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Project Summary 
 
This project builds a scenario generation and simulation platform for ADS testing and evaluation. 

Under different routes and environmental conditions, the simulation platform can generate 

testing scenarios dynamically along the route to interact with the CAV and systematically 

evaluate its performance. We discover that sparse but adversarial adjustments to the simulated 

naturalistic driving environment, resulting in the naturalistic and adversarial driving environment, 

can significantly reduce the required test miles without loss of evaluation unbiasedness. By 

training the background vehicles to learn when to execute what adversarial maneuver, the 

proposed environment becomes an intelligent environment for driving intelligence testing. We 

leveraged and extended our existing work in scenario generation and integrate it with SUMO, 

CARLA, and a highway traffic simulator to demonstrate the effectiveness of the proposed 

method. Comparing with the naturalistic driving environment, the proposed environment can 

accelerate the evaluation process by multiple orders of magnitude. Meanwhile, a set of corner 

cases are generated which are critical to the CAV testing and evaluation.  

 



 

  

1. Introduction 

Autonomous vehicles (AVs) have attracted significant attention in recent years because of their 
potential to revolutionize transportation safety and mobility. One critical step in the 
development and deployment of AVs is to test and evaluate their driving intelligence, which 
indicates whether an AV can operate safely and efficiently without human intervention. 
However, current testing procedures for human-driven vehicles, such as Federal Motor Vehicle 
Safety Standards (FMVSS) [1] and ISO 26262, only regulate automobile safety-related 
components, systems, and design features, without consideration of driving intelligence in 
completing driving tasks. To the best of the authors’ knowledge, to date there are no consensus 
nor standard procedures on how to test and evaluate AVs. During the past few years, although 
the problem of AV testing has been investigated extensively by various AV developers, 
government agencies, professional organizations, as well as academic institutions, the theory and 
methods to support such testing and evaluation are lacking [2, 3]. 

As shown in Figure 1a, the prevailing state-of-the-art approach for AV testing uses the agent-
environment framework [4], through a combination of software simulation, closed-track testing, 
and on-road testing. The basic philosophy is to test the agents of AVs in a realistic driving 
environment, observe their performance, and make statistical comparisons to human driver 
performance. The challenge for AV testing, however, comes from three different aspects shown 
in Figure 1b: First, the driving agent in AV is commonly developed based on statistics or artificial 
intelligence (AI) algorithms. The AI-based agent, which is usually a black box to external users, 
limits the use of traditional logic-based software verification and validation techniques [5].  
Second, the driving environment is usually complex and stochastic. To represent the full 
complexity and variability of the environment, variables that define the environment are high 
dimensional, which can cause the “curse of dimensionality”. The stochasticity of the environment 
can also fail the traditional formal methods for absolute safety. Third, events of interest (e.g., 
accidents) for the driving intelligence test rarely happen, and the rareness of events can lead to 
the intolerable inefficiency issue for testing. Therefore, how to construct an intelligent testing 
environment that can test AV driving intelligence accurately and efficiently, with consideration 
of high dimensionality and the rareness of events, becomes the key to the AV testing problem. 

Most existing methods use the naturalistic driving environment (NDE) for driving intelligence 
testing of AVs. For example, on-road methods test AVs in the real-world NDE, while most 
simulation methods test high-fidelity AV models in life-like simulations of NDE, such as Intel’s 
CARLA [6], Microsoft’s AirSim [7], NVIDIA’s Drive Constellation [8], Google/Waymo’s CarCraft [9], 
Baidu’s AADS [10], etc. However, all these methods suffer from inefficiency issue, because of the 
“curse of dimensionality” and the rareness of events in NDE, as discussed above. It has been 
argued that hundreds of millions of miles and sometimes hundreds of billions of miles would be 



 

  

required to demonstrate the safety performance of AVs at the level of human-driven vehicles 
[11]. Not to mention that a brand-new testing process may be required if configurations of AVs 
are changed. It is inefficient even under aggressive simulation schemes. In fact, Waymo has only 
simulated 15 billion miles in total over the years, which is the world’s longest simulation test. To 
a certain extent, this inefficiency issue has hindered the progress of the AV development and 
deployment. 

Towards solving the inefficiency issue, scenario-based approaches have been proposed. Based 
on the importance sampling (IS) theory, critical scenarios can be purposely designed for 
accelerating the efficiency of AV evaluation [12-17]. However, existing scenario generation 
methods can only be applied for scenarios that involve simple maneuvers of a very limited 
number of vehicles with very short duration, for instance, a cut-in maneuver from a background 
vehicle for a few seconds. They are far from representing the full complexity and variability of 
the real-world driving environment. For example, an AV driving in a highway-driving environment 
can involve various maneuvers (e.g., lane-changing, car-following, over-taking, etc.) of hundreds 
of vehicles for hours of time duration. Such a driving environment contains numerous distinctive 
spatiotemporal combinations of scenarios, which cannot be handled by existing scenario-based 
approaches. 

Our approach to the construction of a simulation or test-track based AV testing environment has 
the following three contributions: First, our approach generates the driving environment that 
provides spatiotemporally continuous testing scenarios for AVs. Suppose you want to test an AV 
in an urban environment, our approach can drive the AV continuously for miles in the 
environment during one test, interacting with multiple background vehicles and experiencing 
different adversarial scenarios. Second, the generated environment provides statistically 
accurate testing results. Our approach ensures that the testing results (such as accident rates of 
different accident types) of AVs in the generated environment are unbiased with the NDE. Third, 
the generated environment addresses the inefficiency issue of the NDE. Comparing with the NDE, 
our approach reduces the testing time with multiple orders of magnitude for the same evaluation 
accuracy. 

To achieve evaluation efficiency without loss of accuracy, our approach is based on NDE, but with 
sparse but intelligent adjustments.  The resulting driving environment is both naturalistic and 
adversarial, in that most of the background vehicles (more generally, road users) follow 
naturalistic behaviors for most of the time, and only at selected moments, selected vehicles 
execute specific designed adversarial moves. As shown in Figure 1c, the key to creating the 
naturalistic and adversarial driving environment (NADE) is to train the background vehicles in the 
NDE to learn when to execute what adversarial maneuver while ensuring unbiasedness and 
improving efficiency. The learning process is guided by our theoretical discovery below. 



 

  

 
 

 

Figure 1 Driving intelligence testing with NADE. a, Agent-environment framework. b, Major 
challenges for agent-environment framework include the difficulty for applying traditional 
software validation methods for testing artificial intelligence (AI) based agents, the “curse of 
dimensionality” for modeling complex dynamic driving environment, and rareness of events of 
interest for driving intelligence testing. The blue vehicle denotes the autonomous vehicle, and 
the green vehicles denote background vehicles. c, The NADE learns to balance the naturalistic 
environment and adversarial environment for driving intelligence testing of AVs based on the 
agent-environment framework, while ensuring unbiasedness and improving efficiency. 

In essence, AV driving intelligence testing can be considered as a rare event estimation problem 
with high-dimensional variables. However, few existing methods can handle both the challenges 
of the rareness of events and high dimensionality. Testing AVs in NDE is an application of the 
Crude Monte Carlo (CMC) theory [18], which suffers from inefficiency problem for rare events. 
The IS theory has been developed for solving the challenge of rare events, but it can only be 
applied in low-dimensional situations [19]. It was proved that its efficiency would decrease 
exponentially with the increase of dimensionality. Therefore, both CMC and IS have limitations 
for the rare event estimation problem with high-dimensional variables. However, people have 
not paid much attention to the advantage of the CMC theory for high dimensionality. We discover 
that, if there exists a small subset of variables that are critical to the rare events, applying IS 
theory with the small subset of variables while applying the CMC theory with the remaining 
variables can help overcome both the challenges of the rareness of events and high 
dimensionality. This is significant as this can apply to a general set of problems with such 
characteristics. For safety-critical performance tests of AVs, fortunately, these small but critical 
variables exist because most of the vehicle accidents involve only a small number of vehicles in a 
short period [20]. According to the Fatality Analysis Reporting System (FARS), about 91.5% of 
fatal injuries suffered in motor vehicle traffic crashes in the United States in 2018 involved only 



 

  

one or two vehicles [21]. 

As the construction of NADE is based on NDE, we propose a data-driven approach to resemble 
naturalistic behavioral patterns of background vehicles for the generation of NDE. The basic idea 
is to model NDE with the Markov decision process, calculate naturalistic distributions of vehicle 
maneuvers from naturalistic driving data, and sample vehicle maneuvers from the distributions. 
The NDE provides the foundation and benchmark for the generation and evaluation of NADE. To 
identify the small but critical variables for the generation of NADE, we propose a reinforcement 
learning approach to learn the challenge of background vehicle maneuvers to the AV under test. 
This is similar to the value network approach in AlphaGo [22] as the maneuver challenges of 
background vehicles at any moment are interdependent with the AV maneuvers in the following 
time steps. In addition, as the specifics of the behavior model of the AV under test are usually 
unknown, we propose utilizing surrogate models (SMs) during the learning process. The 
construction of SMs provides an elegant way to leverage prior knowledge such as testing results 
for previous AV models. Based on the maneuver challenge, the principal other vehicles (POVs) 
can be identified from all surrounding background vehicles, and their maneuvers can be adjusted 
at critical moments. In such a manner, only the distributions of a small but critical set of variables 
are twisted according to the IS theory, while the remaining variables follow their naturalistic 
distributions. Such sparse but intelligent adjustment of NDE results in NADE. 

We demonstrated the effectiveness of our method for AV testing in a highway driving 
environment based on a high fidelity simulation platform, CARLA [6], and a highway traffic 
simulator [23], though our method is also applicable for other driving environments, such as city 
driving. We utilized the naturalistic driving data (NDD) from the Safety Pilot Model Deployment 
(SPMD) program [24] and the Integrated Vehicle-Based Safety System (IVBSS) [25] at the 
University of Michigan, Ann Arbor. To validate the generated NADE, we constructed two 
representative AV agents based on driving behavior models and deep reinforcement learning 
techniques, respectively. The accident rates of the AVs were utilized for the driving intelligence 
measurement. We tested the AVs in NDE and NADE, respectively. Simulation results show that 
the NADE could significantly accelerate the evaluation process by multiple orders of magnitude 
with the same accuracy, comparing with the NDE-based method. 

 

2. Methodology 

2.1 Generation and evaluation of NDE 

Generation of NDE is a prerequisite for unbiased simulation-based intelligence tests of AVs. It 
usually has two pillars. The first is creating realistic inputs to AVs’ sensors, such as photorealistic 
images that resemble real-world renderings. There exists a large body of literature on this topic 



 

  

based on computer graphics, physics-based modeling, robot motion planning, and augmentation 
techniques. In this project, we achieved real-world renderings by using the open-source platform 
CARLA. The second is creating naturalistic behavioral patterns of traffic participants. Although 
human driving behaviors have been extensively investigated in the transportation engineering 
domain, most existing models were developed for traffic flow analysis purposes, which may not 
be suitable for driving safety assessment. To estimate AV’s safety performance, the probabilistic 
distributions of human driving behaviors at different driving conditions are critical. Only with 
naturalistic probabilistic distributions, simulation results can predict their performances in the 
real world. Therefore, the goal of NDE is to generate stochastic human driving behaviors, whose 
probabilistic distributions are consistent with the NDD. 

 
Figure 2 Data processing of the NDD. a, Object detection of vehicles and lane markings for an 



 

  

example frame captured by cameras. b, Identification of lane changing maneuvers by analyzing 
lateral distance to lane markings. c, Data categorization of vehicle maneuvers considering 
surrounding vehicles. d, Examples of empirical distributions of vehicle maneuvers for each 
category. States of the examples are 1 30 mr =  1

1 2 30 m sv v −= =  (car following); 1 40 m,r =  

2 21 m,r =  1 2 3v v v= =  (cut in); 1 31 m,r =  1 2v v=   (lane change, no adjacent vehicle); 1 20 m,r =

2 32 m,r =  1 2 3v v v= =  (lane change, one adjacent vehicle); and 1 28 m,r = 2 26 m,r = 1 2 3v v v= =  

(lane change, two adjacent vehicles). 

In this project, we present a simple yet effective data-driven approach to resemble the 
naturalistic behavioral distributions of vehicles. The basic idea is to model NDE with Markov 
decision process (MDP), calculate empirical distributions of vehicle maneuvers given vehicle 
states from NDD, and then sample vehicle maneuvers from the distributions. The decision 
process of vehicle maneuvers in NDE can be represented by a decision tree [15]. Each node of 
the tree denotes a specific realization of vehicle states, while each path denotes a specific 
realization of vehicle maneuvers. If all vehicles select their maneuvers by sampling from the 
naturalistic distributions, the driving environment results in NDE. The proposed method for NDE 
generation can be further improved by advanced data processing techniques [26-28] and 
modeling techniques [29], but we leave those for future studies. 

To obtain naturalistic distributions, we collected NDD from the SPMD program and IVBSS at the 
University of Michigan, Ann Arbor. The SPMD database is one of the largest databases in the 
world that recorded naturalistic driving behaviors over 34.9 million travel miles from 2,842 
equipped vehicles in Ann Arbor, Michigan. In the database, there are 98 sedans equipped with 
the data acquisition system (DAS). In the IVBSS project, 108 randomly sampled drivers used 
sixteen Honda Accord vehicles with the DAS for over 40 days. Figure 2a shows an example frame 
captured by the Mobileye camera of the DAS equipped vehicles. At a frequency of 10 Hz, the data 
contain positions, speeds, and accelerations of all recorded vehicles, and measured both 
longitudinal and lateral distances between vehicles and lane markings. We queried the data with 
the following criteria: (1) vehicle was traveling on a highway; (2) vehicle was traveling at a speed 
between 20 m s-1 and 40 m s-1; (3) dry surface condition; (4) daylight condition. The resulting 
dataset represented more than 1.86× 108 points of data. By analyzing the lateral distance to 
lane markings, we identified a total number of 1.4× 104 lane-changing maneuvers (Figure 2b). 
Considering the driving environment of the subject vehicle (SV), we further categorized the 
queried data into six groups: free driving, car following, cut in, lane change with no, one, and two 
adjacent vehicles (Figure 2c). The vehicle maneuvers were discretized into 33 actions: left lane 
change, 31 discrete longitudinal accelerations ([-4, 2] with 0.2 m s-2 discrete resolution), and right 
lane change. To simplify the maneuvers, longitudinal accelerations were assumed zero during the 
lane changing process. Then, the empirical distribution of each maneuver at each state was 



 

  

calculated by its exposure frequency in the dataset of the corresponding category. Figure 2d 
shows examples of the obtained distributions such as accelerations of the free driving and car 
following categories, and lane changing probabilities of the other four categories, given specific 
states. 

 



 

  

Figure 3 Generation and evaluation of the NDE. a, Example of the naturalistic driving 
environment (NDE) generation including initialization (top) and vehicle maneuver determination 
(bottom). b, Evaluation results of the generated NDE. Top: the ground truth comes from the 
distributions of naturalistic driving data, and the distributions of our method come from 
simulations of the generated NDE. Bottom: simulation results of the intelligent driving model 
(IDM) model calibrated by the dataset from Virginia and Shanghai respectively, and the 
Wiedemann99 model calibrated by the dataset from Shanghai. 

The NDE is generated by sampling initial conditions and vehicle maneuvers from the obtained 
distributions. The goal of initialization is to resemble naturalistic speeds and distances of vehicles 
as a starting point of the NDE simulation. Toward this goal, the first vehicle of each lane is 
determined by sampling its position inside an initial zone and its speed from the empirical speed 
distribution. Then the joint distributions of bumper-to-bumper distances and relative speeds are 
queried from the obtained empirical distributions so that initial positions and speeds of 
downstream vehicles can be determined sequentially for each lane (Figure 3a, top).  At each time 
step of the NDE simulation, vehicle maneuvers are determined by sampling from the empirical 
distributions of each corresponding maneuver category. For example, as shown in Figure 3a 
(bottom), the SV has 33 possible maneuvers: left lane change (with two adjacent vehicles), 31 car 
following accelerations, and right lane change (in this case it is a cut in). To simplify the sampling 
process, all vehicles are assumed to select maneuvers independently and simultaneously for each 
time step. This completes the simulation for one time step (1 second) with all vehicle states 
updated. The underlying highway traffic simulator [23] determines specific positions, speeds, and 
steering angles of all vehicles with bicycle models at a frequency of 15 Hz during each time step. 
All lane-changing maneuvers are set completed within one time step. The simulation continues 
until all simulation time steps are completed. 

To evaluate the generated NDE, we compared the distributions of speeds and bumper-to-bumper 
spaces (range) between the constructed NDE and the ground truth from NDD. We collected data 
by simulating NDE for about 20,000 kilometers. Figure 3b (top) shows that the generated NDE 
produces the probabilistic distributions that are very similar to the naturalistic ones. To quantify 
the similarity, we calculated the Hellinger distance and mean absolute error (MAE). As for 
comparisons, we also simulated two well-known driving behavior models in the transportation 
domain, Intelligent Driver Model (IDM) [30] and Wiedemann99 model, whose parameters were 
calibrated by the NDD from Virginia [31] (denoted as VT100 IDM) and Shanghai [32] (denoted as 
Shanghai IDM and Shanghai W99), respectively. We collected data by simulating these three 
models for about 20,000 kilometers respectively. For fair comparisons, we set the same traffic 
volumes (about 1,360 vehicles per hour per lane) for all simulations and collected data after the 
warm-up time. As shown in Figure 3b (bottom), all distributions of these models are significantly 
abnormal and unnatural, because of the lack of model randomness and flexibility, though we 



 

  

cannot access the specific NDD (the ground truth) from Virginia and Shanghai for quantitative 
comparisons. This also provides evidence that existing driving behavior models cannot be used 
directly for the construction of NDE. 

2.2 Generation and evaluation of NADE 

The most significant part of our method is the generation of NADE for driving intelligence testing 
of AVs. In essence, we aim to construct new distributions, as the replacement of the naturalistic 
distributions in NDE, for sampling maneuvers of background vehicles (BVs). The goal is to adjust 
the maneuvers of BVs intelligently to test the driving intelligence of an AV unbiasedly and 
efficiently. As our method is based on the importance sampling theory, the new distributions are 
also denoted as importance functions. To solve the challenge of high dimensionality, we only 
twist the behavior distributions of the principal other vehicle (POV) at critical moments, while 
others keep following their naturalistic distributions as in NDE. Because most accidents involve 
only a small number of vehicles, it is reasonable to identify at most one POV at each moment, 
and the generalization of our method to multiple POVs is straightforward. 

To identify the POV and construct the importance function, at each time step, each BV’s 
maneuver is evaluated by a newly defined quantity, criticality, which can be computed as a 
multiplication of exposure frequency and maneuver challenge. The exposure frequency 
represents the naturalistic probability of the maneuver in NDE, while the maneuver challenge 
measures its safety challenge to the AV under test. A BV is identified as the POV if its criticality 
value is largest among all BVs and larger than a threshold. The moment with at least one POV is 
identified as a critical moment. For the POV at the critical moment, the defensive importance 
sampling [33] is adopted, and the importance function is constructed by the weighted average of 
the exposure frequency and the normalized criticality. By sampling maneuvers of the POVs from 
the importance functions at critical moments, while keeping other vehicles follow naturalistic 
distribution at all non-critical times, the resulting NDE becomes both naturalistic and adversarial, 
i.e., the NADE. 

As discussed above, one important step of our method is to calculate the maneuver challenge of 
each BV’s maneuver at every state. The maneuver challenge is defined as the occurrence 
probability of a crash accident with the AV under test if the BV takes the maneuver at the state. 
As the calculation of maneuver challenge involves the interdependency of maneuvers from both 
the AV and BVs in the following time steps, reinforcement learning or deep reinforcement 
learning methods with delayed rewards may be used, similar to the use of value networks in 
AlphaGo [22]. In this project, we adopted reinforcement learning techniques for basic scenarios 
such as car-following, while more general scenarios can be approximated by the combination of 
basic scenarios. 

As the specifics of the behavior model of the AV under test are usually unknown, we utilize 



 

  

surrogate models (SMs) to approximate the maneuver challenge. Although approximation errors 
usually exist, the maneuver challenge can provide valuable information on the impact of BV’s 
maneuvers. SMs can be constructed based on common knowledge of AVs or prior tests of AVs. 
In this study, we utilize the IDM and MOBIL (Minimizing Overall Braking Induced by Lane change) 
models as SMs, which are commonly used in the transportation domain [34]. To capture the 
uncertainty of AVs, we modify the MOBIL model as a stochastic lane-changing model. 

With the SMs, we propose to learn the maneuver challenge for car-following scenarios by the 
reinforcement learning (RL) method (Figure 4a, top). Specifically, the state is defined as the BV’s 
speed, bumper-to-bumper distance, and speed difference, and the action is defined as the BV’s 
acceleration. Based on MDP, car-following scenarios can be represented by a decision tree, 
where each branch from the initial state to the terminal state specifies a car-following trajectory. 
To handle the delayed reward of AV’s accidents, the state-action value of RL is defined as the 
maneuver challenge, while the reward is set to one for the AV’s accident event and zero for safe 
states. The states and actions, which may eventually lead to accidents of the AVs, have positive 
challenge values. Readers can find more technical details [15]. The learning process took only 
about 20 minutes to the convergence in a desktop computer equipped with Intel i7-7700 CPU 
and 16G RAM. 

For general scenarios, we propose to calculate the maneuver challenge for each BV based on the 
maneuver prediction of the AV and the results of car-following scenarios (Figure 4b). The basic 
idea is to calculate the maneuver challenge of each BV at the current time by taking the 
expectation of its maneuver challenge over all of its possible maneuvers at the next time step. 
The AV’s maneuvers are predicted as a probability distribution by the SMs. To demonstrate the 
computation of maneuver challenge, let us take the BV in the top left of Figure 4b as an example. 
For the BV, there are two possible maneuvers, one is longitudinal acceleration, and the other is 
to take the right lane change. For the AV, there are three possible maneuvers: left lane change, 
longitudinal accelerations, and right lane change. Each of the maneuvers is predicted by the SM 
with a probability. Between the AV and the BV, there are a total of six possible maneuver 
combinations, among which two of them are predicted to have non-zero maneuver challenges in 
the next time step. One is the BV makes right lane change while the AV remains longitudinal, the 
other is the BV remains longitudinal while the AV makes left lane change. In both scenarios, the 
BV and the AV are in a car-following situation after the lane-change maneuver, where the 
maneuver challenge can be obtained with the RL model discussed above. The overall maneuver 
challenge of the BV is an expectation of those in the two car-following situations. 

After calculating the maneuver challenge, the criticality of each BV’s maneuver at each state can 
be calculated. For example, as shown in Figure 5a, the exposure frequency of each BV can be 
queried as in NDE, and the maneuver challenge is calculated as discussed above. Then the 



 

  

criticality is obtained by multiplying the exposure frequency and maneuver challenge. The 
criticality of most BVs’ maneuvers is zero because either the exposure frequency is zero 
(impossible maneuver) or the maneuver challenge is zero (unchallenging maneuver). 

 



 

  

Figure 4 Illustration of maneuver challenge calculation. a, Maneuver challenge calculation of 
the BV’s accelerations for car following scenarios based on reinforcement learning techniques. 
The car following scenarios are formulated based on the Markov decision process (MDP), and the 
maneuver challenge values are calculated by the learning process. b, Example of maneuver 
challenge calculation for general scenarios based on autonomous vehicle (AV)’s maneuver 
prediction by surrogate models (SMs) and results of car-following scenarios. 

 
Figure 5 Illustration of NADE generation. a, Example of criticality calculation. For each 



 

  

background vehicle (green vehicle) at each time step, the criticality of each maneuver is 
calculated by the multiplication of exposure frequency and maneuver challenge. The blue vehicle 
denotes the autonomous vehicle. b, Example of the naturalistic and adversarial driving 
environment (NADE) generation. For each time step, the criticality summations of all background 
vehicles are calculated for the identification of the principal other vehicle (POV, orange vehicle). 
If the POV exists, the importance function is calculated, and the maneuver of the POV is sampled 
from the importance function, while others follow their naturalistic distributions. 

Among all the BVs surrounding the AV, a BV is identified as the POV if its criticality value is the 
largest and larger than a threshold (e.g., 0). The moment with a POV is identified as the critical 
moment. For the POV at the critical moment, the importance functions are constructed by the 
weighted average of the exposure frequency and the normalized criticality: with the probability 
ε , we sample maneuvers from the exposure frequency, while with the probability 1 ε− , we 
sample maneuvers from the normalized criticality. Inspired by the defensive importance 
sampling, the weighted average can mitigate the influences of the approximation errors of 
maneuver challenge. The maneuver of POV at the critical moment is then sampled from the 
importance function, while maneuvers for all other vehicles are sampled from the naturalistic 
distribution as in NDE. This completes the simulation for one time step (1 second is used in our 
examples) with all vehicle states updated. The simulation continues until accidents happen or all 
simulation time steps are completed. Figure 5b shows an example of the NADE generation 
procedure. 

To evaluate the generated NADE, we completed 2,000 km simulations of AVs in NDE and NADE, 
respectively, and calculated the distributions of bumper-to-bumper spaces and time-to-collision 
(TTC) for AVs. To investigate the influences of AVs, we developed two different types of AV 
models: the AV-I model was constructed based on IDM and MOBIL, while the AV-II model was 
trained by deep reinforcement learning (DRL) techniques considering both efficiency and safety. 
Figure 6 (a, b) shows that, for the AV-I model, NADE generates very similar distributions as NDE 
(naturalistic), but much more dangerous scenarios with small distances and TTC (adversarial). It 
is also true for the AV-II model, as shown in Figure 6 (c, d). The results also indicate that the AV-
II model is more aggressive than the AV-I model, because the AV-II model has smaller bumper-
to-bumper distances and TTC in NDE. This is not surprising because IDM and MOBIL are designed 
to be collision-free so AV-I is comparatively conservative. 

 



 

  

 
Figure 6 Evaluation of the generated NADE. Distributions of bumper-to-bumper distance (a) 
and TTC (b) for the AV-I model. Distributions of bumper-to-bumper distance (c) and TTC (d) for 
the AV-II model. e Illustration of the events of background vehicle (BV, green vehicle) cut in, BV 
hard brake, lane conflict, and autonomous vehicle (AV, blue vehicle) lane change. The number 
of events encountered by the AV-I model (f) and the AV-II model (g) for every 100 miles. 
Distributions of lane changing events of the AV-I model (h) and the AV-II model (i), where the 



 

  

evasive lane change events are circled by the red dashed lines. 

We also compared the events encountered by the AVs in NDE and NADE. Besides the accident 
event, we defined the events of BV cut-in, BV hard brake, lane conflict, and AV lane change, as 
shown in Figure 6e. We queried these events with the following criteria respectively: (a) a BV cuts 
in the AV within 1.5s time headway (THW); (b) a leading BV within 1.5s THW brakes harder than 
-3 m s-2; (c) the AV and BV are within 1.5s THW and change to the same lane simultaneously; (d) 
the AV changes its lane to avoid the front BV. As shown in Figure 6 (f, g), comparing with NDE, 
NADE generates many more events of the accident, BV cut-in, and lane conflict, and a similar 
number of BV hard brake events, for both the two AV models. Actually, NDE has no event of 
accident, BV cut in, and lane conflict in the 2,000 km simulations for both the AVs, because of the 
rareness of these events. Moreover, as shown in Figure 6 (h, i), NADE generates much more 
evasive lane change maneuvers of both the AVs with small relative distances ( 1r ) and speed 
differences ( RR ). All these results show that NADE can test the AVs much more effectively by 
more valuable events, comparing with NDE. 

We further investigated the adjustment frequency of BVs’ maneuvers in NADE. Results show that, 
for every driving mile of the two AVs, we adjusted average of 6.51 and 5.43 times, respectively. 
As a comparison, there are a total of 381.27 and 351.01 BVs’ maneuvers in the neighborhood 
(the closest eight vehicles within 120m) of the AVs every mile. Therefore, we only adjust about 
1.7% and 1.5% maneuvers of the environment, which is very sparse and thus keep the 
environment naturalistic. It validates that sparse but intelligent adjustment of NDE can 
significantly improve test effectiveness. 

3. Results 

3.1 Accuracy and efficiency of driving intelligence testing in NADE 

The accuracy and efficiency of driving intelligence test in NADE are theoretically guaranteed and 
validated in our simulation. To measure the driving intelligence regarding safety, accident rates 
of the AVs in NDE are utilized as the benchmark. As the NDE is generated based on NDD, it can 
represent the safety performance of the AVs in the real world. In our experiments, we compared 
the estimated accident rates and required numbers of tests for both NDE and NADE. For the 
convenience of experiments, we conducted one simulation test for a constant driving distance 
(400m) of the AVs, recorded the test results (accident or not) of the AVs, and calculated the 
accident rate per simulation test. As the distance of each test is constant, it can easily transform 
between the accident rate per simulation test and the driving distance. To investigate the 
influences of AV models, both the AV-I and the AV-II models were tested. 



 

  

 
Figure 7 Evaluation accuracy and efficiency for the two AVs by NDE and NADE. The accident 
rate estimation of the AV-I model (a) and the AV-II model (c). The relative half-width of the AV-I 
model (b) and the AV-II model (d). e Illustration of the four accident types. Type 1: the 
autonomous vehicle (AV, blue vehicle) has a rear-end collision with the background vehicle (BV, 
green vehicle). Type 2: the BV has a rear-end collision with the AV. Type 3: the AV makes a lane 



 

  

change and has a sideswipe collision with the BV. Type 4: the BV makes a lane change and has a 
sideswipe collision with the AV. Type 5: both the AV and BV make a lane change and have a 
sideswipe collision. f Unweighted accident rate of each type for the AV-II model in the naturalistic 
and adversarial driving environment (NADE). g Accident rate of each type in the naturalistic 
driving environment (NDE) and weighted accident rate of each type in NADE. 

Figure 7 (a-d) shows the evaluation results of the accident rate per test for both the AVs in NDE 
and NADE. The blue line represents the results of testing in NDE, and the bottom x -axis indicates 
the number of tests. The red line represents the results in NADE, and the top x -axis for the 
number of tests. The light shadow represents the 90% confidence level. As shown in Fig.7 (a, c), 
NADE obtains the same accident rate estimation with NDE by a much smaller number of tests for 
both the AVs. We further calculated the average driving distance per accident, which were 

55.13 10×  and 61.54 10×  miles per accident. As human drivers in the US have on average 
54.79 10×  miles between two accidents on highway [35], the AV-I model has similar safety 

performance with human drivers, while the AV-II model is better. 

To measure the efficiency, we calculated the relative half-width (RHW) [12] as the measurement 
of evaluation precision and calculated the minimum number of tests for reaching a pre-
determined precision threshold (RHW is 0.3). As shown in Figure 7b, for the AV-I model, NADE 
requires only 48.74 10×  number of tests, while NDE requires 74.39 10×  number of tests. Our 
method can accelerate the evaluation for about 500 times and reduce about 10 million driving 
miles. Similarly, for the AV-II model, NADE requires the 42.32 10×  number of tests, while NDE 
require 81.41 10×  number of tests, as shown in Figure 7d. Our method can accelerate the 
evaluation for about 6,000 times and eliminate 35 million driving miles. 

Table 1 Sensitivity analysis. The average minimum number and average wall-clock time of tests 
in the naturalistic driving environment (NDE) and the naturalistic and adversarial driving 
environment (NADE) with different parameters 0.1,ε =  0.3, 0.5 for reaching the precision 
threshold (RHW is 0.3). 

Autonomous 
vehicle  NADE (

0.1ε = ) 
NADE (

0.3ε = ) 
NADE (

0.5ε = ) 
NDE 

( 1.0ε = ) 
AV-I No. of Tests 51.85 10×  51.52 10×  51.14 10×  74.39 10×  
AV-I Time (s) 324.61 268.14 196.82 46.89 10×  
AV-II No. of Tests 39.40 10×  32.27 10×  36.01 10×  81.41 10×  
AV-II Time (s) 17.25 4.06 10.66 52.33 10×  

 

To investigate the influences of parameters in NADE, we further conducted the sensitivity 
analysis of ε , which was used in constructing important functions. For each value (0.1, 0.3, and 



 

  

0.5), we completed the tests in NADE and calculated the minimum number of tests for reaching 
the precision threshold. To mitigate the randomness of the results, we repeated the tests 10 
times, and calculated the average minimum number of tests, as shown in Table 1. Please note 
that NDE is equivalent to NADE with 0.5ε = . Results show that NADE can improve the evaluation 
efficiency significantly for all three values.  The best result is obtained for the AV-I model with  

0.5ε = and AV-II model with 0.3ε = . As discussed before, the introduction of ε  is to mitigate 
the influence of approximation errors of maneuver challenges. As the approximation errors may 
be different for different AVs, the optimal value of ε  and the optimal acceleration rates are 
different. In practice, 0.5ε =  is a good choice balancing the optimality and the robustness. 

To investigate the computational cost of NADE, we also compared the average wall-clock time 
used by NDE and NADE for reaching the precision threshold. We conducted the simulations of 
NDE and NADE on the University of Michigan’s Great Lakes High-Performance Computing (HPC) 
cluster using 500 cores (Intel Xeon Gold 6,154 processor) and 2,500 GB RAM. As shown in Table 
1, the tests in NADE reduce the computational time significantly for both AV models with all three 
values of ε . 

To validate the unbiasedness about accident types, we adopted the crash type diagram defined 
by the Fatality Analysis Reporting System (FARS) [36], which is a nationwide census provided by 
National Highway Traffic Safety Administration (NHTSA) for data regarding fatal injuries suffered 
in motor vehicle traffic crashes. For the highway driving case in this project, we only have the 
accidents between the AV and BVs, so the five accident types are identified, as shown in Figure 
7e. We note that accident type 1 can also be caused by reckless cut-in of the BV, where the 
difference from type 4 is that the AV collides with the BV from the rear end. We have compared 
the results for the AV-II model in NDE and NADE. Figure 7f shows the unweighted accident rate 
of each type in NADE. As NADE is more adversarial than NDE, the total accident rate is 0.046 
accidents per simulation test, which is much larger than NDE. As required by the importance 
sampling theory, each accident event should be weighted by the likelihood ratio to keep the 
unbiasedness. Figure 7g shows that the weighted accident rates for all five types are the same as 
the results in NDE within the evaluation precision (the relative half-width is smaller than 0.3). The 
summation of the accident rates of all five types is the same as the total accident rate, so these 
five types include all accidents of the AV-II model in both NDE and NADE. 

3.2 Adversarial examples in NADE 

We investigated the capability of NADE for generating adversarial examples. Adversarial 
examples have been widely investigated in the domain of machine learning. By applying small 
but intentional perturbations to examples from the dataset, adversarial examples can cause 
severe failures to many machine-learning methods and, therefore, provide insights for further 
improvement [37]. Similarly, adversarial examples, sometimes known as corner cases, edge 



 

  

cases, or worst cases, play an important role in the development and evaluation of AVs. As they 
happen rarely in the NDE, it is significant to generate adversarial examples systematically. As 
demonstrated above, the NADE can generate many more accidents than the NDE. The key is to 
identify cases that are valuable and informative. We propose two criteria as examples to illustrate 
the potential of NADE for generating adversarial examples. The first is the simulation weight, 
which is the likelihood ratio of the simulation test. A smaller simulation weight usually indicates 
a higher probability of the test to be an adversarial example. The second is the diversity of the 
events (as defined in Figure 6e) involved during the test. A test involving diverse events usually 
contains more information for understanding the AV model under test. Figure 8 provides several 
examples identified using the above criteria. The blue vehicle represents the AV under test, the 
green vehicles represent the BVs, and the green vehicle with the orange rectangle represents the 
POV. 

 
Figure 8 Adversarial examples generated in NADE. a, The autonomous vehicle (AV, blue 
vehicle) was on high speed and had a rear-end collision with the cut-in principal other vehicle 
(POV, green vehicle with orange rectangle) after two front-left POVs sequentially changed their 
lanes towards the AV. b, The AV made a left lane change and collided with the POV due to a 



 

  

lane conflict (the POV accelerated first and then made a right lane change, simultaneously with 
the AV). c, The AV turned left to avoid the collision to the cut-in POV but failed as the cut-in 
POV switched back to the left lane simultaneously with the AV. d, The AV made an evasive lane 
change to avoid one cut-in POV but eventually collided with another cut-in POV. 

4. Findings  

In this project, we showed the effectiveness of NADE for driving intelligence testing of AVs. Our 
method can be used to enhance the existing life-like simulations to accelerate the test process. 
Comparing with the testing AVs in NDE, the proposed method can accelerate the evaluation 
process by multiple orders of magnitude without loss of evaluation unbiasedness. It can also be 
used to systematically generate valuable adversarial examples for the further development of 
AVs. The adversarial yet naturalistic environment is also promising for accelerated training of 
AVs. The scalability of our method makes it possible to be used in large-scale simulations, such 
as a city-scale driving environment, as long as sufficient naturalistic driving data is available. The 
NADE framework may also be applied to the intelligence tests of other types of robotics with 
similar features. 

5. Recommendations 

One direction for further research is to extend the approach for more complex scenarios, larger 
action space, and various road users. Another direction is to incorporate perception related tests 
(e.g., weather conditions) in the generated NADE. If the challenge to AVs’ perception can be 
measured and a small but critical set of variables regarding AVs’ perception can be identified and 
adjusted, the proposed NADE approach for perception related tests can also be constructed. 
There have been significant advances in adversarial image synthesis [38], which are promising for 
solving this problem. 

6. Outputs, Outcome, and Impacts 

The proposed model has significant advantages and real-world implementation impacts. We 
discover that sparse but adversarial adjustments to the naturalistic driving environment, 
resulting in the naturalistic and adversarial driving environment, can significantly reduce the 
required test miles without loss of evaluation unbiasedness. By training the background vehicles 
to learn when to execute what adversarial maneuver, the proposed environment becomes an 
intelligent environment for driving intelligence testing. Comparing with the naturalistic driving 
environment, the proposed environment can accelerate the evaluation process by multiple 
orders of magnitude. The proposed method has great potential to be implemented in real-world 
AV testing facilities to significantly facilitate the AV testing and evaluation process. It can provide 
an accurate, controllable, low-cost, and efficient venue to AV safety performance evaluation. 



 

  

We demonstrate the effectiveness of the proposed environment in a highway-driving simulation.  

The following outputs were generated during the performance of this project: 

• Journal Paper: Feng, S., Yan, X., Sun, H., Feng, Y. and Liu, H.X., 2021. Intelligent driving 
intelligence test for autonomous vehicles with naturalistic and adversarial environment. 
Nature communications, 12(1), pp.1-14. 

https://www.nature.com/articles/s41467-021-21007-8 

https://www.nature.com/articles/s41467-021-21007-8
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