
1.  Introduction
Hydrological modeling is the primary approach for estimating continuous terrestrial hydrological components at 
different spatial and temporal scales. Models can be used to simulate historical changes in regional water cycles 
(Regan et al., 2019), and provide necessary input data for other earth system science investigations – for exam-
ple, environmental flow (Liu et al., 2016), drought analysis (Van Loon & Laaha, 2015), perform scenario-based 
predictions of the future (Champagne et al., 2020), or inform water resources management practices and decision 
making (He et al., 2021). Watershed flow comprises many processes occurring at a range of scales, requiring 
realistic hydrological models that contain many parameters that cannot be measured in practice. These parameters 
are usually attained by calibrating to in-situ streamflow that provides an integrated estimate of all hydrological 
partitioning upstream of a gage. Yet the hydrological partitioning at the gage cannot be uniquely identified and 
is further complicated by uncertainty in other important watershed hydrological components such as evapo-
transpiration (ET), soil moisture, and recharge (Bai et al., 2018; Dembélé et al., 2020; Rakovec et al., 2016). 
Such uncertainty can lead to unrealistic model parameters that compensate for parameter simplification errors 
in the model and biases in other hydrological processes such as climate forcing or incorrect representation of 
hydrological processes in the model (Beven, 2006; Knoben et al., 2020; McMillan et al., 2018). In addition, the 
streamflow-only calibration approach relies on one type of calibration target, which precludes its application in 
regions where gaged streamflow data are not available. These so-called ungaged catchments comprise most of the 
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Laurentian Great Lakes. Results show that the addition of gridded soil moisture to gaged streamflow in 
model calibration improves the ET simulation performance for most of the catchments, leading to the overall 
best-performing models. The monthly streamflow simulation performance for the experiments using gridded 
runoff products to inform the model is outperformed by those using the gaged streamflow, but the discrepancy 
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land area of the globe (Do et al., 2018). The integration of remote sensing-based observations of soil moisture, 
ET, and streamflow in model calibration is a potential approach to provide a comprehensive calibration scheme 
that considers many components of the hydrological cycles relative to a streamflow-only calibration approach.

Previous studies have investigated the added value of using remote sensing-based hydrological observations in 
addition to gaged streamflow in model calibration (see Table 1 for references). Table 1 summarizes a wide range 
of such studies and highlights the model performance of different calibration schemes that include the use of 
remote sensing-based soil moisture, ET, runoff, and terrestrial water storage (TWS) compared to streamflow-only 
calibration. Table 1 lists 16 representative studies published within the last 10 years that used multiple datasets to 
inform hydrological models. Based on the table, some common findings and gaps can be identified (note that the 
results might be model-/region-specific as the studies are done with different models and in different regions). 
The first common finding is that the use of additional remote sensing-based variables besides gaged streamflow 
does not improve streamflow prediction (see column “Q/R” and rows “Streamflow  +  additional variables”); 
however, these studies show improved performance for the additional variables used for calibration (see columns 
“ET”, “S”, and “TWS” and rows “Streamflow + additional variables”). Analogously, the sole use of remote 
sensing-based gridded ET, soil moisture, or/and TWS in calibration generally does not improve the prediction 
of streamflow but does improve the simulations of the respective variables (see rows “Remote sensing-only”). 
Another finding worth mentioning is that four studies (Bai et al., 2018; Dembélé et al., 2020; Kunnath-Poovakka 
et al., 2016; Rakovec et al., 2016) demonstrate that adding TWS improves the prediction of ET (see rows “Stream-
flow + TWS” and “Streamflow + S,TWS”). We will call this phenomenon “cross-benefit” hereafter, referring 
to a variable benefitting from the addition of another variable in model calibration, considering a baseline model 
using a streamflow-only calibration.

Three gaps are identified in previous studies on this topic (Table 1). The first gap is related to the “cross-benefit” 
phenomenon introduced in the previous paragraph. With regards to studies that have used “Streamflow + addi-
tional variables” to calibrate models, these studies did not evaluate if the inclusion of soil moisture can improve 
the model's prediction of ET or vice versa. Second, the potential of using global-/regional-scale gridded runoff 
products (GRPs) in model calibration is rarely investigated (see row “ET,R” under “Gridded product only” in 
Table 1). GRPs refer to the observation-based runoff products produced from downscaling gaged streamflow 
using statistical or machine learning-based techniques (Ghiggi et al., 2019; Hobeichi et al., 2019), not model 
simulations. The use of GRPs would help to train models at ungaged locations given its space-time continuity. 
To our knowledge, Xie et al. (2021) is the only study that used a GRP to calibrate a hydrological model. Xie 
et al. (2021) show that the combined use of a GRP and an ET product improved the prediction of ET. However, 
this approach made the streamflow prediction worse. Two questions arise from this: how well does a model 
perform in terms of soil moisture simulation when it is trained with gridded runoff instead of gaged streamflow? 
Which global GRP leads to more reasonable overall model performance? Third, although multiple hydrological 
variables are considered for calibration, few studies investigate the overall modeling performance that can be used 
to represent all their targeting variables. Among those who come up with a synthetic performance metric, only 
equal weighting factors for the variables objective functions are considered; see for example, Herman et al. (2018) 
and Kunnath-Poovakka et al. (2016) among others. A research question arising from this observation is if and to 
what extent does the overall model performance change when different weights are assigned to the performance 
of different variables? This is not easy to answer as there is no effective method to show all this information in a 
concise manner (e.g., one single plot).

This study investigates knowledge gaps in multi-objective model calibration. Specifically, we performed an 
inter-comparison of model performance of six multi-objective calibration schemes using different combinations 
of gaged streamflow, global-scale gridded soil moisture, ET, and runoff products. To highlight the benefit of 
each calibration scheme, we used the results obtained from streamflow-only calibration as the baseline. Further, 
the potential of two GRPs in model calibration is investigated. A new method is introduced to visualize the 
combined performance of three modeled variables with different weights. This new method provides a more 
intuitive inter pretation of the model performance. Three objectives are identified for our study.

1.	 �Which additional gridded variables (soil moisture or/and ET) used in calibration result in the best overall 
model performance? Do we see any “cross-benefit”?

2.	 �What is the relative performance between models calibrated using different global-scale GRPs and gaged 
streamflow? and
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Table 1 
Representative Studies Within the Last 10 Years on Hydrological Model Calibration Using Global-Scale Gridded Runoff (R), Soil Moisture (S), ET, and TWS 
Products in Addition to Gaged Streamflow (Q)

Variable performance is evaluated for

Q/R (16 studies) ET (10 studies) S (3 studies) TWS (6 studies)

↑ ↔ ↓ ↑ ↔ ↓ ↑ ↔ ↓ ↑ ↔ ↓

Variable(s) model is 
calibrated with 
Streamflow + additional 
variables (13 studies)

+ET R2018 D2018 X2021 X2021 LL2012 LL2012

D2018H2020
H2018R2013H2018
R2018LL2012
R2013

+S L2018 R2016

R2016

+TWS B2018 LL2012 B2018 LL2012 B2018 LL2012

Y2017 Y2017

Ra2016Ra2016Ra2016

+ET, 
TWS

D2020 H2020 D2020 LL2012 D2020 D2020 LL2012

LL2012

+S, TWS D2020 D2020 D2020 D2020

+ET, S D2020 D2020 D2020 D2020

+ET, S, 
TWS

D2020 D2020 D2020 D2020

Gridded product-only (9 
studies)

ET D2018 H2018 D2018 KP2016 LL2012

LL2017 H2018

KP2016 KP2016

R2013 R2013

LL2012 LL2012

S LL2017 KP2016 KP2016

KP2016

TWS M2018 LL2012 LL2012 M2018

LL2012

ET, S LL2017 KP2016 KP2016

KP2016

ET, TWS LL2012 LL2012 LL2012

ET, S, 
TWS

D2020 D2020 D2020 D2020

ET, R X2021 X2021

Note. The rows are the different types of calibration schemes grouped into two categories. The first category uses Q plus one or more additional variables, which can 
be ET, S, and TWS. The “Gridded product-only” category is streamflow-free calibration schemes. The columns are the variables evaluated by the studies. Each study 
was assigned to one of the three subsets regarding model performance: improve (denoted by “↑”), no obvious change (denoted by “↔”), and decrease (denoted by “↓”). 
Note that these performance codes reflect the general tendency of results documented by the studies. Bolded citation indicates the use of a multi-objective optimization 
algorithm for the study. Name code for every representative study is provided in the bottom row (note that the results might be model-/region-specific as the studies are 
done with different models and in different regions). Name code of study: X2021—Xie et al. (2021), D2020—Dembélé et al. (2020), H2020—Huang et al. (2020), 
B2018—Bai et  al.  (2018), D2018—Demirel et  al.  (2018), H2018—Herman et  al.  (2018), L2018—Li et  al.  (2018), M2018—Mostafaie et  al.  (2018), R2018—A. 
Rajib et al. (2018), LL2017—López López et al. (2017), Y2017—Yassin et al. (2017), KP2016—Kunnath-Poovakka et al. (2016), R2016—M. A. Rajib et al. (2016), 
Ra2016—Rakovec et al. (2016), R2013—Rientjes et al. (2013), and LL2012—Livneh and Lettenmaier (2012).
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3.	 �How is model performance varied with different weights applied to the objective functions of the hydrological 
variable?

2.  Study Catchments and Datasets
2.1.  Catchments in Lake Michigan Watershed

The Lake Michigan watershed of the Laurentian Great Lakes has a drainage area of 173,683 km 2 of which 33% is 
Lake Michigan itself (Figure 1). For this study, 20 independent catchments (i.e., non-nested catchments) ranging 
from 90 km 2 (catchment i, Menomonee River at Menomonee Falls) to 15,410 km 2 (catchment g, Fox River at 
Appleton) are selected and set up as independent instances of a hydrological model (Section 3.1). The catchments 
were selected from the U.S. Geological Survey (USGS) GAGES-II dataset (Falcone, 2017) with relatively low 
human interference (Table S1 of Supporting Information S1). Only gages without back-water from the lake were 
selected. The watershed is characterized by a mild topography with the mean elevation ranging from 209 m (basin 
j, Trail Creek at Michigan City) to 413 m (basin b, Escanaba River at Cornell). The 20 streamflow gages also have 
less than 10% of missing data within the period of 2000–2020.

2.2.  Data for Hydrological Modeling and Preprocessing

The modeling exercises of this study require a wide variety of data products (see the product list in Table S2 of 
Supporting Information S1). The studied catchments are delineated using the hydrographic data (flow direction 
and accumulation) derived from the Digital Elevation Model (DEM) of HydroSHEDS (Lehner et al., 2008) and 
the USGS stream gage locations (Falcone, 2017). The 19-class land cover classification used in our study is one 
of the North America Land Cover Monitoring System (NALCMS) products that is based on the 2010 Moderate 

Figure 1.  Boundaries and outlets of the 20 catchments (labeled a to t) used in this study overlain on Digital Elevation Model data. Locations of Lake Michigan and the 
watershed within the Continental United States are outlined in the subpanel.
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Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The Global Man-made Impervious Surface 
(GMIS) Dataset from Landsat for 2010 is used to determine the impervious surface ratio (Brown de Colstoun 
et al., 2017). The MOD44B product from MODIS (DiMiceli et al., 2015) is used to derive the vegetation cover 
percentage parameters for the summer and winter seasons. The six-layered (0–2m) soil textural profile from 
SoilGrids (Hengl et al., 2017) is used to derive the soil hydraulic parameters. Forcing data adopted for our hydro-
logical modeling is from Daymet (M. M. Thornton et al., 2021). Daymet was developed by interpolating daily 
meteorological observations in the Global Historical Climatology Network Daily (GHCN-Daily) dataset (Menne 
et al., 2012) with a truncated Gaussian filter and digital elevation model (P. E. Thornton et al., 1997).

Six products are used for model calibration and evaluation. This study uses various calibration schemes, where 
each scheme uses a different dataset to estimate the runoff generation parameters (Section 3.3.1). These calibra-
tion datasets are gaged streamflow and gridded soil moisture, ET, and runoff products. The daily streamflow 
measurements are downloaded from USGS for the 20 study catchments. All station records cover the period from 
2000 through 2020.

The SoMo.ml is a recently released observed-based global gridded soil moisture product produced by down-
scaling soil moisture measurements from more than 1,000 stations across the globe using the long short-term 
memory neural network (O & Orth, 2021). Dynamical meteorological forcing from the past 365 days and static 
climate and land surface characteristics are used as predictors. The soil moisture product represents the volumet-
ric water content for three depth intervals (0–10, 10–30, and 30–50 cm). The accuracy of SoMo.ml is shown to be 
better than two satellite-based and one model-based soil moisture products (O & Orth, 2021).

Another reference product used in model calibration is the Global Land Evaporation Amsterdam Model (GLEAM) 
by Martens et al. (2017). In GLEAM, actual ET is considered the sum of bare soil evaporation, transpiration, 
open-water evaporation, interception loss, and sublimation. Bare soil evaporation or transpiration is adjusted 
downward from potential evaporation by a stress factor estimated from microwave vegetation optical depth (i.e., 
water content in vegetation) and root-zone soil moisture calculated from a multilayer water balance algorithm 
(Miralles et al., 2011). Potential evaporation is calculated based on the Priestley and Taylor (1972) equation with 
observed surface net radiation and surface air temperature from satellite remote sensing as inputs. Evaporation 
from open-water is assumed to equal to potential evaporation. Interception loss is estimated independently using 
the refined Gash analytical model (Valente et al., 1997). The estimation of sublimation is based on the snow-water 
equivalent from the European Space Agency GLOBSNOW product (Luojus et al., 2013). GLEAM ET estimation 
is shown to have the lowest degree of uncertainty and relatively high accuracy in an evaluation study with other 
11 ET products from either modeling or remote sensing over the Continental United States (T. Xu et al., 2019).

Two global-scale GRPs were also considered in our study. The first one is the Global Runoff Reconstruction 
(GRUN) dataset (Ghiggi et  al., 2019). There are three main procedures to produce GRUN. First, streamflow 
records from 7,264 catchments, ranging from 10 to 2,500 km 2, are gridded to the cylindrical equal-area (CEA) 
grid with a 50 km resolution. For every CEA grid, the method uses the median of monthly streamflow from catch-
ments intersecting the CEA grid to represent runoff of the grid cell for the month. These result in runoff records 
for 5,094 CEA grids, covering 8.5% of the land area. In a second step, 60% of these “observed runoff” estimates 
are used to train Random Forest (RF) regression models with monthly precipitation and air temperature from the 
past 6 months as the predictors. The trained RF models are then used to produce monthly runoff for the other 
CEA grids. The last two steps are repeated 50 times to produce 50 reconstructed runoff to test the sensitivity of 
the RF model to the training data and to produce the ensemble mean of monthly runoff.

Another global GRP is the Linear Optimal Runoff Aggregate (LORA) dataset (Hobeichi et al., 2019), derived by 
merging 11 runoff/streamflow estimates from eight Global Hydrological Models (GHM) produced as part of the 
eartH2Observe project (http://www.earth2observe.eu/). The method starts by constructing linear combinations 
of the GHM runoff/streamflow that minimize the mean square difference with the observed streamflow at 596 
catchments. These catchments are called donor catchments and their optimal weights are further transferred to 
other catchments without observed streamflow data, called receptor catchments. A receptor catchment receives 
the optimal weights from three donor catchments with the highest similarity—a similarity index defined based 
on the aridity index, fractions of forest and snow cover, soil clay content, surface slope, and annual averages of 
precipitation and potential evaporation (Beck et al., 2016). Runoff for a receptor catchment is then estimated by 
applying the optimal weights to the GHM runoff/streamflow of the catchment.

http://www.earth2observe.eu/
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3.  Experimental Designs
3.1.  Calculations of Evapotranspiration, Soil Moisture, and Streamflow in PRMS

The hydrological model used in our study is a process-based distributed deterministic watershed model called 
Precipitation-Runoff Modeling System (PRMS) version 5.2.0 (Markstrom et al., 2015) within the Ground-water 
and Surface-water FLOW (GSFLOW) modeling platform (Markstrom et al., 2008). PRMS is designed for the 
simulation of hydrological processes including evaporation, transpiration, runoff, infiltration, interflow, and 
groundwater flow as determined by the energy and water budgets of the plant canopy, snowpack, and soil zone 
based on distributed climate information (Markstrom et al., 2015). The hydrological processes are modeled as a 
series of reservoirs (plant canopy interception, snowpack, soil zone, impervious zone, subsurface, and ground-
water), and the water flowing between the reservoirs is computed for every hydrologic response unit (HRU – the 
smallest computational unit for the simulations) and time step. The soil zone is simulated by three conceptual 
reservoirs, namely the capillary reservoir, the gravity reservoir, and the preferential-flow reservoir. These three 
reservoirs are not physical layers in the soil column but rather represent, and account for, soil-water content at 
different levels of saturation. The water contained in each of these three reservoirs is subject to different physical 
processes and maximum storage capacities.

ET includes five components in our PRMS models: a) evaporation of intercepted rain, b) sublimation from 
intercepted snow and snowpack, c) evaporation from impervious storage, d) ET from recharge zone of capillary 
reservoir, and e) transpiration from lower zone of the capillary reservoir (Markstrom et al., 2015). Intercepted 
rain is assumed to evaporate at a free-water surface rate. Sublimation occurs only when there is no transpiration 
from plants, and sublimation loss is computed as a fraction of the potential ET (PET). The Jensen–Haise method 
is applied for PET calculation (Jensen et al., 1970). Note that the shrubs and trees cover types can intercept both 
rain and snow while the grass cover type can only intercept rain. Evaporation from the impervious portion of an 
HRU for each time step is based on the available water and unsatisfied PET – PET left after deducting a) and b). 
If the unsatisfied PET is larger (smaller) than the available water, the evaporation loss is set to the available water 
(unsatisfied PET). The ET term d) and e) happen if there is water in storage, and the PET demand is greater than 
zero after subtracting a), b), and c). These terms are handled similarly as the remaining PET demand scales by 
factors related to the water content of the recharge zone and the capillary reservoir, respectively, and soil type.

The soil moisture variable refers to the soil water content of the capillary reservoir. Its computation is based on 
the summation of all moisture depletions and accretions. Depletions include ET, drainage to the groundwater 
reservoir, fast and slow interflow, and saturation excess surface runoff (i.e., Dunnian surface runoff). Accretions 
are soil infiltration and any cascading Dunnian surface runoff and interflow from upslope HRUs. It is bounded 
between 0 and the maximum available capillary water-holding capacity of the soil zone.

Streamflow is the sum of (a) impervious Hortonian surface runoff, (b) pervious Hortonian surface runoff, 
(c) Dunnian surface runoff, (d) interflow, and (e) groundwater discharge (Markstrom et  al.,  2015). Horto-
nian surface runoff refers to the infiltration excess on the impervious and pervious portion of each HRU. For 
the impervious portion of HRU, if the sum of throughfall, snowmelt, and the antecedent impervious storage 
exceeds retention storage capacity for a time step, impervious Hortonian surface runoff is generated. Simi-
larly, infiltration excess on the pervious portion of each HRU occurs when the throughfall, snowmelt, and any 
upslope Hortonian surface runoff available for infiltration exceed the capacity of the soil. Dunnian surface 
runoff and interflow are outflows from the soil zone. Excess preferential-flow reservoir inflow is the Dunnian 
surface runoff. The interflow consists of a fast and a slow component, which are determined by the water 
storage of the preferential-flow and gravity reservoir, respectively. Quadratic functions are used to model the 
storage-to-outflow relationship. The groundwater discharge component is assumed proportional to the ground-
water storage by a coefficient.

3.2.  Overview on Modeling Procedures

A flowchart is provided to detail the modeling procedures in Figure 2. Given the relatively low-relief topography 
of the region, a 4 km spatial discretization was chosen (i.e., every HRU is 4-by-4 km). The modeling time step 
is daily. The study period spans from 2000 through 2020 while the year 2000 was looped three times for model 
spin-up. The subsequent 10-year period (2001–2010) was used for model calibration and the remaining 10-year 
period (2011–2020) was used for evaluation. The Daymet maximum and minimum daily air temperature, incident 
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solar radiation, and precipitation were resampled to 4 km/daily from the original resolution and were used to force 
the PRMS land surface calculation. The selected modules and modeling options dictate the model parameters, 
which may be categorized as physical or conceptual (parameters that cannot be measured in reality). The phys-
ical parameters were derived from the datasets for model setup listed in Table S2 in Supporting Information S1 

Figure 2.  Flowchart of modeling procedures. Dark blue oval shapes represent the operations. Square boxes represent necessary inputs/outputs to/from the operations. The 
six calibration experiments with their required observation datasets (Section 3.3.1) are listed in the table. An illustration of a 2-dimensional Pareto frontier formed by a 
series of non-dominated solutions (red dots) is also provided (see discussion in Section 3.3.2). The solution of the single-objective calibration (blue triangle) is also added.
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using the GSFLOW-Arcpy toolbox by Gardner et al. (2018) (Text S1 in Supporting Information S1). The optimal 
values for conceptual parameters were obtained through model calibration.

There are 33 model parameters selected for calibration based on existing literature (Christiansen et al., 2014; 
Hunt et al., 2013). Two of the parameters are for the Jensen–Haise PET coefficients (Jensen et al., 1970). Twelve 
of the parameters are related to snow accumulation, melt, and sublimation. The remaining 19 parameters control 
surface and subsurface runoff, infiltration into the soil zone, and the rate and volume of flow from groundwater 
reservoirs to surface water (Markstrom et al., 2008). A table summarizing the relevant processes to these param-
eters and other details is provided in the Supporting Information S1 (Table S3 of Supporting Information S1). 
These parameters were optimized in three steps following a similar approach introduced by Hay et al. (2006) 
and Hunt et al. (2013). The parameters calibrated in one step are then kept fixed in the subsequent steps. Note 
that these 33 parameters do not include any routing parameters even though the Muskingum-Manning routing 
scheme was adopted for the catchment models (Cunge, 1969). The reasoning for not optimizing the runoff routing 
parameters is provided in Section 3.3.1. In calibration step one, the two Jensen–Haise parameters were optimized 
for a catchment; in step two, the snow processes parameters were optimized. Details on reference data and cali-
bration algorithms for these two steps can be found in the Supporting Information S1 of this study. The remaining 
19 parameters for runoff generation were calibrated in step three, which is the focus of this work (Figure 2 and 
Section 3.3.1). Coupled groundwater-surface water routing was not the purpose of our testing, therefore step four 
of Hunt et al. (2013) was omitted. The 20 catchment models developed with PRMS are available for downloading 
on ScienceBase (Mei et al., 2022).

3.3.  Design of Model Calibration Experiments

3.3.1.  Model Calibration Schemes

There are 19 parameters for runoff generation that are obtained by model calibration. Six calibration schemes 
were designed with one being a single-objective and five being multi-objective problems. The six schemes involve 
the use of gaged streamflow and global gridded soil moisture, ET, and runoff. Experiment 1 is a single-objective 
calibration scheme that only considers the streamflow from USGS (RUSGS) to calibrate the model. Experiments 2 
and 3 are bi-objective calibrations that are using gaged streamflow and either gridded soil moisture from SoMo.
ml (RUSGS + S *) or gridded ET from GLEAM (RUSGS + ET), respectively, as calibration targets. Experiment 4 
is abbreviated as RUSGS + S *+ET as it uses streamflow from the USGS, gridded soil moisture, and gridded ET 
from GLEAM. Experiment 5 and 6 are also tri-objective, but the USGS streamflow was substituted by two GRPs, 
namely GRUN and LORA, and are hence called RGRUN + S *+ET and RLORA + S *+ET, respectively.

The optimization algorithm applied was the Dynamically Dimensioned Search (DDS) for single-objective 
(Tolson,  2007) and the Pareto-Archived DDS (PADDS) for multi-objective calibration problems (Asadzadeh 
& Tolson, 2013), respectively. For PADDS the exact hyper-volume contribution metric was used to obtain new 
candidates during the calibration. For both algorithms, the scalar neighborhood size perturbation parameter was 
fixed at its recommended value of 0.2. Both DDS and PADDS are implemented in the Optimization Software 
Toolkit (OSTRICH, Matott, 2016). For every experiment, a budget of 2,000 iterations was assigned to a calibra-
tion trial. In total, 10 independent calibration trials were performed for every catchment model to evaluate the 
possible randomness of the calibration procedures. Only the best result of the 10 trials is reported here. In the case 
of the single-objective calibration, this is the best objective function value of the 10 optimal values. In  the  case  of 
the multi-objective calibration, the best result is the Pareto frontier derived from the pooled solutions of all 10 
Pareto frontiers.

For the streamflow variable, even though the modeling time resolution is daily, the objective functions were 
calculated using monthly averaged values (the daily USGS streamflow and the PRMS simulated streamflow 
were averaged monthly). This is to ensure a consistent comparison among different experiments that use the 
daily gaged streamflow and the two monthly global GRPs to inform the model. Since the monthly resolution is 
adopted for streamflow, the effects of runoff routing are minimized; and the monthly streamflow is essentially the 
monthly catchment-averaged runoff. That is the basis of using the areal-averaged GRUN and LORA to substitute 
the monthly gaged streamflow in Experiment 5 and 6. In other words, none of the six experiments considers 
the effects of sub-monthly routing and associated flow, rather they focus on predicting the monthly runoff. The 
monthly streamflow data were used as the reference, regardless of the use of the two GRPs in experiments 5 and 
6, to allow for a consistent inter-comparison among the six calibration experiments.
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For soil moisture and ET, daily values were used for both the simulated and observed values. To mitigate the 
different spatial resolutions among the SoMo.ml soil moisture, the GLEAM ET, and the modeling resolution, the 
simulations, and observations were areal-averaged before calculating the objective functions. For the SoMo.ml 
soil moisture, the volumetric soil moisture values for the three soil layers were converted to soil water depth for 
the entire soil column (0–50 cm) before areal-averaging. In addition, although PRMS calculates volumetric soil 
moisture storage, it does not define an explicit surface layer depth, preventing an exact matching of soil moisture 
storage magnitude with the SoMo.ml-derived one. Therefore, the simulated and reference soil moisture time 
series St were normalized before calculating the performance metric using:

𝑆𝑆∗

𝑡𝑡
=

𝑆𝑆𝑡𝑡 − 𝜇𝜇𝑆𝑆

𝜎𝜎𝑆𝑆

.� (1)

where 𝐴𝐴 𝐴𝐴𝑆𝑆 and 𝐴𝐴 𝐴𝐴𝑆𝑆 represent the mean and standard deviation of soil moisture. Equation 1 means that the magnitude 
and variability of soil moisture from SoMo.ml were not used to inform the parameter optimization process while 
only the signal's timing was considered.

3.3.2.  Calibration Metrics

In all six calibration schemes, the Kling–Gupta Efficiency (KGE; Gupta et al., 2009) is used to evaluate the 
performance of the hydrological variable simulations:

𝐾𝐾𝐾𝐾𝐾𝐾𝑥𝑥 = 1 −

√

(

𝜇𝜇𝑚𝑚
𝑥𝑥

𝜇𝜇𝑜𝑜
𝑥𝑥

− 1

)

2

+

(

𝜎𝜎𝑚𝑚
𝑥𝑥

𝜎𝜎𝑜𝑜
𝑥𝑥

− 1

)

2

+ (𝑟𝑟𝑥𝑥 − 1)
2

,� (2)

where μx and σx represent the mean and the standard deviation of the time-dependent variable x, which can be 
streamflow (Q), normalized soil moisture (S *), or ET. The superscript m and o indicate modeled and observed 
time series, respectively. The Pearson correlation coefficient rx is derived between the modeled and observed time 
series of the respective variable x. The KGEx is bound by (-∞, 1] with 1 being the ideal value. For the normalized 
soil moisture, the mean is 0 and the variance is 1 for both the observed as well as the modeled time series. Hence, 
the bias terms for the mean and the standard deviation, the first and the second term in Equation 2, are essentially 
0. Therefore, Equation 2 collapses to

𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆∗ = 𝑟𝑟𝑆𝑆∗ .� (3)

Equation 3 indicates that only the time information of the reference soil moisture is used to inform the model 
simulation.

Instead of merging the multiple objective functions into one, we maintain several separated objective functions 
and perform multi-objective calibration. Unlike single-objective calibration which obtains a single optimal solu-
tion, multi-objective calibration identifies a set of non-dominated solutions (NDSs) that forms a Pareto frontier. A 
solution is non-dominated if none of its objective functions can be improved without degrading some of its other 
objectives. Figure 2 demonstrates a Pareto frontier for a 2-dimensional (two-objective) problem (red circles), 
while in our study the dimension can be up to three, that is, one for streamflow, soil moisture, and ET. The front 
might reveal that there are solutions where introducing an additional objective can lead to a reduced performance 
of the original objective (compared to blue marker), while the performance of the additional objective increases.

3.4.  Model Performance Evaluation

3.4.1.  Performance Metrics and Standards

The KGEx metric used in model calibration and a combined efficiency metric that determines the overall model 
performance across all variables are used to quantify the model performance during the 2011–2020 evaluation 
period. The USGS streamflow, SoMo.ml soil moisture, and GLEAM ET are used as the reference to be consistent 
with the calibration period. The combined efficiency metric CEeq defined as the arithmetic mean of the perfor-
mances for each of the three variables is introduced:

CE�� =
���� + ����∗ + �����

3
.� (4)
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The subscript eq indicates that the weighting factors for the three objective functions are the same (here: 𝐴𝐴
1

3
 ). The 

range of CEeq is (-∞,1] with 1 as the ideal value, the same as the KGE's.

To help interpret the error metrics, we defined three model performance standards for KGEx that are gradually 
decreasing based on the goodness of the simulations following Mai et al.  (2022). Consider the three terms 
within the square root sign of Equation 2; the first level is characterized by within 10% under-/over-estimation 
of the observation in terms of the mean (𝐴𝐴 |

𝜇𝜇𝑚𝑚𝑥𝑥

𝜇𝜇𝑜𝑜𝑥𝑥
− 1| ≤ 10% ) and the SD (𝐴𝐴 |

𝜎𝜎𝑚𝑚𝑥𝑥

𝜎𝜎𝑜𝑜𝑥𝑥
− 1| ≤ 10% ) and the correlation 

coefficient between model output and observation is above 0.9 (𝐴𝐴 𝐴𝐴𝑥𝑥 ≥ 0.9 ). These criteria together result in a 
KGE no less than 0.83. By gradually releasing these criteria, we also define another two performance levels 
with lower upper boundaries of KGE values at 0.65 and 0.48, respectively. These performance levels are 
applicable for the CEeq metric in Equation 4 and a more general form that will be introduced in Equation 6, 
Section 3.4.3.

3.4.2.  Pairing Experiments for Relative Performance

Objectives A and B of this study are addressed by comparing relative performance among the six calibration 
experiments. To quantify the improvement/deterioration in model performance between two calibration exper-
iments i and j, the median performance difference of all pairs of NDSs from experiment i and j for a selected 
variable (𝐴𝐴 ∆̃𝑋𝑋 ) is derived:

∆̃𝑋𝑋 = 𝑚𝑚𝑚𝑚𝑚𝑚⟨𝑋𝑋𝑖𝑖 −𝑋𝑋𝑗𝑗⟩ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 1 ≤ 𝑗𝑗 𝑗 𝑗𝑗 ≤ 6 .� (5)

The term X is one of the error metrics defined in Equations 2–4; subscripts i and j are the experiment numbers 
ranging from 1 to 6. Note that the difference is always the experiment with the higher number (i), minus the 
experiment with the lower number (j). If the Pareto frontier of experiment i contains M NDSs and experiment j 
has N NDSs, 𝐴𝐴 ∆̃𝑋𝑋 is defined as the median of the 𝐴𝐴 𝐴𝐴 ×𝑁𝑁 differences that can be calculated. A positive (negative) 
value of 𝐴𝐴 ∆̃𝑋𝑋 means that, for a catchment model, the experiment i is better (worse) than experiment j in terms of 
the median of all possible pairwise differences from NDSs of the two experiments.

3.4.3.  Visualizing Model Performance by Ternary Diagram

Objective C of this study is to investigate the model performance dynamics given the different importance of the 
three variables. To this end, a method that effectively synthesizes the weighting factor spaces with all the NDSs 
of a catchment model in a ternary diagram (Howarth, 1996) is proposed. The NDSs of a catchment model are 
obtained by merging those from the six calibration experiments, that is, identifying the set of NDSs when the six 
sets of NDSs are merged. For each of the overall NDSs, we introduce a more general combined efficiency metric 
after model calibration, CE, with weighting factors compared to CEeq in Equation 4:

CE = ������ +��∗����∗ +�������� ,� (6)

where wQ, w�∗ , and wET are the weighting factors for streamflow, normalized soil moisture, and ET, respectively. 
For each of the NDS, CE is a function of the three weighting factors bounded by (-∞,1] as this is the range of the 
three individual metrics. Given that wQ, w�∗ , and wET are bounded by [0,1] and sum to 1, the values of CE under 
the possible weighting factor space can be represented on a ternary diagram with the three weighting factors 
being the three axes. We called this a “CE surface.”

For a catchment with N NDSs, there are also N CE surfaces. Visualizing all of these CE surfaces would also 
require N ternary diagrams, which is not efficient if one would like to investigate the change of model perfor-
mance indicated by CE over the possible weighting factor spaces. Hence, the median over the stack of the CE 
surfaces is defined as an aggregation:

�̃� = ���⟨��⟩ ,� (7)

where CE is the stack of the CE surfaces each defined through Equation 6. �̃� is the median performance of 
a model across differently weighted objectives; its range is (-∞,1], the same as CE. Note that the stack of CE 
surfaces now collapses to a single surface represented by �̃� , and this surface is visualized through a ternary 
diagram. There is one such diagram for each catchment.
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4.  Results
4.1.  Overall Performance of Experiments

To analyze the nominal performance of each of the six experiments, the four performance metrics for all the 
NDSs across all 20 catchments are summarized as boxplots in Figure 3. In general, using the datasets RUSGS, 
RUSGS + S *, and RUSGS + ET for model calibration leads to the best model performances regarding streamflow 
(Figure 3a), soil moisture (Figure 3b), and ET (Figure 3c), respectively. This is consistent with most of the stud-
ies shown in Table 1: introducing a new variable as an additional objective reduces the streamflow simulation 
performance but improves the performance of the additional variable's simulation in return. In terms of the 
overall performance, the single-objective and the two bi-objective calibration schemes result in generally better 
performance than the tri-objective RUSGS + S *+ET as revealed by the CEeq distribution (Figure 3d). A closer look 
at the results of the first three calibration schemes in Figure 3a reveals that the decrease in KGEQ of adding S * as 
an additional model calibration constraint is not as severe as adding ET. A cross-benefit is identified through the 
result shown in Figure 3c where introducing soil moisture in the calibration also improves ET (compare whiskers 
of boxes for RUSGS and RUSGS + S *); this is not the case when ET information is used in addition to streamflow 
(compare whiskers of RUSGS and RUSGS + ET in Figure 3b).

Among the three experiments that calibrated against three variables, the gaged streamflow-based calibration 
scheme outperforms the two gridded runoff-based ones in terms of KGEQ and CEeq. This is because the USGS 
streamflow is used as a reference to calculate the performance metrics for all experiments. More fair evaluations 
could be to compare the soil moisture and ET simulations among the three experiments. In fact, Figures 3b and 3c 
reveal that the RGRUN + S *+ET and RLORA + S *+ET soil moisture and ET simulations are almost identical to the 
RUSGS + S *+ET ones. A product-wise comparison shows that RGRUN + S *+ET is better than RLORA + S *+ET 
for streamflow simulation (Figure  3a) while being fairly similar regarding soil moisture (Figure  3b) and ET 
(Figure 3c). This leads to an overall better model performance when using GRUN instead of LORA in model 
calibration (Figure 3d).

Figure 3.  Performance metrics for (a) monthly streamflow, (b) normalized soil moisture, (c) evapotranspiration, and (d) 
overall performance for the six experiments defined in Section 3.3.1. The boxplot shows the results for all 20 catchments 
and all non-dominated solutions. The horizontal lines from top to bottom correspond to the three performance levels 
(Section 3.4.1).
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4.2.  Relative Performance Between Experiments

The relative performances among experiments 1 to 4 across all the 20 
catchments are summarized in Figure  4. The figure shows the number of 
catchments where the median performance of the model improved with 
adding/substituting a variable compared to another experiment. A large 
number of catchments (blue colors) indicates a reliable improvement of 
model performance with a specific variable being added/substituted. The 
metric that is used to quantify the performance of the model is added as a 
label in each grid.

Focusing on the grids that compare RUSGS + S * with RUSGS for KGEET, 12 
catchments show improvements in model performance regarding ET after 
adding soil moisture as an additional objective for both the calibration and 
evaluation period. This confirms the cross-benefit for 60% of the catchments 
of using soil moisture in model calibration to improve the performance of ET 
simulations (Figure 3c). The cross-benefit of ET data to improve the quality 
of soil moisture simulations is less clear. Focusing on the grids comparing 
RUSGS + ET to RUSGS, there are 8 (11) catchments that show an increase in 
KGE�∗ with the addition of ET in calibration for the calibration (evaluation) 
period. In addition, by comparing the RUSGS + S * and the RUSGS + ET schemes, 
it is revealed that 8 catchments show higher KGEQ values for RUSGS + ET 
compared to RUSGS + S * in the calibration as well as the evaluation period. 
This indicates a lower degree of degradation in performance regarding 
streamflow simulations with the addition of soil moisture data rather than ET 

data. Lastly, the results show that no more than 4 catchments yield a higher CEeq for the RUSGS + S *+ET compared 
to all the other single- and bi-objective calibration schemes in both calibration and evaluation.

The performance among experiments 4 through 6 are analyzed to estimate the impact of replacing the gaged 
streamflow (Experiment 4) with GRPs (i.e., GRUN in Experiment 5 and LORA in Experiment 6) during model 
calibration. Figure 5 displays the results across the 20 study catchments. Figure 5a shows that in no more than 7 
catchments the model performance regarding streamflow (KGEQ) is improved when the model is trained with a 
GRP (RGRUN + S *+ET and RLORA + S *+ET) instead of USGS streamflow (RUSGS + S *+ET); the remaining catch-
ments show a decrease in performance. Figure 5d shows a similar pattern regarding overall model performance 
(CEeq), that is, no more than 8 catchments show improved overall performance when trained with GRPs while 
the remaining catchments show a decrease in performance. This agrees with the observations from Figure 3d that 
RUSGS + S *+ET outperforms RGRUN + S *+ET and RLORA + S *+ET in terms of KGEQ and CEeq.

Figure 3 already revealed that the three tri-objective calibration schemes (experiments 4 to 6) yield almost iden-
tical performance in terms of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆∗ and KGEET. Yet, using the number of catchments with positive 𝐴𝐴 ∆̃𝑋𝑋 , that is, 
the number of catchments being improved, some nuances in performance between the experiments are identified. 
For instance, the improvements in 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆∗ values of RGRUN + S *+ET are higher than those of RUSGS + S *+ET for 
13 (16) catchments for the calibration (evaluation) period (Figure 5b), while the KGEET values of RLORA + S *+ET 
are higher than the RUSGS + S *+ET ones for 11 (12) catchments for the calibration (evaluation) period (Figure 5c).

To understand the relative performance between RGRUN + S *+ET and RLORA + S *+ET, we investigate all the 
RGRUN + S *+ET versus RLORA + S *+ET grids in Figure 5. The results show that using the LORA runoff product 
instead of GRUN leads to improvements regarding ET in 15 catchments (Figure 5c) while the use of the GRUN 
data leads to better results regarding streamflow, soil moisture, and overall performance (Figures 5a, 5b, and 5d, 
respectively). Specifically, only 1, 3, and 1 catchments show better performance with respect to streamflow, 
soil moisture, and overall performance, respectively, when the LORA runoff is used instead of GRUN. These 
numbers of catchments are the same for both the calibration and the evaluation period.

4.3.  Relative Performance of Global Runoff Products on Catchment Scale

The impact of replacing gaged streamflow observations with GRPs on model performance is further analyzed 
with respect to the catchment area. Figure 6 shows the median improvement regarding streamflow performance 

𝐴𝐴 ∆̃𝐾𝐾𝐾𝐾𝐾𝐾𝑄𝑄
 when comparing the baseline experiment using USGS streamflow for model calibration versus the two 

Figure 4.  Number of catchments that show improvements in model 
performance when adding additional variables (soil moisture, ET, or both), 
that is, the median of the error metric differences 𝐴𝐴 ∆̃𝑋𝑋 is larger than 0. The 
metric considered to compare each pair of experiments is added as a label in 
each grid. The upper (lower) triangle is estimating model performance of the 
evaluation (calibration) period.
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experiments using either GRUN (Figure 6a) or LORA (Figure 6b). The figure shows the individual improvements 
of 19 catchments excluding catchment g, which is identified as an outlier (see Section 4.4 and Figure 7g). The 

𝐴𝐴 ∆̃𝐾𝐾𝐾𝐾𝐾𝐾𝑄𝑄
 values are mostly negative, indicating that models calibrated to gaged streamflow yield better simulations 

compared to models calibrated to either of the two GRPs. This is consistent with the results shown in Figure 5a. 
Both panels of Figure 6 suggest a positive correlation between the performance improvements 𝐴𝐴 ∆̃𝐾𝐾𝐾𝐾𝐾𝐾𝑄𝑄

 and the 
catchment area. This indicates that the streamflow simulation discrepancies for models that are calibrated using 
GRPs compared to models that are trained using gaged streamflow data are mitigating from small to large-scale 

Figure 5.  Number of catchments that yield an improvement in model performance when the gaged streamflow data (RUSGS) 
are replaced by gridded runoff products (RGRUN and RLORA), that is, the median of the error metric differences 𝐴𝐴 ∆̃𝑋𝑋 is larger 
than 0. The different panels show the result considering (a) KGEQ, (b) KGE�∗ , (c) KGEET, and (d) CEeq as the metric to 
determine the model performance. The upper (lower) triangle is estimating model performance of the evaluation (calibration) 
period.

Figure 6.  Model performance changes regarding streamflow (𝐴𝐴 ∆̃𝐾𝐾𝐾𝐾𝐾𝐾𝑄𝑄
 ) when replacing USGS streamflow data (Experiment 

4) with gridded runoff data from (a) GRUN (Experiment 5) or from (b) LORA (Experiment 6) dependent on the catchment 
drainage area. The performance changes are estimated for the calibration (blue markers) and evaluation (red markers) period. 
The correlation coefficient between the streamflow performance changes and the catchment area are added to the legend; an 
asterisk * is added in case the statistical significance is at least at the level of 0.05.
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catchments. The correlation is larger for experiments using the GRUN dataset (Figure 6a) which means that the 
scale dependency is more obvious for the GRUN dataset than when the LORA dataset is used.

4.4.  Dynamics of Overall Modeling Performance on Variable Importance

To demonstrate the model performance as a function of weighting factors assigned to the objective functions after 
model calibration, the �̃� metric for the calibration period is shown as ternary diagrams for the 20 catchments in 
Figure 7 (the 20 �̃� surface for the evaluation period are provided in Figure S3 of Supporting Information S1). 
A baseflow index map (Wolock, 2003) illustrating the spatial distribution of baseflow as a percentage of total 
streamflow is added for reference to discuss model performance varied on baseflow contributions. Note that the 
hydrological model for catchment g (Figure 7g) is problematic due to the highly regulated streamflow regime by 
reservoir operations and the fact that no reservoir management rules were available and used to build the hydro-
logical model. This leads to very low KGEQ values for catchment g that impact any overall performance estimate 
�̃� even if the streamflow performance metric is weighted very low. A performance level of �̃� ≥ 0.48 can only 
be achieved if the weight of the streamflow performance wQ is as low as 1.8% leading to an entirely dark red 
colored ternary plot for catchment g. All other catchments show �̃� gradients from 0.49 to 0.92 depending on 
the weights chosen for each component.

The details of each �̃� surface are investigated by focusing on the trend and the magnitude. It can be seen from 
Figure  7 that some catchments show unified �̃� patterns. For example, catchments k and o reveal the mild 
variation of their �̃� surfaces, which are attributed to their relatively good performance for all three variables 

Figure 7.  Median of the combined performance metric �̃� using different weights for each of the three objectives across the 20 catchments (panel a to t) for the 
calibration period. A demonstration on how to read the weighting factors for a point on the �̃� surface is provided in panel g. Lines of different gray scales are added 
to the ternary plots to visualize the three performance levels (Section 3.4.1). Panel u) shows a map of the baseflow indexes for the Lake Michigan watershed as well as 
the location and extent of the 20 catchments. The labels of the catchments (a–t) correspond to the panels (a to t). The catchment-averaged baseflow indices are reported 
within the parenthesis. The table summarizes the distributions of model performance.
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(�̃� > 0.79 ). Catchments l, s, and t have among the weakest streamflow simulations; their �̃� contour lines 
are approximately parallel to the 𝐴𝐴 𝐴𝐴𝐸𝐸𝐸𝐸  axis, showing a decreasing trend with increasing streamflow weights and 
mild gradient in the direction that the streamflow weight is fixed. These observations pinpoint that soil mois-
ture and ET are simulated equally well and are better than their respective streamflow simulations for the three 
catchments. It is worth noting that the catchments l, s, and t are also associated with the highest mean baseflow 
indexes across the watershed (79%, 84%, and 82%, respectively), indicating high contributions of baseflow to 
their streamflow. A similar situation can be observed for catchment r with the third highest baseflow index (81%). 
This finding of weak streamflow simulation performances for catchments that are in regions with high baseflow 
indexes is confirming the results found by Fry et al. (2014). Other similar trends can be observed from the catch-
ment groups (a, b) and (p, q). For the first group, their �̃� contour lines are approximately parallel to the 𝐴𝐴 𝐴𝐴𝑆𝑆∗ 
axis, decreasing toward the vertex of the triangles. This indicates weakest ET simulation among S * and Q, whose 
performances are similar. The second group is similar to the first group as their weakest ET simulations. But the 
�̃� contour lines of these two catchments are not parallel to the 𝐴𝐴 𝐴𝐴𝑆𝑆∗ axis, twisted counterclockwise for some 
degree, as S * are simulated obviously better than Q.

For magnitude of �̃� , if one would use a dominant performance level that covers more than 50% of the 
ternary diagram's surface area, the majority of 17 catchments reach the performance level of �̃� ≥ 0.65 . The 
model for catchments k and o are the only two that are dominated by the highest level of �̃� ≥ 0.83 . The 
results are summarized under “Overall” in the table added to Figure 7. We also analyze the three corners of 
each triangle in order to identify which variable is simulated best in each catchment. We define a corner to 
be part of the triangle where the weights are larger than 80% for one variable. This assessment is meaning-
ful when one believes a particular variable is subjected to notably less uncertainty (take the ground-based 
streamflow measurements vs. other global gridded products as an example). The dominant performance level 
of each corner (performance level covers more than 50% of the area) is counted for the 20 catchments and 
results are summarized in the table added to Figure 7. The soil moisture simulations exhibit overall the best 
performance with seven catchments being at the level of �̃� ≥ 0.83 . While it is hard to clearly state whether 
streamflow or ET is simulated with better overall performance across catchments based on the distribution 
of the cases.

5.  Discussion
5.1.  On Relative Performance Among Adding Variables for Model Calibration

Our analysis reveals that using both normalized soil moisture and ET as additional variables to augment stream-
flow in model calibration (the tri-objective calibration scheme) results in the lowest overall modeling perfor-
mance (CE in Equation 4) compared to the single- and the two bi-objective schemes. There are two possible 
reasons for seeing a decreasing overall performance: First, the model structure may not fully resolve the physical 
processes and hence it may be impossible to satisfy all three constraints at the same time. Second, the data prod-
ucts used for calibration may not accurately capture the magnitude and seasonality of the natural processes. These 
explain why streamflow, soil moisture, and ET cannot be matched at the same time.

Another important result of this work is that there is a cross-benefit of including soil moisture in model calibra-
tion (in addition to streamflow) to the ET simulation for most of the catchments. This may be explained as the 
improved representativeness of water storage fluctuations of the recharge zone and the lower zone of the capil-
lary reservoir, which in turn benefits the simulations of the associated ET fluxes. Note that soil moisture is the 
water content of the capillary reservoir (Section 3.1). Therefore, the more accurate soil moisture simulation by 
including the variable in calibration as adopted by the 𝐴𝐴 RUSGS+S

∗ scheme yields better recharge zone ET and lower 
soil zone transpiration compared to the RUSGS scheme. On the contrary, fewer catchments show that the addition 
of ET in calibration benefits soil moisture. This is probably because the five ET components (see Section 3.1 for 
details) were considered together in model calibration, which does not solely inform the parameters of the two 
soil moisture related components. Another benefit of adding soil moisture compared to adding ET is that the 
former reduces streamflow performance less. This could be because only the timing of soil moisture is used in 
addition to streamflow to inform the model parameters, while all the information of the ET time series is used 
for the other two schemes.
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5.2.  Global Runoff Versus Gaged Streamflow in Model Calibration

This study renders the first ever comparison of two global runoff products, namely GRUN and LORA, in hydro-
logical model calibration. This is the first ever study that uses GRUN in process-based hydrological model 
calibration to the best of our knowledge. Our results demonstrate that the gaged streamflow-based calibration 
outperforms the global product-based ones in terms of streamflow simulation. This is not unexpected given that 
the USGS streamflow is adopted as one of the reference datasets in training the data-driven models to produce 
GRUN and LORA (Ghiggi et al., 2019; Hobeichi et al., 2019). Note that GRUN is trained to the Global Stream-
flow Indices and Metadata Archive (GSIM), which contains monthly streamflow records from 9404 USGS 
streamflow stations (Do et  al.,  2018). So, the discrepancy between GRUN/LORA and the gaged streamflow 
propagates to the streamflow simulation through model calibration. Our results also indicate that as the catch-
ment scale increases, the streamflow simulation discrepancy is mitigated by the global product-based models and 
gaged streamflow-based models. This is probably because of the discrepancy in scale between the two gridded 
runoff products (∼50 km) and the small-scale catchments analyzed herein.

Another observation regarding the relative performance between GRUN and LORA is that the GRUN-calibrated 
models had superior performance than the LORA counterparts in terms of streamflow simulation. Given the 
fundamentally different algorithms of GRUN and LORA, the relative differences between GRUN and LORA 
could be attributed to a wide range of factors. Yet, a clear reason that could partly explain this observation is the 
different number of streamflow gages that were used to produce GRUN and LORA. By visually inspecting the 
gage density over the Great Lake region for GRUN (figure 2 in Ghiggi et al., 2019) and for LORA (figure 1 in 
Hobeichi et al., 2019), one could discover that the former has more gages, which may lead to lower discrepancy 
to the reference network.

5.3.  Diagnosing the Dynamics of Model Performance on Variable Importance

This study uses the ternary diagram to visualize the performance of three hydrological variables (streamflow, 
soil moisture, and ET). It shows how the overall modeling performance (the �̃� metric in Equation 7) change 
on the variable importance space. The visualization method is also flexible to be applied to other hydrological 
models and other flux and state variables. This is meaningful for the model's end-user with different emphasis 
on the hydrological simulations (e.g., flow simulations, planning of agriculture activities). With the diagnostic 
information provided by the �̃� surface, the modelers can refine the processes that they are interested in and are 
less satisfied with for their modeling practices. Other error metrics may also be used to construct the �̃� surface 
with a different formula for averaging. For instance, the geometry distance to the utopian point (the point that all 
variables reach the ideal performance level) is also a popular metric for representing the overall modeling perfor-
mance; see for example, Herman et al. (2018).

5.4.  Strategies to Improve Streamflow Simulation for Baseflow-Dominated Catchments

Results show that the streamflow simulation is relatively weak for baseflow-dominated catchments (Figure 7). 
A potential cause could be the simple representation of groundwater in PRMS that does not fully resolve the 
subsurface processes; groundwater discharge is assumed proportional to groundwater storage by a coefficient 
(Section 3.1). Therefore, one way to improve streamflow simulation by PRMS could be to replace this simple 
reservoir conceptual model with MODFLOW which is available under the GSFLOW platform, or an equivalent 
physically based, spatially distributed, groundwater model. Inclusion of the groundwater system allows integra-
tion of groundwater observations (e.g., groundwater head, water table depth), which can then inform the model's 
ability to simulate Dunnian surface runoff— an important process for forecasting peak flows. That is, similar to 
the ability of soil moisture and ET data to constrain related watershed hydrological components, the addition of 
groundwater processes will improve the groundwater recharge component, something only indirectly informed 
using streamflow or other hydrological variables that only reflect the land surface processes (Huntington & 
Niswonger, 2012; S. Xu et al., 2021). Indeed, the calibration of the GSFLOW model of Hunt et al. (2013) used 
a wide variety of observation types, including snow depth, lake evaporation, actual ET, streamflow, lake stage, 
groundwater levels, groundwater inflows to lakes, and depth of lake plumes to constrain the parameters used to 
simulate the watershed hydrological components. In this way, the results of our work are consistent with others 
who have noted the value of a wide variety of data types for watershed flow calibration (e.g., Hunt et al., 2006).
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6.  Conclusions
In this study, we conducted six model calibration experiments using different observation data sets, including 
gaged streamflow and global gridded products of soil moisture, evapotranspiration, and runoff over 20 catch-
ments located in the Lake Michigan watershed. The soil moisture, evapotranspiration, and streamflow simula-
tions produced from the six experiments were compared. A novel model performance visualization method was 
presented using a combined efficiency metric and the ternary diagram. Our results suggest that, among the six 
experiments, the single- and bi-objective calibration schemes yielded the best overall modeling performance; 
the addition of soil moisture improves the prediction of evapotranspiration for most of the catchments due to the 
correlation between the two variables.

Regarding the potential of using global gridded runoff products in model calibration, we found that models 
informed by gaged streamflow outperform the gridded runoff product counterparts. This is because the simulated 
streamflow inherits the discrepancy between the global runoff products and the gaged streamflow. However, as 
the spatial aggregation scale for the global runoff products increases for larger catchments, the difference between 
the two types of models diminishes. For soil moisture (evapotranspiration), most of the GRUN- (LORA-) based 
models show better performance than the USGS streamflow-based ones. Between the two products, we found that 
GRUN-informed models provide better streamflow and soil moisture simulations than the LORA counterparts, 
while the LORA-based models are generally better than the GRUN ones for evapotranspiration.

According to the ternary diagram, some typical trends are identified. The simulations of the normalized soil mois-
ture show better performance than the streamflow and the evapotranspiration ones for most of the catchments. 
Relatively low streamflow simulation performance is found for catchments with a high baseflow contribution.

Data Availability Statement
The HydroSHEDS DEM data are available from https://www.hydrosheds.org/downloads. The NALCMS land 
cover dataset is downloaded from http://www.cec.org/north-american-environmental-atlas/land-cover-2010-
modis-250m/. The GMIS v1 impervious surface dataset is freely available from https://sedac.ciesin.columbia.
edu/data/set/ulandsat-gmis-v1/data-download. The MODIS MOD44  B vegetation characteristics product is 
downloaded from the NASA Earthdata Search website https://search.earthdata.nasa.gov/search. The Soil-
Grids v2 soil characteristics datasets are downloaded from https://soilgrids.org/. The Daymet v4 dataset is 
available from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1840. The GHCN-Daily data are downloaded 
from https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily. The  
USGS streamflow data are downloaded from https://waterdata.usgs.gov/nwis/dv/?referred_module=sw. The 
SoMo.ml v1 soil moisture datasets are retrieved from https://www.bgc-jena.mpg.de/geodb/projects/Data.php. 
The GLEAM v3.5b dataset is retrieved from https://www.gleam.eu/#downloads. The GRUN v1 runoff prod-
uct is available from https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176. 
The LORA v1 runoff product is downloaded from https://geonetwork.nci.org.au/geonetwork/srv/eng/cata-
log.search#/metadata/f9617_9854_8096_5291. The GSFLOW model v2.2.0 is freely available from https://
water.usgs.gov/water-resources/software/gsflow/. The GSFLOW-Arcpy toolbox is downloaded from https:// 
github.com/gsflow/gsflow-arcpy. The model calibration software Ostrich is available from https://www.eng.
buffalo.edu/∼lsmatott/Ostrich/OstrichMain.html. The model archive for the 20 study catchments is publicly 
available at https://doi.org/10.5066/P9DOVISZ.
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