive), the matrix damage is 
tensile damage; otherwise, the matrix damage is compressive. Second-order damage initiation 
criterion in Equation 7 is applied for the tensile case. 
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where 𝑆𝑆22, 𝑆𝑆12, 𝑆𝑆23 are the matrix transverse tensile, in-plane shear, and out-of-plane shear 
strengths. The second-order criterion in Equation 7 is usually referred to as the Hashin criteria [23, 
15]. 

When the normal stress component is compressive (negative), the Mohr-Coulomb criterion 
is used to determine the matrix damage initiation, as in Equation 8. 
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where, 𝜂𝜂𝐿𝐿 and 𝜂𝜂𝑇𝑇 are the internal coefficients of friction along the local 𝐿𝐿 and 𝑇𝑇 directions. 
Measurement and calculation of 𝜂𝜂𝐿𝐿 and 𝜂𝜂𝑇𝑇 can be found in [4]. The Mohr-Coulomb criteria in 
Equation 8 was first adopted by Puck and Schürmann in [8] and frequently referred to as the Puck’s 
criterion. However, in this paper, it is still referred to as the Mohr-Coulomb damage initiation 
criterion. 

Stress components in Equations 7 and 8 are dependent on the crack angle 𝜃𝜃, which is not 
known before the damage initiation criteria is satisfied. Therefore, the crack angle needs to be 
searched for to achieve the maximum value of Equation 7 or 8 until matrix damage initiates. The 
conventional crack angle searching process will be illustrated in Section 2.2. 

The Competing Algorithm 
The matrix crack angle searching process is implemented within the competing algorithm. 

Similar algorithms were adopted in [4, 2]. The word “competing” means that the algorithm keeps 
evaluating the potentials of tensile and compressive matrix cracking, namely the values of 



Equations 7 and 8. Once Equation 7 or 8 gets satisfied, tensile or compressive matrix cracking 
initiates. The competing algorithm is illustrated in Figure 3. As shown in Figure 3, the matrix 
crack angle is scanned from 0 ∘ to 180 ∘ with an interval of 1 ∘. At each iteration, with the tentative 
crack angle 𝜃𝜃, Equations 7 and 8 are evaluated. The looping process in Figure 3 is stopped 
immediately and the damage initiation status as well as the crack angle are returned after the 
satisfaction of Equation 7 or 8. 

 

Figure 3 Pseudo code of the competing algorithm. 

From the description, the competing algorithm is a brute-force algorithm whose complexity 
is 𝑂𝑂(𝑛𝑛) with respect to candidate failure angles, which means that if there are 𝑛𝑛 iterations to be 
performed, it would take at most 𝑘𝑘𝑘𝑘 computations to find a crack angle where 𝑘𝑘 is some constant. 

The advantage of applying the competing algorithm to the damage initiation prediction is 
validated by Figure 4. Figure 4 presents experimental data from [21] and failure envelopes 
predicted by using the competing algorithm and that using only 2nd order power law. It is clearly 
observed that when 𝜎𝜎22 is compressive, the failure envelope obtained by the competing algorithm 
agrees much better with the test results. 



 

Figure 4 Failure Envelopes for E-Glass/LY556 using solely 2nd Order Power Law vs Competing 
Algorithm. 

The BS Algorithm 
The Binary Search (BS) algorithm is a common algorithm designed to search for objects 

within a sorted array of values. The algorithm works by iteratively splitting a given array in half 
until an objective value is found. The BS algorithm runs in 𝑂𝑂�𝑙𝑙𝑙𝑙𝑔𝑔2(𝑛𝑛)� time which is substantially 
faster than the Competing Algorithm. Considering the use case of finding the angle with the 
maximum damage potential, the problem space must be transformed into a sorted array to be able 
to take advantage of the BS algorithm. 

Figure 5 shows the distribution of the MC criterion over possible 𝜃𝜃 vales. The x-axis shows 
the range of possible failure angles and the y-axis shows the computed MC criterion value (𝑓𝑓𝑀𝑀𝑀𝑀) 
for that angle. The maximum 𝑓𝑓𝑀𝑀𝑀𝑀 in this distribution represents the angle at which the damage 
potential is the greatest and, subsequently, if that value is greater than one the material will fail at 
that angle. For all two dimensional plane stress states, it can be assumed that this distribution will 
be bi-modal and symmetric - more importantly, every local maximum value is equal to the global 
maximum value. This distribution is shown in Figure 5 (a). This property allows the BS algorithm 
to search for an element in the distribution for which the values on either side are smaller. The 
elements can also be lazily evaluated to save compute time, at each iteration only the angle in 
question and angle on each side need to be computed. The distribution of damage potential over 𝜃𝜃 
for a 3D stress state is shown in Figure 5 (b). It is seen that the bi-modal and symmetric 
assumptions are no longer applicable. Therefore, the BS algorithm is not suitable for 3D stress 
states. 



 

Figure 5 Examples of MC criterion distribution over 𝜃𝜃 in degrees for (a) plane stress and (b) 3D 
stress. 

Data-driven Models 
Data-driven models provide an opportunity to utilize machine learning techniques to 

reduce the computational complexity of the MC criterion computation. These machine learning 
techniques are particularly attractive because, while in general they vary among themselves in 
terms of runtime complexity, they will all run in 𝑂𝑂(1) time with respect to the granularity of 
candidate failure angles. 

Data-driven models can be broadly categorized into classification and regression models. 
In this paper, for each plane stress and 3D stress classification models are considered for predicting 
damage initiation outright, while regression models are considered for predicting the crack angle. 
The description of models can be found in Table 1. For the regression models, the predicted crack 
angle is input back into Equations 1 to 8 to evaluate if the damage initiation criteria are satisfied, 
and the resulting failure envelopes. Each predictive model discussed in this paper was trained using 
a 40/30/30 split of the training data meaning that 40% of the available data was used for training, 
30% for validation, and another 30% for testing. All metrics reported are with respect to the hold 
out test set. 

Table 1 Descriptions of Data-Driven Models 

Model Type Models Input Target 

Classification 

1) LR 
2) NN 
3) LGBM 

Stress components 
and material strengths 

Damage Initiation 
Status 



Regression 

1) LR 
2) NN 
3) LGBM 

Stress components 
and material strengths 

Crack angle with the 
maximum damage 

potential 

Metrics 

A few different metrics are used to evaluate the performance of predictive models. For 
classification models, Accuracy and Binary Cross-Entropy/Log Loss (LL) are used. Accuracy is 
simply the percentage of predictions which were correct on the hold out test set. The equation for 
LL is shown in Equation 9. Accuracy is used because of its straightforwardness. LL provides some 
benefits over accuracy in that it provides a more continuous metric that penalizes prediction 
probabilities that are less certain of outcome. 

 
Loss = −

1
𝑛𝑛
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𝑛𝑛
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⋅ log 𝑦𝑦�𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) ⋅ log (1 − 𝑦𝑦�𝑖𝑖) (9) 

 

where 

• 𝑦𝑦𝑖𝑖 is the observed value 
• 𝑦𝑦‾ is the mean of the observed data 
• 𝑦𝑦� is the predicted value 

For regression models, the metrics reported are R2 and Mean Absolute Error (MAE). R2, 
also known as the coefficient of determination, can be described as the amount of variance in the 
test data captured by the model and is expressed as a percentage. The formula for R2 is shown in 
Equation 10. 
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 (10) 

 

MAE is defined by Equation 11. 

 
MAE =
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Training Data Generation 

Training data generation is the most important part of the data driven process. The data 
must be accurate and large enough to provide sufficient data for the models to find patterns. 
Multiple iterations were performed to find the best set of training data. The available variables in 
training data generation are the raw stress values and material strength values used within the 
algorithm defined in Algorithm 1. Randomized data was used for each stress variable and material 
parameter to ensure sufficient distribution for each variable across the sample space. The damage 
initiation potential value was computed using the methodology described in Section 2.2. 

During training data generation, it was found that the majority of randomly generated stress 
states resulted in high damage initiation potential values that would be impossible to achieve in 
practice. As a stress is applied to a material, the damage initiation potential value should increase 
progressively until it arrives at 1, at which point the material will have damage initiation. Strictly 
speaking, all stress states that result in a damage initiation potential value of greater than 1 could 
be discarded because stress cannot be applied instantaneously and a material would fail prior to 
reaching such a stress state. However, a threshold of 1.3 was applied to filter out unrealistic stress 
states to account for a margin of error. Applying this filter resulted in the discarding of 
approximately 86% of generated stress states and produced a noticeable change in the distribution 
of damage initiation potential values, illustrated in Figure 6. The reason for such a high percentage 
of discarded stress states is that the ranges of stresses used to generate training data was 
intentionally set sufficiently wide, as shown in Algorithm 1. 

 

Figure 6 Examples of MC criterion distribution over 𝜃𝜃 (a) without 1.3 MC filter and (b) after 
applying the 1.3 filter. 

 

 

 

 



 

For 2D plane stress states, the BS algorithm can be used to produce the required data for 
training data driven models. For 3D stress states, however, the assumption that the local maximum 
always equals the global maximum no longer holds, as illustrated by the counter example in Figure 
5 (b). Since the BS algorithm can no longer be used, the competing algorithm was used to generate 
the training data for the data-driven models of the 3D stress states. 

The LR Model 

LR is a common model used for regression analyses. The model assumes a linear 
relationship between the dependent variable, 𝑦𝑦, and the set of regressors, 𝑋𝑋. The model is shown 
in Equation 12. There are many ways to determine the value of the coefficients but in this paper 
the coefficients 𝛽𝛽𝑖𝑖 are fitted using Stochastic Gradient Descent [24]. 

 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2+. . . +𝛽𝛽𝑛𝑛−1𝑋𝑋𝑛𝑛−1 + 𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 (12) 

Logistic regression is another form of regression that can be used for classification. While 
linear regression attempts to find the best fit line, logistic regression attempts to find the best 
separating boundary that classifies each class correctly. The Logistic Regression equation is shown 
in equation 13. 

 𝑓𝑓(𝑥𝑥) =
𝐿𝐿

1 + 𝑒𝑒−𝑘𝑘(𝑥𝑥−𝑥𝑥0) (13) 

where 

• 𝑥𝑥0, the 𝑥𝑥 value of the Sigmoid’s midpoint. 
• 𝐿𝐿, the curve’s maximum value. 
• 𝑘𝑘, the logistic growth rate or steepness of the curve. 



LR can have difficulty finding non-linear relationships between variables. By adding 
quadratic and interaction terms to the training data this can be somewhat mitigated, however, there 
are still models which may be better suited to this problem. Regardless, LR is perhaps the simplest 
predictive model available and serves as an important baseline by which to compare more complex 
models. 

The LGBM Model 

LGBM stands for Light Gradient Boosting Machine and is one of the most well known and 
best performing tree-based models. The technical details of implementation are discussed in [25]. 
Gradient boosted trees work by training models sequentially with each subsequent tree learning 
from the errors in the previous trees. One of the key differences between LGBM and other tree 
based gradient boosters is that LGBM grows trees vertically as opposed to horizontally. 
Additionally, LGBM has been shown to provide more accurate results in shorter time than other 
gradient boosters. LGBM is a highly configurable model and in this paper the configurations used 
in training are objective, boosting_type, max_bins, num_leaves, learning_rate, and 
num_boost_rounds. 

objective denotes the type of prediction that should be produced. For regression problems, 
the objective is set to "regression", and for binary classification problems, the objective used is 
"binary". boosting_type indicates the type of boosting to use, for all models in this paper the 
boosting_type is Gradient Boosting Decision Tree, meaning traditional gradient boosting will be 
used [25, 26]. max_bins indicates how many bins to use when discretizing continuous variables, 
this is an important configuration because it has a major impact on runtime. num_leaves configures 
the maximum number of leaves to allow in each iteration of tree building. learning_rate is the 
gradient descent learning rate [26]. Finally, num_boost_rounds is number of iterations to run 
boosting, this is comparable to epochs in neural networks. The loss metrics considered during 
training are consistent with reported loss metrics for all models in this paper, MAE is used for 
crack angle predictions and Binary Cross-Entropy is used for classification of failure. 

The runtime complexity of LGBM models are O(#machine * #feature * #bin), meaning 
runtime is determined solely by the number of available machines, the number of features, and the 
number of bins. 

The DNN Model 

NN provides a superior method of capturing non-linear relationships compared to LR 
despite being conceptually similar. A NN is able to capture non-linear behavior because it typically 
consists of a multilayer perceptron with a non-linear activation function like Sigmoid (equation  
14 ) or rectified linear unit (ReLU) (equation 15). 

 𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (14) 

 𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) (15) 



Neural networks in this paper vary in architecture and activation functions but activation 
functions for all classification networks are Sigmoid and for the regression networks are ReLU. 
This is because the LL metric requires the Sigmoid function to work properly. NN has a prediction 
run time that scales with the number of nodes, which means that it does not depend on the 
granularity of candidate crack angles. 

Results 
For both plane stress and 3D stress, three different predictive models were trained and 

evaluated: LR, LGBM, and Neural Networks. As stated above, each of these models were trained 
on both a classification problem to predict failure outright and on a regression problem to predict 
the crack angle. Additionally, for 2D stress, a BS algorithm is evaluated for the crack angle 
prediction. 

Matrix Damage Initiation with 2D Plane Stress States 

Prediction Evaluation 

The models evaluated for plane stress are the same models discussed in Section 2: BS (as 
a replacement for the competing algorithm), LR, LGBM, and NN. Binary search was able to 
produce exact results for both the crack angle and the failure envelope. The R2 and MAE values 
for the BS algorithm are not 100% because in some cases the BS actually produces more accurate 
results than the competing algorithm. This is because the competing algorithm breaks out of its 
loop the first time it finds an angle that satisfies the failure criterion while BS is sure to find the 
angle with the maximum damage potential. In extreme compressive stress those two values are not 
necessarily the same, though those stress states are likely impossible to achieve without the 
material first failing at a lower stress state. The BS should be viewed as a benchmark by which 
machine learning methods should be evaluated. This is because the BS algorithm produces exact 
results - if machine learning methods sacrifice any accuracy, they should at least provide an 
increase in efficiency over the best exact method. 

The LR model was built from the Scikit-Learn python library [27] using the SGDRegressor 
and SGDClassifier classes, which uses stochastic gradient descent [24] to optimize the regression 
coefficients. The LGBM model was built using the LGBM python package [25] with traditional 
gradient boosting decision trees. Additional parameters for LGBM were set for max bins to be 
500, the learning rate was set to 0.001, and the number of boosting rounds was set to 2000. Finally 
the NN was trained with two hidden layers of 16 nodes each. Each layer used a ReLU activation 
function. The NN model converged within just 30 epochs. The models were each evaluated on 
their performance on the hold out test set as well as on the failure envelope created by the predicted 
crack angles. Prediction results for the crack angle are displayed in Table 2. The results are plotted 
in Figures 7, 8, and 9. 

Table 2 Evaluation metrics for each trained model for plane stress crack angle prediction with 
respect to the competing algorithm baseline. 

 



 

CA, Crack Angle; FE, Failure Envelope; MAE, Mean Absolute Error; R2, Coefficient of 
Determination; FE/CA, Failure Envelope using Crack Angle Predictions; LL, Log Loss; FP, 
Failure Predictions; FP/FE Failure Envelope using Failure Predictions; Acc, Accuracy 

Figure 7 shows the failure envelope predicted by the competing algorithm, the BS 
algorithm, and the classification models. The dots are from experimental data reported in [21]. The 
failure envelope obtained by the competing algorithm and the BS algorithm can be regarded as 
benchmark analytical results. Data-driven models were trained using data generated by the BS 
algorithm. From Figure 7, it seems that the LR and LGBM classification models can not effectively 
capture the failure envelope, while the NN model has significantly improved accuracy. The black 
curve and green curve, corresponding to the competing algorithm result and BS algorithm results, 
are identical, hence only the green curve can be seen in Figure 7.  

 

Figure 7 Failure Envelope for E-Glass/LY556 produced from plane stress classification models. 

Figure 8 contains results obtained by the data-driven regression models. It should be 
reiterated here that the regression models output the crack angle with the maximum damage 
initiation potential. Then, the crack angle is substituted into Equations 1 to 8 to evaluate the damage 
initiation status. According to Figure 8, all the regression models except for the LGBM model are 



accurate, in fact the similarity of predictions between models makes it hard to differentiate the 
plotted results. The red, green, and black curves are on top of each other.  The NN model has the 
highest accuracy that the predicted failure envelope is on top of the competing algorithm and BS 
algorithm results. 

 

Figure 8 Failure Envelope for E-Glass/LY556 produced from plane stress crack angle 
regression models. 

More details of the crack angle prediction is investigated and presented in Figure 9. For 
each data point on the predicted failure envelopes in Figure 8, there is a corresponding crack angle. 
The predicted crack angles varying 𝜎𝜎22 are plotted in Figure 9. It is noticed that the crack angle 
prediction by the NN model agrees very well with the BS algorithm. However, the LR and LGBM 
models are not able to obtain correct crack angles, with the LGBM model performing the worst. 



 

Figure 9 Crack angle predictions compared to the competing algorithm baseline. 

The results provided show that clearly for plane stress it is better to approach the problem 
as a regression problem and to predict the crack angle. It is difficult for each of these models to 
accurately predict damage initiation as a classification problem for plane stress. This is likely due 
to the fact that there are fewer explanatory variables available. In the training data for plane stress 
there only exist eight explanatory variables making it difficult to make discrete predictions. Even 
moderately accurate models on the crack angle translate very well to the prediction of the failure 
envelope. For example, LR had only 75% accuracy when predicting the crack angle, however 
those same predicted crack angles produced a failure envelope that was over 98% accurate. In 
contrast, the LR model has far worse accuracy for the predicted failure envelope with damage 
initiation predictions despite a higher model accuracy at 83.5%. 

The LGBM model performs reasonably well with respect to the test data but from the plot 
in Figure 8 it is clear that it is not the right tool for plane stress damage initiation predictions. The 
nature of tree based methods leads to discrete predictions and, in turn, the jagged failure envelope 
prediction. For more complex models with additional explanatory variables this becomes less 
noticeable, but it does not seem to perform well enough to be used for plane stress. 

Figure 9 shows that the LR model greatly over-simplifies the crack angle predictions while 
the NN fits nearly perfectly the shape of the crack angles. Despite this difference, the failure 
envelope prediction by each model are 98% and 99.99%, respectively. The sensitivity of the 
damage initiation to the crack angle is dependent upon the stress state and material strengths. 
Results as shown in Figure 9 may indicate that the damage initiation state is not closely related to 



the damage angle prediction in the current combination of material strengths and stresses. 
However, this is not universally true and requires more systematic examination in the future. 

Revisiting Figure 8, another interesting observation is that all the algorithms produce 
results relatively similar with 𝜎𝜎22 ≥ −67 𝑀𝑀𝑀𝑀𝑀𝑀. With a lower stress value (higher compressive 
stress), the LGBM deviates from the other results. Referring to the damage angle – stress curves 
in Figure 9, it is shown that the ground-truth damage angle predicted by the BS algorithm starts to 
grow rapidly to large values after 𝜎𝜎22 decreases less than −60 𝑀𝑀𝑀𝑀𝑀𝑀. Therefore, the reason for the 
LGBM result deviating from other results in Figure 8 may be that LGBM lacks the capability to 
capture complex damage initiation scenarios with a large crack angle. 

Performance Evaluation 

LGBM, NN, and LR all run in 𝑂𝑂(1) time with respect to the number of candidate failure 
angles, but they do vary in runtime depending on the complexity of the models themselves, so it 
is still important to evaluate performance in terms of actual run time. This evaluation was 
performed on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor and all computations 
were done sequentially. Performance evaluation was performed by generating 10,000 random 
samples with randomized input data within the ranges used for training and having each model 
produce a result for each sample. The time reported is the average total time it took to score the 
full set of 10,000 samples over 20 iterations. The error bars represent the 95% confidence interval. 
The performance results are displayed in Figure 10. As shown in the figure, the BS algorithm 
immediately provides a significant improvement over the run time of the competing algorithm. 
This serves as an important benchmark because it shows the improvement that can be gained 
without using any machine learning techniques. LGBM clearly does not perform efficiently 
enough to be considered as an alternative over the BS, however, the NN and LR models certainly 
could provide a significant efficiency improvement. Additionally, LR and NN both performed very 
well when predicting failure envelopes using crack angle predictions, meaning that the increase in 
efficiency does not necessarily indicate a decrease in accuracy. 



 

Figure 10 Performance comparison between different model types for plane stress state. 

It is always important to maximize the accuracy of predictive models, but for predicting 
damage initiation criteria, it is equally important to make the models as efficient as possible. The 
NN trained for plane stress was extremely simple with only two hidden layers of 16 nodes each. 
This allows the NN runtime to be comparable to the LR runtime. Had the NN architecture been 
more complex, the accuracy could have been marginally better but runtime would have decreased 
quickly. By using the smaller architecture, failure envelope accuracy still achieved 99.99% while 
retaining efficient performance. 

These results show that machine learning can be used to very accurately predict crack angle 
and failure envelopes for plane stress use cases. Specifically, predicting the crack angle and 
subsequently using that prediction in the damage initiation criteria formulas is the best approach 
for predicting failure envelopes for composite materials in plane stress. Binary search is an option 
that can compute the crack angle and failure envelopes with exact precision in a fraction of the 
time of the competing algorithm without requiring machine learning. However, neural networks 
can provide even faster execution time while sacrificing less that 0.01% in accuracy with respect 
to the failure envelope. 

Matrix Damage Initiation with 3D Stress States 
As mentioned in Section 2.3, the added complexity of the 3D stress state means that BS 

could no longer be used to generate a baseline. Additionally, it is more complicated to generate 



metrics on failure envelopes due to the higher dimensionality of the data. LR, NN, and LGBM 
models were trained as regression models predicting crack angle and classification models 
predicting failure, similarly to the plane stress use case. R2 and MAE values for regression models 
were evaluated on a hold out test set as were the Accuracy and LL values for the classification 
models. In the interest of simplicity, R2 and MAE values on the resulting failure envelopes for all 
models were computed using the predicted 𝜏𝜏12 values. This was done because this is how those 
same metrics were reported for the plane stress use case. 

The NN model for 3D stress states required a much larger architecture than for plane stress 
to achieve good accuracy. The NN model was the same architecture for crack angle and failure 
predictions with five hidden layers of 128 nodes each. For crack angle predictions, each layer had 
a ReLU activation function and the loss metric was MAE. For failure classification, each layer had 
a Sigmoid activation function and the loss metric was Log Loss. The LR model remained an 
SGDRegressor for crack angle predictions and SGDClassifier for failure classifications [27]. 
Finally the LGBM max bins were set to be 500 and the number of boosting rounds were set to 
2000, identical to the plane stress model, however, the learning rate was adjusted for 3D stress. 
The learning rate for crack angle predictions was set to 0.01 and for failure classification it was set 
to 0.005. These adjustments were made to help the model converge faster on the more complex 
use case at the possible expense of accuracy, however it was observed that smaller learning rates 
would require a large number of iterations and would not provide substantial efficiency 
improvement to computing the damage initiation potential value. 

Prediction Evaluation 

Similarly to plane stress, regression models were trained to predict the crack angle as well 
as classification models to predict damage initiation. The baseline failure envelopes obtained by 
the competing algorithm can be visualized in Figures 11 and 12. In these figures, the x-axis shows 
𝜎𝜎22, the y-axis shows 𝜎𝜎33, and the color represents the 𝜏𝜏12 values. Each individual plot shows those 
values for a given value of 𝜏𝜏13 or 𝜏𝜏23 in Figures 11 and 12, respectively. In some cases the predicted 
failure envelopes contain areas for which there is no failure predicted. In these cases, the plots 
appear to have blank spaces that are not filled in with 𝜏𝜏12 values. This indicates that for the 
provided range of 𝜏𝜏12 values, there did not exist a value where failure occurred. The evaluation 
results are shown in Table 3. The failure envelopes with 3D stress states predicted by the data-
driven classification and regression models are presented in Figure 13 to 24. 



 

Figure 11 Failure envelope generated by the competing algorithm for E-Glass/LY556 across 
various 𝜏𝜏13 values. 



 

Figure 12 Failure envelope generated by the competing algorithm for E-Glass/LY556 across 
various 𝜏𝜏23 values. 

 
Table 3 Evaluation metrics for each trained model for 3D Stress crack angle prediction with 

respect to the competing algorithm baseline. 

         

 

CA, Crack Angle; FE, Failure Envelope; MAE, Mean Absolute Error; R2, Coefficient of 
Determination; FE/CA, Failure Envelope using Crack Angle Predictions; LL, Log Loss; FP, 
Failure Predictions; FP/FE Failure Envelope using Failure Predictions; Acc, Accuracy. 

 

Failure Envelopes Predicted by the Classification Models 



Failure envelopes predicted by the LR classification model are shown in Figures 13 and 
14. Comparing to the baseline solution in Figures 11 and 12, it is seen that the LR classification 
model fails to capture the failure envelope even remotely. 

 

Figure 13 Failure envelope generated by the LR Classification model for E-Glass/LY556 over 
𝜏𝜏13 values. 



 

Figure 14 Failure envelope generated by the LR Classification model for E-Glass/LY556 over 
𝜏𝜏23 values. 

The LGBM classification model results are shown in Figures 15 and 16. The predicted 
failure envelopes seem quite similar to that in Figure 13 and 14. According to Table 3, the model 
performs quite poorly on the hold out test set with just 24% Accuracy value but does reasonably 
well overall on the failure envelope with an R2 of 0.79. 



 

Figure 15 Failure envelope generated by the LGBM Classification model for E-Glass/LY556 
over 𝜏𝜏13 values. 



 

Figure 16 Failure envelope generated by the LGBM Classification model for E-Glass/LY556 
over 𝜏𝜏23 values. 

The NN classification model results are shown in Figures 17 and 18. According to the 
figures, the NN classification model manages to visually capture the shape of the failure envelope 
but struggles to capture the appropriate magnitude of 𝜏𝜏12 values. This is also evidenced by the 
evaluation metrics with only a 0.14 R2 value for the failure envelope prediction, as shown in Table 
3. 



 

Figure 17 Failure envelope generated by the NN Classification model for E-Glass/LY556 over 
𝜏𝜏13 values. 



 

Figure 18 Failure envelope generated by the NN Classification model for E-Glass/LY556 over 
𝜏𝜏23 values. 

Failure Envelopes Predicted by the Regression Models 

The LR regression model predicting crack angle only has a 0.30 R2 but a 0.74 R2 for the 
corresponding failure envelope. While 74% is moderately accurate for a failure envelope 
prediction, the LR model fails to capture the shape of the data in some important cases, particularly 
when there is high curvature to the failure envelope, as shown in Figures 19 and 20. 



 

Figure 19 Failure envelope generated by the LR Regression model for E-Glass/LY556 over 𝜏𝜏13 
values. 



 

Figure 20 Failure envelope generated by the LR Regression model for E-Glass/LY556 over 𝜏𝜏23 
values. 

The LGBM model behaves slightly differently, with an R2 value of 0.73 on the crack angle 
and a comparable R2 of 0.74 on the resulting failure envelope. While the R2 value is reasonably 
high, the model clearly does not perform well in all cases. Figure 22 shows that for 𝜏𝜏23 values with 
high curvature the model does not remotely match the baseline. 



 

Figure 21 Failure envelope generated by the LGBM Regression model for E-Glass/LY556 over 
𝜏𝜏13 values. 



 

Figure 22 Failure envelope generated by the LGBM Regression model for E-Glass/LY556 over 
𝜏𝜏23 values. 

Finally, the NN model performs well on crack angle prediction with a 0.92 R2 but performs 
much better on the resulting failure envelope generation with an R2 of 0.99, explaining over 99% 
of the variance in the failure envelope. Figures 23 and 24 show the fit is very good with only minor 
deviations from the competing algorithm baseline. This is consistent with the plane stress models 
in that the crack angle prediction needs only to be moderately accurate in order to produce near 
perfect failure envelopes. 



 

Figure 23 Failure envelope generated by the NN Regression model for E-Glass/LY556 over 𝜏𝜏13 
values. 



 

Figure 24 Failure envelope generated by the NN Regression model for E-Glass/LY556 over 𝜏𝜏23 
values. 

A 3D visualization of a failure envelopes predicted with the competing algorithm and the 
NN model are shown in Figure 25. As seen, the NN predicts the damage initiation very accurately, 
with the capability to capture highly curved parts of the failure envelope. 



 

Figure 25 3D visualization of failure envelopes predicted by the competing algorithm and the 
NN model. 

Performance Evaluation 

Performance evaluation was performed in the same manner as for the plane stress models. 
They were run on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor and the time 
measure is the time required to determine whether or not damage would occur in 10,000 randomly 
sampled stress states. The results can be visualized in Figure 26 The results are similar to the plane 
stress results with all predictive models outperforming the competing algorithm in terms of 
efficiency. LGBM is the slowest of the predictive models for both regression and classification. 
This is likely because LGBM was optimized to improve training speed but not necessarily 
inference speed [25]. LR is the fastest model for both regression and classification, which is 
expected because it is the simplest model considered. Neural networks performed comparably to 
the LR model for crack angle predictions but performed much slower for classification. This is 
because of the use of the Sigmoid activation function. Computing the Sigmoid activation function 
is significantly slower than computing the ReLU activation function. 



 

Figure 26 Performance comparison between different model types for 3D stress state. 

Discussions and Conclusions 
This paper has discussed the use of predictive models to determine damage initiation 

criteria in composite materials for the purpose of reducing computational cost. For plane stress 
scenarios, greater efficiency can be achieved most simply through utilizing a BS algorithm to 
search for crack angles with the greatest damage initiation potential. This is desirable because 
using a BS algorithm provides exact results using the same mathematical models as the competing 
algorithm. However, using machine learning the computational cost can be reduced even further. 

Machine learning models require large, representative training data to produce useful 
results. Training data is easy to generate using existing simulation methods but must be carefully 
constructed to contain realistic samples. Randomizing input data is important to achieve sufficient 
distribution of input features, however, is prone to generating unrealistic samples. Without filtering 
of randomly generated samples to ensure realistic stress states, the training data generation 
described in this paper would produce a dataset with over 85% unrealistic stress states - that is, 
stress states which could never be achieved in practice. If machine learning models are trained on 
these data, they will not be optimized for real world problems. 

Additionally, the problem use case should be well defined and models should be evaluated 
on that desired use case. For example, in this paper accuracy was defined as the ability to predict 



the failure envelope of a test composite material. Machine learning models were trained to predict 
that failure envelope directly though a classification task, however those models were not the best 
suited to predict the failure envelope most accurately. It was far more effective to utilize a hybrid 
approach of predicting the failure angle and feeding that prediction back into the mathematical 
models to produce the failure criterion. In fact, it was found that models that were even moderately 
effective in predicting failure angle could produce highly accurate failure envelopes through this 
method. The LR model for plane stress had only a 0.75 R2 score on crack angle but predicted the 
failure envelope with 98% accuracy. Similarly for 3D stress, the most accurate model was the NN 
which predicted the failure envelope with 99% accuracy yet predicted crack angle with just 91% 
accuracy. 

With respect to the computational cost savings, LR and neural networks provide over 5 
times speed up from BS and 11 times improvement over the competing algorithm for plane stress 
while sacrificing little to no accuracy in failure envelope predictions. For 3D stress, the NN was 
able to provide approximately a 12 times speed improvement over the competing algorithm while 
retaining 99% accuracy in failure envelope prediction. It is worth noting that these performance 
measurements were taken by measuring the time to make 10,000 predictions. In a finite element 
model, there could be millions of predictions required, and because predictive models run in 𝑂𝑂(1) 
compared to 𝑂𝑂(𝑛𝑛) for the competing algorithm, the speed difference between the methods would 
become more exaggerated as the number of iterations increase. 

In conclusion, machine learning models provide an opportunity to greatly decrease the 
computational cost for damage initiation criteria computations while sacrificing little in terms of 
accuracy. In the future, the NN model will be trained using a combination of computational data 
and experimental data with variable fidelity [28, 29]. In addition, the trained NN model will be 
implemented into the EST model for better computation efficiency. 
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