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Key Points: 

• Using soil moisture in addition to streamflow to constrain hydrological model calibration 

improves the evapotranspiration simulation. 

• The global gridded runoff products show higher potential in streamflow calibration for 

larger catchments. 

• Ternary diagram is used to visualize performances of three hydrological variables 

considering all possible variable importance. 
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Abstract 

Hydrological models are usually calibrated to in-situ streamflow observations with reasonably 

long and uninterrupted records. This is challenging for poorly gage or ungaged basins where 

such information is not available. Even for gaged basins, the single-objective calibration to 

gaged streamflow cannot guarantee reliable forecasts because, as has been documented 

elsewhere, the inverse problem is mathematically ill-posed. Therefore, inclusion of other 

observations, and reproduction of other hydrological variables beyond streamflow, become 

critical components of accurate hydrological forecasting. In this study, six single- and multi-

objective model calibration schemes based on different combinations of gaged streamflow, 

global-scale gridded soil moisture, actual evapotranspiration (ET), and runoff products are used 

for the calibration of a process-based hydrological model for 20 catchments located within the 

Lake Michigan watershed, of the Laurentian Great Lakes. Results show that the addition of 

gridded soil moisture to gaged streamflow in model calibration improves the ET simulation 

performance for most of the catchments, leading to the overall best performing models. The 

monthly streamflow simulation performance for the experiments using gridded runoff products 

to inform the model is outperformed by those using the gaged streamflow, but the discrepancy is 

mitigating with increasing catchment scale. A new visualization method that effectively 

synthesizes model performance for the simulations of streamflow, soil moisture, and ET was also 

proposed. Based on the method, it is revealed that the streamflow simulation performance is 

relatively weak for baseflow-dominated catchments; overall, the 20 catchment models simulate 

streamflow and ET better than soil moisture. 
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1. Introduction 

Hydrological modeling is the primary approach for estimating continuous terrestrial 

hydrological components at different spatial and temporal scales. Models can be used to simulate 

historical changes in regional water cycles (Regan et al., 2019), provide necessary input data for 

other earth system science investigations – e.g., environmental flow (Liu et al., 2016), drought 

analysis (Van Loon & Laaha 2015)), perform scenario-based predictions of the future 

(Champagne et al., 2020), or inform water resources management practices and decision making 

(He et al., 2021). Watershed flow comprises many processes occurring at a range of scales, 

requiring realistic hydrological models that contain many parameters that cannot be measured in 

practice. These parameters are usually attained by calibrating to in-situ streamflow that provides 

an integrated estimate of all hydrological partitioning upstream of a gage. Yet the hydrological 

partitioning at the gage cannot be uniquely identified and is further complicated by uncertainty in 

other important watershed hydrological components such as evapotranspiration (ET), soil 

moisture, and recharge (Dembélé et al., 2020; Bai et al., 2018; Rakovec et al., 2016). Such 

uncertainty can lead to unrealistic model parameters that compensate for parameter 

simplification errors in the model and biases in other hydrological processes such as climate 

forcing or incorrect representation of hydrological processes in the model (Knoben et al., 2020; 

McMillan et al., 2018; Beven, 2006). In addition, the streamflow-only calibration approach relies 

on one type of calibration target, which precludes its application in regions where gaged 

streamflow data are not available. These so-called ungaged catchments comprise most of the 

land area of the globe (Do et al., 2018). The integration of remote sensing-based observations of 

soil moisture, ET, and streamflow in model calibration is a potential approach to provide a 

comprehensive calibration scheme that considers many components of the hydrological cycles 

relative to a streamflow-only calibration approach. 

Previous studies have investigated the added value of using remote sensing-based 

hydrological observations in addition to gaged streamflow in model calibration (see Table 1 for 

references). Table 1 summarizes a wide range of such studies and highlights the model 

performance of different calibration schemes that include the use of remote sensing-based soil 

moisture, ET, runoff, and terrestrial water storage (TWS) compared to streamflow-only 

calibration. Table 1 lists 16 representative studies published within the last 10 years that used 

multiple datasets to inform hydrological models. Based on the table, some common findings and 

gaps can be identified (note that the results might be model-/region-specific as the studies are 

done with different models and in different regions). The first common finding is that the use of 

additional remote sensing-based variables besides gaged streamflow does not improve 

streamflow prediction (see column “Q/R” and rows “Streamflow + additional variables”); 

however, these studies show an improved performance for the additional variables used for 

calibration (see columns “ET”, “S”, and “TWS” and rows “Streamflow + additional variables”). 

Analogously, the sole use of remote sensing-based gridded ET, soil moisture, or/and TWS in 

calibration generally does not improve the prediction of streamflow but does improve the 

simulations of the respective variables (see rows “Remote sensing-only”). Another finding worth 

mentioning is that four studies (Dembélé et al., 2020; Bai et al., 2018; Rakovec et al., 2016; 

Kunnath-Poovakka et al., 2016) demonstrate that adding TWS improves prediction of ET (see 

rows “Streamflow+TWS” and “Streamflow+S,TWS”). We will call this phenomenon “cross-

benefit” hereafter, referring to a variable benefitting from the addition of another variable in 

model calibration, considering a baseline model using a streamflow-only calibration. 
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Three gaps are identified in previous studies on this topic (Table 1). The first gap is 

related to the “cross-benefit” phenomenon introduced in the previous paragraph. With regards to 

studies that have used “Streamflow + additional variables” to calibrate models, these studies did 

not evaluate if the inclusion of soil moisture can improve the model’s prediction of ET or vice 

versa. Second, the potential of using global-/regional-scale gridded runoff products (GRPs) in 

model calibration is rarely investigated (see row “ET,R” under “Gridded product only” in Table 

1). GRPs refer to the observation-based runoff products produced from downscaling gaged 

streamflow using statistical or machine learning-based techniques (Ghiggi et al., 2019; Hobeichi 

et al., 2019), not model simulations. The use of GRPs would help to train models at ungaged 

locations given its space-time continuity. To our knowledge, Xie et al. (2021) is the only study 

that used a GRP to calibrate a hydrological model. Xie et al. (2021) shows that the combined use 

of a GRP and an ET product improved the prediction of ET. However, this approach made the 

streamflow prediction worse. Two questions arise from this: how well does a model perform in 

terms of soil moisture simulation when it is trained with gridded runoff instead of gaged 

streamflow? Which global GRP leads to more reasonable overall model performance? Third, 

although multiple hydrological variables are considered for calibration, few studies investigate 

the overall modeling performance that can be used to represent for all their targeting variables. 

Among those which come up with a synthetic performance metric, only equal weighting factors 

for the variable’s objective functions are considered; see for example Herman et al. (2018) and 

Kunnath-Poovakka et al. (2016) among others. A research question arising from this observation 

is if and to what extent does the overall model performance change when different weights are 

assigned to the performance of different variables? This is not easy to answer as there is no 

effective method to show all this information in a concise manner (e.g., one single plot).
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Table 1. Representative studies within the last 10 years on hydrological model calibration using global-scale gridded runoff (R), soil 

moisture (S), ET, and TWS products in addition to gaged streamflow (Q). The rows are the different types of calibration schemes 

grouped into two categories. The first category uses Q plus one or more additional variables, which can be ET, S, and TWS. The 

“Gridded product-only” category is streamflow-free calibration schemes. The columns are the variables evaluated by the studies. Each 

study was assigned into one of the three subsets regarding model performance: improve (denoted by “↑”), no obvious change (denoted 

by “↔”), and decrease (denoted by “↓”). Note that these performance codes reflect the general tendency of results documented by the 

studies. Bolded citation indicates the use of a multi-objective optimization algorithm for the study. Name code for every representative 

study is provided in the bottom row (note that the results might be model-/region-specific as the studies are done with different models 

and in different regions). 
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Name code of study: X2021 – Xie et al. (2021) 

D2020 – Dembélé et al. (2020) 

H2020 – Huang et al. (2020) 

B2018 – Bai et al. (2018) 

D2018 – Demirel et al. (2018) 

H2018 – Herman et al. (2018) 

L2018 – Li et al. (2018) 

M2018 – Mostafaie et al. (2018) 

R2018 – Rajib et al. (2018) 

LL2017 – López López et al. (2017) 

Y2017 – Yassin et al. (2017) 

KP2016 – Kunnath-Poovakka et al. (2016) 

R2016 – Rajib et al. (2016) 

Ra2016 – Rakovec et al. (2016) 

R2013 – Rientjes et al. (2013) 

LL2012 – Livneh & Lettenmaier (2012) 
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This study investigates knowledge gaps in multi-objective model calibration. 

Specifically, we performed an inter-comparison of model performance of six multi-objective 

calibration schemes using different combinations of gaged streamflow, global-scale gridded soil 

moisture, ET, and runoff products. To highlight the benefit of each calibration scheme, we used 

the results obtained from streamflow-only calibration as the baseline. Further, the potential of 

two GRPs in model calibration is investigated. A new method is introduced to visualize the 

combined performance of three modeled variables with different weights. This new method 

provides a more intuitive interpretation of the model performance. Three objectives are identified 

for our study: 

A. Which additional gridded variables (soil moisture or/and ET) used in calibration result in 

the best overall model performance? Do we see any “cross-benefit”? 

B. What is the relative performance between models calibrated using different global-scale 

GRPs and gaged streamflow? and 

C. How is model performance varied with different weights applied to the objective 

functions of the hydrological variable? 

2. Study catchments and datasets 

2.1. Catchments in Lake Michigan watershed 

The Lake Michigan watershed of the Laurentian Great Lakes has a drainage area of 

173,683 km2 of which 33% is Lake Michigan itself (Figure 1). For this study, 20 independent 

catchments (i.e., non-nested catchments) ranging from 90 km2 (catchment i, Menomonee River 

at Menomonee Falls) to 15,410 km2 (catchment g, Fox River at Appleton) are selected and set up 

as independent instances of a hydrological model (section 3.1). The catchments were selected 

from the U.S. Geological Survey (USGS) GAGES-II dataset (Falcone, 2017) with relatively low 

human interference (Table S1 in supporting information). Only gages without back-water from 

the lake were selected. The watershed is characterized by a mild topography with the mean 

elevation ranging from 209 m (basin j, Trail Creek at Michigan City) to 413 m (basin b, 

Escanaba River at Cornell). The 20 streamflow gages also have less than 10% of missing data 

within the period of 2000 to 2020. 
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Figure 1. Boundaries and outlets of the 20 catchments (labeled a to t) used in this study overlain 

on Digital Elevation Model data. Locations of Lake Michigan and the watershed within the 

Continental United States are outlined in the subpanel.  

2.2. Data for hydrological modeling and preprocessing 

The modeling exercises of this study require a wide variety of data products (see the 

product list in Table S2 in supporting information). The studied catchments are delineated using 

the hydrographic data (flow direction and accumulation) derived from the Digital Elevation 

Model (DEM) of HydroSHEDS (Lehner et al., 2008) and the USGS stream gage locations 

(Falcone, 2017). The 19-class land cover classification used in our study is one of the North 

America Land Cover Monitoring System (NALCMS) products that is based on the 2010 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (Latifovic et al., 

2012). The Global Man-made Impervious Surface (GMIS) Dataset from Landsat for 2010 is used 

to determine the impervious surface ratio (Brown de Colstoun et al., 2017). The MOD44B 

product from MODIS (DiMiceli et al., 2015) is used to derive the vegetation cover percentage 

parameters for the summer and winter seasons. The six-layered (0-2m) soil textural profile from 

SoilGrids (Hengl et al., 2017) is used to derive the soil hydraulic parameters. Forcing data 

adopted for our hydrological modeling is from Daymet (Thornton et al., 2021). Daymet was 

developed by interpolating daily meteorological observations in the Global Historical 

Climatology Network Daily (GHCN-Daily) dataset (Menne et al., 2012) with a truncated 

Gaussian filter and digital elevation model (Thornton et al., 1997). 
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Six products are used for model calibration and evaluation. This study uses various 

calibration schemes, where each scheme uses a different dataset to estimate the runoff generation 

parameters (section 3.3.1). These calibration datasets are gaged streamflow and gridded soil 

moisture, ET, and runoff products. The daily streamflow measurements are downloaded from 

USGS for the 20 study catchments. All station records cover the period from 2000 through 2020.  

The SoMo.ml is a recently released observed-based global gridded soil moisture product 

produced by downscaling soil moisture measurements from more than 1,000 stations across the 

globe using the long short-term memory neural network (O & Orth, 2021). Dynamical 

meteorological forcing from the past 365 days and static climate and land surface characteristics 

are used as predictors. The soil moisture product represents the volumetric water content for 

three depth intervals (0-10cm, 10-30cm, and 30-50cm). The accuracy of SoMo.ml is shown to be 

better than two satellite-based and one model-based soil moisture products (O & Orth, 2021). 

Another reference product used in model calibration is the Global Land Evaporation 

Amsterdam Model (GLEAM) by Martens et al. (2017). In GLEAM, actual ET is considered as 

the sum of bare soil evaporation, transpiration, open-water evaporation, interception loss, and 

sublimation. Bare soil evaporation or transpiration is adjusted downward from potential 

evaporation by a stress factor estimated from microwave vegetation optical depth (i.e., water 

content in vegetation) and root‐zone soil moisture calculated from a multilayer water balance 

algorithm (Miralles et al., 2011). Potential evaporation is calculated based on the Priestley and 

Taylor (1972) equation with observed surface net radiation and surface air temperature from 

satellite remote sensing as inputs. Evaporation from open‐water is assumed equal to potential 

evaporation. Interception loss is estimated independently using the refined Gash analytical model 

(Valente et al., 1997). The estimation of sublimation is based on the snow-water equivalent from 

the European Space Agency GLOBSNOW product (Luojus et al., 2013). GLEAM ET estimation 

is shown to have the lowest degree of uncertainty and relatively high accuracy in an evaluation 

study with other 11 ET products from either modeling or remote sensing over the Continental 

United States (Xu et al., 2019). 

Two global-scale GRPs were also considered in our study. The first one is the Global 

Runoff Reconstruction (GRUN) dataset (Ghiggi et al., 2019). There are three main procedures to 

produce GRUN. First, streamflow records from 7,264 catchments, ranging from 10 to 2,500 km2, 

are gridded to the cylindrical equal-area (CEA) grid with a 50 km resolution. For every CEA 

grid, the method uses the median of monthly streamflow from catchments intersecting the CEA 

grid to represent runoff of the grid cell for the month. These result in runoff records for 5,094 

CEA grids, covering 8.5% of the land area. In a second step, 60% of these “observed runoff” 

estimates are used to train Random Forest (RF) regression models with monthly precipitation 

and air temperature from the past 6 months as the predictors. The trained RF models are then 

used to produce monthly runoff for the other CEA grids. The last two steps are repeated 50 times 

to produce 50 reconstructed runoff to test the sensitivity of the RF model to the training data and 

to produce the ensemble mean of monthly runoff. 

Another global GRP is the Linear Optimal Runoff Aggregate (LORA) dataset (Hobeichi 

et al., 2019), derived by merging 11 runoff/streamflow estimates from eight Global Hydrological 

Models (GHM) produced as part of the eartH2Observe project (http://www.earth2observe.eu/). 

The method starts by constructing linear combinations of the GHM runoff/streamflow that 

minimizes the mean square difference with the observed streamflow at 596 catchments. These 

catchments are called donor catchments and their optimal weights are further transferred to other 

http://www.earth2observe.eu/
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catchments without observed streamflow data, called receptor catchments. A receptor catchment 

receives the optimal weights from three donor catchments with the highest similarity – a 

similarity index defined based on the aridity index, fractions of forest and snow cover, soil clay 

content, surface slope, and annual averages of precipitation and potential evaporation (Beck et 

al., 2016). Runoff for a receptor catchment is then estimated by applying the optimal weights to 

the GHM runoff/streamflow of the catchment. 

3. Experimental designs 

3.1. Calculations of evapotranspiration, soil moisture, and streamflow in PRMS 

The hydrological model used in our study is a process-based distributed deterministic 

watershed model called Precipitation-Runoff Modeling System (PRMS) version 5.2.0 

(Markstrom et al., 2015) within the Ground-water and Surface-water FLOW (GSFLOW) 

modeling platform (Markstrom et al., 2008). PRMS is designed for the simulation of 

hydrological processes including evaporation, transpiration, runoff, infiltration, interflow, and 

groundwater flow as determined by the energy and water budgets of the plant canopy, snowpack, 

and soil zone based on distributed climate information (Markstrom et al., 2015). The 

hydrological processes are modeled as a series of reservoirs (plant canopy interception, 

snowpack, soil zone, impervious zone, subsurface, and groundwater), and the water flowing 

between the reservoirs is computed for every hydrologic response unit (HRU – the smallest 

computational unit for the simulations) and time step. Soil zone is simulated by three conceptual 

reservoirs, namely the capillary reservoir, the gravity reservoir, and the preferential-flow 

reservoir. These three reservoirs are not physical layers in the soil column but rather represent, 

and account for, soil-water content at different levels of saturation. The water contained in each 

of these three reservoirs is subject to different physical processes and maximum storage 

capacities. 

ET includes five components in our PRMS models: a) evaporation of intercepted rain, b) 

sublimation from intercepted snow and snowpack, c) evaporation from impervious storage, d) 

ET from recharge zone of capillary reservoir, and e) transpiration from lower zone of capillary 

reservoir (Markstrom et al., 2015). Intercepted rain is assumed to evaporate at a free-water 

surface rate. Sublimation occurs only when there is no transpiration from plants, and sublimation 

loss is computed as a fraction of the potential ET (PET). The Jensen–Haise method is applied for 

PET calculation (Jensen et al., 1970). Note that the shrubs and trees cover types can intercept 

both rain and snow while the grass cover type can only intercept rain. Evaporation from the 

impervious portion of an HRU for each time step is based on the available water and unsatisfied 

PET – PET left after deducting a) and b). If the unsatisfied PET is larger (smaller) than the 

available water, the evaporation loss is set to the available water (unsatisfied PET). The ET term 

d) and e) happen if there is water in storage, and the PET demand is greater than zero after 

subtracting a), b), and c). These terms are handled similarly as the remaining PET demand scales 

by factors related to water content of the recharge zone and the capillary reservoir, respectively, 

and soil type.  

The soil moisture variable refers to the soil water content of the capillary reservoir. Its 

computation is based on the summation of all moisture depletions and accretions. Depletions 

include ET, drainage to the groundwater reservoir, fast and slow interflow, and saturation excess 

surface runoff (i.e., Dunnian surface runoff). Accretions are soil infiltration and any cascading 
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Dunnian surface runoff and interflow from upslope HRUs. It is bounded between 0 and the 

maximum available capillary water-holding capacity of the soil zone. 

Streamflow is the sum of a) impervious Hortonian surface runoff, b) pervious Hortonian 

surface runoff, c) Dunnian surface runoff, d) interflow, and e) groundwater discharge 

(Markstrom et al., 2015). Hortonian surface runoff refers to the infiltration excess on the 

impervious and pervious portion of each HRU. For the impervious portion of HRU, if the sum of 

throughfall, snowmelt, and the antecedent impervious storage exceeds retention storage capacity 

for a time step, impervious Hortonian surface runoff is generated. Similarly, infiltration excess 

on the pervious portion of each HRU occurs when the throughfall, snowmelt, and any upslope 

Hortonian surface runoff available for infiltration exceed the capacity of the soil. Dunnian 

surface runoff and interflow are outflow from the soil zone. Excess preferential-flow reservoir 

inflow is the Dunnian surface runoff. The interflow consists of a fast and a slow component, 

which are determined by the water storage of the preferential-flow and gravity reservoir, 

respectively. Quadratic functions are used to model the storage-to-outflow relationship. The 

groundwater discharge component is assumed proportional to the groundwater storage by a 

coefficient. 

3.2. Overview on modeling procedures 

A flowchart is provided to detail the modeling procedures in Figure 2. Given the 

relatively low-relief topography of the region, a 4 km spatial discretization was chosen (i.e., 

every HRU is 4km-by-4km). The modeling time step is daily. The study period spans from 2000 

through 2020 while the year 2000 was looped three times for model spin-up. The subsequent 10-

year period (2001 to 2010) was used for model calibration and the remaining 10-year period 

(2011 to 2020) was used for evaluation. The Daymet maximum and minimum daily air 

temperature, incident solar radiation, and precipitation were resampled to 4km/daily from the 

original resolution and were used to force the PRMS land surface calculation. The selected 

modules and modeling options dictate the model parameters, which may be categorized as 

physical or conceptual (parameters that cannot be measured in reality). The physical parameters 

were derived from the datasets for model setup listed in Table S2 in supporting information 

using the GSFLOW-Arcpy toolbox by Gardner et al. (2018) (Text S1 in supporting information). 

The optimal values for conceptual parameters were obtained through model calibration. 

There are 33 model parameters selected for calibration based on existing literature (Hunt 

et al., 2013; Christiansen et al., 2014). Two of the parameters are for the Jensen–Haise PET 

coefficients (Jensen et al., 1970). Twelve of the parameters are related to snow accumulation, 

melt, and sublimation. The remaining 19 parameters control surface and subsurface runoff, 

infiltration into the soil zone, and the rate and volume of flow from groundwater reservoirs to 

surface water (Markstrom et al., 2008). A table summarizing the relevant processes to these 

parameters and other details are provided in the supporting information (Table S3). These 

parameters were optimized in three steps following a similar approach introduced by Hay et al. 

(2006) and Hunt et al. (2013). The parameters calibrated in one step are then kept fixed in the 

subsequent steps. Note that these 33 parameters do not include any routing parameters even 

though the Muskingum-Manning routing scheme was adopted for the catchment models (Cunge, 

1969). The reasoning for not optimizing the runoff routing parameters is provided in section 

3.3.1. In calibration step one, the two Jensen–Haise parameters were optimized for a catchment; 

in step two, the snow processes parameters were optimized. Details on reference data and 
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calibration algorithms for these two steps can be found in the Supporting Information of this 

study. The remaining 19 parameters for runoff generation were calibrated in step three, which is 

the focus of this work (Figure 2 and section 3.3.1). Coupled groundwater-surface water routing 

was not the purpose of our testing, therefore step four of Hunt et al. (2013) was omitted. The 20 

catchment models developed with PRMS are available for downloading on ScienceBase (Mei et 

al., 2022). 

 

Figure 2. Flowchart of modeling procedures. Dark blue oval shapes represent the operations. 

Square boxes represent necessary inputs/outputs to/from the operations. The six calibration 
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experiments with their required observation datasets (section 3.3.1) are listed in the table. An 

illustration of a 2-dimensional Pareto frontier formed by a series of non-dominated solutions (red 

dots) is also provided (see discussion in section 3.3.2). The solution of the single-objective 

calibration (blue triangle) is also added. 

3.3. Design of model calibration experiments 

3.3.1. Model calibration schemes 

There are 19 parameters for runoff generation that are obtained by model calibration. Six 

calibration schemes were designed with one being a single-objective and five being multi-

objective problems. The six schemes involve the use of gaged streamflow and global gridded soil 

moisture, ET, and runoff. Experiment 1 is a single-objective calibration scheme that only 

considers the streamflow from USGS (RUSGS) to calibrate the model. Experiments 2 and 3 are bi-

objective calibrations that are using gaged streamflow and either gridded soil moisture from 

SoMo.ml (RUSGS+S*) or gridded ET from GLEAM (RUSGS+ET), respectively, as calibration 

targets. Experiment 4 is abbreviated as RUSGS+S*+ET as it uses streamflow from the USGS, 

gridded soil moisture, and gridded ET from GLEAM. Experiment 5 and 6 are also tri-objective, 

but the USGS streamflow was substituted by two GRPs, namely GRUN and LORA, and are 

hence called RGRUN+S*+ET and RLORA+S*+ET, respectively. 

The optimization algorithm applied was the Dynamically Dimensioned Search (DDS) for 

single-objective (Tolson, 2007) and the Pareto-Archived DDS (PADDS) for multi-objective 

calibration problems (Asadzadeh & Tolson, 2013), respectively. For PADDS the exact hyper-

volume contribution metric was used to obtain new candidates during the calibration. For both 

algorithms the scalar neighborhood size perturbation parameter was fixed at its recommended 

value of 0.2. Both DDS and PADDS are implemented in the Optimization Software Toolkit 

(OSTRICH, Matott, 2016). For every experiment, a budget of 2,000 iterations was assigned to a 

calibration trial. In total, 10 independent calibration trials were performed for every catchment 

model to evaluate possible randomness of the calibration procedures. Only the best result of the 

10 trials is reported here. In case of the single-objective calibration this is the best objective 

function value of the 10 optimal values. In case of the multi-objective calibration, the best result 

is the Pareto frontier derived from the pooled solutions of all 10 Pareto frontiers. 

For the streamflow variable, even though the modeling time resolution is daily, the 

objective functions were calculated using monthly averaged values (the daily USGS streamflow 

and the PRMS simulated streamflow were averaged to monthly). This is to ensure a consistent 

comparison among different experiments that use the daily gaged streamflow and the two 

monthly global GRPs to inform the model. Since the monthly resolution is adopted for 

streamflow, the effects of runoff routing are minimized; and the monthly streamflow is 

essentially the monthly catchment-averaged runoff. That is the basis of using the areal-averaged 

GRUN and LORA to substitute the monthly gaged streamflow in experiment 5 and 6. In other 

words, none of the six experiments considers the effects of sub-monthly routing and associated 

flow, rather they focus on predicting the monthly runoff. The monthly streamflow data were used 

as the reference, regardless of the use of the two GRPs in experiments 5 and 6, to allow for a 

consistent inter-comparison among the six calibration experiments. 

For soil moisture and ET, daily values were used for both the simulated and observed 

values. To mitigate the different spatial resolution among the SoMo.ml soil moisture, the 
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GLEAM ET, and the modeling resolution, the simulations and observations were areal-averaged 

before calculating the objective functions. For the SoMo.ml soil moisture, the volumetric soil 

moisture values for the three soil layers were converted to soil water depth for the entire soil 

column (0-50cm) before areal-averaging. In addition, although PRMS calculates volumetric soil 

moisture storage, it does not define an explicit surface layer depth, preventing an exact matching 

of soil moisture storage magnitude with the SoMo.ml derived one. Therefore, the simulated and 

reference soil moisture time series St were normalized before calculating the performance metric 

using: 

𝑆𝑡
∗ =

𝑆𝑡 − 𝜇𝑆

𝜎𝑆
.  (1) 

where 𝜇𝑆 and 𝜎𝑆 represent the mean and standard deviation of soil moisture. Eq.(1) means that 

the magnitude and variability of soil moisture from SoMo.ml were not used to inform the 

parameter optimization process while only the signal’s timing was considered. 

3.3.2. Calibration metrics 

In all six calibration schemes, the Kling-Gupta Efficiency (KGE; Gupta et al., 2009) is 

used to evaluate the performance of the hydrological variable simulations: 

𝐾𝐺𝐸𝑥 = 1 − √(
𝜇𝑥

𝑚

𝜇𝑥
𝑜 − 1)

2

+ (
𝜎𝑥

𝑚

𝜎𝑥
𝑜 − 1)

2

+ (𝑟𝑥 − 1)2 , (2) 

where µx and σx represent the mean and the standard deviation of the time-dependent variable x, 

which can be streamflow (Q), normalized soil moisture (S*), or ET. The superscript m and o 

indicate modeled and observed time series, respectively. The Pearson correlation coefficient rx is 

derived between the modeled and observed time series of the respective variable x. The KGEx is 

bound by (-∞, 1] with 1 being the ideal value. For the normalized soil moisture, the mean is 0 

and the variance is 1 for both the observed as well as the modeled time series. Hence, the bias 

terms for the mean and the standard deviation, the first and the second term in Eq.(2), are 

essentially 0. Therefore, Eq.(2) collapses to 

𝐾𝐺𝐸𝑆∗ = 𝑟𝑆∗ . (3) 

Eq.(3) indicates that only the time information of the reference soil moisture is used to inform the 

model simulation. 

Instead of merging the multiple objective functions into one, we maintain several 

separated objective functions and perform multi-objective calibration. Unlike single-objective 

calibration that obtains a single optimal solution, multi-objective calibration identifies a set of 

non-dominated solutions (NDSs) that forms a Pareto frontier. A solution is non-dominated if 

none of its objective functions can be improved without degrading some of its other objectives. 

Figure 2 demonstrates a Pareto frontier for a 2-dimensional (two-objective) problem (red 

circles), while in our study the dimension can be up to three, i.e., one for streamflow, soil 

moisture, and ET. The front might reveal that there are solutions where introducing an additional 

objective can lead to a reduced performance of the original objective (compared to blue marker), 

while the performance of the additional objective increases. 
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3.4. Model performance evaluation 

3.4.1. Performance metrics and standards 

The KGEx metric used in model calibration and a combined efficiency metric that 

determines the overall model performance across all variables are used to quantify the model 

performance during the 2011-2020 evaluation period. The USGS streamflow, SoMo.ml soil 

moisture, and GLEAM ET are used as the reference to be consistent with the calibration period. 

The combined efficiency metric CEeq defined as the arithmetic mean of the performances for 

each of the three variables is introduced: 

𝐶𝐸𝑒𝑞 =
𝐾𝐺𝐸𝑄 + 𝐾𝐺𝐸𝑆∗ + 𝐾𝐺𝐸𝐸𝑇

3
. (4) 

The subscript eq indicates that the weighting factors for the three objective functions are the 

same (here: 
1

3
). The range of CEeq is (-∞,1] with 1 as the ideal value, the same as the KGE’s. 

To help interpreting the error metrics, we defined three model performance standards for 

KGEx that are gradually decreasing based on the goodness of the simulations following Mai et al. 

(2022). Consider the three terms within the square root sign of Eq.(2); the first level is 

characterized by within 10% under-/over-estimation of the observation in terms of the mean 

(|
𝜇𝑥

𝑚

𝜇𝑥
𝑜 − 1| ≤ 10%) and the SD (|

𝜎𝑥
𝑚

𝜎𝑥
𝑜 − 1| ≤ 10%) and the correlation coefficient between model 

output and observation is above 0.9 (𝑟𝑥 ≥ 0.9). These criteria together result in a KGE no less 

than 0.83. By gradually releasing these criteria, we also define another two performance levels 

with lower upper boundaries of KGE values at 0.65 and 0.48, respectively. These performance 

levels are applicable for the CEeq metric in Eq.(4) and a more general form that will be 

introduced in Eq.(6), section 3.4.3. 

3.4.2. Pairing experiments for relative performance 

Objectives A and B of this study are addressed by comparing relative performance 

among the six calibration experiments. To quantify the improvement/deterioration in model 

performance between two calibration experiments i and j, the median performance difference of 

all pairs of NDSs from experiment i and j for a selected variable (∆̃𝑋) is derived: 

∆̃𝑋= 𝑚𝑒𝑑⟨ 𝑋𝑖 − 𝑋𝑗 ⟩ 𝑤𝑖𝑡ℎ 1 ≤ 𝑗 < 𝑖 ≤ 6 . (5) 

The term X is one of the error metrics defined in Eq. (2) to (4); subscripts i and j are the 

experiment numbers ranging from 1 to 6. Note that the difference is always the experiment with 

the higher number (i), minus the experiment with the lower number (j). If the Pareto frontier of 

experiment i contains M NDSs and experiment j has N NDSs, ∆̃𝑋 is defined as the median of the 

𝑀 × 𝑁 differences that can be calculated. A positive (negative) value of ∆̃𝑋 means that, for a 

catchment model, experiment i is better (worse) than experiment j in terms of the median of all 

possible pairwise differences from NDSs of the two experiments. 
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3.4.3. Visualizing model performance by ternary diagram 

 Objective C of this study is to investigate the model performance dynamics given 

different importance of the three variables. To this end, a method that effectively synthesizes the 

weighting factor spaces with all the NDSs of a catchment model in a ternary diagram (Howarth, 

1996) is proposed. The NDSs of a catchment model are obtained by merging those from the six 

calibration experiments, i.e., identifying the set of NDSs when the six sets of NDSs are merged. 

For each of the overall NDSs, we introduce a more general combined efficiency metric after 

model calibration, CE, with weighting factors compared to CEeq in Eq.(4): 

𝐶𝐸 = 𝑤𝑄𝐾𝐺𝐸𝑄 + 𝑤𝑆∗𝐾𝐺𝐸𝑆∗ + 𝑤𝐸𝑇𝐾𝐺𝐸𝐸𝑇 , (6) 

where wQ, wS*, and wET are the weighting factors for streamflow, normalized soil moisture, and 

ET, respectively. For each of the NDS, CE is a function of the three weighting factors bounded by 

(-∞,1] as this is the range of the three individual metrics. Given that wQ, wS*, and wET are bounded 

by [0,1] and sum to 1, the values of CE under the possible weighting factor space can be 

represented on a ternary diagram with the three weighting factors being the three axes. We called 

this a “CE surface.” 

For a catchment with N NDSs, there are also N CE surfaces. Visualizing all of these CE 

surfaces would also require N ternary diagrams, which is not efficient if one would like to 

investigate the change of model performance indicated by CE over the possible weighting factor 

spaces. Hence, the median over the stack of the CE surfaces is defined as an aggregation: 

𝑪�̃� = 𝑚𝑒𝑑〈𝑪𝑬〉 , (7) 

where CE is the stack of the CE surfaces each defined through Eq.(6). 𝑪�̃� is the median 

performance of a model across differently weighted objectives; its range is (-∞,1], the same as 

CE. Note that the stack of CE surfaces now collapses to a single surface represented by 𝑪�̃�, and 

this surface is visualized through a ternary diagram. There is one such diagram for each 

catchment. 

4. Results 

4.1. Overall performance of experiments 

To analyze the nominal performance of each of the six experiments, the four performance 

metrics for all the NDSs across all 20 catchments are summarized as boxplots in Figure 3. In 

general, using the datasets RUSGS, RUSGS+S*, and RUSGS+ET for model calibration leads to the 

best model performances regarding streamflow (Figure 3a), soil moisture (Figure 3b), and ET 

(Figure 3c), respectively. This is consistent with most of the studies shown in Table 1: 

introducing a new variable as an additional objective reduces the streamflow simulation 

performance but improves the performance of the additional variable’s simulation in return. In 

terms of the overall performance, the single-objective and the two bi-objective calibration 

schemes result in generally better performance than the tri-objective RUSGS+S*+ET as revealed 

by the CEeq distribution (Figure 3d). A closer look at the results of the first three calibration 

schemes in Figure 3a reveals that the decrease in KGEQ of adding S* as an additional model 

calibration constraint is not so severe as adding ET. A cross-benefit is identified through the 

result shown in Figure 3c where introducing soil moisture in the calibration also improves ET 
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(compare whiskers of boxes for RUSGS and RUSGS+S*); this is not the case when ET information 

is used in addition to streamflow (compare whiskers of RUSGS and RUSGS+ET in Figure 3b). 

Among the three experiments that calibrated against three variables, the gaged 

streamflow-based calibration scheme outperforms the two gridded runoff-based ones in terms of 

KGEQ and CEeq. This is because the USGS streamflow is used as reference to calculate the 

performance metrics for all experiments. More fair evaluations could be to compare the soil 

moisture and ET simulations among the three experiments. In fact, Figure 3b and 3c reveal that 

the RGRUN+S*+ET and RLORA+S*+ET soil moisture and ET simulations are almost identical to the 

RUSGS+S*+ET ones. A product-wise comparison shows that RGRUN+S*+ET is better than 

RLORA+S*+ET for streamflow simulation (Figure 3a) while being fairly similar regarding soil 

moisture (Figure 3b) and ET (Figure 3c). This leads to an overall better model performance 

when using GRUN instead of LORA in model calibration (Figure 3d). 

 

Figure 3. Performance metrics for a) monthly streamflow, b) normalized soil moisture, c) ET, 

and d) overall performance for the six experiments defined in section 3.3.1. The boxplot shows 

the results for all 20 catchments and all NDSs. The horizontal lines from top to bottom 

correspond to the three performance levels (section 3.4.1). 

4.2. Relative performance between experiments 

The relative performances among experiments 1 to 4 across all the 20 catchments are 

summarized in Figure 4. The figure shows the number of catchments where the median 

performance of the model improved with adding/substituting a variable compared to another 
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experiment. A large number of catchments (blue colors) indicates a reliable improvement of 

model performance with a specific variable being added/substituted. The metric that is used to 

quantify the performance of the model is added as a label in each grid. 

Focusing on the grids that compare RUSGS+S* with RUSGS for KGEET, 12 catchments show 

improvements in model performance regarding ET after adding soil moisture as an additional 

objective for both the calibration and evaluation period. This confirms the cross-benefit for 60% 

of the catchments of using soil moisture in model calibration to improve the performance of ET 

simulations (Figure 3c). The cross-benefit of ET data to improve the quality of soil moisture 

simulations is less clear. Focusing on the grids comparing RUSGS+ET to RUSGS, there are 8 (11) 

catchments that show an increase in KGES* with the addition of ET in calibration for the 

calibration (evaluation) period. In addition, by comparing the RUSGS+S* and the RUSGS+ET 

schemes, it is revealed that 8 catchments that show higher KGEQ values for RUSGS+ET compared 

to RUSGS+S* in the calibration as well as the evaluation period. This indicates a lower degree of 

degradation in performance regarding streamflow simulations with the addition of soil moisture 

data rather than ET data. Lastly, the results show that no more than 4 catchments yield a higher 

CEeq for the RUSGS+S*+ET compared to all the other single- and bi-objective calibration schemes 

in both calibration and evaluation.  

 

Figure 4. Number of catchments that show improvements in model performance when adding 

additional variables (soil moisture, ET, or both), i.e., the median of the error metric differences 

∆̃𝑋 is larger than 0. The metric considered to compare each pair of experiments is added as a 

label in each grid. The upper (lower) triangle is estimating model performance of the evaluation 

(calibration) period. 

The performance among experiments 4 through 6 are analyzed to estimate the impact of 

replacing the gaged streamflow (experiment 4) with GRPs (i.e., GRUN in experiment 5 and 

LORA in experiment 6) during model calibration. Figure 5 displays the results across the 20 

study catchments. Figure 5a shows that in no more than 7 catchments the model performance 

regarding streamflow (KGEQ) is improved when the model is trained with a GRP (RGRUN+S*+ET 

and RLORA+S*+ET) instead of USGS streamflow (RUSGS+S*+ET); the remaining catchments 

show a decrease in performance. Figure 5d shows a similar pattern regarding overall model 

performance (CEeq), i.e., no more than 8 catchments show an improved overall performance 
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when trained with GRPs while the remaining catchments show a decrease in performance. This 

agrees with the observations from Figure 3d that RUSGS+S*+ET outperforms RGRUN+S*+ET and 

RLORA+S*+ET in terms of KGEQ and CEeq.  

Figure 3 already had revealed that the three tri-objective calibration schemes 

(experiments 4 to 6) yield almost identical performance in terms of KGES* and KGEET. Yet, 

using the number of catchments with positive ∆̃𝑋, i.e., the number of catchments being improved, 

some nuances in performance between the experiments are identified. For instance, the 

improvements in KGES* values of RGRUN+S*+ET are higher than those of RUSGS+S*+ET for 13 

(16) catchments for the calibration (evaluation) period (Figure 5b), while the KGEET values of 

RLORA+S*+ET are higher than the RUSGS+S*+ET ones for 11 (12) catchments for the calibration 

(evaluation) period (Figure 5c).  

To understand the relative performance between RGRUN+S*+ET and RLORA+S*+ET, we 

investigate all the RGRUN+S*+ET vs. RLORA+S*+ET grids in Figure 5. The results show that 

using the LORA runoff product instead of GRUN leads to improvements regarding ET in 15 

catchments (Figure 5c) while the use of the GRUN data leads to better results regarding 

streamflow, soil moisture, and overall performance (Figure 5a, 5b, and 5d, respectively). 

Specifically, only 1, 3, and 1 catchments show better performance with respect to streamflow, 

soil moisture, and overall performance, respectively, when the LORA runoff is used instead of 

GRUN. These numbers of catchments are the same for both the calibration and the evaluation 

period. 
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Figure 5. Number of catchments that yield an improvement in model performance when the 

gaged streamflow data (RUSGS) are replaced by gridded runoff products (RGRUN and RLORA), i.e., 

the median of the error metric differences ∆̃𝑋 is larger than 0. The different panels show the 

result considering a) KGEQ, b) KGES*, c) KGEET, and d) CEeq as the metric to determine the 

model performance. The upper (lower) triangle is estimating model performance of the 

evaluation (calibration) period. 

4.3. Relative performance of global runoff products on catchment scale 

The impact of replacing gaged streamflow observations with GRPs on model 

performance is further analyzed with respect to catchment area. Figure 6 shows the median 

improvement regarding streamflow performance ∆̃𝐾𝐺𝐸𝑄
 when comparing the baseline experiment 

using USGS streamflow for model calibration vs. the two experiments using either GRUN 

(Figure 6a) or LORA (Figure 6b). The figure shows the individual improvements of 19 

catchments excluding catchment g, which is identified as an outlier (see section 4.4 and Figure 

7g). The ∆̃𝐾𝐺𝐸𝑄
 values are mostly negative, indicating that models calibrated to gaged 

streamflow yield better simulations compared to models calibrated to either of the two GRPs. 

This is consistent with the results shown in Figure 5a. Both panels of Figure 6 suggest a positive 

correlation between the performance improvements ∆̃𝐾𝐺𝐸𝑄
 and the catchment area. This indicates 

that the streamflow simulation discrepancies for models that are calibrated using GRPs compared 

to models that are trained using gaged streamflow data are mitigating from small to large scale 

catchments. The correlation is larger for experiments using the GRUN dataset (Figure 6a) which 

means that the scale dependency is more obvious for the GRUN dataset than when the LORA 

dataset is used. 

 

Figure 6. Model performance changes regarding streamflow (∆̃𝐾𝐺𝐸𝑄
) when replacing USGS 

streamflow data (experiment 4) with gridded runoff data from a) GRUN (experiment 5) or from 

b) LORA (experiment 6) dependent on the catchment drainage area. The performance changes 

are estimated for the calibration (blue markers) and evaluation (red markers) period. The 

correlation coefficient between the streamflow performance changes and the catchment area are 

added to the legend; an asterisk * is added in case the statistical significance is at least at the level 

of 0.05. 
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4.4. Dynamics of overall modeling performance on variable importance 

To demonstrate the model performance as a function of weighting factors assigned to the 

objective functions after model calibration, the 𝑪�̃� metric for the calibration period is shown as 

ternary diagrams for the 20 catchments in Figure 7 (the 20 𝑪�̃� surface for the evaluation period 

are provided in Figure S3). A baseflow index map (Wolock, 2003) illustrating the spatial 

distribution of baseflow as a percentage of total streamflow is added for reference to discuss 

model performance varied on baseflow contributions. Note that the hydrological model for 

catchment g (Figure 7g) is problematic due to the highly regulated streamflow regime by 

reservoir operations and the fact that no reservoir management rules were available and used to 

build the hydrological model. This leads to very low KGEQ values for catchment g that impact 

any overall performance estimate 𝑪�̃� even if the streamflow performance metric is weighted 

very low. A performance level of 𝑪�̃� ≥ 0.48 can only be achieved if the weight of the 

streamflow performance wQ is as low as 1.8% leading to an entirely dark red colored ternary plot 

for catchment g. All other catchments show 𝑪�̃� gradients from 0.49 to 0.92 depending on the 

weights chosen for each component. 

The details of each 𝑪�̃� surface are investigated by focusing on the trend and the 

magnitude. It can be seen from Figure 7 that some catchments show unified 𝑪�̃� patterns. For 

example, catchments k and o reveal mild variation of their 𝑪�̃� surfaces, which are attributed to 

their relatively good performance for all three variables (𝑪�̃� > 0.79). Catchments l, s, and t have 

among the weakest streamflow simulations; their 𝑪�̃� contour lines are approximately parallel to 

the 𝑤𝐸𝑇 axis, showing a decreasing trend with increasing streamflow weights and mild gradient 

at the direction that the streamflow weight is fixed. These observations pinpoint that soil 

moisture and ET are simulated equally well and are better than their respective streamflow 

simulations for the three catchments. It is worth noting that the catchments l, s, and t are also 

associated with the highest mean baseflow indexes across the watershed (79%, 84%, and 82%, 

respectively), indicating high contributions of baseflow to their streamflow. A similar situation 

can be observed for catchment r with the third highest baseflow index (81%). This finding of 

weak streamflow simulation performances for catchments that are in regions with high baseflow 

indexes is confirming results found by Fry et al. (2014). Other similar trends can be observed 

from the catchment groups (a, b) and (p, q). For the first group, their 𝑪�̃� contour lines are 

approximately parallel to the 𝑤𝑆∗ axis, decreasing towards the vertex of the triangles. This 

indicates weakest ET simulation among S* and Q, whose performances are similar. The second 

group is similar to the first group as their weakest ET simulations. But the 𝑪�̃� contour lines of 

these two catchments are not parallel to the 𝑤𝑆∗  axis, twisted counterclockwise for some degree, 

as S* are simulated obviously better than Q.  

 For magnitude of 𝑪�̃�, if one would use a dominant performance level that covers more 

than 50% of the ternary diagram’s surface area, the majority of 17 catchments reach the 

performance level of 𝑪�̃� ≥ 0.65. The model for catchment k and o are the only two that are 

dominated by the highest level of 𝑪�̃� ≥ 0.83. The results are summarized under “Overall” in the 

table added to Figure 7. We also analyze the three corners of each triangle in order to identify 

which variable is simulated best in each catchment. We define a corner to be the part of the 

triangle where the weights are larger than 80% for one variable. This assessment is meaningful 

for when one believes a particular variable is subjected to notably less uncertainty (take the 

ground-based streamflow measurements vs. other global gridded products as an example). The 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

dominant performance level of each corner (performance level covers more than 50% of the 

area) are counted for the 20 catchments and results are summarized in the table added to Figure 

7. The soil moisture simulations exhibit overall the best performance with seven catchments 

being at the level of 𝑪�̃� ≥ 0.83. While it is hard to clearly state whether streamflow or ET is 

simulated with a better overall performance across catchments based on the distribution of the 

cases. 
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Figure 7. Median of the combined performance metric 𝑪�̃� using different weights for each of the three objectives across the 20 catchments (panel 

a to t) for the calibration period. A demonstration on how to read the weighting factors for a point on the 𝑪�̃� surface is provided in panel g. Lines 

of different gray scales are added to the ternary plots to visualize the three performance levels (section 3.4.1). Panel u) shows a map of the 

baseflow indexes for the Lake Michigan watershed as well as the location and extent of the twenty catchments. The labels of the catchments (a-t) 

correspond to the panels (a to t). The catchment-averaged baseflow indices are reported within the parenthesis. The table summarizes the 

distributions of model performance.
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5. Discussion 1 

5.1. On relative performance among adding variables for model calibration  2 

Our analysis reveals that using both normalized soil moisture and ET as additional 3 

variables to augment streamflow in model calibration (the tri-objective calibration scheme) 4 

results in the lowest overall modeling performance (CE in Eq.(4)) compared to the single- and 5 

the two bi-objective schemes. There are two possible reasons for seeing a decreasing overall 6 

performance: First, the model structure may not fully resolve the physical processes and hence it 7 

may be impossible to satisfy all three constraints at the same time. Second, the data products 8 

used for calibration may not accurately capture the magnitude and seasonality of the natural 9 

processes. These explain why streamflow, soil moisture, and ET cannot be matched at the same 10 

time.  11 

Another important result of this work is that there is a cross-benefit of including soil 12 

moisture in model calibration (in addition to streamflow) to the ET simulation for most of the 13 

catchments. This may be explained as the improved representativeness of water storage 14 

fluctuations of the recharge zone and the lower zone of the capillary reservoir, which in turn 15 

benefits the simulations of the associated ET fluxes. Note that soil moisture is the water content 16 

of the capillary reservoir (section 3.1). Therefore, the more accurate soil moisture simulation by 17 

including the variable in calibration as adopted by the RUSGS+S* scheme yields better recharge 18 

zone ET and lower soil zone transpiration compared to the RUSGS scheme. On the contrary, fewer 19 

catchments show that the addition of ET in calibration benefits soil moisture. This is probably 20 

because the five ET components (see section 3.1 for details) were considered together in model 21 

calibration, which does not solely inform the parameters of the two soil moisture related 22 

components. Another benefit of adding soil moisture compared to adding ET is that the former 23 

one reduces streamflow performance less. This could be because only the timing of soil moisture 24 

is used in addition to streamflow to inform the model parameters, while all the information of the 25 

ET time series is used for the other two schemes. 26 

5.2. Global runoff vs. gaged streamflow in model calibration 27 

This study renders the first ever comparison of two global runoff products, namely 28 

GRUN and LORA, in hydrological model calibration. This is the first ever study that uses 29 

GRUN in process-based hydrological model calibration to the best of our knowledge. Our results 30 

demonstrate that the gaged streamflow-based calibration outperforms the global product-based 31 

ones in terms of streamflow simulation. This is not unexpected given that the USGS streamflow 32 

is adopted as one of the reference datasets in training the data-driven models to produce GRUN 33 

and LORA (Ghiggi et al., 2019; Hobeichi et al., 2019). Note that GRUN is trained to the Global 34 

Streamflow Indices and Metadata Archive (GSIM), which contains monthly streamflow records 35 

from 9404 USGS streamflow stations (Do et al., 2018). So, the discrepancy between 36 

GRUN/LORA and the gaged streamflow propagates to the streamflow simulation through model 37 

calibration. Our results also indicate that as the catchment scale increases, the streamflow 38 

simulation discrepancy is mitigated by the global product-based models and gaged streamflow-39 

based models. This is probably because of the discrepancy in scale between the two gridded 40 

runoff products (~50km) and the small-scale catchments analyzed herein. 41 
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Another observation regarding the relative performance between GRUN and LORA is 42 

that the GRUN-calibrated models had superior performance than the LORA counterparts in 43 

terms of streamflow simulation. Given the fundamentally different algorithms of GRUN and 44 

LORA, the relative differences between GRUN and LORA could be attributed to a wide range of 45 

factors. Yet, a clear reason that could partly explain this observation is the different number of 46 

streamflow gages that were used to produce GRUN and LORA. By visually inspecting the gage 47 

density over the Great Lake region for GRUN (Figure 2 in Ghiggi et al. (2019)) and that for 48 

LORA (Figure 1 in Hobeichi et al. (2019)), one could discover that the former one has more 49 

gages, which may lead to lower discrepancy to the reference network. 50 

5.3. Diagnosing the dynamics of model performance on variable importance 51 

This study uses the ternary diagram to visualize the performance of three hydrological 52 

variables (streamflow, soil moisture, and ET). It shows how the overall modeling performance 53 

(the 𝑪�̃� metric in Eq.(7)) change on the variable importance space. The visualization method is 54 

also flexible to be applied for other hydrological models and other flux and state variables. This 55 

is meaningful for the model’s end-user with different emphasis on the hydrological simulations 56 

(e.g., flow simulations, planning of agriculture activities). With the diagnostic information 57 

provided by the 𝑪�̃� surface, the modelers can refine the processes that they are interested in and 58 

are less satisfied with for their modeling practices. Other error metrics may also be used to 59 

construct the 𝑪�̃� surface with a different formula for averaging. For instance, the geometry 60 

distance to the utopian point (the point that all variables reach the ideal performance level) is also 61 

a popular metric for representing the overall modeling performance; see for example Herman et 62 

al. (2018). 63 

5.4. Strategies to improve streamflow simulation for baseflow-dominated catchments 64 

Results show that the streamflow simulation is relatively weak for baseflow-dominated 65 

catchments (Figure 7). A potential cause could be the simple representation of groundwater in 66 

PRMS that does not fully resolve the subsurface processes; groundwater discharge is assumed 67 

proportional to groundwater storage by a coefficient (section 3.1). Therefore, one way to 68 

improve streamflow simulation by PRMS could be to replace this simple reservoir conceptual 69 

model by MODFLOW which is available under the GSFLOW platform, or an equivalent 70 

physically based, spatially distributed, groundwater model. Inclusion of the groundwater system 71 

allows integration of groundwater observations (e.g., groundwater head, water table depth), 72 

which can then inform the model’s ability to simulate Dunnian surface runoff – an important 73 

process for forecasting peak flows. That is, similar to the ability of soil moisture and ET data to 74 

constrain related watershed hydrological components, the addition of groundwater processes will 75 

improve the groundwater recharge component, something only indirectly informed using 76 

streamflow or other hydrological variables that only reflect the land surface processes 77 

(Huntington & Niswonger, 2012; Xu et al., 2021). Indeed, the calibration of the GSFLOW model 78 

of Hunt et al. (2013) used a wide variety of observation types, including snow depth, lake 79 

evaporation, actual ET, streamflow, lake stage, groundwater levels, groundwater inflows to 80 

lakes, and depth of lake plumes to constrain the parameters used to simulate the watershed 81 

hydrological components. In this way the results of our work are consistent with others who have 82 

noted the value of a wide variety of data types for watershed flow calibration (e.g., Hunt et al., 83 

2006). 84 
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6. Conclusions 85 

In this study, we conducted six model calibration experiments using different observation 86 

data sets, including gaged streamflow and global gridded products of soil moisture, 87 

evapotranspiration, and runoff over 20 catchments located in the Lake Michigan watershed. The 88 

soil moisture, evapotranspiration, and streamflow simulations produced from the six experiments 89 

were compared. A novel model performance visualization method was presented using a 90 

combined efficiency metric and the ternary diagram. Our results suggest that, among the six 91 

experiments, the single- and bi-objective calibration schemes yielded the best overall modeling 92 

performance; the addition of soil moisture improves prediction of evapotranspiration for most of 93 

the catchments due to correlation between the two variables.  94 

Regarding the potential of using global gridded runoff products in model calibration, we 95 

found that models informed by gaged streamflow outperform the gridded runoff product 96 

counterparts. This is because the simulated streamflow inherits the discrepancy between the 97 

global runoff products and the gaged streamflow. However, as the spatial aggregation scale for 98 

the global runoff products increases for larger catchments, the difference between the two types 99 

of models diminishes. For soil moisture (evapotranspiration), most of the GRUN- (LORA-) 100 

based models show better performance than the USGS streamflow-based ones. Between the two 101 

products, we found that GRUN-informed models provide better streamflow and soil moisture 102 

simulations than the LORA counterparts, while the LORA-based models are generally better 103 

than the GRUN ones for evapotranspiration. 104 

According to the ternary diagram, some typical trends are identified. The simulations of 105 

the normalized soil moisture show better performance than the streamflow and the 106 

evapotranspiration ones for most of the catchments. Relatively low streamflow simulation 107 

performance is found for catchments with high baseflow contribution. 108 
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Data Availability Statement 119 

The HydroSHEDS DEM data are available from https://www.hydrosheds.org/downloads. The 120 

NALCMS land cover dataset is downloaded from http://www.cec.org/north-american-121 

environmental-atlas/land-cover-2010-modis-250m/. The GMIS v1 impervious surface dataset is 122 

freely available from https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1/data-download. 123 

The MODIS MOD44B vegetation characteristics product is downloaded from the NASA 124 

Earthdata Search website https://search.earthdata.nasa.gov/search. The SoilGrids v2 soil 125 

characteristics datasets are downloaded from https://soilgrids.org/. The Daymet v4 dataset is 126 

available from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1840. The GHCN-Daily data are 127 

downloaded from https://www.ncei.noaa.gov/products/land-based-station/global-historical-128 

climatology-network-daily. The USGS streamflow data are downloaded from 129 

https://waterdata.usgs.gov/nwis/dv/?referred_module=sw. The SoMo.ml v1 soil moisture 130 

datasets are retrieved from https://www.bgc-jena.mpg.de/geodb/projects/Data.php. The GLEAM 131 

v3.5b dataset is retrieved from https://www.gleam.eu/#downloads. The GRUN v1 runoff product 132 

is available from 133 

https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176. The 134 

LORA v1 runoff product is downloaded from 135 

https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f9617_9854_8096_5136 

291. The GSFLOW model v2.2.0 is freely available from https://water.usgs.gov/water-137 

resources/software/gsflow/. The GSFLOW-Arcpy toolbox is downloaded from 138 

https://github.com/gsflow/gsflow-arcpy. The model calibration software Ostrich is available 139 

from https://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html. The model archive for 140 

https://www.hydrosheds.org/downloads
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-modis-250m/
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-modis-250m/
https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1/data-download
https://search.earthdata.nasa.gov/search
https://soilgrids.org/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1840
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://waterdata.usgs.gov/nwis/dv/?referred_module=sw
https://www.bgc-jena.mpg.de/geodb/projects/Data.php
https://www.gleam.eu/#downloads
https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176
https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f9617_9854_8096_5291
https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f9617_9854_8096_5291
https://water.usgs.gov/water-resources/software/gsflow/
https://water.usgs.gov/water-resources/software/gsflow/
https://github.com/gsflow/gsflow-arcpy
https://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html
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the 20 study catchments will be publicly available at the end of this project at 141 

https://doi.org/10.5066/P9DOVISZ.  142 
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